SAS program for quantitative stratigraphic correlation by principal components
Hohn, M.E.
1985-01-01
A SAS program is presented which constructs a composite section of stratigraphic events through principal components analysis. The variables in the analysis are stratigraphic sections and the observational units are range limits of taxa. The program standardizes data in each section, extracts eigenvectors, estimates missing range limits, and computes the composite section from scores of events on the first principal component. Provided is an option of several types of diagnostic plots; these help one to determine conservative range limits or unrealistic estimates of missing values. Inspection of the graphs and eigenvalues allow one to evaluate goodness of fit between the composite and measured data. The program is extended easily to the creation of a rank-order composite. ?? 1985.
2006-11-01
exercises. Potential Resolution: 1. Installations must ensure that they understand the composition of civilian populations outside of their...Installation trainers, SRP Support Agency trainers or contract training specialists should layout each range based on the composition defined in the...defined time limit to respond to submittals with a pre-defined team member composition so that changes could be reviewed consistently. Only mission
NASA Astrophysics Data System (ADS)
Molina, J. F.; Moreno, J. A.; Castro, A.; Rodríguez, C.; Fershtater, G. B.
2015-09-01
Dependencies of plagioclase/amphibole Al-Si partitioning, DAl/Siplg/amp, and amphibole/liquid Mg partitioning, DMgamp/liq, on temperature, pressure and phase compositions are investigated employing robust regression methods based on MM-estimators. A database with 92 amphibole-plagioclase pairs - temperature range: 650-1050 °C; amphibole compositional limits: > 0.02 apfu (23O) Ti and > 0.05 apfu Al - and 148 amphibole-glass pairs - temperature range: 800-1100 °C; amphibole compositional limit: CaM4/(CaM4 + NaM4) > 0.75 - compiled from experiments in the literature was used for the calculations (amphibole normalization scheme: 13-CNK method).
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Thompson, E. R.
1981-01-01
A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.
Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Kaplar, Robert J.
2017-02-01
Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.
Yu Liang; Matthew J. Duveneck; Eric J. Gustafson; Josep M. Serra-Diaz; Jonathan R. Thompson
2018-01-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change,...
A Non-Arrhenian Viscosity Model for Natural Silicate Melts with Applications to Volcanology
NASA Astrophysics Data System (ADS)
Russell, J. K.; Giordano, D.; Dingwell, D. B.
2005-12-01
Silicate melt viscosity is the most important physical property in volcanic systems. It governs styles and rates of flow, velocity distributions in flowing magma, rates of vesiculation, and, ultimately, sets limits on coherent(vs. fragmented or disrupted) flow. The prediction of melt viscosity over the range of conditions found on terrestrial planets remains a challenge. However, the extraordinary increase in number and quality of published measurements of melt viscosity suggests the possibility of new models. Here we review the attributes of previous models for silicate melt viscosity and, then, present a new predictive model natural silicate melts. The importance of silicate melt viscosity was recognized early [1] and culminated in 2 models for predicting silicate melt viscosity [2,3]. These models used an Arrhenian T-dependence; they were limited by a limited experimental database dominated by high-T measurements. Subsequent models have aimed to: i) extend the compositional range of Arrhenian T-dependent models [4,5]; ii) to develop non-Arrhenian models for limited ranges of composition [6,7,8], iii) to develop new strategies for modelling the composition and T-dependence of viscosity [9,10,11], and, finally, to create chemical models for the non-Arrhenian T-dependence of natural melts [12]. We present a multicomponent model for the compositional and T dependence of silicate melt viscosity based on data spanning a wide range of anhydrous melt compositions. The experimental data include micropenetration and concentric cylinder viscometry measurements covering a viscosity range of 10-1 to 1012 Pa s and a T-range from 700 to 1650°C. These published data provide a high- quality database comprising ~ 800 experimental data on 44 well-characterized melt compositions. Our model uses the Adam-Gibbs equation to capture T-dependence: log η = A + B/[T · log (T/C)] where A, B, and C are adjustable parameters that vary for different melt compositions. We assume that all silicate melts converge to a common, but unknown, high-T limit (e.g., A) and that all compositional dependence is accommodated for by B and C. We adopt a linear compositional dependence for B and C: B = σi=1..n [xi βi] C = σi=1..n [xi γi] where xi's are the mole fractions of oxide components (n=8) and βi and γi are adjustable parameters. The model, therefore, comprises 2 · n+1 adjustable parameters which are optimized for against the experimental database including a common value of A and compositional coefficeints for B and C. The new model reproduces the original database to within experimental uncertainty and can predict the viscosity of silicate melts across the full range of conditions found in Nature. References Cited: [1] Friedman et al., 1963. J Geophys Res 68, 6523-6535. [2] Bottinga Y & Weill D 1972. Am J Sci 272, 438- 475. [3] Shaw HR 1972. Am J Sci 272, 438- 475. [4] Persikov ES 1991. Adv Phys Geochem 9, 1-40. [5] Prusevich AA 1988. Geol Geofiz 29, 67-69. [6] Baker DR 1996. Am Min 81, 126-134. [7] Hess KU & Dingwell DB 1996. Am Min 81, 1297- 1300. [8] Zhang, et al. 2003. Am min 88, 1741- 1752. [9] Russell et al. 2002. Eur J Min 14, 417-428. [10] Russell et al. 2003. Am Min 8, 1390- 1394. [11] Russell JK & Giordano D In Press. Geochim Cosmochim Acta. [12] Giordano D & Dingwell DB 2003. Earth Planet. Sci. Lett. 208, 337-349.
Reaction limits in knallgas saturated with water vapor. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, L.B.; Hobaica, E.C.; Luker, J.A.
1957-12-10
The basic objective of this research investigation is to determine the reactive limits of stoichiometric hydrogen-oxygen mixtures (knallgas) saturated with water vapor. In order to properly define these limits the effect of the following parameters on reaction limits are being investigated: (A) source of ignition; (B) reactor geometry or surface to volume ratio; and (C) density of the initial mixture. At the time of preparation of this progress report two series of runs had been completed. At 100/sup 0/C reactive limits have been investigated in an eight-foot tube of 0.957 inch internal diameter using constant energy spark ignition. For thismore » series the composition range studied was 2.6 to 76.7 mole percent knallgas. At 200/sup 0/C reactive limits have been investigated in a seven and a half-foot tube of 0.434 inch internal diameter using hot wire ignition. The composition range studied was 12.8 to 61 mole percent knallgas.« less
Norem, James H.; Pellin, Michael J.
2013-06-11
Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.
NASA Technical Reports Server (NTRS)
Go, B. M.; Righter, K.; Danielson, L.; Pando, K.
2015-01-01
Previous geochemical and geophysical experiments have proposed the presence of a small, metallic lunar core, but its composition is still being investigated. Knowledge of core composition can have a significant effect on understanding the thermal history of the Moon, the conditions surrounding the liquid-solid or liquid-liquid field, and siderophile element partitioning between mantle and core. However, experiments on complex bulk core compositions are very limited. One limitation comes from numerous studies that have only considered two or three element systems such as Fe-S or Fe-C, which do not supply a comprehensive understanding for complex systems such as Fe-Ni-S-Si-C. Recent geophysical data suggests the presence of up to 6% lighter elements. Reassessments of Apollo seismological analyses and samples have also shown the need to acquire more data for a broader range of pressures, temperatures, and compositions. This study considers a complex multi-element system (Fe-Ni-S-C) for a relevant pressure and temperature range to the Moon's core conditions.
Detection and Monitoring of Toxic Chemical at Ultra Trace Level by Utilizing Doped Nanomaterial
Khan, Sher Bahadar; Rahman, Mohammed M.; Akhtar, Kalsoom; Asiri, Abdullah M.
2014-01-01
Composite nanoparticles were synthesized by eco-friendly hydrothermal process and characterized by different spectroscopic techniques. All the spectroscopic techniques suggested the synthesis of well crystalline optically active composite nanoparticles with average diameter of ∼30 nm. The synthesized nanoparticles were applied for the development of chemical sensor which was fabricated by coating the nanoparticles on silver electrode for the recognition of phthalimide using simple I–V technique. The developed sensor exhibited high sensitivity (1.7361 µA.mM−1.cm−2), lower detection limit (8.0 µM) and long range of detection (77.0 µM to 0.38 M). Further the resistances of composite nanoparticles based sensor was found to be 2.7 MΩ which change from 2.7 to 1.7 with change in phthalimide concentration. The major advantages of the designed sensor over existing sensors are its simple technique, low cost, lower detection limit, high sensitivity and long range of detection. It can detect phthalimide even at trace level and sense over wide range of concentrations. Therefore the composite nanoparticals would be a better choice for the fabrication of phthalimide chemical sensor and would be time and cost substituted implement for environmental safety. PMID:25329666
Li, Jinyang; Gittleson, Forrest S.; Liu, Yanhui; ...
2017-06-30
In order to bypass the limitation of bulk metallic glasses fabrication, we synthesized thin film metallic glasses to study the corrosion characteristics of a wide atomic% composition range, Mg(35.9-63%)Ca(4.1-21%)Zn(17.9-58.3%), in simulated body fluid. We highlight a clear relationship between Zn content and corrosion current such that Zn-medium metallic glasses exhibit minimum corrosion. In addition, we found higher Zn content leads to a poor in vitro cell viability. Finally, these results showcase the benefit of evaluating a larger alloy compositional space to probe the limits of corrosion resistance and prescreen for biocompatible applications.
McBranch, Duncan W.; Mattes, Benjamin R.; Koskelo, Aaron C.; Heeger, Alan J.; Robinson, Jeanne M.; Smilowitz, Laura B.; Klimov, Victor I.; Cha, Myoungsik; Sariciftci, N. Serdar; Hummelen, Jan C.
1998-01-01
Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.
40 CFR 63.343 - Compliance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operators of affected sources. (1) Composite mesh-pad systems. (i) During the initial performance test, the... with the emission limitations in § 63.342 through the use of a composite mesh-pad system shall... one performance test and accept ±2 inches of water column from this value as the compliant range. (ii...
40 CFR 63.343 - Compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operators of affected sources. (1) Composite mesh-pad systems. (i) During the initial performance test, the... with the emission limitations in § 63.342 through the use of a composite mesh-pad system shall... one performance test and accept ±2 inches of water column from this value as the compliant range. (ii...
40 CFR 63.343 - Compliance provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operators of affected sources. (1) Composite mesh-pad systems. (i) During the initial performance test, the... with the emission limitations in § 63.342 through the use of a composite mesh-pad system shall... one performance test and accept ±2 inches of water column from this value as the compliant range. (ii...
EVALUATION OF SPECIFICATION RANGES FOR CREEP STRENGTH ENHANCED FERRITIC STEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shingledecker, John P; Santella, Michael L; Wilson, Keely A
2008-01-01
Creep Strength Enhanced Ferritic Steels (CSEF) such as Gr. 91, 911, 92, and 122 require a fully martensitic structure for optimum properties, mainly good creep strength. However, broad chemical compositional ranges are specified for these steel grades which can strongly influence the microstructures obtained. In this study, we have produced chemical compositions within the specification ranges for these alloys which intentionally cause the formation of ferrite or substantially alter the lower intercritical temperatures (A1) so as to affect the phase transformation behavior during tempering. Thermodynamic modeling, thermo-mechanical simulation, tensile testing, creep testing, and microstructural analysis were used to evaluate thesemore » materials. The results show the usefulness of thermodynamic calculations for setting rational chemical composition ranges for CSEF steels to control the critical temperatures, set heat-treatment temperature limits, and eliminate the formation of ferrite.« less
Chan, Tao
2012-01-01
CT has become an established method for calculating body composition, but it requires data from the whole body, which are not typically obtained in routine PET/CT examinations. A computerized scheme that evaluates whole-body lean body mass (LBM) based on CT data from limited-whole-body coverage was developed. The LBM so obtained was compared with results from conventional predictive equations. LBM can be obtained automatically from limited-whole-body CT data by 3 means: quantification of body composition from CT images in the limited-whole-body scan, based on thresholding of CT attenuation; determination of the range of coverage based on a characteristic trend of changing composition across different levels and pattern recognition of specific features at strategic positions; and estimation of the LBM of the whole body on the basis of a predetermined relationship between proportion of fat mass and extent of coverage. This scheme was validated using 18 whole-body PET/CT examinations truncated at different lengths to emulate limited-whole-body data. LBM was also calculated using predictive equations that had been reported for use in SUV normalization. LBM derived from limited-whole-body data using the proposed method correlated strongly with LBM derived from whole-body CT data, with correlation coefficients ranging from 0.991 (shorter coverage) to 0.998 (longer coverage) and SEMs of LBM ranging from 0.14 to 0.33 kg. These were more accurate than results from different predictive equations, which ranged in correlation coefficient from 0.635 to 0.970 and in SEM from 0.64 to 2.40 kg. LBM of the whole body could be automatically estimated from CT data of limited-whole-body coverage typically acquired in PET/CT examinations. This estimation allows more accurate and consistent quantification of metabolic activity of tumors based on LBM-normalized standardized uptake value.
NASA Technical Reports Server (NTRS)
Hoppe, Peter; Geiss, Johannes; Buehler, Fritz; Neuenschwander, Juerg; Amari, Sachiko; Lewis, Roy S.
1993-01-01
We report ion microprobe determinations of the carbon, nitrogen, and silicon isotopic compositions of small SiC grains from the Murchison CM2 chondrite. Analyses were made on samples containing variable numbers of grains and on 14 individual grains. In some cases the multiple-grain sample compositions were probably dominated by only one or two grains. Total ranges observed are given. Only a few grains show values near the range limits. Both the total ranges of carbon and nitrogen isotopic compositions, and even the narrower ranges typical for the majority of the grains, are similar to those observed for larger SiC grains. Two rare components appear to be present in the smaller-size fraction, one characterized by C-12/C-13 about 12-16 and the other by very heavy nitrogen. The carbon and nitrogen isotopic compositions qualitatively may reflect hydrostatic H-burning via the CNO cycle and He-burning in red giants, as well as explosive H-burning in novae. The silicon isotopic compositions of most grains qualitatively show what is the signature of He-burning. The silicon isotopic composition of one grain, however, suggests a different process.
Survey of Hydrogen Combustion Properties
NASA Technical Reports Server (NTRS)
Drell, Isadore L; Belles, Frank E
1958-01-01
This literature digest of hydrogen-air combustion fundamentals presents data on flame temperature, burning velocity, quenching distance, flammability limits, ignition energy, flame stability, detonation, spontaneous ignition, and explosion limits. The data are assessed, recommended values are given, and relations among various combustion properties are discussed. New material presented includes: theoretical treatment of variation in spontaneous ignition lag with temperature, pressure, and composition, based on reaction kinetics of hydrogen-air composition range for 0.01 to 100 atmospheres and initial temperatures of 0 degrees to 1400 degrees k.
Zauscher, Melanie D; Moore, Meagan J K; Lewis, Gregory S; Hering, Susanne V; Prather, Kimberly A
2011-03-15
Aerosol particles, especially those ranging from 50 to 200 nm, strongly impact climate by serving as nuclei upon which water condenses and cloud droplets form. However, the small number of analytical methods capable of measuring the composition of particles in this size range, particularly at the individual particle level, has limited our knowledge of cloud condensation nuclei (CCN) composition and hence our understanding of aerosols effect on climate. To obtain more insight into particles in this size range, we developed a method which couples a growth tube (GT) to an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS), a combination that allows in situ measurements of the composition of individual particles as small as 38 nm. The growth tube uses water to grow particles to larger sizes so they can be optically detected by the UF-ATOFMS, extending the size range to below 100 nm with no discernible changes in particle composition. To gain further insight into the temporal variability of aerosol chemistry and sources, the GT-UF-ATOFMS was used for online continuous measurements over a period of 3 days.
Preparation Torque Limit for Composites Joined with Mechanical Fasteners
NASA Technical Reports Server (NTRS)
Thomas, Frank P.; Yi, Zhao
2005-01-01
Current design guidelines for determining torque ranges for composites are based on tests and analysis from isotropic materials. Properties of composites are not taken into account. No design criteria based upon a systematic analytical and test analyses is available. This paper is to study the maximum torque load a composite component could carry prior to any failure. Specifically, the torque-tension tests are conducted. NDT techniques including acoustic emission, thermography and photomicroscopy are also utilized to characterize the damage modes.
40 CFR 63.343 - Compliance provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (1) Composite mesh-pad systems. (i) During the initial performance test, the owner or operator of an... limitations in § 63.342 through the use of a composite mesh-pad system shall determine the outlet chromium... performance test and accept ±2 inches of water column from this value as the compliant range. (ii) On and...
40 CFR 63.343 - Compliance provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (1) Composite mesh-pad systems. (i) During the initial performance test, the owner or operator of an... limitations in § 63.342 through the use of a composite mesh-pad system shall determine the outlet chromium... performance test and accept ±2 inches of water column from this value as the compliant range. (ii) On and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Michael S.; Li, Qiuyan; Li, Xing
Electrolytes of 1 M LiPF 6 (lithium hexafluorophosphate) and 0.05 M CsPF 6 (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data inmore » their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.« less
McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.
1998-04-21
Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.
Automotive assessment of carbon-silicon composite anodes and methods of fabrication
NASA Astrophysics Data System (ADS)
Karulkar, Mohan; Blaser, Rachel; Kudla, Bob
2015-01-01
To assess the potential of carbon silicon composite anodes for automotive applications, C-Si anodes were fabricated and certain improvements employed. The use of a PVDF buffer layer is demonstrated for the first time with a C-Si composite material. The buffer layer increases adhesion by 89%, and increases capacity by 50-80%. Also, a limited capacity range is employed to improve cycle life by up to 200%, and enable currents as high as 2 mA cm-1. The combined use of a buffer layer and limited capacity range has not been reported before. A model is also presented for comparing C-Si performance with real-world automotive targets from USABC, including energy density, power density, specific energy, and specific power. The analysis reveals a capacity penalty that arises from pairing C-Si with a traditional cathode (NCA), and which prevents the cell from meeting all targets. Scenarios are presented in which a higher-capacity cathode (250 mAh g-1) allows all targets to be hypothetically met.
Mass-radius relationships and constraints on the composition of Pluto
NASA Technical Reports Server (NTRS)
Lupo, M. J.; Lewis, J. S.
1980-01-01
With the new upper limit of Pluto's mass, an upper limit for Pluto's density of 1.74 g/cu cm has been found. Assuming Pluto to be 100% methane, available methane density data can be used to set a lower limit of 0.53 g/cu cm on Pluto's density, thus placing an absolute upper limit of 1909 km on the radius and a lower limit of 0.32 on the albedo. The results of 280 computer models covering a wide range of composition ratios of rock, water ice, and methane ice are reported. Limits are placed on Pluto's silicate content, and a simple spacecraft method for determining Pluto's water content from its density and moment of inertia is given. The low thermal conductivity and strength of solid methane suggest rapid solid-state convection in Pluto's methane layer.
Improving Limits on Exotic Spin Dependent Long Range Forces using Double Boson Exchange
NASA Astrophysics Data System (ADS)
Aldaihan, Sheakha; Snow, William Michael; Krause, Dennis; Long, Joshua
2016-03-01
The existence of very light weakly interacting particles that mediate new long range forces has been suggested in many extensions of the Standard Model. Such particles span a length scale between a μm and a few meters and include axions, familons, Majorons,and arions. Parameterizations of forces in this range show that they are composite-dependent, have a Yukawa shape, and have both spin-dependent as well as spin independent components. Very stringent limits on spin-independent couplings exist. For long range spin dependent forces, limits are weaker by 20 orders of magnitude compared to their spin independent analogs. The disparity in the limits raises the question of whether interesting limits on spin dependent couplings can be inferred from spin independent searches for long range forces. We show that this is possible using higher order contributions corresponding to double boson exchange and report the limits placed on spin dependent couplings using this method. We gratefully acknowledge the support of Indiana University and the National Science Foundation. The first author also acknowdges King Abdullah scholarship program.
Determinism Beneath Composite Quantum Systems
NASA Astrophysics Data System (ADS)
Blasone, Massimo; Vitiello, Giuseppe; Jizba, Petr; Scardigli, Fabio
This paper aims at the development of 't Hooft's quantization proposal to describe composite quantum mechanical systems. In particular, we show how 't Hooft's method can be utilized to obtain from two classical Bateman oscillators a composite quantum system corresponding to a quantum isotonic oscillator. For a suitable range of parameters, the composite system can be also interpreted as a particle in an effective magnetic field interacting through a spin-orbital interaction term. In the limit of a large separation from the interaction region we can identify the irreducible subsystems with two independent quantum oscillators.
Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes
NASA Astrophysics Data System (ADS)
Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali
2017-12-01
Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.
Fan, Wenying; He, Man; Wu, Xiaoran; Chen, Beibei; Hu, Bin
2015-10-30
Graphene oxide (GO) is an ideal adsorbent for polar and less polar compounds due to its hexagonal carbon network structure with oxygen-containing groups, while its strong hydrophilicity and water solubility limited its application in sample pretreatment techniques. Herein, GO was composited with polyethyleneglycol (PEG) or polyaniline (PAN) through intermolecular interactions to improve its stability, and the GO/PEG and GO/PAN composite coated stir bars were prepared by sol-gel technique. Compared with GO/PAN composite and polydimethylsiloxane (PDMS) coated stir bar, the prepared GO/PEG composite coated stir bar exhibited higher extraction efficiency for five fluoroquinolones (FQs). Based on it, a method of GO/PEG composite coated stir bar sorptive extraction (SBSE) combined with high-performance liquid chromatography-fluorescence detector (HPLC-FLD) was proposed. The factors influencing SBSE, such as sample pH, salt effect, stirring rate, extraction time, desorption solvent and desorption time, were optimized, and the analytical performance of the developed SBSE-HPLC-FLD method was evaluated. The limits of detection (LODs) for five FQs were in the range of 0.0045-0.0079μgL(-1), and the enrichment factors (EFs) were in the range of 41.5-65.5-fold (theoretical enrichment factor was 100-fold). The reproducibility was also investigated at concentrations of 0.05μgL(-1) and the relative standard deviations (RSDs, n=6) were found to be in the range of 4.6-12.1%. The proposed method was successfully applied for the determination of FQs in chicken muscle and chicken liver samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Schalla, Rose L; Mcdonald, Glen E
1954-01-01
The explosion limits of five alkylsilanes were determined as a function of temperature and composition at a pressure of 1 atmosphere. Over a fuel concentration range of 2 to 10 percent, the lowest temperatures (zero C) below which explosion did not occur for the five fuels studied were: tetramethylsilane (CHsub3)sub4Si, 450 degrees; trimethlysilane (CHsub3)sub3SiH, 310 degrees;dimethylsilane (CHsub3)sub2SiHsub2, 220 degrees; methylsilane CHsub3SiHsub3, 130 degrees; and vinylsilane Hsub2C=CH-SiHsub3, 90 degrees. Explosion limits for hydrocarbons analogous to these silanes fall in a temperature range of 500 degrees to 600 degrees C. Since the explosion temperatures of the alkylsilanes are lower than those of the hydrocarbons and since they decrease as hydrogen atoms are substituted for methyl groups, it was concluded that the Si-H bond is more readily susceptible to oxidation than the C-H bond.
NASA Astrophysics Data System (ADS)
Qi, Wei; Ghoroghchian, P. Peter; Li, Guizhi; Hammer, Daniel A.; Therien, Michael J.
2013-10-01
Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application.Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application. Electronic supplementary information (ESI) available: Materials and methods, characterization data. See DOI: 10.1039/c3nr03250g
Clynne, M.A.; Borg, L.E.
1997-01-01
Chromian spinel and coexisting olivine phenocrysts from a geochemically diverse suite of primitive tholeiitic and calc-alkaline basalts and magnesian andesites from the Lassen region, in the southernmost Cascade Range, in California, show that the sub-arc mantle is zoned. Depleted calc-alkaline basalts and magnesian andesites erupt in the forearc region, and calc-alkaline basalts contain increasing abundances of incompatible elements toward the backarc. High-alumina olivine tholeiites erupt from the arc and backarc areas. Olivine from all these lavas displays a limited compositional range, from Fo86 to Fo91, and crystallized at high temperature, generally 1225-1275??C. Chromian spinel trapped in the olivine phenocrysts displays a large range of composition: Cr# values span the range 9-76. Excess Al in the spinel relative to that in 1-atm spinel suggests that it crystallized at elevated pressure. The phenocrysts in these lavas are in equilibrium with their host liquids. The full range of Cr# of the spinel compositions cannot be explained by differentiation or variable pressure, variations in f(O2), subsolidus equilibration or variations in degree of partial melting of a single peridotitic source. Rather, the systematic compositional differences among phenocrysts in these primitive lavas result from bulk chemical variability in their mantle sources. Correlations between spinel and host-rock compositions support the assertion that the geochemical diversity of Lassen basalts reflects the relative fertility of their mantle sources.
Lilies at the limit: Variation in plant-pollinator interactions across an elevational range.
Theobald, Elli J; Gabrielyan, Hrach; HilleRisLambers, Janneke
2016-02-01
Many studies assume climatic factors are paramount in determining species' distributions, however, biotic interactions may also play a role. For example, pollinators may limit species' ranges if floral abundance or floral attractiveness is reduced at range margins, thus causing lower pollinator visitation and reduced reproductive output. To test if pollinators influence the altitudinal distribution of Erythronium montanum (Liliaceae) at Mount Rainier National Park, we asked whether (1) seed production in this species relies on pollinators, (2) seed production and pollen limitation is greatest at range limits, and (3) pollinator visitation rates (either overall or by individual taxonomic groups) reflect patterns of seed production and pollen limitation. From this three-year study, we established that this plant does rely on pollinators for fruit set and we found that pollen limitation trended toward being higher at the upper range limit in some years, but not consistently year to year. Insect visitation rates did not mirror spatial patterns of pollen limitation, but annually variable pollinator composition suggested differential importance of some pollinator taxonomic groups (specifically, bumblebees may be better pollinators than syrphid flies). Overall, these results suggest that while pollinators are critical for the reproductive success of this high mountain wildflower, plant-pollinator interactions do not obviously drive the distribution of this species. Nonetheless, high spatio-temporal variability in range-wide plant-pollinator dynamics may complicate responses to climate change. © 2016 Botanical Society of America.
Lupu, Stelian; Lete, Cecilia; Balaure, Paul Cătălin; Caval, Dan Ion; Mihailciuc, Constantin; Lakard, Boris; Hihn, Jean-Yves; del Campo, Francisco Javier
2013-01-01
Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and tyrosinase (Ty) were successfully electrodeposited on conventional size gold (Au) disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA) and catechol (CT) electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM. PMID:23698270
Kaçar, Ceren; Erden, Pınar Esra; Kılıç, Esma
2017-04-01
Highly sensitive L-lysine enzyme electrodes were constructed by using poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine (PVF/MWCNTs-GEL) and poly(vinylferrocene)-multiwalled carbon nanotubes-gelatine-graphene (PVF/MWCNTs-GEL/GR) composites as sensing interfaces and their performances were evaluated. Lysine oxidase (LO) was immobilized onto the composite modified glassy carbon electrodes (GCE) by crosslinking using glutaraldehyde and bovine serum albumin. Effects of pH value, enzyme loading, applied potential, electrode composition, and interfering substances on the amperometric response of the enzyme electrodes were discussed. The analytical characteristics of the enzyme electrodes were also investigated. The linear range, detection limit, and sensitivity of the LO/PVF/MWCNTs-GEL/GCE were 9.9 × 10 -7 -7.0 × 10 -4 M, 1.8 × 10 -7 M (S/N = 3), and 13.51 μA mM -1 cm -2 , respectively. PVF/MWCNTs-GEL/GR-based L-lysine enzyme electrode showed a short response time (<5 s) and a linear detection range from 9.9 × 10 -7 to 7.0 × 10 -4 M with good sensitivity of 17.8 μA mM -1 cm -2 and a low detection limit of 9.2 × 10 -8 M. The PVF/MWCNTs-GEL/GR composite-based L-lysine enzyme electrode exhibited about 1.3-fold higher sensitivity than its MWCNTs-based counterpart and its detection limit was superior to the MWCNTs-based one. In addition, enzyme electrodes were successfully applied to determine L-lysine in pharmaceutical sample and cheese.
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.
1989-01-01
In the area of basic mechanisms of helium heat transfer and related influence on super-conducting magnet stability, thermal boundary conditions are important constraints. Characteristic lengths are considered along with other parameters of the superconducting composite-coolant system. Based on helium temperature range developments, limiting critical current densities are assessed at low fields for high transition temperature superconductors.
Thermal design of composite material high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.
Elasticity of Calcium-Alkaline Amphiboles: Revised Properties for Crustal Seismic Models
NASA Astrophysics Data System (ADS)
Straughan, K. B.; Castle, N. R.; Brown, J.
2009-12-01
Amphiboles are dominant mineral constituents of both the oceanic and continental crust. Efforts to model crustal seismic structure and anisotropy have been limited by sparse and uncertain data for the elasticity of common rock-forming amphiboles. A single paper from 1961 reports properties of two “hornblendes” of unreported composition. We have undertaken a study of the calcium-alkaline amphiboles (minerals in this range include hornblende, tremolite, edenite, pargasite, tschermaktite and others) to explore elastic properties as a function of composition. Velocities as a function of propagation direction were measured using Impulsively Stimulated Light Scattering. All thirteen monoclinic elastic constants were determined for nine amphiboles spanning this common rock-forming compositional space. Amphiboles exhibit a wide range of elemental compositions and site occupancies. Measured trends of elastic constants with composition cannot be reduced to a single variable. Broad correlations are apparent in both (Mg+Fe) and Al concentrations. Among these samples, the isotropic average bulk modulus ranges from 85 to 98 GPa and the shear modulus ranges from 51 to 62. Poisson’s ratio varies from .23 to .27. The compressional velocity anisotropy (fast direction along the c axis and slow direction along the a-axis) varies with composition from 23% to 33%. Velocities along the c-axis are as fast as 9.0 km/s and along the a-axis are as slow as 5.8 km/s. These results exhibit far greater anisotropy and higher velocities than previously assumed based on the earlier data.
Strategies to determine diversity, growth, and activity of ammonia-oxidizing archaea in soil.
Nicol, Graeme W; Prosser, James I
2011-01-01
Ecological studies of soil microorganisms require reliable techniques for assessment of microbial community composition, abundance, growth, and activity. Soil structure and physicochemical properties seriously limit the applicability and value of methods involving direct observation, and ecological studies have focused on communities and populations, rather than single cells or microcolonies. Although ammonia-oxidizing archaea were discovered 5 years ago, there are still no cultured representatives from soil and there remains a lack of knowledge regarding their genomic composition, physiology, or functional diversity. Despite these limitations, however, significant insights into their distribution, growth characteristics, and metabolism have been made through the use of a range of molecular methodologies. As well as the analysis of taxonomic markers such as 16S rRNA genes, the development of PCR primers based on a limited number of (mostly marine) sequences has enabled the analysis of homologues encoding proteins involved in energy and carbon metabolism. This chapter will highlight the range of molecular methodologies available for examining the diversity, growth, and activity of ammonia-oxidizing archaea in the soil environment. Copyright © 2011 Elsevier Inc. All rights reserved.
Tin oxide quantum dots embedded iron oxide composite as efficient lead sensor
NASA Astrophysics Data System (ADS)
Dutta, Dipa; Bahadur, Dhirendra
2018-04-01
SnO2 quantum dots (QDs) embedded iron oxide (IO) nanocomposite is fabricated and explored as a capable sensor for lead detection. Square wave anodic stripping voltammetry (SWASV) and amperometry have been used to explore the proposed sensor's response towards lead detection. The modified electrode shows linear current response for concentration of lead ranging from 99 nM to 6.6 µM with limit of detection 0.42 µM (34 ppb). Amperometry shows a detection limit as low as 0.18 nM (0.015 ppb); which is far below the permissible limit of lead in drinking water by World Health Organization. This proposed sensor shows linear current response (R2 = 0.98) for the lead concentration ranging from 133 × 10-9 to 4.4 × 10-6M. It also exhibits rapid response time of 12 sec with an ultra high sensitivity of 5.5 µA/nM. These detection properties promise the use of SnO2 QDs -IO composite for detection of lead in environmental sample with great ease.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Calomino, Anthony M.; Bansal, Narottam P.; Verrilli, Michael J.
2006-01-01
Interlaminar shear strength of four different fiber-reinforced ceramic matrix composites was determined with doublenotch shear test specimens as a function of test rate at elevated temperatures ranging from 1100 to 1316 C in air. Life limiting behavior, represented as interlaminar shear strength degradation with decreasing test rate, was significant for 2-D crossplied SiC/MAS-5 and 2-D plain-woven C/SiC composites, but insignificant for 2-D plain-woven SiC/SiC and 2-D woven Sylramic (Dow Corning, Midland, Michigan) SiC/SiC composites. A phenomenological, power-law delayed failure model was proposed to account for and to quantify the rate dependency of interlaminar shear strength of the composites. Additional stress rupture testing in interlaminar shear was conducted at elevated temperatures to validate the proposed model. The model was in good agreement with SiC/MAS-5 and C/SiC composites, but in poor to reasonable agreement with Sylramic SiC/SiC. Constant shear stress-rate testing was proposed as a possible means of life prediction testing methodology for ceramic matrix composites subjected to interlaminar shear at elevated temperatures when short lifetimes are expected.
