Sample records for limit macromolecular structures

  1. Atomic Scale Structural Studies of Macromolecular Assemblies by Solid-state Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit

    2017-09-17

    Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.

  2. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    PubMed Central

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.

    2014-01-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409

  3. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination.

    PubMed

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2013-11-01

    The number of macromolecular structures deposited in the Protein Data Bank now approaches 100,000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation. © 2013 FEBS.

  4. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination

    PubMed Central

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2014-01-01

    The number of macromolecular structures deposited in the Protein Data Bank now approaches 100 000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation. PMID:24034303

  5. UQlust: combining profile hashing with linear-time ranking for efficient clustering and analysis of big macromolecular data.

    PubMed

    Adamczak, Rafal; Meller, Jarek

    2016-12-28

    Advances in computing have enabled current protein and RNA structure prediction and molecular simulation methods to dramatically increase their sampling of conformational spaces. The quickly growing number of experimentally resolved structures, and databases such as the Protein Data Bank, also implies large scale structural similarity analyses to retrieve and classify macromolecular data. Consequently, the computational cost of structure comparison and clustering for large sets of macromolecular structures has become a bottleneck that necessitates further algorithmic improvements and development of efficient software solutions. uQlust is a versatile and easy-to-use tool for ultrafast ranking and clustering of macromolecular structures. uQlust makes use of structural profiles of proteins and nucleic acids, while combining a linear-time algorithm for implicit comparison of all pairs of models with profile hashing to enable efficient clustering of large data sets with a low memory footprint. In addition to ranking and clustering of large sets of models of the same protein or RNA molecule, uQlust can also be used in conjunction with fragment-based profiles in order to cluster structures of arbitrary length. For example, hierarchical clustering of the entire PDB using profile hashing can be performed on a typical laptop, thus opening an avenue for structural explorations previously limited to dedicated resources. The uQlust package is freely available under the GNU General Public License at https://github.com/uQlust . uQlust represents a drastic reduction in the computational complexity and memory requirements with respect to existing clustering and model quality assessment methods for macromolecular structure analysis, while yielding results on par with traditional approaches for both proteins and RNAs.

  6. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered.

  7. Difficult macromolecular structures determined using X-ray diffraction techniques.

    PubMed

    Hernández-Santoyo, Alejandra

    2012-07-01

    Macromolecular crystallography has been, for the last few decades, the main source of structural information of biological macromolecular systems and it is one of the most powerful techniques for the analysis of enzyme mechanisms and macromolecular interactions at the atomic level. In addition, it is also an extremely powerful tool for drug design. Recent technological and methodological developments in macromolecular X-ray crystallography have allowed solving structures that until recently were considered difficult or even impossible, such as structures at atomic or subatomic resolution or large macromolecular complexes and assemblies at low resolution. These developments have also helped to solve the 3D-structure of macromolecules from twin crystals. Recently, this technique complemented with cryo-electron microscopy and neutron crystallography has provided the structure of large macromolecular machines with great precision allowing understanding of the mechanisms of their function.

  8. What Macromolecular Crowding Can Do to a Protein

    PubMed Central

    Kuznetsova, Irina M.; Turoverov, Konstantin K.; Uversky, Vladimir N.

    2014-01-01

    The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area. PMID:25514413

  9. Macromolecular diffractive imaging using imperfect crystals

    PubMed Central

    Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-01-01

    The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980

  10. Molecular evidence for biodegradation of geomacromolecules

    NASA Astrophysics Data System (ADS)

    Jenisch-Anton, A.; Adam, P.; Michaelis, W.; Connan, J.; Herrmann, D.; Rohmer, M.; Albrecht, P.

    2000-10-01

    The biodegradability of macromolecular organic structures of geological origin was investigated by performing in vitro studies. Cultures of the common Nocardioides simplex were grown, first, on a high molecular weight, asymmetric thioether (1-(phytanylsulfanyl)-octadecane 1) and then on macromolecular fractions isolated from a sulfur-rich oil. Gross data indicate that bacteria convert macromolecular substances to material of higher polarity by oxidizing the abundant thioethers to sulfones and sulfoxides and by introducing new functionalities, such as carboxylic acid, keto or hydroxyl groups. Furthermore, bacteria remineralize the macromolecular structures. Bacterially induced alterations were also studied on a molecular level after chemical desulfurization of the macromolecular structure. Thus, it could be established that the amounts of linear hydrocarbons in the macromolecular structure are decreased relative to branched and cyclic structures due to a preferential bacterial attack of the linear moieties bound to the macromolecules. This is further supported by the detection of S-bound fatty acids resulting from the bacterial oxidation of S-bound n-alkanes. Moreover, N. simplex also degraded sulfur-bound steranes by oxidation of the steroid side-chain leading to S-bound steroid acids.

  11. PDBe: improved accessibility of macromolecular structure data from PDB and EMDB

    PubMed Central

    Velankar, Sameer; van Ginkel, Glen; Alhroub, Younes; Battle, Gary M.; Berrisford, John M.; Conroy, Matthew J.; Dana, Jose M.; Gore, Swanand P.; Gutmanas, Aleksandras; Haslam, Pauline; Hendrickx, Pieter M. S.; Lagerstedt, Ingvar; Mir, Saqib; Fernandez Montecelo, Manuel A.; Mukhopadhyay, Abhik; Oldfield, Thomas J.; Patwardhan, Ardan; Sanz-García, Eduardo; Sen, Sanchayita; Slowley, Robert A.; Wainwright, Michael E.; Deshpande, Mandar S.; Iudin, Andrii; Sahni, Gaurav; Salavert Torres, Jose; Hirshberg, Miriam; Mak, Lora; Nadzirin, Nurul; Armstrong, David R.; Clark, Alice R.; Smart, Oliver S.; Korir, Paul K.; Kleywegt, Gerard J.

    2016-01-01

    The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the ‘best structures’ for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data. PMID:26476444

  12. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions

    PubMed Central

    Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2016-01-01

    Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction’s mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein–protein interactions or protein–DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1 040 000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43 000 RNA-mediated interactions, and ∼12 000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network, binary interaction and interaction interface. Database URL: http://dommino.org PMID:26827237

  13. PDBe: improved accessibility of macromolecular structure data from PDB and EMDB.

    PubMed

    Velankar, Sameer; van Ginkel, Glen; Alhroub, Younes; Battle, Gary M; Berrisford, John M; Conroy, Matthew J; Dana, Jose M; Gore, Swanand P; Gutmanas, Aleksandras; Haslam, Pauline; Hendrickx, Pieter M S; Lagerstedt, Ingvar; Mir, Saqib; Fernandez Montecelo, Manuel A; Mukhopadhyay, Abhik; Oldfield, Thomas J; Patwardhan, Ardan; Sanz-García, Eduardo; Sen, Sanchayita; Slowley, Robert A; Wainwright, Michael E; Deshpande, Mandar S; Iudin, Andrii; Sahni, Gaurav; Salavert Torres, Jose; Hirshberg, Miriam; Mak, Lora; Nadzirin, Nurul; Armstrong, David R; Clark, Alice R; Smart, Oliver S; Korir, Paul K; Kleywegt, Gerard J

    2016-01-04

    The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the 'best structures' for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. [Macromolecular aromatic network characteristics of Chinese power coal analyzed by synchronous fluorescence and X-ray diffraction].

    PubMed

    Ye, Cui-Ping; Feng, Jie; Li, Wen-Ying

    2012-07-01

    Coal structure, especially the macromolecular aromatic skeleton structure, has a strong influence on coke reactivity and coal gasification, so it is the key to grasp the macromolecular aromatic skeleton coal structure for getting the reasonable high efficiency utilization of coal. However, it is difficult to acquire their information due to the complex compositions and structure of coal. It has been found that the macromolecular aromatic network coal structure would be most isolated if small molecular of coal was first extracted. Then the macromolecular aromatic skeleton coal structure would be clearly analyzed by instruments, such as X-ray diffraction (XRD), fluorescence spectroscopy with synchronous mode (Syn-F), Gel permeation chromatography (GPC) etc. Based on the previous results, according to the stepwise fractional liquid extraction, two Chinese typical power coals, PS and HDG, were extracted by silica gel as stationary phase and acetonitrile, tetrahydrofuran (THF), pyridine and 1-methyl-2-pyrollidinone (NMP) as a solvent group for sequential elution. GPC, Syn-F and XRD were applied to investigate molecular mass distribution, condensed aromatic structure and crystal characteristics. The results showed that the size of aromatic layers (La) is small (3-3.95 nm) and the stacking heights (Lc) are 0.8-1.2 nm. The molecular mass distribution of the macromolecular aromatic network structure is between 400 and 1 130 amu, with condensed aromatic numbers of 3-7 in the structure units.

  15. Macromolecular Organic Compounds Emerging from the Enceladus Ocean

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Glein, C. R.; Hsu, H.-W.; Kempf, S.; Klenner, F.; Noelle, L.; Schmidt, J.; Tobie, G.; Waite, J. H.

    2018-05-01

    We report observations of ice grains emitted by Enceladus containing concentrated, complex, macromolecular organic material. The data provides key constraints on the macromolecular structure and eludes Enceladus' organic rock/water chemistry.

  16. On vital aid: the why, what and how of validation

    PubMed Central

    Kleywegt, Gerard J.

    2009-01-01

    Limitations to the data and subjectivity in the structure-determination process may cause errors in macromolecular crystal structures. Appropriate validation techniques may be used to reveal problems in structures, ideally before they are analysed, published or deposited. Additionally, such tech­niques may be used a posteriori to assess the (relative) merits of a model by potential users. Weak validation methods and statistics assess how well a model reproduces the information that was used in its construction (i.e. experimental data and prior knowledge). Strong methods and statistics, on the other hand, test how well a model predicts data or information that were not used in the structure-determination process. These may be data that were excluded from the process on purpose, general knowledge about macromolecular structure, information about the biological role and biochemical activity of the molecule under study or its mutants or complexes and predictions that are based on the model and that can be tested experimentally. PMID:19171968

  17. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone

    USDA-ARS?s Scientific Manuscript database

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...

  18. Multiple Cosmic Sources for Meteorite Macromolecules?

    PubMed Central

    Watson, Jonathan S.; Meredith, William; Love, Gordon D.; Gilmour, Iain; Snape, Colin E.

    2015-01-01

    Abstract The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here, we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in 13C and a refractory fraction made up of large aromatic units depleted in 13C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound-specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter. Key Words: Abiotic organic synthesis—Carbonaceous chondrite—Cosmochemistry—Meteorites. Astrobiology 15, 779–786. PMID:26418568

  19. Quantitative Assessment of Normal Fetal Brain Myelination Using Fast Macromolecular Proton Fraction Mapping.

    PubMed

    Yarnykh, V L; Prihod'ko, I Y; Savelov, A A; Korostyshevskaya, A M

    2018-05-10

    Fast macromolecular proton fraction mapping is a recently emerged MRI method for quantitative myelin imaging. Our aim was to develop a clinically targeted technique for macromolecular proton fraction mapping of the fetal brain and test its capability to characterize normal prenatal myelination. This prospective study included 41 pregnant women (gestational age range, 18-38 weeks) without abnormal findings on fetal brain MR imaging performed for clinical indications. A fast fetal brain macromolecular proton fraction mapping protocol was implemented on a clinical 1.5T MR imaging scanner without software modifications and was performed after a clinical examination with an additional scan time of <5 minutes. 3D macromolecular proton fraction maps were reconstructed from magnetization transfer-weighted, T1-weighted, and proton density-weighted images by the single-point method. Mean macromolecular proton fraction in the brain stem, cerebellum, and thalamus and frontal, temporal, and occipital WM was compared between structures and pregnancy trimesters using analysis of variance. Gestational age dependence of the macromolecular proton fraction was assessed using the Pearson correlation coefficient ( r ). The mean macromolecular proton fraction in the fetal brain structures varied between 2.3% and 4.3%, being 5-fold lower than macromolecular proton fraction in adult WM. The macromolecular proton fraction in the third trimester was higher compared with the second trimester in the brain stem, cerebellum, and thalamus. The highest macromolecular proton fraction was observed in the brain stem, followed by the thalamus, cerebellum, and cerebral WM. The macromolecular proton fraction in the brain stem, cerebellum, and thalamus strongly correlated with gestational age ( r = 0.88, 0.80, and 0.73; P < .001). No significant correlations were found for cerebral WM regions. Myelin is the main factor determining macromolecular proton fraction in brain tissues. Macromolecular proton fraction mapping is sensitive to the earliest stages of the fetal brain myelination and can be implemented in a clinical setting. © 2018 by American Journal of Neuroradiology.

  20. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics

    PubMed Central

    Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth

    2016-01-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts. PMID:27124275

  1. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.

    PubMed

    Maximova, Tatiana; Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth; Shehu, Amarda

    2016-04-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.

  2. Direct methods in protein crystallography.

    PubMed

    Karle, J

    1989-11-01

    It is pointed out that the 'direct methods' of phase determination for small-structure crystallography do not have immediate applicability to macromolecular structures. The term 'direct methods in macromolecular crystallography' is suggested to categorize a spectrum of approaches to macromolecular structure determination in which the analyses are characterized by the use of two-phase and higher-order-phase invariants. The evaluation of the invariants is generally obtained by the use of heavy-atom techniques. The results of a number of the more recent algebraic and probabilistic studies involving isomorphous replacement and anomalous dispersion thus become valid subjects for discussion here. These studies are described and suggestions are also presented concerning future applicability. Additional discussion concerns the special techniques of filtering, the use of non-crystallographic symmetry, some features of maximum entropy and attempts to apply phase-determining formulas to the refinement of macromolecular structure. It is noted that, in addition to the continuing remarkable progress in macromolecular crystallography based on the traditional applications of isomorphous replacement and anomalous dispersion, recent valuable advances have been made in the application of non-crystallographic symmetry, in particular, to virus structures and in applications of filtering. Good progress has also been reported in the application of exact linear algebra to multiple-wavelength anomalous-dispersion investigations of structures containing anomalous scatterers of only moderate scattering power.

  3. Creating 3D Physical Models to Probe Student Understanding of Macromolecular Structure

    ERIC Educational Resources Information Center

    Cooper, A. Kat; Oliver-Hoyo, M. T.

    2017-01-01

    The high degree of complexity of macromolecular structure is extremely difficult for students to process. Students struggle to translate the simplified two-dimensional representations commonly used in biochemistry instruction to three-dimensional aspects crucial in understanding structure-property relationships. We designed four different physical…

  4. Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review

    PubMed Central

    Paquet, Eric; Viktor, Herna L.

    2015-01-01

    Macromolecular structures, such as neuraminidases, hemagglutinins, and monoclonal antibodies, are not rigid entities. Rather, they are characterised by their flexibility, which is the result of the interaction and collective motion of their constituent atoms. This conformational diversity has a significant impact on their physicochemical and biological properties. Among these are their structural stability, the transport of ions through the M2 channel, drug resistance, macromolecular docking, binding energy, and rational epitope design. To assess these properties and to calculate the associated thermodynamical observables, the conformational space must be efficiently sampled and the dynamic of the constituent atoms must be simulated. This paper presents algorithms and techniques that address the abovementioned issues. To this end, a computational review of molecular dynamics, Monte Carlo simulations, Langevin dynamics, and free energy calculation is presented. The exposition is made from first principles to promote a better understanding of the potentialities, limitations, applications, and interrelations of these computational methods. PMID:25785262

  5. MMTF-An efficient file format for the transmission, visualization, and analysis of macromolecular structures.

    PubMed

    Bradley, Anthony R; Rose, Alexander S; Pavelka, Antonín; Valasatava, Yana; Duarte, Jose M; Prlić, Andreas; Rose, Peter W

    2017-06-01

    Recent advances in experimental techniques have led to a rapid growth in complexity, size, and number of macromolecular structures that are made available through the Protein Data Bank. This creates a challenge for macromolecular visualization and analysis. Macromolecular structure files, such as PDB or PDBx/mmCIF files can be slow to transfer, parse, and hard to incorporate into third-party software tools. Here, we present a new binary and compressed data representation, the MacroMolecular Transmission Format, MMTF, as well as software implementations in several languages that have been developed around it, which address these issues. We describe the new format and its APIs and demonstrate that it is several times faster to parse, and about a quarter of the file size of the current standard format, PDBx/mmCIF. As a consequence of the new data representation, it is now possible to visualize structures with millions of atoms in a web browser, keep the whole PDB archive in memory or parse it within few minutes on average computers, which opens up a new way of thinking how to design and implement efficient algorithms in structural bioinformatics. The PDB archive is available in MMTF file format through web services and data that are updated on a weekly basis.

  6. MMTF—An efficient file format for the transmission, visualization, and analysis of macromolecular structures

    PubMed Central

    Pavelka, Antonín; Valasatava, Yana; Prlić, Andreas

    2017-01-01

    Recent advances in experimental techniques have led to a rapid growth in complexity, size, and number of macromolecular structures that are made available through the Protein Data Bank. This creates a challenge for macromolecular visualization and analysis. Macromolecular structure files, such as PDB or PDBx/mmCIF files can be slow to transfer, parse, and hard to incorporate into third-party software tools. Here, we present a new binary and compressed data representation, the MacroMolecular Transmission Format, MMTF, as well as software implementations in several languages that have been developed around it, which address these issues. We describe the new format and its APIs and demonstrate that it is several times faster to parse, and about a quarter of the file size of the current standard format, PDBx/mmCIF. As a consequence of the new data representation, it is now possible to visualize structures with millions of atoms in a web browser, keep the whole PDB archive in memory or parse it within few minutes on average computers, which opens up a new way of thinking how to design and implement efficient algorithms in structural bioinformatics. The PDB archive is available in MMTF file format through web services and data that are updated on a weekly basis. PMID:28574982

  7. Highlighting cancer cells with macromolecular probes

    NASA Astrophysics Data System (ADS)

    Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Brown, Adrienne S.; Wilson, James N.; Raymo, Françisco M.

    2017-02-01

    Conventional fluorophore-ligand constructs for the detection of cancer cells generally produce relatively weak signals with modest contrast. The inherently low brightness accessible per biding event with the pairing of a single organic fluorophore to a single ligand as well as the contribution of unbound probes to background fluorescence are mainly responsible for these limitations. Our laboratories identified a viable structural design to improve both brightness and contrast. It is based on the integration of activatable fluorophores and targeting ligands within the same macromolecular construct. The chromophoric components are engineered to emit bright fluorescence exclusively in acidic environments. The targeting agents are designed to bind complementary receptors overexpressed on the surface of cancer cells and allow internalization of the macromolecules into acidic organelles. As a result of these properties, our macromolecular probes switch their intense emission on exclusively in the intracellular space of target cells with minimal background fluorescence from the extracellular matrix. In fact, these operating principles translate into a 170-fold enhancement in brightness, relative to equivalent but isolated chromophoric components, and a 3-fold increase in contrast, relative to model but non-activatable fluorophores. Thus, our macromolecular probes might ultimately evolve into valuable analytical tools to highlight cancer cells with optimal signal-to-noise ratios in a diversity of biomedical applications.

  8. Boxes of Model Building and Visualization.

    PubMed

    Turk, Dušan

    2017-01-01

    Macromolecular crystallography and electron microscopy (single-particle and in situ tomography) are merging into a single approach used by the two coalescing scientific communities. The merger is a consequence of technical developments that enabled determination of atomic structures of macromolecules by electron microscopy. Technological progress in experimental methods of macromolecular structure determination, computer hardware, and software changed and continues to change the nature of model building and visualization of molecular structures. However, the increase in automation and availability of structure validation are reducing interactive manual model building to fiddling with details. On the other hand, interactive modeling tools increasingly rely on search and complex energy calculation procedures, which make manually driven changes in geometry increasingly powerful and at the same time less demanding. Thus, the need for accurate manual positioning of a model is decreasing. The user's push only needs to be sufficient to bring the model within the increasing convergence radius of the computing tools. It seems that we can now better than ever determine an average single structure. The tools work better, requirements for engagement of human brain are lowered, and the frontier of intellectual and scientific challenges has moved on. The quest for resolution of new challenges requires out-of-the-box thinking. A few issues such as model bias and correctness of structure, ongoing developments in parameters defining geometric restraints, limitations of the ideal average single structure, and limitations of Bragg spot data are discussed here, together with the challenges that lie ahead.

  9. Macromolecular Crowding Regulates the Gene Expression Profile by Limiting Diffusion

    DOE PAGES

    Golkaram, Mahdi; Hellander, Stefan; Drawert, Brian; ...

    2016-11-28

    We seek to elucidate the role of macromolecular crowding in transcription and translation. It is well known that stochasticity in gene expression can lead to differential gene expression and heterogeneity in a cell population. Recent experimental observations by Tan et al. have improved our understanding of the functional role of macromolecular crowding. It can be inferred from their observations that macromolecular crowding can lead to robustness in gene expression, resulting in a more homogeneous cell population. We introduce a spatial stochastic model to provide insight into this process. Our results show that macromolecular crowding reduces noise (as measured by themore » kurtosis of the mRNA distribution) in a cell population by limiting the diffusion of transcription factors (i.e. removing the unstable intermediate states), and that crowding by large molecules reduces noise more efficiently than crowding by small molecules. Finally, our simulation results provide evidence that the local variation in chromatin density as well as the total volume exclusion of the chromatin in the nucleus can induce a homogenous cell population« less

  10. The future of crystallography in drug discovery

    PubMed Central

    Zheng, Heping; Hou, Jing; Zimmerman, Matthew D; Wlodawer, Alexander; Minor, Wladek

    2014-01-01

    Introduction X-ray crystallography plays an important role in structure-based drug design (SBDD), and accurate analysis of crystal structures of target macromolecules and macromolecule–ligand complexes is critical at all stages. However, whereas there has been significant progress in improving methods of structural biology, particularly in X-ray crystallography, corresponding progress in the development of computational methods (such as in silico high-throughput screening) is still on the horizon. Crystal structures can be overinterpreted and thus bias hypotheses and follow-up experiments. As in any experimental science, the models of macromolecular structures derived from X-ray diffraction data have their limitations, which need to be critically evaluated and well understood for structure-based drug discovery. Areas covered This review describes how the validity, accuracy and precision of a protein or nucleic acid structure determined by X-ray crystallography can be evaluated from three different perspectives: i) the nature of the diffraction experiment; ii) the interpretation of an electron density map; and iii) the interpretation of the structural model in terms of function and mechanism. The strategies to optimally exploit a macromolecular structure are also discussed in the context of ‘Big Data’ analysis, biochemical experimental design and structure-based drug discovery. Expert opinion Although X-ray crystallography is one of the most detailed ‘microscopes’ available today for examining macromolecular structures, the authors would like to re-emphasize that such structures are only simplified models of the target macromolecules. The authors also wish to reinforce the idea that a structure should not be thought of as a set of precise coordinates but rather as a framework for generating hypotheses to be explored. Numerous biochemical and biophysical experiments, including new diffraction experiments, can and should be performed to verify or falsify these hypotheses. X-ray crystallography will find its future application in drug discovery by the development of specific tools that would allow realistic interpretation of the outcome coordinates and/or support testing of these hypotheses. PMID:24372145

  11. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    PubMed

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  12. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering

    PubMed Central

    Tehei, Moeava; Franzetti, Bruno; Madern, Dominique; Ginzburg, Margaret; Ginzburg, Ben Z; Giudici-Orticoni, Marie-Thérèse; Bruschi, Mireille; Zaccai, Giuseppe

    2004-01-01

    Mean macromolecular dynamics was quantified in vivo by neutron scattering in psychrophile, mesophile, thermophile and hyperthermophile bacteria. Root mean square atomic fluctuation amplitudes determining macromolecular flexibility were found to be similar for each organism at its physiological temperature (∼1 Å in the 0.1 ns timescale). Effective force constants determining the mean macromolecular resilience were found to increase with physiological temperature from 0.2 N/m for the psychrophiles, which grow at 4°C, to 0.6 N/m for the hyperthermophiles (85°C), indicating that the increase in stabilization free energy is dominated by enthalpic rather than entropic terms. Larger resilience allows macromolecular stability at high temperatures, while maintaining flexibility within acceptable limits for biological activity. PMID:14710189

  13. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  14. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential.

    PubMed

    Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V

    2015-07-01

    The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.

  15. Bringing diffuse X-ray scattering into focus

    DOE PAGES

    Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.

    2018-02-16

    X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.

  16. Bringing diffuse X-ray scattering into focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.

    X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.

  17. TomoMiner and TomoMinerCloud: A software platform for large-scale subtomogram structural analysis

    PubMed Central

    Frazier, Zachary; Xu, Min; Alber, Frank

    2017-01-01

    SUMMARY Cryo-electron tomography (cryoET) captures the 3D electron density distribution of macromolecular complexes in close to native state. With the rapid advance of cryoET acquisition technologies, it is possible to generate large numbers (>100,000) of subtomograms, each containing a macromolecular complex. Often, these subtomograms represent a heterogeneous sample due to variations in structure and composition of a complex in situ form or because particles are a mixture of different complexes. In this case subtomograms must be classified. However, classification of large numbers of subtomograms is a time-intensive task and often a limiting bottleneck. This paper introduces an open source software platform, TomoMiner, for large-scale subtomogram classification, template matching, subtomogram averaging, and alignment. Its scalable and robust parallel processing allows efficient classification of tens to hundreds of thousands of subtomograms. Additionally, TomoMiner provides a pre-configured TomoMinerCloud computing service permitting users without sufficient computing resources instant access to TomoMiners high-performance features. PMID:28552576

  18. Functional Sub-states by High-pressure Macromolecular Crystallography.

    PubMed

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  19. Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase.

    PubMed

    Nadar, Shamraja S; Muley, Abhijeet B; Ladole, Mayur R; Joshi, Pranoti U

    2016-03-01

    Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase were prepared by precipitation and subsequent cross-linking. The non-toxic, biodegradable, biocompatible, renewable polysaccharide based macromolecular cross-linkers viz. agar, chitosan, dextran, and gum arabic were used as a substitute for traditional glutaraldehyde to augment activity recovery toward macromolecular substrate. Macromolecular cross-linkers were prepared by periodate mediated controlled oxidation of polysaccharides. The effects of precipitating agent, concentration and different cross-linkers on activity recovery of α-amylase CLEAs were investigated. α-Amylase aggregated with ammonium sulphate and cross-linked by dextran showed 91% activity recovery, whereas glutaraldehyde CLEAs (G-CLEAs) exhibited 42% activity recovery. M-CLEAs exhibited higher thermal stability in correlation with α-amylase and G-CLEAs. Moreover, dextran and chitosan M-CLEAs showed same affinity for starch hydrolysis as of free α-amylase. The changes in secondary structures revealed the enhancements in structural and conformational rigidity attributed by cross-linkers. Finally, after five consecutive cycles dextran M-CLEAs retained 1.25 times higher initial activity than G-CLEAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores.

    PubMed

    Lazzara, Thomas D; Lau, K H Aaron; Knoll, Wolfgang; Janshoff, Andreas; Steinem, Claudia

    2012-01-01

    Layer-by-layer (LbL) deposition of polyelectrolytes and proteins within the cylindrical nanopores of anodic aluminum oxide (AAO) membranes was studied by optical waveguide spectroscopy (OWS). AAO has aligned cylindrical, nonintersecting pores with a defined pore diameter d(0) and functions as a planar optical waveguide so as to monitor, in situ, the LbL process by OWS. The LbL deposition of globular proteins, i.e., avidin and biotinylated bovine serum albumin was compared with that of linear polyelectrolytes (linear-PEs), both species being of similar molecular weight. LbL deposition within the cylindrical AAO geometry for different pore diameters (d(0) = 25-80 nm) for the various macromolecular species, showed that the multilayer film growth was inhibited at different maximum numbers of LbL steps (n(max)). The value of n(max) was greatest for linear-PEs, while proteins had a lower value. The cylindrical pore geometry imposes a physical limit to LbL growth such that n(max) is strongly dependent on the overall internal structure of the LbL film. For all macromolecular species, deposition was inhibited in native AAO, having pores of d(0) = 25-30 nm. Both, OWS and scanning electron microscopy showed that LbL growth in larger AAO pores (d(0) > 25-30 nm) became inhibited when approaching a pore diameter of d(eff,n_max) = 25-35 nm, a similar size to that of native AAO pores, with d(0) = 25-30 nm. For a reasonable estimation of d(eff,n_max), the actual volume occupied by a macromolecular assembly must be taken into consideration. The results clearly show that electrostatic LbL allowed for compact macromolecular layers, whereas proteins formed loosely packed multilayers.

  1. Macromolecular Crystallization in Microfluidics for the International Space Station

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  2. Modeling the Structure of Helical Assemblies with Experimental Constraints in Rosetta.

    PubMed

    André, Ingemar

    2018-01-01

    Determining high-resolution structures of proteins with helical symmetry can be challenging due to limitations in experimental data. In such instances, structure-based protein simulations driven by experimental data can provide a valuable approach for building models of helical assemblies. This chapter describes how the Rosetta macromolecular package can be used to model homomeric protein assemblies with helical symmetry in a range of modeling scenarios including energy refinement, symmetrical docking, comparative modeling, and de novo structure prediction. Data-guided structure modeling of helical assemblies with experimental information from electron density, X-ray fiber diffraction, solid-state NMR, and chemical cross-linking mass spectrometry is also described.

  3. Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps)

    PubMed Central

    SWAMYNATHAN, SHIVALINGAPPA K.; CRAWFORD, MARY A.; ROBISON, W. GERALD; KANUNGO, JYOTSHNABALA; PIATIGORSKY, JORAM

    2018-01-01

    The water meniscus bisects the eyes of the “four-eyed” fish Anableps anableps, resulting in simultaneous vision in air and water. We compare the structure and macromolecular compositions of the Anableps dorsal (air) and ventral (water) corneas with the fully aquatic zebrafish cornea. The Anableps dorsal corneal epithelium is thicker (>20 cell layers), flatter (~1.94 mm radius of curvature), and contains ~15-fold more glycogen (0.16 μg/μg water-soluble protein) than the ventral corneal epithelium (5–7 cell layers; ~1.63 mm radius of curvature; 0.01 μg glycogen/μg water-soluble protein), which resembles the zebrafish corneal epithelium. Gelsolin is the major water-soluble protein in the zebrafish (~50%) and Anableps dorsal (~38%) and ventral (~21%) corneal epithelia, suggesting that gelsolin was recruited for high corneal expression before these two species diverged at least 100 million years ago and that abundant corneal gelsolin is not limited to aquatic vision. Anableps gelsolin, deduced from its cDNA, is 57% identical to zebrafish gelsolin. Paucity of Anableps corneal F-actin (consistent with high gelsolin) was confirmed by the absence of rhodaminephalloidin staining. We suggest amphibious refraction and protection from UV irradiation and desiccation in air as selective constraints for the specializations of the Anableps dorsal cornea.—Swamynathan, S. K., Craw-ford, M. A., Robison, W. G., Jr., Kanungo, J., Piatigorsky, J. Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps). PMID:14597669

  4. The chemical structure of macromolecular fractions of a sulfur-rich oil

    NASA Astrophysics Data System (ADS)

    Richnow, Hans H.; Jenisch, Angela; Michaelis, Walter

    1993-06-01

    A selective stepwise chemical degradation has been developed for structural studies of highmolecularweight (HMW) fractions of sulfur-rich oils. The degradation steps are: (i) desulfurization (ii) cleavage of oxygen-carbon bonds (iii) oxidation of aromatic structural units. After each step, the remaining macromolecular matter was subjected to the subsequent reaction. This degradation scheme was applied to the asphaltene, the resin and a macromolecular fraction of low polarity (LPMF) of the Rozel Point oil. Total amounts of degraded low-molecular-weight compounds increased progressively in the order asphaltene < resin < LPMF. Desulfurization yielded mainly phytane, steranes and triterpanes. Oxygen-carbon bond cleavage resulted in hydrocarbon fractions predominated by n-alkanes and acyclic isoprenoids. The oxidation step afforded high amounts of linear carboxylic acids in the range of C 11 to C 33. The released compounds provide a more complete picture of the molecular structure of the oil fractions than previously available. Labelling experiments with deuterium atoms allowed to characterize the site of bonding and the type of linkage for the released compounds. Evidence is presented that subunits of the macromolecular network are attached simultaneously by oxygen and sulfur (n-alkanes, hopanes) or by sulfur and aromatic units ( n-alkanes, steranes).

  5. Collaborators | Center for Cancer Research

    Cancer.gov

    Collaborators Structural Biophysics Laboratory, CCR Macromolecular NMR Section (R. Andrew Byrd, Ph.D.) Protein-Nucleic Acid Interactions Section (Yun-Xing Wang, Ph.D.) Protein Processing Section (Kylie J. Walters, Ph.D.) Kinase Complexes Section (Ping Zhang, Ph.D.) Macromolecular Crystallography Laboratory, CCR

  6. REFMAC5 for the refinement of macromolecular crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murshudov, Garib N., E-mail: garib@ysbl.york.ac.uk; Skubák, Pavol; Lebedev, Andrey A.

    The general principles behind the macromolecular crystal structure refinement program REFMAC5 are described. This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization. Reliable models at resolutions at least as low as 4 Å can be achieved thanks to low-resolution refinement toolsmore » such as secondary-structure restraints, restraints to known homologous structures, automatic global and local NCS restraints, ‘jelly-body’ restraints and the use of novel long-range restraints on atomic displacement parameters (ADPs) based on the Kullback–Leibler divergence. REFMAC5 additionally offers TLS parameterization and, when high-resolution data are available, fast refinement of anisotropic ADPs. Refinement in the presence of twinning is performed in a fully automated fashion. REFMAC5 is a flexible and highly optimized refinement package that is ideally suited for refinement across the entire resolution spectrum encountered in macromolecular crystallography.« less

  7. Data Mining of Macromolecular Structures.

    PubMed

    van Beusekom, Bart; Perrakis, Anastassis; Joosten, Robbie P

    2016-01-01

    The use of macromolecular structures is widespread for a variety of applications, from teaching protein structure principles all the way to ligand optimization in drug development. Applying data mining techniques on these experimentally determined structures requires a highly uniform, standardized structural data source. The Protein Data Bank (PDB) has evolved over the years toward becoming the standard resource for macromolecular structures. However, the process selecting the data most suitable for specific applications is still very much based on personal preferences and understanding of the experimental techniques used to obtain these models. In this chapter, we will first explain the challenges with data standardization, annotation, and uniformity in the PDB entries determined by X-ray crystallography. We then discuss the specific effect that crystallographic data quality and model optimization methods have on structural models and how validation tools can be used to make informed choices. We also discuss specific advantages of using the PDB_REDO databank as a resource for structural data. Finally, we will provide guidelines on how to select the most suitable protein structure models for detailed analysis and how to select a set of structure models suitable for data mining.

  8. Ab initio solution of macromolecular crystal structures without direct methods.

    PubMed

    McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J

    2017-04-04

    The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.

  9. Effects of macromolecular crowding on the structure of a protein complex: A small-angle scattering study of superoxide dismutase

    DOE PAGES

    Rajapaksha, Ajith; Stanley, Christopher B.; Todd, Brian A.

    2015-02-17

    Macromolecular crowding can alter the structure and function of biological macromolecules. We used small angle scattering (SAS) to measure the change in size of a protein complex, superoxide dismutase (SOD), induced by macromolecular crowding. Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl- -glucoside ( -MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%.more » Considering the osmotic pressure due to PEG, this deformation corresponds to a highly compressible structure. SAXS done in the presence of TEG suggests that for further deformation beyond a 9% decrease in volume the resistance to deformation may increase dramatically.« less

  10. Macromolecular structure of coals. 6. Mass spectroscopic analysis of coal-derived liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, D.T.; Lucht, L.M.; Peppas, N.A.

    1986-02-01

    The macromolecular structure of coal networks was analyzed by depolymerizing coal samples using the Sternberg reductive alkylation and the Miyake alkylation techniques. Electron impact mass spectra showed peaks of greater abundance of 125-132, 252-260, 383-391, and 511-520 m/z ratios. Based on analysis of the patterns of the spectra, the cluster size of the cross-linked structure of bituminous coals was determined as 126-130. Various chemical species were identified.

  11. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560

  12. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures

    PubMed Central

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2015-01-01

    The number of macromolecular structures deposited in the Protein Data Bank now exceeds 45 000, with the vast majority determined using crystallographic methods. Thousands of studies describing such structures have been published in the scientific literature, and 14 Nobel prizes in chemistry or medicine have been awarded to protein crystallographers. As important as these structures are for understanding the processes that take place in living organisms and also for practical applications such as drug design, many non-crystallographers still have problems with critical evaluation of the structural literature data. This review attempts to provide a brief outline of technical aspects of crystallography and to explain the meaning of some parameters that should be evaluated by users of macromolecular structures in order to interpret, but not over-interpret, the information present in the coordinate files and in their description. A discussion of the extent of the information that can be gleaned from the coordinates of structures solved at different resolution, as well as problems and pitfalls encountered in structure determination and interpretation are also covered. PMID:18034855

  13. Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images

    PubMed Central

    Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.

    2012-01-01

    SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773

  14. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  15. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta.

    PubMed

    Wang, Ray Yu-Ruei; Song, Yifan; Barad, Benjamin A; Cheng, Yifan; Fraser, James S; DiMaio, Frank

    2016-09-26

    Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3-4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions, accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids - typical in a macromolecular assembly - is tedious and time-consuming. We present an automated method that can improve the atomic details in models that are manually built in near-atomic-resolution cryo-EM maps. Applying the method to three systems recently solved by cryo-EM, we are able to improve model geometry while maintaining the fit-to-density. Backbone placement errors are automatically detected and corrected, and the refinement shows a large radius of convergence. The results demonstrate that the method is amenable to structures with symmetry, of very large size, and containing RNA as well as covalently bound ligands. The method should streamline the cryo-EM structure determination process, providing accurate and unbiased atomic structure interpretation of such maps.

  16. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.

    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less

  17. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization

    DOE PAGES

    Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.; ...

    2017-09-05

    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less

  18. Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms

    PubMed Central

    Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076

  19. Statistical analysis of crystallization database links protein physico-chemical features with crystallization mechanisms.

    PubMed

    Fusco, Diana; Barnum, Timothy J; Bruno, Andrew E; Luft, Joseph R; Snell, Edward H; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.

  20. Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes

    PubMed Central

    Cope, Julia; Heumann, John; Hoenger, Andreas

    2011-01-01

    Cryo-electron tomography (cryo-ET) is an emerging 3-D reconstruction technology that combines the principles of tomographic 3-D reconstruction with the unmatched structural preservation of biological material embedded in vitreous ice. Cryo-ET is particularly suited to investigating cell-biological samples and large macromolecular structures that are too polymorphic to be reconstructed by classical averaging-based 3-D reconstruction procedures. This unit aims to make cryo-ET accessible to newcomers and discusses the specialized equipment required, as well as the relevant advantages and hurdles associated with sample preparation by vitrification and cryo-ET. Protocols describe specimen preparation, data recording and 3-D data reconstruction for cryo-ET, with a special focus on macromolecular complexes. A step-by-step procedure for specimen vitrification by plunge freezing is provided, followed by the general practicalities of tilt-series acquisition for cryo-ET, including advice on how to select an area appropriate for acquiring a tilt series. A brief introduction to the underlying computational reconstruction principles applied in tomography is described, along with instructions for reconstructing a tomogram from cryo-tilt series data. Finally, a method is detailed for extracting small subvolumes containing identical macromolecular structures from tomograms for alignment and averaging as a means to increase the signal-to-noise ratio and eliminate missing wedge effects inherent in tomographic reconstructions. PMID:21842467

  1. Spontaneous and persistent currents in superconductive and mesoscopic structures (Review)

    NASA Astrophysics Data System (ADS)

    Kulik, I. O.

    2004-07-01

    We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent and the "spontaneous" currents in Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron-lattice Hamiltonian. In the case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at a certain number of electrons. Under such a condition, the persistent current has a nonzero value even at an (almost) zero applied Aharonov-Bohm flux and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may present an opportunity for (and, more generally, macromolecular cyclic structures may suggest the possibility of) engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates.

  2. Protein Modelling: What Happened to the “Protein Structure Gap”?

    PubMed Central

    Schwede, Torsten

    2013-01-01

    Computational modeling and prediction of three-dimensional macromolecular structures and complexes from their sequence has been a long standing vision in structural biology as it holds the promise to bypass part of the laborious process of experimental structure solution. Over the last two decades, a paradigm shift has occurred: starting from a situation where the “structure knowledge gap” between the huge number of protein sequences and small number of known structures has hampered the widespread use of structure-based approaches in life science research, today some form of structural information – either experimental or computational – is available for the majority of amino acids encoded by common model organism genomes. Template based homology modeling techniques have matured to a point where they are now routinely used to complement experimental techniques. With the scientific focus of interest moving towards larger macromolecular complexes and dynamic networks of interactions, the integration of computational modeling methods with low-resolution experimental techniques allows studying large and complex molecular machines. Computational modeling and prediction techniques are still facing a number of challenges which hamper the more widespread use by the non-expert scientist. For example, it is often difficult to convey the underlying assumptions of a computational technique, as well as the expected accuracy and structural variability of a specific model. However, these aspects are crucial to understand the limitations of a model, and to decide which interpretations and conclusions can be supported. PMID:24010712

  3. The effect of macromolecular crowding on the structure of the protein complex superoxide dismutase

    NASA Astrophysics Data System (ADS)

    Rajapaksha Mudalige, Ajith Rathnaweera

    Biological environments contain between 7 - 40% macromolecules by volume. This reduces the available volume for macromolecules and elevates the osmotic pressure relative to pure water. Consequently, biological macromolecules in their native environments tend to adopt more compact and dehydrated conformations than those in vitro. This effect is referred to as macromolecular crowding and constitutes an important physical difference between native biological environments and the simple solutions in which biomolecules are usually studied. We used small angle scattering (SAS) to measure the effects of macromolecular crowding on the size of a protein complex, superoxide dismutase (SOD). Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl-alpha-glucoside (alpha-MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. SAS coupled with osmotic pressure measurements allowed us to estimate a compressibility modulus for SOD. We believe this to be the first time the osmotic compressibility of a protein complex was measured. Molecular Dynamics (MD) simulations are widely used to obtain insights on biomolecular processes. However, it is not clear whether MD is capable of predicting subtle effects of macromolecular crowding. We used our experimentally observed compressibility of SOD to evaluate the ability of MD to predict macromolecular crowding. Effects of macromolecular crowding due to PEG on SOD were modeled using an all atom MD simulation with the CHARMM forcefield and the crystallographically resolved structures of SOD and PEG. Two parallel MD simulations were performed for SOD in water and SOD in 40% PEG for over 150~ns. Over the period of the simulation the SOD structure in 40% PEG did not change compared to the SOD structure in water. It therefore appears that under the conditions of our simulations MD could not describe the experimentally observed effects of macromolecular crowding. In a separate project, we measured the rate of diffusive transport in excised porcine corneal stroma using FCS for fluorescent labeled dextran molecules with hydrodynamic radii ranging from 1.3 to 34 nm. Dextran molecules diffuse more slowly in cornea as compared to buffer solution. The reduction in diffusion coefficient is modest however (67% smaller), and is uniform over the range of sizes that we measured. Diffusion coefficients measured parallel vs. perpendicular to the collagen lamellae were indistinguishable. This indicates that diffusion in the corneal stroma is not highly anisotropic. Delivery of therapeutic agents to the eye requires efficient transport through cellular and extracellular barriers. Our measurements bring important insights into how macromolecular and nanoparticle therapeutics might permeate through the eyes.

  4. Coevolutionary constraints in the sequence-space of macromolecular complexes reflect their self-assembly pathways.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2017-07-01

    Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes

    PubMed Central

    Boeri Erba, Elisabetta; Petosa, Carlo

    2015-01-01

    Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called “native conditions” (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein−ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes. PMID:25676284

  6. SPring-8 BL44XU, beamline designed for structure analysis of large biological macromolecular assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiura, Akifumi, E-mail: hgsur-a@protein.osaka-u.ac.jp; Yamashita, Eiki; Yoshimura, Masato

    2016-07-27

    Beamline BL44XU at SPring-8 is operated by the Institute for Protein Research of Osaka University. The beamline is designed for X-ray crystallography of large biological macromolecular assemblies. Here we show its detailed performances, results, and the ongoing upgrade plans.

  7. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes

    NASA Astrophysics Data System (ADS)

    Li, Huilin; Nguyen, Hong Hanh; Ogorzalek Loo, Rachel R.; Campuzano, Iain D. G.; Loo, Joseph A.

    2018-02-01

    Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation.

  8. Three dimensional electron microscopy and in silico tools for macromolecular structure determination

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru

    2013-01-01

    Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033

  9. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  10. The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures.

    PubMed

    Holton, James M; Classen, Scott; Frankel, Kenneth A; Tainer, John A

    2014-09-01

    In macromolecular crystallography, the agreement between observed and predicted structure factors (Rcryst and Rfree ) is seldom better than 20%. This is much larger than the estimate of experimental error (Rmerge ). The difference between Rcryst and Rmerge is the R-factor gap. There is no such gap in small-molecule crystallography, for which calculated structure factors are generally considered more accurate than the experimental measurements. Perhaps the true noise level of macromolecular data is higher than expected? Or is the gap caused by inaccurate phases that trap refined models in local minima? By generating simulated diffraction patterns using the program MLFSOM, and including every conceivable source of experimental error, we show that neither is the case. Processing our simulated data yielded values that were indistinguishable from those of real data for all crystallographic statistics except the final Rcryst and Rfree . These values decreased to 3.8% and 5.5% for simulated data, suggesting that the reason for high R-factors in macromolecular crystallography is neither experimental error nor phase bias, but rather an underlying inadequacy in the models used to explain our observations. The present inability to accurately represent the entire macromolecule with both its flexibility and its protein-solvent interface may be improved by synergies between small-angle X-ray scattering, computational chemistry and crystallography. The exciting implication of our finding is that macromolecular data contain substantial hidden and untapped potential to resolve ambiguities in the true nature of the nanoscale, a task that the second century of crystallography promises to fulfill. Coordinates and structure factors for the real data have been submitted to the Protein Data Bank under accession 4tws. © 2014 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  11. Localization-based super-resolution imaging of cellular structures.

    PubMed

    Kanchanawong, Pakorn; Waterman, Clare M

    2013-01-01

    Fluorescence microscopy allows direct visualization of fluorescently tagged proteins within cells. However, the spatial resolution of conventional fluorescence microscopes is limited by diffraction to ~250 nm, prompting the development of super-resolution microscopy which offers resolution approaching the scale of single proteins, i.e., ~20 nm. Here, we describe protocols for single molecule localization-based super-resolution imaging, using focal adhesion proteins as an example and employing either photoswitchable fluorophores or photoactivatable fluorescent proteins. These protocols should also be easily adaptable to imaging a broad array of macromolecular assemblies in cells whose components can be fluorescently tagged and assemble into high density structures.

  12. Electron cryo-tomography captures macromolecular complexes in native environments.

    PubMed

    Baker, Lindsay A; Grange, Michael; Grünewald, Kay

    2017-10-01

    Transmission electron microscopy has a long history in cellular biology. Fixed and stained samples have been used for cellular imaging for over 50 years, but suffer from sample preparation induced artifacts. Electron cryo-tomography (cryoET) instead uses frozen-hydrated samples, without chemical modification, to determine the structure of macromolecular complexes in their native environment. Recent developments in electron microscopes and associated technologies have greatly expanded our ability to visualize cellular features and determine the structures of macromolecular complexes in situ. This review highlights the technological improvements and the new areas of biology these advances have made accessible. We discuss the potential of cryoET to reveal novel and significant biological information on the nanometer or subnanometer scale, and directions for further work. Copyright © 2017. Published by Elsevier Ltd.

  13. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    PubMed

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  14. Hierarchical Order Parameters for Macromolecular Assembly Simulations I: Construction and Dynamical Properties of Order Parameters

    PubMed Central

    Singharoy, Abhishek; Sereda, Yuriy

    2012-01-01

    Macromolecular assemblies often display a hierarchical organization of macromolecules or their sub-assemblies. To model this, we have formulated a space warping method that enables capturing overall macromolecular structure and dynamics via a set of coarse-grained order parameters (OPs). This article is the first of two describing the construction and computational implementation of an additional class of OPs that has built into them the hierarchical architecture of macromolecular assemblies. To accomplish this, first, the system is divided into subsystems, each of which is described via a representative set of OPs. Then, a global set of variables is constructed from these subsystem-centered OPs to capture overall system organization. Dynamical properties of the resulting OPs are compared to those of our previous nonhierarchical ones, and implied conceptual and computational advantages are discussed for a 100ns, 2 million atom solvated Human Papillomavirus-like particle simulation. In the second article, the hierarchical OPs are shown to enable a multiscale analysis that starts with the N-atom Liouville equation and yields rigorous Langevin equations of stochastic OP dynamics. The latter is demonstrated via a force-field based simulation algorithm that probes key structural transition pathways, simultaneously accounting for all-atom details and overall structure. PMID:22661911

  15. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time

    USGS Publications Warehouse

    Hall, Edward K.; Singer, Gabriel A.; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J.

    2011-01-01

    Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.

  16. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time

    PubMed Central

    Hall, Edward K; Singer, Gabriel A; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J

    2011-01-01

    Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity. PMID:20703314

  17. Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources.

    PubMed

    Schmidt, Marius

    2017-01-01

    Time-resolved macromolecular crystallography unifies protein structure determination with chemical kinetics. With the advent of fourth generation X-ray sources the time-resolution can be on the order of 10-40 fs, which opens the ultrafast time scale to structure determination. Fundamental motions and transitions associated with chemical reactions in proteins can now be observed. Moreover, new experimental approaches at synchrotrons allow for the straightforward investigation of all kind of reactions in biological macromolecules. Here, recent developments in the field are reviewed.

  18. Collection of X-ray diffraction data from macromolecular crystals

    PubMed Central

    Dauter, Zbigniew

    2017-01-01

    Diffraction data acquisition is the final experimental stage of the crystal structure analysis. All subsequent steps involve mainly computer calculations. Optimally measured and accurate data make the structure solution and refinement easier and lead to more faithful interpretation of the final models. Here, the important factors in data collection from macromolecular crystals are discussed and strategies appropriate for various applications, such as molecular replacement, anomalous phasing, atomic-resolution refinement etc., are presented. Criteria useful for judging the diffraction data quality are also discussed. PMID:28573573

  19. The Redox Proteome*

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges. PMID:23861437

  20. CryoTEM as an Advanced Analytical Tool for Materials Chemists.

    PubMed

    Patterson, Joseph P; Xu, Yifei; Moradi, Mohammad-Amin; Sommerdijk, Nico A J M; Friedrich, Heiner

    2017-07-18

    Morphology plays an essential role in chemistry through the segregation of atoms and/or molecules into different phases, delineated by interfaces. This is a general process in materials synthesis and exploited in many fields including colloid chemistry, heterogeneous catalysis, and functional molecular systems. To rationally design complex materials, we must understand and control morphology evolution. Toward this goal, we utilize cryogenic transmission electron microscopy (cryoTEM), which can track the structural evolution of materials in solution with nanometer spatial resolution and a temporal resolution of <1 s. In this Account, we review examples of our own research where direct observations by cryoTEM have been essential to understanding morphology evolution in macromolecular self-assembly, inorganic nucleation and growth, and the cooperative evolution of hybrid materials. These three different research areas are at the heart of our approach to materials chemistry where we take inspiration from the myriad examples of complex materials in Nature. Biological materials are formed using a limited number of chemical components and under ambient conditions, and their formation pathways were refined during biological evolution by enormous trial and error approaches to self-organization and biomineralization. By combining the information on what is possible in nature and by focusing on a limited number of chemical components, we aim to provide an essential insight into the role of structure evolution in materials synthesis. Bone, for example, is a hierarchical and hybrid material which is lightweight, yet strong and hard. It is formed by the hierarchical self-assembly of collagen into a macromolecular template with nano- and microscale structure. This template then directs the nucleation and growth of oriented, nanoscale calcium phosphate crystals to form the composite material. Fundamental insight into controlling these structuring processes will eventually allow us to design such complex materials with predetermined and potentially unique properties.

  1. New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation.

    PubMed

    Massover, William H

    2011-02-01

    Resolution in transmission electron microscopy (TEM) now is limited by the properties of specimens, rather than by those of instrumentation. The long-standing difficulties in obtaining truly high-resolution structure from biological macromolecules with TEM demand the development, testing, and application of new ideas and unconventional approaches. This review concisely describes some new concepts and innovative methodologies for TEM that deal with unsolved problems in the preparation and preservation of macromolecular specimens. The selected topics include use of better support films, a more protective multi-component matrix surrounding specimens for cryo-TEM and negative staining, and, several quite different changes in microscopy and micrography that should decrease the effects of electron radiation damage; all these practical approaches are non-traditional, but have promise to advance resolution for specimens of biological macromolecules beyond its present level of 3-10 Å (0.3-1.0 nm). The result of achieving truly high resolution will be a fulfillment of the still unrealized potential of transmission electron microscopy for directly revealing the structure of biological macromolecules down to the atomic level. Published by Elsevier Ltd.

  2. New applications of maximum likelihood and Bayesian statistics in macromolecular crystallography.

    PubMed

    McCoy, Airlie J

    2002-10-01

    Maximum likelihood methods are well known to macromolecular crystallographers as the methods of choice for isomorphous phasing and structure refinement. Recently, the use of maximum likelihood and Bayesian statistics has extended to the areas of molecular replacement and density modification, placing these methods on a stronger statistical foundation and making them more accurate and effective.

  3. Long-wavelength macromolecular crystallography - First successful native SAD experiment close to the sulfur edge

    NASA Astrophysics Data System (ADS)

    Aurelius, O.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.

    2017-11-01

    Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge. This has been made possible by the in-vacuum setup and the long-wavelength optimised experimental setup at the I23 beamline at Diamond Light Source. In these early commissioning experiments only standard data collection and processing procedures have been applied, in particular no dedicated absorption correction has been used. Nevertheless the success of the experiment demonstrates that the capability to extract phase information can be even further improved once data collection protocols and data processing have been optimised.

  4. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.

    PubMed

    Wiedman, Gregory; Wimley, William C; Hristova, Kalina

    2015-04-01

    In this work, we sought to rationally design membrane-active peptides that are triggered by low pH to form macromolecular-sized pores in lipid bilayers. Such peptides could have broad utility in biotechnology and in nanomedicine as cancer therapeutics or drug delivery vehicles that promote release of macromolecules from endosomes. Our approach to rational design was to combine the properties of a pH-independent peptide, MelP5, which forms large pores allowing passage of macromolecules, with the properties of two pH-dependent membrane-active peptides, pHlip and GALA. We created two hybrid sequences, MelP5_Δ4 and MelP5_Δ6, by using the distribution of acidic residues on pHlip and GALA as a guide to insert acidic amino acids into the amphipathic helix of MelP5. We show that the new peptides bind to lipid bilayers and acquire secondary structure in a pH-dependent manner. The peptides also destabilize bilayers in a pH-dependent manner, such that lipid vesicles release the small molecules ANTS/DPX at low pH only. Thus, we were successful in designing pH-triggered pore-forming peptides. However, no macromolecular release was observed under any conditions. Therefore, we abolished the unique macromolecular poration properties of MelP5 by introducing pH sensitivity into its sequence. We conclude that the properties of pHlip, GALA, and MelP5 are additive, but only partially so. We propose that this lack of additivity is a limitation in the rational design of novel membrane-active peptides, and that high-throughput approaches to discovery will be critical for continued progress in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Organic sulphur in macromolecular sedimentary organic matter: I. Structure and origin of sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Eglinton, Timothy I.; De Leeuw, Jan W.; Schenck, P. A.

    1989-04-01

    The distributions of sulphur-containing compounds generated by flash pyrolysis of macromolecular sedimentary organic matter (kerogen, coal, asphaltenes) were studied by gas chromatography in combination with Sselective flame photometric detection or mass spectrometry. The abundance of S-containing pyrolysis products in the pyrolysates relative to other products was highly variable depending on the sample but the types of products were generally similar, being mainly composed of "gaseous" compounds ( e.g., hydrogen sulphide) and low molecular weight alkylthiophenes and alkylbenzothiophenes. The distribution patterns of the alkylated thiophenes were dominated by a limited number of all theoretically possible isomers. The alkyl substitution patterns of the dominant isomers bear a strong similarity to those of the organic S compounds present in the GC-amenable fractions of bitumens and immature oils. Therefore, it is suggested that these S-containing pyrolysis products are formed by pyrolysis of related thiophenic and benzothiophenic moieties present in the macromolecular sedimentary substances. Specific examples include those with linear alkyl, iso and anteiso alkyl, isoprenoid alkyl and steroidal carbon skeletons. The presence of higher molecular weight alkylthiophenes and alkylbenzothiophenes with these same carbon skeletons in pyrolysates of S-rich kerogens provided further evidence for the presence of these S-containing moieties. It is likely that these moieties have been formed by abiogenic S incorporation into sedimentary organic matter during early diagenesis.

  6. Docking and scoring in virtual screening for drug discovery: methods and applications.

    PubMed

    Kitchen, Douglas B; Decornez, Hélène; Furr, John R; Bajorath, Jürgen

    2004-11-01

    Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization. Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors. Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes. Here, we review key concepts and specific features of small-molecule-protein docking methods, highlight selected applications and discuss recent advances that aim to address the acknowledged limitations of established approaches.

  7. REVIEWS OF TOPICAL PROBLEMS Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor

    NASA Astrophysics Data System (ADS)

    Romanovsky, Yurii M.; Tikhonov, Alexander N.

    2010-12-01

    The free energy released upon the enzymatic hydrolysis of adenosine triphosphate (ATP) is the main source of energy for the functioning of the living cell and all multicellular organisms. The overwhelming majority of ATP molecules are formed by proton ATP synthases, which are the smallest macromolecular electric motors in Nature. This paper reviews the modern concepts of the molecular structure and functioning of the proton ATP synthase, and real-time biophysical experiments on the rotation of the 'rotor' of this macromolecular motor. Some mathematical models describing the operation of this nanosized macromolecular machine are described.

  8. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also, these systems exhibited a high bulk modulus, compared to the elastic modulus. These results are an indication and concur with the high compression strength of cement paste seen at engineering length scale. In addition, the bulk modulus of two-phase systems consisting of hydrated CSH and unhydrated C3S or C2S was found to increase with higher levels of unhydrated components. The interaction energies of two-phase cement paste molecular structures studied in the present work were calculated, showing that a higher interaction is attained when the two phases are admixed as small components instead of cluster of phases. Finally, the mechanical behavior under shear deformation was predicted by using a quasi-static deformation method and analyzed for a representative two-phase (CSH and C2S) macromolecular structure of cement paste.

  9. FOLD-EM: automated fold recognition in medium- and low-resolution (4-15 Å) electron density maps.

    PubMed

    Saha, Mitul; Morais, Marc C

    2012-12-15

    Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a 'mosaic' backbone model of the assembly that could aid map interpretation and illuminate biological function. Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM-a computational tool that can identify folded macromolecular domains in medium to low resolution (4-15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies.

  10. Small-scale hydrous pyrolysis of macromolecular material in meteorites

    NASA Astrophysics Data System (ADS)

    Sephton, M. A.; Pillinger, C. T.; Gilmour, I.

    1998-12-01

    The hydrous pyrolysis method, usually performed on several hundred grams of terrestrial rock sample, has been scaled down to accommodate less than two grams of meteorite sample. This technique makes full use of the high yields associated with hydrous pyrolysis experiments and permits the investigation of the meteorite macromolecular material, the major organic component in carbonaceous meteorites. The hydrous pyrolysis procedure transforms the high molecular weight macromolecular material into low molecular weight fragments. The released entities can then be extracted with supercritical fluid extraction. In contrast to the parent structure, the pyrolysis products are amenable for analysis by gas chromatography-based techniques. When subjected to hydrous pyrolysis, two carbonaceous chondrites (Orgueil and Cold Bokkeveld) released generally similar products, which consisted of abundant volatile aromatic and alkyl-substituted aromatic compounds. These results revealed the ability of small-scale hydrous pyrolysis to dissect extraterrestrial macromolecular material and thereby reveal its organic constitution.

  11. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures

    PubMed Central

    Theobald, Douglas L.; Wuttke, Deborah S.

    2008-01-01

    Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907

  12. Micro-scale Devices for Transdermal Drug Delivery

    PubMed Central

    Arora, Anubhav; Prausnitz, Mark; Mitragotri, Samir

    2009-01-01

    Skin makes an excellent site for drug and vaccine delivery due to easy accessibility, immuno-surveillance functions, avoidance of macromolecular degradation in the gastrointestinal tract and possibility of self-administration. However, macromolecular drug delivery across the skin is primarily accomplished using hypodermic needles, which have several disadvantages including accidental needle-sticks, pain and needle phobia. These limitations have led to extensive research and development of alternative methods for drug and vaccine delivery across the skin. This review focuses on the recent trends and developments in this field of micro-scale devices for transdermal macromolecular delivery. These include liquid jet injectors, powder injectors, microneedles and thermal microablation. The historical perspective, mechanisms of action, important design parameters, applications and challenges are discussed for each method. PMID:18805472

  13. BALBES: a molecular-replacement pipeline.

    PubMed

    Long, Fei; Vagin, Alexei A; Young, Paul; Murshudov, Garib N

    2008-01-01

    The number of macromolecular structures solved and deposited in the Protein Data Bank (PDB) is higher than 40 000. Using this information in macromolecular crystallography (MX) should in principle increase the efficiency of MX structure solution. This paper describes a molecular-replacement pipeline, BALBES, that makes extensive use of this repository. It uses a reorganized database taken from the PDB with multimeric as well as domain organization. A system manager written in Python controls the workflow of the process. Testing the current version of the pipeline using entries from the PDB has shown that this approach has huge potential and that around 75% of structures can be solved automatically without user intervention.

  14. Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server.

    PubMed

    Karaca, Ezgi; Melquiond, Adrien S J; de Vries, Sjoerd J; Kastritis, Panagiotis L; Bonvin, Alexandre M J J

    2010-08-01

    Over the last years, large scale proteomics studies have generated a wealth of information of biomolecular complexes. Adding the structural dimension to the resulting interactomes represents a major challenge that classical structural experimental methods alone will have difficulties to confront. To meet this challenge, complementary modeling techniques such as docking are thus needed. Among the current docking methods, HADDOCK (High Ambiguity-Driven DOCKing) distinguishes itself from others by the use of experimental and/or bioinformatics data to drive the modeling process and has shown a strong performance in the critical assessment of prediction of interactions (CAPRI), a blind experiment for the prediction of interactions. Although most docking programs are limited to binary complexes, HADDOCK can deal with multiple molecules (up to six), a capability that will be required to build large macromolecular assemblies. We present here a novel web interface of HADDOCK that allows the user to dock up to six biomolecules simultaneously. This interface allows the inclusion of a large variety of both experimental and/or bioinformatics data and supports several types of cyclic and dihedral symmetries in the docking of multibody assemblies. The server was tested on a benchmark of six cases, containing five symmetric homo-oligomeric protein complexes and one symmetric protein-DNA complex. Our results reveal that, in the presence of either bioinformatics and/or experimental data, HADDOCK shows an excellent performance: in all cases, HADDOCK was able to generate good to high quality solutions and ranked them at the top, demonstrating its ability to model symmetric multicomponent assemblies. Docking methods can thus play an important role in adding the structural dimension to interactomes. However, although the current docking methodologies were successful for a vast range of cases, considering the variety and complexity of macromolecular assemblies, inclusion of some kind of experimental information (e.g. from mass spectrometry, nuclear magnetic resonance, cryoelectron microscopy, etc.) will remain highly desirable to obtain reliable results.

  15. Structural dynamics of free proteins in diffraction.

    PubMed

    Lin, Milo M; Shorokhov, Dmitry; Zewail, Ahmed H

    2011-10-26

    Among the macromolecular patterns of biological significance, right-handed α-helices are perhaps the most abundant structural motifs. Here, guided by experimental findings, we discuss both ultrafast initial steps and longer-time-scale structural dynamics of helix-coil transitions induced by a range of temperature jumps in large, isolated macromolecular ensembles of an α-helical protein segment thymosin β(9) (Tβ(9)), and elucidate the comprehensive picture of (un)folding. In continuation of an earlier theoretical work from this laboratory that utilized a simplistic structure-scrambling algorithm combined with a variety of self-avoidance thresholds to approximately model helix-coil transitions in Tβ(9), in the present contribution we focus on the actual dynamics of unfolding as obtained from massively distributed ensemble-convergent MD simulations which provide an unprecedented scope of information on the nature of transient macromolecular structures, and with atomic-scale spatiotemporal resolution. In addition to the use of radial distribution functions of ultrafast electron diffraction (UED) simulations in gaining an insight into the elementary steps of conformational interconversions, we also investigate the structural dynamics of the protein via the native (α-helical) hydrogen bonding contact metric which is an intuitive coarse graining approach. Importantly, the decay of α-helical motifs and the (globular) conformational annealing in Tβ(9) occur consecutively or competitively, depending on the magnitude of temperature jump.

  16. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  17. COMPUTATIONAL METHODOLOGIES for REAL-SPACE STRUCTURAL REFINEMENT of LARGE MACROMOLECULAR COMPLEXES

    PubMed Central

    Goh, Boon Chong; Hadden, Jodi A.; Bernardi, Rafael C.; Singharoy, Abhishek; McGreevy, Ryan; Rudack, Till; Cassidy, C. Keith; Schulten, Klaus

    2017-01-01

    The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures. Here, commonly employed strategies for computational real-space structural refinement are reviewed, and their specific applications are illustrated for several large macromolecular complexes: ribosome, virus capsids, chemosensory array, and photosynthetic chromatophore. The increasingly important role of computational methods in large-scale structural refinement, along with current and future challenges, is discussed. PMID:27145875

  18. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    PubMed

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  19. Optimal and fast rotational alignment of volumes with missing data in Fourier space.

    PubMed

    Shatsky, Maxim; Arbelaez, Pablo; Glaeser, Robert M; Brenner, Steven E

    2013-11-01

    Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution corresponding to individual macromolecular complexes. Characterization of macromolecular complexes in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biological interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of computational methods that optimize alignment between two sub-tomographic volumes. The alignment optimization is hampered by the fact that the missing data in Fourier space has to be taken into account during the rotational search. A similar problem appears in single particle electron microscopy where the random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We present a fast implementation of a method guaranteed to find an optimal rotational alignment that maximizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fourier space. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The Phenix Software for Automated Determination of Macromolecular Structures

    PubMed Central

    Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor; Chen, Vincent B.; Echols, Nathaniel; Headd, Jeffrey J.; Hung, Li-Wei; Jain, Swati; Kapral, Gary J.; Grosse Kunstleve, Ralf W.; McCoy, Airlie J.; Moriarty, Nigel W.; Oeffner, Robert D.; Read, Randy J.; Richardson, David C.; Richardson, Jane S.; Terwilliger, Thomas C.; Zwart, Peter H.

    2011-01-01

    X-ray crystallography is a critical tool in the study of biological systems. It is able to provide information that has been a prerequisite to understanding the fundamentals of life. It is also a method that is central to the development of new therapeutics for human disease. Significant time and effort are required to determine and optimize many macromolecular structures because of the need for manual interpretation of complex numerical data, often using many different software packages, and the repeated use of interactive three-dimensional graphics. The Phenix software package has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on automation. This has required the development of new algorithms that minimize or eliminate subjective input in favour of built-in expert-systems knowledge, the automation of procedures that are traditionally performed by hand, and the development of a computational framework that allows a tight integration between the algorithms. The application of automated methods is particularly appropriate in the field of structural proteomics, where high throughput is desired. Features in Phenix for the automation of experimental phasing with subsequent model building, molecular replacement, structure refinement and validation are described and examples given of running Phenix from both the command line and graphical user interface. PMID:21821126

  1. Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soares, A.S.; Schneider, D. K.; Skinner, J. M.

    2008-09-01

    The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.

  2. Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A Soares; D Schneider; J Skinner

    2011-12-31

    The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.

  3. Metadynamic metainference: Enhanced sampling of the metainference ensemble using metadynamics

    PubMed Central

    Bonomi, Massimiliano; Camilloni, Carlo; Vendruscolo, Michele

    2016-01-01

    Accurate and precise structural ensembles of proteins and macromolecular complexes can be obtained with metainference, a recently proposed Bayesian inference method that integrates experimental information with prior knowledge and deals with all sources of errors in the data as well as with sample heterogeneity. The study of complex macromolecular systems, however, requires an extensive conformational sampling, which represents a separate challenge. To address such challenge and to exhaustively and efficiently generate structural ensembles we combine metainference with metadynamics and illustrate its application to the calculation of the free energy landscape of the alanine dipeptide. PMID:27561930

  4. Experimental Approaches for Solution X-Ray Scattering and Fiber Diffraction

    PubMed Central

    Irving, T. C.

    2008-01-01

    X-ray scattering and diffraction from non-crystalline systems have gained renewed interest in recent years, as focus shifts from the structural chemistry information gained by high-resolution studies to the context of structural physiology at larger length scales. Such techniques permit the study of isolated macromolecules as well as highly organized macromolecular assemblies as a whole under near-physiological conditions. Time-resolved approaches, made possible by advanced synchrotron instrumentation, add a critical dimension to many of these investigations. This article reviews experimental approaches in non-crystalline x-ray scattering and diffraction that may be used to illuminate important scientific questions such as protein/nucleic acid folding and structure-function relationships in large macromolecular assemblies. PMID:18801437

  5. Macromolecular and Dendrimer Based Magnetic Resonance Contrast Agents

    PubMed Central

    Bumb, Ambika; Brechbiel, Martin W.; Choyke, Peter

    2010-01-01

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20–25 years, a number of gadolinium based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution and targeting of dendrimer-based MR contrast agents are also discussed. PMID:20590365

  6. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations.

    PubMed

    Sargsyan, Karen; Grauffel, Cédric; Lim, Carmay

    2017-04-11

    The root-mean-square deviation (RMSD) is a similarity measure widely used in analysis of macromolecular structures and dynamics. As increasingly larger macromolecular systems are being studied, dimensionality effects such as the "curse of dimensionality" (a diminishing ability to discriminate pairwise differences between conformations with increasing system size) may exist and significantly impact RMSD-based analyses. For such large bimolecular systems, whether the RMSD or other alternative similarity measures might suffer from this "curse" and lose the ability to discriminate different macromolecular structures had not been explicitly addressed. Here, we show such dimensionality effects for both weighted and nonweighted RMSD schemes. We also provide a mechanism for the emergence of the "curse of dimensionality" for RMSD from the law of large numbers by showing that the conformational distributions from which RMSDs are calculated become increasingly similar as the system size increases. Our findings suggest the use of weighted RMSD schemes for small proteins (less than 200 residues) and nonweighted RMSD for larger proteins when analyzing molecular dynamics trajectories.

  7. Protein crystallization: Eluding the bottleneck of X-ray crystallography

    PubMed Central

    Holcomb, Joshua; Spellmon, Nicholas; Zhang, Yingxue; Doughan, Maysaa; Li, Chunying; Yang, Zhe

    2017-01-01

    To date, X-ray crystallography remains the gold standard for the determination of macromolecular structure and protein substrate interactions. However, the unpredictability of obtaining a protein crystal remains the limiting factor and continues to be the bottleneck in determining protein structures. A vast amount of research has been conducted in order to circumvent this issue with limited success. No single method has proven to guarantee the crystallization of all proteins. However, techniques using antibody fragments, lipids, carrier proteins, and even mutagenesis of crystal contacts have been implemented to increase the odds of obtaining a crystal with adequate diffraction. In addition, we review a new technique using the scaffolding ability of PDZ domains to facilitate nucleation and crystal lattice formation. Although in its infancy, such technology may be a valuable asset and another method in the crystallography toolbox to further the chances of crystallizing problematic proteins. PMID:29051919

  8. Deformable complex network for refining low-resolution X-ray structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chong; Wang, Qinghua; Ma, Jianpeng, E-mail: jpma@bcm.edu

    2015-10-27

    A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint withmore » the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.« less

  9. Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization.

    PubMed

    Juers, Douglas H; Matthews, Brian W

    2004-05-01

    The flash-cooling of crystals in macromolecular crystallography has become commonplace. The procedure makes it possible to collect data from much smaller specimens than was the case in the past Also, flash-cooled crystals are much less prone to radiation damage than their room-temperature counterparts, allowing data to be accumulated over extended periods of time. Notwithstanding the attractiveness of the technique, it does have potential disadvantages. First, better methods need to be developed to prevent damage to crystals on freezing. There is also a risk that structures determined at low temperature may suggest conclusions based on aspects of the structure that are not necessarily relevant at room temperature.

  10. Synthesis and characterization of macromolecular rhodamine tethers and their interactions with P-glycoprotein.

    PubMed

    Crawford, Lindsey; Putnam, David

    2014-08-20

    Rhodamine dyes are well-known P-glycoprotein (P-gp) substrates that have played an important role in the detection of inhibitors and other substrates of P-gp, as well as in the understanding of P-gp function. Macromolecular conjugates of rhodamines could prove useful as tethers for further probing of P-gp structure and function. Two macromolecular derivatives of rhodamine, methoxypolyethylene glycol-rhodamine6G and methoxypolyethylene glycol-rhodamine123, were synthesized through the 2'-position of rhodamine6G and rhodamine123, thoroughly characterized, and then evaluated by inhibition with verapamil for their ability to interact with P-gp and to act as efflux substrates. To put the results into context, the P-gp interactions of the new conjugates were compared to the commercially available methoxypolyethylene glycol-rhodamineB. FACS analysis confirmed that macromolecular tethers of rhodamine6G, rhodamine123, and rhodamineB were accumulated in P-gp expressing cells 5.2 ± 0.3%, 26.2 ± 4%, and 64.2 ± 6%, respectively, compared to a sensitive cell line that does not overexpress P-gp. Along with confocal imaging, the efflux analysis confirmed that the macromolecular rhodamine tethers remain P-gp substrates. These results open potential avenues for new ways to probe the function of P-gp both in vitro and in vivo.

  11. THE OPEP COARSE-GRAINED PROTEIN MODEL: FROM SINGLE MOLECULES, AMYLOID FORMATION, ROLE OF MACROMOLECULAR CROWDING AND HYDRODYNAMICS TO RNA/DNA COMPLEXES

    PubMed Central

    Sterpone, Fabio; Melchionna, Simone; Tuffery, Pierre; Pasquali, Samuela; Mousseau, Normand; Cragnolini, Tristan; Chebaro, Yassmine; Saint-Pierre, Jean-Francois; Kalimeri, Maria; Barducci, Alessandro; Laurin, Yohan; Tek, Alex; Baaden, Marc; Nguyen, Phuong Hoang; Derreumaux, Philippe

    2015-01-01

    The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows studying single protein properties, DNA/RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the on-going developments. PMID:24759934

  12. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate

    NASA Astrophysics Data System (ADS)

    Khoshouei, Maryam; Radjainia, Mazdak; Baumeister, Wolfgang; Danev, Radostin

    2017-06-01

    With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motion of radiation-sensitive organic materials embedded in amorphous ice, and hence they have enabled the structure determination of many macromolecular assemblies to atomic or near-atomic resolution. Nevertheless, there are still limitations and one of them is the size of the target structure. Here, we report the use of a Volta phase plate in determining the structure of human haemoglobin (64 kDa) at 3.2 Å. Our results demonstrate that this method can be applied to complexes that are significantly smaller than those previously studied by conventional defocus-based approaches. Cryo-EM is now close to becoming a fast and cost-effective alternative to crystallography for high-resolution protein structure determination.

  13. The Stanford Automated Mounter: Pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines

    DOE PAGES

    Russi, Silvia; Song, Jinhu; McPhillips, Scott E.; ...

    2016-02-24

    The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.

  14. The Stanford Automated Mounter: Pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russi, Silvia; Song, Jinhu; McPhillips, Scott E.

    The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.

  15. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.

    PubMed

    Theobald, Douglas L; Wuttke, Deborah S

    2006-09-01

    THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.

  16. Progress in protein crystallography.

    PubMed

    Dauter, Zbigniew; Wlodawer, Alexander

    2016-01-01

    Macromolecular crystallography evolved enormously from the pioneering days, when structures were solved by "wizards" performing all complicated procedures almost by hand. In the current situation crystal structures of large systems can be often solved very effectively by various powerful automatic programs in days or hours, or even minutes. Such progress is to a large extent coupled to the advances in many other fields, such as genetic engineering, computer technology, availability of synchrotron beam lines and many other techniques, creating the highly interdisciplinary science of macromolecular crystallography. Due to this unprecedented success crystallography is often treated as one of the analytical methods and practiced by researchers interested in structures of macromolecules, but not highly competent in the procedures involved in the process of structure determination. One should therefore take into account that the contemporary, highly automatic systems can produce results almost without human intervention, but the resulting structures must be carefully checked and validated before their release into the public domain.

  17. Cellular Electron Cryotomography: Toward Structural Biology In Situ.

    PubMed

    Oikonomou, Catherine M; Jensen, Grant J

    2017-06-20

    Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.

  18. Cryo-EM in drug discovery: achievements, limitations and prospects.

    PubMed

    Renaud, Jean-Paul; Chari, Ashwin; Ciferri, Claudio; Liu, Wen-Ti; Rémigy, Hervé-William; Stark, Holger; Wiesmann, Christian

    2018-06-08

    Cryo-electron microscopy (cryo-EM) of non-crystalline single particles is a biophysical technique that can be used to determine the structure of biological macromolecules and assemblies. Historically, its potential for application in drug discovery has been heavily limited by two issues: the minimum size of the structures it can be used to study and the resolution of the images. However, recent technological advances - including the development of direct electron detectors and more effective computational image analysis techniques - are revolutionizing the utility of cryo-EM, leading to a burst of high-resolution structures of large macromolecular assemblies. These advances have raised hopes that single-particle cryo-EM might soon become an important tool for drug discovery, particularly if they could enable structural determination for 'intractable' targets that are still not accessible to X-ray crystallographic analysis. This article describes the recent advances in the field and critically assesses their relevance for drug discovery as well as discussing at what stages of the drug discovery pipeline cryo-EM can be useful today and what to expect in the near future.

  19. Simplifying structure analysis projects with customizable chime-based templates*.

    PubMed

    Thompson, Scott E; Sears, Duane W

    2005-09-01

    Structure/function relationships are fundamental to understanding the properties of biological molecules, and thus it is imperative that biochemistry students learn how to analyze such relationships. Here we describe Chime-based web page templates and tutorials designed to help students develop their own strategies for exploring macromolecular three-dimensional structures like those on our course website. The templates can easily be customized for any structure of interest, and some templates include a Command Entry Line and a Message Recall Box for more refined macromolecular exploration using RasMol/Chime image modification commands. The tutorials present students with an integrated overview of the image modification capabilities of the Chime plug-in and its underlying RasMol-based command structure as accessed through the Command Entry Line. The tutorial also illustrates how RasMol/Chime command syntax addresses specific formatted structural information in a standard Protein Data Bank file. Judging by the high quality of structure-based presentations given by students who have used these templates and tutorials, it appears that these resources can help students learn to analyze complex macromolecular structures while also providing them with convenient tools for creating scientifically meaningful and visually effective molecular images to share with others. (The templates, tutorials, and our course website can be viewed at the following URLs, respectively: tutor.lscf.ucsb.edu/instdev/sears/biochemistry/presentations/demos-downloads.htm, tutor.lscf.ucsb.edu/instdev/sears/biochemistry/tutorials/pdbtutorial/frontwindow.html, and tutor.lscf.ucsb.edu/instdev/sears/biochemistry/.). Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.

  20. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.

  1. Macromolecular target prediction by self-organizing feature maps.

    PubMed

    Schneider, Gisbert; Schneider, Petra

    2017-03-01

    Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.

  2. Cubosomes and other potential ocular drug delivery vehicles for macromolecular therapeutics.

    PubMed

    Hartnett, Terence E; O'Connor, Andrea J; Ladewig, Katharina

    2015-01-01

    Many macromolecular therapeutics designed to treat posterior segment eye diseases (PSEDs) are administered through frequent ocular injection, which can further deteriorate eye health. Due to the high frequency of injection and the high cost of the therapeutics, there is a need to develop new ways in which to deliver these therapeutics: ways which are both safer and more cost effective. Using the most common PSED, age-related macular degeneration, as an example of a debilitating ocular disease, this review examines the key barriers limiting the delivery of macromolecular therapeutics to the posterior segment of the eye and defines the key requirements placed on particulate drug delivery vehicles (DDVs) to be suitable for this application. Recent developments in macromolecular drug delivery to treat this disease as well as the remaining shortcomings in its treatment are surveyed. Lastly, an emerging class of DDVs potentially suited to this application, called cubosomes, is introduced. Based on their excellent colloidal stability and high internal surface area, cubosomes hold great potential for the sustained release of therapeutics. Novel production methods and a better understanding of the mechanisms through which drug release from these particles can be controlled are two major recent developments toward successful application.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leimkuhler, B.; Hermans, J.; Skeel, R.D.

    A workshop was held on algorithms and parallel implementations for macromolecular dynamics, protein folding, and structural refinement. This document contains abstracts and brief reports from that workshop.