A review of the compositional variation of amphiboles in alkaline plutonic complexes
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.
1990-12-01
Compositional data for amphiboles occurring in alkaline plutonic complexes are reviewed and a standard procedure for plotting these data in an isometric prism is proposed. The main compositional trend found in both oversaturated and undersaturated complexes of either miascitic or peralkaline affinity is referred to as the primary magmatic trend. Amphiboles range in composition from magnesian hastingsitic hornblende and ferro-edenitic hornblende through katophorite to ferro-richterite and arfvedsonite. Individual complexes differ with respect to the amphibole {Mg}/{Fe} and {Si}/{Al} ratio and the extent of Na-enrichment. Extensive or limited ranges in the composition of amphiboles may occur in a given complex. A subtrend found only in oversaturated complexes is from ferro-edenitic hornblende to ferro-actinolite. This trend termed the ferro-actinolitic subtrend is found only in low temperature non-peralkaline residua. Some aluminous nepheline syenites and associated alkali gabbros contain amphiboles which range in composition from kaersutite through ferroan pargasitic hornblende to hastingsite. This trend termed the primary miascitic magmatic trend is is one of decreasing {Mg}/{Fe}, at essentially constant {Si}/{Al} and Ca content. Na-enrichment does not occur. Amphiboles formed by reactions of preexisting phases with hydrothermal or deuteric fluids are termed the late stage reaction assemblage. Amphibole compositional trends from calcic through sodic-calcic to sodic amphiboles reflect decreasing temperature and oxygen fugacity at or below the QFM oxygen buffer. The compositional trends are of use in determining petrogenetic relationships between apparently consanguineous syenites.
Cooper, Keith M
2012-08-01
In the UK, Government policy requires marine aggregate extraction companies to leave the seabed in a similar physical condition after the cessation of dredging. This measure is intended to promote recovery, and the return of a similar faunal community to that which existed before dredging. Whilst the policy is sensible, and in line with the principles of sustainable development, the use of the word 'similar' is open to interpretation. There is, therefore, a need to set quantifiable limits for acceptable change in sediment composition. Using a case study site, it is shown how such limits could be defined by the range of sediment particle size composition naturally found in association with the faunal assemblages in the wider region. Whilst the approach offers a number of advantages over the present system, further testing would be required before it could be recommended for use in the regulatory context. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Benefits and limitations of composites in carrier-based aircraft
NASA Technical Reports Server (NTRS)
Mcerlean, Donald P.
1992-01-01
There are many unique aspects of Navy air missions that lead to the differentiation between the design and performance of ship and shore-based aircraft. The major aspects are discussed from which essentially all Navy aircraft design requirements derive. (1) Navy aircraft operate from carriers at sea imposes a broad spectrum of physical conditions, constraints, and requirements ranging from the harsh sea environment, the space limitations of a carrier, takeoff and landing requirements as well as for endurance at long distances from the carrier. (2) Because the carrier and its airwing are intended to be capable of responding to a broad range of contingencies, mission flexibility is essential (maximum weapon carriage, rapid reconfiguration, multiple mission capability). (3) The embarked aircraft provides the long range defense of the battle group against air, surface and subsurface launched antiship missiles. (4) The carrier and its aircraft must operate independently and outside of normal supply lines. Taking into account these aspects, the use of composite materials in the design and performance of naval aircraft is outlined, also listing advantages and disadvantages.
Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials
Boland, James N.; Li, Xing S.
2010-01-01
Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luker, J.A.; Adler, L.B.; Hobaica, E.C.
1959-01-23
The purpose of this investigation was to determine the reaction characteristics of satuated mixtures of knall gas (stoichiometric mixture of hydrogen and oxygen) --steam and mixtures of heavy knall gas (stoichm-ometric mixture of deuterion and oxygen) saturated with heavy water. These mixtues were studied experimentally over composition ranges from no reaction limit to enriched compositions which supported detonations. (auth)
NASA Astrophysics Data System (ADS)
Yahia, I. S.; Bouzidi, A.; Zahran, H. Y.; Jilani, W.; AlFaify, S.; Algarni, H.; Guermazi, H.
2018-03-01
Pure poly (vinyl alcohol) (PVA) and PVA doped Fluorescein-Sodium salt (FSS/PVA composite films) have synthesized on wide scale laser optical filters. The investigated polymeric composite films have been characterized using several methods. The XRD patterns exhibit a decrease of the average crystalline size and an increase of the internal strain, which explained the imperfection and distortion in the prepared films. The optical characterizations showed a decrease in the transmission of the incident light for different samples, which may be explained to the layer formed by intermolecular hydrogen bonding between the PVA matrix and the FSS particles. The FSS/PVA polymeric composite films are being a completely blocking in the UV-Vis light at the range between 190 and 560 nm, agreement with the optical limiting effect, which makes the composite films suitable for CUT-OFF laser filters applications. The decrease in its, directly and indirectly, allowed transition band gaps were controlled by the added FSS dyes molecules. The variation of the exponent frequency (s) of the power law for FSS/PVA polymeric composite films has been characterized to improve the hopping conduction mechanism in the materials. The dielectric permittivity (e‧) and dielectric loss (e'') have been decreased with increasing the applied frequency, and the incorporated FSS molecules due to the DC electric conductivity can cause the decreases of the polarization of the as-prepared films over the studied ranges.
Busing, Richard T.; Solomon, Allen M.
2004-01-01
Two forest dynamics simulators are compared along climatic gradients in the Pacific Northwest. The ZELIG and FORCLIM models are tested against forest survey data from western Oregon. Their ability to generate accurate patterns of forest basal area and species composition is evaluated for series of sites with contrasting climate. Projections from both models approximate the basal area and composition patterns for three sites along the elevation gradient at H.J. Andrews Experimental Forest in the western Cascade Range. The ZELIG model is somewhat more accurate than FORCLIM at the two low-elevation sites. Attempts to project forest composition along broader climatic gradients reveal limitations of ZELIG, however. For example, ZELIG is less accurate than FORCLIM at projecting the average composition of a west Cascades ecoregion selected for intensive analysis. Also, along a gradient consisting of several sites on an east to west transect at 44.1oN latitude, both the FORCLIM model and the actual data show strong changes in composition and total basal area, but the ZELIG model shows a limited response. ZELIG does not simulate the declines in forest basal area and the diminished dominance of mesic coniferous species east of the Cascade crest. We conclude that ZELIG is suitable for analyses of certain sites for which it has been calibrated. FORCLIM can be applied in analyses involving a range of climatic conditions without requiring calibration for specific sites.
Wei, Yanfen; Wang, Hao; Sun, Shuangjiao; Tang, Lifu; Cao, Yupin; Deng, Biyang
2016-12-15
A new electrochemiluminescence (ECL) sensor based on reduced graphene oxide-copper sulfide (rGO-CuS) composite coupled with capillary electrophoresis (CE) was constructed for the ultrasensitive detection of amlodipine besylate (AML) for the first time. In this work, rGO-CuS composite was synthesized by one-pot hydrothermal method and used for electrode modification. The electrochemical and ECL behaviors of the sensor were investigated. More than 5-fold enhance in ECL intensity was observed after modified with rGO-CuS composite. The results can be ascribed to the presence of rGO-CuS composite on the electrode surface that facilitates the electron transfer rate between the electroactive center of Ru(bpy)3(2+) and the electrode. The ECL sensor was coupled with CE to improve the selectivity and the CE-ECL parameters that affect separation and detection were optimized. Under the optimum conditions, the linear ranges for AML was 0.008-5.0μg/mL with a detection limit of 2.8ng/mL (S/N=3). The method displayed the advantages of high sensitivity, good selectivity, wide linear range, low detection limit and fine reproducibility, and was used to analyze AML in mice plasma with a satisfactory result, which holds a great potential in the field of pharmaceutical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of C/O Ratio and Temperature on Sooting Limits of Spherical Diffusion Flames
NASA Technical Reports Server (NTRS)
Lecoustre, V. R.; Sunderland, P. B.; Chao, B. H.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.
2008-01-01
Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, residence time and scalar dissipation rate. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with scalar dissipation rate lower than 2/s were found to have temperatures near 1400 K where C/O = 0.51, whereas flames with greater scalar dissipation rate required increased temperatures. This finding was valid across a broad range of fuel and oxidizer compositions and convection directions.
Nano-composites for water remediation: a review.
Tesh, Sarah J; Scott, Thomas B
2014-09-17
As global populations continue to increase, the pressure on water supplies will inevitably intensify. Consequently the international need for more efficient and cost effective water remediation technologies will also rise. The introduction of nano-technology into the industry may represent a significant advancement and zero-valent iron nano-particles (INPs) have been thoroughly studied for potential remediation applications. However, the application of water dispersed INP suspensions is limited and somewhat contentious on the grounds of safety, whilst INP reaction mechanisms, transport properties and ecotoxicity are areas still under investigation. Theoretically, the development of nano-composites containing INPs to overcome these issues provides the logical next step for developing nano-materials that are better suited to wide application across the water industry. This review provides an overview of the range of static, bulk nano-composites containing INPs being developed, whilst highlighting the limitations of individual solutions, overall classes of technology, and lack of comparative testing for nano-composites. The review discusses what further developments are needed to optimize nano-composite water remediation systems to subsequently achieve commercial maturity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fibrous refractory composite insulation. [shielding reusable spacecraft
NASA Technical Reports Server (NTRS)
Leiser, D. B.; Goldstein, H. E.; Smith, M. (Inventor)
1979-01-01
A refractory composite insulating material was prepared from silica fibers and aluminosilicate fibers in a weight ratio ranging from 1:19 to 19:1, and about 0.5 to 30% boron oxide, based on the total fiber weight. The aluminosilicate fiber and boron oxide requirements may be satisfied by using aluminoborosilicate fibers and, in such instances, additional free boron oxide may be incorporated in the mix up to the 30% limit. Small quantities of refractory opacifiers, such as silicon carbide, may be also added. The composites just described are characterized by the absence of a nonfibrous matrix.
Esteban, Raquel; Barrutia, Oihana; Artetxe, Unai; Fernández-Marín, Beatriz; Hernández, Antonio; García-Plazaola, José Ignacio
2015-04-01
Photosynthetic pigment composition has been a major study target in plant ecophysiology during the last three decades. Although more than 2000 papers have been published, a comprehensive evaluation of the responses of photosynthetic pigment composition to environmental conditions is not yet available. After an extensive survey, we compiled data from 525 papers including 809 species (subkingdom Viridiplantae) in which pigment composition was described. A meta-analysis was then conducted to assess the ranges of photosynthetic pigment content. Calculated frequency distributions of pigments were compared with those expected from the theoretical pigment composition. Responses to environmental factors were also analysed. The results revealed that lutein and xanthophyll cycle pigments (VAZ) were highly responsive to the environment, emphasizing the high phenotypic plasticity of VAZ, whereas neoxanthin was very stable. The present meta-analysis supports the existence of relatively narrow limits for pigment ratios and also supports the presence of a pool of free 'unbound' VAZ. Results from this study provide highly reliable ranges of photosynthetic pigment contents as a framework for future research on plant pigments. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Cryogenic Temperature Effects on Performance of Polymer Composites
NASA Technical Reports Server (NTRS)
Hui, David; Dutta, P. K.
2003-01-01
The objective of this study is to evaluate the low temperature behavior of polymer composites down to the cryogenic temperature range. This would be accomplished by study of its behavior in several ways. First we would study the microfracture growth by observing the acoustic emission as the temperature is lowered. We would also note any damage growth by ultrasonic velocity testing applying the pulse echo method. Effects of such low temperature would then be studied by examining the shear properties by the short beam shear test, and also the fracture toughness properties over a wide range of strain rate and temperature. At present these studies are continuing. The limited data obtained from these studies are reported in this report.
Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.
2017-10-01
We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 °C, with B/(B + Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges from x = 0.06 to 0.16, closely following the gas-flow ratios. Transmission electron microscopy indicates the sole presence of a wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B + Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B + Al) gas-flow ratios that we have studied, which is significantly higher than previously thought.
Vibration damping characteristics of graphite/epoxy composites for large space structures
NASA Technical Reports Server (NTRS)
Gibson, R. F.
1982-01-01
Limited data on extensional and flexural damping of small specimens of graphite/epoxy and unreinforced epoxy resin were obtained. Flexural damping was measured using a forced vibration technique based on resonant flexural vibration of shaker excited double cantilever specimens. Extensional damping was measured by subjecting similar specimens to low frequency sinusoidal oscillation in a servohydraulic tensile testing machine while plotting load versus extensional strain. Damping was found to vary slowly and continuously over the frequency range 0.01 - 1000 Hz, and no drastic transitions were observed. Composite damping was found to be less than neat resin damping. Comparison of small specimen damping values with assembled column damping values seems to indicate that, for those materials, material damping is more important than joint damping. The data reported was limited not by the test apparatus, but by signal conditioning and data acquisition. It is believed that filtering of the strain gage signals and the use of digital storage with slow playback will make it possible to extend the frequency and amplitude ranges significantly.
Stimuli-responsive cellulose-based nematogels
NASA Astrophysics Data System (ADS)
Liu, Qingkun; Smalyukh, Ivan
Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. Yet, approaches for achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay of orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and analytical modeling, we demonstrate sub-milisecond electric switching of transparency and also facile response of the composite to temperature changes and light illumination. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible display modes.
Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan
2012-01-21
ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.
Liquid crystalline cellulose-based nematogels
Liu, Qingkun; Smalyukh, Ivan I.
2017-08-18
Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. However, approaches to achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay between orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and modeling, we demonstrate submillisecond electric switching of transparency and facile responses of the composite to temperaturemore » changes. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible displays.« less
Dissipation and quantization for composite systems
NASA Astrophysics Data System (ADS)
Blasone, Massimo; Jizba, Petr; Scardigli, Fabio; Vitiello, Giuseppe
2009-11-01
In the framework of 't Hooft's quantization proposal, we show how to obtain from the composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region one can describe the system in terms of two irreducible elementary subsystems which correspond to two independent quantum harmonic oscillators.
A Grid of NLTE Line-blanketed Model Atmospheres of Early B-Type Stars
NASA Astrophysics Data System (ADS)
Lanz, Thierry; Hubeny, Ivan
2007-03-01
We have constructed a comprehensive grid of 1540 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to early B-type stars. The BSTAR2006 grid considers 16 values of effective temperatures, 15,000 K<=Teff<=30,000 K with 1000 K steps, 13 surface gravities, 1.75<=logg<=4.75 with 0.25 dex steps, six chemical compositions, and a microturbulent velocity of 2 km s-1. The lower limit of logg for a given effective temperature is set by an approximate location of the Eddington limit. The selected chemical compositions range from twice to one-tenth of the solar metallicity and metal-free. Additional model atmospheres for B supergiants (logg<=3.0) have been calculated with a higher microturbulent velocity (10 km s-1) and a surface composition that is enriched in helium and nitrogen and depleted in carbon. This new grid complements our earlier OSTAR2002 grid of O-type stars (our Paper I). The paper contains a description of the BSTAR2006 grid and some illustrative examples and comparisons. NLTE ionization fractions, bolometric corrections, radiative accelerations, and effective gravities are obtained over the parameter range covered by the grid. By extrapolating radiative accelerations, we have determined an improved estimate of the Eddington limit in absence of rotation between 55,000 and 15,000 K. The complete BSTAR2006 grid is available at the TLUSTY Web site.
Compositional limits and analogs of monoclinic triple-chain silicates
NASA Astrophysics Data System (ADS)
Jenkins, David M.; Gilleaudeau, Geoffrey J.; Kawa, Cynthia; Dibiase, Jaclyn M.; Fokin, Maria
2012-08-01
Growing recognition of triple-chain silicates in nature has prompted experimental research into the conditions under which they can form and the extent of solid solution that is feasible for some key chemical substitutions. Experiments were done primarily in the range of 0.1-0.5 GPa and 200-850 °C for durations of 18-1,034 h. A wide range of bulk compositions were explored in this study that can be classified broadly into two groups: those that are Na free and involve various possible chemical substitutions into jimthompsonite (Mg10Si12O32(OH)4), and those that are Na bearing and involve chemical substitutions into the ideal end-member Na4Mg8Si12O32(OH)4. Numerous attempts to synthesize jimthompsonite or clinojimthompsonite were unsuccessful despite the type of starting material used (reagent oxides, magnesite + SiO2, talc + enstatite, or anthophyllite). Similarly, the chemical substitutions of F- for OH-, Mn2+, Ca2+, or Fe2+ for Mg2+, and 2Li+ for Mg2+ and a vacancy were unsuccessful at nucleating triple-chain silicates. Conversely, nearly pure yields of monoclinic triple-chain silicate could be made at temperatures of 440-630 °C and 0.2 GPa from the composition Na4Mg8Si12O32(OH)4, as found in previous studies, though its composition is most likely depleted in Na as evidenced by electron microprobe and FTIR analysis. Pure yields of triple-chain silicate were also obtained for the F-analog composition Na4Mg8Si12O32F4 at 550-750 °C and 0.2-0.5 GPa if a flux consisting of Na-halide salt and water in a 2:1 ratio by weight was used. In addition, limited chemical substitution could be documented for the substitutions of 2 Na+ for Na+ + H+ and of Mg2+ + vacancy for 2Na+. For the former, the Na content appears to be limited to 2.5 cations giving the ideal composition of Na2.5Mg8Si12O30.5(OH)5.5, while for the latter substitution the Na content may go as low as 1.1 cations giving the composition Na1.1Mg9.4Si12O31.9(OH)4.1 based on a fixed number of Si cations. Further investigation involving Mg for Na cation exchange may provide a pathway for the synthesis of Na-free clinojimthompsonite. Fairly extensive solid solution was also observed for triple-chain silicates made along the compositional join Na4Mg8Si12O32(OH)4-Ca2Mg8Si12O32(OH)4 where the limit of Ca substitution at 450 °C and 0.2 GPa corresponds to Na0.7Ca1.8Mg7.8Si12O31.9(OH)4.1 (with the OH content adjusted to achieve charge balance). Aside from the Na content, this composition is similar to that observed as wide-chain lamellae in host actinolite. The relative ease with which Na-rich triple chains can be made experimentally suggests that these phases might exist in nature; this study provides additional insights into the range of compositions and formation conditions at which they might occur.
Shiel, Flinn; Persson, Carl; Simas, Vini; Furness, James; Climstein, Mike; Schram, Ben
2017-01-01
Dual energy X-ray absorptiometry (DXA) is a commonly used instrument for analysing segmental body composition (BC). The information from the scan guides the clinician in the treatment of conditions such as obesity and can be used to monitor recovery of lean mass following injury. Two commonly used DXA positioning protocols have been identified-the Nana positioning protocol and the National Health and Nutrition Examination Survey (NHANES). Both protocols have been shown to be reliable. However, only one study has assessed the level of agreement between the protocols and ascertained the participants' preference of protocol based upon comfort. Given the paucity of research in the field and the growing use of DXA in both healthy and pathological populations further research determining the most appropriate positioning protocol is warranted. Therefore, the aims of this study were to assess the level of agreement between results from the NHANES protocol and Nana protocol, and the participants' preference of protocol based on comfort. Thirty healthy participants (15 males, 15 females, aged 23-59 years) volunteered to participate in this study. These participants underwent two whole body DXA scans in a single morning (Nana positioning protocol and NHANES positioning protocol), in a randomised order. Each participant attended for scanning wearing minimal clothing and having fasted overnight, refrained from exercise in the past 24 h and voided their bladders. Level of agreement, comparing NAHNES to Nana protocol was assessed using an intra-class correlation coefficient (ICC), concordance correlation coefficient (CCC) and percentage change in mean. Limit of agreement comparing the two protocols were assessed using plots, mean difference and confidence limits. Participants were asked to indicate the protocol they found most comfortable. When assessing level of agreement between protocols both the ICC and CCC scores were very high and ranged from 0.987 to 0.997 for whole body composition, indicating excellent agreement between the Nana and NHANES protocols. Regional analysis (arms, legs, trunk) ICC scores, ranged between 0.966 and 0.996, CCC ranged between 0.964 and 0.997, change in mean percentage ranged between -0.58% and 0.37% which indicated a very high level of agreement. Limit of agreement analysis using mean difference ranged between -0.223 and 0.686 kg and 95% CL produced results ranging between -1.262 kg and 1.630 kg. The majority (80%) of participants found the NHANES positioning protocol more comfortable. This study reveals a strong level of agreement as illustrated by high ICC's and CCC's between the positioning protocols, however systematic bias within limit of agreement plot and a large difference in 95% confidence limits indicates that the protocols should not be interchanged when assessing an individual. The NHANES protocol affords greater participant comfort.
NASA Astrophysics Data System (ADS)
Arnison, G.; Albajar, C.; Albrow, M. G.; Allkofer, O. C.; Astbury, A.; Aubert, B.; Axon, T.; Bacci, C.; Bacon, T.; Batley, J. R.; Bauer, G.; Bellinger, J.; Bettini, A.; Bézaguet, A.; Bock, R. K.; Bos, K.; Buckley, E.; Busetto, G.; Catz, P.; Cennini, P.; Centro, S.; Ceradini, F.; Ciapetti, G.; Cittolin, S.; Clarke, D.; Cline, D.; Cochet, C.; Colas, J.; Colas, P.; Corden, M.; Coughlan, J. A.; Cox, G.; Dau, D.; Debeer, M.; Debrion, J. P.; Degiorgi, M.; Della Negra, M.; Demoulin, M.; Denby, B.; Denegri, D.; Diciaccio, A.; Dobrzynski, L.; Dorenbosch, J.; Dowell, J. D.; Duchovni, E.; Edgecock, R.; Eggert, K.; Eisenhandler, E.; Ellis, N.; Erhard, P.; Faissner, H.; Keeler, M. Fincke; Flynn, P.; Fontaine, G.; Frey, R.; Frühwirth, R.; Garvey, J.; Gee, D.; Geer, S.; Ghesquière, C.; Ghez, P.; Ghio, F.; Giacomelli, P.; Gibson, W. R.; Giraud-Héraud, Y.; Givernaud, A.; Gonidec, A.; Goodman, M.; Grassmann, H.; Grayer, G.; Guryn, W.; Hansl-Kozanecka, T.; Haynes, W.; Haywood, S. J.; Hoffmann, H.; Holthuizen, D. J.; Homer, R. J.; Honma, A.; Ikeda, M.; Jank, W.; Jimack, M.; Jorat, G.; Kalmus, P. I. P.; Karimäki, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kienzle, W.; Kinnunen, R.; Kozanecki, W.; Krammer, M.; Kroll, J.; Kryn, D.; Kyberd, P.; Lacava, F.; Laugier, J. P.; Lees, J. P.; Leuchs, R.; Levegrun, S.; Lévêque, A.; Levi, M.; Linglin, D.; Locci, E.; Long, K.; Markiewicz, T.; Markytan, M.; Martin, T.; Maurin, G.; McMahon, T.; Mendiburu, J.-P.; Meneguzzo, A.; Meyer, O.; Meyer, T.; Minard, M.-N.; Mohammad, M.; Morgan, K.; Moricca, M.; Moser, H.; Mours, B.; Muller, Th.; Nandi, A.; Naumann, L.; Norton, A.; Pascoli, D.; Pauss, F.; Perault, C.; Petrolo, E.; Mortari, G. Piano; Pietarinen, E.; Pigot, C.; Pimiä, M.; Pitman, D.; Placci, A.; Porte, J.-P.; Radermacher, E.; Ransdell, J.; Redelberger, T.; Reithler, H.; Revol, J. P.; Richman, J.; Rijssenbeek, M.; Robinson, D.; Rohlf, J.; Rossi, P.; Ruhm, W.; Rubbia, C.; Sajot, G.; Salvini, G.; Sass, J.; Sadoulet, B.; Samyn, D.; Savoy-Navarro, A.; Schinzel, D.; Schwartz, A.; Scott, W.; Shah, T. P.; Sheer, I.; Siotis, I.; Smith, D.; Sobie, R.; Sphicas, P.; Strauss, J.; Streets, J.; Stubenrauch, C.; Summers, D.; Sumorok, K.; Szoncso, F.; Tao, C.; Taurok, A.; Have, I. Ten; Tether, S.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; Van Eijk, B.; Verecchia, P.; Vialle, J. P.; Villasenor, L.; Virdee, T. S.; Von der Schmitt, H.; Von Schlippe, W.; Vrana, J.; Vuillemin, V.; Wahl, H. D.; Watkins, P.; Wildish, A.; Wilke, R.; Wilson, J.; Wingerter, I.; Wimpenny, S. J.; Wulz, C. E.; Wyatt, T.; Yvert, M.; Zaccardelli, C.; Zacharov, I.; Zaganidis, N.; Zanello, L.; Zotto, P.; UA1 Collaboration
1986-09-01
Angular distributions of high-mass jet pairs (180< m2 J<350 GeV) have been measured in the UA1 experiment at the CERN pp¯ Collider ( s=630 GeV) . We show that angular distributions are independent of the subprocess centre-of-mass (CM) energy over this range, and use the data to put constraints on the definition of the Q2 scale. The distribution for the very high mass jet pairs (240< m2 J<300 GeV) has also been used to obtain a lower limit on the energy scale Λ c of compositeness of quarks. We find Λ c>415 GeV at 95% confidence level.
Farrer, Emily C; Suding, Katharine N
2016-10-01
Although ecologists have documented the effects of nitrogen enrichment on productivity, diversity and species composition, we know little about the relative importance of the mechanisms driving these effects. We propose that distinct aspects of environmental change associated with N enrichment (resource limitation, asymmetric competition, and interactions with soil microbes) drive different aspects of plant response. We test this in greenhouse mesocosms, experimentally manipulating each factor across three ecosystems: tallgrass prairie, alpine tundra and desert grassland. We found that resource limitation controlled productivity responses to N enrichment in all systems. Asymmetric competition was responsible for diversity declines in two systems. Plant community composition was impacted by both asymmetric competition and altered soil microbes, with some contributions from resource limitation. Results suggest there may be generality in the mechanisms of plant community change with N enrichment. Understanding these links can help us better predict N response across a wide range of ecosystems. © 2016 John Wiley & Sons Ltd/CNRS.
Kiss, Bálint; Fábián, Balázs; Idrissi, Abdenacer; Szőri, Milán; Jedlovszky, Pál
2017-07-27
The thermodynamic changes that occur upon mixing five models of formamide and three models of water, including the miscibility of these model combinations itself, is studied by performing Monte Carlo computer simulations using an appropriately chosen thermodynamic cycle and the method of thermodynamic integration. The results show that the mixing of these two components is close to the ideal mixing, as both the energy and entropy of mixing turn out to be rather close to the ideal term in the entire composition range. Concerning the energy of mixing, the OPLS/AA_mod model of formamide behaves in a qualitatively different way than the other models considered. Thus, this model results in negative, while the other ones in positive energy of mixing values in combination with all three water models considered. Experimental data supports this latter behavior. Although the Helmholtz free energy of mixing always turns out to be negative in the entire composition range, the majority of the model combinations tested either show limited miscibility, or, at least, approach the miscibility limit very closely in certain compositions. Concerning both the miscibility and the energy of mixing of these model combinations, we recommend the use of the combination of the CHARMM formamide and TIP4P water models in simulations of water-formamide mixtures.
Effect of site disorder on the ground state of a frustrated spin dimer quantum magnet
NASA Astrophysics Data System (ADS)
Hristov, Alexander; Shapiro, Maxwell; Lee, Minseong; Rodenbach, Linsey; Choi, Eun Sang; Park, Ju-Hyun; Munsie, Tim; Luke, Graeme; Fisher, Ian
Ba3Mn2O8 is a geometrically frustrated spin dimer quantum magnet. Pairs of Mn 5+ (S = 1) ions are strongly coupled via antiferromagnetic exchange to yield a singlet ground state, with excited triplet and quintuplet states. Isovalent substitution of V5+ (S = 0) for Mn breaks dimers, resulting in unpaired S = 1 spins, the ground state of which is investigated here for compositions spanning the range 0 <= x <= 1 of Ba3(Mn1-xVx)2O8. From a theoretical perspective, for dimers occupying an unfrustrated bipartite lattice, such site disorder is anticipated to yield long range magnetism for unpaired Mn spins both in the dilute limit where x is small, a phenomena known as order-by-disorder, and in the proximity of x = 1 / 2 where the system is maximally disordered and close to a percolation threshold. In this frustrated system, however, our experiments find evidence of spin freezing for six compositions 0 . 05 <= x <= 0 . 85 . In this regime, we find entropy removed at an energy scale independent of the freezing temperature. We discuss the possibility of a spin-glass to random singlet transition for critical compositions in the two dilute limits x -> 0 and x -> 1 . NSF DMR-Award 1205165.
Validity of Vegard’s rule for Al1-xInxN (0.08 < x < 0.28) thin films grown on GaN templates
NASA Astrophysics Data System (ADS)
Magalhães, S.; Franco, N.; Watson, I. M.; Martin, R. W.; O'Donnell, K. P.; Schenk, H. P. D.; Tang, F.; Sadler, T. C.; Kappers, M. J.; Oliver, R. A.; Monteiro, T.; Martin, T. L.; Bagot, P. A. J.; Moody, M. P.; Alves, E.; Lorenz, K.
2017-05-01
In this work, comparative x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) measurements allow a comprehensive characterization of Al1-xInxN thin films grown on GaN. Within the limits of experimental accuracy, and in the compositional range 0.08 < x < 0.28, the lattice parameters of the alloys generally obey Vegard’s rule, varying linearly with the InN fraction. Results are also consistent with the small deviation from linear behaviour suggested by Darakchieva et al (2008 Appl. Phys. Lett. 93 261908). However, unintentional incorporation of Ga, revealed by atom probe tomography (APT) at levels below the detection limit for RBS, may also affect the lattice parameters. Furthermore, in certain samples the compositions determined by XRD and RBS differ significantly. This fact, which was interpreted in earlier publications as an indication of a deviation from Vegard’s rule, may rather be ascribed to the influence of defects or impurities on the lattice parameters of the alloy. The wide-ranging set of Al1-xInxN films studied allowed furthermore a detailed investigation of the composition leading to lattice-matching of Al1-xInxN/GaN bilayers.
Assessment of softball bat safety performance using mid-compression polyurethane softballs.
McDowell, Mark
2004-07-01
There is currently much debate about the safety of the sport of softball. Batted-ball speed and average pitcher reaction time are factors often used to determine safe performance. Batted-ball speed is shown to be the most important factor to consider when determining safe play. Average pitcher reaction time is explained and directly correlated to batted-ball speed. Eleven aluminum multi-wall, three aluminum single-wall and two composite softball bats were tested with mid-compression polyurethane softballs averaging 1721+/-62 N/6.4 mm to represent the relative bat-ball performance for the sport of slowpitch softball. Nine men and six women were chosen for this study out of a test group of over three hundred slowpitch softball players. On average, aluminum bat performance results were within the recommended safety limits established by the national softball associations. However, when composite bats were used, their performance results exceeded the recommended safety limits which can pose a significant safety risk. Using aluminum softball bats, batted-ball speeds ranged from 80 to 145km x h(-1) Using composite softball bats, batted-ball speeds ranged from 146 to 161 km x h(-1). The scientific relevance of this study is to provide performance information that can lead to injury prevention in the sport of softball.
Attari, Seyed Ghavameddin; Bahrami, Abdolrahman; Shahna, Farshid Ghorbani; Heidari, Mahmoud
2014-01-01
A green, environmental friendly and sensitive method for determination of volatile organohalogen compounds was described in this paper. The method is based on a homemade sol-gel single-walled carbon nanotube/silica composite coated solid-phase microextraction to develop for sampling and analysis of Carbon tetrachloride, Benzotrichloride, Chloromethyl methyl ether and Trichloroethylene in air. Application of this method was investigated under different laboratory conditions. Predetermined concentrations of each analytes were prepared in a home-made standard chamber and the influences of experimental parameters such as temperature, humidity, extraction time, storage time, desorption temperature, desorption time and the sorbent performance were investigated. Under optimal conditions, the use of single-walled carbon nanotube/silica composite fiber showed good performance, high sensitive and fast sampling of volatile organohalogen compounds from air. For linearity test the regression correlation coefficient was more than 98% for analyte of interest and linear dynamic range for the proposed fiber and the applied Gas Chromatography-Flame Ionization Detector technique was from 1 to 100 ngmL(-1). Method detection limits ranged between 0.09 to 0.2 ngmL(-1) and method quantification limits were between 0.25 and 0.7 ngmL(-1). Single-walled carbon nanotube/silica composite fiber was highly reproducible, relative standard deviations were between 4.3 to 11.7 percent.
Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry
Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.
2009-01-01
In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.
Productivity, botanical composition, and nutritive value of commercial pasture mixtures
USDA-ARS?s Scientific Manuscript database
Pastures in the northeastern USA often are planted to mixtures of grasses and legumes. There is limited public sector information on the performance of commercial forage mixtures. We evaluated a range of commercial pasture mixtures to determine if the number of species in a mixture affected yield an...
Structural characterization of high temperature composites
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.
1991-01-01
Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.
NASA Technical Reports Server (NTRS)
Whalen, R. T.; Gonzalez-Doncel, G.; Robinson, S. L.; Sherby, O. D.