  4. The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockhauser, Sandor; UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble; Ravelli, Raimond B. G.

    2013-07-01

    Hardware and software solutions for MX data-collection strategies using the EMBL/ESRF miniaturized multi-axis goniometer head are presented. Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitatemore » the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.« less

  5. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    PubMed

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  6. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    PubMed

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  7. The renal excretion and retention of macromolecules: The chemical structure effect.

    PubMed

    Rypácek, F; Drobník, J; Chmelar, V; Kálal, J

    1982-01-01

    Five derivatives of polyaspartamide were used as macromolecular models to study the effect of chemical structure of macromolecules on their renal excretion and retention. The parent polymer was formed solely by N(2-hydroxyethyl)aspartamide units (I) and in its derivatives about 20% of 2-hydroxyethyl groups were randomly replaced by either n-butyl- (II), 2(4-hydroxyphenyl)ethyl- (III, N- dimethylamino propyl- (IV) or the aspartamide unit was modified to free aspartic acid carboxyl (V). The rate of clearance from the serum, the deposition in the kidney tissue in comparison with the deposition in reticuloendothelial system organs-liver and spleen, as well as tissue and cellular localisation of deposits were studied on rabbits and mice taking advantage of fluorescence labelling. The clearance of macromolecular models from the serum compartment by the glomerular filtration is mainly molecular weight controlled, while the retention of macromolecules possessing the same molecular weight by the kidney tubular epithelium is strongly affected chemical modification. About thirty and hundred times higher retentions due to reabsorption in proximal tubule were found with macromolecular models II and III respectively.

  8. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-12-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  9. Microgravity

    NASA Image and Video Library

    1999-04-21

    University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  10. Microgravity

    NASA Image and Video Library

    1999-04-21

    University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  11. PURY: a database of geometric restraints of hetero compounds for refinement in complexes with macromolecular structures.

    PubMed

    Andrejasic, Miha; Praaenikar, Jure; Turk, Dusan

    2008-11-01

    The number and variety of macromolecular structures in complex with ;hetero' ligands is growing. The need for rapid delivery of correct geometric parameters for their refinement, which is often crucial for understanding the biological relevance of the structure, is growing correspondingly. The current standard for describing protein structures is the Engh-Huber parameter set. It is an expert data set resulting from selection and analysis of the crystal structures gathered in the Cambridge Structural Database (CSD). Clearly, such a manual approach cannot be applied to the vast and ever-growing number of chemical compounds. Therefore, a database, named PURY, of geometric parameters of chemical compounds has been developed, together with a server that accesses it. PURY is a compilation of the whole CSD. It contains lists of atom classes and bonds connecting them, as well as angle, chirality, planarity and conformation parameters. The current compilation is based on CSD 5.28 and contains 1978 atom classes and 32,702 bonding, 237,068 angle, 201,860 dihedral and 64,193 improper geometric restraints. Analysis has confirmed that the restraints from the PURY database are suitable for use in macromolecular crystal structure refinement and should be of value to the crystallographic community. The database can be accessed through the web server http://pury.ijs.si/, which creates topology and parameter files from deposited coordinates in suitable forms for the refinement programs MAIN, CNS and REFMAC. In the near future, the server will move to the CSD website http://pury.ccdc.cam.ac.uk/.

  12. A public database of macromolecular diffraction experiments.

    PubMed

    Grabowski, Marek; Langner, Karol M; Cymborowski, Marcin; Porebski, Przemyslaw J; Sroka, Piotr; Zheng, Heping; Cooper, David R; Zimmerman, Matthew D; Elsliger, Marc André; Burley, Stephen K; Minor, Wladek

    2016-11-01

    The low reproducibility of published experimental results in many scientific disciplines has recently garnered negative attention in scientific journals and the general media. Public transparency, including the availability of `raw' experimental data, will help to address growing concerns regarding scientific integrity. Macromolecular X-ray crystallography has led the way in requiring the public dissemination of atomic coordinates and a wealth of experimental data, making the field one of the most reproducible in the biological sciences. However, there remains no mandate for public disclosure of the original diffraction data. The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC) has been developed to archive raw data from diffraction experiments and, equally importantly, to provide related metadata. Currently, the database of our resource contains data from 2920 macromolecular diffraction experiments (5767 data sets), accounting for around 3% of all depositions in the Protein Data Bank (PDB), with their corresponding partially curated metadata. IRRMC utilizes distributed storage implemented using a federated architecture of many independent storage servers, which provides both scalability and sustainability. The resource, which is accessible via the web portal at http://www.proteindiffraction.org, can be searched using various criteria. All data are available for unrestricted access and download. The resource serves as a proof of concept and demonstrates the feasibility of archiving raw diffraction data and associated metadata from X-ray crystallographic studies of biological macromolecules. The goal is to expand this resource and include data sets that failed to yield X-ray structures in order to facilitate collaborative efforts that will improve protein structure-determination methods and to ensure the availability of `orphan' data left behind for various reasons by individual investigators and/or extinct structural genomics projects.

  13. E-MSD: improving data deposition and structure quality.

    PubMed

    Tagari, M; Tate, J; Swaminathan, G J; Newman, R; Naim, A; Vranken, W; Kapopoulou, A; Hussain, A; Fillon, J; Henrick, K; Velankar, S

    2006-01-01

    The Macromolecular Structure Database (MSD) (http://www.ebi.ac.uk/msd/) [H. Boutselakis, D. Dimitropoulos, J. Fillon, A. Golovin, K. Henrick, A. Hussain, J. Ionides, M. John, P. A. Keller, E. Krissinel et al. (2003) E-MSD: the European Bioinformatics Institute Macromolecular Structure Database. Nucleic Acids Res., 31, 458-462.] group is one of the three partners in the worldwide Protein DataBank (wwPDB), the consortium entrusted with the collation, maintenance and distribution of the global repository of macromolecular structure data [H. Berman, K. Henrick and H. Nakamura (2003) Announcing the worldwide Protein Data Bank. Nature Struct. Biol., 10, 980.]. Since its inception, the MSD group has worked with partners around the world to improve the quality of PDB data, through a clean up programme that addresses inconsistencies and inaccuracies in the legacy archive. The improvements in data quality in the legacy archive have been achieved largely through the creation of a unified data archive, in the form of a relational database that stores all of the data in the wwPDB. The three partners are working towards improving the tools and methods for the deposition of new data by the community at large. The implementation of the MSD database, together with the parallel development of improved tools and methodologies for data harvesting, validation and archival, has lead to significant improvements in the quality of data that enters the archive. Through this and related projects in the NMR and EM realms the MSD continues to improve the quality of publicly available structural data.

  14. Plasticization effect of triacetin on structure and properties of starch ester film.

    PubMed

    Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin

    2013-05-15

    The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy.

    PubMed

    Kekilli, Demet; Dworkowski, Florian S N; Pompidor, Guillaume; Fuchs, Martin R; Andrew, Colin R; Antonyuk, Svetlana; Strange, Richard W; Eady, Robert R; Hasnain, S Samar; Hough, Michael A

    2014-05-01

    It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals.

  16. Use of a Genetically Engineered Protein for the Design of a Multivalent MRI Contrast Agent

    PubMed Central

    Karfeld, Lindsay S.; Bull, Steve R.; Davis, Nicolynn E.; Meade, Thomas J.; Barron, Annelise E.

    2008-01-01

    The majority of clinically used contrast agents (CAs) for magnetic resonance imaging have low relaxivities and thus require high concentrations for signal enhancement. Research has turned to multivalent, macromolecular CAs to increase CA efficiency. However, previously developed macromolecular CAs do not provide high relaxivities, have limited biocompatibility, and/or do not have a structure that is readily modifiable to tailor to particular applications. We report a new family of multivalent, biomacromolecular, genetically engineered protein polymer-based CAs; the protein backbone contains evenly spaced lysines that are derivatized with gadolinium (Gd(III)) chelators. The protein's length and repeating amino acid sequence are genetically specified. We reproducibly obtained conjugates with an average of 8 – 9 Gd(III) chelators per protein. These multivalent CAs reproducibly provide a high relaxivity of 7.3 mM-1s-1 per Gd(III) and 62.6 mM-1s-1 per molecule. Furthermore, they can be incorporated into biomaterial hydrogels via chemical crosslinking of remaining free lysines, and provide a dramatic contrast enhancement. Thus, these protein polymer CAs could be a useful tool for following the evolution of tissue engineering scaffolds. PMID:17927227

  17. Determination of the Solubility Limit of Tris(dibenzylideneacetone) Dipalladium(0) in Tetrahydrofuran/Water Mixtures

    ERIC Educational Resources Information Center

    Franzen, Stefan

    2011-01-01

    Determination of the solubility limit of a strongly colored organometallic reagent in a mixed-solvent system provides an example of quantitative solubility measurement appropriate to understand polymer, nanoparticle, and other macromolecular aggregation processes. The specific example chosen involves a solution of tris(dibenzylideneacetone)…

  18. Christopher Chang | NREL

    Science.gov Websites

    transition metal systems, macromolecular dynamics, comparative chemical bonding analysis, electron transfer . Research Interests Dynamics and control on discrete structures, including excited-state transition metal

  19. Self-assembly of hierarchically ordered structures in DNA nanotube systems

    NASA Astrophysics Data System (ADS)

    Glaser, Martin; Schnauß, Jörg; Tschirner, Teresa; Schmidt, B. U. Sebastian; Moebius-Winkler, Maximilian; Käs, Josef A.; Smith, David M.

    2016-05-01

    The self-assembly of molecular and macromolecular building blocks into organized patterns is a complex process found in diverse systems over a wide range of size and time scales. The formation of star- or aster-like configurations, for example, is a common characteristic in solutions of polymers or other molecules containing multi-scaled, hierarchical assembly processes. This is a recurring phenomenon in numerous pattern-forming systems ranging from cellular constructs to solutions of ferromagnetic colloids or synthetic plastics. To date, however, it has not been possible to systematically parameterize structural properties of the constituent components in order to study their influence on assembled states. Here, we circumvent this limitation by using DNA nanotubes with programmable mechanical properties as our basic building blocks. A small set of DNA oligonucleotides can be chosen to hybridize into micron-length DNA nanotubes with a well-defined circumference and stiffness. The self-assembly of these nanotubes to hierarchically ordered structures is driven by depletion forces caused by the presence of polyethylene glycol. This trait allowed us to investigate self-assembly effects while maintaining a complete decoupling of density, self-association or bundling strength, and stiffness of the nanotubes. Our findings show diverse ranges of emerging structures including heterogeneous networks, aster-like structures, and densely bundled needle-like structures, which compare to configurations found in many other systems. These show a strong dependence not only on concentration and bundling strength, but also on the underlying mechanical properties of the nanotubes. Similar network architectures to those caused by depletion forces in the low-density regime are obtained when an alternative hybridization-based bundling mechanism is employed to induce self-assembly in an isotropic network of pre-formed DNA nanotubes. This emphasizes the universal effect inevitable attractive forces in crowded environments have on systems of self-assembling soft matter, which should be considered for macromolecular structures applied in crowded systems such as cells.

  20. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography.

    PubMed

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L; Armour, Wes; Waterman, David G; Iwata, So; Evans, Gwyndaf

    2013-08-01

    The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  1. TLS from fundamentals to practice

    PubMed Central

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Adams, Paul D.

    2014-01-01

    The Translation-Libration-Screw-rotation (TLS) model of rigid-body harmonic displacements introduced in crystallography by Schomaker & Trueblood (1968) is now a routine tool in macromolecular studies and is a feature of most modern crystallographic structure refinement packages. In this review we consider a number of simple examples that illustrate important features of the TLS model. Based on these examples simplified formulae are given for several special cases that may occur in structure modeling and refinement. The derivation of general TLS formulae from basic principles is also provided. This manuscript describes the principles of TLS modeling, as well as some select algorithmic details for practical application. An extensive list of applications references as examples of TLS in macromolecular crystallography refinement is provided. PMID:25249713

  2. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    PubMed Central

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf

    2013-01-01

    The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein. PMID:23897484

  3. Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy

    NASA Astrophysics Data System (ADS)

    Brown, R. Malcom; Millard, Andrew C.; Campagnola, Paul J.

    2003-11-01

    The macromolecular structure of purified cellulose samples is studied by second-harmonic generation (SHG) imaging microscopy. We show that the SHG contrast in both Valonia and Acetobacter cellulose strongly resembles that of collagen from animal tissues, both in terms of morphology and polarization anisotropy. Polarization analysis shows that microfibrils in each lamella are highly aligned and ordered and change directions by 90° in adjacent lamellae. The angular dependence of the SHG intensity fits well to a cos2 θ distribution, which is characteristic of the electric dipole interaction. Enzymatic degradation of Valonia fibers by cellulase is followed in real time by SHG imaging and results in exponential decay kinetics, showing that SHG imaging microscopy is ideal for monitoring dynamics in biological systems.

  4. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  5. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  6. Method of filtering a target compound from a first solvent that is above its critical density

    DOEpatents

    Phelps, Max R [Richland, WA; Yonker, Clement R [Kennewick, WA; Fulton, John L [Richland, WA; Bowman, Lawrence E [Richland, WA

    2001-07-24

    The present invention is a method of separating a first compound having a macromolecular structure from a mixture. The first solvent is a fluid that is a gas at standard temperature and pressure and is at a density greater than a critical density of the fluid. A macromolecular structure containing a first compound is dissolved therein as a mixture. The mixture is contacted onto a selective barrier and the first solvent passed through the selective barrier thereby retaining the first compound, followed by recovering the first compound. By using a fluid that is a gas at standard temperature and pressure at a density greater than its critical density, separation without depressurization is fast and efficient.

  7. A New Carbon Nanotube-Based Breast Cancer Drug Delivery System: Preparation and In Vitro Analysis Using Paclitaxel.

    PubMed

    Shao, Wei; Paul, Arghya; Rodes, Laetitia; Prakash, Satya

    2015-04-01

    Paclitaxel (PTX) is one of the most important drugs for breast cancer; however, the drug effects are limited by its systematic toxicity and poor water solubility. Nanoparticles have been applied for delivery of cancer drugs to overcome their limitations. Toward this goal, a novel single-walled carbon nanotube (SWNT)-based drug delivery system was developed by conjugation of human serum albumin (HSA) nanoparticles for loading of antitumor agent PTX. The nanosized macromolecular SWNT-drug carrier (SWNT-HSA) was characterized by TEM, UV-Vis-NIR spectrometry, and TGA. The SWNT-based drug carrier displayed high intracellular delivery efficiency (cell uptake rate of 80%) in breast cancer MCF-7 cells, as examined by fluorescence-labeled drug carriers, suggesting the needle-shaped SWNT-HSA drug carrier was able to transport drugs across cell membrane despite its macromolecular structure. The drug loading on SWNT-based drug carrier was through high binding affinity of PTX to HSA proteins. The PTX formulated with SWNT-HSA showed greater growth inhibition activity in MCF-7 breast cancer cells than PTX formulated with HSA nanoparticle only (cell viability of 63 vs 70% in 48 h and 53 vs 62% in 72 h). The increased drug efficacy could be driven by SWNT-mediated cell internalization. These data suggest that the developed SWNT-based antitumor agent is functional and effective. However, more studies for in vivo drug delivery efficacy and other properties are needed before this delivery system can be fully realized.

  8. Teaching Structure: Student Use of Software Tools for Understanding Macromolecular Structure in an Undergraduate Biochemistry Course

    ERIC Educational Resources Information Center

    Jaswal, Sheila S.; O'Hara, Patricia B.; Williamson, Patrick L.; Springer, Amy L.

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of…

  9. Simultaneous optimization of biomolecular energy function on features from small molecules and macromolecules

    PubMed Central

    Park, Hahnbeom; Bradley, Philip; Greisen, Per; Liu, Yuan; Mulligan, Vikram Khipple; Kim, David E.; Baker, David; DiMaio, Frank

    2017-01-01

    Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking, have been parameterized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties. PMID:27766851

  10. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits.

    PubMed

    Jaskolski, Mariusz; Dauter, Zbigniew; Wlodawer, Alexander

    2014-09-01

    As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  11. ISPyB: an information management system for synchrotron macromolecular crystallography.

    PubMed

    Delagenière, Solange; Brenchereau, Patrice; Launer, Ludovic; Ashton, Alun W; Leal, Ricardo; Veyrier, Stéphanie; Gabadinho, José; Gordon, Elspeth J; Jones, Samuel D; Levik, Karl Erik; McSweeney, Seán M; Monaco, Stéphanie; Nanao, Max; Spruce, Darren; Svensson, Olof; Walsh, Martin A; Leonard, Gordon A

    2011-11-15

    Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.

  12. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM)more » program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.« less

  13. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  14. Chiral Recognition in Molecular and Macromolecular Pairs of(S)- and (R)- 1-Cyano-2-Methylpropyl 4’((4-(8-Vinyloxyoctyloxy)Benzoyl) Biphenyl-4-Carboxylate Enantiomers

    DTIC Science & Technology

    1994-06-30

    above please provide a graphical abstract of the paper ar, return it to the Editorial Office as soon as possible. 4oeg0 o F-99S or TS A& I DTI•’ I J. u1...TCLSICAON 2.LIMITATION OF ABSTRAC •F oFPORT OF THIS PAGE OF ABSTRACT . unclass ified Graphical Abstracts for Perkin Txans. 1 Example TITLE GRAPHICAL ... ABSTRACT AUTHORS’ N AMES Template (S)-II Chiral recognition in molecular and . -- macromolecular pairs of (S)- and -- (R)-i-cyano-2-methyipropyl 4’-{[4

  15. Coping with Iron Limitation: A Metabolomic Study of Synechocystis sp. PCC 6803.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas-Ubach, Albert; Poret-Peterson, A. T.; Penuel

    2018-02-28

    Iron (Fe) is a key element for all living systems, especially for photosynthetic organisms because of its important role in the photosynthetic electron transport chain. Fe limitation in cyanobacteria leads to several physiological and morphological changes. However, the overall metabolic responses to Fe limitation are still poorly understood. In this study, we integrated elemental, stoichiometric, macromolecular, and metabolomic data to shed light on the responses of Synechocystis sp. PCC 6803, a non-N2-fixing freshwater cyanobacterium, to Fe limitation. Compared to Synechocystis growing at nutrient replete conditions, Fe-limited cultures had lower growth rates and amounts of chlorophyll a, RNA, RNA:DNA, C, N,more » and P and higher ratios of Protein:RNA, C:N, C:P and N:P, in accordance with the growth rate hypothesis which predicts faster growing organisms will have decreased biomass RNA contents and C:P and N:P ratios. Fe-limited Synechocystis had lower amounts Fe, Mn and Mo, and higher amount of Cu. Several changes in amino acids of cultures growing under Fe limitation suggest nitrogen limitation. Additionally, we found substantial increases in stress-related metabolites in Fe-limited cyanobacteria such antioxidants. This study represents an advance in understanding the stoichiometric, macromolecular and metabolic strategies that cyanobacteria use to cope with Fe limitation. This information, moreover, may further understanding of changes in cyanobacterial functions under scenarios of Fe limitation in aquatic ecosystems.« less

  16. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-05

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings.

  17. Structure, function and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding.

    NASA Astrophysics Data System (ADS)

    Samiotakis, Antonios; Dhar, Apratim; Ebbinghaus, Simon; Nienhaus, Lea; Homouz, Dirar; Gruebele, Martin; Cheung, Margaret

    2010-10-01

    We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal) and Sph (spherical compact). With an adjustment for viscosity, crowded wild type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a new solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates.

  18. Teaching macromolecular modeling.

    PubMed Central

    Harvey, S C; Tan, R K

    1992-01-01

    Training newcomers to the field of macromolecular modeling is as difficult as is training beginners in x-ray crystallography, nuclear magnetic resonance, or other methods in structural biology. In one or two lectures, the most that can be conveyed is a general sense of the relationship between modeling and other structural methods. If a full semester is available, then students can be taught how molecular structures are built, manipulated, refined, and analyzed on a computer. Here we describe a one-semester modeling course that combines lectures, discussions, and a laboratory using a commercial modeling package. In the laboratory, students carry out prescribed exercises that are coordinated to the lectures, and they complete a term project on a modeling problem of their choice. The goal is to give students an understanding of what kinds of problems can be attacked by molecular modeling methods and which problems are beyond the current capabilities of those methods. PMID:1489919

  19. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    PubMed Central

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  20. Structural studies on serum albumins under green light irradiation.

    PubMed

    Comorosan, Sorin; Polosan, Silviu; Popescu, Irinel; Ionescu, Elena; Mitrica, Radu; Cristache, Ligia; State, Alina Elena

    2010-10-01

    This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes.

  1. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm.

    PubMed

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-11-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology.

  2. Study of the structural and thermal properties of plasma treated jute fibre

    NASA Astrophysics Data System (ADS)

    Sinha, E.; Rout, S. K.; Barhai, P. K.

    2008-08-01

    Jute fibres ( Corchorus olitorius), were treated with argon cold plasma for 5, 10 and 15 min. Structural macromolecular parameters of untreated and plasma treated fibres were investigated using small angle X-ray scattering (SAXS), and the crystallinity parameters of the same fibres were determined by using X-ray diffraction (XRD). Differential scanning calorimetry (DSC) was used to study the thermal behavior of the untreated and treated fibres. Comparison and analysis of the results confirmed the changes in the macromolecular structure after plasma treatment. This is due to the swelling of cellulosic particles constituting the fibres, caused by the bombardment of high energetic ions onto the fibre surface. Differential scanning calorimetry data demonstrated the thermal instability of the fibre after cold plasma treatment, as the thermal degradation temperature of hemicelluloses and cellulose was found lowered than that of raw fibre after plasma treatment.

  3. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.

    PubMed

    Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter

    2016-05-01

    Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.

  4. CheckMyMetal: a macromolecular metal-binding validation tool

    PubMed Central

    Porebski, Przemyslaw J.

    2017-01-01

    Metals are essential in many biological processes, and metal ions are modeled in roughly 40% of the macromolecular structures in the Protein Data Bank (PDB). However, a significant fraction of these structures contain poorly modeled metal-binding sites. CheckMyMetal (CMM) is an easy-to-use metal-binding site validation server for macromolecules that is freely available at http://csgid.org/csgid/metal_sites. The CMM server can detect incorrect metal assignments as well as geometrical and other irregularities in the metal-binding sites. Guidelines for metal-site modeling and validation in macromolecules are illustrated by several practical examples grouped by the type of metal. These examples show CMM users (and crystallographers in general) problems they may encounter during the modeling of a specific metal ion. PMID:28291757

  5. Bringing macromolecular machinery to life using 3D animation.

    PubMed

    Iwasa, Janet H

    2015-04-01

    Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere. Copyright © 2015. Published by Elsevier Ltd.

  6. Origins of the plant chloroplasts and mitochondria based on comparisons of 5S ribosomal RNAs

    NASA Technical Reports Server (NTRS)

    Delihas, N.; Fox, G. E.

    1987-01-01

    In this paper, we provide macromolecular comparisons utilizing the 5S ribosomal RNA structure to suggest extant bacteria that are the likely descendants of chloroplast and mitochondria endosymbionts. The genetic stability and near universality of the 5S ribosomal gene allows for a useful means to study ancient evolutionary changes by macromolecular comparisons. The value in current and future ribosomal RNA comparisons is in fine tuning the assignment of ancestors to the organelles and in establishing extant species likely to be descendants of bacteria involved in presumed multiple endosymbiotic events.

  7. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  8. Review: Serial Femtosecond Crystallography: A Revolution in Structural Biology

    PubMed Central

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra

    2016-01-01

    Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. PMID:27143509

  9. Serial femtosecond crystallography: A revolution in structural biology.

    PubMed

    Martin-Garcia, Jose M; Conrad, Chelsie E; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra

    2016-07-15

    Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. Published by Elsevier Inc.

  10. Molecular Imprinting of Macromolecules for Sensor Applications

    PubMed Central

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-01-01

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting. PMID:28422082

  11. Molecular Imprinting of Macromolecules for Sensor Applications.

    PubMed

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  12. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Hyung

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries severalmore » regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this dissertation provide novel insights into the strategy used by EIAV to replicate itself, and provide new details about how the host cell responds to and defends against EIAV upon the infection. Moreover, they have contributed to the understanding of the macromolecular recognition events that regulate these processes.« less

  13. A 3D Image Filter for Parameter-Free Segmentation of Macromolecular Structures from Electron Tomograms

    PubMed Central

    Ali, Rubbiya A.; Landsberg, Michael J.; Knauth, Emily; Morgan, Garry P.; Marsh, Brad J.; Hankamer, Ben

    2012-01-01

    3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms. PMID:22479430

  14. δ 13C of free and macromolecular aromatic structures in the murchison meteorite

    NASA Astrophysics Data System (ADS)

    Sephton, M. A.; Pillinger, C. T.; Gilmour, I.

    1998-05-01

    Analyses of the organic compounds in the Murchison meteorite have led to a greater understanding of the nature of extraterrestrial organic materials. However, the relationship between low and high molecular weight material remains poorly understood. To investigate this relationship, untreated Murchison was subjected to supercritical fluid extraction (SFE) to obtain the free organic components in the meteorite. Toluene and other volatile aromatic hydrocarbons dominated the extract, and the carbon isotopic composition of these molecules was determined by gas chromatography-isotope ratio-mass spectrometry (GCIRMS). δ 13C values of the aromatic hydrocarbons ranged from -28.8 to -5.8‰. These compounds displayed a 13C-enrichment with increasing carbon number suggesting an origin by cracking. The high molecular weight organic material in the meteorite was isolated and subjected to hydrous pyrolysis. This procedure produced a number of aromatic products, the majority of which were volatile aromatic hydrocarbons, particularly toluene. SFE was used to extract and successfully retain them. This enabled the first carbon isotopic analysis of this poorly understood material to be performed at the molecular level by GCIRMS. δ 13C values for aromatic pyrolysis products occupied a range from -24.6 to -5.6‰. The trend of 13C-enrichment with increasing carbon number, observed in the free compounds, was also evident in the macromolecular fragments. Furthermore, the organic fragments of the macromolecular material were consistently 13C-enriched when compared to structurally identical free molecules. This suggested that the free aromatic hydrocarbons in Murchison were produced by the preterrestrial degradation of the organic macromolecular material. This natural degradation event was extended by the hydrous pyrolysis experiment.

  15. Modeling protein structure at near atomic resolutions with Gorgon.

    PubMed

    Baker, Matthew L; Abeysinghe, Sasakthi S; Schuh, Stephen; Coleman, Ross A; Abrams, Austin; Marsh, Michael P; Hryc, Corey F; Ruths, Troy; Chiu, Wah; Ju, Tao

    2011-05-01

    Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 Å), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Coping with iron limitation: A metabolomic study of Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas-Ubach, Albert; Poret-Peterson, Amisha T.; Peñuelas, Josep

    Iron (Fe) is a key element for all living systems, especially for photosynthetic organisms because of its important role in the photosynthetic electron transport chain. Fe limitation in cyanobacteria leads to several physiological and morphological changes. However, the overall metabolic responses to Fe limitation are still poorly understood. In this study, we integrated elemental, stoichiometric, macromolecular, and metabolomic data to shed light on the responses of Synechocystis sp. PCC 6803, a non-N2-fixing freshwater cyanobacterium, to Fe limitation. Compared to Synechocystis growing at nutrient replete conditions, Fe-limited cultures had lower growth rates and amounts of chlorophyll a, RNA, RNA:DNA, C, N,more » and P and higher ratios of Protein:RNA, C:N, C:P and N:P, in accordance with the growth rate hypothesis which predicts faster growing organisms will have decreased biomass RNA contents and C:P and N:P ratios. Fe-limited Synechocystis had lower amounts Fe, Mn and Mo, and higher amount of Cu. Several changes in amino acids of cultures growing under Fe limitation suggest nitrogen limitation. Additionally, we found substantial increases in stress-related metabolites in Fe-limited cyanobacteria such antioxidants. This study represents an advance in understanding the stoichiometric, macromolecular and metabolic strategies that cyanobacteria use to cope with Fe limitation. This information, moreover, may further understanding of changes in cyanobacterial functions under scenarios of Fe limitation in aquatic ecosystems.« less

  17. Modular Assembly of the Bacterial Large Ribosomal Subunit.

    PubMed

    Davis, Joseph H; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S; Lyumkis, Dmitry; Williamson, James R

    2016-12-01

    The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Modular Assembly of the Bacterial Large Ribosomal Subunit

    PubMed Central

    Davis, Joseph H.; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S.; Lyumkis, Dmitry; Williamson, James R.

    2016-01-01

    SUMMARY The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ~4–5Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be ‘re-routed’ through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. PMID:27912064

  19. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth" is often historically used to describe these microgravity experiments. This is somewhat inaccurate as the field involves the study of many varied biological molecules including viruses, proteins, DNA, RNA and complexes of those structures. For this reason we use the term macromolecular crystal growth. In this chapter we review a series of diagnostic microgravity crystal growth experiments carried out principally using the European Space Agency (ESA) Advanced Protein Crystallization Facility (APCF). We also review related research, both experimental and theoretical, on the aspects of microgravity fluid physics that affect microgravity protein crystal growth. Our experiments have revealed some surprises that were not initially expected. We discuss them here in the context of practical lessons learnt and how to maximize the limited microgravity opportunities available.

  20. Seeing the Unseen: Molecular Visualization in Biology

    ERIC Educational Resources Information Center

    Finnan, Jeff; Taylor-Papp, Kim; Duran, Mesut

    2005-01-01

    In high school biology, students are challenged by many molecular concepts and structures. They meander through a number of molecular structures, some in macromolecular form: carbohydrates, amino acids, fatty acids, nucleotides. Student difficulties arise in part from inability to visualize what they can't easily see. Students struggle moving from…

  1. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  2. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  3. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    PubMed Central

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-01-01

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634

  4. Phylogenetic Diversity in the Macromolecular Composition of Microalgae

    PubMed Central

    Finkel, Zoe V.; Follows, Mick J.; Liefer, Justin D.; Brown, Chris M.; Benner, Ina; Irwin, Andrew J.

    2016-01-01

    The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools. PMID:27228080

  5. A Practical Approach to Protein Crystallography.

    PubMed

    Ilari, Andrea; Savino, Carmelinda

    2017-01-01

    Macromolecular crystallography is a powerful tool for structural biology. The resolution of a protein crystal structure is becoming much easier than in the past, thanks to developments in computing, automation of crystallization techniques and high-flux synchrotron sources to collect diffraction datasets. The aim of this chapter is to provide practical procedures to determine a protein crystal structure, illustrating the new techniques, experimental methods, and software that have made protein crystallography a tool accessible to a larger scientific community.It is impossible to give more than a taste of what the X-ray crystallographic technique entails in one brief chapter and there are different ways to solve a protein structure. Since the number of structures available in the Protein Data Bank (PDB) is becoming ever larger (the protein data bank now contains more than 100,000 entries) and therefore the probability to find a good model to solve the structure is ever increasing, we focus our attention on the Molecular Replacement method. Indeed, whenever applicable, this method allows the resolution of macromolecular structures starting from a single data set and a search model downloaded from the PDB, with the aid only of computer work.

  6. Organosilicon platforms: bridging homogeneous, heterogeneous, and bioinspired catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Mayfair C.; Riofski, Mark V.; Missaghi, Michael N.

    2014-01-01

    Organosilicon compounds form versatile structures such as cubic metallasiloxanes, cage-like silsesquioxanes, macromolecular nanocages, and flexible dendrimers and linear metallasiloxanes, and are useful as catalysts, ligands for metal complexes, and catalyst supports.

  7. Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement

    PubMed Central

    Leaver-Fay, Andrew; O’Meara, Matthew J.; Tyka, Mike; Jacak, Ron; Song, Yifan; Kellogg, Elizabeth H.; Thompson, James; Davis, Ian W.; Pache, Roland A.; Lyskov, Sergey; Gray, Jeffrey J.; Kortemme, Tanja; Richardson, Jane S.; Havranek, James J.; Snoeyink, Jack; Baker, David; Kuhlman, Brian

    2013-01-01

    Accurate energy functions are critical to macromolecular modeling and design. We describe new tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate the application of these tools to improvement of the Rosetta energy function. The feature analysis tool identifies discrepancies between structures deposited in the PDB and low energy structures generated by Rosetta; these likely arise from inaccuracies in the energy function. The optE tool optimizes the weights on the different components of the energy function by maximizing the recapitulation of a wide range of experimental observations. We use the tools to examine three proposed modifications to the Rosetta energy function: improving the unfolded state energy model (reference energies), using bicubic spline interpolation to generate knowledge based torisonal potentials, and incorporating the recently developed Dunbrack 2010 rotamer library (Shapovalov and Dunbrack, 2011). PMID:23422428

  8. New computational tools for H/D determination in macromolecular structures from neutron data.

    PubMed

    Siliqi, Dritan; Caliandro, Rocco; Carrozzini, Benedetta; Cascarano, Giovanni Luca; Mazzone, Annamaria

    2010-11-01

    Two new computational methods dedicated to neutron crystallography, called n-FreeLunch and DNDM-NDM, have been developed and successfully tested. The aim in developing these methods is to determine hydrogen and deuterium positions in macromolecular structures by using information from neutron density maps. Of particular interest is resolving cases in which the geometrically predicted hydrogen or deuterium positions are ambiguous. The methods are an evolution of approaches that are already applied in X-ray crystallography: extrapolation beyond the observed resolution (known as the FreeLunch procedure) and a difference electron-density modification (DEDM) technique combined with the electron-density modification (EDM) tool (known as DEDM-EDM). It is shown that the two methods are complementary to each other and are effective in finding the positions of H and D atoms in neutron density maps.

  9. Organic Analysis in Miller Range 090657 and Buckley Island 10933 CR2 Chondrites: Part 1 In-Situ Observation of Carbonaceous Material

    NASA Technical Reports Server (NTRS)

    Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Burton, A. S.; Messenger, S.; Clemett, S. J.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble unstructured kerogen-like component as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding on spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Furthermore, they can provide broader perspective on how extraterrestrial organic ma-terials potentially contributed to the synthesis of life's essential compounds such as amino acids, sugar acids, activated phosphates and nucleobases.

  10. Structural and Functional Assessment of APOBEC3G Macromolecular Complexes

    PubMed Central

    Polevoda, Bogdan; McDougall, William M.; Bennett, Ryan P.; Salter, Jason D.; Smith, Harold C.

    2016-01-01

    There are eleven members in the human APOBEC family of proteins that are evolutionarily related through their zinc-dependent cytidine deaminase domains. The human APOBEC gene clusters arose on chromosome 6 and 22 through gene duplication and divergence to where current day APOBEC proteins are functionally diverse and broadly expressed in tissues. APOBEC serve enzymatic and non enzymatic functions in cells. In both cases, formation of higher-order structures driven by APOBEC protein-protein interactions and binding to RNA and/or single stranded DNA are integral to their function. In some circumstances, these interactions are regulatory and modulate APOBEC activities. We are just beginning to understand how macromolecular interactions drive processes such as APOBEC subcellular compartmentalization, formation of holoenzyme complexes, gene targeting, foreign DNA restriction, anti-retroviral activity, formation of ribonucleoprotein particles and APOBEC degradation. Protein-protein and protein-nucleic acid cross-linking methods coupled with mass spectrometry, electrophoretic mobility shift assays, glycerol gradient sedimentation, fluorescence anisotropy and APOBEC deaminase assays are enabling mapping of interacting surfaces that are essential for these functions. The goal of this methods review is through example of our research on APOBEC3G, describe the application of cross-linking methods to characterize and quantify macromolecular interactions and their functional implications. Given the homology in structure and function, it is proposed that these methods will be generally applicable to the discovery process for other APOBEC and RNA and DNA editing and modifying proteins. PMID:26988126

  11. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization

    PubMed Central

    2016-01-01

    The need for polymers for high-end applications, coupled with the desire to mimic nature’s macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design. PMID:26795940

  12. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    PubMed

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  13. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    PubMed Central

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-01-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined. PMID:19564686

  14. Parallel, distributed and GPU computing technologies in single-particle electron microscopy.

    PubMed

    Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-07-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.

  15. X-ray crystallography over the past decade for novel drug discovery - where are we heading next?

    PubMed

    Zheng, Heping; Handing, Katarzyna B; Zimmerman, Matthew D; Shabalin, Ivan G; Almo, Steven C; Minor, Wladek

    2015-01-01

    Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible.

  16. Well-Defined Macromolecules Using Horseradish Peroxidase as a RAFT Initiase.

    PubMed

    Danielson, Alex P; Bailey-Van Kuren, Dylan; Lucius, Melissa E; Makaroff, Katherine; Williams, Cameron; Page, Richard C; Berberich, Jason A; Konkolewicz, Dominik

    2016-02-01

    Enzymatic catalysis and control over macromolecular architectures from reversible addition-fragmentation chain transfer polymerization (RAFT) are combined to give a new method of making polymers. Horseradish peroxidase (HRP) is used to catalytically generate radicals using hydrogen peroxide and acetylacetone as a mediator. RAFT is used to control the polymer structure. HRP catalyzed RAFT polymerization gives acrylate and acrylamide polymers with relatively narrow molecular weight distributions. The polymerization is rapid, typically exceeding 90% monomer conversion in 30 min. Complex macromolecular architectures including a block copolymer and a protein-polymer conjugate are synthesized using HRP to catalytically initiate RAFT polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Using a gradient in food quality to infer drivers of fatty acid content in two filter-feeding aquatic consumers

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Vallazza, Jon; Bartsch, Lynn; Bartsch, Michelle

    2017-01-01

    Inferences about ecological structure and function are often made using elemental or macromolecular tracers of food web structure. For example, inferences about food chain length are often made using stable isotope ratios of top predators and consumer food sources are often inferred from both stable isotopes and fatty acid (FA) content in consumer tissues. The use of FAs as tracers implies some degree of macromolecular conservation across trophic interactions, but many FAs are subject to physiological alteration and animals may produce those FAs from precursors in response to food deficiencies. We measured 41 individual FAs and several aggregate FA metrics in two filter-feeding taxa to (1) assess ecological variation in food availability and (2) identify potential drivers of among-site variation in FA content. These taxa were filter feeding caddisflies (Family Hydropyschidae) and dreissenid mussels (Genus Dreissena), which both consume seston. Stable isotopic composition (C and N) in these taxa co-varied across 13 sites in the Great Lakes region of North America, indicating they fed on very similar food resources. However, co-variation in FA content was very limited, with only one common FA co-varying across this gradient (α-linolenic acid; ALA), suggesting these taxa accumulate FAs very differently even when exposed to the same foods. Based on these results, among-site variation in ALA content in both consumers does appear to be driven by food resources, along with several other FAs in dreissenid mussels. We conclude that single-taxa measurements of FA content cannot be used to infer FA availability in food resources.

  18. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm

    PubMed Central

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-01-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology. DOI: http://dx.doi.org/10.7554/eLife.19274.001 PMID:27801646

  19. Timely deposition of macromolecular structures is necessary for peer review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joosten, Robbie P.; Soueidan, Hayssam; Wessels, Lodewyk F. A.

    2013-12-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found thatmore » a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature.« less

  20. NCI Scientists Solve Structure of Protein that Enables MERS Virus to Spread | Poster

    Cancer.gov

    Scientists at the Frederick National Lab have produced three crystal structures that reveal a specific part of a protein that can be targeted to fight the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an emerging viral respiratory illness. Senior Investigator David Waugh, Ph.D., Macromolecular Crystallography Laboratory, has solved the structure of an

  1. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov; Bricogne, Gerard, E-mail: terwilliger@lanl.gov; Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray datamore » continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  2. Energy economy in the actomyosin interaction: lessons from simple models.

    PubMed

    Lehman, Steven L

    2010-01-01

    The energy economy of the actomyosin interaction in skeletal muscle is both scientifically fascinating and practically important. This chapter demonstrates how simple cross-bridge models have guided research regarding the energy economy of skeletal muscle. Parameter variation on a very simple two-state strain-dependent model shows that early events in the actomyosin interaction strongly influence energy efficiency, and late events determine maximum shortening velocity. Addition of a weakly-bound state preceding force production allows weak coupling of cross-bridge mechanics and ATP turnover, so that a simple three-state model can simulate the velocity-dependence of ATP turnover. Consideration of the limitations of this model leads to a review of recent evidence regarding the relationship between ligand binding states, conformational states, and macromolecular structures of myosin cross-bridges. Investigation of the fine structure of the actomyosin interaction during the working stroke continues to inform fundamental research regarding the energy economy of striated muscle.

  3. Pink-beam serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meents, A.; Wiedorn, M. O.; Srajer, V.

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  4. Pink-beam serial crystallography

    DOE PAGES

    Meents, A.; Wiedorn, M. O.; Srajer, V.; ...

    2017-11-03

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  5. ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography.

    PubMed

    Deng, Yuchen; Chen, Yu; Zhang, Yan; Wang, Shengliu; Zhang, Fa; Sun, Fei

    2016-07-01

    Electron tomography (ET) plays an important role in revealing biological structures, ranging from macromolecular to subcellular scale. Due to limited tilt angles, ET reconstruction always suffers from the 'missing wedge' artifacts, thus severely weakens the further biological interpretation. In this work, we developed an algorithm called Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction (ICON) based on the theory of compressed-sensing and the assumption of sparsity of biological specimens. ICON can significantly restore the missing information in comparison with other reconstruction algorithms. More importantly, we used the leave-one-out method to verify the validity of restored information for both simulated and experimental data. The significant improvement in sub-tomogram averaging by ICON indicates its great potential in the future application of high-resolution structural determination of macromolecules in situ. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The In-Situ One-Step Synthesis of a PDC Macromolecular Pro-Drug and the Fabrication of a Novel Core-Shell Micell.

    PubMed

    Yu, Cui-Yun; Yang, Sa; Li, Zhi-Ping; Huang, Can; Ning, Qian; Huang, Wen; Yang, Wen-Tong; He, Dongxiu; Sun, Lichun

    2016-01-01

    The development of slow release nano-sized carriers for efficient antineoplastic drug delivery with a biocompatible and biodegradable pectin-based macromolecular pro-drug for tumor therapy has been reported in this study. Pectin-doxorubicin conjugates (PDC), a macromolecular pro-drug, were prepared via an amide condensation reaction, and a novel amphiphilic core-shell micell based on a PDC macromolecular pro-drug (PDC-M) was self-assembled in situ, with pectin as the hydrophilic shell and doxorubicin (DOX) as the hydrophobic core. Then the chemical structure of the PDC macromolecular pro-drug was identified by both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ((1)H-NMR), and proved that doxorubicin combined well with the pectin and formed macromolecular pro-drug. The PDC-M were observed to have an unregularly spherical shape and were uniform in size by scanning electron microscopy (SEM). The average particle size of PDC-M, further measured by a Zetasizer nanoparticle analyzer (Nano ZS, Malvern Instruments), was about 140 nm. The encapsulation efficiency and drug loading were 57.82% ± 3.7% (n = 3) and 23.852% ±2.3% (n = 3), respectively. The in vitro drug release behaviors of the resulting PDC-M were studied in a simulated tumor environment (pH 5.0), blood (pH 7.4) and a lysosome media (pH 6.8), and showed a prolonged slow release profile. Assays for antiproliferative effects and flow cytometry of the resulting PDC-M in HepG2 cell lines demonstrated greater properties of delayed and slow release as compared to free DOX. A cell viability study against endothelial cells further revealed that the resulting PDC-M possesses excellent cell compatibilities and low cytotoxicities in comparison with that of the free DOX. Hemolysis activity was investigated in rabbits, and the results also demonstrated that the PDC-M has greater compatibility in comparison with free DOX. This shows that the resulting PDC-M can ameliorate the hydrophobicity of free DOX. This work proposes a novel strategy for in-situ one-step synthesis of macromolecular pro-drugs and fabrication of a core-shell micelle, demonstrating great potential for cancer chemotherapy.

  7. Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum Oocysts

    USDA-ARS?s Scientific Manuscript database

    The structure and composition of the oocyst wall are primary factors determining the survival of Cryptosporidium parvum oocysts outside the host. An external polymer matrix (glycocalyx) may mediate interactions with environmental surfaces and, thus, affect the transport of oocysts in water, soil, an...

  8. E-MSD: an integrated data resource for bioinformatics.

    PubMed

    Golovin, A; Oldfield, T J; Tate, J G; Velankar, S; Barton, G J; Boutselakis, H; Dimitropoulos, D; Fillon, J; Hussain, A; Ionides, J M C; John, M; Keller, P A; Krissinel, E; McNeil, P; Naim, A; Newman, R; Pajon, A; Pineda, J; Rachedi, A; Copeland, J; Sitnov, A; Sobhany, S; Suarez-Uruena, A; Swaminathan, G J; Tagari, M; Tromm, S; Vranken, W; Henrick, K

    2004-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the Protein Data Bank (PDB) and to work towards the integration of various bioinformatics data resources. We have implemented a simple form-based interface that allows users to query the MSD directly. The MSD 'atlas pages' show all of the information in the MSD for a particular PDB entry. The group has designed new search interfaces aimed at specific areas of interest, such as the environment of ligands and the secondary structures of proteins. We have also implemented a novel search interface that begins to integrate separate MSD search services in a single graphical tool. We have worked closely with collaborators to build a new visualization tool that can present both structure and sequence data in a unified interface, and this data viewer is now used throughout the MSD services for the visualization and presentation of search results. Examples showcasing the functionality and power of these tools are available from tutorial webpages (http://www. ebi.ac.uk/msd-srv/docs/roadshow_tutorial/).

  9. E-MSD: an integrated data resource for bioinformatics

    PubMed Central

    Golovin, A.; Oldfield, T. J.; Tate, J. G.; Velankar, S.; Barton, G. J.; Boutselakis, H.; Dimitropoulos, D.; Fillon, J.; Hussain, A.; Ionides, J. M. C.; John, M.; Keller, P. A.; Krissinel, E.; McNeil, P.; Naim, A.; Newman, R.; Pajon, A.; Pineda, J.; Rachedi, A.; Copeland, J.; Sitnov, A.; Sobhany, S.; Suarez-Uruena, A.; Swaminathan, G. J.; Tagari, M.; Tromm, S.; Vranken, W.; Henrick, K.

    2004-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the Protein Data Bank (PDB) and to work towards the integration of various bioinformatics data resources. We have implemented a simple form-based interface that allows users to query the MSD directly. The MSD ‘atlas pages’ show all of the information in the MSD for a particular PDB entry. The group has designed new search interfaces aimed at specific areas of interest, such as the environment of ligands and the secondary structures of proteins. We have also implemented a novel search interface that begins to integrate separate MSD search services in a single graphical tool. We have worked closely with collaborators to build a new visualization tool that can present both structure and sequence data in a unified interface, and this data viewer is now used throughout the MSD services for the visualization and presentation of search results. Examples showcasing the functionality and power of these tools are available from tutorial webpages (http://www.ebi.ac.uk/msd-srv/docs/roadshow_tutorial/). PMID:14681397

  10. Single-Molecule Tracking Photoactivated Localization Microscopy to Map Nano-Scale Structure and Dynamics in Living Spines

    PubMed Central

    MacGillavry, Harold D.; Blanpied, Thomas A.

    2013-01-01

    Super-resolution microscopy has rapidly become an indispensable tool in cell biology and neuroscience by enabling measurement in live cells of structures smaller than the classical limit imposed by diffraction. The most widely applied super-resolution method currently is localization microscopy, which takes advantage of the ability to determine the position of individual fluorescent molecules with nanometer accuracy even in cells. By iteratively measuring sparse subsets of photoactivatable fluorescent proteins, protein distribution in macromolecular structures can be accurately reconstructed. Moreover, the motion trajectories of individual molecules within cells can be measured, providing unique ability to measure transport kinetics, exchange rates, and binding affinities of even small subsets of molecules with high temporal resolution and great spatial specificity. This unit describes protocols to measure and quantify the distribution of scaffold proteins within single synapses of cultured hippocampal neurons, and to track and measure the diffusion of intracellular constituents of the neuronal plasma membrane. PMID:25429311

  11. Yeast Inner-Subunit PA-NZ-1 Labeling Strategy for Accurate Subunit Identification in a Macromolecular Complex through Cryo-EM Analysis.

    PubMed

    Wang, Huping; Han, Wenyu; Takagi, Junichi; Cong, Yao

    2018-05-11

    Cryo-electron microscopy (cryo-EM) has been established as one of the central tools in the structural study of macromolecular complexes. Although intermediate- or low-resolution structural information through negative staining or cryo-EM analysis remains highly valuable, we lack general and efficient ways to achieve unambiguous subunit identification in these applications. Here, we took advantage of the extremely high affinity between a dodecapeptide "PA" tag and the NZ-1 antibody Fab fragment to develop an efficient "yeast inner-subunit PA-NZ-1 labeling" strategy that when combined with cryo-EM could precisely identify subunits in macromolecular complexes. Using this strategy combined with cryo-EM 3D reconstruction, we were able to visualize the characteristic NZ-1 Fab density attached to the PA tag inserted into a surface-exposed loop in the middle of the sequence of CCT6 subunit present in the Saccharomyces cerevisiae group II chaperonin TRiC/CCT. This procedure facilitated the unambiguous localization of CCT6 in the TRiC complex. The PA tag was designed to contain only 12 amino acids and a tight turn configuration; when inserted into a loop, it usually has a high chance of maintaining the epitope structure and low likelihood of perturbing the native structure and function of the target protein compared to other tagging systems. We also found that the association between PA and NZ-1 can sustain the cryo freezing conditions, resulting in very high occupancy of the Fab in the final cryo-EM images. Our study demonstrated the robustness of this strategy combined with cryo-EM in efficient and accurate subunit identification in challenging multi-component complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Molecular nucleation mechanisms and control strategies for crystal polymorph selection.

    PubMed

    Van Driessche, Alexander E S; Van Gerven, Nani; Bomans, Paul H H; Joosten, Rick R M; Friedrich, Heiner; Gil-Carton, David; Sommerdijk, Nico A J M; Sleutel, Mike

    2018-04-04

    The formation of condensed (compacted) protein phases is associated with a wide range of human disorders, such as eye cataracts, amyotrophic lateral sclerosis, sickle cell anaemia and Alzheimer's disease. However, condensed protein phases have their uses: as crystals, they are harnessed by structural biologists to elucidate protein structures, or are used as delivery vehicles for pharmaceutical applications. The physiochemical properties of crystals can vary substantially between different forms or structures ('polymorphs') of the same macromolecule, and dictate their usability in a scientific or industrial context. To gain control over an emerging polymorph, one needs a molecular-level understanding of the pathways that lead to the various macroscopic states and of the mechanisms that govern pathway selection. However, it is still not clear how the embryonic seeds of a macromolecular phase are formed, or how these nuclei affect polymorph selection. Here we use time-resolved cryo-transmission electron microscopy to image the nucleation of crystals of the protein glucose isomerase, and to uncover at molecular resolution the nucleation pathways that lead to two crystalline states and one gelled state. We show that polymorph selection takes place at the earliest stages of structure formation and is based on specific building blocks for each space group. Moreover, we demonstrate control over the system by selectively forming desired polymorphs through site-directed mutagenesis, specifically tuning intermolecular bonding or gel seeding. Our results differ from the present picture of protein nucleation, in that we do not identify a metastable dense liquid as the precursor to the crystalline state. Rather, we observe nucleation events that are driven by oriented attachments between subcritical clusters that already exhibit a degree of crystallinity. These insights suggest ways of controlling macromolecular phase transitions, aiding the development of protein-based drug-delivery systems and macromolecular crystallography.

  13. Molecular nucleation mechanisms and control strategies for crystal polymorph selection

    NASA Astrophysics Data System (ADS)

    van Driessche, Alexander E. S.; van Gerven, Nani; Bomans, Paul H. H.; Joosten, Rick R. M.; Friedrich, Heiner; Gil-Carton, David; Sommerdijk, Nico A. J. M.; Sleutel, Mike

    2018-04-01

    The formation of condensed (compacted) protein phases is associated with a wide range of human disorders, such as eye cataracts, amyotrophic lateral sclerosis, sickle cell anaemia and Alzheimer’s disease. However, condensed protein phases have their uses: as crystals, they are harnessed by structural biologists to elucidate protein structures, or are used as delivery vehicles for pharmaceutical applications. The physiochemical properties of crystals can vary substantially between different forms or structures (‘polymorphs’) of the same macromolecule, and dictate their usability in a scientific or industrial context. To gain control over an emerging polymorph, one needs a molecular-level understanding of the pathways that lead to the various macroscopic states and of the mechanisms that govern pathway selection. However, it is still not clear how the embryonic seeds of a macromolecular phase are formed, or how these nuclei affect polymorph selection. Here we use time-resolved cryo-transmission electron microscopy to image the nucleation of crystals of the protein glucose isomerase, and to uncover at molecular resolution the nucleation pathways that lead to two crystalline states and one gelled state. We show that polymorph selection takes place at the earliest stages of structure formation and is based on specific building blocks for each space group. Moreover, we demonstrate control over the system by selectively forming desired polymorphs through site-directed mutagenesis, specifically tuning intermolecular bonding or gel seeding. Our results differ from the present picture of protein nucleation, in that we do not identify a metastable dense liquid as the precursor to the crystalline state. Rather, we observe nucleation events that are driven by oriented attachments between subcritical clusters that already exhibit a degree of crystallinity. These insights suggest ways of controlling macromolecular phase transitions, aiding the development of protein-based drug-delivery systems and macromolecular crystallography.

  14. Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ 13C of individual compounds

    NASA Astrophysics Data System (ADS)

    Sephton, M. A.; Pillinger, C. T.; Gilmour, I.

    2000-01-01

    Hydrous pyrolysis, supercritical fluid extraction (SFE), gas chromatography-mass-spectrometry (GC-MS) and isotope ratio monitoring-gas chromatography-mass spectrometry (irm-GC-MS) were used to investigate the constitution of macromolecular materials in meteorites. Results from the carbonaceous chondrites Orgueil (CI1) and Cold Bokkeveld (CM2) were compared with those obtained previously from Murchison (CM2). Fragments of meteoritic macromolecular materials were produced by hydrous pyrolysis, extracted by SFE, and identified by GC-MS. The CI1 and CM2 hydrous pyrolysates all contain volatile aromatic compounds, some of which have aliphatic side chains, hydroxyl groups, and thiophene rings attached. The results indicate that the macromolecular materials in these meteorites are qualitatively similar. However, the pyrolysates show significant quantitative differences, with the products of ether linkages and condensed aromatic networks being less abundant in the more aqueously altered meteorites. In addition, the methylnaphthalene maturity parameter negatively correlates with aqueous alteration. These features are interpreted as the result of chemical reactions favored under hydrous conditions. Hence, the extent of aqueous alteration on the meteorite parent body appears to be the most important evolutionary stage in determining the final structure of macromolecular materials in the CI1 and CM2 meteorites. The carbon isotopic compositions of the fragments of macromolecular materials were determined by irm-GC-MS. δ 13C values for the hydrous pyrolysis products range from -25.5 to -10.2‰ for Orgueil and -22.9 to +4.0‰ for Cold Bokkeveld. These values can be compared to the -24.6 to -5.6‰ range obtained previously for Murchison. The low molecular weight components in each hydrous pyrolysate display shifts to increased 13C contents with carbon number. This indicates the production of simple organic entities by the preferential cracking of 12C- 12C bonds in more complex starting materials. The shifts extend from C 7 to C 8 for Orgueil and Cold Bokkeveld but from C 7 to C 10 for Murchison. Higher molecular weight components for all of the hydrous pyrolysates show a general trend of decreasing 13C content with carbon number. The higher molecular weight features can be explained by the preferential addition of 12C during the primary synthesis of the macromolecular materials. In addition, δ 13C values for the methylnaphthalenes are consistent with the addition of 12C to the most reactive site on the naphthalene parent molecule providing supporting evidence for synthesis. Hence, the macromolecular materials are composed of organic units created by both synthesis and cracking. Therefore, secondary processing by liquid water on the meteorite parent body exerts a strong control on the final molecular architecture of meteoritic macromolecular materials. Yet, the carbon isotopic compositions of some individual moieties may retain a record of primary synthesis.

  15. Innovative NMR strategies for complex macromolecules

    USDA-ARS?s Scientific Manuscript database

    In recent years there has been an increasing research emphasis on complex macromolecular systems. These include polymers with precise control of structures, multicomponent systems with higher degrees of organization, polymers involved in micelles, interfaces, and confined environments, nanochemistr...

  16. How to tackle protein structural data from solution and solid state: An integrated approach.

    PubMed

    Carlon, Azzurra; Ravera, Enrico; Andrałojć, Witold; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio

    2016-02-01

    Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  18. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling

    NASA Astrophysics Data System (ADS)

    Plattner, Nuria; Doerr, Stefan; de Fabritiis, Gianni; Noé, Frank

    2017-10-01

    Protein-protein association is fundamental to many life processes. However, a microscopic model describing the structures and kinetics during association and dissociation is lacking on account of the long lifetimes of associated states, which have prevented efficient sampling by direct molecular dynamics (MD) simulations. Here we demonstrate protein-protein association and dissociation in atomistic resolution for the ribonuclease barnase and its inhibitor barstar by combining adaptive high-throughput MD simulations and hidden Markov modelling. The model reveals experimentally consistent intermediate structures, energetics and kinetics on timescales from microseconds to hours. A variety of flexibly attached intermediates and misbound states funnel down to a transition state and a native basin consisting of the loosely bound near-native state and the tightly bound crystallographic state. These results offer a deeper level of insight into macromolecular recognition and our approach opens the door for understanding and manipulating a wide range of macromolecular association processes.

  19. Macromolecular Crystallization with Microfluidic Free-Interface Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segelke, B

    2005-02-24

    Fluidigm released the Topaz 1.96 and 4.96 crystallization chips in the fall of 2004. Topaz 1.96 and 4.96 are the latest evolution of Fluidigm's microfluidics crystallization technologies that enable ultra low volume rapid screening for macromolecular crystallization. Topaz 1.96 and 4.96 are similar to each other but represent a major redesign of the Topaz system and have of substantially improved ease of automation and ease of use, improved efficiency and even further reduced amount of material needed. With the release of the new Topaz system, Fluidigm continues to set the standard in low volume crystallization screening which is having anmore » increasing impact in the field of structural genomics, and structural biology more generally. In to the future we are likely to see further optimization and increased utility of the Topaz crystallization system, but we are also likely to see further innovation and the emergence of competing technologies.« less

  20. Loukoumasomes Are Distinct Subcellular Structures from Rods and Rings and Are Structurally Associated with MAP2 and the Nuclear Envelope in Retinal Cells

    PubMed Central

    Noble, Jake W.; Hunter, Diana V.; Roskelley, Calvin D.; Chan, Edward K. L.; Mills, Julia

    2016-01-01

    “Rods and rings” (RR) and loukoumasomes are similarly shaped, subcellular macromolecular structures with as yet unknown function. RR, so named because of their shape, are formed in response to inhibition in the GTP or CTP synthetic pathways and are highly enriched in the two key enzymes of the nucleotide synthetic pathway. Loukoumasomes also occur as linear and toroidal bodies and were initially inferred to be the same as RR, largely due to their shared shape and size and the fact that it was unclear if they shared the same subcomponents. In human retinoblastoma tissue and cells we have observed toroidal, perinuclear, macromolecular structures of similar size and antigenicity to those previously reported in neurons (neuronal-loukoumasomes). To further characterize the subcomponents of the retinal-loukoumasomes, confocal analysis following immunocytochemical staining for alpha-tubulin, beta-III tubulin and detyrosinated tubulin was performed. These studies indicate that retinal-loukoumasomes are enriched for beta-III tubulin and other tubulins associated with microtubules. Immunofluorescence together with the in situ proximity ligation assay (PLA), confirmed that beta-III tubulin colocalized with detyrosinated tubulin within loukoumasomes. Our results indicate that these tissues contain only loukoumasomes because these macromolecular structures are immunoreactive with an anti-tubulin antibody but are not recognized by the prototype anti-RR/inosine monophosphate dehydrogenase (IMPDH) antibody (It2006). To further compare the RR and retinal-loukoumasomes, retinoblastoma cells were exposed to the IMPDH-inhibitor ribavirin, a drug known to induce the formation of RR. In contrast to RR, the production of retinal-loukoumasomes was unaffected. Coimmunostaining of Y79 cells for beta-III tubulin and IMPDH indicate that these cells, when treated with ribavirin, can contain both retinal-loukoumasomes and RR and that these structures are antigenically distinct. Subcellular fractionation studies indicate that ribavirin increased the RR subcomponent, IMPDH, in the nuclear fraction of Y79 cells from 21.3 ± 5.8% (0 mM ribavirin) to 122.8 ± 7.9% (1 mM ribavirin) while the subcellular localization of the retinal-loukoumasome subcomponent tubulin went unaltered. Further characterization of retinal-loukoumasomes in retinoblastoma cells reveals that they are intimately associated with lamin folds within the nuclear envelope. Using immunofluorescence and the in situ PLA in this cell type, we have observed colocalization of beta-III tubulin with MAP2. As MAP2 is a microtubule-associated protein implicated in microtubule crosslinking, this supports a role for microtubule crosslinkers in the formation of retinal-loukoumasomes. Together, these results suggest that loukoumasomes and RR are distinct subcellular macromolecular structures, formed by different cellular processes and that there are other loukoumasome-like structures within retinal tissues and cells. PMID:27798680

  1. Loukoumasomes Are Distinct Subcellular Structures from Rods and Rings and Are Structurally Associated with MAP2 and the Nuclear Envelope in Retinal Cells.

    PubMed

    Noble, Jake W; Hunter, Diana V; Roskelley, Calvin D; Chan, Edward K L; Mills, Julia

    2016-01-01

    "Rods and rings" (RR) and loukoumasomes are similarly shaped, subcellular macromolecular structures with as yet unknown function. RR, so named because of their shape, are formed in response to inhibition in the GTP or CTP synthetic pathways and are highly enriched in the two key enzymes of the nucleotide synthetic pathway. Loukoumasomes also occur as linear and toroidal bodies and were initially inferred to be the same as RR, largely due to their shared shape and size and the fact that it was unclear if they shared the same subcomponents. In human retinoblastoma tissue and cells we have observed toroidal, perinuclear, macromolecular structures of similar size and antigenicity to those previously reported in neurons (neuronal-loukoumasomes). To further characterize the subcomponents of the retinal-loukoumasomes, confocal analysis following immunocytochemical staining for alpha-tubulin, beta-III tubulin and detyrosinated tubulin was performed. These studies indicate that retinal-loukoumasomes are enriched for beta-III tubulin and other tubulins associated with microtubules. Immunofluorescence together with the in situ proximity ligation assay (PLA), confirmed that beta-III tubulin colocalized with detyrosinated tubulin within loukoumasomes. Our results indicate that these tissues contain only loukoumasomes because these macromolecular structures are immunoreactive with an anti-tubulin antibody but are not recognized by the prototype anti-RR/inosine monophosphate dehydrogenase (IMPDH) antibody (It2006). To further compare the RR and retinal-loukoumasomes, retinoblastoma cells were exposed to the IMPDH-inhibitor ribavirin, a drug known to induce the formation of RR. In contrast to RR, the production of retinal-loukoumasomes was unaffected. Coimmunostaining of Y79 cells for beta-III tubulin and IMPDH indicate that these cells, when treated with ribavirin, can contain both retinal-loukoumasomes and RR and that these structures are antigenically distinct. Subcellular fractionation studies indicate that ribavirin increased the RR subcomponent, IMPDH, in the nuclear fraction of Y79 cells from 21.3 ± 5.8% (0 mM ribavirin) to 122.8 ± 7.9% (1 mM ribavirin) while the subcellular localization of the retinal-loukoumasome subcomponent tubulin went unaltered. Further characterization of retinal-loukoumasomes in retinoblastoma cells reveals that they are intimately associated with lamin folds within the nuclear envelope. Using immunofluorescence and the in situ PLA in this cell type, we have observed colocalization of beta-III tubulin with MAP2. As MAP2 is a microtubule-associated protein implicated in microtubule crosslinking, this supports a role for microtubule crosslinkers in the formation of retinal-loukoumasomes. Together, these results suggest that loukoumasomes and RR are distinct subcellular macromolecular structures, formed by different cellular processes and that there are other loukoumasome-like structures within retinal tissues and cells.

  2. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    PubMed

    Iborra, Francisco J

    2007-04-12

    The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

  3. Protein crystal growth and the International Space Station

    NASA Technical Reports Server (NTRS)

    DeLucas, L. J.; Moore, K. M.; Long, M. M.

    1999-01-01

    Protein structural information plays a key role in understanding biological structure-function relationships and in the development of new pharmaceuticals for both chronic and infectious diseases. The Center for Macromolecular Crystallography (CMC) has devoted considerable effort studying the fundamental processes involved in macromolecular crystal growth both in a 1-g and microgravity environment. Results from experiments performed on more than 35 U.S. space shuttle flights have clearly indicated that microgravity can provide a beneficial environment for macromolecular crystal growth. This research has led to the development of a new generation of pharmaceuticals that are currently in preclinical or clinical trials for diseases such as cutaneous T-cell lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular complications. The International Space Station (ISS) provides an opportunity to have complete crystallographic capability on orbit, which was previously not possible with the space shuttle orbiter. As envisioned, the x-ray Crystallography Facility (XCF) will be a complete facility for growing protein crystals; selecting, harvesting, and mounting sample crystals for x-ray diffraction; cryo-freezing mounted crystals if necessary; performing x-ray diffraction studies; and downlinking the data for use by crystallographers on the ground. Other advantages of such a facility include crystal characterization so that iterations in the crystal growth conditions can be made, thereby optimizing the final crystals produced in a three month interval on the ISS.

  4. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGES

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  5. Preliminary neutron crystallographic analysis of selectively CH3-protonated, deuterated rubredoxin from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew

    2008-01-01

    Neutron crystallography is used to locate hydrogen atoms in biological materials and can distinguish between negatively scattering hydrogen and positively scattering deuterium substituted positions in isomorphous neutron structures. Recently, Hauptman and Langs (2003) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering hydrogen atoms in the structure. Selective labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of hydrogen to deuterium atoms can be precisely controlled. We have applied methyl-selective labeling protocols to introduce (1H-delta methyl)-leucinemore » and (1H-gamma methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here we report on the production, crystallization, and preliminary neutron analysis of the selectively CH3-protonated, deuterated PfRd sample, which provided a high quality neutron data set extending to 1.75 resolution at the new LADI-III instrument at the Insititut Laue-Langevin. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of hydrogen atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure.« less

  6. Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast

    PubMed Central

    Dong, Biqin; Almassalha, Luay M.; Stypula-Cyrus, Yolanda; Urban, Ben E.; Chandler, John E.; Nguyen, The-Quyen; Sun, Cheng; Zhang, Hao F.; Backman, Vadim

    2016-01-01

    Visualizing the nanoscale intracellular structures formed by nucleic acids, such as chromatin, in nonperturbed, structurally and dynamically complex cellular systems, will help expand our understanding of biological processes and open the next frontier for biological discovery. Traditional superresolution techniques to visualize subdiffractional macromolecular structures formed by nucleic acids require exogenous labels that may perturb cell function and change the very molecular processes they intend to study, especially at the extremely high label densities required for superresolution. However, despite tremendous interest and demonstrated need, label-free optical superresolution imaging of nucleotide topology under native nonperturbing conditions has never been possible. Here we investigate a photoswitching process of native nucleotides and present the demonstration of subdiffraction-resolution imaging of cellular structures using intrinsic contrast from unmodified DNA based on the principle of single-molecule photon localization microscopy (PLM). Using DNA-PLM, we achieved nanoscopic imaging of interphase nuclei and mitotic chromosomes, allowing a quantitative analysis of the DNA occupancy level and a subdiffractional analysis of the chromosomal organization. This study may pave a new way for label-free superresolution nanoscopic imaging of macromolecular structures with nucleotide topologies and could contribute to the development of new DNA-based contrast agents for superresolution imaging. PMID:27535934

  7. Yield and quality of pectins extractable from the peels of thai mango cultivars depending on fruit ripeness.

    PubMed

    Sirisakulwat, Suparat; Nagel, Andreas; Sruamsiri, Pittaya; Carle, Reinhold; Neidhart, Sybille

    2008-11-26

    Pectins, recovered from the peels of four mango ( Mangifera indica L.) cultivars by mimicking industrial techniques, were evaluated in terms of yield, composition, macromolecular properties, and technofunctional quality. Freeze-dried peels of mature-green fruits, after major mesocarp softening, and at full ripeness were extracted using hot acid. The pectins were precipitated in propan-2-ol and their crude yields quantified as alcohol-insoluble substance. Like apple pomace, the dried peels provided hardly acetylated (DAc < 6.3%) rapid-set to ultrarapid-set high-methoxyl pectins at starch-adjusted yields of 11-21 g/100 g. However, despite similar high molecular weight fractions and galacturonic acid/rhamnose ratios, their average molecular weight was markedly reduced by a characteristic, almost monodisperse fraction of 16000-19000. Expanded galactans, indicated by galactose/rhamnose ratios of 15-24 mol/mol, probably represented arabinogalactan side-chain fragments withstanding hot-acid extraction at pH 1.5 and 2.0, as implied by arabinose/galactose ratios of 8-15 and 33-56 mol/100 mol, respectively. Limited galacturonic acid contents made the mango peel pectins less valuable than commercial apple pectins with regard to gelling capacity and thickening properties. Whereas starch and matrix glycan fragments almost completely degraded during ripening, depolymerization of pectins and galactans was insignificant. Technofunctional properties, modulated by extraction at different pH values, were ascribed to structural differences influencing macromolecular entanglements.

  8. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    PubMed

    Mereghetti, Paolo; Wade, Rebecca C

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  9. The ID23-2 structural biology microfocus beamline at the ESRF

    PubMed Central

    Flot, David; Mairs, Trevor; Giraud, Thierry; Guijarro, Matias; Lesourd, Marc; Rey, Vicente; van Brussel, Denis; Morawe, Christian; Borel, Christine; Hignette, Olivier; Chavanne, Joel; Nurizzo, Didier; McSweeney, Sean; Mitchell, Edward

    2010-01-01

    The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick–Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation. PMID:20029119

  10. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting.

    PubMed

    Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H

    2014-08-01

    In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection.

  11. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting

    PubMed Central

    Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H.

    2014-01-01

    In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection. PMID:25084331

  12. Efficient minimization of multipole electrostatic potentials in torsion space

    PubMed Central

    Bodmer, Nicholas K.

    2018-01-01

    The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom. PMID:29641557

  13. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature.

    PubMed

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-06

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  14. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  15. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    PubMed Central

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography. PMID:27150272

  16. Structural Analysis of the Synaptic Protein Neuroligin and Its β-Neurexin Complex: Determinants for Folding and Cell Adhesion

    PubMed Central

    Fabrichny, Igor P.; Leone, Philippe; Sulzenbacher, Gerlind; Comoletti, Davide; Miller, Meghan T.; Taylor, Palmer; Bourne, Yves; Marchot, Pascale

    2009-01-01

    SUMMARY The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a β-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an α/β-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism. PMID:18093521

  17. X-ray crystallography over the past decade for novel drug discovery – where are we heading next?

    PubMed Central

    Zheng, Heping; Handing, Katarzyna B; Zimmerman, Matthew D; Shabalin, Ivan G; Almo, Steven C; Minor, Wladek

    2015-01-01

    Introduction Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. Areas covered This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. Expert opinion X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible. PMID:26177814

  18. Ground Based Program for the Physical Analysis of Macromolecular Crystal Growth

    NASA Technical Reports Server (NTRS)

    Malkin, Alexander J.

    1998-01-01

    During the past year we have focused on application of in situ Atomic Force Microscopy (AFM) for studies of the growth mechanisms and kinetics of crystallization for different macromolecular systems. Mechanisms of macrostep formation and their decay, which are important in understanding of defect formation, were studied on the surfaces of thaumatin, catalase, canavalin and lysozyme crystals. Experiments revealed that step bunching on crystalline surfaces occurred either due to two- or three-dimensional nucleation on the terraces of vicinal slopes or as a result of uneven step generation by complex dislocation sources. No step bunching arising from interaction of individual steps in the course of the experiment was observed. The molecular structure of the growth steps for thaumatin and lipase crystals were deduced. It was further shown that growth step advance occurs by incorporation of single protein molecules. In singular directions growth steps move by one-dimensional nucleation on step edges followed by lateral growth. One-dimensional nuclei have different sizes, less then a single unit cell, varying for different directions of step movement. There is no roughness due to thermal fluctuations, and each protein molecule which incorporated into the step remained. Growth kinetics for catalase crystals was investigated over wide supersaturation ranges. Strong directional kinetic anisotropy in the tangential step growth rates in different directions was seen. The influence of impurities on growth kinetics and cessation of macromolecular crystals was studied. Thus, for catalase, in addition to pronounced impurity effects on the kinetics of crystallization, we were also able to directly observe adsorption of some impurities. At low supersaturation we repeatedly observed filaments which formed from impurity molecules sedimenting on the surfaces. Similar filaments were observed on the surfaces of thaumatin, canavalin and STMV crystals as well, but the frequency was low compared with catalase crystallization. Cessation of growth of xylanase and lysozyme crystals was also observed and appeared to be a consequence of the formation of dense impurity adsorption layers. Attachment: "An in situ AFM investigation of catalase crystallization", "Atomic force microscopy studies of living cells: visualization of motility, division, aggregation, transformation, and apoptosis", AFM studies on mechanisms of nucleation and growth of macromolecular crystals", and "In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization".

  19. Development of macromolecular prodrug for rheumatoid arthritis☆

    PubMed Central

    Yuan, Fang; Quan, Ling-dong; Cui, Liao; Goldring, Steven R.; Wang, Dong

    2012-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that is considered to be one of the major public health problems worldwide. The development of therapies that target tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and co-stimulatory pathways that regulate the immune system have revolutionized the care of patients with RA. Despite these advances, many patients continue to experience symptomatic and functional impairment. To address this issue, more recent therapies that have been developed are designed to target intracellular signaling pathways involved in immunoregulation. Though this approach has been encouraging, there have been major challenges with respect to off-target organ side effects and systemic toxicities related to the widespread distribution of these signaling pathways in multiple cell types and tissues. These limitations have led to an increasing interest in the development of strategies for the macromolecularization of anti-rheumatic drugs, which could target them to the inflamed joints. This approach enhances the efficacy of the therapeutic agent with respect to synovial inflammation, while markedly reducing non-target organ adverse side effects. In this manuscript, we provide a comprehensive overview of the rational design and optimization of macromolecular prodrugs for treatment of RA. The superior and the sustained efficacy of the prodrug may be partially attributed to their Extravasation through Leaky Vasculature and subsequent Inflammatory cell-mediated Sequestration (ELVIS) in the arthritic joints. This biologic process provides a plausible mechanism, by which macromolecular prodrugs preferentially target arthritic joints and illustrates the potential benefits of applying this therapeutic strategy to the treatment of other inflammatory diseases. PMID:22433784

  20. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  1. Variability in Phytoplankton Morphology and Macromolecular Composition With Nutrient Starvation and The Implications for Oceanic Elemental Stoichiometry

    NASA Astrophysics Data System (ADS)

    Liefer, J. D.; Benner, I.; Brown, C. M.; Garg, A.; Fiset, C.; Irwin, A. J.; Follows, M. J.; Finkel, Z.

    2016-02-01

    Trait based modeling efforts are an important tool for predicting the distribution of phytoplankton communities in the ocean and their interaction with elemental stoichiometry. The elemental stoichiometry of phytoplankton is based on their macromolecular composition. Many phytoplankton species accumulate C-rich storage products (carbohydrates and lipids) and reduce N and P-rich functional components (proteins and nucleic acids) upon N- or P-starvation. Reconciling global patterns in C:N:P stoichiometry and phytoplankton community structure and succession requires a better understanding of how phytoplankton macromolecular composition varies across taxa, size class, and growth conditions. We examined changes in cell size and composition from exponential growth to nitrogen starvation in four common phytoplankton species representing two size classes each of chlorophytes and diatoms. Variation in cell size, cell mass, and length of stationary growth phase appeared to be size dependent. The larger species of chlorophyte and diatom had a significant increase in cell mass and cell size with N-starvation and showed no significant change in cell density after starvation for 5-7 days. The smaller size species of both phyla showed no significant change in cell size or mass upon N-starvation and a consistent decline in cell density 1-2 days after peak densities were reached. All species had a similar significant increase in C quota, but changes in N quota and C:N were more variable and species-specific. We also present changes in macromolecular composition and C, N, and P-allocation due to N-starvation and their implications for elemental stoichiometry under natural conditions. These results are compared to field observations of C:N:P stoichiometry and phytoplankton community structure to examine the physiological plasticity that may underlie global oceanic C:N:P variability and demonstrate the importance of this plasticity in trait based models.

  2. E-MSD: an integrated data resource for bioinformatics.

    PubMed

    Velankar, S; McNeil, P; Mittard-Runte, V; Suarez, A; Barrell, D; Apweiler, R; Henrick, K

    2005-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the worldwide Protein Data Bank (wwPDB) and to work towards the integration of various bioinformatics data resources. One of the major obstacles to the improved integration of structural databases such as MSD and sequence databases like UniProt is the absence of up to date and well-maintained mapping between corresponding entries. We have worked closely with the UniProt group at the EBI to clean up the taxonomy and sequence cross-reference information in the MSD and UniProt databases. This information is vital for the reliable integration of the sequence family databases such as Pfam and Interpro with the structure-oriented databases of SCOP and CATH. This information has been made available to the eFamily group (http://www.efamily.org.uk/) and now forms the basis of the regular interchange of information between the member databases (MSD, UniProt, Pfam, Interpro, SCOP and CATH). This exchange of annotation information has enriched the structural information in the MSD database with annotation from wider sequence-oriented resources. This work was carried out under the 'Structure Integration with Function, Taxonomy and Sequences (SIFTS)' initiative (http://www.ebi.ac.uk/msd-srv/docs/sifts) in the MSD group.

  3. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE PAGES

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  4. Electrostatic, elastic and hydration-dependent interactions in dermis influencing volume exclusion and macromolecular transport.

    PubMed

    Øien, Alf H; Wiig, Helge

    2016-07-07

    Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The role of the extracellular matrix in tissue distribution of macromolecules in normal and pathological tissues: potential therapeutic consequences.

    PubMed

    Wiig, Helge; Gyenge, Christina; Iversen, Per Ole; Gullberg, Donald; Tenstad, Olav

    2008-05-01

    The interstitial space is a dynamic microenvironment that consists of interstitial fluid and structural molecules of the extracellular matrix, such as glycosaminoglycans (hyaluronan and proteoglycans) and collagen. Macromolecules can distribute in the interstitium only in those spaces unoccupied by structural components, a phenomenon called interstitial exclusion. The exclusion phenomenon has direct consequences for plasma volume regulation. Early studies have assigned a major role to collagen as an excluding agent that accounts for the sterical (geometrical) exclusion. More recently, it has been shown that the contribution of negatively charged glycosaminoglycans might also be significant, resulting in an additional electrostatical exclusion effect. This charge effect may be of importance for drug uptake and suggests that either the glycosaminoglycans or the net charge of macromolecular substances to be delivered may be targeted to increase the available volume and uptake of macromolecular therapeutic agents in tumor tissue. Here, we provide an overview of the structural components of the interstitium and discuss the importance the sterical and electrostatical components have on the dynamics of transcapillary fluid exchange.

  6. Identification of Characteristic Macromolecules of Escherichia coli Genotypes by Atomic Force Microscope Nanoscale Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Chang, Alice Chinghsuan; Liu, Bernard Haochih

    2018-02-01

    The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.

  7. The importance of trace element speciation in biomedical science.

    PubMed

    Templeton, Douglas M

    2003-04-01

    According to IUPAC terminology, trace element speciation reflects differences in chemical composition at multiple levels from nuclear and electronic structure to macromolecular complexation. In the medical sciences, all levels of composition are important in various circumstances, and each can affect the bioavailability, distribution, physiological function, toxicity, diagnostic utility, and therapeutic potential of an element. Here we discuss, with specific examples, three biological principles in the intimate relation between speciation and biological behavior: i) the kinetics of interconversion of species determines distribution within the organism, ii) speciation governs transport across various biological barriers, and iii) speciation can limit potentially undesirable interactions between physiologically essential elements. We will also describe differences in the speciation of iron in states of iron overload, to illustrate how speciation analysis can provide insight into cellular processes in human disease.

  8. Modulation of electronic structures of bases through DNA recognition of protein.

    PubMed

    Hagiwara, Yohsuke; Kino, Hiori; Tateno, Masaru

    2010-04-21

    The effects of environmental structures on the electronic states of functional regions in a fully solvated DNA·protein complex were investigated using combined ab initio quantum mechanics/molecular mechanics calculations. A complex of a transcriptional factor, PU.1, and the target DNA was used for the calculations. The effects of solvent on the energies of molecular orbitals (MOs) of some DNA bases strongly correlate with the magnitude of masking of the DNA bases from the solvent by the protein. In the complex, PU.1 causes a variation in the magnitude among DNA bases by means of directly recognizing the DNA bases through hydrogen bonds and inducing structural changes of the DNA structure from the canonical one. Thus, the strong correlation found in this study is the first evidence showing the close quantitative relationship between recognition modes of DNA bases and the energy levels of the corresponding MOs. Thus, it has been revealed that the electronic state of each base is highly regulated and organized by the DNA recognition of the protein. Other biological macromolecular systems can be expected to also possess similar modulation mechanisms, suggesting that this finding provides a novel basis for the understanding for the regulation functions of biological macromolecular systems.