1989-01-01
The effect of substituting the Mg metal in Mg-B composites by a Mg-14 wt pct Li solid solution on the ductility of the resulting composite was investigated using elastic modulus measurements on the P/M composite material prepared with a dispersion of B particles (in a vol pct range of 0-30) in a matrix of Mg-14 wt pct Li-1.5 wt pct Al. It was found that the elastic modulus of the composites increased rapidly with increasing boron, with specific stiffness values reaching about two times that of most structural materials. The values of the compression and tensile strengths increased significantly with boron additions. Good tensile ductility was achieved at the level of 10 vol pct B. However, at 20 vol pct B, the Mg-Li composite exhibited only limited tensile ductility (about 2 percent total elongation).
Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product
NASA Technical Reports Server (NTRS)
David, Dennis D.; Dee, Louis A.; Beeson, Harold D.
1997-01-01
Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.
Reyes-Gallardo, Emilia M; Lucena, R; Cárdenas, S; Valcárcel, M
2014-06-06
In this article, the easy synthesis of magnetic nanoparticles-nylon 6 composite is presented, characterized and applied in the microextraction field. The one-step synthesis of the composite is performed by a solvent changeover playing with the different solubility of the polymeric network in formic acid and water. The new material has been characterized by different techniques including infrared spectroscopy, transmission and scanning microscopy. The extraction performance of the composite under a dispersive micro solid phase extraction format has been evaluated by determining four polycyclic aromatic hydrocarbons (benzo[b]fluoranthene, fluoranthene, indeno[1,2,3-cd]pyrene and phenanthrene) in water using ultra performance liquid chromatography (UPLC) combined with photo diode array detection. The developed methodology allows the determination of the analytes with limits of detection in the range from 0.05 μg/L (benzo[b]fluoranthene) to 0.58 μg/L (phenanthrene). The repeatability of the method was better than 6.9% at the limit of quantification level. The relative recoveries varied in the interval 80-111%. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; Peng, Haowei; Deml, Ann M.; Matthews, Bethany E.; Schelhas, Laura T.; Toney, Michael F.; Gordon, Roy G.; Tumas, William; Perkins, John D.; Ginley, David S.; Gorman, Brian P.; Tate, Janet; Zakutayev, Andriy; Lany, Stephan
2017-01-01
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region. PMID:28630928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the criticalmore » composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Furthermore, thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.« less
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.
Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan
2017-06-01
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; ...
2017-06-07
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the criticalmore » composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Furthermore, thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.« less
Paravina, Rade D; Kimura, Mikio; Powers, John M
2005-09-01
The aim of this study was to evaluate polymerization-dependent changes in the color and translucency parameter (TP) of resin composites and to compare results obtained using two color-difference metric formulae, CIELAB and CIEDE 2000. Twenty-eight shades of commercial resin composites were analyzed. Specimens (n = 5) were made as discs, 11 mm in diameter and 2-mm thick, using cylindrical molds. Data were collected before and after composite polymerization, using a spectrophotometer. In regard to in vitro color changes of composites (DeltaE*) a DeltaE76 of 3.7 or greater was considered to be an unacceptable color change. Data were analyzed by analysis of variance, and Fisher's protected least significant difference (PLSD) intervals for comparison of means were calculated at the 0.05 level of significance. Mean polymerization-dependent differences in color were DeltaE00 = 4.48 (2.11) and DeltaE76 = 5.51 (2.68). The DeltaTP00 range was 2.57, while the DeltaTP76 range was 2.89. Mean polymerization-dependent differences in translucency were DeltaTP00 = 0.84 (0.77) and DeltaTP76 = 0.87 (0.76). Analysis of variance showed significant differences among composites, shades, and their interactions (P < 0.0001; power = 1.0). Regression equations and r values for the two color-difference formulae and all evaluated TP values showed very strong correlation. In conclusion, within the limitations of this study, polymerization-dependent changes in color and translucency were highly varied. The majority of shades showed polymerization-dependent differences in color higher than the DeltaE76 = 3.7. The TP generally increased after light polymerization by light activation. The very strong correlation (r > 0.97) between the two color-difference formulae indicates that the limitations of the CIELAB system do not appear to be a problem when evaluating composites; however, recorded differences between DeltaE76 and DeltaE00 values stress the importance of data conversion.
Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.
Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong
2016-06-03
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.I.; Morikawa, S.A.; Martin, M.W.
1993-04-01
The Tuff of Bridge Spring (TBS) (15.19[+-]0.02 Ma; Gans, 1991) is a compositionally variable dacite to rhyolite ash-flow tuff that crops out over 1800 sq. km in the northern Colorado River extensional corridor. The TBS varies in composition from 59.5 to 74 wt. % SiO[sub 2] and typically contains phenocrysts of sanidine, plagioclase, biotite, clinopyroxene, [+-] sphene, [+-] apatite, [+-] zircon, and [+-] hornblende. The TBS is thickest and displays its greatest compositional range in the center of its area of exposure. The McCullough Range section contains at least three chemically distinct flow units that vary in composition from dacitemore » to rhyolite. The basal and uppermost units are normally zoned and the middle unit is reversely zoned. The complex chemical zonation and zoning reversals in the TBS indicate that it erupted from a magma chamber that was periodically injected by both mafic and felsic magmas. Sections at the edge of the exposure area are thin, contain only one or two chemically definable flow units and have a limited compositional range. To the west at Sheep Mountain, TBS is 2.9 m thick and ranges from 70.2--71.7 wt % SiO[sub 2]. To the east in the White Hills, TBS is 14 m thick and ranges from 59.5--65.3 wt % SiO[sub 2]. This chemical and field data indicate that although the TBS is regionally extensive, individual flow units are not. Isotopic data and chemistry suggest that all sections of the TBS are cogenetic. Comparisons of chemical, geochronological and isotopic data between the TBS and nearby coeval plutons indicate that the Aztec Wash (Eldorado Mts., Nevada) and Mt. Perkins (Black Mountain, Arizona) plutons are possible source for the TBS. Both plutons exhibit ample evidence of magma mixing and commingling, processes that may produce compositional zonation such as that observed in the TBS.« less
Bergantz, George W.; Cooper, Kari M.; Hildreth, Edward; Ruprecht, Phillipp
2012-01-01
Crystal zoning as well as temperature and pressure estimates from phenocryst phase equilibria are used to constrain the architecture of the intermediate-sized magmatic system (some tens of km3) of Volcán Quizapu, Chile, and to document the textural and compositional effects of magma mixing. In contrast to most arc magma systems, where multiple episodes of open-system behavior obscure the evidence of major magma chamber events (e.g. melt extraction, magma mixing), the Quizapu magma system shows limited petrographic complexity in two large historical eruptions (1846–1847 and 1932) that have contrasting eruptive styles. Quizapu magmas and peripheral mafic magmas exhibit a simple binary mixing relationship. At the mafic end, basaltic andesite to andesite recharge magmas complement the record from peripheral cones and show the same limited range of compositions. The silicic end-member composition is almost identical in both eruptions of Quizapu. The effusive 1846–1847 eruption records significant mixing between the mafic and silicic end-members, resulting in hybridized andesites and mingled dacites. These two compositionally simple eruptions at Volcán Quizapu present a rare opportunity to isolate particular aspects of magma evolution—formation of homogeneous dacite magma and late-stage magma mixing—from other magma chamber processes. Crystal zoning, trace element compositions, and crystal-size distributions provide evidence for spatial separation of the mafic and silicic magmas. Dacite-derived plagioclase phenocrysts (i.e. An25–40) show a narrow range in composition and limited zonation, suggesting growth from a compositionally restricted melt. Dacite-derived amphibole phenocrysts show similar restricted compositions and furthermore constrain, together with more mafic amphibole phenocrysts, the architecture of the magmatic system at Volcán Quizapu to be compositionally and thermally zoned, in which an andesitic mush is overlain by a homogeneous dacitic magma that is the source for most of the 1846–1847 and 1932 erupted magmas. Dacite formation is best explained by mineral–melt separation (crystal fractionation) from an andesitic mush, which is inferred to have thermally and compositionally buffered the dacite magma thereby keeping it at relatively low crystallinity (<30 vol. %). The dominant cause of compositional diversity is melt separation. Back-mixing of mush (i.e. crystals with signatures of growth both in the andesitic mush and in the dacite magma) into the overlying dacite magma is rarely observed. Recharge events that increase crystal and magma diversity in the dacite magma are limited to an episode of mafic recharge and mixing just prior to the 1846–1847 eruption, where evidence for magma mixing is present on all scales. Chamber-wide mixing was incomplete (mixing efficiency of ∼0·53–0·85) as flow lobes vary significantly in composition along the proposed mixing array. Estimates of viscosity variations during the course of magma mixing suggest that mixing dynamics and the degree of magma interaction on all scales were established at the beginning of the recharge event.
Sun, Wei; Gong, Shixing; Shi, Fan; Cao, Lili; Ling, Luyang; Zheng, Weizhe; Wang, Wencheng
2014-07-01
In this paper a novel sensing platform based on graphene oxide (GO), ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate and Nafion for the immobilization of hemoglobin (Hb) was adopted with a carbon ionic liquid electrode (CILE) as the substrate electrode, which was denoted as Nafion/Hb-GO-IL/CILE. Spectroscopic results suggested that Hb molecules were not denatured in the composite. A pair of well-defined redox peaks appeared on the cyclic voltammogram, which was attributed to the realization of direct electron transfer of Hb on the electrode. Electrochemical behaviors of Hb entrapped in the film were carefully investigated by cyclic voltammetry with the electrochemical parameters calculated. Based on the catalytic ability of the immobilized Hb, Nafion/Hb-GO-IL/CILE exhibited excellent electrocatalytic behavior towards the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.01 to 40.0mM with the detection limit as 3.12 μM (3σ), H2O2 in the concentration range from 0.08 to 635.0 μM with the detection limit as 0.0137 μM (3σ) and NaNO2 in the concentration range from 0.5 to 800.0 μM with the detection limit as 0.0104 μM (3σ). So the proposed bioelectrode could be served as a new third-generation electrochemical sensor without mediator. Copyright © 2014 Elsevier B.V. All rights reserved.
Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum).
Parsons, Eugene P; Popopvsky, Sigal; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Perzelan, Yaacov; Bosland, Paul; Bebeli, Penelope J; Paran, Ilan; Fallik, Elazar; Jenks, Matthew A
2013-10-01
Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical-compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14-fold range for total wax amounts and a more than 16-fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n-alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper. © 2013 Scandinavian Plant Physiology Society.
Aerogel: Tile Composites Toughen a Brittle Superinsulation
NASA Technical Reports Server (NTRS)
White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)
1998-01-01
Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices like those used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.
Aerogel: Tile Composites Toughen a Brittle Superinsulation
NASA Technical Reports Server (NTRS)
White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)
1998-01-01
Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.
Self-folding with shape memory composites at the millimeter scale
NASA Astrophysics Data System (ADS)
Felton, S. M.; Becker, K. P.; Aukes, D. M.; Wood, R. J.
2015-08-01
Self-folding is an effective method for creating 3D shapes from flat sheets. In particular, shape memory composites—laminates containing shape memory polymers—have been used to self-fold complex structures and machines. To date, however, these composites have been limited to feature sizes larger than one centimeter. We present a new shape memory composite capable of folding millimeter-scale features. This technique can be activated by a global heat source for simultaneous folding, or by resistive heaters for sequential folding. It is capable of feature sizes ranging from 0.5 to 40 mm, and is compatible with multiple laminate compositions. We demonstrate the ability to produce complex structures and mechanisms by building two self-folding pieces: a model ship and a model bumblebee.
Database of Mechanical Properties of Textile Composites
NASA Technical Reports Server (NTRS)
Delbrey, Jerry
1996-01-01
This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.
ERIC Educational Resources Information Center
Dobson, Elizabeth; Littleton, Karen
2016-01-01
Music education is supported by an increasing range of digital technologies that afford a remarkable divergence of opportunities for learning within the classroom. Musical creativities are not, however, limited to classroom situations; all musicians are engaged in work that traverses multiple social and physical settings. Guided by sociocultural…
Qian Tang, Xue; Dan Zhang, Yi; Wei Jiang, Zhong; Mei Wang, Dong; Zhi Huang, Cheng; Fang Li, Yuan
2018-03-01
In this work, Fe 3 O 4 and metal-organic framework MIL-101(Fe) composites (Fe 3 O 4 /MIL-101(Fe)) was demonstrated to possess excellent catalytic property to directly catalyze luminol chemiluminescence without extra oxidants. We utilized Fe 3 O 4 /MIL-101(Fe) to develop a ultra-sensitive quantitative analytical method for H 2 O 2 and glucose. The possible mechanism of the chemiluminescence reaction had been investigated. Under optimal conditions, the relative chemiluminescence intensity was linearly proportional to the logarithm of H 2 O 2 concentration in the range of 5-150nM with a limit of detection of 3.7nM (signal-to-noise ratio = 3), and glucose could be linearly detected in the range from 5 to 100nM and the detection limit was 4.9nM (signal-to-noise ratio = 3). Furthermore, the present approach was successfully applied to quantitative determination of H 2 O 2 in medical disinfectant and glucose in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cohen, M. J.; Nifong, R. L.; Kurz, M. J.; Cropper, W. P.; Martin, J. B.
2014-12-01
Relative supplies of macro and micronutrients (C,N,P, various metals), along with light and water, controls ecosystem metabolism, trophic energy transfer and community structure. Here we test the hypothesis, using measurements from 41 spring-fed rivers in Florida, that tissue stoichiometry indicates autotroph nutrient limitation status. Low variation in discharge, temperature and chemical composition within springs, but large variation across springs creates an ideal setting to assess the relationship between limitation and resource supply. Molar N:P ranges from 0.4 to 90, subjecting autotrophs to dramatically different nutrient supply. Over this gradient, species-specific autotroph tissue C:N:P ratios are strictly homeostatic, and with no evidence that nutrient supply affects species composition. Expanding to include 19 metals and micronutrients revealed autotrophs are more plastic in response to micronutrient variation, particularly for iron and manganese whose supply fluxes are small compared to biotic demand. Using a Droop model modified to reflect springs conditions (benthic production, light limitation, high hydraulic turnover), we show that tissue stoichiometry transitions from homeostatic to plastic with the onset of nutrient limitation, providing a potentially powerful new tool for predicting nutrient limitation and thus eutrophication in flowing waters.
Composition and method for polymer moderated catalytic water formation
Shepodd, Timothy Jon
1999-01-01
A composition suitable for safely removing hydrogen from gaseous mixtures containing hydrogen and oxygen, particularly those mixtures wherein the hydrogen concentration is within the explosive range. The composition comprises a hydrogenation catalyst, preferably Pd dispersed on carbon, wherein the concentration of Pd is from about 1-10 wt %, dispersed in a polymeric material matrix. As well as serving as a matrix to contain the hydrogenation catalyst, the polymeric material, which is substantially unreactive to hydrogen, provides both a diffusion restriction to hydrogen and oxygen, thereby limiting the rate at which the reactants (hydrogen and oxygen) can diffuse to the catalyst surface and thus, the production of heat from the recombination reaction and as a heat sink.
Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric
2015-11-07
A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.
Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.
Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less
Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries
Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.
2017-05-04
Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less
Atomic-level deformation of CuxZr100-x metallic glasses under shock loading
NASA Astrophysics Data System (ADS)
Demaske, Brian J.; Wen, Peng; Phillpot, Simon R.; Spearot, Douglas E.
2018-06-01
Plastic deformation mechanisms in CuxZr100-x bulk metallic glasses (MGs) subjected to shock are investigated using molecular dynamics simulations. MGs with Cu compositions between 30 and 70 at. % subjected to shock waves generated via piston velocities that range from 0.125 to 2.0 km/s are considered. In agreement with prior studies, plastic deformation is initiated via formation of localized regions of high von Mises shear strain, known as shear transformation zones (STZs). At low impact velocities, but above the Hugoniot elastic limit, STZ nucleation is dispersed behind the shock front. As impact velocity is increased, STZ nucleation becomes more homogeneous, eventually leading to shock-induced melting, which is identified in this work via high atomic diffusivity. The shear stress necessary to initiate plastic deformation within the shock front is independent of composition at shock intensities near the elastic limit but increases with increasing Cu content at high shock intensities. By contrast, both the flow stress in the plastically deformed MG and the critical shock pressure associated with melting behind the shock front are found to increase with increasing Cu content over the entire range of impact velocities. The evolution of the short-range order in the MG samples during shock wave propagation is analyzed using a polydisperse Voronoi tessellation method. Cu-centered polyhedra with full icosahedral symmetry are found to be most resistant to change under shock loading independent of the MG composition. A saturation is observed in the involvement of select Cu-centered polyhedra in the plastic deformation processes at a piston velocity around 0.75 km/s.
Dalecky, Ambroise; Renucci, Marielle; Tirard, Alain; Debout, Gabriel; Roux, Maurice; Kjellberg, Finn; Provost, Erick
2007-09-01
In social insects, biochemicals found at the surface of the cuticle are involved in the recognition process and in protection against desiccation and pathogens. However, the relative contribution of evolutionary forces in shaping diversity of these biochemicals remains largely unresolved in ants. We determined the composition of epicuticular biochemicals for workers sampled in 12 populations of the ant Petalomyrmex phylax from Cameroon. Genetic variation at 12 microsatellite markers was used to infer population history and to provide null expectations under the neutrality hypothesis. Genetic data suggest a recent southward range expansion of this ant species. Furthermore, there is a decline southward in the numbers of queens present in mature colonies. Here, we contrast the pattern of biochemical variation against genetic, social and spatial parameters. We thus provide the first estimates of the relative contribution of neutral and selective processes on variation of ant cuticular profile. Populations in migration-drift disequilibrium showed reduction of within-population variation for genetic markers as well as for cuticular profiles. In these populations, the cuticular profile became biased towards a limited number of high molecular weight molecules. Within- and among-population biochemical variation was explained by both genetic and social variation and by the spatial distribution of populations. We therefore propose that during range expansion of P. phylax, the composition of epicuticular compounds has been affected by a combination of neutral processes - genetic drift and spatially limited dispersal - and spatially varying selection, social organization and environmental effects.
Sittaro, Fabian; Paquette, Alain; Messier, Christian; Nock, Charles A
2017-08-01
Rising global temperatures are suggested to be drivers of shifts in tree species ranges. The resulting changes in community composition may negatively impact forest ecosystem function. However, long-term shifts in tree species ranges remain poorly documented. We test for shifts in the northern range limits of 16 temperate tree species in Quebec, Canada, using forest inventory data spanning three decades, 15° of longitude and 7° of latitude. Range shifts were correlated with climate warming and dispersal traits to understand potential mechanisms underlying changes. Shifts were calculated as the change in the 95th percentile of latitudinal occurrence between two inventory periods (1970-1978, 2000-2012) and for two life stages: saplings and adults. We also examined sapling and adult range offsets within each inventory, and changes in the offset through time. Tree species ranges shifted predominantly northward, although species responses varied. As expected shifts were greater for tree saplings, 0.34 km yr -1 , than for adults, 0.13 km yr -1 . Range limits were generally further north for adults compared to saplings, but the difference diminished through time, consistent with patterns observed for range shifts within each life stage. This suggests caution should be exercised when interpreting geographic range offsets between life stages as evidence of range shifts in the absence of temporal data. Species latitudinal velocities were on average <50% of the velocity required to equal the spatial velocity of climate change and were mostly unrelated to dispersal traits. Finally, our results add to the body of evidence suggesting tree species are mostly limited in their capacity to track climate warming, supporting concerns that warming will negatively impact the functioning of forest ecosystems. © 2017 John Wiley & Sons Ltd.
Asati, Ankita; Satyanarayana, G N V; Patel, Devendra K
2017-09-01
Two low density organic solvents based liquid-liquid microextraction methods, namely Vortex assisted liquid-liquid microextraction based on solidification of floating organic droplet (VALLME-SFO) and Dispersive liquid-liquid microextraction based on solidification of floating organic droplet(DLLME-SFO) have been compared for the determination of multiclass analytes (pesticides, plasticizers, pharmaceuticals and personal care products) in river water samples by using liquid chromatography tandem mass spectrometry (LC-MS/MS). The effect of various experimental parameters on the efficiency of the two methods and their optimum values were studied with the aid of Central Composite Design (CCD) and Response Surface Methodology(RSM). Under optimal conditions, VALLME-SFO was validated in terms of limit of detection, limit of quantification, dynamic linearity range, determination of coefficient, enrichment factor and extraction recovery for which the respective values were (0.011-0.219ngmL -1 ), (0.035-0.723ngmL -1 ), (0.050-0.500ngmL -1 ), (R 2 =0.992-0.999), (40-56), (80-106%). However, when the DLLME-SFO method was validated under optimal conditions, the range of values of limit of detection, limit of quantification, dynamic linearity range, determination of coefficient, enrichment factor and extraction recovery were (0.025-0.377ngmL -1 ), (0.083-1.256ngmL -1 ), (0.100-1.000ngmL -1 ), (R 2 =0.990-0.999), (35-49), (69-98%) respectively. Interday and intraday precisions were calculated as percent relative standard deviation (%RSD) and the values were ≤15% for VALLME-SFO and DLLME-SFO methods. Both methods were successfully applied for determining multiclass analytes in river water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theis, T.; Feng, Y.; Wu, T.
2014-01-07
Hyperpolarization methods, which can enhance nuclear spin signals by orders of magnitude, open up important new opportunities in magnetic resonance. However, many of these applications are limited by spin lattice relaxation, which typically destroys the hyperpolarization in seconds. Significant lifetime enhancements have been found with “disconnected eigenstates” such as the singlet state between a pair of nearly equivalent spins, or the “singlet-singlet” state involving two pairs of chemically equivalent spins; the challenge is to populate these states (for example, from thermal equilibrium magnetization or hyperpolarization) and to later recall the population into observable signal. Existing methods for populating these statesmore » are limited by either excess energy dissipation or high sensitivity to inhomogeneities. Here we overcome the limitations by extending recent work using continuous-wave irradiation to include composite and adiabatic pulse excitations. Traditional composite and adiabatic pulses fail completely in this problem because the interactions driving the transitions are fundamentally different, but the new shapes we introduce can move population between accessible and disconnected eigenstates over a wide range of radio-frequency (RF) amplitudes and offsets while depositing insignificant amounts of power.« less
Dong, Hao; Zeng, Xiaofang; Bai, Weidong
2018-08-30
The present study reports an ultra high-performance liquid chromatography tandem mass spectrometry method for the simultaneous determination of six bisphenols (bisphenol A, bisphenol B and bisphenol F) and alkylphenols (4-nonylphenol, 4-n-nonylphenol and octylphenol) in hotpot seasoning. Samples were dispersed in n-hexane after addition of internal standards bisphenol A-d 4 and 4-n-nonylphenol-d 4 . Sample solutions were then centrifuged, and the supernatants purified using solid phase extraction with high polarity Carb/PSA composite fillers. Six target analytes were separated on a Waters ACQUITY BEH C18 column by gradient elution with methanol and 0.05% ammonium hydroxide in water as the mobile phase, and determined under multiple reactions monitoring mode. The limits of detection and quantitation, matrix effect, recovery and precision of the method were investigated. Results were linear in the concentration range 0.1-250 µg/L for all compounds of interest, with R 2 > 0.9950. Limits of detection were in the range 0.1-0.4 μg/kg, and limits of quantitation were between 0.5 μg/kg and 1.0 μg/kg. The mean recoveries for negative samples at three spiked concentrations were in the range 87.9%-102.4%, and the intra-day precision and inter-day precision were in the ranges 2.1-8.2% and 4.8-11.2%, respectively. This method is accurate and sensitive, and had good clean-up characteristics, which might apply to screening and quantitation of target bisphenols and alkylphenols in hotpot seasoning. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
NASA Astrophysics Data System (ADS)
Ning, Cun-Zheng; Dou, Letian; Yang, Peidong
2017-12-01
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.
NASA Astrophysics Data System (ADS)
Zhu, Kun; Hong, Zhen; Kang, Shi-Zhao; Qin, Lixia; Li, Guodong; Li, Xiangqing
2018-04-01
The orderly potassium niobate nanosheets/silver oxide (Ag2O) composite films with uniform morphology were achieved by layer-by-layer self-assembly combined with ultraviolet light irradiation. The composition, structure and morphology of the potassium niobate nanosheets/Ag2O composite films were studied by XPS, XRD and SEM. Furthermore, the films were used as a SERS probe to detect crystal violet molecules. The results showed that the potassium niobate nanosheets/Ag2O composite films were an active substrate for fast and sensitive detection of crystal violet with low concentration. The limit of detection by the films can reach 1 × 10-6 mol L-1. Both electromagnetic enhancement and chemical enhancement contributed to the enhanced SERS in the (potassium niobate nanosheets/Ag2O)4 films. Moreover, it was found that the films were relatively stable under light irradiation or heat treatment in a certain range.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng
2017-03-01
Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.
Processing, microstructure and mechanics of functionally graded Al A359/SiC(p) composite
NASA Astrophysics Data System (ADS)
Rodriguez-Castro, Ramon
2000-11-01
Metal matrix composites (MMCs) have great promise for high temperature, high strength, wear resistant applications. However, their brittleness has limited their use in load bearing applications. Functionally graded MMCs with a reinforcement concentration higher on the surface than in the interior offer new opportunities, as these materials will have high surface hardness as well as high resistance to crack growth towards the interior. In this dissertation the processing and mechanical properties of a functionally graded MMC are investigated. Rectangular blocks (100 mmx60 mmx50 mm) of functionally graded SiC particulate reinforced aluminum A359 matrix composite were prepared by centrifugal casting techniques. The reinforcement volume fraction profiles varied as the centrifugal force was applied, owing to the different densities of Al and SiC. The casting at 1300 rpm (angular velocity) had a well-mixed, refined microstructure with the maximum SiC volume fraction of 44% near the outer surface of the blocks. This surface exhibited an elevated hardness. The effect of SiC particulate reinforcement on strengthening of A359 Al alloy was experimentally studied by tensile testing specimens prepared from the cast blocks. There was a continuous increase in tensile and yield strength with increasing SiC volume fractions in the range of 0.20 to 0.30. On the contrary, there was a reduction in tensile and yield strength for SiC concentrations in the range of 0.30 to 0.40. The elasticity modulus increased with increasing SiC volume fractions in the whole reinforcement range (0.20--0.40). Fractographic analysis by SEM revealed a ductile failure process of void growth in the matrix, but the amount of the void growth was less when the SiC concentration was higher. SEM also revealed SiC reinforcement fracture and decohesion, with the particle fracture increasing with the particle concentration. Appropriate flat specimens with a continuously graded microstructure for fracture mechanics testing were machined from the cast blocks. No published work has reported specimens of similar characteristics (size of the specimens and continuous reinforcement gradation). Fracture mechanics of the composite specimens with the crack parallel to the gradation in elastic properties was studied to investigate the effect of the nonhomogeneous microstructure on fracture toughness. Fatigue pre-cracking was used and a limited amount of fatigue crack propagation data was gathered. Low values of DeltaKth and increased crack growth resistance in the Paris region were observed for the functionally graded composite compared to a homogeneous 20 vol% composite. R-curve (KR) behavior of fracture was investigated in the functionally graded composite. At elevated SiC concentrations (low values of crack length), limited dissipation of energy by restrained plastic deformation of the matrix at the crack tip produced low fracture toughness values. On the contrary, at longer crack lengths SiC content decreased and there was more absorption of energy, resulting in higher fracture toughness values. In addition, the crack growth resistance behavior of the FGM composite was compared to the corresponding behavior of an Al A359/SiCp 20 vol% homogeneous composite. The latter exhibited a declining KR-curve behavior whereas the FGM composite displayed an increasing KR-curve behavior. Consequently, this increasing crack growth resistance behavior displayed by the functionally graded Al A359/SiCp composite shows that tailored changes in the microstructure could circumvent the low toughness inherent in MMCs.
Outgassing on stagnant-lid super-Earths
NASA Astrophysics Data System (ADS)
Dorn, C.; Noack, L.; Rozel, A. B.
2018-06-01
Aims: We explore volcanic CO2-outgassing on purely rocky, stagnant-lid exoplanets of different interior structures, compositions, thermal states, and age. We focus on planets in the mass range of 1-8 M⊕ (Earth masses). We derive scaling laws to quantify first- and second-order influences of these parameters on volcanic outgassing after 4.5 Gyr of evolution. Methods: Given commonly observed astrophysical data of super-Earths, we identify a range of possible interior structures and compositions by employing Bayesian inference modeling. The astrophysical data comprise mass, radius, and bulk compositional constraints; ratios of refractory element abundances are assumed to be similar to stellar ratios. The identified interiors are subsequently used as input for two-dimensional (2D) convection models to study partial melting, depletion, and outgassing rates of CO2. Results: In total, we model depletion and outgassing for an extensive set of more than 2300 different super-Earth cases. We find that there is a mass range for which outgassing is most efficient ( 2-3 M⊕, depending on thermal state) and an upper mass where outgassing becomes very inefficient ( 5-7 M⊕, depending on thermal state). At small masses (below 2-3 M⊕) outgassing positively correlates with planet mass, since it is controlled by mantle volume. At higher masses (above 2-3 M⊕), outgassing decreases with planet mass, which is due to the increasing pressure gradient that limits melting to shallower depths. In summary, depletion and outgassing are mainly influenced by planet mass and thermal state. Interior structure and composition only moderately affect outgassing rates. The majority of outgassing occurs before 4.5 Gyr, especially for planets below 3 M⊕. Conclusions: We conclude that for stagnant-lid planets, (1) compositional and structural properties have secondary influence on outgassing compared to planet mass and thermal state, and (2) confirm that there is a mass range for which outgassing is most efficient and an upper mass limit, above which no significant outgassing can occur. Our predicted trend of CO2-atmospheric masses can be observationally tested for exoplanets. These findings and our provided scaling laws are an important step in order to provide interpretative means for upcoming missions such as JWST and E-ELT, that aim at characterizing exoplanet atmospheres.
Mladenovič, Ana; Hamler, Sandra; Zupančič, Nina
2017-01-01
The environmental acceptability of geotechnical composites made of treated municipal sewage sludge (SwS) and paper ash (PA) after two different curing periods has been investigated. The mineral composition of such composites, including their content of major oxides, is mainly influenced by the PA. The content of potentially toxic elements (PTEs) in the initial materials and in the composites varies considerably. In the SwS the Ba, Cd, Cr, Cu, Hg, Ni and Zn contents are above the legally permitted limits. The PTE content of PA are lower, but still somewhat above the permitted values for Ba and Cu. Mixing these two materials together resulted in a decrease in the PTE, but the Ba, Cu and Zn contents are still too high for agricultural application. However, leachates from composites that had been cured for 28 days are highly alkaline, and the As, Ba, Cd, Cr, Hg, Mo, Ni, Pb and Zn contents in them are well below the permitted values. The Cu contents (2.4 to 5.4 mg/kg) are above the permitted limit for inert material, but inside the range for non-hazardous material. In a leachate of composite which was prepared with fresh PA and a lower PA to SwS ratio, the Cu content was 1.4 mg/kg, since fresh PA is more reactive and therefore has a higher ability to immobilise Cu. Therefore, such mixtures can be utilised for covers and liners for sanitary landfills.
Simulation of Infrared Spectra of Carbonaceous Grains
NASA Astrophysics Data System (ADS)
Dadswell, G.; Duley, W. W.
1997-02-01
Random covalent network (RCN) theory is applied to describe the infrared spectroscopic properties of carbonaceous solids with compositions containing a mixture of aromatic, aliphatic, and diamond-like hydrocarbons. Application of this technique to carbonaceous dust is equivalent to the synthesis of solids whose structure and bonding satisfy stoicheometry while minimizing strain energy. The result involves a range of compositions compatible with carbon bonding and the hydrogen concentration incorporated in the network. In general, only a limited range of compositions is available rather than the infinite number of possible compositions expected without the inclusion of these constraints. When compositions have been defined in this way, infrared spectra may be synthesized for comparison with astronomical spectra of interstellar carbonaceous solids. Such spectra contain components corresponding to absorption by CHn groups in which n = 1-3. We find, however, that additional spectral features, not included in our simple chemical model, must be present also in dust. We give plots of such spectra in the 3100-2800 cm-1 (3.2-3.6 μm) region for comparison with infrared spectra of interstellar dust. We have also developed an RCN formalism that incorporates oxygen into the carbon network as OH groups, and we show that this inclusion introduces a strong additional absorption band in the 3300 cm-1 (3.0 μm) region.
Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1–x)TiO3/Cu Composite
Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong
2016-01-01
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1−xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420
Non-isothermal electrochemical model for lithium-ion cells with composite cathodes
NASA Astrophysics Data System (ADS)
Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang
2015-06-01
Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.
Shape-morphing composites with designed micro-architectures
NASA Astrophysics Data System (ADS)
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.
2016-06-01
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.
Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads
NASA Astrophysics Data System (ADS)
Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik
2014-02-01
An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.
Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming
2013-12-01
Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.
Toward Risk Reduction for Mobile Service Composition.
Deng, Shuiguang; Huang, Longtao; Li, Ying; Zhou, Honggeng; Wu, Zhaohui; Cao, Xiongfei; Kataev, Mikhail Yu; Li, Ling
2016-08-01
The advances in mobile technologies enable us to consume or even provide services through powerful mobile devices anytime and anywhere. Services running on mobile devices within limited range can be composed to coordinate together through wireless communication technologies and perform complex tasks. However, the mobility of users and devices in mobile environment imposes high risk on the execution of the tasks. This paper targets reducing this risk by constructing a dependable service composition after considering the mobility of both service requesters and providers. It first proposes a risk model and clarifies the risk of mobile service composition; and then proposes a service composition approach by modifying the simulated annealing algorithm. Our objective is to form a service composition by selecting mobile services under the mobility model and to ensure the service composition have the best quality of service and the lowest risk. The experimental results demonstrate that our approach can yield near-optimal solutions and has a nearly linear complexity with respect to a problem size.