  9. Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms

    PubMed Central

    Xu, Min; Chai, Xiaoqi; Muthakana, Hariank; Liang, Xiaodan; Yang, Ge; Zeev-Ben-Mordehai, Tzviya; Xing, Eric P.

    2017-01-01

    Abstract Motivation: Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic de novo discovery of structures within cells challenging. It would likely require averaging and classifying millions of subtomograms potentially containing hundreds of highly heterogeneous structural classes. Although it is no longer difficult to acquire CECT data containing such amount of subtomograms due to advances in data acquisition automation, existing computational approaches have very limited scalability or discrimination ability, making them incapable of processing such amount of data. Results: To complement existing approaches, in this article we propose a new approach for subdividing subtomograms into smaller but relatively homogeneous subsets. The structures in these subsets can then be separately recovered using existing computation intensive methods. Our approach is based on supervised structural feature extraction using deep learning, in combination with unsupervised clustering and reference-free classification. Our experiments show that, compared with existing unsupervised rotation invariant feature and pose-normalization based approaches, our new approach achieves significant improvements in both discrimination ability and scalability. More importantly, our new approach is able to discover new structural classes and recover structures that do not exist in training data. Availability and Implementation: Source code freely available at http://www.cs.cmu.edu/∼mxu1/software. Contact: mxu1@cs.cmu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881965

  10. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments.

  11. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments. PMID:21525648

  12. pH-directed self-assembling helical peptide conformation

    USDA-ARS?s Scientific Manuscript database

    The beta-sheet and alpha-helix peptide conformation are two of the most fundamentally ordered secondary structures found in proteins and peptides. They also give rise to self-assembling motifs that form macromolecular channels and nanostructures. Through design these conformations can yield enhance...

  13. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  14. Some Fundamental Molecular Mechanisms of Contractility in Fibrous Macromolecules

    PubMed Central

    Mandelkern, L.

    1967-01-01

    The fundamental molecular mechanisms of contractility and tension development in fibrous macromolecules are developed from the point of view of the principles of polymer physical chemistry. The problem is treated in a general manner to encompass the behavior of all macromolecular systems irrespective of their detailed chemical structure and particular function, if any. Primary attention is given to the contractile process which accompanies the crystal-liquid transition in axially oriented macromolecular systems. The theoretical nature of the process is discussed, and many experimental examples are given from the literature which demonstrate the expected behavior. Experimental attention is focused on the contraction of fibrous proteins, and the same underlying molecular mechanism is shown to be operative for a variety of different systems. PMID:6050598

  15. The Story of Nanomaterials in Modern Technology: An Advanced Course for Chemistry Teachers

    ERIC Educational Resources Information Center

    Blonder, Ron

    2011-01-01

    Nanoscience is an important new field in modern science. It deals with the ability to create materials, devices, and systems having fundamentally new properties and functions by working at the atomic, molecular, and macromolecular levels. Many teachers in the educational system have relatively limited knowledge related to nanochemistry and…

  16. Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties.

    PubMed

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Gidley, Michael J

    2014-01-22

    After heating in excess water under little or no shear, starch granules do not dissolve completely but persist as highly swollen fragile forms, commonly termed granule "ghosts". The macromolecular architecture of these ghosts has not been defined, despite their importance in determining characteristic properties of starches. In this study, amylase digestion of isolated granule ghosts from maize and potato starches is used as a probe to study the mechanism of ghost formation, through microstructural, mesoscopic, and molecular scale analyses of structure before and after digestion. Digestion profiles showed that neither integral nor surface proteins/lipids were crucial for control of either ghost digestion or integrity. On the basis of the molecular composition and conformation of enzyme-resistant fractions, it was concluded that the condensed polymeric surface structure of ghost particles is mainly composed of nonordered but entangled amylopectin (and some amylose) molecules, with limited reinforcement through partially ordered enzyme-resistant structures based on amylose (for maize starch; V-type order) or amylopectin (for potato starch; B-type order). The high level of branching and large molecular size of amylopectin is proposed to be the origin for the unusual stability of a solid structure based primarily on temporary entanglements.

  17. FitEM2EM—Tools for Low Resolution Study of Macromolecular Assembly and Dynamics

    PubMed Central

    Frankenstein, Ziv; Sperling, Joseph; Sperling, Ruth; Eisenstein, Miriam

    2008-01-01

    Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching) and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top. PMID:18974836

  18. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes.

    PubMed

    Luijsterburg, Martijn S; White, Malcolm F; van Driel, Roel; Dame, Remus Th

    2008-01-01

    The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.

  19. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    PubMed

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Vibroacoustic processes and structural variations in muscular tissue

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Klochkov, B. N.; Kovaleva, E. P.

    1995-03-01

    This paper reviews the problems and results obtained in the course of experimental and theoretical investigations of the vibroacoustic activity of contracting muscles. Two types of such processes are examined: (1) acoustic vibrations due to the macromolecular recombinations of muscle proteins, which are responsible for the muscle contraction, and (2) acoustic vibrations associated with the finite accuracy and speed of the receptor-effector system that controls the muscle contraction. By investigating the acoustic vibrations, we examine structural recombinations (conformation variations) in macromolecules during mechanochemical reactions. Since chemical reactions of macromolecules are always accompanied by conformational recombinations, the generation mechanism, which is responsible for the contraction processes in a muscular tissue, can also be extended to other macromolecular media. Investigation of infrasound vibrations makes it possible to explore the quality and error of control for the processes in the muscle under different types of loading. Since a living body is controlled via perceptions, the latter can be quantitatively estimated by the parametess of infrasound vibrations.

  1. Dual-Porosity Hollow Nanoparticles for the Immunoprotection and Delivery of Nonhuman Enzymes

    PubMed Central

    2015-01-01

    Although enzymes of nonhuman origin have been studied for a variety of therapeutic and diagnostic applications, their use has been limited by the immune responses generated against them. The described dual-porosity hollow nanoparticle platform obviates immune attack on nonhuman enzymes paving the way to in vivo applications including enzyme-prodrug therapies and enzymatic depletion of tumor nutrients. This platform is manufactured with a versatile, scalable, and robust fabrication method. It efficiently encapsulates macromolecular cargos filled through mesopores into a hollow interior, shielding them from antibodies and proteases once the mesopores are sealed with nanoporous material. The nanoporous shell allows small molecule diffusion allowing interaction with the large macromolecular payload in the hollow center. The approach has been validated in vivo using l-asparaginase to achieve l-asparagine depletion in the presence of neutralizing antibodies. PMID:24471767

  2. Macromolecular systems for vaccine delivery.

    PubMed

    MuŽíková, G; Laga, R

    2016-10-20

    Vaccines have helped considerably in eliminating some life-threatening infectious diseases in past two hundred years. Recently, human medicine has focused on vaccination against some of the world's most common infectious diseases (AIDS, malaria, tuberculosis, etc.), and vaccination is also gaining popularity in the treatment of cancer or autoimmune diseases. The major limitation of current vaccines lies in their poor ability to generate a sufficient level of protective antibodies and T cell responses against diseases such as HIV, malaria, tuberculosis and cancers. Among the promising vaccination systems that could improve the potency of weakly immunogenic vaccines belong macromolecular carriers (water soluble polymers, polymer particels, micelles, gels etc.) conjugated with antigens and immunistumulatory molecules. The size, architecture, and the composition of the high molecular-weight carrier can significantly improve the vaccine efficiency. This review includes the most recently developed (bio)polymer-based vaccines reported in the literature.

  3. Reciprocal Space Mapping of Macromolecular Crystals in the Home Laboratory

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Fewster, P. F.; Andrew, Norman; Boggon, T. J.; Judge, Russell A.; Pusey, Marc A.

    1999-01-01

    Reciprocal space mapping techniques are used widely by the materials science community to provide physical information about their crystal samples. We have used similar methods at synchrotron sources to look at the quality of macromolecular crystals produced both on the ground and under microgravity conditions. The limited nature of synchrotron time has led us to explore the use of a high resolution materials research diffractometer to perform similar measurements in the home laboratory. Although the available intensity is much reduced due to the beam conditioning necessary for high reciprocal space resolution, lower resolution data can be collected in the same detail as the synchrotron source. Experiments can be optimized at home to make most benefit from the synchrotron time available. Preliminary results including information on the mosaicity and the internal strains from reciprocal space maps will be presented.

  4. Synthesis and Characterization of Bioactive Tamoxifen-conjugated Polymers

    PubMed Central

    Rickert, Emily L.; Trebley, Joseph P.; Peterson, Anton C.; Morrell, Melinda M.; Weatherman, Ross V.

    2008-01-01

    Macromolecular conjugates of tamoxifen could perhaps be used to circumvent some of the limitations of the extensively used breast cancer drug. To test the feasibility of these conjugates, a 4-hydroxytamoxifen analog was conjugated to a diaminoalkyl linker and then conjugated to activated esters of a poly(methacrylic acid) polymer synthesized by atom transfer radical polymerization. A polymer conjugated to the 4-hydroxytamoxifen analog with a six carbon linker showed high affinity for both estrogen receptor alpha and estrogen receptor beta and potent antagonism of the estrogen receptor in cell-based transcriptional reporter assays. These results suggest that the conjugation of 4-hydroxytamoxifen to a polymer results in a macromolecular conjugate that can display ligand in a manner that can be recognized by estrogen receptor and still act as a potent antiestrogen in cells. PMID:17929966

  5. Macromolecular beta-adrenergic antagonists discriminating between receptor and antibody.

    PubMed Central

    Pitha, J; Zjawiony, J; Lefkowitz, R J; Caron, M G

    1980-01-01

    The beta-adrenergic antagonist, alprenolol, was attached in an irreversible manner to macromolecular dextran via side arms that differed in length. The ability of these macromolecules to bind to the beta-adrenergic receptor of frog erythrocytes and to catecholamine-binding antibodies raised against partially purified receptors was studied. Compared to the parent drug the potency of binding of macromolecular alprenolol to the receptor decreased about 1/10, 1/600, and 1/8000 when the length of the arm separating alprenolol from the dextran moiety was 13, 8, and 4 atoms, respectively. In contrast, the binding potencies of the parent drug and of all its macromolecular derivatives for the antibody were within the same order of magnitude. Thus, conversion of a drug to a macromolecular form may not only sustain its binding activity but may also lead in a higher selectivity. The macromolecular derivatives described here may be suitable probes for investigation of the location and of the molecular properties of the binding sites for beta-adrenergic drugs. PMID:6154947

  6. Using more than 801 296 small-molecule crystal structures to aid in protein structure refinement and analysis

    PubMed Central

    Cole, Jason C.

    2017-01-01

    The Cambridge Structural Database (CSD) is the worldwide resource for the dissemination of all published three-dimensional structures of small-molecule organic and metal–organic compounds. This paper briefly describes how this collection of crystal structures can be used en masse in the context of macromolecular crystallography. Examples highlight how the CSD and associated software aid protein–ligand complex validation, and show how the CSD could be further used in the generation of geometrical restraints for protein structure refinement. PMID:28291758

  7. Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.

    PubMed

    Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D

    2017-04-01

    Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Nigel W.; Draizen, Eli J.; Adams, Paul D.

    Chemical restraints for use in macromolecular structure refinement are produced by a variety of methods, including a number of programs that use chemical information to generate the required bond, angle, dihedral, chiral and planar restraints. These programs help to automate the process and therefore minimize the errors that could otherwise occur if it were performed manually. Furthermore, restraint-dictionary generation programs can incorporate chemical and other prior knowledge to provide reasonable choices of types and values. However, the use of restraints to define the geometry of a molecule is an approximation introduced with efficiency in mind. The representation of a bondmore » as a parabolic function is a convenience and does not reflect the true variability in even the simplest of molecules. Another complicating factor is the interplay of the molecule with other parts of the macromolecular model. Finally, difficult situations arise from molecules with rare or unusual moieties that may not have their conformational space fully explored. These factors give rise to the need for an interactive editor for WYSIWYG interactions with the restraints and molecule. Restraints Editor, Especially Ligands (REEL) is a graphical user interface for simple and error-free editing along with additional features to provide greater control of the restraint dictionaries in macromolecular refinement.« less

  9. AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory

    NASA Astrophysics Data System (ADS)

    Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi

    2010-06-01

    Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.

  10. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions.

  11. Countering Solutal Buoyant Convection with High Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemist, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitant, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity, we have been able to dramatically effect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the current status of the investigation and discuss results from the experimental and modeling efforts.

  12. Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels.

    PubMed

    Li, Panpan; Jin, Zhaoyu; Peng, Lele; Zhao, Fei; Xiao, Dan; Jin, Yong; Yu, Guihua

    2018-05-01

    Nanostructured conductive polymer hydrogels (CPHs) have been extensively applied in energy storage owing to their advantageous features, such as excellent electrochemical activity and relatively high electrical conductivity, yet the fabrication of self-standing and flexible electrode-based CPHs is still hampered by their limited mechanical properties. Herein, macromolecularly interconnected 3D graphene/nanostructured CPH is synthesized via self-assembly of CPHs and graphene oxide macrostructures. The 3D hybrid hydrogel shows uniform interconnectivity and enhanced mechanical properties due to the strong macromolecular interaction between the CPHs and graphene, thus greatly reducing aggregation in the fiber-shaping process. A proof-of-concept all-gel-state fibrous supercapacitor based on the 3D polyaniline/graphene hydrogel is fabricated to demonstrate the outstanding flexibility and mouldability, as well as superior electrochemical properties enabled by this 3D hybrid hydrogel design. The proposed device can achieve a large strain (up to ≈40%), and deliver a remarkable volumetric energy density of 8.80 mWh cm -3 (at power density of 30.77 mW cm -3 ), outperforming many fiber-shaped supercapacitors reported previously. The all-hydrogel design opens up opportunities in the fabrication of next-generation wearable and portable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William

    2015-02-01

    Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  14. Measuring Equilibrium Binding Affinity of Biological Macromolecules in Solution by Thermophoresis

    DTIC Science & Technology

    2015-05-18

    SECURITY CLASSIFICATION OF: The primary research focus of the San Diego State University (SDSU) Structural Biochemistry Laboratory led by Dr. Tom...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Biochemistry , Biophysics, Fluorescence, IkappaB Kinase...University (SDSU) Structural Biochemistry Laboratory led by Dr. Tom Huxford is to understand how the assembly of macromolecular complexes gives rise

  15. Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance

    PubMed Central

    Dongsheng, Liu; Xu, Rong; Cowburn, David

    2009-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474

  16. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry

    PubMed Central

    Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.

    2012-01-01

    Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377

  17. Structural and functional changes in acute liver injury.

    PubMed

    Smuckler, E A

    1976-06-01

    Carbon tetrachloride produces liver cell injury in a variety of animal species. The first structurally recognizable changes occur in the endoplasmic reticulum, with alteration in ribosome-membrane interactions. Later there is an increase in intracellular fat, and the formation of tangled nets of the ergastoplasm. At no time are there changes in mitochondria or single membrane limited bodies in cells with intact plasmalemma, although a relative increase in cell sap may appear. In dead cells (those with plasmalemma discontinuties) crystalline deposits of calcium phosphatase may be noted. Functional changes are related to the endoplasmic reticulum and the plasma membrane. An early decrease in protein synthesis takes place; an accumulation of neutral lipid is related to this change. Later alterations in the ergastoplasmic functions (e.g., mixed function oxidation) occurs. Carbon tetrachloride is not the active agent; rather, a product of its metabolism, probably the CC1, free radical, is. The mechanisms of injury include macromolecular adduction and peroxide propagation. A third possibility includes a cascade effect with the production of secondary and tertiary products, also toxic in nature, with the ability to produce more widespread damage to intracellular structures.

  18. Simbios: an NIH national center for physics-based simulation of biological structures.

    PubMed

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A; Altman, Russ B

    2012-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.

  19. Simbios: an NIH national center for physics-based simulation of biological structures

    PubMed Central

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A

    2011-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations. PMID:22081222

  20. The Emerging Field of Nanotechnology

    ERIC Educational Resources Information Center

    Sabulski, Charles P.

    2004-01-01

    Nanotechnology refers to the research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1-100 nanometer range, that provides a fundamental understanding of phenomena and materials at the nanoscale and creates and use structures, devices, and systems that have novel properties and…

  1. Sequential recovery of macromolecular components of the nucleolus.

    PubMed

    Bai, Baoyan; Laiho, Marikki

    2015-01-01

    The nucleolus is involved in a number of cellular processes of importance to cell physiology and pathology, including cell stress responses and malignancies. Studies of macromolecular composition of the nucleolus depend critically on the efficient extraction and accurate quantification of all macromolecular components (e.g., DNA, RNA, and protein). We have developed a TRIzol-based method that efficiently and simultaneously isolates these three macromolecular constituents from the same sample of purified nucleoli. The recovered and solubilized protein can be accurately quantified by the bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis or by mass spectrometry. We have successfully applied this approach to extract and quantify the responses of all three macromolecular components in nucleoli after drug treatments of HeLa cells, and conducted RNA-Seq analysis of the nucleolar RNA.

  2. E-MSD: an integrated data resource for bioinformatics

    PubMed Central

    Velankar, S.; McNeil, P.; Mittard-Runte, V.; Suarez, A.; Barrell, D.; Apweiler, R.; Henrick, K.

    2005-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the worldwide Protein Data Bank (wwPDB) and to work towards the integration of various bioinformatics data resources. One of the major obstacles to the improved integration of structural databases such as MSD and sequence databases like UniProt is the absence of up to date and well-maintained mapping between corresponding entries. We have worked closely with the UniProt group at the EBI to clean up the taxonomy and sequence cross-reference information in the MSD and UniProt databases. This information is vital for the reliable integration of the sequence family databases such as Pfam and Interpro with the structure-oriented databases of SCOP and CATH. This information has been made available to the eFamily group (http://www.efamily.org.uk/) and now forms the basis of the regular interchange of information between the member databases (MSD, UniProt, Pfam, Interpro, SCOP and CATH). This exchange of annotation information has enriched the structural information in the MSD database with annotation from wider sequence-oriented resources. This work was carried out under the ‘Structure Integration with Function, Taxonomy and Sequences (SIFTS)’ initiative (http://www.ebi.ac.uk/msd-srv/docs/sifts) in the MSD group. PMID:15608192

  3. Synthesis of Amino Acid Precursors with Organic Solids in Planetesimals with Liquid Water

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y; Misawa, S.; Matsukuma, J.; Chan, Q. H. S.; Kobayashi, J.; Tachibana, S.; Zolensky, M. E.

    2017-01-01

    Amino acids are important ingredients of life that would have been delivered to Earth by extraterrestrial sources, e.g., comets and meteorites. Amino acids are found in aqueously altered carbonaceous chondrites in good part in the form of precursors that release amino acids after acid hydrolysis. Meanwhile, most of the organic carbon (greater than 70 weight %) in carbonaceous chondrites exists in the form of solvent insoluble organic matter (IOM) with complex macromolecular structures. Complex macromolecular organic matter can be produced by either photolysis of interstellar ices or aqueous chemistry in planetesimals. We focused on the synthesis of amino acids during aqueous alteration, and demonstrated one-pot synthesis of a complex suite of amino acids simultaneously with IOM via hydrothermal experiments simulating the aqueous processing

  4. Large-volume protein crystal growth for neutron macromolecular crystallography.

    PubMed

    Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay

    2015-04-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  5. From non-random molecular structure to life and mind

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1989-01-01

    The evolutionary hierarchy molecular structure-->macromolecular structure-->protobiological structure-->biological structure-->biological functions has been traced by experiments. The sequence always moves through protein. Extension of the experiments traces the formation of nucleic acids instructed by proteins. The proteins themselves were, in this picture, instructed by the self-sequencing of precursor amino acids. While the sequence indicated explains the thread of the emergence of life, protein in cellular membrane also provides the only known material basis for the emergence of mind in the context of emergence of life.

  6. Reproducing the Ensemble Average Polar Solvation Energy of a Protein from a Single Structure: Gaussian-Based Smooth Dielectric Function for Macromolecular Modeling.

    PubMed

    Chakravorty, Arghya; Jia, Zhe; Li, Lin; Zhao, Shan; Alexov, Emil

    2018-02-13

    Typically, the ensemble average polar component of solvation energy (ΔG polar solv ) of a macromolecule is computed using molecular dynamics (MD) or Monte Carlo (MC) simulations to generate conformational ensemble and then single/rigid conformation solvation energy calculation is performed on each snapshot. The primary objective of this work is to demonstrate that Poisson-Boltzmann (PB)-based approach using a Gaussian-based smooth dielectric function for macromolecular modeling previously developed by us (Li et al. J. Chem. Theory Comput. 2013, 9 (4), 2126-2136) can reproduce that ensemble average (ΔG polar solv ) of a protein from a single structure. We show that the Gaussian-based dielectric model reproduces the ensemble average ΔG polar solv (⟨ΔG polar solv ⟩) from an energy-minimized structure of a protein regardless of the minimization environment (structure minimized in vacuo, implicit or explicit waters, or crystal structure); the best case, however, is when it is paired with an in vacuo-minimized structure. In other minimization environments (implicit or explicit waters or crystal structure), the traditional two-dielectric model can still be selected with which the model produces correct solvation energies. Our observations from this work reflect how the ability to appropriately mimic the motion of residues, especially the salt bridge residues, influences a dielectric model's ability to reproduce the ensemble average value of polar solvation free energy from a single in vacuo-minimized structure.

  7. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    PubMed Central

    Laine, Romain F; Kaminski Schierle, Gabriele S; van de Linde, Sebastian; Kaminski, Clemens F

    2016-01-01

    Abstract For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research. PMID:28809165

  8. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined.

  9. Microgravity

    NASA Image and Video Library

    1998-06-16

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  10. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  11. Synthesis and Characterization of Composite Membranes made of Graphene and Polymers of Intrinsic Microporosity

    DTIC Science & Technology

    2016-02-16

    group of polymers with molecular sieve behaviour due to their rigid, contorted macromolecular backbones. They show great potential in organophilic...ageing is expected by adding graphene as a nanofiller. Little is experimentally known about how the material disperses in the polymer. Here we used Raman...effective understanding of the structure-property relationships of the composite. Obtaining such structural infor- mation, however, is experimentally

  12. IMAGINE: first neutron protein structure and new capabilities for neutron macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, Parthapratim; Myles, Dean A A; Robertson, Lee

    2013-01-01

    We report the first high resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory. Neutron diffraction data extending to 1.65 resolution were collected from a relatively small 0.7 mm3 PfRd crystal using 2.5 days (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the deuterium atoms of the protein, and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolutions (1.5 ) from crystals with volume < 1.0 mm3more » and with unit cell edges < 100 . Beam line features include elliptical focusing mirrors that deliver 3x107 n s-1 cm-2 into a 3.5 x 2.0 mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations ( min=2.0 , 2.8 , 3.3 - max =3.0 , 4.0 , 4.5 , ~20 ). Notably, the crystal used to collect this PfRd data is 5-10 times smaller than has been previously reported.« less

  13. Advances in research on structural characterisation of agricultural products using atomic force microscopy.

    PubMed

    Liu, Dongli; Cheng, Fang

    2011-03-30

    Atomic force microscopy (AFM) has many unique features compared with other conventional microscopies, such as high magnification with high resolution, minimal sample preparation, acquiring 2D and 3D images at the same time, observing ongoing processes directly, the possibility of manipulating macromolecules, etc. As a nanotechnology tool, AFM has been used to investigate the nanostructure of materials in many fields. This mini-review focuses mainly on its latest application to characterise the macromolecular nanostructure and surface topography of agricultural products. First the fundamentals of AFM are briefly explained. Then the macromolecular nanostructure information on agricultural products from AFM images is introduced by exploring the structure-function relationship in three aspects: agricultural product processing, agricultural product ripening and storage, and genetic and environmental factors. The surface topography characterisation of agricultural products using AFM is also discussed. The results reveal that AFM could be a powerful nanotechnology tool to acquire a deeper understanding of the mechanisms of structure and quality variations of agricultural products, which could be instructive in improving processing and storage technologies, and AFM is also helpful to reveal the essential nature of a product at nanoscale. Copyright © 2011 Society of Chemical Industry.

  14. Disentangling polydispersity in the PCNA−p15PAF complex, a disordered, transient and multivalent macromolecular assembly

    PubMed Central

    Cordeiro, Tiago N.; Chen, Po-chia; De Biasio, Alfredo; Sibille, Nathalie; Blanco, Francisco J.; Hub, Jochen S.; Crehuet, Ramon

    2017-01-01

    Abstract The intrinsically disordered p15PAF regulates DNA replication and repair when interacting with the Proliferating Cell Nuclear Antigen (PCNA) sliding clamp. As many interactions between disordered proteins and globular partners involved in signaling and regulation, the complex between p15PAF and trimeric PCNA is of low affinity, forming a transient complex that is difficult to characterize at a structural level due to its inherent polydispersity. We have determined the structure, conformational fluctuations, and relative population of the five species that coexist in solution by combining small-angle X-ray scattering (SAXS) with molecular modelling. By using explicit ensemble descriptions for the individual species, built using integrative approaches and molecular dynamics (MD) simulations, we collectively interpreted multiple SAXS profiles as population-weighted thermodynamic mixtures. The analysis demonstrates that the N-terminus of p15PAF penetrates the PCNA ring and emerges on the back face. This observation substantiates the role of p15PAF as a drag regulating PCNA processivity during DNA repair. Our study reveals the power of ensemble-based approaches to decode structural, dynamic, and thermodynamic information from SAXS data. This strategy paves the way for deciphering the structural bases of flexible, transient and multivalent macromolecular assemblies involved in pivotal biological processes. PMID:28180305

  15. The Upgrade Programme for the Structural Biology beamlines at the European Synchrotron Radiation Facility - High throughput sample evaluation and automation

    NASA Astrophysics Data System (ADS)

    Theveneau, P.; Baker, R.; Barrett, R.; Beteva, A.; Bowler, M. W.; Carpentier, P.; Caserotto, H.; de Sanctis, D.; Dobias, F.; Flot, D.; Guijarro, M.; Giraud, T.; Lentini, M.; Leonard, G. A.; Mattenet, M.; McCarthy, A. A.; McSweeney, S. M.; Morawe, C.; Nanao, M.; Nurizzo, D.; Ohlsson, S.; Pernot, P.; Popov, A. N.; Round, A.; Royant, A.; Schmid, W.; Snigirev, A.; Surr, J.; Mueller-Dieckmann, C.

    2013-03-01

    Automation and advances in technology are the key elements in addressing the steadily increasing complexity of Macromolecular Crystallography (MX) experiments. Much of this complexity is due to the inter-and intra-crystal heterogeneity in diffraction quality often observed for crystals of multi-component macromolecular assemblies or membrane proteins. Such heterogeneity makes high-throughput sample evaluation an important and necessary tool for increasing the chances of a successful structure determination. The introduction at the ESRF of automatic sample changers in 2005 dramatically increased the number of samples that were tested for diffraction quality. This "first generation" of automation, coupled with advances in software aimed at optimising data collection strategies in MX, resulted in a three-fold increase in the number of crystal structures elucidated per year using data collected at the ESRF. In addition, sample evaluation can be further complemented using small angle scattering experiments on the newly constructed bioSAXS facility on BM29 and the micro-spectroscopy facility (ID29S). The construction of a second generation of automated facilities on the MASSIF (Massively Automated Sample Screening Integrated Facility) beam lines will build on these advances and should provide a paradigm shift in how MX experiments are carried out which will benefit the entire Structural Biology community.

  16. A technique for determining the deuterium/hydrogen contrast map in neutron macromolecular crystallography.

    PubMed

    Chatake, Toshiyuki; Fujiwara, Satoru

    2016-01-01

    A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.

  17. Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms.

    PubMed

    Xu, Min; Chai, Xiaoqi; Muthakana, Hariank; Liang, Xiaodan; Yang, Ge; Zeev-Ben-Mordehai, Tzviya; Xing, Eric P

    2017-07-15

    Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic de novo discovery of structures within cells challenging. It would likely require averaging and classifying millions of subtomograms potentially containing hundreds of highly heterogeneous structural classes. Although it is no longer difficult to acquire CECT data containing such amount of subtomograms due to advances in data acquisition automation, existing computational approaches have very limited scalability or discrimination ability, making them incapable of processing such amount of data. To complement existing approaches, in this article we propose a new approach for subdividing subtomograms into smaller but relatively homogeneous subsets. The structures in these subsets can then be separately recovered using existing computation intensive methods. Our approach is based on supervised structural feature extraction using deep learning, in combination with unsupervised clustering and reference-free classification. Our experiments show that, compared with existing unsupervised rotation invariant feature and pose-normalization based approaches, our new approach achieves significant improvements in both discrimination ability and scalability. More importantly, our new approach is able to discover new structural classes and recover structures that do not exist in training data. Source code freely available at http://www.cs.cmu.edu/∼mxu1/software . mxu1@cs.cmu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. On macromolecular refinement at subatomic resolution withinteratomic scatterers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2007-11-09

    A study of the accurate electron density distribution in molecular crystals at subatomic resolution, better than {approx} 1.0 {angstrom}, requires more detailed models than those based on independent spherical atoms. A tool conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8-1.0 {angstrom}, the number of experimental data is insufficient for the full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark datasets gave results comparable in quality withmore » results of multipolar refinement and superior of those for conventional models. Applications to several datasets of both small- and macro-molecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.« less

  19. On macromolecular refinement at subatomic resolution with interatomic scatterers

    PubMed Central

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.; Lunin, Vladimir Y.; Urzhumtsev, Alexandre

    2007-01-01

    A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package. PMID:18007035

  20. On macromolecular refinement at subatomic resolution with interatomic scatterers.

    PubMed

    Afonine, Pavel V; Grosse-Kunstleve, Ralf W; Adams, Paul D; Lunin, Vladimir Y; Urzhumtsev, Alexandre

    2007-11-01

    A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than approximately 1.0 A) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8-1.0 A, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  1. Exploring glycogen biosynthesis through Monte Carlo simulation.

    PubMed

    Zhang, Peng; Nada, Sharif S; Tan, Xinle; Deng, Bin; Sullivan, Mitchell A; Gilbert, Robert G

    2018-05-08

    Glycogen, a complex branched polymer of glucose (average chain length ~10 monomer units), is the blood-sugar reservoir in humans and other animals. Certain aspects of its molecular structure relevant to its biological functions are currently unamenable to experimental exploration. Knowledge of these is needed to develop future models for quantitative data-fitting to obtain mechanistic understanding of the biosynthetic processes that give rise to glycogen structure. Monte Carlo simulations of the biosynthesis of this structure with realistic macromolecular parameters reveal how chain growth and stoppage (the latter assumed to be through both the action of glycogen branching enzyme and other degradative enzymes, and by hindrance) control structural features. The simulated chain-length, pair-distance and radial density distributions agree semi-quantitatively with the limited available data. The simulations indicate that a steady state in molecular structure and size is rapidly obtained, that molecular density reaches a maximum near the center of the particle (not at the periphery, as is the case with dendrimers), and that particle size is controlled by both enzyme activity and hindrance. This knowledge will aid in the understanding of diabetes (loss of blood-sugar control), which has been found to involve subtle differences in glycogen molecular structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Reconstruction of SAXS Profiles from Protein Structures

    PubMed Central

    Putnam, Daniel K.; Lowe, Edward W.

    2013-01-01

    Small angle X-ray scattering (SAXS) is used for low resolution structural characterization of proteins often in combination with other experimental techniques. After briefly reviewing the theory of SAXS we discuss computational methods based on 1) the Debye equation and 2) Spherical Harmonics to compute intensity profiles from a particular macromolecular structure. Further, we review how these formulas are parameterized for solvent density and hydration shell adjustment. Finally we introduce our solution to compute SAXS profiles utilizing GPU acceleration. PMID:24688746

  3. NCI Scientists Solve Structure of Protein that Enables MERS Virus to Spread | Poster

    Cancer.gov

    Scientists at the Frederick National Lab have produced three crystal structures that reveal a specific part of a protein that can be targeted to fight the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an emerging viral respiratory illness. Senior Investigator David Waugh, Ph.D., Macromolecular Crystallography Laboratory, has solved the structure of an enzyme known as the 3C-like protease (3CLpro), which, if blocked, can prevent the virus from replicating...

  4. MetalPDB in 2018: a database of metal sites in biological macromolecular structures.

    PubMed

    Putignano, Valeria; Rosato, Antonio; Banci, Lucia; Andreini, Claudia

    2018-01-04

    MetalPDB (http://metalweb.cerm.unifi.it/) is a database providing information on metal-binding sites detected in the three-dimensional (3D) structures of biological macromolecules. MetalPDB represents such sites as 3D templates, called Minimal Functional Sites (MFSs), which describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. The 2018 update of MetalPDB includes new contents and tools. A major extension is the inclusion of proteins whose structures do not contain metal ions although their sequences potentially contain a known MFS. In addition, MetalPDB now provides extensive statistical analyses addressing several aspects of general metal usage within the PDB, across protein families and in catalysis. Users can also query MetalPDB to extract statistical information on structural aspects associated with individual metals, such as preferred coordination geometries or aminoacidic environment. A further major improvement is the functional annotation of MFSs; the annotation is manually performed via a password-protected annotator interface. At present, ∼50% of all MFSs have such a functional annotation. Other noteworthy improvements are bulk query functionality, through the upload of a list of PDB identifiers, and ftp access to MetalPDB contents, allowing users to carry out in-depth analyses on their own computational infrastructure. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Hen Egg-White Lysozyme Crystallisation: Protein Stacking and Structure Stability Enhanced by a Tellurium(VI)-Centred Polyoxotungstate

    PubMed Central

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-01

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson–Evans-type polyoxometalate (POM), specifically Na6[TeW6O24]⋅22 H2O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid–liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein–protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. PMID:25521080

  6. Hydration structure of the α-chymotrypsin substrate binding pocket: the impact of constrained geometry

    NASA Astrophysics Data System (ADS)

    Carey, Christina; Cheng, Yuen-Kit; Rossky, Peter J.

    2000-08-01

    The concave substrate binding pocket of α-chymotrypsin binds specifically hydrophobic side chains. In order to understand the hydration structure present in the absence of substrate, and elucidate the character of the solvent displaced on binding, molecular dynamics computer simulation of the solvent in a fully hydrated protein has been carried out and analyzed. The pocket is found to be characterized in terms of a mixed polar and apolar macromolecular surface. It is shown that the simulated solvent structure within it is spatially consistent with that seen via crystallography. The solvent structure is energetically characterized by large losses in hydrogen bonding among solvent molecules except at the mouth of the pocket where exposure to bulk-like solvent is possible. The loss in hydrogen bonding is attributed to the highly constrained geometry available to the solvent, preventing formation of a hydrogen bonding network, with only partial compensation by interactions with the macromolecular surface. The solvent displacement concomitant with substrate binding will therefore be associated with a large enthalpic driving force. This result is at the extreme of a continuum of variable cases of "hydrophobic" hydration, which differ most basically in surface curvature. These range from convex solute surfaces, inducing clathrate-like structures, with negligible hydrogen bond loss, to flat surfaces with significant interfacial loss, to the present concave case with hydrogen bonding losses exceeding 50%.

  7. Macromolecular powder diffraction : structure solution via molecular.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebbler, J.; Von Dreele, R.; X-Ray Science Division

    Macromolecular powder diffraction is a burgeoning technique for protein structure solution - ideally suited for cases where no suitable single crystals are available. Over the past seven years, pioneering work by Von Dreele et al. [1,2] and Margiolaki et al. [3,4] has demonstrated the viability of this approach for several protein structures. Among these initial powder studies, molecular replacement solutions of insulin and turkey lysozyme into alternate space groups were accomplished. Pressing the technique further, Margiolaki et al. [5] executed the first molecular replacement of an unknown protein structure: the SH3 domain of ponsin, using data from a multianalyzer diffractometer.more » To demonstrate that cross-species molecular replacement using image plate data is also possible, we present the solution of hen egg white lysozyme using the 60% identical human lysozyme (PDB code: 1LZ1) as the search model. Due to the high incidence of overlaps in powder patterns, especially in more complex structures, we have used extracted intensities from five data sets taken at different salt concentrations in a multi-pattern Pawley refinement. The use of image plates severely increases the overlap problem due to lower detector resolution, but radiation damage effects are minimized with shorter exposure times and the fact that the entire pattern is obtained in a single exposure. This image plate solution establishes the robustness of powder molecular replacement resulting from different data collection techniques.« less

  8. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed. PMID:26604800

  9. Building bridges between cellular and molecular structural biology.

    PubMed

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  10. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    PubMed

    Ó Conchúir, Shane; Barlow, Kyle A; Pache, Roland A; Ollikainen, Noah; Kundert, Kale; O'Meara, Matthew J; Smith, Colin A; Kortemme, Tanja

    2015-01-01

    The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.

  11. Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns.

    PubMed

    Norred, S Elizabeth; Caveney, Patrick M; Chauhan, Gaurav; Collier, Lauren K; Collier, C Patrick; Abel, Steven M; Simpson, Michael L

    2018-05-18

    Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.

  12. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds.

    PubMed

    Sanz-Pintos, Nerea; Pérez-Jiménez, Jara; Buschmann, Alejandro H; Vergara-Salinas, José Rodrigo; Pérez-Correa, José Ricardo; Saura-Calixto, Fulgencio

    2017-02-01

    Seaweeds are rich in different bioactive compounds with potential uses in drugs, cosmetics and the food industry. The objective of this study was to analyze macromolecular antioxidants or nonextractable polyphenols, in several edible seaweed species collected in Chile (Gracilaria chilensis, Callophyllis concepcionensis, Macrocystis pyrifera, Scytosyphon lomentaria, Ulva sp. and Enteromorpha compressa), including their 1st HPLC characterization. Macromolecular antioxidants are commonly ignored in studies of bioactive compounds. They are associated with insoluble dietary fiber and exhibit significant biological activity, with specific features that are different from those of both dietary fiber and extractable polyphenols. We also evaluated extractable polyphenols and dietary fiber, given their relationship with macromolecular antioxidants. Our results show that macromolecular antioxidants are a major polyphenol fraction (averaging 42% to total polyphenol content), with hydroxycinnamic acids, hydroxybenzoic acids and flavonols being the main constituents. This fraction also showed remarkable antioxidant capacity, as determined by 2 complementary assays. The dietary fiber content was over 50% of dry weight, with some samples exhibiting the target proportionality between soluble and insoluble dietary fiber for adequate nutrition. Overall, our data show that seaweed could be an important source of commonly ignored macromolecular antioxidants. © 2017 Institute of Food Technologists®.

  13. Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping

    PubMed Central

    Yarnykh, Vasily L.

    2015-01-01

    Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097

  14. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    PubMed

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. AR-NE3A, a New Macromolecular Crystallography Beamline for Pharmaceutical Applications at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko

    2010-06-23

    Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable ofmore » handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.« less

  16. An editor for the generation and customization of geometry restraints

    DOE PAGES

    Moriarty, Nigel W.; Draizen, Eli J.; Adams, Paul D.

    2017-02-01

    Chemical restraints for use in macromolecular structure refinement are produced by a variety of methods, including a number of programs that use chemical information to generate the required bond, angle, dihedral, chiral and planar restraints. These programs help to automate the process and therefore minimize the errors that could otherwise occur if it were performed manually. Furthermore, restraint-dictionary generation programs can incorporate chemical and other prior knowledge to provide reasonable choices of types and values. However, the use of restraints to define the geometry of a molecule is an approximation introduced with efficiency in mind. The representation of a bondmore » as a parabolic function is a convenience and does not reflect the true variability in even the simplest of molecules. Another complicating factor is the interplay of the molecule with other parts of the macromolecular model. Finally, difficult situations arise from molecules with rare or unusual moieties that may not have their conformational space fully explored. These factors give rise to the need for an interactive editor for WYSIWYG interactions with the restraints and molecule. Restraints Editor, Especially Ligands (REEL) is a graphical user interface for simple and error-free editing along with additional features to provide greater control of the restraint dictionaries in macromolecular refinement.« less

  17. An editor for the generation and customization of geometry restraints.

    PubMed

    Moriarty, Nigel W; Draizen, Eli J; Adams, Paul D

    2017-02-01

    Chemical restraints for use in macromolecular structure refinement are produced by a variety of methods, including a number of programs that use chemical information to generate the required bond, angle, dihedral, chiral and planar restraints. These programs help to automate the process and therefore minimize the errors that could otherwise occur if it were performed manually. Furthermore, restraint-dictionary generation programs can incorporate chemical and other prior knowledge to provide reasonable choices of types and values. However, the use of restraints to define the geometry of a molecule is an approximation introduced with efficiency in mind. The representation of a bond as a parabolic function is a convenience and does not reflect the true variability in even the simplest of molecules. Another complicating factor is the interplay of the molecule with other parts of the macromolecular model. Finally, difficult situations arise from molecules with rare or unusual moieties that may not have their conformational space fully explored. These factors give rise to the need for an interactive editor for WYSIWYG interactions with the restraints and molecule. Restraints Editor, Especially Ligands (REEL) is a graphical user interface for simple and error-free editing along with additional features to provide greater control of the restraint dictionaries in macromolecular refinement.