NASA Technical Reports Server (NTRS)
Moon, H.-K.; Ito, Y.; Cornie, J. A.; Flemings, M. C.
1993-01-01
The rheology of SiC particulate/Al-6.5 pct Si composite slurries was explored. The rheological behavior of the composite slurries shows both thixotropic and pseudoplastic behaviors. Isostructural experiments on the composite slurries revealed a Newtonian behavior beyond a high shear rate limit. The rheology of fully molten composite slurries over the low to high shear rate range indicates the existence of a low shear rate Newtonian region, an intermediate pseudoplastic region and a high shear rate Newtonian region. The isostructural studies indicate that the viscosity of a composite slurry depends upon the shearing history of a given volume of material. An unexpected shear thinning was noted for SiC particulate + alpha slurries as compared to semi-solid metallic slurries at the same fraction solid. The implications of these findings for the processing of slurries into cast components is discussed.
Thermographic imaging for high-temperature composite materials: A defect detection study
NASA Technical Reports Server (NTRS)
Roth, Don J.; Bodis, James R.; Bishop, Chip
1995-01-01
The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.
NASA Technical Reports Server (NTRS)
Funk, Joan G.; Sykes, George F., Jr.
1989-01-01
The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.
NASA Technical Reports Server (NTRS)
Thomas, F. P.
2006-01-01
Aerospace structures utilize innovative, lightweight composite materials for exploration activities. These structural components, due to various reasons including size limitations, manufacturing facilities, contractual obligations, or particular design requirements, will have to be joined. The common methodologies for joining composite components are the adhesively bonded and mechanically fastened joints and, in certain instances, both methods are simultaneously incorporated into the design. Guidelines and recommendations exist for engineers to develop design criteria and analyze and test composites. However, there are no guidelines or recommendations based on analysis or test data to specify a torque or torque range to apply to metallic mechanical fasteners used to join composite components. Utilizing the torque tension machine at NASA s Marshall Space Flight Center, an initial series of tests were conducted to determine the maximum torque that could be applied to a composite specimen. Acoustic emissions were used to nondestructively assess the specimens during the tests and thermographic imaging after the tests.
Composite Solid Electrolyte Containing Li+- Conducting Fibers
NASA Technical Reports Server (NTRS)
Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu
2006-01-01
Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.
Final Report - Enhanced LAW Glass Formulation Testing, VSL-07R1130-1, Rev. 0, dated 10/05/07
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Pegg, I. L.; Matlack, K. S.
2013-11-13
The principal objective of this work was to extend the glass formulation methodology developed in the earlier work [2, 5, 6] for Envelope A, B and C waste compositions for development of compliant glass compositions targeting five high sodium-sulfur waste loading regions. This was accomplished through a combination of crucible-scale tests, and tests on the DM10 melter system. The DM10 was used for several previous tests on LAW compositions to determine the maximum feed sulfur concentrations that can be processed without forming secondary sulfate phases on the surface of the melt pool. This melter is the most efficient melter platformmore » for screening glass compositions over a wide range of sulfate concentrations and therefore was selected for the present tests. The tests were conducted to provide information on melter processing characteristics and off-gas data, including sulfur incorporation and partitioning. As described above, the main objective was to identify the limits of waste loading in compliant glass formulations spanning the range of expected Na{sub 2}O and SO{sub 3} concentrations in the LAW glasses.« less
Fiber-optic technologies in laser-based therapeutics: threads for a cure.
Wang, Zheng; Chocat, Noémie
2010-06-01
In the past decade, novel fiber structures and material compositions have led to the introduction of new diagnostic and therapeutic tools. We review the structure, the material composition and the fabrication processes behind these novel fiber systems. Because of their structural flexibility, their compatibility with endoscopic appliances and their efficiency in laser delivery, these fiber systems have greatly extended the reach of a wide range of surgical lasers in minimally invasive procedures. Much research in novel fiber-optics delivery systems has been focused on the accommodation of higher optical powers and the extension to a broader wavelength range. Until recently, CO2 laser surgery, renowned for its precision and efficiency, was limited to open surgeries by the lack of delivery fibers. Hollow-core photonic bandgap fibers are assessed for their ability to transmit CO2 laser at surgical power level and for their applications in a range of clinical areas. Current fiber-delivery technologies for a number of laser surgery modalities and wavelengths are compared.
Auroral origin of medium scale gravity waves in neutral composition and temperature
NASA Technical Reports Server (NTRS)
Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.
1979-01-01
The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.
Spectral methods to detect cometary minerals with OSIRIS on board Rosetta
NASA Astrophysics Data System (ADS)
Oklay, N.; Vincent, J.-B.; Sierks, H.
2013-09-01
Comet 67P/Churyumov-Gerasimenko is going to be observed by the OSIRIS scientific imager (Keller et al. 2007) on board ESA's spacecraft Rosetta in the wavelength range of 250-1000 nm with a combination of 12 filters for the narrow angle camera (NAC) and 14 combination of 12 filters for the narrow angle camera (NAC) and 14 filters in the wavelength range of 240-720 nm for the wide angle camera (WAC). NAC filters are suitable to surface composition studies, while WAC filters are designed for gas and radical emission studies. In order to investigate the composition of the comet surface from the observed images, we need to understand how to detect different minerals and which compositional information can be derived from the NAC filters. Therefore, the most common cometary silicates e.g. enstatite, forsterite are investigated with two hydrated silicates (serpentine and smectite) for the determina- tion of the spectral methods. Laboratory data of those selected minerals are collected from RELAB database (http://www.planetary.brown.edu/relabdocs/relab.htm) and absolute spectra of the minerals observed by OSIRIS NAC filters are calculated. Due to the limited spectral range of the laboratory data, Far-UV and Neutral density filters of NAC are excluded from this analysis. Considered NAC filters in this study are represented in Table 1 and the number of collected laboratory data are presented in Table 2. Detection and separation of the minerals will not only allow us to study the surface composition but also to study observed composition changes due to the cometary activity during the mission.
NASA Astrophysics Data System (ADS)
Perfit, M. R.; Walters, R. L.
2014-12-01
High spatial density geochemical data sets from the N-EPR and S-JdFR are used to re-evaluate the across-axis geochemical variations in major and trace elements at mid-ocean ridges (MORs). At two axial melt lens (AML) segments, north and south, at the 9-10°N EPR, N-MORB MgO varies across-axis from the most primitive above the AML to more evolved away from the axis. This trend is distinct at the northern (magmatically more robust) segment with an axial MgO range of 8-9 wt% and off-axis (>2km) range of 6.5-8 wt%. This decrease is also reflected in E-MORB MgO variation. There is more variability at the southern segment but, off-axis progression to more evolved MgO is still evident. Interestingly, the Cleft segment, JdFR, displays similar geochemical behavior to the EPR with an axial MgO range of 7-8.5 wt% and off-axis (>2km) range of 6-7.5 wt%. EPR geochemical studies over the past 30 years have described models of upper crustal accumulation ranging from eruptions limited to the axis, to temporal variation in the composition of magma in the AML, to multiple eruption sites across the ridge crest and flanks (<5km). Eruptions limited to the axis, with topographically controlled flow off-axis, cannot reproduce the observed off-axis change to more evolved N-MORB. Time-dependence could explain one instance of evolved lavas off-axis but, similar geochemical behavior is observed at two separate AML segments. Multiple instances of consistent compositional variability at multiple AML segments, and at different ridges, point to a common process of crustal accretion at MORs. In light of recent geophysical discoveries of Off-axis AMLs (OAMLs) at the EPR and JdFR, we propose that the trend of more evolved lavas for the majority of N-MORB lavas with distance from the axis is controlled by thermal distribution in the underlying crystal mush zone (CMZ). Higher magma flux beneath the axis facilitates higher temperatures and high porosity melt pathways, reducing crustal residence times, and erupting more primitive lava compositions. OAMLs at the edges of the CMZ, where it is cooler, feed more evolved off-axis eruptions. Lower magma flux at the edges increases crustal residence time and the extent to which magmas crystallize. OAMLs outside of the CMZ host magmas that may escaped any central mixing and erupt a greater range of compositions.
Modelling the Composition of Outgassing Bubbles at Basaltic Open Vent Volcanoes
NASA Astrophysics Data System (ADS)
Edmonds, M.; Clements, N.; Houghton, B. F.; Oppenheimer, C.; Jones, R. L.; Burton, M. R.
2015-12-01
Basaltic open vent volcanoes exhibit a wide range in eruption styles, from passive outgassing to Strombolian and Hawaiian explosive activity. Transitions between these styles are linked to contrasting two-phase (melt and gas) flow regimes in the conduit system. A wealth of data now exists characterising the fluxes and compositions of gases emitted from these volcanoes, alongside detailed observations of patterns of outgassing at the magma free surfaces. Complex variations in gas composition are apparent from high temporal resolution measurement techniques such as open path spectroscopy. This variability with time is likely a function of individual bubbles' histories of growth during ascent, with variable degrees of kinetic inhibition. Our previous studies at Kilauea and Stromboli have, for example, linked CO2-rich gases with the bursting of bubbles that last equilibrated at some depth beneath the surface. However, very few studies have attempted to reconcile such observations with quantitative models of diffusion-limited bubble growth in magmas prior to eruption. We present here an analytical model that simulates the growth of populations of bubbles by addition of volatile mass during decompression, with growth limited by diffusion. The model simulates a range of behaviors between the end members of separated two-phase flow and homogeneous bubbly flow in the conduit, tied to thermodynamic models of solubility and partitioning of volatile species (carbon, water, sulfur). We explore the effects of the form of bubble populations at depth, melt viscosity, total volatile content, magma decompression rate and other intrinsic parameters on expected gas compositions at the surface and consider implications for transitions between eruption styles. We compare the the model to data suites from Stromboli and Kilauea.
Tremella-like graphene-Au composites used for amperometric determination of dopamine.
Li, Cong; Zhao, Jingyu; Yan, Xiaoyi; Gu, Yue; Liu, Weilu; Tang, Liu; Zheng, Bo; Li, Yaru; Chen, Ruixue; Zhang, Zhiquan
2015-03-21
Electrochemical detection of dopamine (DA) plays an important role in medical diagnosis. In this paper, tremella-like graphene-Au (t-GN-Au) composites were synthesized by a one-step hydrothermal method for selective detection of DA. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were used to characterize as-prepared t-GN-Au composites. The t-GN-Au composites were directly used for the determination of DA via cyclic voltammetry (CV) and the chronoamperometry (CA) technique. CA measurement gave a wide linear range from 0.8 to 2000 μM, and the detection limit of 57 nM (S/N = 3) for DA. The mechanism and the heterogeneous electron transfer kinetics of the DA oxidation were discussed in the light of rotating disk electrode (RDE) experiments. Moreover, the modified electrode was applied to the determination of DA in human urine and serum samples.
Large moments in bcc FexCoyMnz ternary alloy thin films
NASA Astrophysics Data System (ADS)
Snow, R. J.; Bhatkar, H.; N'Diaye, A. T.; Arenholz, E.; Idzerda, Y. U.
2018-02-01
The elemental magnetic moments and the average atomic moment of 10-20 nm thick single crystal bcc (bct) FexCoyMnz films deposited on MgO(001) have been determined as a function of a broad range of compositions. Thin film epitaxy stabilized the bcc structure for 80% of the available ternary compositional space compared to only a 23% stability region for the bulk. The films that display ferromagnetism represent 60% of the available compositional possibilities compared to 25% for the bulk. A maximum average atomic moment of 3.25 ± 0.3 μB/atom was observed for a bcc Fe9Co62Mn29 film (well above the limit of the Slater-Pauling binary alloy curve of 2.45 μB/atom). The FexCoyMnz ternary alloys that exhibit high moments can only be synthesized as ultrathin films since the bcc structure is not stable in the bulk for those compositions.
Relationship of source and sink in determining kernel composition of maize
Seebauer, Juliann R.; Singletary, George W.; Krumpelman, Paulette M.; Ruffo, Matías L.; Below, Frederick E.
2010-01-01
The relative role of the maternal source and the filial sink in controlling the composition of maize (Zea mays L.) kernels is unclear and may be influenced by the genotype and the N supply. The objective of this study was to determine the influence of assimilate supply from the vegetative source and utilization of assimilates by the grain sink on the final composition of maize kernels. Intermated B73×Mo17 recombinant inbred lines (IBM RILs) which displayed contrasting concentrations of endosperm starch were grown in the field with deficient or sufficient N, and the source supply altered by ear truncation (45% reduction) at 15 d after pollination (DAP). The assimilate supply into the kernels was determined at 19 DAP using the agar trap technique, and the final kernel composition was measured. The influence of N supply and kernel ear position on final kernel composition was also determined for a commercial hybrid. Concentrations of kernel protein and starch could be altered by genotype or the N supply, but remained fairly constant along the length of the ear. Ear truncation also produced a range of variation in endosperm starch and protein concentrations. The C/N ratio of the assimilate supply at 19 DAP was directly related to the final kernel composition, with an inverse relationship between the concentrations of starch and protein in the mature endosperm. The accumulation of kernel starch and protein in maize is uniform along the ear, yet adaptable within genotypic limits, suggesting that kernel composition is source limited in maize. PMID:19917600
Elements and elasmobranchs: hypotheses, assumptions and limitations of elemental analysis.
McMillan, M N; Izzo, C; Wade, B; Gillanders, B M
2017-02-01
Quantifying the elemental composition of elasmobranch calcified cartilage (hard parts) has the potential to answer a range of ecological and biological questions, at both the individual and population level. Few studies, however, have employed elemental analyses of elasmobranch hard parts. This paper provides an overview of the range of applications of elemental analysis in elasmobranchs, discussing the assumptions and potential limitations in cartilaginous fishes. It also reviews the available information on biotic and abiotic factors influencing patterns of elemental incorporation into hard parts of elasmobranchs and provides some comparative elemental assays and mapping in an attempt to fill knowledge gaps. Directions for future experimental research are highlighted to better understand fundamental elemental dynamics in elasmobranch hard parts. © 2016 The Fisheries Society of the British Isles.
Advances in modeling trait-based plant community assembly.
Laughlin, Daniel C; Laughlin, David E
2013-10-01
In this review, we examine two new trait-based models of community assembly that predict the relative abundance of species from a regional species pool. The models use fundamentally different mathematical approaches and the predictions can differ considerably. Maxent obtains the most even probability distribution subject to community-weighted mean trait constraints. Traitspace predicts low probabilities for any species whose trait distribution does not pass through the environmental filter. Neither model maximizes functional diversity because of the emphasis on environmental filtering over limiting similarity. Traitspace can test for the effects of limiting similarity by explicitly incorporating intraspecific trait variation. The range of solutions in both models could be used to define the range of natural variability of community composition in restoration projects. Copyright © 2013 Elsevier Ltd. All rights reserved.
A chemiluminescence biosensor for the detection of thrombin based on the aptamer composites
NASA Astrophysics Data System (ADS)
Lin, Yanna; Li, Jianbo; Wang, Yanhui; Sun, Yuanling; Ding, Chaofan; Sun, Weiyan; Luo, Chuannan
2018-03-01
An efficient, rapid, simple and ultrasensitive chemiluminescence (CL) approach was proposed for thrombin detection based on the aptamer-thrombin recognition. The aptamer composites were synthesized in this work using graphene oxide (GO) as the backing material. The thrombin was adsorbed on the aptamer composites based on the aptamer-thrombin recognition. Thus, thrombin could be quantified by the difference value of the CL intensity between supernate of the sample and the mixture which composed of thrombin and coexisted substances. The CL intensity exhibits a stable response to thrombin over a concentration range from 2.5 × 10- 10 to 1 × 10- 9 mol·L- 1 with a detection limit as low as 8.3 × 10- 11 mol·L- 1, the relative standard deviation (RSD) was found to be 4.9% for 11 determinations of 1.25 × 10- 9 mol·L- 1 thrombin. Finally, the applicability of the method was verified by applying to serum samples. The recoveries were in the range of 90.3-101.0% with RSD of 2.6-3.2%.
Interlaminar shear fracture toughness and fatigue thresholds for composite materials
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.
1987-01-01
Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.
Murtada, Khaled; de Andrés, Fernando; Ríos, Angel; Zougagh, Mohammed
2018-04-20
Poly(styrene-co-divinylbenzene)-coated magnetic multiwalled carbon nanotube composite synthesized by in-situ high temperature combination and precipitation polymerization of styrene-co-divinylbenzene has been employed as a magnetic sorbent for the solid phase extraction of antidepressants in human urine samples. Fluoxetine, venlafaxine, citalopram and sertraline were, afterwards, separated and determined by capillary electrophoresis with diode array detection. The presence of magnetic multiwalled carbon nanotubes in native poly(styrene-co-divinylbenzene) not only simplified sample treatment but also enhanced the adsorption efficiencies, obtaining extraction recoveries higher than 89.5% for all analytes. Moreover, this composite can be re-used at least 10 times without loss of efficiency and limits of detection ranging from 0.014 to 0.041 μg mL -1 were calculated. Additionally, precision values ranging from 0.08 to 7.50% and from 0.21 to 3.05% were obtained for the responses and for the migration times of the analytes, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Yang, Jian; Jiang, Hongchen; Liu, Wen; Wang, Beichen
2018-01-01
Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes. PMID:29636745
Palanisamy, Selvakumar; Thangavelu, Kokulnathan; Chen, Shen-Ming; Gnanaprakasam, P; Velusamy, Vijayalakshmi; Liu, Xiao-Heng
2016-10-20
The accurate detection of dopamine (DA) levels in biological samples such as human serum and urine are essential indicators in medical diagnostics. In this work, we describe the preparation of chitosan (CS) biopolymer grafted graphite (GR) composite for the sensitive and lower potential detection of DA in its sub micromolar levels. The composite modified electrode has been used for the detection of DA in biological samples such as human serum and urine. The GR-CS composite modified electrode shows an enhanced oxidation peak current response and low oxidation potential for the detection of DA than that of electrodes modified with bare, GR and CS discretely. Under optimum conditions, the fabricated GR-CS composite modified electrode shows the DPV response of DA in the linear response ranging from 0.03 to 20.06μM. The detection limit and sensitivity of the sensor were estimated as 0.0045μM and 6.06μA μM(-1)cm(-2), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhu, Junya; Li, Liping; Zhao, Hailei; Han, Guangshu; Wu, Albert W; Weingart, Saul N
2014-10-01
Existing patient safety climate instruments, most of which have been developed in the USA, may not accurately reflect the conditions in the healthcare systems of other countries. To develop and evaluate a patient safety climate instrument for healthcare workers in Chinese hospitals. Based on a review of existing instruments, expert panel review, focus groups and cognitive interviews, we developed items relevant to patient safety climate in Chinese hospitals. The draft instrument was distributed to 1700 hospital workers from 54 units in six hospitals in five Chinese cities between July and October 2011, and 1464 completed surveys were received. We performed exploratory and confirmatory factor analyses and estimated internal consistency reliability, within-unit agreement, between-unit variation, unit-mean reliability, correlation between multi-item composites, and association between the composites and two single items of perceived safety. The final instrument included 34 items organised into nine composites: institutional commitment to safety, unit management support for safety, organisational learning, safety system, adequacy of safety arrangements, error reporting, communication and peer support, teamwork and staffing. All composites had acceptable unit-mean reliabilities (≥0.74) and within-unit agreement (Rwg ≥0.71), and exhibited significant between-unit variation with intraclass correlation coefficients ranging from 9% to 21%. Internal consistency reliabilities ranged from 0.59 to 0.88 and were ≥0.70 for eight of the nine composites. Correlations between composites ranged from 0.27 to 0.73. All composites were positively and significantly associated with the two perceived safety items. The Chinese Hospital Survey on Patient Safety Climate demonstrates adequate dimensionality, reliability and validity. The integration of qualitative and quantitative methods is essential to produce an instrument that is culturally appropriate for Chinese hospitals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Tarrago, M; Garcia-Valles, M; Martínez, S; Neuville, D R
2018-05-11
The composition of sewage sludge from urban wastewater treatment plants is simulated using P-doped basalts. Electron microscopy analyses show that the solubility of P in the basaltic melt is limited by the formation of a liquid-liquid immiscibility in the form of an aluminosilicate phase and a Ca-Mg-Fe-rich phosphate phase. The rheological behavior of these compositions is influenced by both phase separation and nanocrystallization. Upon a thermal treatment, the glasses will crystallize into a mixture of inosilicates and spinel-like phases at low P contents and into Ca-Mg-Fe phosphate at high P contents. Hardness measurements yield values between 5.41 and 7.66 GPa, inside the range of commercial glasses and glass-ceramics. Leaching affects mainly unstable Mg 2+ -PO 4 3- complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Birnbaum, Christina; Bissett, Andrew; Teste, Francois P; Laliberté, Etienne
2018-04-16
Long-term soil age gradients are useful model systems to study how changes in nutrient limitation shape communities of plant root mutualists because they represent strong natural gradients of nutrient availability, particularly of nitrogen (N) and phosphorus (P). Here, we investigated changes in the dinitrogen (N 2 )-fixing bacterial community composition and diversity in nodules of a single host legume (Acacia rostellifera) across the Jurien Bay chronosequence, a retrogressive 2 million-year-old sequence of coastal dunes representing an exceptionally strong natural soil fertility gradient. We collected nodules from plants grown in soils from five chronosequence stages ranging from very young (10s of years; associated with strong N limitation for plant growth) to very old (> 2,000,000 years; associated with strong P limitation), and sequenced the nifH gene in root nodules to determine the composition and diversity of N 2 -fixing bacterial symbionts. A total of 335 unique nifH gene operational taxonomic units (OTUs) were identified. Community composition of N 2 -fixing bacteria within nodules, but not diversity, changed with increasing soil age. These changes were attributed to pedogenesis-driven shifts in edaphic conditions, specifically pH, exchangeable manganese, resin-extractable phosphate, nitrate and nitrification rate. A large number of common N 2 -fixing bacteria genera (e.g. Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) belonging to the Rhizobiaceae family (α-proteobacteria) comprised 70% of all raw sequences and were present in all nodules. However, the oldest soils, which show some of the lowest soil P availability ever recorded, harboured the largest proportion of unclassified OTUs, suggesting a unique set of N 2 -fixing bacteria adapted to extreme P limitation. Our results show that N 2 -fixing bacterial composition varies strongly during long-term ecosystem development, even within the same host, and therefore rhizobia show strong edaphic preferences.
Characterization of low concentration uranium glass working materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.
A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient formore » methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.« less
Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation.
Merchant, Sabeeha S; Helmann, John D
2012-01-01
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Elemental Economy: microbial strategies for optimizing growth in the face of nutrient limitation
Merchant, Sabeeha S.; Helmann, John D.
2014-01-01
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility at fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental-sparing and elemental-recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels; including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes. PMID:22633059
Machovsky-Capuska, Gabriel E; Miller, Mark G R; Silva, Fabiola R O; Amiot, Christophe; Stockin, Karen A; Senior, Alistair M; Schuckard, Rob; Melville, David; Raubenheimer, David
2018-06-05
1.Our understanding of the niche concept will remain limited while the quantity and range of different food types eaten remains a dominant proxy for niche breadth, as this does not account for the broad ecological context that governs diet. Linking nutrition, physiology and behaviour are critical to predict the extent to which a species adjusts its nutritional niche breadth at the levels of prey ("prey composition niche", defined as the range of prey compositions eaten), and diet ("realized nutritional niche" is the range of diets composed through feeding on the prey). 2.Here we studied adult-chick rearing Australasian gannets (Morus serrator) to propose an integrative approach using sea surface temperature anomalies (SSTa), geographic location and bathymetry over different years, to explore their relationship with the nutritional composition of prey and diets (i.e., prey composition and nutritional niche breadth), habitat use and foraging behavior. 3.We found that gannets feed on prey that varied widely in their nutritional composition (have a broad prey composition niche), and composed diets from these prey that likewise varied in composition (have a broad realized nutritional niche), suggesting generalism at two levels of macronutrient selection. 4.Across seasons, we established "nutritional landscapes" (hereafter nutriscapes), linking the nutritional content of prey (wet mass protein to-lipid ratio -P:L-) to the most likely geographic area of capture and bathymetry. Nutriscapes varied in their P:L from 6.06 to 15.28, over time, space and bathymetry (0 to 150 m). 5.During warm water events (strong positive SSTa), gannets expanded their foraging habitat, increased their foraging trip duration and consumed prey and diets with low macronutrient content (wet mass proportions of P and L). They were also constrained to the smallest prey composition and realized nutritional niche breadths. 6.Our findings are consistent with previous suggestions that dietary generalism evolves in heterogeneous environments, and provide a framework for understanding the nutritional goals in wild marine predators and how these goals drive ecological interactions and are, in turn, ultimately shaped by environmental fluctuations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Shape-morphing composites with designed micro-architectures
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; ...
2016-06-15
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designedmore » for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. As a result, the ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.« less
Geographic variation in left ventricular mass and mass index: a systematic review.
Poppe, K K; Bachmann, M Edgerton; Triggs, C M; Doughty, R N; Whalley, G A
2012-07-01
Left ventricular (LV) hypertrophy, defined as an abnormal increase in LV mass (LVM), is an important prognostic indicator and therapeutic target. LVM is often divided by body surface area to derive indexed mass; however, this does not correctly identify pathological LV hypertrophy in all people, especially when body composition is altered, or in different ethnic groups. We evaluated published ranges of echocardiographic LVM in healthy adult populations from different countries, excluding control groups, and compared them with the American Society of Echocardiography reference ranges. A total of 33 studies met the inclusion criteria. In men and women, there was wide variation in the ranges of LVM with a tendency for the upper limit to increase geographically westward; this variation remained for indexed mass. Several ranges fell outside the upper reference limits: in men, 13 of the mass ranges and 16 of indexed mass; and in women, 8 mass and 16 indexed mass. This review has shown that current guidelines may need revision as some published series suggest that greater LV mass should be considered normal. This may be explained by ethnic differences and supports the need for widely applicable and ethnically diverse reference ranges to be established.
Creep of plain weave polymer matrix composites
NASA Astrophysics Data System (ADS)
Gupta, Abhishek
Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the composites, was experimentally evaluated for time periods ranging from 1--120 hours under both loading conditions. The composite showed increase in creep with increase in temperature and stress. Creep of composite increased with increase in angle of loading, from 1% under on-axis loading to 31% under off-axis loading, within the tested time window. The experimental creep data for plain weave composites were superposed using TTSP (Time Temperature Superposition Principle) to obtain a master curve of experimental data extending to several years and was compared with model predictions to validate the model. The experimental and model results were found in good agreement within an error range of +/-1-3% under both loading conditions. A parametric study was also conducted to understand the effect of microstructure of plain weave composites on its on-axis and off-axis creep. Generation of knowledge in this area is also "first". Additionally, this thesis generated knowledge on time-dependent damage m woven composites and its effect on creep and tensile properties and their prediction.
Critical fictive temperature for plasticity in metallic glasses
Kumar, Golden; Neibecker, Pascal; Liu, Yan Hui; Schroers, Jan
2013-01-01
A long-sought goal in metallic glasses is to impart ductility without conceding their strength and elastic limit. The rational design of tough metallic glasses, however, remains challenging because of the inability of existing theories to capture the correlation between plasticity, composition and processing for a wide range of glass-forming alloys. Here we propose a phenomenological criterion based on a critical fictive temperature, Tfc, which can rationalize the effect of composition, cooling rate and annealing on room-temperature plasticity of metallic glasses. Such criterion helps in understanding the widespread mechanical behaviour of metallic glasses and reveals alloy-specific preparation conditions to circumvent brittleness. PMID:23443564
Zhu, Jie; Huo, Xiaohe; Liu, Xiaoqiang; Ju, Huangxian
2016-01-13
A novel ternary composite composed of TiO2 nanotubes (TiONTs), polyaniline (PANI), and gold nanoparticles (GNPs) was prepared for photoelectrochemical (PEC) biosensing. PANI was initially coated on TiONTs with an oxidative polymerization method, and 12-phosphotungstic acid was then used as a highly localized photoactive reducing agent to deposit GNPs on TiONT-PANI. The morphology and composition of the composite were characterized by various spectroscopic and microscopic methods. Electrochemical impedance spectroscopy was also conducted to demonstrate the excellent electrical conductivity of the composite. A PEC biosensor was fabricated by immobilizing a mixture of lactate dehydrogenase and the composite onto ITO electrodes, which regenerated nicotinamide adenine dinucleotide (NAD(+)) to complete the enzymatic cycle and led to an improved method for PEC detection of lactate. Because of the surface plasmon resonance enhanced effect of GNPs, the electrochromic performance of PANI, and excellent conductivity and biocompatibility of the composite, this method showed a dynamic range of 0.5-210 μM, sensitivity of 0.0401 μA μM(-1), and a detection limit of 0.15 μM.
NASA Astrophysics Data System (ADS)
Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan
2016-09-01
We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM-1 cm-2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets.
Colloidal-based additive manufacturing of bio-inspired composites
NASA Astrophysics Data System (ADS)
Studart, Andre R.
Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.
Stadig, Lisanne M; Rodenburg, T Bas; Reubens, Bert; Aerts, Johan; Duquenne, Barbara; Tuyttens, Frank A M
2016-12-01
Demand for meat from free-range broiler chickens is increasing in several countries. Consumers are motivated by better animal welfare and other product attributes such as quality and taste. However, scientific literature is not unanimous about whether free-range access influences quality, composition, and taste of the meat. Because chickens normally do not use free-range areas optimally, it is possible that provision of more suitable shelter will lead to more pronounced differences between chickens raised indoors and outdoors. In this study, an experiment with 2 production rounds of 600 slow-growing broilers each was performed. In each round, 200 chickens were raised indoors (IN), 200 had free-range access to grassland with artificial shelter (AS), and 200 had free-range access to short-rotation coppice with willow (SRC). Free-range use, feed intake, and growth were monitored, and after slaughter (d72) meat quality, composition, and taste were assessed. Free-range use was higher in SRC than in AS chickens (42.8 vs. 35.1%, P < 0.001). IN chickens were heavier at d70 than AS and SRC chickens (2.79 vs. 2.66 and 2.68 kg, P = 0.005). However, feed intake and conversion did not differ. Breast meat of chickens with free-range access was darker (P = 0.021) and yellower (P = 0.001) than that of IN chickens. Ultimate pH was lower (5.73 vs. 5.79; P = 0.006) and drip loss higher (1.29 vs. 1.09%; P = 0.05) in IN versus AS chickens. The percentage of polyunsaturated fatty acids was higher in AS than in IN meat (35.84 vs. 34.59%; P = 0.021). The taste panel judged breast meat of SRC chickens to be more tender (P = 0.003) and less fibrous (P = 0.013) compared to that of AS and IN chickens, and juicier compared to the IN chickens (P = 0.017). Overall, free-range access negatively affected slaughter weight, but positively affected meat quality, taste, and composition. Only a few differences between AS and SRC were found, possibly due to limited differences in free-range use. © 2016 Poultry Science Association Inc.
Helz, Rosalind T.; Clague, David A.; Mastin, Larry G.; Rose, Timothy R.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Petrologic observations on Kīlauea's lavas include abundant microprobe analyses of glasses, which show the range of melts available in Kīlauea's summit reservoir over time. During the past two centuries, compositions of melts erupted within the caldera have been limited to MgO = 6.3–7.5 wt%. Extracaldera lavas of the 1959, 1971, and 1974 eruptions contain melts with up to 10.2, 8.9, and 9.2 wt% MgO, respectively, and the 1924 tephra contains juvenile Pele's tears with up to 9.1 wt% MgO. Melt compositions from explosive deposits at Kīlauea, including the Keanakāko‘i (A.D. 1500–1800), Kulanaokuaiki (A.D. 400–1000), and Pāhala (10–25 ka) tephra units, show large ranges of MgO contents. The range of melt MgO is 6.5–11.0 wt% for the Keanakāko‘i; the Kulanaokuaiki extends to 12.5% MgO and the Pāhala Ash includes rare shards with 13–14.5% MgO. The frequency distributions for MgO in the Keanakāko‘i and Kulanaokuaiki glasses are bimodal, suggesting preferential magma storage at two different depths. Kīlauea's summit reservoir contains melts ranging from 6.5 to at least 11.0 wt% MgO, and such melts were available for sampling near instantaneously and repeatedly over centuries. More magnesian melts are inferred to have risen directly from greater depth.
Time counts: future time perspective, goals, and social relationships.
Lang, Frieder R; Carstensen, Laura L
2002-03-01
On the basis of postulates derived from socioemotional selectivity theory, the authors explored the extent to which future time perspective (FTP) is related to social motivation, and to the composition and perceived quality of personal networks. Four hundred eighty German participants with ages ranging from 20 to 90 years took part in the study. In 2 card-sort tasks, participants indicated their partner preference and goal priority. Participants also completed questionnaires on personal networks and social satisfaction. Older people, as a group, perceived their future time as more limited than younger people. Individuals who perceived future time as being limited prioritized emotionally meaningful goals (e.g., generativity, emotion regulation), whereas individuals who perceived their futures as open-ended prioritized instrumental or knowledge-related goals. Priority of goal domains was found to be differently associated with the size, composition, and perceived quality of personal networks depending on FTP. Prioritizing emotion-regulatory goals was associated with greater social satisfaction and less perceived strain with others when participants perceived their future as limited. Findings underscore the importance of FTP in the self-regulation of social relationships and the subjective experience associated with them.
Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.
Kotzakoulakis, Konstantinos; George, Simon C
2018-01-01
The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nuclear structure of bound states of asymmetric dark matter
NASA Astrophysics Data System (ADS)
Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.
2017-11-01
Models of asymmetric dark matter (ADM) with a sufficiently attractive and long-range force give rise to stable bound objects, analogous to nuclei in the Standard Model, called nuggets. We study the properties of these nuggets and compute their profiles and binding energies. Our approach, applicable to both elementary and composite fermionic ADM, utilizes relativistic mean field theory, and allows a more systematic computation of nugget properties, over a wider range of sizes and force mediator masses, compared to previous literature. We identify three separate regimes of nugget property behavior corresponding to (1) nonrelativistic and (2) relativistic constituents in a Coulomb-like limit, and (3) saturation in an anti-Coulomb limit when the nuggets are large compared to the force range. We provide analytical descriptions for nuggets in each regime. Through numerical calculations, we are able to confirm our analytic descriptions and also obtain smooth transitions for the nugget profiles between all three regimes. We also find that over a wide range of parameter space, the binding energy in the saturation limit is an O (1 ) fraction of the constituent's mass, significantly larger than expectations in the nonrelativistic case. In a companion paper, we apply our results to the synthesis of ADM nuggets in the early Universe.
Test verification of LOX/RP-1 high-pressure fuel/oxidizer-rich preburner designs
NASA Technical Reports Server (NTRS)
Lawver, B. R.
1982-01-01
Two fuel-rich and two oxidizer-rich preburner injectors are tested with LOX/RP-1 in an investigation of performance, stability and gas temperature uniformity over a chamber pressure range from 1292 to 2540 psia. Fuel-rich mixture ratios range from 0.238 to 0.367 and oxidizer-rich mixture ratios range from 27 to 48, and carbon deposition data are collected by measuring the pressure drop across a turbine simulator flow device. The oxidizer-rich testing demonstrates the feasibility of oxidizer-rich preburners, indicating equilibrium combustion as predicted, and the measured fuel-rich gas composition and C-asterisk performance are in excellent agreement with kinetic model predictions indicating kinetically-limited combustion.
Enhanced Hydrate Nucleation Near the Limit of Stability.
Jimenez-Angeles, Felipe; Firoozabadi, Abbas
2015-03-30
Clathrate hydrates are crystalline structures composed of small guest molecules trapped into cages formed by hydrogen-bonded water molecules. In hydrate nucleation, water and the guest molecules may stay in a metastable fluid mixture for a long period. Metastability is broken if the concentration of the guest is above certain limit. We perform molecular dynamics (MD) simulations of supersaturated water-propane solutions close to the limit of stability. We show that hydrate nucleation can be very fast in a very narrow range of composition at moderate temperatures. Propane density fluctuations near the fluid-fluid demixing are coupled with crystallization producing en- hanced nucleation rates. This is the first report of propane-hydrate nucleation by MD simulations. We observe motifs of the crystalline structure II in line with experiments and new hydrate cages not reported in the literature. Our study relates nucleation to the fluid-fluid spinodal decomposition and demonstration that the enhanced nucleation phenomenon is more general than short range attractive interactions as suggested in nucleation of proteins.
White dwarf stars and the age of the Galactic disk
NASA Technical Reports Server (NTRS)
Wood, M. A.
1990-01-01
The history of the Galaxy is written in its oldest stars, the white dwarf (WD) stars. Significant limits can be placed on both the Galactic age and star formation history. A wide range of input WD model sequences is used to derive the current limits to the age estimates suggested by fitting to the observed falloff in the WD luminosity function. The results suggest that the star formation rate over the history of the Galaxy has been relatively constant, and that the disk age lies in the range 6-12 billion years, depending upon the assumed structure of WD stars, and in particular on the core composition and surface helium layer mass. Using plausible mixed C/O core input models, the estimates for the disk age range from 8-10.5 Gyr, i.e.,sustantially younger than most age estimates for the halo globular clusters. After speculating on the significance of the results, expected observational and theoretical refinements which will further enhance the reliability of the method are discussed.
NASA Astrophysics Data System (ADS)
Morris, R.; DeBari, S. M.; Busby, C.; Medynski, S.
2016-12-01
The southern volcano-bounded basin of the Rosario segment of the Cretaceous Alisitos oceanic arc provides outstanding 3-D exposures of an extensional arc, where crustal generation processes are recorded in the upper-crustal volcanic units and underlying middle-crustal plutonic rocks. Geochemical linkages between exposed crustal levels provide an analog for extensional arc systems such as the Izu-Bonin-Mariana (IBM) Arc. Upper-crustal units comprise a 3-5 km thick volcanic-volcaniclastic stratigraphy with hypabyssal intrusions. Deep-seated plutonic rocks intrude these units over a transition of <500m, where rafted volcanic blocks and evidence of magma mingling are exposed. Thermobarometry suggests <6 km emplacement depths. Compositional ranges (basalt to rhyolite) and mineral assemblages are similar in both middle-crustal and upper-crustal units, with striking compositional overlap. The most mafic compositions occur in upper-crustal hypabyssal units, and as amphibole cumulates in the plutonic rocks ( 51% SiO2). The most felsic compositions occur in welded ignimbrites and a tonalite pluton ( 71% SiO2). All units are low K with flat REE patterns, and show LILE enrichment and HFSE depletion. Trace element ratios show limited variation throughout the crustal section. Zr/Y and Nb/Y ratios are similar to the Izu active ( 3 Ma to present) zone of extension immediately behind the arc front, suggesting comparable mantle melt % during extension. Th/Zr ratios are more enriched in Alisitos compared to Izu, suggesting greater subducted sediment input. The Alisitos crustal section shows a limited range in ɛNd (5.7-7.1), but a wider range in 87Sr/86Sr (0.7035-0.7055) and 206Pb/204Pb (18.12-19.12); the latter is likely alteration effects. Arc magmas were derived from a subduction-modified MORB mantle source, less depleted than Izu arc front and less enriched than the rear arc, but is a good match with the zone of extension that lies between. Differentiation occurred in a closed system (i.e., fractional crystallization/self-melting with back mixing), producing the entire crustal section in <3 Ma.
Mehrali, Mehdi; Moghaddam, Ehsan; Shirazi, Seyed Farid Seyed; Baradaran, Saeid; Mehrali, Mohammad; Latibari, Sara Tahan; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib; Zandi, Keivan; Osman, Noor Azuan Abu
2014-03-26
Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.
Performance limits of ion extraction systems with non-circular apertures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagayda, A., E-mail: shagayda@gmail.com; Madeev, S.
A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at whichmore » there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.« less
Performance limits of ion extraction systems with non-circular apertures.
Shagayda, A; Madeev, S
2016-04-01
A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.
Ramsay, Aina; Drake, Chris; Grosse Brinkhaus, Anja; Girard, Marion; Copani, Giuseppe; Dohme-Meier, Frigga; Bee, Giuseppe; Niderkorn, Vincent; Mueller-Harvey, Irene
2015-11-04
Little information exists on the effects of ensiling on condensed tannins or proanthocyanidins. The acetone-butanol-HCl assay is suitable for measuring proanthocyanidin contents in a wide range of samples, silages included, but provides limited information on proanthocyanidin composition, which is of interest for deciphering the relationships between tannins and their bioactivities in terms of animal nutrition or health. Degradation with benzyl mercaptan (thiolysis) provides information on proanthocyanidin composition, but proanthocyanidins in several sainfoin silages have proved resistant to thiolysis. We now report that a pretreatment step with sodium hydroxide prior to thiolysis was needed to enable their analysis. This alkaline treatment increased their extractability from ensiled sainfoin and facilitated especially the release of larger proanthocyanidins. Ensiling reduced assayable proanthocyanidins by 29%, but the composition of the remaining proanthocyanidins in silage resembled that of the fresh plants.
NASA Astrophysics Data System (ADS)
Palve, Yogesh Pandit; Jha, Neetu
2018-05-01
In this research work we have developed high sensitive and selective glucose sensor based on copper oxide-graphene composite which is prepared by green synthesis method and used for nonenzymatic glucose sensor. In present paper we report that present method highly selective, simple, efficient, accurate, ecofriendly, less toxic. The prepared composite were characterized by material characterization like SEM, XRD and also by electrochemical characterization like CV, chronoamperometry represents that copper oxide-graphene shows excellent electrocatalytic activity towards glucose, exhibiting a good sensitivity of 103.84 µA mM-1 cm-2, a fast response time 2s, a low detection limit 0.00033µM and linear range from 10 µM-3000 µM. The present sensor can successfully apply for determination of glucose concentration in human blood sample.
Orilall, M Christopher; Wiesner, Ulrich
2011-02-01
The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.
Stable Isotope Systematics in Grasshopper Assemblages Along an Elevation Gradient, Colorado
NASA Astrophysics Data System (ADS)
Kohn, M. J.; Evans, S.; Dean, J.; Nufio, C.
2012-12-01
Insects comprise over three quarters of all animal species, yet studies of body water isotopic composition are limited to only the cockroach, the hoverfly, and chironomid flies. These studies suggest that oxygen and hydrogen isotopic compositions in body water are primarily controlled by dietary water sources, with modification from respiratory and metabolic processes. In particular, outward diffusion of isotopically depleted water vapor through insect spiracles at low humidity enriches residual body water in 18O and 2H (D). Stable isotope compositions (δ18O and δD) also respond to gradients in elevation and humidity, but these influences remain poorly understood. In this study, we measured grasshopper body water and local vegetation isotopic compositions along an elevation gradient in Colorado to evaluate three hypotheses: 1) Insect body water isotopic composition is directly related to food source water composition 2) Water vapor transport alters body water isotopic compositions relative to original diet sources, and 3) Elevation gradients influence isotopic compositions in insect body water. Thirty-five species of grasshopper were collected from 14 locations in Colorado grasslands, ranging in elevation from 450 to 800 meters (n=131). Body water was distilled from previously frozen grasshopper specimens using a vacuum extraction line, furnaces (90 °C), and liquid nitrogen traps. Water samples were then analyzed for δ18O and δD on an LGR Liquid Water Isotope Analyzer, housed in the Department of Geosciences, Boise State University. Grasshopper body water isotopic compositions show wide variation, with values ranging between -76.64‰ to +42.82‰ in δD and -3.06‰ to +26.78‰ in δ18O. Precipitation δ18O values over the entire Earth excluding the poles vary by approximately 30‰, comparable to the total range measured in our single study area. Most grasshopper values deviate from the global meteoric water line relating δ18O and δD in precipitation, consistent with evaporative enrichment in food (plants) due to plant transpiration. However, grasshopper body water from any given location is further enriched in 18O and D relative to food. Isotopic values decrease slightly with increasing elevation, but some specific grasshopper species appear more sensitive to elevation. Overall, evaporative enrichment of 18O and D in this relatively dry environment appears the strongest factors influencing grasshopper compositions.
Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin
2016-07-01
In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Lie-Meng; Teng, Fang-Zhen; Song, Xie-Yan; Hu, Rui-Zhong; Yu, Song-Yue; Zhu, Dan; Kang, Jian
2018-04-01
Magnesium isotopic compositions of olivine, clinopyroxene, and ilmenite from the Baima intrusion, SW China, for the first time, are investigated to constrain the magnitude and mechanisms of Mg isotope fractionation among cumulus minerals in layered mafic intrusions and to evaluate their geological implications. Olivine and clinopyroxene have limited Mg isotope variations, with δ26Mg ranging from -0.33 to +0.05‰ and from -0.29 to -0.13‰, respectively, similar to those of mantle xenolithic peridotites. By contrast, ilmenites display extremely large Mg isotopic variation, with δ26Mg ranging from -0.50 to +1.90‰. The large inter-mineral fractionations of Mg isotopes between ilmenite and silicates may reflect both equilibrium and kinetic processes. A few ilmenites have lighter Mg isotopic compositions than coexisting silicates and contain high MgO contents without compositional zoning, indicating equilibrium fractionation. The implication is that the light Mg isotopic compositions of lunar high-Ti basalts may result from an isotopically light source enriched in cumulate ilmenites. On the other hand, most ilmenites have heavy Mg isotopic compositions, coupled with high MgO concentration and chemical zoning, which can be quantitatively modeled by kinetic Mg isotope fractionations induced by subsolidus Mg-Fe exchange between ilmenite and ferromagnesian silicates during the cooling of the Baima intrusion. The extensive occurrence of kinetic Mg isotope fractionation in ilmenites implies the possibility of widespread compositional disequilibrium among igneous minerals in magma chambers. Consequently, disequilibrium effects need to be considered in studies of basaltic magma evolution, magma chamber processes, and magmatic Fe-Ti oxide ore genesis.
The composition of human cortical allograft bone derived from FDA/AATB-screened donors.
Pietrzak, William S; Woodell-May, Jennifer
2005-07-01
Allograft human bone is an integral part of the surgeons' armamentarium and will continue to be for the near future. The intraoperative handling and/or mechanical properties are critical to its function. These properties are significantly influenced by the composition and the structure of the bone, which varies from donor to donor. Published studies of human bone composition use bone derived from a population that may differ from the population of qualified donors from which allograft bone is derived and may not well represent the pool of clinical allograft bone. This study investigated the cortical bone composition from 20 donors (males and females, 17 to 65 years of age) that had passed the US Food and Drug Administration and American Association of Tissue Banks screening procedures for donor qualification. As such, this represents a subset of the general population. The analysis yielded the following composition: mineral (ash) = 67.0% +/- 1.3% (w/w); matrix (predominantly type I collagen and other proteins) = 31.9% +/- 1.1% (w/w); and lipid (hexane extractables) = 1.1% +/- 1.5% (w/w). In general, these results were well within the ranges specified in the literature, with the significance being the demonstration of low variability within the study population. No age or gender compositional dependency was evident in this series, possibly as a result of the relatively homogenous population, which may have limited the ability to observe trends. Visually, the bone powders ranged from nearly white to red-brown. The more intense colors appeared to be associated with greater lipid content, perhaps indicating the presence of residual oxidized lipids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Tao; Chu, Xiangfeng, E-mail: xfchu99@ahut.edu.cn; Gao, Feng
Graphene quantum dots (GQDs) were prepared by pyrolysis of citric acid. The sizes of the as-prepared GQDs were in the range of 2–4 nm. The GQDs/α-Fe{sub 2}O{sub 3} composites were prepared by loading GQDs with α-Fe{sub 2}O{sub 3} via a one-step facile hydrothermal method. The GQDs/α-Fe{sub 2}O{sub 3} composites were characterized by XRD, TGA, FTIR, Raman, SEM and TEM, respectively. The sensor devices were fabricated using the GQDs/α-Fe{sub 2}O{sub 3} composites as sensing materials. The effect of the amount of GQDs in the composites on the gas-sensing responses of the materials and the gas-sensing selectivity was investigated. The experimental resultsmore » revealed that the sensor based on GQDs/α-Fe{sub 2}O{sub 3} (S-15) composite exhibited high sensitivity and good selectivity to TMA vapor. The responses of the sensor based on GQDs/α-Fe{sub 2}O{sub 3} (S-15) composite to 1000 ppm and 0.01 ppm TMA vapor attained 1033.0 and 1.9 at 270 °C, respectively. The response time and recovery time for 0.01 ppm TMA vapor were only 6 s and 4 s, respectively. - Graphical abstract: (1) The sizes of the GQDs are in the range of 2–5 nm; (2) The responses of the sensor based on GQDs/α-Fe{sub 2}O{sub 3} (S-15) composite to 0.01, 0.1, 1, 10, 100 and 1000 ppm TMA vapor at 270 °C are 1.9, 2.9, 5.5, 15.4, 293.0 and 1033.0, respectively, and the detection limit can reach 0.01 ppm.« less
Zaroushani, Vida; Khavanin, Ali; Jonidi Jafari, Ahmad; Mortazavi, Seyed Bagher
2016-01-01
Widespread use of X-band frequency (a part of the super high frequency microwave) in the various workplaces would contribute to occupational exposure with potential of adverse health effects. According to limited study on microwave shielding for the workplace, this study tried to prepare a new microwave shielding for this purpose. We used EI-403 epoxy thermosetting resin as a matrix and nickel oxide nanoparticle with the diameter of 15-35 nm as filler. The Epoxy/ Nickel oxide composites with 5, 7, 9 and 11 wt% were made in three different thicknesses (2, 4 and 6 mm). According to transmission / reflection method, shielding effectiveness (SE) in the X-band frequency range (8-12.5 GHz) was measured by scattering parameters directly given by the 2-port Vector Network Analyzer. The fabricated composites characterized by X-ray Diffraction and Field Emission Scanning Electron Microscope. The best average of shielding effectiveness in each thickness of fabricated composites obtained by 11%-2 mm, 7%-4 mm and 7%-6 mm composites with SE values of 46.80%, 66.72% and 64.52%, respectively. In addition, the 11%-6 mm, 5%-6 mm and 11%-4 mm-fabricated composites were able to attenuate extremely the incident microwave energy at 8.01, 8.51 and 8.53 GHz by SE of 84.14%, 83.57 and 81.30%, respectively. The 7%-4mm composite could be introduced as a suitable alternative microwave shield in radiation protection topics in order to its proper SE and other preferable properties such as low cost and weight, resistance to corrosion etc. It is necessary to develop and investigate the efficacy of the fabricated composites in the fields by future studies.
James E. Garabedian; Robert J. McGaughey; Stephen E. Reutebuch; Bernard R. Parresol; John C. Kilgo; Christopher E. Moorman; M. Nils. Peterson
2014-01-01
Light detection and ranging (LiDAR) technology has the potential to radically alter the way researchers and managers collect data on wildlifeâhabitat relationships. To date, the technology has fostered several novel approaches to characterizing avian habitat, but has been limited by the lack of detailed LiDAR-habitat attributes relevant to species across a continuum of...
Edwards, Tara D; Bain, Erich D; Cole, Shawn T; Freeney, Reygan M; Halls, Virginia A; Ivancik, Juliana; Lenhart, Joseph L; Napadensky, Eugene; Yu, Jian H; Zheng, James Q; Mrozek, Randy A
2018-04-01
This paper describes a new witness material for quantifying the back face deformation (BFD) resulting from high rate impact of ballistic protective equipment. Accurate BFD quantification is critical for the assessment and certification of personal protective equipment, such as body armor and helmets, and ballistic evaluation. A common witness material is ballistic clay, specifically, Roma Plastilina No. 1 (RP1). RP1 must be heated to nearly 38°C to pass calibration, and used within a limited time frame to remain in calibration. RP1 also exhibits lot-to-lot variability and is sensitive to time, temperature, and handling procedures, which limits the BFD accuracy and reproducibility. A new silicone composite backing material (SCBM) was developed and tested side-by-side with heated RP1 using quasi-static indentation and compression, low velocity impact, spherical projectile penetration, and both soft and hard armor ballistic BFD measurements to compare their response over a broad range of strain rates and temperatures. The results demonstrate that SCBM mimics the heated RP1 response at room temperature and exhibits minimal temperature sensitivity. With additional optimization of the composition and processing, SCBM could be a drop-in replacement for RP1 that is used at room temperature during BFD quantification with minimal changes to the current RP1 handling protocols and infrastructure. It is anticipated that removing the heating requirement, and temperature-dependence, associated with RP1 will reduce test variability, simplify testing logistics, and enhance test range productivity. Published by Elsevier B.V.
Macronutrient contributions of insects to the diets of hunter-gatherers: a geometric analysis.
Raubenheimer, David; Rothman, Jessica M; Pontzer, Herman; Simpson, Stephen J
2014-06-01
We present a geometric model for examining the macronutrient contributions of insects in the diets of pre-agricultural humans, and relate the findings to some contemporary societies that regularly eat insects. The model integrates published data on the macronutrient composition of insects and other foods in the diets of humans, recommended human macronutrient intakes, and estimated macronutrient intakes to examine the assumption that insects provided to pre-agricultural humans an invertebrate equivalent of vertebrate-derived meats, serving primarily as a source of protein. Our analysis suggests that insects vary more widely in their macronutrient content than is likely to be the case for most wild vertebrate meats, spanning a broad range of protein, fat and carbohydrate concentrations. Potentially, therefore, in terms of their proportional macronutrient composition, insects could serve as equivalents not only of wild meat, but of a range of other foods including some shellfish, nuts, pulses, vegetables and even fruits. Furthermore, humans might systematically manipulate the composition of edible insects to meet specific needs through pre-ingestive processing, such as cooking and selective removal of body parts. We present data suggesting that in modern societies for which protein is the more limiting macronutrient, pre-ingestive processing of edible insects might serve to concentrate protein. It is likely, however, that the dietary significance of insects was different for Paleolithic hunter-gatherers who were more limited in non-protein energy. Our conclusions are constrained by available data, but highlight the need for further studies, and suggest that our model provides an integrative framework for conceiving these studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mucha, Joanna; Peay, Kabir G; Smith, Dylan P; Reich, Peter B; Stefański, Artur; Hobbie, Sarah E
2018-02-01
Ectomycorrhizal (ECM) fungi can influence the establishment and performance of host species by increasing nutrient and water absorption. Therefore, understanding the response of ECM fungi to expected changes in the global climate is crucial for predicting potential changes in the composition and productivity of forests. While anthropogenic activity has, and will continue to, cause global temperature increases, few studies have investigated how increases in temperature will affect the community composition of ectomycorrhizal fungi. The effects of global warming are expected to be particularly strong at biome boundaries and in the northern latitudes. In the present study, we analyzed the effects of experimental manipulations of temperature and canopy structure (open vs. closed) on ectomycorrhizal fungi identified from roots of host seedlings through 454 pyrosequencing. The ecotonal boundary site selected for the study was between the southern boreal and temperate forests in northern Minnesota, USA, which is the southern limit range for Picea glauca and Betula papyrifera and the northern one for Pinus strobus and Quercus rubra. Manipulations that increased air and soil temperature by 1.7 and 3.4 °C above ambient temperatures, respectively, did not change ECM richness but did alter the composition of the ECM community in a manner dependent on host and canopy structure. The prediction that colonization of boreal tree species with ECM symbionts characteristic of temperate species would occur was not substantiated. Overall, only a small proportion of the ECM community appears to be strongly sensitive to warming.
NASA Astrophysics Data System (ADS)
Gallagher, John A.
2016-04-01
The desired operating range of ferroelectric materials with compositions near the morphotropic phase boundary is limited by field induced phase transformations. In [001]C cut and poled relaxor ferroelectric single crystals the mechanically driven ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation is hindered by antagonistic electrical loading. Instability around the phase transformation makes the current experimental technique for characterization of the large field behavior very time consuming. Characterization requires specialized equipment and involves an extensive set of measurements under combined electrical, mechanical, and thermal loads. In this work a mechanism-based model is combined with a more limited set of experiments to obtain the same results. The model utilizes a work-energy criterion that calculates the mechanical work required to induce the transformation and the required electrical work that is removed to reverse the transformation. This is done by defining energy barriers to the transformation. The results of the combined experiment and modeling approach are compared to the fully experimental approach and error is discussed. The model shows excellent predictive capability and is used to substantially reduce the total number of experiments required for characterization. This decreases the time and resources required for characterization of new compositions.
Development of a Pipeline for Exploratory Metabolic Profiling of Infant Urine
Jackson, Frances; Georgakopoulou, Nancy; Kaluarachchi, Manuja; Kyriakides, Michael; Andreas, Nicholas; Przysiezna, Natalia; Hyde, Matthew J.; Modi, Neena; Nicholson, Jeremy K.; Wijeyesekera, Anisha; Holmes, Elaine
2017-01-01
Numerous metabolic profiling pipelines have been developed to characterize the composition of human biofluids and tissues, the vast majority of these being for studies in adults. To accommodate limited sample volume and to take into account the compositional differences between adult and infant biofluids, we developed and optimized sample handling and analytical procedures for studying urine from newborns. A robust pipeline for metabolic profiling using NMR spectroscopy was established, encompassing sample collection, preparation, spectroscopic measurement, and computational analysis. Longitudinal samples were collected from five infants from birth until 14 months of age. Methods of extraction and effects of freezing and sample dilution were assessed, and urinary contaminants from breakdown of polymers in a range of diapers and cotton wool balls were identified and compared, including propylene glycol, acrylic acid, and tert-butanol. Finally, assessment of urinary profiles obtained over the first few weeks of life revealed a dramatic change in composition, with concentrations of phenols, amino acids, and betaine altering systematically over the first few months of life. Therefore, neonatal samples require more stringent standardization of experimental design, sample handling, and analysis compared to that of adult samples to accommodate the variability and limited sample volume. PMID:27476583
Grabinski, Christin M; Methner, Mark M; Jackson, Jerimiah M; Moore, Alexander L; Flory, Laura E; Tilly, Trevor; Hussain, Saber M; Ott, Darrin K
2017-06-01
U.S. Air Force small arms firing ranges began using copper-based, lead-free frangible ammunition in the early 2000s due to environmental and health concerns related to the use of lead-based ammunition. Exposure assessments at these firing ranges have routinely detected chemicals and metals in amounts much lower than their mass-based occupational exposure limits, yet, instructors report work-related health concerns including respiratory distress, nausea, and headache. The objective of this study at one firing range was to characterize the aerosol emissions produced by weapons during firing events and evaluate the ventilation system's effectiveness in controlling instructor exposure to these emissions. The ventilation system was assessed by measuring the range static air pressure differential and the air velocity at the firing line. Air flow patterns were near the firing line. Instructor exposure was sampled using a filter-based air sampling method for metals and a wearable, real-time ultrafine particle counter. Area air sampling was simultaneously performed to characterize the particle size distribution, morphology, and composition. In the instructor's breathing zone, the airborne mass concentration of copper was low (range = <1 µg/m 3 to 16 µg/m 3 ), yet the ultrafine (nanoscale) particle number concentration increased substantially during each firing event. Ultrafine particles contained some copper and were complex in morphology and composition. The ventilation assessment found that the average velocity across all shooting lanes was acceptable compared to the recommended guideline (20% of the ideal 0.38 m/s (75 ft/min). However, uniform, downrange airflow pattern requirements were not met. These results suggest that the mass-based occupational exposure limits, as applied to this environment, may not be protective enough to eliminate health complaints reported by instructors whose full-time job involves training personnel on weapons that fire lead-free frangible ammunition. Using an ultrafine particle counter appears to be an alternative method of assessing ventilation effectiveness in removing ultrafine particulate produced during firing events.
Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen
2016-10-01
An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pyrolysis Model Development for a Multilayer Floor Covering
McKinnon, Mark B.; Stoliarov, Stanislav I.
2015-01-01
Comprehensive pyrolysis models that are integral to computational fire codes have improved significantly over the past decade as the demand for improved predictive capabilities has increased. High fidelity pyrolysis models may improve the design of engineered materials for better fire response, the design of the built environment, and may be used in forensic investigations of fire events. A major limitation to widespread use of comprehensive pyrolysis models is the large number of parameters required to fully define a material and the lack of effective methodologies for measurement of these parameters, especially for complex materials. The work presented here details a methodology used to characterize the pyrolysis of a low-pile carpet tile, an engineered composite material that is common in commercial and institutional occupancies. The studied material includes three distinct layers of varying composition and physical structure. The methodology utilized a comprehensive pyrolysis model (ThermaKin) to conduct inverse analyses on data collected through several experimental techniques. Each layer of the composite was individually parameterized to identify its contribution to the overall response of the composite. The set of properties measured to define the carpet composite were validated against mass loss rate curves collected at conditions outside the range of calibration conditions to demonstrate the predictive capabilities of the model. The mean error between the predicted curve and the mean experimental mass loss rate curve was calculated as approximately 20% on average for heat fluxes ranging from 30 to 70 kW·m−2, which is within the mean experimental uncertainty. PMID:28793556
Bedrock composition limits mountain ecosystem productivity and landscape evolution (Invited)
NASA Astrophysics Data System (ADS)
Riebe, C. S.; Hahm, W.; Lukens, C.
2013-12-01
We used measurements of bedrock geochemistry, forest productivity and cosmogenic nuclides to explore connections among lithology, ecosystem productivity and landscape evolution across a lithosequence of 21 sites in the Sierra Nevada Batholith, California. Our sites span a narrow range in elevations and thus share similar climatic conditions. Meanwhile, underlying bedrock varies from granite to diorite and spans nearly the entire range of geochemical compositions observed in Cordilleran granitoids. Land cover varies markedly, from groves of Giant Sequoia, the largest trees on Earth, to pluton-spanning swaths of little or no soil and vegetative cover. This is closely reflected in measures of forest productivity, such as remotely sensed tree-canopy cover, which varies by more than an order of magnitude across our sites and often changes abruptly at mapped contacts between rock types. We find that tree-canopy cover is closely correlated with the concentrations in bedrock of major and minor elements, including several plant-essential nutrients. For example, tree-canopy cover is virtually zero where there is less than 0.3 mg/g phosphorus in bedrock. Erosion rates from these nearly vegetation-free, nutrient deserts are more than 2.5 times slower on average than they are from surrounding, relatively nutrient-rich, soil-mantled bedrock. Thus by influencing soil and forest cover, bedrock nutrient concentrations may provoke weathering-limited erosion and thus may strongly regulate landscape evolution. Our analysis suggests that variations in bedrock nutrient concentrations can also provoke an intrinsic limitation on primary productivity. These limitations appear to apply across all our sites. To the extent that they are broadly representative of conditions in granitic landscapes elsewhere around the world, our results are consistent with widespread, but previously undocumented lithologic control of the distribution and diversity of vegetation in mountainous terrain.
Patel, Kushang V.; Fried, Linda F.; Robinson-Cohen, Cassianne; de Boer, Ian H.; Harris, Tamara; Murphy, Rachel A.; Satterfield, Suzanne; Goodpaster, Bret H.; Shlipak, Michael; Newman, Anne B.; Kestenbaum, Bryan
2017-01-01
Background: Mobility limitation is highly prevalent among older adults and is central to the loss of functional independence. Dynamic isokinetic muscle fatigue testing may reveal increased vulnerability to disability and mortality beyond strength testing. Methods: We studied community-dwelling older adults enrolled in the Health Aging and Body Composition study (age range: 71–82) free of mobility disability and who underwent isokinetic muscle fatigue testing in 1999–2000 (n = 1,963). Isokinetic quadriceps work and fatigue index was determined over 30 repetitions and compared with isometric quadriceps maximum torque. Work was normalized to leg lean mass accounting for gender-specific differences (specific work). The primary outcome was incident persistent severe lower extremity limitation (PSLL), defined as two consecutive reports of either having a lot of difficulty or being unable to walk 1/4 mile or climb 10 steps without resting. The secondary outcome was all-cause mortality. Results: There were 608 (31%) occurrences of incident PSLL and 488 (25%) deaths during median follow-up of 9.3 years. After adjustment, lower isokinetic work was associated with significantly greater risks of PSLL and mortality across the full measured range. Hazard ratios per standard deviation lower specific isokinetic work were 1.22 (95% CI 1.12, 1.33) for PSLL and 1.21 (95% CI 1.13, 1.30) for mortality, respectively. Lower isometric strength was associated with PSLL, but not mortality. Fatigue index was not associated with PSLL or mortality. Conclusions: Muscle endurance, estimated by isokinetic work, is an indicator of muscle health associated with mobility limitation and mortality providing important insight beyond strength testing. PMID:27907890
NASA Astrophysics Data System (ADS)
Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun
2018-02-01
SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.
Global variations in abyssal peridotite compositions
NASA Astrophysics Data System (ADS)
Warren, Jessica M.
2016-04-01
Abyssal peridotites are ultramafic rocks collected from mid-ocean ridges that are the residues of adiabatic decompression melting. Their compositions provide information on the degree of melting and melt-rock interaction involved in the formation of oceanic lithosphere, as well as providing constraints on pre-existing mantle heterogeneities. This review presents a compilation of abyssal peridotite geochemical data (modes, mineral major elements, and clinopyroxene trace elements) for > 1200 samples from 53 localities on 6 major ridge systems. On the basis of composition and petrography, peridotites are classified into one of five lithological groups: (1) residual peridotite, (2) dunite, (3) gabbro-veined and/or plagioclase-bearing peridotite, (4) pyroxenite-veined peridotite, and (5) other types of melt-added peridotite. Almost a third of abyssal peridotites are veined, indicating that the oceanic lithospheric mantle is more fertile, on average, than estimates based on residual peridotites alone imply. All veins appear to have formed recently during melt transport beneath the ridge, though some pyroxenites may be derived from melting of recycled oceanic crust. A limited number of samples are available at intermediate and fast spreading rates, with samples from the East Pacific Rise indicating high degrees of melting. At slow and ultra-slow spreading rates, residual abyssal peridotites define a large (0-15% modal clinopyroxene and spinel Cr# = 0.1-0.6) compositional range. These variations do not match the prediction for how degree of melting should vary as a function of spreading rate. Instead, the compositional ranges of residual peridotites are derived from a combination of melting, melt-rock interaction and pre-existing compositional variability, where melt-rock interaction is used here as a general term to refer to the wide range of processes that can occur during melt transport in the mantle. Globally, 10% of abyssal peridotites are refractory (0% clinopyroxene, spinel Cr# > 0.5, bulk Al2O3 < 1 wt.%) and some ridge sections are dominated by harzburgites while lacking a significant basaltic crust. Abyssal ultramafic samples thus indicate that the mantle is multi-component, probably consisting of at least three components (lherzolite, harzburgite, and pyroxenite). Overall, the large compositional range among residual and melt-added peridotites implies that the oceanic lithospheric mantle is heterogeneous, which will lead to the generation of further heterogeneities upon subduction back into the mantle.
NASA Astrophysics Data System (ADS)
Larsen, James M.; Russ, Stephan M.; Jones, J. W.
1995-12-01
The current capabilities of continuous silicon-carbide fiber-reinforced titanium matrix composites (TMCs) are reviewed with respect to application needs and compared to the capabilities of conventional high-temperature monolithic alloys and aluminides. In particular, the properties of a firstgeneration titanium aluminide composite, SCS-6/Ti-24Al-11Nb, and a second-generation metastable beta alloy composite, SCS-6/TIMETAL 21S, are compared with the nickel-base superalloy IN100, the high-temperature titanium alloy Ti-1100, and a relatively new titanium aluminide alloy. Emphasis is given to life-limiting cyclic and monotonie properties and to the influence of time-dependent deformation and environmental effects on these properties. The composite materials offer a wide range of performance capabilities, depending on laminate architecture. In many instances, unidirectional composites exhibit outstanding properties, although the same materials loaded transverse to the fiber direction typically exhibit very poor properties, primarily due to the weak fiber/matrix interface. Depending on the specific mechanical property under consideration, composite cross-ply laminates often show no improvement over the capability of conventional monolithic materials. Thus, it is essential that these composite materials be tailored to achieve a balance of properties suitable to the specific application needs if these materials are to be attractive candidates to replace more conventional materials.
Ultrastrong composite film of Chitosan and silica-coated graphene oxide sheets.
Yan, Haichen; Jiang, Lei; Xu, Xiaozhou; Li, Yanbao; Shen, Yuesong; Zhu, Shemin
2017-11-01
Chitosan (CS) has attracted significant interest in various fields due to its outstanding functional properties (especially, its chain with positive charge). However, wide-range applications of CS are severely limited because of its poor mechanical properties. Ultrastrong composite film of CS and silica-coated graphene oxide sheets (GO@SiO 2 ) were prepared by a simple solution casting method in this article. GO@SiO 2 was prepared by the hydrolysis of tetraethyl orthosilicate (TEOS) in GO ethanol solution. Compared with the pure CS film, the tensile strength of the CS/GO@SiO 2 composite film with incorporation of 1.75wt% GO@SiO 2 fillers was significantly increased 158% from 55±4 to 142±24MPa. Such high tensile strength may be caused synergistically by strong interaction between two components and high crystallinity of the CS matrix. CS based composite with ultrastrong strength may have more potential applications in biomedical fields. Copyright © 2017 Elsevier B.V. All rights reserved.
Mass spectrometer measurements of test gas composition in a shock tunnel
NASA Technical Reports Server (NTRS)
Skinner, K. A.; Stalker, R. J.
1995-01-01
Shock tunnels afford a means of generating hypersonic flow at high stagnation enthalpies, but they have the disadvantage that thermochemical effects make the composition of the test flow different to that of ambient air. The composition can be predicted by numerical calculations of the nozzle flow expansion, using simplified thermochemical models and, in the absence of experimental measurements, it has been necessary to accept the results given by these calculations. This note reports measurements of test gas composition, at stagnation enthalpies up to 12.5 MJ.kg(exp -1), taken with a time-of-flight mass spectrometer. Limited results have been obtained in previous measurements. These were taken at higher stagnation enthalpies, and used a quadruple mass spectrometer. The time-of-flight method was preferred here because it enabled a number of complete mass spectra to be obtained in each test, and because it gives good mass resolution over the range of interest with air (up to 50 a.m.a.).
Composition of precipitation in remote areas of the world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, J.N.; Likens, G.E.; Keene, W.C.
1982-10-20
The Global Precipitation Chemistry Project collects precipitation by event to determine composition and processes controlling it in five remote areas. Compositions (excluding seasalt) at St. Georges, Bermuda, were primarily controlled by anthropogenic processes; compositions and acidities at San Carlos, Venezuela, Katherine, Australia, Poker, Flat, Alaska, and Amsterdam Island were controlled by unknown mixtures of natural or anthropogenic processes. Precipitation was acidic; average volume-weighted pH values were 4.8 for Bermuda; 5.0, Alaska; 4.9, Amsterdam Island; 4.8, Australia; 4.8, Venezuela. Acidities at Bermuda and Alaska were from long-range transport of sulfate aerosol; at Venezuela, Australia, and Amsterdam Island, from mixtures of weakmore » organic and strong mineral acids, primarily H/sub 2/SO/sub 4/. Relative proportions of weak to strong acids were largest at Venezuela and lowest at Amsterdam Island. Weak and strong acids were from mixtures of natural and anthropogenic processes. Once contributions from human activities were removed, the lower limit of natural contributions was probably > or =pH 5.« less
Large sulfur isotope fractionations in Martian sediments at Gale crater
NASA Astrophysics Data System (ADS)
Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.
2017-09-01
Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.
Surface tension estimation of high temperature melts of the binary alloys Ag-Au
NASA Astrophysics Data System (ADS)
Dogan, Ali; Arslan, Hüseyin
2017-11-01
Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.
Characterization of aerosols and fibers emitted from composite materials combustion.
Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M
2016-01-15
This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). Copyright © 2015 Elsevier B.V. All rights reserved.
Ajab, Huma; Dennis, John Ojur; Abdullah, Mohd Azmuddin
2018-07-01
A novel synthesis and characterization of cellulose, hydroxyapatite and chemically-modified carbon electrode (Cellulose-HAp-CME) composite was reported for the analysis of trace Pb(II) ions detection and its validation in blood serum. The Field Emission Scanning Electron Microscopy (FESEM) analyses showed that the composite retained the orderly porous structure but with scattered particle size agglomeration. The Fourier Transform Infrared Spectroscopy (FTIR) spectra suggested the presence of functional groups associated with the bending and stretching of carbon bonds and intermolecular H-bonding. X-ray Diffraction (XRD) analyses further elucidated that the crystallite size could have influenced the properties of the electrode. Based on Thermo-gravimetric Analysis (TGA/DTG), the composites showed thermal stability with more than 60% residual content at 700°C. The sensor was successfully developed for trace Pb(II) ions detection in complex medium such as blood serum, in the physiologically relevant range of 10-60ppb, with resulting Limit of Detection (LOD) of 0.11±0.36ppb and Limit of Quantification (LOQ) of 0.36±0.36ppb. The newly fabricated electrode could be advantageous as a sensing platform with favourable electrochemical characteristics for robust, in situ and rapid environmental and clinical analyses of heavy metal ions. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Jing; Cui, Meirong; Zhou, Hong; Zhang, Shusheng
2016-01-01
A novel ternary composite of hemin-graphene-Au nanorods (H-RGO-Au NRs) with high electrocatalytic activity was synthesized by a simple method. And this ternary composite was firstly used in construction of electrochemiluminescence (ECL) immunosensor due to its double-quenching effect of quantum dots (QDs). Based on the high electrocatalytic activity of ternary complexes for the reduction of H2O2 which acted as the coreactant of QDs-based ECL, as a result, the ECL intensity of QDs decreased. Besides, due to the ECL resonance energy transfer (ECL-RET) strategy between the large amount of Au nanorods (Au NRs) on the ternary composite surface and the CdS:Eu QDs, the ECL intensity of QDs was further quenched. Based on the double-quenching effect, a novel ultrasensitive ECL immunoassay method for detection of carcinoembryonic antigen (CEA) which is used as a model biomarker analyte was proposed. The designed immunoassay method showed a linear range from 0.01 pg mL−1 to 1.0 ng mL−1 with a detection limit of 0.01 pg mL−1. The method showing low detection limit, good stability and acceptable fabrication reproducibility, provided a new approach for ECL immunoassay sensing and significant prospect for practical application. PMID:27460868
Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2.
Solomonik, Victor G; Smirnov, Alexander N; Navarkin, Ilya S
2016-04-14
The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.
Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2
NASA Astrophysics Data System (ADS)
Solomonik, Victor G.; Smirnov, Alexander N.; Navarkin, Ilya S.
2016-04-01
The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.
NASA Astrophysics Data System (ADS)
Khomenko, Anton; Cloud, Gary Lee; Haq, Mahmoodul
2015-12-01
Multilayered transparent composites having laminates with polymer interlayers and backing sheets are commonly used in a wide range of applications where visibility, transparency, impact resistance, and safety are essential. Manufacturing flaws or damage during operation can seriously compromise both safety and performance. Most fabrication defects are not discernible until after the entire multilayered transparent composite assembly has been completed, and in-the-field inspection for damage is a problem not yet solved. A robust and reliable nondestructive evaluation (NDE) technique is needed to evaluate structural integrity and identify defects that result from manufacturing issues as well as in-service damage arising from extreme environmental conditions in addition to normal mechanical and thermal loads. Current optical techniques have limited applicability for NDE of such structures. This work presents a technique that employs a modified interferometer utilizing a laser diode or femtosecond fiber laser source to acquire in situ defect depth location inside a thin or thick multilayered transparent composite, respectively. The technique successfully located various defects inside examined composites. The results show great potential of the technique for defect detection, location, and identification in multilayered transparent composites.
Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan
2016-01-01
We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM–1 cm–2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets. PMID:27650697
Autonomic composite hydrogels by reactive printing: materials and oscillatory response.
Kramb, R C; Buskohl, P R; Slone, C; Smith, M L; Vaia, R A
2014-03-07
Autonomic materials are those that automatically respond to a change in environmental conditions, such as temperature or chemical composition. While such materials hold incredible potential for a wide range of uses, their implementation is limited by the small number of fully-developed material systems. To broaden the number of available systems, we have developed a post-functionalization technique where a reactive Ru catalyst ink is printed onto a non-responsive polymer substrate. Using a succinimide-amine coupling reaction, patterns are printed onto co-polymer or biomacromolecular films containing primary amine functionality, such as polyacrylamide (PAAm) or poly-N-isopropyl acrylamide (PNIPAAm) copolymerized with poly-N-(3-Aminopropyl)methacrylamide (PAPMAAm). When the films are placed in the Belousov-Zhabotinsky (BZ) solution medium, the reaction takes place only inside the printed nodes. In comparison to alternative BZ systems, where Ru-containing monomers are copolymerized with base monomers, reactive printing provides facile tuning of a range of hydrogel compositions, as well as enabling the formation of mechanically robust composite monoliths. The autonomic response of the printed nodes is similar for all matrices in the BZ solution concentrations examined, where the period of oscillation decreases in response to increasing sodium bromate or nitric acid concentration. A temperature increase reduces the period of oscillations and temperature gradients are shown to function as pace-makers, dictating the direction of the autonomic response (chemical waves).
Yahia, Elhadi M; Gutiérrez-Orozco, Fabiola; Moreno-Pérez, Marco A
2017-07-01
Wild mushrooms are important for the diet of some communities in Mexico. However, limited information exists on their chemical composition, contribution to the diet, and health effects. We characterized seventeen wild mushroom species growing in the state of Queretaro in Central Mexico. Most species analyzed were edible, but also included nonedible, medicinal, poisonous and toxic specimens. Whole mushrooms (caps and stipes) were characterized for water content, color, and total content of phenolic compounds, flavonoids and anthocyanins. In vitro antioxidant capacity was measured by FRAP and DPPH assays. Phenolic compounds were identified and quantified by HPLC-mass spectrometry. All species analyzed were found to possess antioxidant activity in vitro and a wide range of phenolic and organic compounds were identified. Our results add to the limited information available on the composition and potential nutritional and health value of wild mushrooms. Further analyses of their bioactivities are warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vittiglio, G.; Janssens, K.; Vekemans, B.; Adams, F.; Oost, A.
1999-11-01
The analytical characteristics, possibilities and limitations of a compact and easily transportable small-beam XRF instrument are described. The instrument consists of a compact, mini-focus Mo X-ray tube that is collimated to produce a sub-mm beam and a peltier-cooled PIN diode detector. Relative MDLs in highly scattering matrices are situated in the 10-100-ppm range; for metallic matrices featuring strong matrix lines, the MDLs of the instrument are approximately a factor 2 higher. Since only a small irradiation area is required, a simple micro-polishing technique that may be performed in situ in combination with the measurements is shown to be effective for the determination of the bulk composition of corroded bronze objects. As an example, a series of Egyptian bronze objects date from XXII nd Egyptian Dynasty (ca. 1090 BC) to the Roman era (30 BC to 640 AD) was analyzed in order to contribute to the very limited database on Cu-alloy compositions from this period.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, marco
2010-01-01
The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is presented from a multi-scale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse kinematic field is that of first-order shear-deformation theory, whereas the fine kinematic field has a piecewise-linear zigzag distribution through the thickness. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct sets of zigzag functions. By examining elastostatic solutions for highly heterogeneous sandwich plates, the best-performing zigzag functions are identified. The RZT predictive capabilities to model homogeneous and highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy ; and a wide range of applicability. The present theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient CO-continuous finite elements, and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures.
Limitations of Mass Spectrometry-Based Peptidomic Approaches
NASA Astrophysics Data System (ADS)
Fricker, Lloyd D.
2015-12-01
Mass spectrometry-based peptidomic approaches are powerful techniques to detect and identify the peptide content of biological samples. The present study investigated the limitations of peptidomic approaches using trimethylammonium butyrate isotopic tags to quantify relative peptide levels and Mascot searches to identify peptides. Data were combined from previous studies on human cell lines or mouse tissues. The combined databases contain 2155 unique peptides ranging in mass from 444 to 8765 Da, with the vast majority between 1 and 3 kDa. The amino acid composition of the identified peptides generally reflected the frequency in the Eukaryotic proteome with the exception of Cys, which was not present in any of the identified peptides in the free-SH form but was detected at low frequency as a disulfide with Cys residues, a disulfide with glutathione, or as S-cyanocysteine. To test if the low detection rate of peptides smaller than 500 Da, larger than 3 kDa, or containing Cys was a limitation of the peptidomics procedure, tryptic peptides of known proteins were processed for peptidomics using the same approach used for human cell lines and mouse tissues. The identified tryptic peptides ranged from 516 to 2418 Da, whereas the theoretical digest ranged from 217 to 7559 Da. Peptides with Cys were rarely detected and, if present, the Cys was usually modified S-cyanocysteine. Additionally, peptides with mono- and di-iodo Tyr and His were identified. Taken together, there are limitations of peptidomic techniques, and awareness of these limitations is important to properly use and interpret results.
Huang, Helin; Gross, Dustin E; Yang, Xiaomei; Moore, Jeffrey S; Zang, Ling
2013-08-28
High dark electrical conductivity was obtained for a p-type organic nanofibril material simply through a one-step surface doping. The nanofibril composite thus fabricated has been proven robust under ambient conditions. The high conductivity, combined with the intrinsic large surface area of the nanofibers, enables development of chemiresistor sensors for trace vapor detection of amines, with detection limit down to sub-parts per billion range.
NASA Astrophysics Data System (ADS)
Kuchipudi, Suresh Chandra
Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.
Han, En; Li, Xia; Cai, Jian-Rong; Cui, Hai-Ying; Zhang, Xing-Ai
2014-01-01
In this study, we developed a highly sensitive amperometric biosensor for glucose detection based on glucose oxidase immobilized in a novel carbon nanosphere (CNS)/sodium alginate (SA) composite matrix. This hybrid material combined the advantages of CNS and natural biopolymer SA. This composite film was characterized by scanning electron microscope, electrochemical impedance spectroscopy and UV-vis, which indicated that the hybrid material was suitable for immobilization of glucose oxidase. Various experimental conditions were investigated that influenced the performance of the biosensor, such as pH, applied potential and temperature. Under the optimum conditions, the biosensor showed excellent performance for glucose over a wide linear concentration range from 1.0 × 10(-6) to 4.6 × 10(-3) M with a detection limit of 0.5 μM based on a signal-to-noise ratio of 3. Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility.
Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors.
Zhao, Enbo; Qin, Chuanli; Jung, Hong-Ryun; Berdichevsky, Gene; Nese, Alper; Marder, Seth; Yushin, Gleb
2016-04-26
Porous carbons suffer from low specific capacitance, while intercalation-type active materials suffer from limited rate when used in asymmetric supercapacitors. We demonstrate that nanoconfinement of intercalation-type lithium titanate (Li4Ti5O12) nanoparticles in carbon nanopores yielded nanocomposite materials that offer both high ion storage density and rapid ion transport through open and interconnected pore channels. The use of titanate increased both the gravimetric and volumetric capacity of porous carbons by more than an order of magnitude. High electrical conductivity of carbon and the small size of titanate crystals allowed the composite electrodes to achieve characteristic charge and discharge times comparable to that of the electric double-layer capacitors. The proposed composite synthesis methodology is simple, scalable, and applicable for a broad range of active intercalation materials, while the produced composite powders are compatible with commercial electrode fabrication processes.
Nano-Composite Material Development for 3-D Printers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satches, Michael Randolph
Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matricesmore » and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.« less
NASA Astrophysics Data System (ADS)
Wang, Huiqiang; Rong, Qinfeng; Ma, Zhanfang
2016-07-01
Polyhydroquinone-graphene composite as a new redox species was synthesized simply by a microwave-assisted one-pot method through oxidative polymerization of hydroquinone by graphene oxide, which exhibited excellent electrochemical redox activity at 0.124 V and can remarkably promote electron transfer. The as-prepared composite was used as immunosensing substrate in a label-free electrochemical immunosensor for the detection of cytokeratins antigen 21-1, a kind of biomarker of lung cancer. The proposed immunosensor showed wide liner range from 10 pg mL-1 to 200 ng mL-1 with a detection limit 2.3 pg mL-1, and displayed a good stability and selectivity. In addition, this method has been used for the analysis of human serum sample, and the detection results showed good consistence with those of ELISA. The present substrate can be easily extended to other polymer-based nanocomposites.
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm; ...
2016-12-01
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling
NASA Technical Reports Server (NTRS)
Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.
2015-01-01
Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on achievable CNT composite properties and yield some insight on the influence of processing conditions on the mechanical properties of CNT composites.
NASA Astrophysics Data System (ADS)
Loher, Timothy; Woods, Monica A.; Jimenez-Hidalgo, Isadora; Hauser, Lorenz
2016-01-01
Declines in size at age of Pacific halibut Hippoglossus stenolepis, in concert with sexually-dimorphic growth and a constant minimum commercial size limit, have led to the expectation that the sex composition of commercial catches should be increasingly female-biased. Sensitivity analyses suggest that variance in sex composition of landings may be the most influential source of uncertainty affecting current understanding of spawning stock biomass. However, there is no reliable way to determine sex at landing because all halibut are eviscerated at sea. In 2014, a statistical method based on survey data was developed to estimate the probability that fish of any given length at age (LAA) would be female, derived from the fundamental observation that large, young fish are likely female whereas small, old fish have a high probability of being male. Here, we examine variability in age-specific sex composition using at-sea commercial and closed-season survey catches, and compare the accuracy of the survey-based LAA technique to genetic markers for reconstructing the sex composition of catches. Sexing by LAA performed best for summer-collected samples, consistent with the hypothesis that the ability to characterize catches can be influenced by seasonal demographic shifts. Additionally, differences between survey and commercial selectivity that allow fishers to harvest larger fish within cohorts may generate important mismatch between survey and commercial datasets. Length-at-age-based estimates ranged from 4.7% underestimation of female proportion to 12.0% overestimation, with mean error of 5.8 ± 1.5%. Ratios determined by genetics were closer to true sample proportions and displayed less variability; estimation to within < 1% of true ratios was limited to genetics. Genetic estimation of female proportions ranged from 4.9% underestimation to 2.5% overestimation, with a mean absolute error of 1.2 ± 1.2%. Males were generally more difficult to assign than females: 6.7% of males and 3.4% of females were incorrectly assigned. Although nuclear microsatellites proved more consistent at partitioning catches by sex, we recommend that SNP assays be developed to allow for rapid, cost-effective, and accurate sex identification.
NASA Astrophysics Data System (ADS)
Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.
2014-11-01
Use of laser diagnostics in liquid-liquid flows is limited by refractive index mismatch. This can be avoided using a surrogate pair of immiscible index-matched liquids, with density and viscosity ratios matching those of the original liquid pair. We demonstrate that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables were fitted to index and density and to the logarithm of kinematic viscosity, and the fits were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0oC over a range of pressure, and for water-crude oil and water-trichloroethylene, each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and chemical analysis show that no component of either solution has significant interphase solubility. Partially supported by Intl. Inst. for Carbon-Neutral Energy Research.
Alsalaheen, Bara; Haines, Jamie; Yorke, Amy; Broglio, Steven P
2015-12-01
To examine the reliability, convergent, and discriminant validity of the limits of stability (LOS) test to assess dynamic postural stability in adolescents using a portable forceplate system. Cross-sectional reliability observational study. School setting. Adolescents (N=36) completed all measures during the first session. To examine the reliability of the LOS test, a subset of 15 participants repeated the LOS test after 1 week. Not applicable. Outcome measurements included the LOS test, Balance Error Scoring System, Instrumented Balance Error Scoring System, and Modified Clinical Test for Sensory Interaction on Balance. A significant relation was observed among LOS composite scores (r=.36-.87, P<.05). However, no relation was observed between LOS and static balance outcome measurements. The reliability of the LOS composite scores ranged from moderate to good (intraclass correlation coefficient model 2,1=.73-.96). The results suggest that the LOS composite scores provide unique information about dynamic postural stability, and the LOS test completed at 100% of the theoretical limit appeared to be a reliable test of dynamic postural stability in adolescents. Clinicians should use dynamic balance measurement as part of their balance assessment and should not use static balance testing (eg, Balance Error Scoring System) to make inferences about dynamic balance, especially when balance assessment is used to determine rehabilitation outcomes, or when making return to play decisions after injury. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz
2018-06-01
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Owens, Tammy J; Larsen, Jennifer A; Farcas, Amy K; Nelson, Richard W; Kass, Philip H; Fascetti, Andrea J
2014-07-01
To determine total dietary fiber (TDF) composition of feline diets used for management of obesity and diabetes mellitus. Cross-sectional survey. Dry veterinary (n = 10), canned veterinary (12), and canned over-the-counter (3) feline diets. Percentage of TDF as insoluble dietary fiber (IDF), high-molecular-weight soluble dietary fiber (HMWSDF), and low-molecular-weight soluble dietary fiber (LMWSDF) was determined. Median measured TDF concentration was greater than reported maximum crude fiber content in dry and canned diets. Median TDF (dry-matter) concentration in dry and canned diets was 12.2% (range, 8.11% to 27.16%) and 13.8% (range, 4.7% to 27.9%), respectively. Dry and canned diets, and diets with and without a source of oligosaccharides in the ingredient list, were not different in energy density or concentrations of TDF, IDF, HMWSDF, or LMWSDF. Similarly, loaf-type (n = 11) and gravy-type (4) canned diets differed only in LMWSDF concentration. Disparities in TDF concentrations among products existed despite a lack of differences among groups. Limited differences in TDF concentration and dietary fiber composition were detected when diets were compared on the basis of carbohydrate concentration. Diets labeled for management of obesity were higher in TDF concentration and lower in energy density than diets for management of diabetes mellitus. Diets provided a range of TDF concentrations with variable concentrations of IDF, HMWSDF, and LMWSDF. Crude fiber concentration was not a reliable indicator of TDF concentration or dietary fiber composition. Because carbohydrate content is calculated as a difference, results suggested that use of crude fiber content would cause overestimation of both carbohydrate and energy content of diets.
NASA Astrophysics Data System (ADS)
Alemayehu, Melesse; Zhang, Hong-Fu; Seitz, Hans-Michael
2017-10-01
Lithium (Li) elemental and isotopic compositions for mineral separates of coexisting olivine, orthopyroxene and clinopyroxene of mantle xenoliths from the Quaternary volcanic rocks of southern Ethiopian rift (Dillo and Megado) reveal the influence of late stage melt-peridotite interaction on the early depleted and variably metasomatized lithospheric mantle. Two types of lherzolites are reported (LREE-depleted La/Sm(N) = 0.11-0.37 × Cl and LREE-enriched, La/Sm(N) = 1.88-15.72 × Cl). The depleted lherzolites have variable range in Li concentration (olivine: 2.1-5.4 ppm; opx: 1.1-2.3 ppm; cpx: 1.0-1.8 ppm) and in Li isotopic composition (δ7Li in olivine: -9.4 to 1.5‰; in opx: -4.5 to 3.6‰; in cpx: -17.0 to 4.8‰), indicating strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The enriched lherzolites have limited range in both Li abundances (olivine: 2.7-3.0 ppm; opx: 1.1-3.1 ppm; cpx: 1.1-2.3 ppm) and Li isotopic compositions (δ7Li in olivine: -1.3 to +1.3‰; in opx: -2.0 to +5.0‰; in cpx: -7.5 to +4.8‰), suggest that the earlier metasomatic event which lead to LREE enrichment could also homogenize the Li contents and its isotopes. The enriched harzburgite and clinopyroxenite minerals show limited variation in Li abundances and variable Li isotopic compositions. The Li enrichments of olivine and clinopyroxene correlate neither with the incompatible trace element enrichment nor with the Sr-Nd isotopic compositions of clinopyroxene. These observations indicate that the metasomatic events which are responsible for the LREE enrichment and for the Li addition are distinct, whereby the LREE-enrichment pre-dates the influx of Li. The presence of large Li isotopic disequilibria within and between minerals of depleted and enriched peridotites suggest that the lithospheric mantle beneath the southern Ethiopian rift has experienced recent melt-peridotite interaction. Thus, the Li data set reported in this study offer new additional evidence for the existence of late stage metasomatism, which probably occurred at shallow depth briefly before and/or during entrainment and ascent of mantle xenoliths to the surface.
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Mart, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Palma, I.; Díaz, A. F.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijerf, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Leisos, A.; Leone, F.; Leonora, E.; Lindsey Clark, M.; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Maris, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Navas, S.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Papaikonomou, A.; Papaleo, R.; Păvălas, G. E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Pleinert, M.-O.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rauch, T.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Tönnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zani, S.; Zornoza, J. D.; Zúñiga, J.
2017-05-01
Studying atmospheric neutrino oscillations in the few-GeV range with a multi-megaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1-20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice. [Figure not available: see fulltext.
Gwiazda, Roberto; Campbell, Carla; Smith, Donald
2005-01-01
Lead hazard control measures to reduce children’s exposure to household lead sources often result in only limited reductions in blood lead levels. This may be due to incomplete remediation of lead sources and/or to the remobilization of lead stores from bone, which may act as an endogenous lead source that buffers reductions in blood lead levels. Here we present a noninvasive isotopic approach to estimate the magnitude of the bone lead contribution to blood in children following household lead remediation. In this approach, lead isotopic ratios of a child’s blood and 5-day fecal samples are determined before and after a household intervention aimed at reducing the child’s lead intake. The bone lead contribution to blood is estimated from a system of mass balance equations of lead concentrations and isotopic compositions in blood at the different times of sample collection. The utility of this method is illustrated with three cases of children with blood lead levels in the range of 18–29 μg/dL. In all three cases, the release of lead from bone supported a substantial fraction of the measured blood lead level postintervention, up to 96% in one case. In general, the lead isotopic compositions of feces matched or were within the range of the lead isotopic compositions of the household dusts with lead loadings exceeding U.S. Environmental Protection Agency action levels. This isotopic agreement underscores the utility of lead isotopic measurements of feces to identify household sources of lead exposure. Results from this limited number of cases support the hypothesis that the release of bone lead into blood may substantially buffer the decrease in blood lead levels expected from the reduction in lead intake. PMID:15626656
Use of market data to assess bushmeat hunting sustainability in Equatorial Guinea.
Allebone-Webb, S M; Kümpel, N F; Rist, J; Cowlishaw, G; Rowcliffe, J M; Milner-Gulland, E J
2011-06-01
Finding an adequate measure of hunting sustainability for tropical forests has proved difficult. Many researchers have used urban bushmeat market surveys as indicators of hunting volumes and composition, but no analysis has been done of the reliability of market data in reflecting village offtake. We used data from urban markets and the villages that supply these markets to examine changes in the volume and composition of traded bushmeat between the village and the market (trade filters) in Equatorial Guinea. We collected data with market surveys and hunter offtake diaries. The trade filters varied depending on village remoteness and the monopoly power of traders. In a village with limited market access, species that maximized trader profits were most likely to be traded. In a village with greater market access, species for which hunters gained the greatest income per carcass were more likely to be traded. The probability of particular species being sold to market also depended on the capture method and season. Larger, more vulnerable species were more likely to be supplied from less-accessible catchments, whereas there was no effect of forest cover or human population density on probability of being sold. This suggests that the composition of bushmeat offtake in an area may be driven more by urban demand than the geographic characteristics of that area. In one market, traders may have reached the limit of their geographical exploitation range, and hunting pressure within that range may be increasing. Our results demonstrate that it is possible to model the trade filters that bias market data, which opens the way to developing more robust market-based sustainability indices for the bushmeat trade. ©2011 Society for Conservation Biology.
Eiler, John H.; Masuda, Michele; Spencer, Ted R.; Driscoll, Richard J.; Schreck, Carl B.
2014-01-01
Chinook Salmon Oncorhynchus tshawytscha returns to the Yukon River basin have declined dramatically since the late 1990s, and detailed information on the spawning distribution, stock structure, and stock timing is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio-tagged in the lower basin during 2002–2004 and tracked upriver. Fish traveled to spawning areas throughout the basin, ranging from several hundred to over 3,000 km from the tagging site. Similar distribution patterns were observed across years, suggesting that the major components of the run were identified. Daily and seasonal composition estimates were calculated for the component stocks. The run was dominated by two regional components comprising over 70% of the return. Substantially fewer fish returned to other areas, ranging from 2% to 9% of the return, but their collective contribution was appreciable. Most regional components consisted of several principal stocks and a number of small, spatially isolated populations. Regional and stock composition estimates were similar across years even though differences in run abundance were reported, suggesting that the differences in abundance were not related to regional or stock-specific variability. Run timing was relatively compressed compared with that in rivers in the southern portion of the species’ range. Most stocks passed through the lower river over a 6-week period, ranging in duration from 16 to 38 d. Run timing was similar for middle- and upper-basin stocks, limiting the use of timing information for management. The lower-basin stocks were primarily later-run fish. Although differences were observed, there was general agreement between our composition and timing estimates and those from other assessment projects within the basin, suggesting that the telemetry-based estimates provided a plausible approximation of the return. However, the short duration of the run, complex stock structure, and similar stock timing complicate management of Yukon River returns.
NASA Astrophysics Data System (ADS)
Bermúdez, Rafael; Winder, Monika; Stuhr, Annegret; Almén, Anna-Karin; Engström-Öst, Jonna; Riebesell, Ulf
2016-12-01
Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of offshore mesocosms and subjected to a CO2 gradient ranging from natural concentrations ( ˜ 347 µatm fCO2) up to values projected for the year 2100 ( ˜ 1333 µatm fCO2). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO2. Although this coastal plankton community was tolerant of high pCO2 levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms.
Phase separation, crystallization and polyamorphism in the Y2O3 Al2O3 system
NASA Astrophysics Data System (ADS)
Skinner, Lawrie B.; Barnes, Adrian C.; Salmon, Philip S.; Crichton, Wilson A.
2008-05-01
A detailed study of glass formation from aerodynamically levitated liquids in the (Y2O3)x(Al2O3)1-x system for the composition range 0.21<=x<=0.41 was undertaken by using pyrometric, optical imaging and x-ray diffraction methods. Homogeneous and clear single-phase glasses were produced over the composition range 0.27 \\lesssim x \\lesssim 0.33 . For Y2O3-rich compositions (0.33 \\lesssim x \\le 0.375 ), cloudy materials were produced which contain inclusions of crystalline yttrium aluminium garnet (YAG) of diameter up to 40 µm in a glassy matrix. For Y2O3-poor compositions around x = 0.24, cloudy materials were also produced, but it was not possible to deduce whether this resulted from (i) sub-micron inclusions of a nano-crystalline or glassy material in a glassy matrix or (ii) a glass formed by spinodal decomposition. For x = 0.21, however, the sample cloudiness results from crystallization into at least two phases comprising yttrium aluminium perovskite and alumina. The associated pyrometric cooling curve shows slow recalescence events with a continuous and slow evolution of excess heat which contrasts with the sharp recalescence events observed for the crystallization of YAG at compositions near x = 0.375. The materials that are the most likely candidates for demonstrating homogeneous nucleation of a second liquid phase occur around x = 0.25, which corresponds to the limit for formation of a continuous random network of corner-shared AlO4 tetrahedra.
Estimated communication range of social sounds used by bottlenose dolphins (Tursiops truncatus).
Quintana-Rizzo, Ester; Mann, David A; Wells, Randall S
2006-09-01
Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.