  18. Multiscale Macromolecular Simulation: Role of Evolving Ensembles

    PubMed Central

    Singharoy, A.; Joshi, H.; Ortoleva, P.J.

    2013-01-01

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin timestep is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers. PMID:22978601

  19. Engineering Human Immunodeficiency Virus 1 Protease Heterodimers as Macromolecular Inhibitors of Viral Maturation

    NASA Astrophysics Data System (ADS)

    McPhee, Fiona; Good, Andrew C.; Kuntz, Irwin D.; Craik, Charles S.

    1996-10-01

    Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid substitutions at the dimer interface of HIV-1 PR that facilitate preferential association of heterodimers and inhibit self-association of the defective monomers. Expression of the designed PR monomers inhibits activity of wild-type HIV-1 PR and viral infectivity when assayed in an ex vivo model system. These results show that it is possible to design PR monomers as macromolecular inhibitors that may provide an alternative to small molecule inhibitors for the treatment of HIV infection.

  20. An evolutionary link between capsular biogenesis and surface motility in bacteria.

    PubMed

    Agrebi, Rym; Wartel, Morgane; Brochier-Armanet, Céline; Mignot, Tâm

    2015-05-01

    Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.

  1. NGL Viewer: Web-based molecular graphics for large complexes.

    PubMed

    Rose, Alexander S; Bradley, Anthony R; Valasatava, Yana; Duarte, Jose M; Prlic, Andreas; Rose, Peter W

    2018-05-29

    The interactive visualization of very large macromolecular complexes on the web is becoming a challenging problem as experimental techniques advance at an unprecedented rate and deliver structures of increasing size. We have tackled this problem by developing highly memory-efficient and scalable extensions for the NGL WebGL-based molecular viewer and by using MMTF, a binary and compressed Macromolecular Transmission Format. These enable NGL to download and render molecular complexes with millions of atoms interactively on desktop computers and smartphones alike, making it a tool of choice for web-based molecular visualization in research and education. The source code is freely available under the MIT license at github.com/arose/ngl and distributed on NPM (npmjs.com/package/ngl). MMTF-JavaScript encoders and decoders are available at github.com/rcsb/mmtf-javascript. asr.moin@gmail.com.

  2. Spectral reflectance properties of carbon-bearing materials

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Gaffey, Michael J.; Moslow, Thomas F.

    1994-01-01

    The 0.3-2.6 micrometers spectral reflectance properties of carbon polymorphs (graphite, carbon black, diamond), carbides (silicon carbide, cementite), and macromolecular organic-bearing materials (coal, coal tar extract, oil sand, oil shale) are found to vary from sample to sample and among groups. The carbon polymorphs are readily distinguishable on the basis of their visible-near infrared spectral slopes and shapes. The spectra of macromolecular organic-bearing materials show increases in reflectance toward longer wavelengths, exceeding the reflectance rise of more carbon-rich materials. Reflectance spectra of carbonaceous materials are affected by the crystal structure, composition, and degree of order/disorder of the samples. The characteristic spectral properties can potentially be exploited to identify individual carbonaceous grains in meteorites (as separates or in situ) or to conduct remote sensing geothermometry and identification of carbonaceous phases on asteroids.

  3. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE PAGES

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; ...

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  4. Large-volume protein crystal growth for neutron macromolecular crystallography

    PubMed Central

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-01-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493

  5. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Joseph D.; Baird, James K.; Coates, Leighton

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  6. Extracting trends from two decades of microgravity macromolecular crystallization history

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; van der Woerd, Mark J.

    2005-01-01

    Since the 1980s hundreds of macromolecular crystal growth experiments have been performed in the reduced acceleration environment of an orbiting spacecraft. Significant enhancements in structural knowledge have resulted from X-ray diffraction of the crystals grown. Similarly, many samples have shown no improvement or degradation in comparison to those grown on the ground. A complex series of interrelated factors affect these experiments and by building a comprehensive archive of the results it was aimed to identify factors that result in success and those that result in failure. Specifically, it was found that dedicated microgravity missions increase the chance of success when compared with those where crystallization took place as a parasitic aspect of the mission. It was also found that the chance of success could not be predicted based on any discernible property of the macromolecule available to us.

  7. Interaction of dietary antioxidants in vivo: how fruit and vegetables prevent disease?

    PubMed

    Eastwood, M A

    1999-09-01

    Epidemiological studies indicate that fruit and vegetables are health-promoting and protective against disease, particularly cardiovascular disease and cancer. Possible plant nutrients providing this protection include antioxidants and dietary fibre. Clinical trials with antioxidant supplements give inconsistent results for protection against lung cancer in smokers, invasive cervical cancer, oesophageal and gastric cancers, colorectal polyps and coronary heart disease. The antioxidants used in trials may be contributing to a more complex system. Antioxidants have differing solubilities which partition across the phases of tissues, cells and macromolecular structures: water-soluble ascorbate, glutathione and urate; lipid-soluble tocopherols and carotenoids, and intermediatory-soluble flavonoids and hydroxycinnamic acids. The health protection provided by fruit and vegetables could arise through an integrated reductive environment delivered by plant antioxidants of differing solubility in each of the tissue, cellular and macromolecular phases.

  8. Artificially Engineered Protein Polymers.

    PubMed

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  9. Protein-ion binding process on finite macromolecular concentration. A Poisson-Boltzmann and Monte Carlo study.

    PubMed

    de Carvalho, Sidney Jurado; Fenley, Márcia O; da Silva, Fernando Luís Barroso

    2008-12-25

    Electrostatic interactions are one of the key driving forces for protein-ligands complexation. Different levels for the theoretical modeling of such processes are available on the literature. Most of the studies on the Molecular Biology field are performed within numerical solutions of the Poisson-Boltzmann Equation and the dielectric continuum models framework. In such dielectric continuum models, there are two pivotal questions: (a) how the protein dielectric medium should be modeled, and (b) what protocol should be used when solving this effective Hamiltonian. By means of Monte Carlo (MC) and Poisson-Boltzmann (PB) calculations, we define the applicability of the PB approach with linear and nonlinear responses for macromolecular electrostatic interactions in electrolyte solution, revealing some physical mechanisms and limitations behind it especially due the raise of both macromolecular charge and concentration out of the strong coupling regime. A discrepancy between PB and MC for binding constant shifts is shown and explained in terms of the manner PB approximates the excess chemical potentials of the ligand, and not as a consequence of the nonlinear thermal treatment and/or explicit ion-ion interactions as it could be argued. Our findings also show that the nonlinear PB predictions with a low dielectric response well reproduce the pK shifts calculations carried out with an uniform dielectric model. This confirms and completes previous results obtained by both MC and linear PB calculations.

  10. Chemical Blistering: Cellular and Macromolecular Components

    DTIC Science & Technology

    1984-11-15

    accumulation of fluid appears to Sbe secondary to fundamental damage to cellular structures (1). As noted by Warthin and Weller (2) and by Sinclair (3...Medicine. fT. P. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg and K. F. Austen, Eds.) McGraw-Hill, New York, pp. 287-294). 2.’ Warthin , A. S., and

  11. Ionic Liquids in Electro-active Devices (ILED)

    DTIC Science & Technology

    2013-12-12

    Polyesters: Structure-Property Relationships in Thermal Behavior, Ionic Conductivity , and Morphology , Advanced Functional Materials, (01 2010...and Ionic Conductivities , Macromolecular Chemistry and Physics, (10 2011): . doi: M. Green, C. Schreiner, T. Long. Thermal , Rheological, and Ion...block giving thermal stability and ionic conductivity . Table 1 shows the molecular weight analysis of the triblock copolymers with increasing

  12. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis

    ERIC Educational Resources Information Center

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  13. 76 FR 1442 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Group; Macromolecular Structure and Function D Study Section. Date: February 8-9, 2011. Time: 8 a.m. to...; Biomedical Computing and Health Informatics Study Section. Date: February 8, 2011. Time: 8 a.m. to 5 p.m... Skin Sciences Integrated Review Group; Skeletal Muscle and Exercise Physiology Study Section. Date...

  14. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    PubMed

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  15. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents.

    PubMed

    Angelova, Angelina; Garamus, Vasil M; Angelov, Borislav; Tian, Zhenfen; Li, Yawen; Zou, Aihua

    2017-11-01

    The present work highlights recent achievements in development of nanostructured dispersions and biocolloids for drug delivery applications. We emphasize the key role of biological small-angle X-ray scattering (BioSAXS) investigations for the nanomedicine design. A focus is given on controlled encapsulation of small molecular weight phytochemical drugs in lipid-based nanocarriers as well as on encapsulation of macromolecular siRNA, plasmid DNA, peptide and protein pharmaceuticals in nanostructured nanoparticles that may provide efficient intracellular delivery and triggered drug release. Selected examples of utilisation of the BioSAXS method for characterization of various types of liquid crystalline nanoorganizations (liposome, spongosome, cubosome, hexosome, and nanostructured lipid carriers) are discussed in view of the successful encapsulation and protection of phytochemicals and therapeutic biomolecules in the hydrophobic or the hydrophilic compartments of the nanocarriers. We conclude that the structural design of the nanoparticulate carriers is of crucial importance for the therapeutic outcome and the triggered drug release from biocolloids. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data

    PubMed Central

    Berman, Helen; Henrick, Kim; Nakamura, Haruki; Markley, John L.

    2007-01-01

    The worldwide Protein Data Bank (wwPDB) is the international collaboration that manages the deposition, processing and distribution of the PDB archive. The online PDB archive is a repository for the coordinates and related information for more than 38 000 structures, including proteins, nucleic acids and large macromolecular complexes that have been determined using X-ray crystallography, NMR and electron microscopy techniques. The founding members of the wwPDB are RCSB PDB (USA), MSD-EBI (Europe) and PDBj (Japan) [H.M. Berman, K. Henrick and H. Nakamura (2003) Nature Struct. Biol., 10, 980]. The BMRB group (USA) joined the wwPDB in 2006. The mission of the wwPDB is to maintain a single archive of macromolecular structural data that are freely and publicly available to the global community. Additionally, the wwPDB provides a variety of services to a broad community of users. The wwPDB website at provides information about services provided by the individual member organizations and about projects undertaken by the wwPDB. PMID:17142228

  17. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

    PubMed

    Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B

    2018-02-06

    Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Quantifying the assembly of multicomponent molecular machines by single-molecule total internal reflection fluorescence microscopy

    PubMed Central

    Boehm, Elizabeth M.; Subramanyam, Shyamal; Ghoneim, Mohamed; Washington, M. Todd; Spies, Maria

    2016-01-01

    Large, dynamic macromolecular complexes play essential roles in many cellular processes. Knowing how the components of these complexes associate with one another and undergo structural rearrangements is critical to understanding how they function. Single-molecule total internal reflection fluorescence (TIRF) microscopy is a powerful approach for addressing these fundamental issues. In this article, we first discuss single-molecule TIRF microscopes and strategies to immobilize and fluorescently label macromolecules. We then review the use of single-molecule TIRF microscopy to study the formation of binary macromolecular complexes using one-color imaging and inhibitors. We conclude with a discussion of the use of TIRF microscopy to examine the formation of higher-order (i.e., ternary, quaternary, etc.) complexes using multi-color setups. The focus throughout this article is on experimental design, controls, data acquisition, and data analysis. We hope that single-molecule TIRF microscopy, which has largely been the province of specialists, will soon become as common in the tool box of biophysicists and biochemists as structural approaches has become today. PMID:27793278

  19. Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium

    PubMed Central

    Beveridge, T. J.; Murray, R. G. E.

    1974-01-01

    Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219

  20. Crystal Structure of the HEAT Domain from the Pre-mRNA Processing Factor Symplekin

    PubMed Central

    Kennedy, Sarah A.; Frazier, Monica L.; Steiniger, Mindy; Mast, Ann M.; Marzluff, William F.; Redinbo, Matthew R.

    2009-01-01

    The majority of eukaryotic pre-mRNAs are processed by 3′-end cleavage and polyadenylation, although in metazoa the replication-dependant histone mRNAs are processed by 3′-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the ~1,160-residue protein Symplekin. Secondary structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 Å resolution using SAD phasing methods. The structure exhibits 5 canonical HEAT repeats along with an extended 31 amino acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3′-end processing. Taken together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process. PMID:19576221

  1. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morshed, Nader; Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Echols, Nathaniel, E-mail: nechols@lbl.gov

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here,more » the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  2. The spatial effect of protein deuteration on nitroxide spin-label relaxation: Implications for EPR distance measurement

    PubMed Central

    El Mkami, Hassane; Ward, Richard; Bowman, Andrew; Owen-Hughes, Tom; Norman, David G.

    2014-01-01

    Pulsed electron–electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems. PMID:25310878

  3. Macromolecular Competition Titration Method: Accessing Thermodynamics of the Unmodified Macromolecule–Ligand Interactions Through Spectroscopic Titrations of Fluorescent Analogs

    PubMed Central

    Bujalowski, Wlodzimierz; Jezewska, Maria J.

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand–macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein–nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein–nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein–nucleic acid interactions, it can generally be applied to any ligand–macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. PMID:21195223

  4. Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers

    DOE PAGES

    Wang, Huiqun; Lu, Wei; Wang, Weiyu; ...

    2017-09-28

    Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huiqun; Lu, Wei; Wang, Weiyu

    Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less

  6. Cryo-FIB specimen preparation for use in a cartridge-type cryo-TEM.

    PubMed

    He, Jie; Hsieh, Chyongere; Wu, Yongping; Schmelzer, Thomas; Wang, Pan; Lin, Ying; Marko, Michael; Sui, Haixin

    2017-08-01

    Cryo-electron tomography (cryo-ET) is a well-established technique for studying 3D structural details of subcellular macromolecular complexes and organelles in their nearly native context in the cell. A primary limitation of the application of cryo-ET is the accessible specimen thickness, which is less than the diameters of almost all eukaryotic cells. It has been shown that focused ion beam (FIB) milling can be used to prepare thin, distortion-free lamellae of frozen biological material for high-resolution cryo-ET. Commercial cryosystems are available for cryo-FIB specimen preparation, however re-engineering and additional fixtures are often essential for reliable results with a particular cryo-FIB and cryo-transmission electron microscope (cryo-TEM). Here, we describe our optimized protocol and modified instrumentation for cryo-FIB milling to produce thin lamellae and subsequent damage-free cryotransfer of the lamellae into our cartridge-type cryo-TEM. Published by Elsevier Inc.

  7. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization

    NASA Astrophysics Data System (ADS)

    Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.

    2017-02-01

    Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.

  8. How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles

    PubMed Central

    Hou, Sen; Trochimczyk, Piotr; Sun, Lili; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Zhang, Xuzhu; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Holyst, Robert

    2016-01-01

    In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy. PMID:26903405

  9. How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles.

    PubMed

    Hou, Sen; Trochimczyk, Piotr; Sun, Lili; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Zhang, Xuzhu; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Holyst, Robert

    2016-02-23

    In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66 bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy.

  10. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI.

    PubMed

    Granato, Luigi; Vander Elst, Luce; Henoumont, Celine; Muller, Robert N; Laurent, Sophie

    2018-02-01

    Thanks to the understanding of the relationships between the residence lifetime τ M of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τ R of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L 1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL 1 )x with intent to slow down the rotational correlation time (τ R ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL 1 ) showed a slight decrease of the τ M value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τ R  = 33,700 ps), which results in an enhanced proton relaxivity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  11. Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints.

    PubMed

    Clark, Nicholas J; Zhang, Hailiang; Krueger, Susan; Lee, Hyo Jin; Ketchem, Randal R; Kerwin, Bruce; Kanapuram, Sekhar R; Treuheit, Michael J; McAuley, Arnold; Curtis, Joseph E

    2013-11-14

    Monoclonal antibodies (mAbs) contain hinge-like regions that enable structural flexibility of globular domains that have a direct effect on biological function. A subclass of mAbs, IgG2, have several interchain disulfide bonds in the hinge region that could potentially limit structural flexibility of the globular domains and affect the overall configuration space available to the mAb. We have characterized human IgG2 mAb in solution via small-angle neutron scattering (SANS) and interpreted the scattering data using atomistic models. Molecular Monte Carlo combined with molecular dynamics simulations of a model mAb indicate that a wide range of structural configurations are plausible, spanning radius of gyration values from ∼39 to ∼55 Å. Structural ensembles and representative single structure solutions were derived by comparison of theoretical SANS profiles of mAb models to experimental SANS data. Additionally, molecular mechanical and solvation free-energy calculations were carried out on the ensemble of best-fitting mAb structures. The results of this study indicate that low-resolution techniques like small-angle scattering combined with atomistic molecular simulations with free-energy analysis may be helpful to determine the types of intramolecular interactions that influence function and could lead to deleterious changes to mAb structure. This methodology will be useful to analyze small-angle scattering data of many macromolecular systems.

  12. Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns

    DOE PAGES

    Norred, Sarah Elizabeth; Caveney, Patrick M.; Chauhan, Gaurav; ...

    2018-04-24

    Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting—the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increasemore » in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA (“spatial noise”) that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. Furthermore, these results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.« less

  13. Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norred, Sarah Elizabeth; Caveney, Patrick M.; Chauhan, Gaurav

    Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting—the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increasemore » in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA (“spatial noise”) that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. Furthermore, these results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.« less

  14. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography.

    PubMed

    Chen, Julian C-H; Unkefer, Clifford J

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  15. Detection of Macromolecular Fractions in HCN Polymers Using Electrophoretic and Ultrafiltration Techniques.

    PubMed

    Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta

    2017-02-01

    Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation

    NASA Astrophysics Data System (ADS)

    Ahn, SeungHyun; Koh, Young Ho; Kim, GeunHyung

    2010-06-01

    Collagen has the advantage of being very similar to macromolecular substances that can be recognized and metabolized in the biological environment. Although the natural material has superior property for this purpose, its use to fabricate reproducible and pore-structure-controlled 3D structures, which are designed to allow the entry of sufficient cells and the easy diffusion of nutrients, has been limited due to its low processability. Here, we propose a hybrid technology that combines a cryogenic plotting system with an electrospinning process. Using this technique, an easily pore-size-controllable hierarchical 3D scaffold consisting of micro-sized highly porous collagen strands and micro/nano-sized collagen fibers was fabricated. The pore structure of the collagen scaffold was controlled by the collagen micro/nanofibers, which were layered in the scaffold. The hierarchical scaffolds were characterized with respect to initial cell attachment and proliferation of bone marrow-derived mesenchymal stem cells within the scaffolds. The hierarchical scaffold exhibited incredibly enhanced initial cell attachment and cell compactness between pores of the plotted scaffold relative to the normally designed 3D collagen scaffold.

  17. Identifying, studying and making good use of macromolecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calero, Guillermo; Cohen, Aina E.; Luft, Joseph R.

    2014-07-25

    As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources moremore » intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.« less

  18. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    PubMed Central

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-01-01

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophos­phodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347

  19. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE PAGES

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; ...

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. In addition, these methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  20. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    PubMed

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  1. Structural investigation of nonpolar sulfur cross-linked macromolecules in petroleum

    NASA Astrophysics Data System (ADS)

    Adam, P.; Schmid, J. C.; Mycke, B.; Strazielle, C.; Connan, J.; Huc, A.; Riva, A.; Albrecht, P.

    1993-07-01

    A novel hexane-soluble nonpolar macromolecular fraction (NPMF) has been found to occur in substantial amounts (up to 32%) in sulfur-rich crude oils and a rock extract. It is highly aliphatic and has a molecular weight culminating at several thousand mass units, as proven by spectroscopic and molecular weight studies. C-S bond hydrogenolysis of NPMF with Raney nickel as a catalyst yields high proportions of aliphatic hydrocarbons in which long linear, acyclic polyisoprenoid and carotenoid chains usually predominate (except in one case) over polycyclic structures, such as steroids and hopanoids. Hence, NPMF consists mainly of macromolecules composed of low molecular weight hydrocarbon subunits cross-linked with sulfide bridges. Use of deuterated Raney nickel indicated in one case (Rozel Point oil) that the long chains and some hopanoids are multiattached to the macromolecular network, whereas other structural subunits, such as steroids or gammacerane, are essentially monoattached. Detailed structural determinations of the hydrocarbon "building blocks" of NPMF give information on their origin and the mode of formation of these macromolecules in the subsurface. Indeed, most of the building blocks can be related to algal (e.g., long linear chains, steroids, β-carotene, and related carotenoids) or bacterial (e.g., acyclic and monocyclic carotenoids, long-chain acyclic isoprenoids) precursors which essentially exist in living organisms as monounsaturated or polyunsaturated species or are easily transformed into such species by diagenetic processes (e.g., steroids). It appears that these alkenes or polyenes become selectively trapped into a macromolecular network by reaction with inorganic sulfur species produced by bacteria in a kind of natural, low-temperature, vulcanization process. This process could start at early diagenesis already in the water column or eventually continue in the bottom sediment. Although its exact nature is yet unknown, it seems likely that the cross-linking reaction can be initiated by the cleavage of sulfur species in a radical type mechanism. The alkanes formed upon desulfurization of NPMF usually represent much higher amounts than the free alkanes of the samples and show a dramatically different composition. They may deliver very useful, complementary information in studies related to source and palaeoenvironment.

  2. Hydrolytic and oxidate stability of L-(+) -ascorbic acid supported in pectin films: Influence of the macromolecular structure and calcium presence

    USDA-ARS?s Scientific Manuscript database

    The hydrolytic and oxidative stability of L-(+)-ascorbic acid (AA) into plasticized pectin films were separately studied in view of preserving vitamin C activity and/or to achieve localized antioxidant activity at pharmaceutical and food interfaces. Films were made with each one of the enzymatically...

  3. Functional Integrity of the Retrosplenial Cortex Is Essential for Rapid Consolidation and Recall of Fear Memory

    ERIC Educational Resources Information Center

    Katche, Cynthia; Dorman, Guido; Slipczuk, Leandro; Cammarota, Martin; Medina, Jorge H.

    2013-01-01

    Memory storage is a temporally graded process involving different phases and different structures in the mammalian brain. Cortical plasticity is essential to store stable memories, but little is known regarding its involvement in memory processing. Here we show that fear memory consolidation requires early post-training macromolecular synthesis in…

  4. USSR Report, Chemistry

    DTIC Science & Technology

    1987-03-17

    conductivity with respect to silver, copper, fluorine and hydrogen ions, selection of the chemical composition and type of crystalline structure...distillates. It was found that residual petroleum asphalt, NKG demulsifier and "neftegaz-4" varnish oil improved the rheological properties and decreased...mass loss, and accumulation of macromolecular fragments bearing substituted phenols, in order to determine criteria on which shelflife of varnish

  5. Correlative Microscopy of Vitreous Sections Provides Insights into BAR-Domain Organization In Situ.

    PubMed

    Bharat, Tanmay A M; Hoffmann, Patrick C; Kukulski, Wanda

    2018-04-10

    Electron microscopy imaging of macromolecular complexes in their native cellular context is limited by the inherent difficulty to acquire high-resolution tomographic data from thick cells and to specifically identify elusive structures within crowded cellular environments. Here, we combined cryo-fluorescence microscopy with electron cryo-tomography of vitreous sections into a coherent correlative microscopy workflow, ideal for detection and structural analysis of elusive protein assemblies in situ. We used this workflow to address an open question on BAR-domain coating of yeast plasma membrane compartments known as eisosomes. BAR domains can sense or induce membrane curvature, and form scaffold-like membrane coats in vitro. Our results demonstrate that in cells, the BAR protein Pil1 localizes to eisosomes of varying membrane curvature. Sub-tomogram analysis revealed a dense protein coat on curved eisosomes, which was not present on shallow eisosomes, indicating that while BAR domains can assemble at shallow membranes in vivo, scaffold formation is tightly coupled to curvature generation. Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Ltd.. All rights reserved.

  6. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography with multiangle laser light scattering.

    PubMed

    Pollock, Jacob F; Ashton, Randolph S; Rode, Nikhil A; Schaffer, David V; Healy, Kevin E

    2012-09-19

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product-consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multiangle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and help to better understand multivalent macromolecular interactions in biological systems.

  7. Engineering human immunodeficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation.

    PubMed Central

    McPhee, F; Good, A C; Kuntz, I D; Craik, C S

    1996-01-01

    Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid substitutions at the dimer interface of HIV-1 PR that facilitate preferential association of heterodimers and inhibit self-association of the defective monomers. Expression of the designed PR monomers inhibits activity of wild-type HIV-1 PR and viral infectivity when assayed in an ex vivo model system. These results show that it is possible to design PR monomers as macromolecular inhibitors that may provide an alternative to small molecule inhibitors for the treatment of HIV infection. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876160

  8. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation

    NASA Technical Reports Server (NTRS)

    Krichevsky, A. M.; Kosik, K. S.

    2001-01-01

    RNA granules are a macromolecular structure observed in neurons, where they serve as motile units that translocate mRNAs. Isolated RNA granules are highly enriched in Staufen protein and ultrastructurally contain densely packed clusters of ribosomes. With depolarization, many mRNAs, including those involved in plasticity, rapidly shift from the RNA granule fraction to polysomes. Depolarization reorganizes granules and induces a less compact organization of their ribosomes. RNA granules are not translationally competent, as indicated by the failure to incorporate radioactive amino acids and the absence of eIF4E, 4G, and tRNAs. We concluded that RNA granules are a local storage compartment for mRNAs under translational arrest but are poised for release to actively translated pools. Local release of mRNAs and ribosomes from granules may serve as a macromolecular mechanism linking RNA localization to translation and synaptic plasticity.

  9. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALS)

    PubMed Central

    Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.

    2013-01-01

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081

  10. An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.

    PubMed

    Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang

    2016-08-14

    Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.

  11. Structural differences observed in arboviruses of the alphavirus and flavivirus genera.

    PubMed

    Hernandez, Raquel; Brown, Dennis T; Paredes, Angel

    2014-01-01

    Arthropod borne viruses have developed a complex life cycle adapted to alternate between insect and vertebrate hosts. These arthropod-borne viruses belong mainly to the families Togaviridae, Flaviviridae, and Bunyaviridae. This group of viruses contains many pathogens that cause febrile, hemorrhagic, and encephalitic disease or arthritic symptoms which can be persistent. It has been appreciated for many years that these viruses were evolutionarily adapted to function in the highly divergent cellular environments of both insect and mammalian phyla. These viruses are hybrid in nature, containing viral-encoded RNA and proteins which are glycosylated by the host and encapsulate viral nucleocapsids in the context of a host-derived membrane. From a structural perspective, these virus particles are macromolecular machines adapted in design to assemble into a packaging and delivery system for the virus genome and, only when associated with the conditions appropriate for a productive infection, to disassemble and deliver the RNA cargo. It was initially assumed that the structures of the virus from both hosts were equivalent. New evidence that alphaviruses and flaviviruses can exist in more than one conformation postenvelopment will be discussed in this review. The data are limited but should refocus the field of structural biology on the metastable nature of these viruses.

  12. Magnetic Control of Convection during Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteract terrestrial gravity. The genera1 objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagentic salts and solutions in magnetic fields and compare them to analyticalprctions.

  13. Integrative structure modeling with the Integrative Modeling Platform.

    PubMed

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  14. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex.

    PubMed

    Man, Si Ming; Hopkins, Lee J; Nugent, Eileen; Cox, Susan; Glück, Ivo M; Tourlomousis, Panagiotis; Wright, John A; Cicuta, Pietro; Monie, Tom P; Bryant, Clare E

    2014-05-20

    Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro-IL-1β substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing during Salmonella infection.

  15. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  16. MACROMOLECULAR THERAPEUTICS

    PubMed Central

    Yang, Jiyuan; Kopeček, Jindřich

    2014-01-01

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines – (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. PMID:24747162

  17. Fifteen years of the Protein Crystallography Station: The coming of age of macromolecular neutron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Julian C.-H.; Unkefer, Clifford Jay

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technicalmore » outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. As a result, this review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.« less

  18. Fifteen years of the Protein Crystallography Station: The coming of age of macromolecular neutron crystallography

    DOE PAGES

    Chen, Julian C.-H.; Unkefer, Clifford Jay

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technicalmore » outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. As a result, this review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.« less

  19. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography

    PubMed Central

    Chen, Julian C.-H.

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo­graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s. PMID:28250943

  20. An Overview of NASA Biotechnology

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1997-01-01

    Biotechnology research at NASA has comprised three separate areas; cell science and tissue culture, separations methods, and macromolecular crystal growth. This presentation will primarily focus on the macromolecular crystal growth.

  1. Brownian dynamics simulation of protein diffusion in crowded environments

    NASA Astrophysics Data System (ADS)

    Mereghetti, Paolo; Wade, Rebecca C.

    2013-02-01

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. We first describe the development of a Brownian dynamics simulation methodology to investigate the dynamic and structural properties of protein solutions using atomic-detail protein structures. We then discuss insights obtained from applying this approach to simulation of solutions of a range of types of proteins.

  2. MOLECULAR THEORY OF HYDROPHOBIC EFFECTS: "She is too mean to have her name repeated."*

    NASA Astrophysics Data System (ADS)

    Pratt, Lawrence R.

    2002-10-01

    This paper reviews the molecular theory of hydrophobic effects relevant to biomolecular structure and assembly in aqueous solution. Recent progress has resulted in simple, validated molecular statistical thermodynamic theories and clarification of confusing theories of decades ago. Current work is resolving effects of wider variations of thermodynamic state, e.g., pressure denaturation of soluble proteins, and more exotic questions such as effects of surface chemistry in treating stability of macromolecular structures in aqueous solution.

  3. Distribution of gamma-glutamyl-beta-alanylhistidine isopeptide in the macromolecular fractions of commercial meat extracts and correlation with the color of the macromolecular fractions.

    PubMed

    Kuroda, Motonaka; Harada, Tsutomu

    2002-03-27

    The measurement of gamma-glutamyl-beta-alanylhistidine isopeptide in the macromolecular fraction of various commercial meat extracts indicated that all of the commercial meat extracts tested contained the isopeptide, in concentrations ranging from 0.04 to 0.87 micromol/g of dry matter. This variation was suggested to be due to the differences between the processes of extraction and the differences in the initial amounts of carnosine. A positive correlation between the content of gamma-glutamyl-beta-alanylhistidine and the color of the macromolecular fraction was observed. These results suggested that gamma-glutamyl-beta-alanylhistidine is widely distributed in meat products and that the content can be used as an index of protein denaturation during the heating process.

  4. A hierarchical approach to cooperativity in macromolecular and self-assembling binding systems.

    PubMed

    Garcés, Josep Lluís; Acerenza, Luis; Mizraji, Eduardo; Mas, Francesc

    2008-04-01

    The study of complex macromolecular binding systems reveals that a high number of states and processes are involved in their mechanism of action, as has become more apparent with the sophistication of the experimental techniques used. The resulting information is often difficult to interpret because of the complexity of the scheme (large size and profuse interactions, including cooperative and self-assembling interactions) and the lack of transparency that this complexity introduces into the interpretation of the indexes traditionally used to describe the binding properties. In particular, cooperative behaviour can be attributed to very different causes, such as direct chemical modification of the binding sites, conformational changes in the whole structure of the macromolecule, aggregation processes between different subunits, etc. In this paper, we propose a novel approach for the analysis of the binding properties of complex macromolecular and self-assembling systems. To quantify the binding behaviour, we use the global association quotient defined as K(c) = [occupied sites]/([free sites] L), L being the free ligand concentration. K(c) can be easily related to other measures of cooperativity (such as the Hill number or the Scatchard plot) and to the free energies involved in the binding processes at each ligand concentration. In a previous work, it was shown that K(c) could be decomposed as an average of equilibrium constants in two ways: intrinsic constants for Adair binding systems and elementary constants for the general case. In this study, we show that these two decompositions are particular cases of a more general expression, where the average is over partial association quotients, associated with subsystems from which the system is composed. We also show that if the system is split into different subsystems according to a binding hierarchy that starts from the lower, microscopic level and ends at the higher, aggregation level, the global association quotient can be decomposed following the hierarchical levels of macromolecular organisation. In this process, the partial association quotients of one level are expressed, in a recursive way, as a function of the partial quotients of the level that is immediately below, until the microscopic level is reached. As a result, the binding properties of very complex macromolecular systems can be analysed in detail, making the mechanistic explanation of their behaviour transparent. In addition, our approach provides a model-independent interpretation of the intrinsic equilibrium constants in terms of the elementary ones.

  5. Macromolecular therapeutics.

    PubMed

    Yang, Jiyuan; Kopeček, Jindřich

    2014-09-28

    This review covers water-soluble polymer-drug conjugates and macromolecules that possess biological activity without attached low molecular weight drugs. The main design principles of traditional and backbone degradable polymer-drug conjugates as well as the development of a new paradigm in nanomedicines - (low molecular weight) drug-free macromolecular therapeutics are discussed. To address the biological features of cancer, macromolecular therapeutics directed to stem/progenitor cells and the tumor microenvironment are deliberated. Finally, the future perspectives of the field are briefly debated. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Control of Macromolecular Architectures for Renewable Polymers: Case Studies

    NASA Astrophysics Data System (ADS)

    Tang, Chuanbing

    The development of sustainable polymers from nature biomass is growing, but facing fierce competition from existing petrochemical-based counterparts. Controlling macromolecular architectures to maximize the properties of renewable polymers is a desirable approach to gain advantages. Given the complexity of biomass, there needs special consideration other than traditional design. In the presentation, I will talk about a few case studies on how macromolecular architectures could tune the properties of sustainable bioplastics and elastomers from renewable biomass such as resin acids (natural rosin) and plant oils.

  7. Making more matrix: enhancing the deposition of dermal-epidermal junction components in vitro and accelerating organotypic skin culture development, using macromolecular crowding.

    PubMed

    Benny, Paula; Badowski, Cedric; Lane, E Birgitte; Raghunath, Michael

    2015-01-01

    Skin is one of the most accessible tissues for experimental biomedical sciences, and cultured skin cells represent one of the longest-running clinical applications of stem cell therapy. However, culture-generated skin mimetic multicellular structures are still limited in their application by the time taken to develop these constructs in vitro and by their incomplete differentiation. The development of a functional dermal-epidermal junction (DEJ) is one of the most sought after aspects of cultured skin, and one of the hardest to recreate in vitro. At the DEJ, dermal fibroblasts and epidermal keratinocytes interact to form an interlinked basement membrane of extracellular matrix (ECM), which forms as a concerted action of both keratinocytes and fibroblasts. Successful formation of this basement membrane is essential for take and stability of cultured skin autografts. We studied interactive matrix production by monocultures and cocultures of primary human keratinocytes and fibroblasts in an attempt to improve the efficiency of basement membrane production in culture using mixed macromolecular crowding (mMMC); resulting ECM were enriched with the deposition of collagens I, IV, fibronectin, and laminin 332 (laminin 5) and also in collagen VII, the anchoring fibril component. Our in vitro data point to fibroblasts, rather than keratinocytes, as the major cellular contributors of the DEJ. Not only did we find more collagen VII production and deposition by fibroblasts in comparison to keratinocytes, but also observed that decellularized fibroblast ECM stimulated the production and deposition of collagen VII by keratinocytes, over and above that of keratinocyte monocultures. In confrontation cultures, keratinocytes and fibroblasts showed spontaneous segregation and demarcation of cell boundaries by DEJ protein deposition. Finally, mMMC was used in a classical organotypic coculture protocol with keratinocytes seeded over fibroblast-containing collagen gels. Applied during the submerged phase, mMMC was sufficient to accelerate the emergence of collagen VII along the de novo DEJ, together with stronger transglutaminase activity in the neoepidermis. Our findings corroborate the role of fibroblasts as important players in producing collagen VII and inducing collagen VII deposition in the DEJ, and that macromolecular crowding leads to organotypic epidermal differentiation in tissue culture in a significantly condensed time frame.

  8. Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect

    PubMed Central

    Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel

    2013-01-01

    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli. PMID:23633942

  9. Soft interactions and volume exclusion by polymeric crowders can stabilize or destabilize transient structure in disordered proteins depending on polymer concentration.

    PubMed

    Rusinga, Farai I; Weis, David D

    2017-08-01

    The effects of macromolecular crowding on the transient structure of intrinsically disordered proteins is not well-understood. Crowding by biological molecules inside cells could modulate transient structure and alter IDP function. Volume exclusion theory and observations of structured proteins suggest that IDP transient structure would be stabilized by macromolecular crowding. Amide hydrogen exchange (HX) of IDPs in highly concentrated polymer solutions would provide valuable insights into IDP transient structure under crowded conditions. Here, we have used mass spectrometry to measure HX by a transiently helical random coil domain of the activator of thyroid and retinoid receptor (ACTR) in solutions containing 300 g L -1 and 400 g L -1 of Ficoll, a synthetic polysaccharide, using a recently-developed strong cation exchange-based cleanup method [Rusinga, et al., Anal Chem 2017;89:1275-1282]. Transiently helical regions of ACTR exchanged faster in 300 g L -1 Ficoll than in dilute buffer. In contrast, one transient helix exchanged more slowly in 400 g L -1 Ficoll. Nonspecific interactions destabilize ACTR helicity in 300 g L -1 Ficoll because ACTR engages with the Ficoll polymer mesh. In contrast, 400 g L -1 Ficoll is a semi-dilute solution where ACTR cannot engage the Ficoll mesh. At this higher concentration, volume exclusion stabilizes ACTR helicity because ACTR is compacted in interstitial spaces between Ficoll molecules. Our results suggest that the interplay between nonspecific interactions and volume exclusion in different cellular compartments could modulate IDP function by altering the stability of IDP transient structures. Proteins 2017; 85:1468-1479. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Structures and mechanisms of vesicle coat components and multisubunit tethering complexes

    PubMed Central

    Jackson, Lauren P; Kümmel, Daniel; Reinisch, Karin M; Owen, David J

    2012-01-01

    Eukaryotic cells face a logistical challenge in ensuring prompt and precise delivery of vesicular cargo to specific organelles within the cell. Coat protein complexes select cargo and initiate vesicle formation, while multisubunit tethering complexes participate in the delivery of vesicles to target membranes. Understanding these macromolecular assemblies has greatly benefited from their structural characterization. Recent structural data highlight principles in coat recruitment and uncoating in both the endocytic and retrograde pathways, and studies on the architecture of tethering complexes provide a framework for how they might link vesicles to the respective acceptor compartments and the fusion machinery. PMID:22728063

  11. Crystal pathologies in macromolecular crystallography.

    PubMed

    Dauter, Zbigniew; Jaskólski, Mariusz

    Macromolecules, such as proteins or nucleic acids, form crystals with a large volume fraction of water, ~50% on average. Apart from typical physical defects and rather trivial poor quality problems, macromolecular crystals, as essentially any crystals, can also suffer from several kinds of pathologies, in which everything seems to be perfect, except that from the structural point of view the interpretation may be very difficult, sometimes even impossible. A frequent nuisance is pseudosymmetry, or non-crystallographic symmetry (NCS), which is particularly nasty when it has translational character. Lattice-translocation defects, also called order-disorder twinning (OD-twinning), occur when molecules are packed regularly in layers but the layers are stacked (without rotation) in two (or more) discrete modes, with a unique translocation vector. Crystal twinning arises when twin domains have different orientations, incompatible with the symmetry of the crystal structure. There are also crystals in which the periodic (lattice) order is broken or absent altogether. When the strict short-range translational order from one unit cell to the next is lost but the long-range order is restored by a periodic modulation, we have a modulated crystal structure. In quasicrystals (not observed for macromolecules yet), the periodic order (in 3D space) is lost completely and the diffraction pattern (which is still discrete) cannot be even indexed using three hkl indices. In addition, there are other physical defects and phenomena (such as high mosaicity, diffraction anisotropy, diffuse scattering, etc.) which make diffraction data processing and structure solution difficult or even impossible.