Broadband spectral analysis of non-Debye dielectric relaxation in percolating heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuncer, Enis; Bellatar, J; Achour, M E
2011-01-01
In this study, the main features of dielectric relaxation in carbon black epoxy composites are discussed using several types of complementary modelling (i.e., the Cole-Cole phenomenological equation, Jonscher s universal dielectric response, and an approach that relies on a continuous distribution of relaxation times). These methods of characterizing the relaxation were conducted below Tg. Through the numerical model we can obtain the characteristic effective relaxation time and exponents straightforwardly. However, the true relaxation spectrum can be obtained from the distribution of relaxation times calculated from the complex dielectric permittivity. Over the compositional range explored, relaxation occurs by a Vogel-Tammam-Fulcher-like temperaturemore » dependence within the limits of experimental accuracy.« less
Features and characterization needs of rubber composite structures
NASA Technical Reports Server (NTRS)
Tabaddor, Farhad
1989-01-01
Some of the major unique features of rubber composite structures are outlined. The features covered are those related to the material properties, but the analytical features are also briefly discussed. It is essential to recognize these features at the planning stage of any long-range analytical, experimental, or application program. The development of a general and comprehensive program which fully accounts for all the important characteristics of tires, under all the relevant modes of operation, may present a prohibitively expensive and impractical task at the near future. There is therefore a need to develop application methodologies which can utilize the less general models, beyond their theoretical limitations and yet with reasonable reliability, by proper mix of analytical, experimental, and testing activities.
Nye, C.J.; Swanson, S.E.; Avery, V.F.; Miller, T.P.
1994-01-01
The 1989-1990 eruption of Redoubt Volcano produced medium-K calc-alkaline andesite and dacite of limited compositional range (58.2-63.4% SiO2) and entrained quenched andesitic inclusions (55% SiO2) which bear chemical similarities to the rest of the ejecta. The earliest (December 15) magmas are pumiceous, often compositionally banded, and the majority is relatively mafic ( 60 wt.%). They have Mg, Cr, Ni, Sc, and V contents higher than the andesites, but lower than Redoubt basalts and basaltic andesites. Thus, they may be crystallization products of andesites, but do not represent the cumulate residue of basalt fractionation. The xenoliths were probably derived from a shallow or intermediate crustal chamber. ?? 1994.
Highly mismatched GaN1-x Sb x alloys: synthesis, structure and electronic properties
NASA Astrophysics Data System (ADS)
Yu, K. M.; Sarney, W. L.; Novikov, S. V.; Segercrantz, N.; Ting, M.; Shaw, M.; Svensson, S. P.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.
2016-08-01
Highly mismatched alloys (HMAs) is a class of semiconductor alloys whose constituents are distinctly different in terms of size, ionicity and/or electronegativity. Electronic properties of the alloys deviate significantly from an interpolation scheme based on small deviations from the virtual crystal approximation. Most of the HMAs were only studied in a dilute composition limit. Recent advances in understanding of the semiconductor synthesis processes allowed growth of thin films of HMAs under non-equilibrium conditions. Thus reducing the growth temperature allowed synthesis of group III-N-V HMAs over almost the entire composition range. This paper focuses on the GaN x Sb1-x HMA which has been suggested as a potential material for solar water dissociation devices. Here we review our recent work on the synthesis, structural and optical characterization of GaN1-x Sb x HMA. Theoretical modeling studies on its electronic structure based on the band anticrossing (BAC) model are also reviewed. In particular we discuss the effects of growth temperature, Ga flux and Sb flux on the incorporation of Sb, film microstructure and optical properties of the alloys. Results obtained from two separate MBE growths are directly compared. Our work demonstrates that a large range of direct bandgap energies from 3.4 eV to below 1.0 eV can be achieved for this alloy grown at low temperature. We show that the electronic band structure of GaN1-x Sb x HMA over the entire composition range is well described by a modified BAC model which includes the dependence of the host matrix band edges as well as the BAC model coupling parameters on composition. We emphasize that the modified BAC model of the electronic band structure developed for the full composition of GaN x Sb1-x is general and is applicable to any HMA.
Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules
He, Peng; Wei, Biao; Wang, Steve; ...
2013-01-01
Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in amore » theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.« less
Garbarino, J.R.; Taylor, Howard E.
1996-01-01
An inductively coupled plasma-mass spectrometry method was developed for the determination of dissolved Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sr, Tl, U, V, and Zn in natural waters. Detection limits are generally in the 50-100 picogram per milliliter (pg/mL) range, with the exception of As which is in the 1 microgram per liter (ug/L) range. Interferences associated with spectral overlap from concomitant isotopes or molecular ions and sample matrix composition have been identified. Procedures for interference correction and reduction related to isotope selection, instrumental operating conditions, and mathematical data processing techniques are described. Internal standards are used to minimize instrumental drift. The average analytical precision attainable for 5 times the detection limit is about 16 percent. The accuracy of the method was tested using a series of U.S. Geological Survey Standard Reference Water Standards (SWRS), National Research Council Canada Riverine Water Standard, and National Institute of Standards and Technology (NIST) Trace Elements in Water Standards. Average accuracies range from 90 to 110 percent of the published mean values.
A carbon-rich region in Miller Range 091004 and implications for ureilite petrogenesis
NASA Astrophysics Data System (ADS)
Day, James M. D.; Corder, Christopher A.; Cartigny, Pierre; Steele, Andrew M.; Assayag, Nelly; Rumble, Douglas; Taylor, Lawrence A.
2017-02-01
Ureilite meteorites are partially melted asteroidal-peridotite residues, or more rarely, cumulates that can contain greater than three weight percent carbon. Here we describe an exceptional C-rich lithology, composed of 34 modal % large (up to 0.8 mm long) crystalline graphite grains, in the Antarctic ureilite meteorite Miller Range (MIL) 091004. This C-rich lithology is embedded within a silicate region composed dominantly of granular olivine with lesser quantities of low-Ca pyroxene, and minor FeNi metal, high-Ca pyroxene, spinel, schreibersite and troilite. Petrological evidence indicates that the graphite was added after formation of the silicate region and melt depletion. Associated with graphite is localized reduction of host olivine (Fo88-89) to nearly pure forsterite (Fo99), which is associated with FeNi metal grains containing up to 11 wt.% Si. The main silicate region is typical of ureilite composition, with highly siderophile element (HSE) abundances ∼0.3 × chondrite, 187Os/188Os of 0.1260-0.1262 and Δ17O of -0.81 ± 0.16‰. Mineral trace-element analyses reveal that the rare earth elements (REE) and the HSE are controlled by pyroxene and FeNi metal phases in the meteorite, respectively. Modeling of bulk-rock REE and HSE abundances indicates that the main silicate region experienced ∼6% silicate and >50% sulfide melt extraction, which is at the lower end of partial melt removal estimated for ureilites. Miller Range 091004 demonstrates heterogeneous distribution of carbon at centimeter scales and a limited range in Mg/(Mg + Fe) compositions of silicate grain cores, despite significant quantities of carbon. These observations demonstrate that silicate rim reduction was a rapid disequilibrium process, and came after silicate and sulfide melt removal in MIL 091004. The petrography and mineral chemistry of MIL 091004 is permissive of the graphite representing late-stage C-rich melt that pervaded silicates, or carbon that acted as a lubricant during anatexis and impact disruption in the parent body. Positive correlation of Pt/Os ratios with olivine core compositions, but a wide range of oxygen isotope compositions, indicates that ureilites formed from a compositionally heterogeneous parent body that experienced variable sulfide and metal melt-loss that is most pronounced in relatively oxidized ureilites with Δ17O between -1.5 and ∼0‰.
Observations of Al, Fe and Ca(+) in Mercury's Exosphere
NASA Technical Reports Server (NTRS)
Bida, Thomas A.; Killen, Rosemary M.
2011-01-01
We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.
Stealing the Sword: Limiting Terrorist Use of Advanced Conventional Weapons
2007-01-01
ammunition, are combined (see Figure 2.9 for a handgun concept that features four barrels , two with lethal and two with nonlethal ammunition). Other...Weapons Figure 2.9 A Four- Barreled Concept Handgun Mortar Systems Mortars have long been regarded as cheap, lightweight, short-range artillery. Mortars are...Terrorists? 37 manner).63 An example of an advance in lightweight materials for mor- tars is the development of the carbon fiber composite barrel in the
Biancarosa, Irene; Belghit, Ikram; Bruckner, Christian G; Liland, Nina S; Waagbø, Rune; Amlund, Heidi; Heesch, Svenja
2018-01-01
Abstract BACKGROUND In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro‐ and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. RESULTS The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. CONCLUSION This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29193189
Magnesium isotopic composition of the mantle
NASA Astrophysics Data System (ADS)
Teng, F.; Li, W.; Ke, S.; Marty, B.; Huang, S.; Dauphas, N.; Wu, F.; Helz, R. L.
2009-12-01
Studies of Mg isotopic composition of the Earth not only are important for understanding its geochemistry but also can shed light on the accretion history of the Earth as well as the evolution of the Earth-Moon system. However, to date, the Mg isotopic composition of the Earth is still poorly constrained and highly debated. There is uncertainty in the magnitude of Mg isotope fractionation at mantle temperatures and whether the Earth has a chondritic Mg isotopic composition or not. To constrain further the Mg isotopic composition of the mantle and investigate the behavior of Mg isotopes during igneous differentiation, we report >200 high-precision (δ26Mg < 0.1‰, 2SD) analyses of Mg isotopes on 1) global mid-ocean ridge basalts covering major ridge segments of the world and spanning a broad range in latitudes, chemical and radiogenic isotopic compositions; 2) ocean island basalts from Hawaiian (Koolau, Kilauea and Loihi) and French Polynesian volcanoes (Society island and Cook Austral chain); 3) olivine grains from Hawaiian volcanoes (Kilauea, Koolau and Loihi) and 4) peridotite xenoliths from Australia, China, France, Tanzania and USA. Global oceanic basalts and peridotite xenoliths have a limited (<0.2 ‰) variation in Mg isotopic composition, with an average δ26Mg = -0.25 relative to DSM3. Olivines from Hawaiian lavas have δ26Mg ranging from -0.43 to +0.03, with most having compositions identical to basalts and peridotites. Therefore, the mantle’s δ26Mg value is estimated to be ~ -0.25 ± 0.1 (2SD), different from that reported by Wiechert and Halliday (2007; δ26Mg = ~ 0) but similar to more recent studies (δ26Mg = -0.27 to -0.33) (Teng et al. 2007; Handler et al. 2009; Yang et al., 2009). Moreover, we suggest the Earth, as represented by the mantle, has a Mg isotopic composition similar to chondrites (δ26Mg = ~-0.33). The need for a model such as that of Wiechert and Halliday (2007) that involves sorting of chondrules and calcium-aluminum-rich inclusions in the proto planetary disc is thus not required to explain the Mg isotopic composition of the Earth.
Puchner, Elias M.; Walter, Jessica M.; Kasper, Robert; Huang, Bo; Lim, Wendell A.
2013-01-01
Cells tightly regulate trafficking of intracellular organelles, but a deeper understanding of this process is technically limited by our inability to track the molecular composition of individual organelles below the diffraction limit in size. Here we develop a technique for intracellularly calibrated superresolution microscopy that can measure the size of individual organelles as well as accurately count absolute numbers of molecules, by correcting for undercounting owing to immature fluorescent proteins and overcounting owing to fluorophore blinking. Using this technique, we characterized the size of individual vesicles in the yeast endocytic pathway and the number of accessible phosphatidylinositol 3-phosphate binding sites they contain. This analysis reveals a characteristic vesicle maturation trajectory of composition and size with both stochastic and regulated components. The trajectory displays some cell-to-cell variability, with smaller variation between organelles within the same cell. This approach also reveals mechanistic information on the order of events in this trajectory: Colocalization analysis with known markers of different vesicle maturation stages shows that phosphatidylinositol 3-phosphate production precedes fusion into larger endosomes. This single-organelle analysis can potentially be applied to a range of small organelles to shed light on their precise composition/structure relationships, the dynamics of their regulation, and the noise in these processes. PMID:24043832
Resistance Training Effects on Metabolic Function Among Youth: A Systematic Review.
Bea, Jennifer W; Blew, Robert M; Howe, Carol; Hetherington-Rauth, Megan; Going, Scott B
2017-08-01
This systematic review evaluates the relationship between resistance training and metabolic function in youth. PubMed, Embase, Cochrane Library, Web of Science, CINAHL, and ClinicalTrials. gov were searched for articles that (1): studied children (2); included resistance training (3); were randomized interventions; and (4) reported markers of metabolic function. The selected studies were analyzed using the Cochrane Risk-of-Bias Tool. Thirteen articles met inclusion criteria. Mean age ranged from 12.2 to 16.9 years, but most were limited to high school (n = 11) and overweight/obese (n = 12). Sample sizes (n = 22-304), session duration (40-60min), and intervention length (8-52 wks) varied. Exercise frequency was typically 2-3 d/wk. Resistance training was metabolically beneficial compared with control or resistance plus aerobic training in 5 studies overall and 3 out of the 4 studies with the fewest threats to bias (p ≤ .05); each was accompanied by beneficial changes in body composition, but only one study adjusted for change in body composition. Limited evidence suggests that resistance training may positively affect metabolic parameters in youth. Well-controlled resistance training interventions of varying doses are needed to definitively determine whether resistance training can mitigate metabolic dysfunction in youth and whether training benefits on metabolic parameters are independent of body composition changes.
The role of stable isotopes in understanding rainfall ...
The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interception. As a whole, the studies suggest a set of controlling factors including fractionation, exchange among liquid and vapor phase water, and spatiotemporal redistribution along varying canopy flowpaths. However, our limited understanding of physical processes and water routing in the canopy limits the ability to discern all details for predicting interception isotope effects. We suggest that the isotopic composition of throughfall and stemflow may be the key to improve our understanding of water storage and transport in the canopy, similar to how isotopic analysis contributed to progress in our understanding of watershed runoff processes. While interception isotope effects have largely been studied under the premise that they are a source of error, previous works also indicate a wide range of possible interactions that intercepted water may have with the canopy and airspace. We identify new research questions that may be answered by stable isotopes as a path forward in examining and generalizing small-scale interception processes that could facilitate integration of interception into watershed ecohydrological concepts. Evaporation from forest canopies (interception loss) is a prominent
Testing of fuel/oxidizer-rich, high-pressure preburners
NASA Technical Reports Server (NTRS)
Lawver, B. R.
1982-01-01
Results of an evaluation of high pressure combustion of fuel rich and oxidizer rich LOX/RP-1 propellants using 4.0 inch diameter prototype preburner injectors and chambers are presented. Testing covered a pressure range from 8.9 to 17.5 MN/square meters (1292 to 2540 psia). Fuel rich mixture ratios ranged from 0.238 to 0.367; oxidizer rich mixture ratios ranged from 27.2 to 47.5. Performance, gas temperature uniformity, and stability data for two fuel rich and two ozidizer rich preburner injectors are presented for a conventional like-on-like (LOL) design and a platelet design injector. Kinetically limited combustion is shown by the excellent agreement of measured fuel rich gas composition and C performance data with kinetic model predictions. The oxidizer rich test results support previous equilibrium combustion predictions.
Confirmation of theoretical colour predictions for layering dental composite materials.
Mikhail, Sarah S; Johnston, William M
2014-04-01
The aim of this study is to confirm the theoretical colour predictions for single and double layers of dental composite materials on an opaque backing. Single and double layers of composite resins were fabricated, placed in optical contact with a grey backing and measured for spectral radiance. The spectral reflectance and colour were directly determined. Absorption and scattering coefficients as previously reported, the measured thickness of the single layers and the effective reflectance of the grey backing were utilized to theoretically predict the reflectance of the single layer using corrected Kubelka-Munk reflectance theory. For double layers the predicted effective reflectance of the single layer was used as the reflectance of the backing of the second layer and the thickness of the second layer was used to predict the reflectance of the double layer. Colour differences, using both the CIELAB and CIEDE2000 formulae, measured the discrepancy between each directly determined colour and its corresponding theoretical colour. The colour difference discrepancies generally ranged around the perceptibility threshold but were consistently below the respective acceptability threshold. This theory can predict the colour of layers of composite resin within acceptability limits and generally also within perceptibility limits. This theory could therefore be incorporated into computer-based optical measuring instruments that can automate the shade selections for layers of a more opaque first layer under a more translucent second layer for those clinical situations where an underlying background colour and a desirable final colour can be measured. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1991-01-01
Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.
Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hua; Kim, Hyeokjin; Erickson, Robert
In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less
NASA Astrophysics Data System (ADS)
Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai
2016-08-01
A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.
Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters
Chen, Hua; Kim, Hyeokjin; Erickson, Robert; ...
2017-01-01
In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less
Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E
2009-12-15
The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs.
Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel
2014-01-01
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes
Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel
2014-01-01
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes
Aflatoxins in composite spices collected from local markets of Karachi, Pakistan.
Asghar, Muhammad Asif; Zahir, Erum; Rantilal, Summan; Ahmed, Aftab; Iqbal, Javed
2016-06-01
This survey was carried out to evaluate the occurrence of total aflatoxins (AFs; B1+B2+G1+G2) in unpacked composite spices. A total of 75 samples of composite spices such as biryani, karhai, tikka, nihari and korma masalas were collected from local markets of Karachi, Pakistan, and analysed using HPLC technique. The results indicated that AFs were detected in 77% (n = 58) samples ranging from 0.68 to 25.74 µg kg(-1) with a mean of 4.63 ± 0.95 µg kg(-1). In 88% (n = 66) samples, AFs level was below the maximum limits (ML = 10 µg kg(-1)) as imposed by EU. Furthermore, 61% (n = 46) tested samples contained AFs level between 1 and 10 µg kg(-1), 9% (n = 7) exhibited AFs contamination ranged 10-20 µg kg(-1) and only 3% (n = 2) of the investigated samples contained AFs levels higher than the ML of 20 µg kg(-1) for total aflatoxins as set by the USA. It was concluded that there is need to establish a strict and continuous national monitoring plan to improve safety and quality of spices in Pakistan.
NASA Technical Reports Server (NTRS)
Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James
2014-01-01
A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.
Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool
Carter, Michelle C.; Hancock, Neil; Albar, Salwa A.; Brown, Helen; Greenwood, Darren C.; Hardie, Laura J.; Frost, Gary S.; Wark, Petra A.; Cade, Janet E.
2016-01-01
The current UK food composition tables are limited, containing ~3300 mostly generic food and drink items. To reflect the wide range of food products available to British consumers and to potentially improve accuracy of dietary assessment, a large UK specific electronic food composition database (FCDB) has been developed. A mapping exercise has been conducted that matched micronutrient data from generic food codes to “Back of Pack” data from branded food products using a semi-automated process. After cleaning and processing, version 1.0 of the new FCDB contains 40,274 generic and branded items with associated 120 macronutrient and micronutrient data and 5669 items with portion images. Over 50% of food and drink items were individually mapped to within 10% agreement with the generic food item for energy. Several quality checking procedures were applied after mapping including; identifying foods above and below the expected range for a particular nutrient within that food group and cross-checking the mapping of items such as concentrated and raw/dried products. The new electronic FCDB has substantially increased the size of the current, publically available, UK food tables. The FCDB has been incorporated into myfood24, a new fully automated online dietary assessment tool and, a smartphone application for weight loss. PMID:27527214
Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool.
Carter, Michelle C; Hancock, Neil; Albar, Salwa A; Brown, Helen; Greenwood, Darren C; Hardie, Laura J; Frost, Gary S; Wark, Petra A; Cade, Janet E
2016-08-05
The current UK food composition tables are limited, containing ~3300 mostly generic food and drink items. To reflect the wide range of food products available to British consumers and to potentially improve accuracy of dietary assessment, a large UK specific electronic food composition database (FCDB) has been developed. A mapping exercise has been conducted that matched micronutrient data from generic food codes to "Back of Pack" data from branded food products using a semi-automated process. After cleaning and processing, version 1.0 of the new FCDB contains 40,274 generic and branded items with associated 120 macronutrient and micronutrient data and 5669 items with portion images. Over 50% of food and drink items were individually mapped to within 10% agreement with the generic food item for energy. Several quality checking procedures were applied after mapping including; identifying foods above and below the expected range for a particular nutrient within that food group and cross-checking the mapping of items such as concentrated and raw/dried products. The new electronic FCDB has substantially increased the size of the current, publically available, UK food tables. The FCDB has been incorporated into myfood24, a new fully automated online dietary assessment tool and, a smartphone application for weight loss.
Tribology-Structure Relationships in Silicon Oxycarbide Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Joseph V.; Colombo, Paolo; Howell, Jane A.
Silicon oxycarbide is a versatile material system that is attractive for many applications because of its ability to tune properties such as chemical compatibility, refractive index, electrical conductivity, and optical band gap through changes in composition. One particularly intriguing application lies in the production of biocompatible coatings with good mechanical properties. In this paper, we report on the wide range of mechanical and tribological property values exhibited by silicon oxycarbide thin films deposited by reactive radio frequency magnetron sputtering. Through a change in oxygen partial pressure in the sputtering plasma, the composition of the films was controlled to produce relativelymore » pure SiO2, carbon-doped SiC, and compositions between these limits. Hardness values were 8-20 GPa over this range and the elastic modulus was measured to be between 60 and 220 GPa. We call attention to the fit of the mechanical data to a simple additive bond-mixture model for property prediction. Tribological parameters were measured using a ball-on-disk apparatus and the samples exhibited the same general trends for friction coefficient and wear rate. One film is shown to produce variable low friction behavior and low wear rate, which suggests a solid-state self-lubrication process because of heterogeneity on the nanometer scale.« less
Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode
Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon
2016-01-01
Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms. PMID:27456201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, F.J.; Ghoniem, N.M.
The thermodynamic stability of SiC/SiC composite structures proposed for fusion applications is presented in this paper. Minimization of the free energy for reacting species in the temperature range 773-1273 K is achieved by utilizing the NASA-Lewis Chemical Equilibrium Thermodynamics Code (CET). The chemical stability of the matrix (SiC), as well as several potential fiber coatings are studied. Helium coolant is assumed to contain O{sub 2} and water moisture impurities in the range 100-1000 ppm. The work is applied to recent Magnetic and Inertial Confinement Conceptual designs. The present study indicated that the upper useful temperature limit for SiC/SiC composites, frommore » the standpoint of high-temperature corrosion, will be in the neighborhood of 1273 K. Up to this temperature, corrosion of SiC is shown to be negligible. The main mechanism of weight loss will be by evaporation to the plasma side. The presence of a protective SiO{sub 2} condensed phase is discussed, and is shown to result in further reduction of high-temperature corrosion. The thermodynamic stability of C and BN is shown to be very poor under typical fusion reactor conditions. Further development of chemically stable interface materials is required.« less
Design and Performance Improvements of the Prototype Open Core Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Pang, D.; Anand, D. K. (Editor); Kirk, J. A. (Editor)
1996-01-01
A prototype magnetically suspended composite flywheel energy storage (FES) system is operating at the University of Maryland. This system, designed for spacecraft applications, incorporates recent advances in the technologies of composite materials, magnetic suspension, and permanent magnet brushless motor/generator. The current system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. This paper will present design improvements for enhanced and robust performance. Initially, when the OCCF prototype was spun above its first critical frequency of 4,500 RPM, the rotor movement would exceed the space available in the magnetic suspension gap and touchdown on the backup mechanical bearings would occur. On some occasions it was observed that, after touchdown, the rotor was unable to re-suspend as the speed decreased. Additionally, it was observed that the rotor would exhibit unstable oscillations when the control system was initially turned on. Our analysis suggested that the following problems existed: (1) The linear operating range of the magnetic bearings was limited due to electrical and magnetic saturation; (2) The inductance of the magnetic bearings was affecting the transient response of the system; (3) The flywheel was confined to a small movement because mechanical components could not be held to a tight tolerance; and (4) The location of the touchdown bearing magnifies the motion at the pole faces of the magnetic bearings when the linear range is crucial. In order to correct these problems an improved design of the flywheel energy storage system was undertaken. The magnetic bearings were re-designed to achieve a large linear operating range and to withstand load disturbances of at least 1 g. The external position transducers were replaced by a unique design which were resistant to magnetic field noise and allowed cancellation of the radial growth of the flywheel at high speeds. A central rod was utilized to ensure the concentricity of the magnetic bearings, the motor/generator, and the mechanical touchdown bearings. In addition, the mechanical touchdown bearings were placed at two ends of the magnetic bearing stack to restrict the motion at pole faces. A composite flywheel was made using a multi-ring interference assembled design for a high specific energy density. To achieve a higher speed and better efficiency, a permanent magnet DC brushless motor was specially designed and fabricated. A vacuum enclosure was constructed to eliminate windage losses for testing at high speeds. With the new improvements the OCCF system was tested to 20,000 RPM with a total stored energy of 15.9 WH and an angular momentum of 54.8 N-m-s (40.4 lb-ft-s). Motor current limitation, caused by power loss in the magnetic bearings, was identified as causing the limit in upper operating speed.
Body Composition Remodeling and Incident Mobility Limitations in African Ancestry Men.
Santanasto, Adam J; Miljkovic, Iva; Cvejkus, Ryan C; Gordon, Christopher L; Bunker, Clareann H; Patrick, Allen L; Wheeler, Victor W; Zmuda, Joseph M
2018-04-05
Mobility limitations are common, with higher prevalence in African Americans compared to whites, and are associated with disability, institutionalization and death. Aging is associated with losses of lean mass and a shift to central adiposity, which are more pronounced in African Americans. We aimed to examine the association of body composition remodeling with incident mobility limitations in older men of African Ancestry. Seven-year changes in body composition were measured using peripheral computed tomography (pQCT) of the calf and whole-body dual x-ray absorptiometry (DXA) in 505 African Ancestry men aged ≥60 years and free of self-reported mobility limitations at baseline. Self-reported incident mobility limitations were assessed at 7-year follow-up. Odds of developing mobility limitations associated with baseline and change in body composition were quantified using separate logistic regression models. Seventy-five men (14.9%) developed incident mobility limitations over 6.2±0.6 years. Baseline body composition was not associated with incident mobility limitations. After adjustment for covariates, gaining total and intermuscular fat were associated with incident mobility limitations a (OR: 1.60; 95% CI: 1.21-2.13; OR: 1.51; 95% CI: 1.18-1.94). Changes in DXA lean mass were not related to mobility limitations; however, maintaining pQCT calf muscle area was protective against mobility limitations (OR: 0.65; 95% CI: 0.48-0.87). Increases in body fat, and particularly intermuscular fat, and decreases in calf skeletal muscle were associated with a higher risk of developing mobility limitations. Our findings emphasize the importance of body composition remodeling in the development of mobility limitations among African ancestry men.
Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance
Zhao, Meng-Qiang; Ren, Chang E.; Ling, Zheng; ...
2014-11-18
Electrochemical capacitors attract attention because of their high power densities and long cycle lives. Moreover, with increasing demand for portable and wearable electronics, recent research has focused primarily on improving the energy density per unit of volume of electrochemical capacitors. But, the volumetric capacitances of carbon-based electrodes is limited at around 60 F cm -3 for commercial devices, and at best in the range of 300 F cm -3 for low-density porous carbons (<0.5–1 g cm -3 ). Although extremely high capacitances of 1000–1500 F cm -3 can be achieved for hydrated ruthenium oxide, RuO 2 , its highmore » cost limits its wide-spread applications.« less
Yunoki, Shunji; Sugiura, Hiroaki; Ikoma, Toshiyuki; Kondo, Eiji; Yasuda, Kazunori; Tanaka, Junzo
2011-02-01
The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm⁻³ and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.
NASA Astrophysics Data System (ADS)
Kaçar, Ceren; Erden, Pınar Esra; Kılıç, Esma
2017-10-01
A novel matrix, carboxylated multiwalled carbon nanotubes-tin oxide nanoparticles-graphene-chitosan (c-MWCNTs-SnO2-GR-CS) composite, was prepared for biosensor construction. Lysine oxidase (LOx) enzyme was immobilized covalently on the surface of c-MWCNTs-GR-SnO2-CS composite modified glassy carbon electrode (GCE) using N-ethyl-N‧-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxyl succinimide (NHS). Effects of electrode composition and buffer pH on biosensor response were investigated to optimize the working conditions. The biosensor exhibited wide linear range (9.9 × 10-7 M-1.6 × 10-4 M), low detection limit (1.5 × 10-7 M), high sensitivity (55.20 μA mM-1 cm-2) and fast amperometric response (<25 s) at +0.70 V vs. Ag/AgCl. With good repeatability and long-term stability, the c-MWCNTs-SnO2-GR-CS based biosensor offered an alternative for L-lysine biosensing. The practical applicability of the biosensor in two dietary supplements has also been addressed.
Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao
2016-12-01
In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.
2016-07-01
In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.
Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju
2015-01-01
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.
Structural CNT Composites. Part I; Developing a Carbon Nanotube Filament Winder
NASA Technical Reports Server (NTRS)
Sauti, Godfrey; Kim, Jae-Woo; Wincheski, Russell A.; Antczak, Andrew; Campero, Jamie C.; Luong, Hoa H.; Shanahan, Michelle H.; Stelter, Christopher J.; Siochi, Emilie J.
2015-01-01
Carbon nanotube (CNT) based materials promise advances in the production of high strength and multifunctional components for aerospace and other applications. Specifically, in tension dominated applications, the latest CNT based filaments are yielding composite properties comparable to or exceeding composites from more established fibers such as Kevlar and carbon fiber. However, for the properties of these materials to be fully realized at the component level, suitable manufacturing processes have to be developed. These materials handle differently from conventional fibers, with different wetting characteristics and behavior under load. The limited availability of bulk forms also requires that the equipment be scaled down accordingly to tailor the process development approach to material availability. Here, the development of hardware and software for filament winding of carbon nanotube based tapes and yarns is described. This hardware features precision guidance of the CNT material and control of the winding tension over a wide range in an open architecture that allows for effective process control and troubleshooting during winding. Use of the filament winder to develop CNT based Composite Overwrapped Pressure Vessels (COPVs) shall also be discussed.
NASA Astrophysics Data System (ADS)
Shahnavaz, Zohreh; Abd Hamid, Sharifah Bee
2017-06-01
The new electrocatalyst, ZnCr2O4/MWCNTs composite was successfully synthesized by hydrothermal method followed by calcination at 500 °C. A potential application of ZnCr2O4/MWCNTs composite modified electrode as enzyme-free sensor to monitor H2O2 has been studied. The sensor exhibited a high sensitivity of 1717.14 μA mM-1 cm-2 and a low detection limit down to 0.11 μM with a linear wide range from 50 μM to 34.8 mM with a fast response time of 2 s. In addition, modified electrode performance was investigated by measuring current responses of the sensor for three weeks to confirm the great stability of the proposed sensor. Along with these considerable analytical advantages, the as-prepared composite showed very high specificity to H2O2 with complete elimination of interference from uric acid, ascorbic acid, dopamine and glucose. The sensor gave satisfactory results in a real sample, when employed for determination of H2O2 in lens cleaning solution.
Composition of precipitation in remote areas of the world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, J.N.; Likens, G.E.; Keene, W.C.
1982-10-20
The Global Precipitation Chemistry Project collects precipitation by event to determine composition and processes controlling it in five remote areas. Compositions (excluding sea-salt) at St. Georges, Bermuda, were primarily controlled by anthropogenic processes; composition and acidities at San Carlos, Venezuela, Katherine, Australia, Poker Flat, Alaska, and Amsterdam Island were controlled by unknown mixtures of natural or anthropogenic processes. Precipitation was acidic; average volume-weighted pH values were 4.8 for Bermuda; 5.0, Alaska; 4.9, Amsterdam Island; 4.8, Australia; 4.8, Venezuela. Acidities at Bermuda and Alaska were from long-range transport of sulfate aerosol; at Venezuela, Australia, and Amsterdam Island, from mixtures of weakmore » organic and strong mineral acids, primarily H/sub 2/SO/sub 4/. Relative proportions of weak to strong acids were largest at Venezuela and lowest at Amsterdam Island. Weak and strong acids were from mixtures of natural and anthropogenic processes. Once contributions from human activities were removed, the lower limit of natural contributions was probably greater than or equal to pH 5.« less
ICAN Computer Code Adapted for Building Materials
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.
1997-01-01
The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.
Iwama, Etsuro; Kawabata, Nozomi; Nishio, Nagare; Kisu, Kazuaki; Miyamoto, Junichi; Naoi, Wako; Rozier, Patrick; Simon, Patrice; Naoi, Katsuhiko
2016-05-24
Nanocrystalline Li3VO4 dispersed within multiwalled carbon nanotubes (MWCNTs) was prepared using an ultracentrifugation (uc) process and electrochemically characterized in Li-containing electrolyte. When charged and discharged down to 0.1 V vs Li, the material reached 330 mAh g(-1) (per composite) at an average voltage of about 1.0 V vs Li, with more than 50% capacity retention at a high current density of 20 A g(-1). This current corresponds to a nearly 500C rate (7.2 s) for a porous carbon electrode normally used in electric double-layer capacitor devices (1C = 40 mA g(-1) per activated carbon). The irreversible structure transformation during the first lithiation, assimilated as an activation process, was elucidated by careful investigation of in operando X-ray diffraction and X-ray absorption fine structure measurements. The activation process switches the reaction mechanism from a slow "two-phase" to a fast "solid-solution" in a limited voltage range (2.5-0.76 V vs Li), still keeping the capacity as high as 115 mAh g(-1) (per composite). The uc-Li3VO4 composite operated in this potential range after the activation process allows fast Li(+) intercalation/deintercalation with a small voltage hysteresis, leading to higher energy efficiency. It offers a promising alternative to replace high-rate Li4Ti5O12 electrodes in hybrid supercapacitor applications.