  12. Research Associate | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  13. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    NASA Astrophysics Data System (ADS)

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-08-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes.

  14. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    PubMed Central

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-01-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes. PMID:27478033

  15. Progressive Stochastic Reconstruction Technique (PSRT) for cryo electron tomography.

    PubMed

    Turoňová, Beata; Marsalek, Lukas; Davidovič, Tomáš; Slusallek, Philipp

    2015-03-01

    Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Discovering Free Energy Basins for Macromolecular Systems via Guided Multiscale Simulation

    PubMed Central

    Sereda, Yuriy V.; Singharoy, Abhishek B.; Jarrold, Martin F.; Ortoleva, Peter J.

    2012-01-01

    An approach for the automated discovery of low free energy states of macromolecular systems is presented. The method does not involve delineating the entire free energy landscape but proceeds in a sequential free energy minimizing state discovery, i.e., it first discovers one low free energy state and then automatically seeks a distinct neighboring one. These states and the associated ensembles of atomistic configurations are characterized by coarse-grained variables capturing the large-scale structure of the system. A key facet of our approach is the identification of such coarse-grained variables. Evolution of these variables is governed by Langevin dynamics driven by thermal-average forces and mediated by diffusivities, both of which are constructed by an ensemble of short molecular dynamics runs. In the present approach, the thermal-average forces are modified to account for the entropy changes following from our knowledge of the free energy basins already discovered. Such forces guide the system away from the known free energy minima, over free energy barriers, and to a new one. The theory is demonstrated for lactoferrin, known to have multiple energy-minimizing structures. The approach is validated using experimental structures and traditional molecular dynamics. The method can be generalized to enable the interpretation of nanocharacterization data (e.g., ion mobility – mass spectrometry, atomic force microscopy, chemical labeling, and nanopore measurements). PMID:22423635

  17. Macromolecular crystallography beamline X25 at the NSLS

    PubMed Central

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community. PMID:24763654

  18. 417th Brookhaven Lecture

    ScienceCinema

    Huilin Li

    2017-12-09

    Proteins that cleave other proteins using a molecule of water, protease complexes are exquisite macromolecular machines involved in a multitude of physiological and cellular reactions. Our structural studies shed light into the inner workings of multi-protein assemblies, and they reveal a surprisingly common strategy for controlled proteolysis employed by the two drastically different machines. Further research will facilitate rational design of drugs for treating Tb infection and Alzheimer's disease.

  19. Variation in the Helical Structure of Native Collagen

    DTIC Science & Technology

    2014-02-24

    unsampled molecular transform of the sample (non-crystalline diffraction arising from the helical symmetry), these patterns also contain Bragg peaks...tissues may be treated as analogous to that from a single macromolecular crystal. Except that it arises from many fibrils within the sample , giving rise...density maps, constructed from experimentally determined phases and observed amplitudes, showed good agreement. The observed diffraction and the simulated

  20. SIL-STED microscopy technique enhancing super-resolution of fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Park, No-Cheol; Lim, Geon; Lee, Won-sup; Moon, Hyungbae; Choi, Guk-Jong; Park, Young-Pil

    2017-08-01

    We have characterized a new type STED microscope which combines a high numerical aperture (NA) optical head with a solid immersion lens (SIL), and we call it as SIL-STED microscope. The advantage of a SIL-STED microscope is that its high NA of the SIL makes it superior to a general STED microscope in lateral resolution, thus overcoming the optical diffraction limit at the macromolecular level and enabling advanced super-resolution imaging of cell surface or cell membrane structure and function Do. This study presents the first implementation of higher NA illumination in a STED microscope limiting the fluorescence lateral resolution to about 40 nm. The refractive index of the SIL which is made of material KTaO3 is about 2.23 and 2.20 at a wavelength of 633 nm and 780 nm which are used for excitation and depletion in STED imaging, respectively. Based on the vector diffraction theory, the electric field focused by the SILSTED microscope is numerically calculated so that the numerical results of the point dispersion function of the microscope and the expected resolution could be analyzed. For further investigation, fluorescence imaging of nano size fluorescent beads is fulfilled to show improved performance of the technique.

  1. Crowding Effects on the Formation and Maintenance of Nuclear Bodies: Insights from Molecular-Dynamics Simulations of Simple Spherical Model Particles

    PubMed Central

    Cho, Eun Jin; Kim, Jun Soo

    2012-01-01

    The physics of structure formation and maintenance of nuclear bodies (NBs), such as nucleoli, Cajal bodies, promyelocytic leukemia bodies, and speckles, in a crowded nuclear environment remains largely unknown. We investigate the role of macromolecular crowding in the formation and maintenance of NBs using computer simulations of a simple spherical model, called Lennard-Jones (LJ) particles. LJ particles form a one-phase, dilute fluid when the intermolecular interaction is weaker than a critical value, above which they phase separate and form a condensed domain. We find that when volume-exclusive crowders exist in significant concentrations, domain formation is induced even for weaker intermolecular interactions, and the effect is more pronounced with increasing crowder concentration. Simulation results show that a previous experimental finding that promyelocytic leukemia bodies disappear in the less-crowded condition and reassemble in the normal crowded condition can be interpreted as a consequence of the increased intermolecular interactions between NB proteins due to crowding. Based on further analysis of the simulation results, we discuss the acceleration of macromolecular associations that occur within NBs, and the delay of diffusive transport of macromolecules within and out of NBs when the crowder concentration increases. This study suggests that in a polydisperse nuclear environment that is enriched with a variety of macromolecules, macromolecular crowding not only plays an important role in the formation and maintenance of NBs, but also may perform some regulatory functions in response to alterations in the crowding conditions. PMID:22947858

  2. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina.

    PubMed

    Thakur, Sachin S; Ward, Micheal S; Popat, Amirali; Flemming, Nicole B; Parat, Marie-Odile; Barnett, Nigel L; Parekh, Harendra S

    2017-01-01

    Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM). The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.

  3. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina

    PubMed Central

    Thakur, Sachin S.; Ward, Micheal S.; Popat, Amirali; Flemming, Nicole B.; Parat, Marie-Odile; Barnett, Nigel L.

    2017-01-01

    Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM). The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye. PMID:28542473

  4. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    PubMed

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  5. A polymeric prodrug of 5-fluorouracil-1-acetic acid using a multi-hydroxyl polyethylene glycol derivative as the drug carrier.

    PubMed

    Li, Man; Liang, Zhen; Sun, Xun; Gong, Tao; Zhang, Zhirong

    2014-01-01

    Macromolecular prodrugs obtained by covalently conjugating small molecular drugs with polymeric carriers were proven to accomplish controlled and sustained release of the therapeutic agents in vitro and in vivo. Polyethylene glycol (PEG) has been extensively used due to its low toxicity, low immunogenicity and high biocompatibility. However, for linear PEG macromolecules, the number of available hydroxyl groups for drug coupling does not change with the length of polymeric chain, which limits the application of PEG for drug conjugation purposes. To increase the drug loading and prolong the retention time of 5-fluorouracil (5-Fu), a macromolecular prodrug of 5-Fu, 5-fluorouracil-1 acid-PAE derivative (5-FA-PAE) was synthesized and tested for the antitumor activity in vivo. PEG with a molecular weight of 38 kDa was selected to synthesize the multi-hydroxyl polyethylene glycol derivative (PAE) through an addition reaction. 5-fluorouracil-1 acetic acid (5-FA), a 5-Fu derivative was coupled with PEG derivatives via ester bond to form a macromolecular prodrug, 5-FA-PAE. The in vitro drug release, pharmacokinetics, in vivo distribution and antitumor effect of the prodrug were investigated, respectively. The PEG-based prodrug obtained in this study possessed an exceedingly high 5-FA loading efficiency of 10.58%, much higher than the maximum drug loading efficiency of unmodified PEG with the same molecular weight, which was 0.98% theoretically. Furthermore, 5-FA-PAE exhibited suitable sustained release in tumors. This study provides a new approach for the development of the delivery to tumors of anticancer agents with PEG derivatives.

  6. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction.

    PubMed

    Cabra, Vanessa; Samsó, Montserrat

    2015-01-09

    Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.

  7. Structural and functional changes in acute liver injury.

    PubMed Central

    Smuckler, E A

    1976-01-01

    Carbon tetrachloride produces liver cell injury in a variety of animal species. The first structurally recognizable changes occur in the endoplasmic reticulum, with alteration in ribosome-membrane interactions. Later there is an increase in intracellular fat, and the formation of tangled nets of the ergastoplasm. At no time are there changes in mitochondria or single membrane limited bodies in cells with intact plasmalemma, although a relative increase in cell sap may appear. In dead cells (those with plasmalemma discontinuties) crystalline deposits of calcium phosphatase may be noted. Functional changes are related to the endoplasmic reticulum and the plasma membrane. An early decrease in protein synthesis takes place; an accumulation of neutral lipid is related to this change. Later alterations in the ergastoplasmic functions (e.g., mixed function oxidation) occurs. Carbon tetrachloride is not the active agent; rather, a product of its metabolism, probably the CC1, free radical, is. The mechanisms of injury include macromolecular adduction and peroxide propagation. A third possibility includes a cascade effect with the production of secondary and tertiary products, also toxic in nature, with the ability to produce more widespread damage to intracellular structures. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 11. PMID:1001290

  8. Geochemical significance of alkylbenzene distributions in flash pyrolysates of kerogens, coals, and asphaltenes

    NASA Astrophysics Data System (ADS)

    Hartgers, Walter A.; Damsté, Jaap S. Sinninghe; de Leeuw, Jan W.

    1994-04-01

    The distribution of C 0-C 5 alkylbenzenes in flash pyrolysates of forty-seven immature kerogens and coals from different geographical locations and of different ages were studied using gas chromatography (GC) in combination with mass spectrometry (MS) in order to decipher the origin of aromatic moieties in macromolecular matter. All possible structural isomers of the alkylated benzenes were determined, and, in some cases, absolute yields were calculated. Sulphur-rich (Type II-S) kerogens yield higher absolute amounts of alkylbenzenes in comparison to Type I, II, and III kerogens. The variations in internal distribution patterns of C 2-C 4 alkylbenzenes were analyzed using multivariate analysis techniques (principal component analysis; PCA). Major variations in alkylbenzene distributions were due to an increased abundance of specific alkylbenzenes, which are related to specific precursor moieties in the macromolecular structure assuming that they are mainly formed via β-cleavage. Alkylbenzenes possessing "linear" carbon skeletons are enhanced in flash pyrolysates of Guttenberg and Estonian Kukersite kerogens (Type I) and are proposed to be derived from linear precursors which have undergone cyclization/aromatization. Relatively high amounts of 1,2,3,4- and 1,2,3,5-tetramethylbenzenes were found in flash pyrolysates of Womble and Duvernay kerogens (Type II) which are likely to be derived from macromolecularly bound diaromatic carotenoids. The relatively high abundance of 1,2,3-trimethylbenzene and 1,3-/1,4-dimethylbenzene in pyrolysates of Monterey kerogens (Type II-S) is proposed to be indicative of the presence of bound nonaromatic carotenoids (e.g., β,β-carotene) which have undergone aromatization and/or loss of methyl groups upon diagenesis. 1-methyl-4-isopropylbenzene, which appears in relatively high amounts in flash pyrolysates of Walcott Chuar kerogen (Type II) and Catalan coals (Type III), is thought to be derived from a heteroatom-bound precursor. These results demonstrate that the structure of monoaromatic moieties in kerogen is biologically controlled. The internal distribution patterns of alkylbenzenes of flash pyrolysates of kerogens and asphaltenes show a marked resemblance, the latter showing a slight enhancement of alkylbenzenes with longer carbon skeletons. These observations support the idea that asphaltenes are structurally related to kerogen and that aromatic moieties in asphaltenes are bound by fewer intermolecular bridges.

  9. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties

    NASA Astrophysics Data System (ADS)

    Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian

    2018-05-01

    Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.

  10. The Future of the Protein Data Bank

    PubMed Central

    Berman, Helen M.; Kleywegt, Gerard J.; Nakamura, Haruki; Markley, John L.

    2013-01-01

    The Worldwide Protein Data Bank (wwPDB) is the international collaboration that manages the deposition, processing and distribution of the PDB archive. The wwPDB’s mission is to maintain a single archive of macromolecular structural data that are freely and publicly available to the global community. Its members [RCSB PDB (USA), PDBe (Europe), PDBj (Japan), and BMRB (USA)] host data-deposition sites and mirror the PDB ftp archive. To support future developments in structural biology, the wwPDB partners are addressing organizational, scientific, and technical challenges. PMID:23023942

  11. Multidimensional Methods for the Formulation of Biopharmaceuticals and Vaccines

    PubMed Central

    Maddux, Nathaniel R.; Joshi, Sangeeta B.; Volkin, David B.; Ralston, John P.; Middaugh, C. Russell

    2013-01-01

    Determining and preserving the higher order structural integrity and conformational stability of proteins, plasmid DNA and macromolecular complexes such as viruses, virus-like particles and adjuvanted antigens is often a significant barrier to the successful stabilization and formulation of biopharmaceutical drugs and vaccines. These properties typically must be investigated with multiple lower resolution experimental methods, since each technique monitors only a narrow aspect of the overall conformational state of a macromolecular system. This review describes the use of empirical phase diagrams (EPDs) to combine large amounts of data from multiple high-throughput instruments and construct a map of a target macromolecule's physical state as a function of temperature, solvent conditions, and other stress variables. We present a tutorial on the mathematical methodology, an overview of some of the experimental methods typically used, and examples of some of the previous major formulation applications. We also explore novel applications of EPDs including potential new mathematical approaches as well as possible new biopharmaceutical applications such as analytical comparability, chemical stability, and protein dynamics. PMID:21647886

  12. Current status and future prospects of an automated sample exchange system PAM for protein crystallography

    NASA Astrophysics Data System (ADS)

    Hiraki, M.; Yamada, Y.; Chavas, L. M. G.; Matsugaki, N.; Igarashi, N.; Wakatsuki, S.

    2013-03-01

    To achieve fully-automated and/or remote data collection in high-throughput X-ray experiments, the Structural Biology Research Centre at the Photon Factory (PF) has installed PF automated mounting system (PAM) for sample exchange robots at PF macromolecular crystallography beamlines BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. We are upgrading the experimental systems, including the PAM for stable and efficient operation. To prevent human error in automated data collection, we installed a two-dimensional barcode reader for identification of the cassettes and sample pins. Because no liquid nitrogen pipeline in the PF experimental hutch is installed, the users commonly add liquid nitrogen using a small Dewar. To address this issue, an automated liquid nitrogen filling system that links a 100-liter tank to the robot Dewar has been installed on the PF macromolecular beamline. Here we describe this new implementation, as well as future prospects.

  13. The Quality and Validation of Structures from Structural Genomics

    PubMed Central

    Domagalski, Marcin J.; Zheng, Heping; Zimmerman, Matthew D.; Dauter, Zbigniew; Wlodawer, Alexander; Minor, Wladek

    2014-01-01

    Quality control of three-dimensional structures of macromolecules is a critical step to ensure the integrity of structural biology data, especially those produced by structural genomics centers. Whereas the Protein Data Bank (PDB) has proven to be a remarkable success overall, the inconsistent quality of structures reveals a lack of universal standards for structure/deposit validation. Here, we review the state-of-the-art methods used in macromolecular structure validation, focusing on validation of structures determined by X-ray crystallography. We describe some general protocols used in the rebuilding and re-refinement of problematic structural models. We also briefly discuss some frontier areas of structure validation, including refinement of protein–ligand complexes, automation of structure redetermination, and the use of NMR structures and computational models to solve X-ray crystal structures by molecular replacement. PMID:24203341

  14. Structured crowding and its effects on enzyme catalysis.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2013-01-01

    Macromolecular crowding decreases the diffusion rate, shifts the equilibrium of protein-protein and protein-substrate interactions, and changes protein conformational dynamics. Collectively, these effects contribute to enzyme catalysis. Here we describe how crowding may bias the conformational change and dynamics of enzyme populations and in this way affect catalysis. Crowding effects have been studied using artificial crowding agents and in vivo-like environments. These studies revealed a correlation between protein dynamics and function in the crowded environment. We suggest that crowded environments be classified into uniform crowding and structured crowding. Uniform crowding represents random crowding conditions created by synthetic particles with a narrow size distribution. Structured crowding refers to the highly coordinated cellular environment, where proteins and other macromolecules are clustered and organized. In structured crowded environments the perturbation of protein thermal stability may be lower; however, it may still be able to modulate functions effectively and dynamically. Dynamic, allosteric enzymes could be more sensitive to cellular perturbations if their free energy landscape is flatter around the native state; on the other hand, if their free energy landscape is rougher, with high kinetic barriers separating deep minima, they could be more robust. Above all, cells are structured; and this holds both for the cytosol and for the membrane environment. The crowded environment is organized, which limits the search, and the crowders are not necessarily inert. More likely, they too transmit allosteric effects, and as such play important functional roles. Overall, structured cellular crowding may lead to higher enzyme efficiency and specificity.

  15. The thermodynamic and hydrodynamic properties of macromolecules that influence the hydrodynamics of porous systems.

    PubMed

    Comper, W D

    1994-06-21

    The water flow across porous, semipermeable membranes associated with osmosis and filtration under a variety of conditions is analysed and compared to macromolecular diffusion across free-liquid boundaries, diffusion and sedimentation in the ultracentrifuge, and tracer diffusion of water. This study establishes that osmosis can be explained in terms of the irreversible thermodynamics of diffusion. For macromolecular osmotically active solutes in the semidilute concentration regime the water flows across semipermeable porous membranes are interpreted in terms of a rate-limiting solute-solvent exchange layer that exists on the solution side of the membrane adjacent to the membrane pore; both osmosis and filtration will be governed by these exchange layers. These exchange layers also yield unique properties of their constituent molecules in systems where there is osmotic equilibration between solutions of different solutes. This study also establishes the need to consider the internal osmotic pressure of membranes in the pressure balance associated with the flow across the membrane. The complex situation of partially permeable membranes is analysed for the simple case where there are no mechanical gradients and there is only one osmotically active solution that creates a rate-limiting exchange layer. This treatment predicts that the flow will be governed primarily by the osmotic pressure difference associated with the partitioning of the solute at the membrane-solution interface.

  16. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  17. Simvastatin Prodrug Micelles Target Fracture and Improve Healing

    PubMed Central

    Dusad, Anand; Yuan, Hongjiang; Ren, Ke; Li, Fei; Fehringer, Edward V.; Purdue, P. Edward; Goldring, Steven R.; Daluiski, Aaron; Wang, Dong

    2014-01-01

    Simvastatin (SIM), a widely used anti-lipidaemic drug, has been identified as a bone anabolic agent. Its poor water solubility and the lack of distribution to the skeleton, however, have limited its application in the treatment of bone metabolic diseases. In this study, an amphiphilic macromolecular prodrug of SIM was designed and synthesized to overcome these limitations. The polyethylene glycol (PEG)-based prodrug can spontaneously self-assemble to form micelles. The use of SIM trimer as the prodrug’s hydrophobic segment allows easy encapsulation of additional free SIM. The in vitro studies showed that SIM/SIM-mPEG micelles were internalized by MC3T3 cells via lysosomal trafficking and consistently induced expression of both BMP2 and DKK1 mRNA, suggesting that the prodrug micelle retains the biological functions of SIM. After systemic administration, optical imaging suggests that the micelles would passively target to bone fracture sites associated with hematoma and inflammation. Furthermore, flow cytometry study revealed that SIM/SIM-mPEG micelles had preferred cellular uptake by inflammatory and resident cells within the fracture callus tissue. The treatment study using a mouse osteotomy model validated the micelles’ therapeutic efficacy in promoting bone fracture healing as demonstrated by micro-CT and histological analyses. Collectively, these data suggest that the macromolecular prodrug-based micelle formulation of SIM may have great potential for clinical management of impaired fracture healing. PMID:25542644

  18. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data.

    PubMed

    Terwilliger, Thomas C; Bricogne, Gerard

    2014-10-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.

  19. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    DOE PAGES

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore » was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  20. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    PubMed Central

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-01-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering. PMID:25286839

  1. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas C.; Bricogne, Gerard

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore » was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  2. SASSIE: A program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints

    NASA Astrophysics Data System (ADS)

    Curtis, Joseph E.; Raghunandan, Sindhu; Nanda, Hirsh; Krueger, Susan

    2012-02-01

    A program to construct ensembles of biomolecular structures that are consistent with experimental scattering data are described. Specifically, we generate an ensemble of biomolecular structures by varying sets of backbone dihedral angles that are then filtered using experimentally determined restraints to rapidly determine structures that have scattering profiles that are consistent with scattering data. We discuss an application of these tools to predict a set of structures for the HIV-1 Gag protein, an intrinsically disordered protein, that are consistent with small-angle neutron scattering experimental data. We have assembled these algorithms into a program called SASSIE for structure generation, visualization, and analysis of intrinsically disordered proteins and other macromolecular ensembles using neutron and X-ray scattering restraints. Program summaryProgram title: SASSIE Catalogue identifier: AEKL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 3 991 624 No. of bytes in distributed program, including test data, etc.: 826 Distribution format: tar.gz Programming language: Python, C/C++, Fortran Computer: PC/Mac Operating system: 32- and 64-bit Linux (Ubuntu 10.04, Centos 5.6) and Mac OS X (10.6.6) RAM: 1 GB Classification: 3 External routines: Python 2.6.5, numpy 1.4.0, swig 1.3.40, scipy 0.8.0, Gnuplot-py-1.8, Tcl 8.5, Tk 8.5, Mac installation requires aquaterm 1.0 (or X window system) and Xcode 3 development tools. Nature of problem: Open source software to generate structures of disordered biological molecules that subsequently allow for the comparison of computational and experimental results is limiting the use of scattering resources. Solution method: Starting with an all atom model of a protein, for example, users can input regions to vary dihedral angles, ensembles of structures can be generated. Additionally, simple two-body rigid-body rotations are supported with and without disordered regions. Generated structures can then be used to calculate small-angle scattering profiles which can then be filtered against experimentally determined data. Filtered structures can be visualized individually or as an ensemble using density plots. In the modular and expandable program framework the user can easily access our subroutines and structural coordinates can be easily obtained for study using other computational physics methods. Additional comments: The distribution file for this program is over 159 Mbytes and therefore is not delivered directly when download or Email is requested. Instead an html file giving details of how the program can be obtained is sent. Running time: Varies depending on application. Typically 10 minutes to 24 hours depending on the number of generated structures.

  3. Possibilities for serial femtosecond crystallography sample delivery at future light sourcesa)

    PubMed Central

    Chavas, L. M. G.; Gumprecht, L.; Chapman, H. N.

    2015-01-01

    Serial femtosecond crystallography (SFX) uses X-ray pulses from free-electron laser (FEL) sources that can outrun radiation damage and thereby overcome long-standing limits in the structure determination of macromolecular crystals. Intense X-ray FEL pulses of sufficiently short duration allow the collection of damage-free data at room temperature and give the opportunity to study irreversible time-resolved events. SFX may open the way to determine the structure of biological molecules that fail to crystallize readily into large well-diffracting crystals. Taking advantage of FELs with high pulse repetition rates could lead to short measurement times of just minutes. Automated delivery of sample suspensions for SFX experiments could potentially give rise to a much higher rate of obtaining complete measurements than at today's third generation synchrotron radiation facilities, as no crystal alignment or complex robotic motions are required. This capability will also open up extensive time-resolved structural studies. New challenges arise from the resulting high rate of data collection, and in providing reliable sample delivery. Various developments for fully automated high-throughput SFX experiments are being considered for evaluation, including new implementations for a reliable yet flexible sample environment setup. Here, we review the different methods developed so far that best achieve sample delivery for X-ray FEL experiments and present some considerations towards the goal of high-throughput structure determination with X-ray FELs. PMID:26798808

  4. An improved cryo-FIB method for fabrication of frozen hydrated lamella.

    PubMed

    Zhang, Jianguo; Ji, Gang; Huang, Xiaojun; Xu, Wei; Sun, Fei

    2016-05-01

    Cryo-electron tomography (cryo-ET) provides great insights into the ultrastructure of cells and tissues in their native state and provides a promising way to study the in situ 3D structures of macromolecular complexes. However, this technique has been limited on the very thin specimen, which is not applicable for most cells and tissues. Besides cryo-sectioning approach, cryo focused ion beam (cryo-FIB) appeared recently to achieve 'artifact-free' thin frozen hydrated lamella via fabrication. Considering that the current cryo-FIB methods need modified holders or cartridges, here, with a "D-shaped" molybdenum grid and a specific shutter system, we developed a simple cryo-FIB approach for thin frozen hydrated lamella fabrication, which fits both standard transmission cryo-electron microscopes with side-entry cryo-holders and state-of-the-art ones with AutoGrids. Our approach will expand the usage of cryo-FIB approach in many labs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Nanoparticle formulations of cisplatin for cancer therapy

    PubMed Central

    Duan, Xiaopin; He, Chunbai; Kron, Stephen J.; Lin, Wenbin

    2016-01-01

    The genotoxic agent cisplatin, used alone or in combination with radiation and/or other chemotherapeutic agents, is an important first-line chemotherapy for a broad range of cancers. The clinical utility of cisplatin is limited both by intrinsic and acquired resistance and dose-limiting normal tissue toxicity. That cisplatin shows little selectivity for tumor versus normal tissue may be a critical factor limiting its value. To overcome the low therapeutic ratio of the free drug, macromolecular, liposomal and nanoparticle drug delivery systems have been explored toward leveraging the enhanced permeability and retention (EPR) effect and promoting delivery of cisplatin to tumors. Here, we survey recent advances in nanoparticle formulations of cisplatin, focusing on agents that show promise in preclinical or clinical settings. PMID:26848041

  6. Benefits and Limitations of Low-kV Macromolecular Imaging of Frozen-Hydrated Biological Samples

    PubMed Central

    Majorovits, Endre; Angert, Isabel; Kaiser, Ute; Schröder, Rasmus R.

    2016-01-01

    Object contrast is one of the most important parameters of macromolecular imaging. Low-voltage transmission electron microscopy has shown an increased atom contrast for carbon materials, indicating that amplitude contrast contributions increase at a higher rate than phase contrast and inelastic scattering. Here, we studied image contrast using ice-embedded tobacco mosaic virus particles as test samples at 20–80 keV electron energy. The particles showed the expected increase in contrast for lower energies, but at the same time the 2.3-nm-resolution measure decayed more rapidly. We found a pronounced signal loss below 60 keV, and therefore we conclude that increased inelastic scattering counteracts increased amplitude contrast. This model also implies that as long as the amplitude contrast does not increase with resolution, beam damage and multiple scattering will always win over increased contrast at the lowest energies. Therefore, we cannot expect that low-energy imaging of conventionally prepared samples would provide better data than state-of-the-art 200–300 keV imaging. PMID:26910420

  7. On macromolecular refinement at subatomic resolution with interatomic scatterers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2007-11-01

    Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented bymore » additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.« less

  8. Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy.

    PubMed

    Fortun, Denis; Guichard, Paul; Hamel, Virginie; Sorzano, Carlos Oscar S; Banterle, Niccolo; Gonczy, Pierre; Unser, Michael

    2018-05-01

    The imaging of proteins within macromolecular complexes has been limited by the low axial resolution of optical microscopes. To overcome this problem, we propose a novel computational reconstruction method that yields isotropic resolution in fluorescence imaging. The guiding principle is to reconstruct a single volume from the observations of multiple rotated particles. Our new operational framework detects particles, estimates their orientation, and reconstructs the final volume. The main challenge comes from the absence of initial template and a priori knowledge about the orientations. We formulate the estimation as a blind inverse problem, and propose a block-coordinate stochastic approach to solve the associated non-convex optimization problem. The reconstruction is performed jointly in multiple channels. We demonstrate that our method is able to reconstruct volumes with 3D isotropic resolution on simulated data. We also perform isotropic reconstructions from real experimental data of doubly labeled purified human centrioles. Our approach revealed the precise localization of the centriolar protein Cep63 around the centriole microtubule barrel. Overall, our method offers new perspectives for applications in biology that require the isotropic mapping of proteins within macromolecular assemblies.

  9. Nexus Between Protein–Ligand Affinity Rank-Ordering, Biophysical Approaches, and Drug Discovery

    PubMed Central

    2013-01-01

    The confluence of computational and biophysical methods to accurately rank-order the binding affinities of small molecules and determine structures of macromolecular complexes is a potentially transformative advance in the work flow of drug discovery. This viewpoint explores the impact that advanced computational methods may have on the efficacy of small molecule drug discovery and optimization, particularly with respect to emerging fragment-based methods. PMID:24900579

  10. Biophysics of Water: A Working Conference.

    DTIC Science & Technology

    1981-09-15

    penicillinase can be explained by the effects of urea or quanidine on the properties of the water rather than the protein. A sometimes forgotten role of water...solvent it contributes to structure; and in combination with macromolecules it becomes a lubricant. All these effects depend on water-macromolecular...and quanidine in approximately equal molar concentrations tend to cancel each other’s effect leaving the protein unchanged. Secondly, it was pointed

  11. Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Borgstahl, Gloria E. O.; Bellamy, Henry D.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    There are many ways of judging a good crystal. Which we use depends on the qualities we seek. For gemstones size, clarity and impurity levels (color) are paramount. For the semiconductor industry purity is probably the most important quality. For the structural crystallographer the primary desideratum is the somewhat more subtle concept of internal order. In this chapter we discuss the effect of internal order (or the lack of it) on the crystal's diffraction properties.

  12. The Enigma of the Respiratory Chain Supercomplex.

    PubMed

    Milenkovic, Dusanka; Blaza, James N; Larsson, Nils-Göran; Hirst, Judy

    2017-04-04

    Respiratory chain dysfunction plays an important role in human disease and aging. It is now well established that the individual respiratory complexes can be organized into supercomplexes, and structures for these macromolecular assemblies, determined by electron cryo-microscopy, have been described recently. Nevertheless, the reason why supercomplexes exist remains an enigma. The widely held view that they enhance catalysis by channeling substrates is challenged by both structural and biophysical information. Here, we evaluate and discuss data and hypotheses on the structures, roles, and assembly of respiratory-chain supercomplexes and propose a future research agenda to address unanswered questions. Copyright © 2017. Published by Elsevier Inc.

  13. Photodegradation of major soil microbial biomolecules is comparable to biodegradation: Insights from infrared and diffusion editing NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Spence, Adrian; Kelleher, Brian P.

    2016-03-01

    As a primary decomposition process in terrestrial biosystems, biodegradation has been extensively studied with regard to its impact on soil organic matter transformation. However, the biotransformation of soil microbial biomass (a primary source of soil organic carbon) remains poorly understood, and even less is known about the fate of microbial-derived carbon under photodegradation. Here, we combine infrared and diffusion editing NMR spectroscopies to provide molecular-level information on the photodegradation of major biochemical components in soil microbial biomass and leachates over time. Results indicate a considerable enrichment in aliphatic components, presumably polymethylenic-C [(C-H2)n] and the simultaneous loss of carbohydrate and protein structures in the biomass. An immediate conclusion is that photodegradation increased the conversion of macromolecular carbohydrates and proteins to smaller components. However, further analysis reveals that macromolecular carbohydrates and proteins may be more resistant to photodegradation than initially thought and are found in the leachates. Although attenuated, there is also evidence to suggest that some aliphatic structures persist in the leachates. Overall, the photodegradation pathway reported here is remarkably similar to that of biodegradation, suggesting that under rapidly expanding anthropogenic land disturbances, photodegradation could be an important driver of the transformation of microbial-derived organic matter in terrestrial biosystems.

  14. EPICS controlled sample mounting robots at the GM/CA CAT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, O. A.; Benn, R.; Corcoran, S.

    2007-11-11

    GM/CA CAT at Sector 23 of the advanced photon source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction [R.F. Fischetti, et al., GM/CA canted undulator beamlines for protein crystallography, Acta Crystallogr. A 61 (2005) C139]. The facility consists of three beamlines; two based on canted undulators and one on a bending magnet. The scientific and technical goals of the CAT emphasize streamlined, efficient throughput for a variety of sample types, sizes and qualities, representing the cutting edge of structural biology research. For this purpose all three beamlines are equipped with the ALS-stylemore » robots [C.W.Cork, et al. Status of the BCSB automated sample mounting and alignment system for macromolecular crystallography at the Advanced Light Source, SRI-2003, San-Francisco, CA, USA, August 25-29, 2003] for an automated mounting of cryo-protected macromolecular crystals. This report summarizes software and technical solutions implemented with the first of the three operational robots at beamline 23-ID-B. The automounter's Dewar can hold up to 72 or 96 samples residing in six Rigaku ACTOR magazines or ALS-style pucks, respectively. Mounting of a crystal takes approximately 2 s, during which time the temperature of the crystal is maintained near that of liquid nitrogen.« less

  15. Proteolysis of microtubule associated protein 2 and sensitivity of pancreatic tumours to docetaxel

    PubMed Central

    Veitia, R; David, S; Barbier, P; Vantard, M; Gounon, P; Bissery, M C; Fellous, A

    2000-01-01

    We have studied the state of microtubule associated protein 2 (MAP2) in the pancreatic ductal adenocarcinomas P03 and P02 (sensitive and refractory to docetaxel respectively) since they express the corresponding mRNA and MAP2-related peptides. Immunohistochemical localization showed that in tumour P03 the MAP2-related peptides are highly expressed and confined to the epithelial malignant cells while in P02 the intensity of the immunostaining is lower. However, anti α-tubulin staining followed a similar pattern suggesting that the net amount of macromolecular structures in the sensitive tumour is higher than in the refractory one. This may explain its higher sensitivity to docetaxel, because tubulin assembled into microtubules is the target of the drug. We found that protein extracts from both tumours differed in their proteolytic activity on rat brain MAP2. Since the proteolysis pattern obtained was similar to the one produced by Cathepsin D, we studied the effect of MAP2 proteolysed by this enzyme on microtubule formation in vitro. Proteolysis was found to increase the tendency of tubulin to assemble into macromolecular structures (microtubules and aggregates) in the presence of docetaxel. This suggests that in vivo proteolysis of MAP2 might increase microtubule alterations and potentiate the antitumour effect of docetaxel. © 2000 Cancer Research Campaign PMID:10945505

  16. The solvent component of macromolecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less

  17. JAIL: a structure-based interface library for macromolecules.

    PubMed

    Günther, Stefan; von Eichborn, Joachim; May, Patrick; Preissner, Robert

    2009-01-01

    The increasing number of solved macromolecules provides a solid number of 3D interfaces, if all types of molecular contacts are being considered. JAIL annotates three different kinds of macromolecular interfaces, those between interacting protein domains, interfaces of different protein chains and interfaces between proteins and nucleic acids. This results in a total number of about 184,000 database entries. All the interfaces can easily be identified by a detailed search form or by a hierarchical tree that describes the protein domain architectures classified by the SCOP database. Visual inspection of the interfaces is possible via an interactive protein viewer. Furthermore, large scale analyses are supported by an implemented sequential and by a structural clustering. Similar interfaces as well as non-redundant interfaces can be easily picked out. Additionally, the sequential conservation of binding sites was also included in the database and is retrievable via Jmol. A comprehensive download section allows the composition of representative data sets with user defined parameters. The huge data set in combination with various search options allow a comprehensive view on all interfaces between macromolecules included in the Protein Data Bank (PDB). The download of the data sets supports numerous further investigations in macromolecular recognition. JAIL is publicly available at http://bioinformatics.charite.de/jail.

  18. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.

    2015-07-28

    A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling andmore » validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  19. How to assign a (3 + 1)-dimensional superspace group to an incommensurately modulated biological macromolecular crystal

    PubMed Central

    2017-01-01

    Periodic crystal diffraction is described using a three-dimensional (3D) unit cell and 3D space-group symmetry. Incommensurately modulated crystals are a subset of aperiodic crystals that need four to six dimensions to describe the observed diffraction pattern, and they have characteristic satellite reflections that are offset from the main reflections. These satellites have a non-integral relationship to the primary lattice and require q vectors for processing. Incommensurately modulated biological macromolecular crystals have been frequently observed but so far have not been solved. The authors of this article have been spearheading an initiative to determine this type of crystal structure. The first step toward structure solution is to collect the diffraction data making sure that the satellite reflections are well separated from the main reflections. Once collected they can be integrated and then scaled with appropriate software. Then the assignment of the superspace group is needed. The most common form of modulation is in only one extra direction and can be described with a (3 + 1)D superspace group. The (3 + 1)D superspace groups for chemical crystallographers are fully described in Volume C of International Tables for Crystallography. This text includes all types of crystallographic symmetry elements found in small-molecule crystals and can be difficult for structural biologists to understand and apply to their crystals. This article provides an explanation for structural biologists that includes only the subset of biological symmetry elements and demonstrates the application to a real-life example of an incommensurately modulated protein crystal. PMID:28808437

  20. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    PubMed

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-03-14

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  1. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    PubMed Central

    Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-01

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively. PMID:29324716

  2. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.

    PubMed

    Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-11

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame-retardant mechanism of the APP/PETAT IFR system. The results indicated that the efficient flame retardancy of PP/IFR composites could be attributed to the synergism of the free radical-quenching and char layer-protecting mechanisms in the gas phase and condense phase, respectively.

  3. Microfocus diffraction from different regions of a protein crystal: structural variations and unit-cell polymorphism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Michael C.; Cascio, Duilio; Yeates, Todd O.

    Real macromolecular crystals can be non-ideal in a myriad of ways. This often creates challenges for structure determination, while also offering opportunities for greater insight into the crystalline state and the dynamic behavior of macromolecules. To evaluate whether different parts of a single crystal of a dynamic protein, EutL, might be informative about crystal and protein polymorphism, a microfocus X-ray synchrotron beam was used to collect a series of 18 separate data sets from non-overlapping regions of the same crystal specimen. A principal component analysis (PCA) approach was employed to compare the structure factors and unit cells across the datamore » sets, and it was found that the 18 data sets separated into two distinct groups, with largeRvalues (in the 40% range) and significant unit-cell variations between the members of the two groups. This categorization mapped the different data-set types to distinct regions of the crystal specimen. Atomic models of EutL were then refined against two different data sets obtained by separately merging data from the two distinct groups. A comparison of the two resulting models revealed minor but discernable differences in certain segments of the protein structure, and regions of higher deviation were found to correlate with regions where larger dynamic motions were predicted to occur by normal-mode molecular-dynamics simulations. The findings emphasize that large spatially dependent variations may be present across individual macromolecular crystals. This information can be uncovered by simultaneous analysis of multiple partial data sets and can be exploited to reveal new insights about protein dynamics, while also improving the accuracy of the structure-factor data ultimately obtained in X-ray diffraction experiments.« less

  4. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate.

    PubMed

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-19

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson-Evans-type polyoxometalate (POM), specifically Na6 [TeW6 O24 ]⋅22 H2 O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid-liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein-protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  5. Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions

    PubMed Central

    Strulson, Christopher A.; Boyer, Joshua A.; Whitman, Elisabeth E.; Bevilacqua, Philip C.

    2014-01-01

    Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg2+ ion concentrations are low, K+ concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo–like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg2+ (0.5–2 mM) and K+ (140 mM) if the solution is supplemented with physiological amounts (∼20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution. PMID:24442612

  6. 75 FR 21232 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Institute, Kent State University, Summit Street, PO Box 5190, Kent, OH 44242. Instrument: Electron... W. State Street, Lilly Hall, B126, West Lafayette, IN 47907-2054. Instrument: Electron Microscope... viruses and other macromolecular assemblies. Using cryo-electron microscopy, numerous virus/macromolecular...

  7. Performances of different protocols for exocellular polysaccharides extraction from milk acid gels: Application to yogurt.

    PubMed

    Nguyen, An Thi-Binh; Nigen, Michaël; Jimenez, Luciana; Ait-Abderrahim, Hassina; Marchesseau, Sylvie; Picart-Palmade, Laetitia

    2018-01-15

    Dextran or xanthan were used as model exocellular polysaccharides (EPS) to compare the extraction efficiency of EPS from skim milk acid gels using three different protocols. Extraction yields, residual protein concentrations and the macromolecular properties of extracted EPS were determined. For both model EPS, the highest extraction yield (∼80%) was obtained when samples were heated in acidic conditions at the first step of extraction (Protocol 1). Protocols that contained steps of acid/ethanol precipitation without heating (Protocols 2 and 3) show lower extraction yields (∼55%) but allow a better preservation of the EPS macromolecular properties. Changing the pH of acid gels up to 7 before extraction (Protocol 3) improved the extraction yield of anionic EPS without effect on the macromolecular properties of EPS. Protocol 1 was then applied for the quantification of EPS produced during the yogurt fermentation, while Protocol 3 was dedicated to their macromolecular characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Depth-Dependent Anisotropies of Amides and Sugar in Perpendicular and Parallel Sections of Articular Cartilage by Fourier Transform Infrared Imaging (FTIRI)

    PubMed Central

    Xia, Yang; Mittelstaedt, Daniel; Ramakrishnan, Nagarajan; Szarko, Matthew; Bidthanapally, Aruna

    2010-01-01

    Full thickness blocks of canine humeral cartilage were microtomed into both perpendicular sections and a series of 100 parallel sections, each 6 μm thick. Fourier Transform Infrared Imaging (FTIRI) was used to image each tissue section eleven times under different infrared polarizations (from 0° to 180° polarization states in 20° increments and with an additional 90° polarization), at a spatial resolution of 6.25 μm and a wavenumber step of 8 cm−1. With increasing depth from the articular surface, amide anisotropies increased in the perpendicular sections and decreased in the parallel sections. Both types of tissue sectioning identified a 90° difference between amide I and amide II in the superficial zone of cartilage. The fibrillar distribution in the parallel sections from the superficial zone was shown to not be random. Sugar had the greatest anisotropy in the upper part of the radial zone in the perpendicular sections. The depth-dependent anisotropic data were fitted with a theoretical equation that contained three signature parameters, which illustrate the arcade structure of collagens with the aid of a fibril model. Infrared imaging of both perpendicular and parallel sections provides the possibility of determining the three-dimensional macromolecular structures in articular cartilage. Being sensitive to the orientation of the macromolecular structure in healthy articular cartilage aids the prospect of detecting the early onset of the tissue degradation that may lead to pathological conditions such as osteoarthritis. PMID:21274999

  9. Synthesis and crystal structure of catena-bis(nicotinamide)aqua({mu}-phthalato)copper(II) hemihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Koksharova, T. V.; Antsyshkina, A. S.

    2008-07-15

    The copper(II) phthalate complex with nicotinamide [CuL{sub 2}({mu}-Pht)(H{sub 2}O)] . 0.5H{sub 2}O(I) (where L is nicotinamide and Pht{sup 2-} is an anion of phthalic acid) is synthesized and investigated using IR spectroscopy and X-ray diffraction. The crystals of compound I are monoclinic, a = 13.368(2) A, b = 7.891(3) A, c = 20.480(2) A, {beta} = 108.69(2){sup o}, Z = 4, and space group P2{sub 1}/c. The structural units of crystal I are linear chains formed by bridging phthalate anions and crystallization water molecules. The copper atom is coordinated by two pyridine nitrogen atoms of two nicotinamide ligands (Cu-N, 2.001more » and 2.045 A), two oxygen atoms of different phthalate anions (Cu-O, 1.964 and 2.235 A), and the oxygen atom of the H{sub 2} O molecule (Cu-O, 2.014 A). The coordination polyhedron of the copper atom is completed to an elongated (4 + 1 + 1) tetragonal bipyramid by the second (chelating) oxygen atom of the carboxyl group (Cu-O, 2.587 A), which is one of the anions of phthalic acid. The linear polymer molecules are joined into complex macromolecular dimers with the closest internal contacts of the specific type. The macromolecular dimers are the main supramolecular ensembles of the crystal structure.« less

  10. What is bioinformatics? A proposed definition and overview of the field.

    PubMed

    Luscombe, N M; Greenbaum, D; Gerstein, M

    2001-01-01

    The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. Our definition is as follows: Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Analyses in bioinformatics predominantly focus on three types of large datasets available in molecular biology: macromolecular structures, genome sequences, and the results of functional genomics experiments (e.g. expression data). Additional information includes the text of scientific papers and "relationship data" from metabolic pathways, taxonomy trees, and protein-protein interaction networks. Bioinformatics employs a wide range of computational techniques including sequence and structural alignment, database design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding, and expression data clustering. The emphasis is on approaches integrating a variety of computational methods and heterogeneous data sources. Finally, bioinformatics is a practical discipline. We survey some representative applications, such as finding homologues, designing drugs, and performing large-scale censuses. Additional information pertinent to the review is available over the web at http://bioinfo.mbb.yale.edu/what-is-it.

  11. Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis

    2007-07-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which togethermore » formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller crystals, and on more rapidly screening larger numbers of candidate crystals; all of these requirements translate directly into a pressing need for increased flux, a tighter beam focus and faster detectors. With these growing demands in mind a major program of beamline and detector upgrades was initiated in 2004 with the goal of dramatically enhancing all aspects of beamline performance. Approximately $3 million in funding from diverse sources including NIH, LBL, the ALS, and the industrial and academic members of the beamline Participating Research Team (PRT), has been employed to develop and install new high performance beamline optics and to purchase the latest generation of CCD detectors. This project, which reached fruition in early 2007, has now fulfilled all of its original goals--boosting the flux on all three beamlines by up to 20-fold--with a commensurate reduction in exposure and data acquisition times for users. The performance of the Sector 5.0 beamlines is now comparable to that of the latest generation ALS superbend beamlines and, in the case of beamline 5.0.2, even surpasses it by a considerable margin. Indeed, the present performance of this beamline is now, once again, comparable to that envisioned for many MX beamlines planned or under construction on newer or higher energy machines.« less

  12. Polymeric anticancer drugs with pH-controlled activation.

    PubMed

    Ulbrich, Karel; Subr, Vladimír

    2004-04-23

    Use of macromolecular water-soluble carriers of anti-cancer drugs represents a promising approach to cancer therapy. Release of drugs from the carrier system is a prerequisite for therapeutic activity of most macromolecular anti-cancer conjugates. Incorporation of acid-sensitive spacers between the drug and carrier enables release of an active drug from the carrier in a tumor tissue, either in slightly acidic extracellular fluids or, after endocytosis, in endosomes or lysosomes of cancer cells. This paper reviews advances in development and study of properties of various acid-sensitive macromolecular drug delivery systems, starting from simple polymer-drug conjugates to ending with site-specific antibody-targeted polymer-drug conjugates.

  13. 76 FR 10067 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... Production Act of 1993--Industrial Macromolecular Crystallography Association Correction In notice document... National Cooperative Research and Production Act of 1993--Industrial Nacromolecular Crystallography...--Industrial Macromolecular Crystallography Association''. 2. On the same page, in the second column, in the...

  14. Automated crystallographic system for high-throughput protein structure determination.

    PubMed

    Brunzelle, Joseph S; Shafaee, Padram; Yang, Xiaojing; Weigand, Steve; Ren, Zhong; Anderson, Wayne F

    2003-07-01

    High-throughput structural genomic efforts require software that is highly automated, distributive and requires minimal user intervention to determine protein structures. Preliminary experiments were set up to test whether automated scripts could utilize a minimum set of input parameters and produce a set of initial protein coordinates. From this starting point, a highly distributive system was developed that could determine macromolecular structures at a high throughput rate, warehouse and harvest the associated data. The system uses a web interface to obtain input data and display results. It utilizes a relational database to store the initial data needed to start the structure-determination process as well as generated data. A distributive program interface administers the crystallographic programs which determine protein structures. Using a test set of 19 protein targets, 79% were determined automatically.

  15. Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.

    PubMed

    Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji

    2016-11-23

    The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.

  16. Carbon molecules in space: from astrochemistry to astrobiology.

    PubMed

    Ehrenfreund, Pascale; Sephton, Mark A

    2006-01-01

    How complex carbonaceous molecules in space are, what their abundance is and on what timescales they form are crucial questions within cosmochemistry. Despite the large heterogeneity of galactic and interstellar regions the organic chemistry in the universe seems to follow common pathways. The largest fraction of carbon in the universe is incorporated into aromatic molecules (gaseous polycyclic aromatic hydrocarbon as well as solid macromolecular aromatic structures). Macromolecular carbon constitutes more than half of the interstellar carbon, approximately 80% of the carbon in meteorites, and is likely to be present in comets. Molecules of high astrobiological relevance such as N-heterocycles, amino acids and pre-sugars have all been identified in trace quantities (ppb) in extracts of carbonaceous meteorites. Their presence in inter- and circumstellar regions is either unknown or contentious. In any event such fragile species are easily destroyed by UV radiation, shocks and thermal processing and are unlikely to survive incorporation into Solar System material without some degradation. The more refractory material, in particular macromolecular carbon may retain an interstellar heritage more faithfully. We present laboratory measurements on the photostability of organic compounds and discuss their survival in regions with elevated UV radiation. We also show recent observations of diffuse interstellar bands indicating the presence of fullerenes. We investigate the link between the carbon chemistry in interstellar space and in the Solar System by analyzing the carbonaceous fraction of meteorites and by reviewing stable isotopic data. It also seems evident that both volatile and refractory material from carbonaceous meteoritic has been substantially altered owing to thermal and aqueous processing within the Solar System.

  17. Release of sulfur- and oxygen-bound components from a sulfur-rich kerogen during simulated maturation by hydrous pyrolysis

    USGS Publications Warehouse

    Putschew, A.; Schaeffer-Reiss, C.; Schaeffer, P.; Koopmans, M.P.; De Leeuw, J. W.; Lewan, M.D.; Sinninghe, Damste J.S.; Maxwell, J.R.

    1998-01-01

    An immature sulfur-rich marl from the Gessosso-solfifera Formation of the Vena del Gesso Basin (Messinian, Italy) has been subjected to hydrous pyrolysis (160 to 330??C) to simulate maturation under natural conditions. The kerogen of the unheated and heated samples was isolated and the hydrocarbons released by selective chemical degradation (Li/EtNH2 and HI/LiAIH4) were analysed to allow a study of the fate of sulfur- and oxygen-bound species with increasing temperature. The residues from the chemical treatments were also subjected to pyrolysis-GC to follow structural changes in the kerogens. In general, with increasing hydrous pyrolysis temperature, the amounts of sulfide- and ether-bound components in the kerogen decreased significantly. At the temperature at which the generation of expelled oil began (260??C), almost all of the bound components initially present in the unheated sample were released from the kerogen. Comparison with an earlier study of the extractable organic matter using a similar approach and the same samples provides molecular evidence that, with increasing maturation, solvent-soluble macromolecular material was initially released from the kerogen, notably as a result of thermal cleavage of weak Carbon-heteroatom bonds (sulfide, ester, ether) even at temperatures as low as 220??C. This solvent-soluble macromolecular material then underwent thermal cleavage to generate hydrocarbons at higher temperatures. This early generation of bitumen may explain the presence of unusually high amounts of extractable organic matter of macromolecular nature in very immature S-rich sediments.

  18. A Polymeric Prodrug of 5-Fluorouracil-1-Acetic Acid Using a Multi-Hydroxyl Polyethylene Glycol Derivative as the Drug Carrier

    PubMed Central

    Sun, Xun; Gong, Tao; Zhang, Zhirong

    2014-01-01

    Purpose Macromolecular prodrugs obtained by covalently conjugating small molecular drugs with polymeric carriers were proven to accomplish controlled and sustained release of the therapeutic agents in vitro and in vivo. Polyethylene glycol (PEG) has been extensively used due to its low toxicity, low immunogenicity and high biocompatibility. However, for linear PEG macromolecules, the number of available hydroxyl groups for drug coupling does not change with the length of polymeric chain, which limits the application of PEG for drug conjugation purposes. To increase the drug loading and prolong the retention time of 5-fluorouracil (5-Fu), a macromolecular prodrug of 5-Fu, 5-fluorouracil-1 acid-PAE derivative (5-FA-PAE) was synthesized and tested for the antitumor activity in vivo. Methods PEG with a molecular weight of 38 kDa was selected to synthesize the multi-hydroxyl polyethylene glycol derivative (PAE) through an addition reaction. 5-fluorouracil-1 acetic acid (5-FA), a 5-Fu derivative was coupled with PEG derivatives via ester bond to form a macromolecular prodrug, 5-FA-PAE. The in vitro drug release, pharmacokinetics, in vivo distribution and antitumor effect of the prodrug were investigated, respectively. Results The PEG-based prodrug obtained in this study possessed an exceedingly high 5-FA loading efficiency of 10.58%, much higher than the maximum drug loading efficiency of unmodified PEG with the same molecular weight, which was 0.98% theoretically. Furthermore, 5-FA-PAE exhibited suitable sustained release in tumors. Conclusion This study provides a new approach for the development of the delivery to tumors of anticancer agents with PEG derivatives. PMID:25389968

  19. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium

    PubMed Central

    Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter

    2015-01-01

    Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634

  20. Probing the Complex Architecture of Multimodular Carbohydrate-Active Enzymes Using a Combination of Small Angle X-Ray Scattering and X-Ray Crystallography.

    PubMed

    Czjzek, Mirjam; Ficko-Blean, Elizabeth

    2017-01-01

    The various modules in multimodular carbohydrate-active enzymes (CAZymes) may function in catalysis, carbohydrate binding, protein-protein interactions or as linkers. Here, we describe how combining the biophysical techniques of Small Angle X-ray Scattering (SAXS) and macromolecular X-ray crystallography (XRC) provides a powerful tool for examination into questions related to overall structural organization of ultra multimodular CAZymes.

  1. High-Molecular Compounds (Selected Articles).

    DTIC Science & Technology

    1987-10-15

    us ions The method of potentiometric titration in dimethylformamide was used to study the structure of macro molecular chain of copolymers based on...macromolecular chain we used the method of potential metric titration . The objects of the study uere alpha chloroacrylic acid (KO)K) in monomer...homopolymer, and copolymer (with methylmethacrylate) form 131. I e d* r. I%0 I 0 12 # z Curves of potential metric titration of solutions of copolymers of KjAK

  2. Automated data collection based on RoboDiff at the ESRF beamline MASSIF-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurizzo, Didier, E-mail: Didier.nurizzo@esrf.fr; Guichard, Nicolas; McSweeney, Sean

    2016-07-27

    The European Synchrotron Radiation Facility has a long standing history in the automation of experiments in Macromolecular Crystallography. MASSIF-1 (Massively Automated Sample Screening and evaluation Integrated Facility), a beamline constructed as part of the ESRF Upgrade Phase I program, has been open to the external user community since July 2014 and offers a unique completely automated data collection service to both academic and industrial structural biologists.

  3. Block copolymer libraries: modular versatility of the macromolecular Lego system.

    PubMed

    Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S

    2004-12-21

    The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.

  4. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    ERIC Educational Resources Information Center

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  5. 75 FR 156 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... personal privacy. Name of Committee: Biological Chemistry and Macromolecular Biophysics Integrated Review..., Bethesda, MD 20892. (301) 451-1323. [email protected] . Name of Committee: Biological Chemistry and... Chemistry and Macromolecular Biophysics. Date: January 28-29, 2010. Time: 11 a.m. to 10 p.m. Agenda: To...

  6. A Natural Documentation Retrieval System for Macromolecular Chemistry

    ERIC Educational Resources Information Center

    Ulbrich, Raimund; Wierer, Jutta

    1972-01-01

    An indexing system for chemistry and technology of macromolecular substances is sketched out, whose characteristics are convenience of use and low cost. The selection mechanism consists of a set of optical coincidence cards. The selection is a result of 15 years experience in the German Plastics Institute. (13 references) (Author)

  7. PDB file parser and structure class implemented in Python.

    PubMed

    Hamelryck, Thomas; Manderick, Bernard

    2003-11-22

    The biopython project provides a set of bioinformatics tools implemented in Python. Recently, biopython was extended with a set of modules that deal with macromolecular structure. Biopython now contains a parser for PDB files that makes the atomic information available in an easy-to-use but powerful data structure. The parser and data structure deal with features that are often left out or handled inadequately by other packages, e.g. atom and residue disorder (if point mutants are present in the crystal), anisotropic B factors, multiple models and insertion codes. In addition, the parser performs some sanity checking to detect obvious errors. The Biopython distribution (including source code and documentation) is freely available (under the Biopython license) from http://www.biopython.org

  8. CCP4i2: the new graphical user interface to the CCP4 program suite.

    PubMed

    Potterton, Liz; Agirre, Jon; Ballard, Charles; Cowtan, Kevin; Dodson, Eleanor; Evans, Phil R; Jenkins, Huw T; Keegan, Ronan; Krissinel, Eugene; Stevenson, Kyle; Lebedev, Andrey; McNicholas, Stuart J; Nicholls, Robert A; Noble, Martin; Pannu, Navraj S; Roth, Christian; Sheldrick, George; Skubak, Pavol; Turkenburg, Johan; Uski, Ville; von Delft, Frank; Waterman, David; Wilson, Keith; Winn, Martyn; Wojdyr, Marcin

    2018-02-01

    The CCP4 (Collaborative Computational Project, Number 4) software suite for macromolecular structure determination by X-ray crystallography groups brings together many programs and libraries that, by means of well established conventions, interoperate effectively without adhering to strict design guidelines. Because of this inherent flexibility, users are often presented with diverse, even divergent, choices for solving every type of problem. Recently, CCP4 introduced CCP4i2, a modern graphical interface designed to help structural biologists to navigate the process of structure determination, with an emphasis on pipelining and the streamlined presentation of results. In addition, CCP4i2 provides a framework for writing structure-solution scripts that can be built up incrementally to create increasingly automatic procedures.

  9. Automated batch fiducial-less tilt-series alignment in Appion using Protomo

    PubMed Central

    Noble, Alex J.; Stagg, Scott M.

    2015-01-01

    The field of electron tomography has benefited greatly from manual and semi-automated approaches to marker-based tilt-series alignment that have allowed for the structural determination of multitudes of in situ cellular structures as well as macromolecular structures of individual protein complexes. The emergence of complementary metal-oxide semiconductor detectors capable of detecting individual electrons has enabled the collection of low dose, high contrast images, opening the door for reliable correlation-based tilt-series alignment. Here we present a set of automated, correlation-based tilt-series alignment, contrast transfer function (CTF) correction, and reconstruction workflows for use in conjunction with the Appion/Leginon package that are primarily targeted at automating structure determination with cryogenic electron microscopy. PMID:26455557

  10. Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits

    PubMed Central

    Kollmer, Marius; Meinhardt, Katrin; Haupt, Christian; Liberta, Falk; Wulff, Melanie; Linder, Julia; Handl, Lisa; Heinrich, Liesa; Loos, Cornelia; Schmidt, Matthias; Syrovets, Tatiana; Simmet, Thomas; Westermark, Per; Westermark, Gunilla T.; Horn, Uwe; Schmidt, Volker; Walther, Paul; Fändrich, Marcus

    2016-01-01

    Electron tomography is an increasingly powerful method to study the detailed architecture of macromolecular complexes or cellular structures. Applied to amyloid deposits formed in a cell culture model of systemic amyloid A amyloidosis, we could determine the structural morphology of the fibrils directly in the deposit. The deposited fibrils are arranged in different networks, and depending on the relative fibril orientation, we can distinguish between fibril meshworks, fibril bundles, and amyloid stars. These networks are frequently infiltrated by vesicular lipid inclusions that may originate from the death of the amyloid-forming cells. Our data support the role of nonfibril components for constructing fibril deposits and provide structural views of different types of lipid–fibril interactions. PMID:27140609

  11. The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as determined by limited proteolysis, chemical modification, and mass spectrometry.

    PubMed

    Williams, Jason G; Tomer, Kenneth B; Hioe, Catarina E; Zolla-Pazner, Susan; Norris, Philip J

    2006-11-01

    In the last decade, mass spectrometry has been employed by more and more researchers for identifying the proteins in a macromolecular complex as well as for defining the surfaces of their binding interfaces. This characterization of protein-protein interfaces usually involves at least one of several different methodologies in addition to the actual mass spectrometry. For example, limited proteolysis is often used as a first step in defining regions of a protein that are protected from proteolysis when the protein of interest is part of a macromolecular complex. Other techniques used in conjunction with mass spectrometry for determining regions of a protein involved in protein-protein interactions include chemical modification, such as covalent cross-linking, acetylation of lysines, hydrogen-deuterium exchange, or other forms of modification. In this report, both limited proteolysis and chemical modification were combined with several mass spectrometric techniques in efforts to define the protein surface on the HIV core protein, p24, recognized by two different monoclonal human antibodies that were isolated from HIV+ patients. One of these antibodies, 1571, strongly inhibits the CD4+ T cell proliferative response to a known epitope (PEVIPMFSALSEGATP), while the other antibody, 241-D, does not inhibit as strongly. The epitopes for both of these antibodies were determined to be discontinuous and localized to the N-terminus of p24. Interestingly, the epitope recognized by the strongly inhibiting antibody, 1571, completely overlaps the T cell epitope PEVIPMFSALSEGATP, while the antibody 241-D binds to a region adjacent to the region of p24 recognized by the antibody 1571. These results suggest that, possibly due to epitope competition, antibodies produced during HIV infection can negatively affect CD4+ T cell-mediated immunity against the virus.

  12. How cryo‐electron microscopy and X‐ray crystallography complement each other

    PubMed Central

    Wang, Jia‐Wei

    2016-01-01

    Abstract With the ability to resolve structures of macromolecules at atomic resolution, X‐ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo‐EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X‐ray crystallography and cryo‐EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms. PMID:27543495

  13. How cryo-electron microscopy and X-ray crystallography complement each other.

    PubMed

    Wang, Hong-Wei; Wang, Jia-Wei

    2017-01-01

    With the ability to resolve structures of macromolecules at atomic resolution, X-ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo-EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X-ray crystallography and cryo-EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms. © 2016 The Protein Society.

  14. Automated MAD and MIR structure solution

    PubMed Central

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    Obtaining an electron-density map from X-ray diffraction data can be difficult and time-consuming even after the data have been collected, largely because MIR and MAD structure determinations currently require many subjective evaluations of the qualities of trial heavy-atom partial structures before a correct heavy-atom solution is obtained. A set of criteria for evaluating the quality of heavy-atom partial solutions in macromolecular crystallography have been developed. These have allowed the conversion of the crystal structure-solution process into an optimization problem and have allowed its automation. The SOLVE software has been used to solve MAD data sets with as many as 52 selenium sites in the asymmetric unit. The automated structure-solution process developed is a major step towards the fully automated structure-determination, model-building and refinement procedure which is needed for genomic scale structure determinations. PMID:10089316

  15. Rapid, Optimized Interactomic Screening

    PubMed Central

    Hakhverdyan, Zhanna; Domanski, Michal; Hough, Loren; Oroskar, Asha A.; Oroskar, Anil R.; Keegan, Sarah; Dilworth, David J.; Molloy, Kelly R.; Sherman, Vadim; Aitchison, John D.; Fenyö, David; Chait, Brian T.; Jensen, Torben Heick; Rout, Michael P.; LaCava, John

    2015-01-01

    We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screen that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners and the elucidation of their functional interactions in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles even for well-studied proteins. Our approach is robust, economical and automatable, providing an inroad to the rigorous, systematic dissection of cellular interactomes. PMID:25938370

  16. Workshop on Molecular Animation

    PubMed Central

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E.

    2011-01-01

    Summary February 25–26, 2010, in San Francisco, the Resource for Biocomputing, Visualization and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for: producing high quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories. PMID:20947014

  17. Macromolecular metal carboxylates

    NASA Astrophysics Data System (ADS)

    Dzhardimalieva, G. I.; Pomogailo, A. D.

    2008-03-01

    Data on the synthesis and physicochemical studies of salts of mono- or dibasic unsaturated carboxylic acids and unsaturated metal oxo-carboxylates are generalised and described systematically. The structures and properties of the COO group in various compounds and characteristic features of the structures of carboxylate complexes are analysed. The main routes and kinetics of polymerisation transformations of unsaturated metal carboxylates are considered. The attention is focused on the effect of the metal ion on the monomer reactivity and the polymer morphology and structure. The possibility of stereochemical control of radical polymerisation of unsaturated metal carboxylates is demonstrated. The electronic, magnetic, optical, absorption and thermal properties of metal (co)polymers and nanocomposites and their main applications are considered.

  18. NGL Viewer: a web application for molecular visualization

    PubMed Central

    Rose, Alexander S.; Hildebrand, Peter W.

    2015-01-01

    The NGL Viewer (http://proteinformatics.charite.de/ngl) is a web application for the visualization of macromolecular structures. By fully adopting capabilities of modern web browsers, such as WebGL, for molecular graphics, the viewer can interactively display large molecular complexes and is also unaffected by the retirement of third-party plug-ins like Flash and Java Applets. Generally, the web application offers comprehensive molecular visualization through a graphical user interface so that life scientists can easily access and profit from available structural data. It supports common structural file-formats (e.g. PDB, mmCIF) and a variety of molecular representations (e.g. ‘cartoon, spacefill, licorice’). Moreover, the viewer can be embedded in other web sites to provide specialized visualizations of entries in structural databases or results of structure-related calculations. PMID:25925569

  19. The development of structural x-ray crystallography

    NASA Astrophysics Data System (ADS)

    Woolfson, M. M.

    2018-03-01

    From its birth in 1912, when only the simplest structures could be solved, x-ray structural crystallography is now able to solve macromolecular structures containing many thousands of independent non-hydrogen atoms. This progress has depended on, and been driven by, great technical advances in the development of powerful synchrotron x-ray sources, advanced automated equipment for the collection and storage of large data sets and powerful computers to deal with everything from data processing to running programmes employing complex algorithms for the automatic solution of structures. The sheer number of developments in the subject over the past century makes it impossible for this review to be exhaustive, but it will describe some major developments that will enable the reader to understand how the subject has grown from its humble beginnings to what it is today.

  20. Rapid automated superposition of shapes and macromolecular models using spherical harmonics.

    PubMed

    Konarev, Petr V; Petoukhov, Maxim V; Svergun, Dmitri I

    2016-06-01

    A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented ( SUPALM ). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models ( e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [ J. Appl. Cryst. (2001 ▸), 34 , 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB . The spherical harmonics algorithm is best suited for low-resolution shape models, e.g . those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.

  1. A Beam line for Macromolecular Crystallography in ALBA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanhuix, Jordi; Ferrer, Salvador

    2007-01-19

    ALBA is a third generation 3 GeV storage ring being built near Barcelona and foreseen to be operational in 2010. Out of the seven beamlines already funded in ALBA, one will be dedicated to macromolecular crystallography (MX). The beamline, dubbed XALOC, shall cope with a broad range of crystal structures and sizes. To this aim, a flexible optical design involving variable focusing optics has been incorporated into the beamline optics. The photon source will be a 2 m long, in-vacuum undulator with a period of 21.3 mm. The optics will consist in a Si(111), double-crystal monochromator cryogenically cooled, and amore » pair of mirrors placed in a Kirkpatrick-Baez configuration. The beamline will deliver a high flux beam in the 5-15 keV energy range, with an energy resolution of {delta}E/E {approx}2 x 10-4. In addition to the main beamline, it is being considered the possibility to use a diamond laue monochromator to provide photons at a fixed wavelength to an ancillary branch. This report shows the present status of the beamline design.« less

  2. Macromolecular refinement by model morphing using non-atomic parameterizations.

    PubMed

    Cowtan, Kevin; Agirre, Jon

    2018-02-01

    Refinement is a critical step in the determination of a model which explains the crystallographic observations and thus best accounts for the missing phase components. The scattering density is usually described in terms of atomic parameters; however, in macromolecular crystallography the resolution of the data is generally insufficient to determine the values of these parameters for individual atoms. Stereochemical and geometric restraints are used to provide additional information, but produce interrelationships between parameters which slow convergence, resulting in longer refinement times. An alternative approach is proposed in which parameters are not attached to atoms, but to regions of the electron-density map. These parameters can move the density or change the local temperature factor to better explain the structure factors. Varying the size of the region which determines the parameters at a particular position in the map allows the method to be applied at different resolutions without the use of restraints. Potential applications include initial refinement of molecular-replacement models with domain motions, and potentially the use of electron density from other sources such as electron cryo-microscopy (cryo-EM) as the refinement model.

  3. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes.

    PubMed

    Lee, Kenneth K; Sardiu, Mihaela E; Swanson, Selene K; Gilmore, Joshua M; Torok, Michael; Grant, Patrick A; Florens, Laurence; Workman, Jerry L; Washburn, Michael P

    2011-07-05

    Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt-Ada-Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants.

  4. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes

    PubMed Central

    Lee, Kenneth K; Sardiu, Mihaela E; Swanson, Selene K; Gilmore, Joshua M; Torok, Michael; Grant, Patrick A; Florens, Laurence; Workman, Jerry L; Washburn, Michael P

    2011-01-01

    Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt–Ada–Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants. PMID:21734642

  5. Molecular Simulation Evaluation of Macromolecular Transport through Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    Almodovar Arbelo, Noelia; Boudouris, Bryan; Corti, David

    A hybrid Monte Carlo and Molecular Dynamics simulation technique was implemented to elucidate the equilibrium behavior and transport properties of a model macromolecule as it navigated across a nanoporous polymer thin film (i.e., a nanofiltration membrane). The model linear homopolymer chosen was one that had interactions that were representative of poly(ethylene oxide) (PEO) due to the known interactions of PEO with solution molecules when a PEO chain is dissolved in an aqueous environment. The structural rearrangements of the PEO chain as it passes through the nanopore under an imposed chemical potential gradient was quantified as a function of solvent quality, polymer chain length, nanopore diameter and shape, and PEO-nanopore wall interactions. Thus, these computational studies provide a more detailed picture of the underlying physical mechanisms that drive macromolecular transport through nanopores, and, in particular, how dimensionally-large macromolecules (i.e., with large radii of gyration) enter and move through dimensionally-small pores (i.e., small radii nanopores). The insights gained from these studies will aid in the development of more cost-effective water purification systems in separation technologies for myriad industrial applications.

  6. Improvement of an automated protein crystal exchange system PAM for high-throughput data collection

    PubMed Central

    Hiraki, Masahiko; Yamada, Yusuke; Chavas, Leonard M. G.; Wakatsuki, Soichi; Matsugaki, Naohiro

    2013-01-01

    Photon Factory Automated Mounting system (PAM) protein crystal exchange systems are available at the following Photon Factory macromolecular beamlines: BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. The beamline AR-NE3A has been constructed for high-throughput macromolecular crystallography and is dedicated to structure-based drug design. The PAM liquid-nitrogen Dewar can store a maximum of three SSRL cassettes. Therefore, users have to interrupt their experiments and replace the cassettes when using four or more of them during their beam time. As a result of investigation, four or more cassettes were used in AR-NE3A alone. For continuous automated data collection, the size of the liquid-nitrogen Dewar for the AR-NE3A PAM was increased, doubling the capacity. In order to check the calibration with the new Dewar and the cassette stand, calibration experiments were repeatedly performed. Compared with the current system, the parameters of the novel system are shown to be stable. PMID:24121334

  7. Grain sorghum dust increases macromolecular efflux from the in situ nasal mucosa.

    PubMed

    Gao, X P

    1998-04-01

    The purpose of this study was to determine whether an aqueous extract of grain sorghum dust increases macromolecular efflux from the nasal mucosa in vivo and, if so, whether this response is mediated, in part, by substance P. Suffusion of grain sorghum dust extract on the in situ nasal mucosa of anesthetized hamsters elicits a significant increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass, 70 kDa; P < 0.05). This response is significantly attenuated by CP-96345 and RP-67580, two selective, but structurally distinct, nonpeptide neurokinin 1 (substance P)-receptor antagonists, but not by CP-96344, the 2R,3R enantiomer of CP-96345 (P < 0.05). CP-96345 has no significant effects on adenosine-induced increase in clearance of FITC-dextran from the in situ nasal mucosa. CP-96345 and RP-67580, but not CP-96344, significantly attenuate substance P-induced increases in clearance of FITC-dextran from the in situ nasal mucosa (P < 0.05). Collectively, these data suggest that grain sorghum dust elicits neurogenic plasma exudation from the in situ nasal mucosa.

  8. 78 FR 77471 - Prospective Grant of Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ...-toxic macromolecular MRI contrast agents such as chelated Gd(III). These macromolecular imaging agents... Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent With a Surrogate Tracer for... Enhanced Delivery of Therapeutic Agents'', U.S. Provisional Patent Application 60/413,673 (filed September...

  9. Asymmetrical Macromolecular Complex Formation of Lysophosphatidic Acid Receptor 2 (LPA2) Mediates Gradient Sensing in Fibroblasts*

    PubMed Central

    Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P.

    2014-01-01

    Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932

  10. Application of complex macromolecular architectures for advanced microelectronic materials.

    PubMed

    Hedrick, James L; Magbitang, Teddie; Connor, Eric F; Glauser, Thierry; Volksen, Willi; Hawker, Craig J; Lee, Victor Y; Miller, Robert D

    2002-08-02

    The distinctive features of well-defined, three-dimensional macromolecules with topologies designed to enhance solubility and amplify end-group functionality facilitated nanophase morphologies in mixtures with organosilicates and ultimately nanoporous organosilicate networks. Novel macromolecular architectures including dendritic and star-shaped polymers and organic nanoparticles were prepared by a modular approach from several libraries of building blocks including various generations of dendritic initiators and dendrons, selectively placed to amplify functionality and/or arm number, coupled with living polymerization techniques. Mixtures of an organosilicate and the macromolecular template were deposited, cured, and the phase separation of the organic component, organized the vitrifying organosilicate into nanostructures. Removal of the sacrificial macromolecular template, also denoted as porogen, by thermolysis, yielded the desired nanoporous organosilicate, and the size scale of phase separation was strongly dependent on the chain topology. These materials were designed for use as interlayer, ultra-low dielectric insulators for on-chip applications with dielectric constant values as low as 1.5. The porogen design, chemistry and role of polymer architecture on hybrid and pore morphology will be emphasized.

  11. Improved data visualization techniques for analyzing macromolecule structural changes.

    PubMed

    Kim, Jae Hyun; Iyer, Vidyashankara; Joshi, Sangeeta B; Volkin, David B; Middaugh, C Russell

    2012-10-01

    The empirical phase diagram (EPD) is a colored representation of overall structural integrity and conformational stability of macromolecules in response to various environmental perturbations. Numerous proteins and macromolecular complexes have been analyzed by EPDs to summarize results from large data sets from multiple biophysical techniques. The current EPD method suffers from a number of deficiencies including lack of a meaningful relationship between color and actual molecular features, difficulties in identifying contributions from individual techniques, and a limited ability to be interpreted by color-blind individuals. In this work, three improved data visualization approaches are proposed as techniques complementary to the EPD. The secondary, tertiary, and quaternary structural changes of multiple proteins as a function of environmental stress were first measured using circular dichroism, intrinsic fluorescence spectroscopy, and static light scattering, respectively. Data sets were then visualized as (1) RGB colors using three-index EPDs, (2) equiangular polygons using radar charts, and (3) human facial features using Chernoff face diagrams. Data as a function of temperature and pH for bovine serum albumin, aldolase, and chymotrypsin as well as candidate protein vaccine antigens including a serine threonine kinase protein (SP1732) and surface antigen A (SP1650) from S. pneumoniae and hemagglutinin from an H1N1 influenza virus are used to illustrate the advantages and disadvantages of each type of data visualization technique. Copyright © 2012 The Protein Society.

  12. Improved data visualization techniques for analyzing macromolecule structural changes

    PubMed Central

    Kim, Jae Hyun; Iyer, Vidyashankara; Joshi, Sangeeta B; Volkin, David B; Middaugh, C Russell

    2012-01-01

    The empirical phase diagram (EPD) is a colored representation of overall structural integrity and conformational stability of macromolecules in response to various environmental perturbations. Numerous proteins and macromolecular complexes have been analyzed by EPDs to summarize results from large data sets from multiple biophysical techniques. The current EPD method suffers from a number of deficiencies including lack of a meaningful relationship between color and actual molecular features, difficulties in identifying contributions from individual techniques, and a limited ability to be interpreted by color-blind individuals. In this work, three improved data visualization approaches are proposed as techniques complementary to the EPD. The secondary, tertiary, and quaternary structural changes of multiple proteins as a function of environmental stress were first measured using circular dichroism, intrinsic fluorescence spectroscopy, and static light scattering, respectively. Data sets were then visualized as (1) RGB colors using three-index EPDs, (2) equiangular polygons using radar charts, and (3) human facial features using Chernoff face diagrams. Data as a function of temperature and pH for bovine serum albumin, aldolase, and chymotrypsin as well as candidate protein vaccine antigens including a serine threonine kinase protein (SP1732) and surface antigen A (SP1650) from S. pneumoniae and hemagglutinin from an H1N1 influenza virus are used to illustrate the advantages and disadvantages of each type of data visualization technique. PMID:22898970

  13. The interplay of intrinsic disorder and macromolecular crowding on α-synuclein fibril formation

    NASA Astrophysics Data System (ADS)

    Shirai, Nobu C.; Kikuchi, Macoto

    2016-02-01

    α-synuclein (α-syn) is an intrinsically disordered protein which is considered to be one of the causes of Parkinson's disease. This protein forms amyloid fibrils when in a highly concentrated solution. The fibril formation of α-syn is induced not only by increases in α-syn concentration but also by macromolecular crowding. In order to investigate the coupled effect of the intrinsic disorder of α-syn and macromolecular crowding, we construct a lattice gas model of α-syn in contact with a crowding agent reservoir based on statistical mechanics. The main assumption is that α-syn can be expressed as coarse-grained particles with internal states coupled with effective volume; and disordered states are modeled by larger particles with larger internal entropy than other states. Thanks to the simplicity of the model, we can exactly calculate the number of conformations of crowding agents, and this enables us to prove that the original grand canonical ensemble with a crowding agent reservoir is mathematically equivalent to a canonical ensemble without crowding agents. In this expression, the effect of macromolecular crowding is absorbed in the internal entropy of disordered states; it is clearly shown that the crowding effect reduces the internal entropy. Based on Monte Carlo simulation, we provide scenarios of crowding-induced fibril formation. We also discuss the recent controversy over the existence of helically folded tetramers of α-syn, and suggest that macromolecular crowding is the key to resolving the controversy.

  14. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-01-30

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  15. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-02-13

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein. including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  16. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2003-11-18

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  17. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.

    PubMed

    Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony

    2018-05-18

    Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Macroscopic modeling and simulations of supercoiled DNA with bound proteins

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Schlick, Tamar

    2002-11-01

    General methods are presented for modeling and simulating DNA molecules with bound proteins on the macromolecular level. These new approaches are motivated by the need for accurate and affordable methods to simulate slow processes (on the millisecond time scale) in DNA/protein systems, such as the large-scale motions involved in the Hin-mediated inversion process. Our approaches, based on the wormlike chain model of long DNA molecules, introduce inhomogeneous potentials for DNA/protein complexes based on available atomic-level structures. Electrostatically, treat those DNA/protein complexes as sets of effective charges, optimized by our discrete surface charge optimization package, in which the charges are distributed on an excluded-volume surface that represents the macromolecular complex. We also introduce directional bending potentials as well as non-identical bead hydrodynamics algorithm to further mimic the inhomogeneous effects caused by protein binding. These models thus account for basic elements of protein binding effects on DNA local structure but remain computational tractable. To validate these models and methods, we reproduce various properties measured by both Monte Carlo methods and experiments. We then apply the developed models to study the Hin-mediated inversion system in long DNA. By simulating supercoiled, circular DNA with or without bound proteins, we observe significant effects of protein binding on global conformations and long-time dynamics of the DNA on the kilo basepair length.

  19. Ultrafast electron crystallography: Transient structures of molecules, surfaces, and phase transitions

    PubMed Central

    Ruan, Chong-Yu; Vigliotti, Franco; Lobastov, Vladimir A.; Chen, Songye; Zewail, Ahmed H.

    2004-01-01

    The static structure of macromolecular assemblies can be mapped out with atomic-scale resolution by using electron diffraction and microscopy of crystals. For transient nonequilibrium structures, which are critical to the understanding of dynamics and mechanisms, both spatial and temporal resolutions are required; the shortest scales of length (0.1–1 nm) and time (10–13 to 10–12 s) represent the quantum limit, the nonstatistical regime of rates. Here, we report the development of ultrafast electron crystallography for direct determination of structures with submonolayer sensitivity. In these experiments, we use crystalline silicon as a template for different adsorbates: hydrogen, chlorine, and trifluoroiodomethane. We observe the coherent restructuring of the surface layers with subangstrom displacement of atoms after the ultrafast heat impulse. This nonequilibrium dynamics, which is monitored in steps of 2 ps (total change ≤10 ps), contrasts that of the nanometer substrate. The effect of adsorbates and the phase transition at higher fluences were also studied through the evolution of streaks of interferences, Bragg spots (and their rocking curves), and rings in the diffraction patterns. We compare these results with kinematical theory and those of x-ray diffraction developed to study bulk behaviors. The sensitivity achieved here, with the 6 orders of magnitude larger cross section than x-ray diffraction, and with the capabilities of combined spatial (≈0.01 Å) and temporal (300–600 fs) resolutions, promise diverse applications for this ultrafast electron crystallography tabletop methodology. PMID:14745037

  20. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

Top