Manojlovic, Dragica; Dramićanin, Miroslav D; Milosevic, Milos; Zeković, Ivana; Cvijović-Alagić, Ivana; Mitrovic, Nenad; Miletic, Vesna
2016-01-01
This study investigated the degree of conversion, depth of cure, Vickers hardness, flexural strength, flexural modulus and volumetric shrinkage of experimental composite containing a low shrinkage monomer FIT-852 (FIT; Esstech Inc.) and photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO; Sigma Aldrich) compared to conventional composite containing Bisphenol A-glycidyl methacrylate (BisGMA) and camphorquinone-amine photoinitiator system. The degree of conversion was generally higher in FIT-based composites (45-64% range) than in BisGMA-based composites (34-58% range). Vickers hardness, flexural strength and modulus were higher in BisGMA-based composites. A polywave light-curing unit was generally more efficient in terms of conversion and hardness of experimental composites than a monowave unit. FIT-based composite containing TPO showed the depth of cure below 2mm irrespective of the curing light. The depth of cure of FIT-based composite containing CQ and BisGMA-based composites with either photoinitiator was in the range of 2.8-3.0mm. Volumetric shrinkage of FIT-based composite (0.9-5.7% range) was lower than that of BisGMA-based composite (2.2-12% range). FIT may be used as a shrinkage reducing monomer compatible with the conventional CQ-amine system as well as the alternative TPO photoinitiator. However, the depth of cure of FIT_TPO composite requires boosting to achieve clinically recommended thickness of 2mm. Copyright © 2015 Elsevier B.V. All rights reserved.
Estimating Forest Species Composition Using a Multi-Sensor Approach
NASA Astrophysics Data System (ADS)
Wolter, P. T.
2009-12-01
The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar has increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered the increase in dominance of host tree species. Modeling approaches are currently being used to understand and forecast potential management effects in changing insect disturbance trends. However, detailed forest composition data needed for these efforts is often lacking. Here, we used partial least squares (PLS) regression to integrate satellite sensor data from Landsat, Radarsat-1, and PALSAR, as well as pixel-wise forest structure information derived from SPOT-5 sensor data (Wolter et al. 2009), to estimate species-level forest composition of 12 species required for modeling efforts. C-band Radarsat-1 data and L-band PALSAR data were frequently among the strongest predictors of forest composition. Pixel-level forest structure data were more important for estimating conifer rather than hardwood forest composition. The coefficients of determination for species relative basal area (RBA) ranged from 0.57 (white cedar) to 0.94 (maple) with RMSE of 8.88 to 6.44 % RBA, respectively. Receiver operating characteristic (ROC) curves were used to determine the effective lower limits of usefulness of species RBA estimates which ranged from 5.94 % (jack pine) to 39.41 % (black ash). These estimates were then used to produce a dominant forest species map for the study region with an overall accuracy of 78 %. Most notably, this approach facilitated discrimination of aspen from birch as well as spruce and fir from other conifer species which is crucial for the study of forest tent caterpillar and spruce budworm dynamics, respectively, in the Upper Midwest. Thus, use of PLS regression as a data fusion strategy has proven to be an effective tool for regional characterization of forest composition within spatially heterogeneous forests using large-format satellite sensor data.
NASA Astrophysics Data System (ADS)
Golnik, C.; Bemmerer, D.; Enghardt, W.; Fiedler, F.; Hueso-González, F.; Pausch, G.; Römer, K.; Rohling, H.; Schöne, S.; Wagner, L.; Kormoll, T.
2016-06-01
The finite range of a proton beam in tissue opens new vistas for the delivery of a highly conformal dose distribution in radiotherapy. However, the actual particle range, and therefore the accurate dose deposition, is sensitive to the tissue composition in the proton path. Range uncertainties, resulting from limited knowledge of this tissue composition or positioning errors, are accounted for in the form of safety margins. Thus, the unverified particle range constrains the principle benefit of proton therapy. Detecting prompt γ-rays, a side product of proton-tissue interaction, aims at an on-line and non-invasive monitoring of the particle range, and therefore towards exploiting the potential of proton therapy. Compton imaging of the spatial prompt γ-ray emission is a promising measurement approach. Prompt γ-rays exhibit emission energies of several MeV. Hence, common radioactive sources cannot provide the energy range a prompt γ-ray imaging device must be designed for. In this work a benchmark measurement-setup for the production of a localized, monoenergetic 4.44 MeV γ-ray source is introduced. At the Tandetron accelerator at the HZDR, the proton-capture resonance reaction 15N(p,α γ4.439)12C is utilized. This reaction provides the same nuclear de-excitation (and γ-ray emission) occurrent as an intense prompt γ-ray line in proton therapy. The emission yield is quantitatively described. A two-stage Compton imaging device, dedicated for prompt γ-ray imaging, is tested at the setup exemplarily. Besides successful imaging tests, the detection efficiency of the prototype at 4.44 MeV is derived from the measured data. Combining this efficiency with the emission yield for prompt γ-rays, the number of valid Compton events, induced by γ-rays in the energy region around 4.44 MeV, is estimated for the prototype being implemented in a therapeutic treatment scenario. As a consequence, the detection efficiency turns out to be a key parameter for prompt γ-rays Compton imaging limiting the applicability of the prototype in its current realization.
Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite
NASA Astrophysics Data System (ADS)
Jyoti, Kanaujiya, Neha; Varma, G. D.
2018-05-01
Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.
't Hooft Quantization for Interacting Systems
NASA Astrophysics Data System (ADS)
Jizba, Petr; Scardigli, Fabio; Blasone, Massimo; Vitiello, Giuseppe
2012-02-01
In the framework of 't Hooft's "deterministic quantization" proposal, we show how to obtain from a composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be also interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region, the system can be described in terms of two irreducible elementary subsystems, corresponding to two independent quantum harmonic oscillators.
Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.
1987-04-21
Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations.
Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
Neidlinger, Hermann H.; Schissel, Paul O.; Orth, Richard A.
1987-01-01
Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations.
Low-melting point inorganic nitrate salt heat transfer fluid
Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM
2009-09-15
A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanswijgenhoven, E.; Holmes, J.; Wevers, M.
Fiber-reinforced ceramic-matrix composites are under development for high-temperature structural applications. These applications involve fatigue loading under a wide range of frequencies. To date, high-temperature fatigue experiments have typically been performed at loading frequencies of 10 Hz or lower. At higher frequencies, a strong effect of loading frequency on fatigue life has been demonstrated for certain CMC`s tested at room temperature. The fatigue life of CMC`s with weak fiber-matrix interfaces typically decreases as the loading frequency increases. This decrease is attributed to frictional heating and frequency dependent interface and fiber damage. More recently, it has been shown that the room temperaturemore » fatigue life of a Nicalon-fabric-reinforced composite with a strong interface (SYLRAMIC{trademark}) appears to be independent of loading frequency. The high-temperature low-frequency fatigue behavior of the SYLRAMIC composite has also been investigated. For a fatigue peak stress {sigma}{sub peak} above a proportional limit stress of 70 MPa, the number of cycles to failure N{sub f} decreased with an increase in {sigma}{sub peak}. The material endured more than 10{sup 6} cycles for {sigma}{sub peak} below 70 MPa. In this paper, the influence of loading frequency on the high-temperature fatigue behavior of the SYLRAMIC composite is reported. It will be shown that the fatigue limit is unaffected by the loading frequency, that the number of fatigue cycles to failure N{sub f} increases with an increase in frequency, and that the time to failure t{sub f} decreases with an increase in frequency.« less
Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson
2014-05-14
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Esrafili, Ali; Rezaei, Fatemeh
2015-06-05
In this work, a novel and efficient on-line in-tube solid phase microextraction method followed by high performance liquid chromatography was developed for preconcentration and determination of trace amounts of parabens. A nanostructured polyaniline-polypyrrole composite was electrochemically deposited on the inner surface of a stainless steel tube and used as the extraction phase. Several important factors that influence the extraction efficiency, including type of solid-phase coating, extraction and desorption times, flow rates of the sample solution and eluent, pH, and ionic strength of the sample solution were investigated and optimized. Under the optimal conditions, the limits of detection were in the range of 0.02-0.04 μg L(-1). This method showed good linearity for parabens in the range of 0.07-50 μg L(-1), with coefficients of determination better than 0.998. The intra- and inter-assay precisions (RSD%, n=3) were in the range of 5.9-7.0% and 4.4-5.7% at three concentration levels of 2, 10, and 20 μg L(-1), respectively. The extraction recovery values for the spiked samples were in the acceptable range of 80.3-90.2%. The validated method was successfully applied for analysis of methyl-, ethyl-, and propyl parabens in some water, milk, and juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparison of burbot populations across adjacent native and introduced ranges
Walters, Annika W.; Mandeville, Elizabeth G.; Saunders, W. Carl; Gerrity, Paul C.; Skorupski, Joseph A.; Underwood, Zachary E.; Gardunio, Eric I.
2017-01-01
Introduced species are a threat to biodiversity. Burbot, Lota lota, a fish native to the Wind River Drainage, Wyoming and a species of conservation concern, have been introduced into the nearby Green River Drainage, Wyoming, where they are having negative effects on native fish species. We compared these native and introduced burbot populations to evaluate potential mechanisms that could be leading to introduction success. We examined genetic ancestry, physical habitat characteristics, community composition, and burbot abundance, relative weight, and size structure between the native and introduced range to elucidate potential differences. The origin of introduced burbot in Flaming Gorge Reservoir is most likely Boysen Reservoir and several nearby river populations in the native Wind River Drainage. Burbot populations did not show consistent differences in abundance, size structure, and relative weight between drainages, though Fontenelle Reservoir, in the introduced drainage, had the largest burbot. There were also limited environmental and community composition differences, though reservoirs in the introduced drainage had lower species richness and a higher percentage of non-native fish species than the reservoir in the native drainage. Burbot introduction in the Green River Drainage is likely an example of reservoir construction creating habitat with suitable environmental conditions to allow a southwards range expansion of this cold-water species. An understanding of the factors driving introduction success can allow better management of species, both in their introduced and native range.
Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers
Gibson, Matt; Mao, Hai-Quan; Elisseeff, Jennifer
2014-01-01
Biomaterials derived from the decellularization of mature tissues retain biological and architectural features that profoundly influence cellular activity. However, the clinical utility of such materials remains limited as the shape and physical properties are difficult to control. In contrast, scaffolds based on synthetic polymers can be engineered to exhibit specific physical properties, yet often suffer from limited biological functionality. This study characterizes composite materials that present decellularized extracellular matrix (DECM) particles in combination with synthetic nanofibers and examines the ability of these materials to influence stem cell differentiation. Mechanical processing of decellularized tissues yielded particles with diameters ranging from 71 to 334 nm. Nanofiber scaffolds containing up to 10% DECM particles (wt/wt) derived from six different tissues were engineered and evaluated to confirm DECM particle incorporation and to measure bioactivity. Scaffolds containing bone, cartilage, and fat promoted osteogenesis at 1 and 3 weeks compared to controls. In contrast, spleen and lung DECM significantly reduced osteogenic outcomes compared to controls. These findings highlight the potential to incorporate appropriate source DECM nanoparticles within nanofiber composites to design a scaffold with bioactivity targeted to specific applications. PMID:24971329
Stable Isotope Applications for Understanding Shark Ecology in the Northeast Pacific Ocean.
Reum, Jonathan C P; Williams, Gregory D; Harvey, Chris J
Stable isotopes are used to address a wide range of ecological questions and can help researchers and managers better understand the movement and trophic ecology of sharks. Here, we review how shark studies from the Northeast Pacific Ocean (NEP) have employed stable isotopes to estimate trophic level and diet composition and infer movement and habitat-use patterns. To date, the number of NEP shark studies that have used stable isotopes is limited, suggesting that the approach is underutilized. To aid shark researchers in understanding the strengths and limitations of the approach, we provide a brief overview of carbon and nitrogen stable isotope trophic discrimination properties (e.g., change in δ 15 N between predator and prey), tissue sample preparation methods specific to elasmobranchs, and methodological considerations for the estimation of trophic level and diet composition. We suggest that stable isotopes are a potentially powerful tool for addressing basic questions about shark ecology and are perhaps most valuable when combined and analysed with other data types (e.g., stomach contents, tagging data, or other intrinsic biogeochemical markers). © 2017 Elsevier Ltd. All rights reserved.
Percolation in suspensions of hard nanoparticles: From spheres to needles
NASA Astrophysics Data System (ADS)
Schilling, Tanja; Miller, Mark A.; van der Schoot, Paul
2015-09-01
We investigate geometric percolation and scaling relations in suspensions of nanorods, covering the entire range of aspect ratios from spheres to extremely slender needles. A new version of connectedness percolation theory is introduced and tested against specialised Monte Carlo simulations. The theory accurately predicts percolation thresholds for aspect ratios of rod length to width as low as 10. The percolation threshold for rod-like particles of aspect ratios below 1000 deviates significantly from the inverse aspect ratio scaling prediction, thought to be valid in the limit of infinitely slender rods and often used as a rule of thumb for nanofibres in composite materials. Hence, most fibres that are currently used as fillers in composite materials cannot be regarded as practically infinitely slender for the purposes of percolation theory. Comparing percolation thresholds of hard rods and new benchmark results for ideal rods, we find that i) for large aspect ratios, they differ by a factor that is inversely proportional to the connectivity distance between the hard cores, and ii) they approach the slender rod limit differently.
Laser Time-of-Flight Mass Spectrometry for Space
NASA Technical Reports Server (NTRS)
Brinckerhoff, W. B.; Managadze, G. G.; McEntire, R. W.; Cheng, A. F.; Green, W. J.
2000-01-01
A miniature reflection time-of-flight mass spectrometer for in situ planetary surface analysis is described. The laser ablation mass spectrometer (LAMS) measures the regolith's elemental and isotopic composition without high-voltage source extraction or sample preparation. The compact size (< 2 x 10(exp 3) cubic cm) and low mass (approximately 2 kg) of LAMS, due to its fully coaxial design and two-stage reflectron, fall within the strict resource limitations of landed science missions to solar system bodies. A short-pulse laser focused to a spot with a diameter approximately 30-50 micrometers is used to obtain microscopic surface samples. Assisted by a microimager, LAMS can interactively select and analyze a range of compositional regions (with lateral motion) and with repeated pulses can access unweathered, subsurface materials. The mass resolution is calibrated to distinguish isotopic peaks at unit masses, and detection limits are on resolved to a few ppm. The design and calibration method of a prototype LAMS device is described, which include the development of preliminary relative sensitivity coefficients for major element bulk abundance measurements.
Increasing Operational Stability in Low NO
NASA Astrophysics Data System (ADS)
Levy, Yeshayahou; Erenburg, Vladimir; Sherbaum, Valery; Ovcharenko, Vitali; Rosentsvit, Leonid; Chudnovsky, Boris; Herszage, Amiel; Talanker, Alexander
2012-03-01
Lean combustion is a method in which combustion takes place under low equivalence ratio and relatively low combustion temperatures. As such, it has the potential to lower the effect of the relatively high activation energy nitrogen-oxygen reactions which are responsible for substantial NO
Dessie, Yadeta; Berhane, Yemane; Worku, Alemayehu
2015-01-01
While parent-adolescent sexual and reproductive health (SRH) communication is one potential source of SRH information for adolescents, it appears to be inadequately practiced in Ethiopia. This study was designed to investigate the factors that limit or improve parent-adolescent SRH communication in Harar, Eastern Ethiopia. A community based cross-sectional study was done on 4,559 adolescents of age 13-18. SRH communication was measured using a nine-item scale whose response ranged from "not at all" to "always." Summated composite score ranging from 0-36 was generated; higher score indicates high SRH communication. A median value of the composite score was 4 out of the possible 36 with an Interquartile Range (IQR) of 7. Respondents were ranked as very poor, poor and satisfactory communicators based on 33rd and 67th percentiles values. Generalized ordered logit model was applied to investigate the factors associated with SRH communication. Results showed that the adolescents who were more likely to practice poor-very poor/very poor SRH communication were those who had poor behavioral beliefs on and poor subjective norms of communicating sexual issues with parents and those who perceived their parents' reproductive health (RH) knowledge as poor. Nonetheless, the probability of poor-very poor/very poor SRH communication was less with high adolescent-parent communication quality, television co-viewing and discussions, and self-disclosure. Curtailing the adolescents' underlying poor beliefs and norms, and improving adolescent-parent communication quality, self-disclosure, and television co-viewing and discussions are essential to engage the parents in sexual and reproductive health education of the adolescents.
Tfaily, Malak M; Chu, Rosalie K; Tolić, Nikola; Roscioli, Kristyn M; Anderton, Christopher R; Paša-Tolić, Ljiljana; Robinson, Errol W; Hess, Nancy J
2015-01-01
Soil organic matter (SOM), a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and accurately predict how terrestrial carbon fluxes will respond to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O/C ratios (<0.1); water (H2O) was selective for carbohydrates with high O/C ratios; acetonitrile (ACN) preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O/C > 0.5; methanol (MeOH) has higher selectivity toward compounds characterized with low O/C < 0.5; and hexane, MeOH, ACN, and H2O solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils. We present the first comparative study of the molecular composition of SOM from different ecosystems using ultra high-resolution mass spectrometry.
2015-01-01
Introduction While parent-adolescent sexual and reproductive health (SRH) communication is one potential source of SRH information for adolescents, it appears to be inadequately practiced in Ethiopia. This study was designed to investigate the factors that limit or improve parent-adolescent SRH communication in Harar, Eastern Ethiopia. Methods A community based cross-sectional study was done on 4,559 adolescents of age 13–18. SRH communication was measured using a nine-item scale whose response ranged from “not at all” to “always.” Summated composite score ranging from 0–36 was generated; higher score indicates high SRH communication. A median value of the composite score was 4 out of the possible 36 with an Interquartile Range (IQR) of 7. Respondents were ranked as very poor, poor and satisfactory communicators based on 33rd and 67th percentiles values. Generalized ordered logit model was applied to investigate the factors associated with SRH communication. Results Results showed that the adolescents who were more likely to practice poor-very poor/very poor SRH communication were those who had poor behavioral beliefs on and poor subjective norms of communicating sexual issues with parents and those who perceived their parents’ reproductive health (RH) knowledge as poor. Nonetheless, the probability of poor-very poor/very poor SRH communication was less with high adolescent-parent communication quality, television co-viewing and discussions, and self-disclosure. Conclusions Curtailing the adolescents’ underlying poor beliefs and norms, and improving adolescent-parent communication quality, self-disclosure, and television co-viewing and discussions are essential to engage the parents in sexual and reproductive health education of the adolescents. PMID:26167860
NASA Astrophysics Data System (ADS)
Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, A.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sciacca, G.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; zurNedden, M.; H1 Collaboration
1995-02-01
A contact interaction analysis is presented to search for new phenomena beyond the Standard Model in deep inelastic e±p → e±hadrons scattering. The data are collected with the H1 detector at HERA and correspond to integrated luminosities of 0.909 pb -1 and 2.947 pb -1 for electron and positron beams, respectively. The differential cross sections dσ/d Q2 are measured in the Q2 range between 160 GeV 2 and 20 000 GeV 2. The absence of any significant deviation from the Standard Model prediction is used to constrain the couplings and masses of new leptoquarks and to set limits on electron-quark compositeness scales and on the radius of light quarks.
Low Cost Solar Array Project: Composition Measurements by Analytical Photo Catalysis
NASA Technical Reports Server (NTRS)
Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III
1979-01-01
The applicability of the photon catalysis technique for effecting composition analysis of silicon samples is discussed. A detector for the impurities Al, Cr, Fe, Mn, Ti, V, Mo and Zr is evaluated. During the first reporting period Al, Cr, Fe, and Mn were detected with the photon catalysis method. The best fluorescence lines to monitor and determine initial sensitivities to each of these elements by atomic absorption calibration were established. In the course of these tests vapor pressure curves for these four pure substances were also mapped. Ti and Si were detected. The best lines to monitor were catalogued and vapor pressure curves were determined. Attempts to detect vanadium were unsuccessful due to the refractory nature of this element and the limited temperature range of the evaporator.
Goodwin, S.D.; Schultz, B.I.; Parkhurst, D.L.; Simon, N.S.; Callendar, Edward
1984-01-01
The chemical composition of bottom sediments and their associated pore waters from the tidal Potomac River and Estuary was studied from May 1978 through June 1980. Pore waters were routinely analyzed for pH, Eh, alkalinity, and concentrations of sulfide, sulfate, phosphate, carbon, ammonium, silica, iron, manganese, chloride, sodium, potassium, calcium, and magnesium. Porosity, weight loss on ignition, and carbon, nitrogen, and phosphorus contents were determined for the solid sediments. The range of salinity and chemical composition encountered in the estuary frequently necessitated modifications of standard methods of analysis. Therefore, the methods used, their modifications, and their limitations are presented in some detail. The appendix lists the data obtained from six sampling periods. (USGS)
Teng, F.-Z.; Wadhwa, M.; Helz, R.T.
2007-01-01
To investigate whether magnesium isotopes are fractionated during basalt differentiation, we have performed high-precision Mg isotopic analyses by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) on a set of well-characterized samples from Kilauea Iki lava lake, Hawaii, USA. Samples from the Kilauea Iki lava lake, produced by closed-system crystal-melt fractionation, range from olivine-rich cumulates to highly differentiated basalts with MgO content ranging from 2.37 to 26.87??wt.%. Our results demonstrate that although these basalts have diverse chemical compositions, mineralogies, crystallization temperatures and degrees of differentiation, their Mg isotopic compositions display no measurable variation within the limits of our external precision (average ??26Mg = - 0.36 ?? 0.10 and ??25Mg = - 0.20 ?? 0.07; uncertainties are 2SD). This indicates that Mg isotopic fractionation during crystal-melt fractionation at temperatures of ??? 1055????C is undetectable at the level of precision of the current investigation. Calculations based on our data suggest that at near-magmatic temperatures the maximum fractionation in the 26Mg/24Mg ratio between olivine and melt is 0.07???. Two additional oceanic basalts, two continental basalts (BCR-1 and BCR-2), and two primitive carbonaceous chondrites (Allende and Murchison) analyzed in this study have Mg isotopic compositions similar to the Kilauea Iki lava lake samples. In contrast to a recent report [U. Wiechert, A.N. Halliday, Non-chondritic magnesium and the origins of the inner terrestrial planets, Earth and Planetary Science Letters 256 (2007) 360-371], the results presented here suggest that the Bulk Silicate Earth has a chondritic Mg isotopic composition. ?? 2007.
Measurements of fog composition at a rural site
NASA Astrophysics Data System (ADS)
Straub, Derek J.; Hutchings, James W.; Herckes, Pierre
2012-02-01
Studies that focus on fog chemistry in the United States have been limited to relatively few locations. Apart from measurements along the East and West coasts and extensive analysis of radiation fog in the Central Valley of California, fog composition has been characterized in only a handful of other locations. To complement and expand the existing fog chemistry data that are currently available, a new field campaign was established at a rural location in Central Pennsylvania to produce a unique, long term record of fog composition. From 2007 to 2010, 41 fog events were sampled with an automated Caltech Heated Rod Cloudwater Collector (CHRCC). The collected samples were analyzed primarily for pH and major inorganic ions. Dissolved organic carbon (DOC) and trace metals were analyzed in selected samples and N-nitrosodimethylamine (NDMA) was quantified in two samples. Sample composition varied widely during the study period. Sulfate concentrations ranged from 15 to 955 (median = 123) μN and pH varied between 3.08 and 7.41 (median = 5.77). In terms of volume weighted averages, ammonium was the most abundant ionic species followed by sulfate, calcium, and nitrate. For the subset of samples in which DOC was analyzed, concentrations ranged from 2.2 to 22.6 mgC l -1. Comparisons with regional precipitation chemistry measurements reveal the influence of local agricultural and soil sources on fog composition. The sum of sulfate, nitrate, and ammonium measured in the present study is considerably lower than the majority of radiation, precipitation, and coastal fogs collected in the United States although the ammonium/(nitrate + sulfate) ratio is similar to those found in the Central Valley of California.
Krogseth, Ingjerd S; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders R; Schlabach, Martin
2013-12-01
Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SCCPs in the Nordic environment. Realistic SCCP emission scenarios, resolved by formula group, were estimated and used to predict the composition and concentrations of SCCPs in the environment and the human food chain. Emissions at the upper end of the estimated range resulted in predicted total concentrations that were often within a factor of 6 of observations. Similar model performance for a complex group of organic contaminants as for the well-known polychlorinated biphenyls strengthens the confidence in the CoZMoMAN model and implies a relatively good mechanistic understanding of the environmental fate of SCCPs. However, the degree of chlorination predicted for SCCPs in sediments, fish, and humans was higher than observed and poorly established environmental half-lives and biotransformation rate constants contributed to the uncertainties in the predicted composition and ∑SCCP concentrations. Improving prediction of the SCCP composition will also require better constrained estimates of the composition of SCCP emissions. There is, however, also large uncertainty and lack of coherence in the existing observations, and better model-measurement agreement will require improved analytical methods and more strategic sampling. More measurements of SCCP levels and compositions in samples from background regions are particularly important.
Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.
2016-01-01
We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.
National Composite Center-A new roof for composite industries in Malaysia
NASA Astrophysics Data System (ADS)
Abdullah, Abu; Yuhazri, M. Y.; Sulaiman, Mohd Yusoff
2016-03-01
Today's Malaysia has more than 70 companies that are actively involved in composite activities. The activities are ranging from various business sectors, using different technology and material. Composites has been used in a wide range of applications in Malaysia and contributes to growth in a diverse range of industry value chains from utilities through to boat building, manufacturing and industrial applications, aerospace, consumer products and construction products. Thus, a key part of this strategy is the establishment of the National Composites Centre (NCC), which will bring together dynamic companies and enterprising academics to develop new technologies for the design and rapid manufacture of high-quality composite products.
Qi, Ping; Lin, Zhihao; Li, Jiaxu; Wang, ChengLong; Meng, WeiWei; Hong, Hong; Zhang, Xuewu
2014-12-01
In this work, a simple, rapid and sensitive analytical method for the determination of rhodamine B in chili-containing foodstuffs is described. The dye is extracted from samples with methanol and analysed without further cleanup procedure by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD). The influence of matrix fluorescent compounds (capsaicin and dihydrocapsaicin) on the analysis was overcome by the optimisation of mobile-phase composition. The limit of determination (LOD) and limit of quantification (LOQ) were 3.7 and 10 μg/kg, respectively. Validation data show a good repeatability and within-lab reproducibility with relative standard deviations <10%. The overall recoveries are in the range of 98-103% in chili powder and in the range of 87-100% in chili oil depending on the concentration of rhodamine B in foodstuffs. This method is suitable for the routine analysis of rhodamine B due to its sensitivity, simplicity, reasonable time and cost. Copyright © 2014 Elsevier Ltd. All rights reserved.
Górski, K; De Gruijter, C; Tana, R
2015-10-01
In this study, habitat use by Mugil cephalus was investigated in the waters of the west coast of the North Island of New Zealand by analysing microchemical composition of otoliths (laser-ablation inductively coupled plasma mass spectrometry) obtained from individuals from commercial fish stocks and research surveys. Results of this study show that M. cephalus at the southern limits of its distribution display highly flexible migratory behaviour with extensive use of freshwater and brackish habitats, potentially enabling them to maximize foraging opportunities. Mugil cephalus can tolerate a wide range of salinities and can therefore utilize higher productivity areas, such as estuaries and eutrophic riverine lakes. Finally, M. cephalus populations across a range of climates and latitudes appear to differ in the extent to which they utilize freshwater and brackish habitats, possibly with increasing penetration of fresh waters with increasing latitude. © 2015 The Fisheries Society of the British Isles.
Wilkinson, Mia; Kafizas, Andreas; Bawaked, Salem M; Obaid, Abdullah Y; Al-Thabaiti, Shaeel A; Basahel, Sulaiman N; Carmalt, Claire J; Parkin, Ivan P
2013-06-10
A combinatorial film with a phase gradient from V:TiO₂ (V: Ti ≥ 0.08), through a range of TiO₂-VO₂ composites, to a vanadium-rich composite (V: Ti = 1.81) was grown by combinatorial atmospheric pressure chemical vapor deposition (cAPCVD). The film was grown from the reaction of TiCl₄, VCl₄, ethyl acetate (EtAc), and H₂O at 550 °C on glass. The gradient in gas mixtures across the reactor induced compositional film growth, producing a single film with numerous phases and compositions at different positions. Seventeen unique positions distributed evenly along a central horizontal strip were investigated. The physical properties were characterized by wavelength dispersive X-ray (WDX) analysis, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and UV-visible spectroscopy. The functional properties examined included the degree of photoinduced hydrophilicity (PIH), UVC-photocatalysis, and thermochromism. Superhydrophilic contact angles could be achieved at all positions, even within a highly VO₂-rich composite (V: Ti = 1.81). A maximum level of UVC photocatalysis was observed at a position bordering the solubility limit of V:TiO₂ (V: Ti ≈ 0.21) and fragmentation into a mixed-phase composite. Within the mixed-phase TiO₂: VO₂ composition region (V: Ti = 1.09 to 1.81) a decrease in the semiconductor-to-metal transition temperature of VO₂ from 68 to 51 °C was observed.
Jomma, Ezzaldeen Younes; Ding, Shou-Nian
2016-02-18
In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe₃O₄-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe₃O₄-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe₃O₄-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM(-1)∙cm(-2) and good long-term stability.
Jomma, Ezzaldeen Younes; Ding, Shou-Nian
2016-01-01
In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability. PMID:26901204
Depletion interaction between colloids mediated by an athermal polymer blend
NASA Astrophysics Data System (ADS)
Chervanyov, A. I.
2018-03-01
We calculate the immersion energy of a colloid and the potential of the depletion interaction (DI) acting between colloids immersed in an athermal polymer blend. The developed theory has no limitations with respect to the polymer-to-colloid size ratios and polymer densities, covering, in particular, dense polymer blends. We demonstrate that in addition to the standard compressibility-induced mechanism of the DI there exists the mechanism relying on the correlations between compositional fluctuations specific to polymer blends. We quantitatively investigate this "compositional" mechanism of the DI and demonstrate that it causes significant contributions to the effective force acting between colloids. Further we show that relative significance of the contributions to the colloid immersion energy and the depletion potential caused by the above compositional mechanism strongly depends on the mass fractions of the polymer species and their size ratio. We find out that these contributions strongly affect the range of the DI, thus causing a significant increase in the absolute value of the second virial coefficient of the effective potential acting between colloids.
Sol-Gel Synthesis of Carbon Xerogel-ZnO Composite for Detection of Catechol
Li, Dawei; Zang, Jun; Zhang, Jin; Ao, Kelong; Wang, Qingqing; Dong, Quanfeng; Wei, Qufu
2016-01-01
Carbon xerogel-zinc oxide (CXZnO) composites were synthesized by a simple method of sol-gel condensation polymerization of formaldehyde and resorcinol solution containing zinc salt followed by drying and thermal treatment. ZnO nanoparticles were observed to be evenly dispersed on the surfaces of the carbon xerogel microspheres. The as-prepared CXZnO composites were mixed with laccase (Lac) and Nafion to obtain a mixture solution, which was further modified on an electrode surface to construct a novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect the environmental pollutant, catechol. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards catechol with high sensitivity (31.2 µA·mM−1), a low detection limit (2.17 µM), and a wide linear range (6.91–453 µM). Moreover, the biosensor also displayed favorable repeatability, reproducibility, selectivity, and stability besides being successfully used in the trace detection of catechol existing in lake water environments. PMID:28773407
General Syntheses of Nanotubes Induced by Block Copolymer Self-Assembly.
Zhao, Jianming; Huang, Wei; Si, Pengchao; Ulstrup, Jens; Diao, Fangyuan; Zhang, Jingdong
2018-06-01
Amphiphilic block copolymer templating strategies are extensively used for syntheses of mesoporous materials. However, monodisperse tubular nanostructures are limited. Here, a general method is developed to synthesize monodisperse nanotubes with narrow diameter distribution induced by self-assembly of block copolymer. 3-Aminophenol (AP) and formaldehyde (F) polymerize and self-assemble with cylindrical PS-b-PEO micelles into worm-like PS-b-PEO@APF composites with uniform diameter (49 ± 3 nm). After template extraction, worm-like APF polymer nanotubes are formed. The structure and morphology of the polymer nanotubes can be tuned by regulating the synthesis conditions. Furthermore, PS-b-PEO@APF composites are uniformly converted to isomorphic carbon nanotubes with large surface area of 662 m 2 g -1 , abundant hierarchical porous frameworks and nitrogen doping. The synthesis can be extended to silica nanotubes. These findings open an avenue to the design of porous materials with controlled structural framework, composition, and properties for a wide range of applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Embaby, Hassan E; Rayan, Ahmed M
2016-06-01
Chemical composition and nutritional evaluation as well as physicochemical and functional properties of seed flour of Acacia tortilis (Forssk.) Hayne ssp. raddiana were studied. The results indicated that seeds contained 5.30% moisture, 3.99% ash, 9.19% fat, 14.31% fiber, 27.21% protein and 45.30% carbohydrates. Potassium was the predominant element followed by calcium and then phosphorous. Phytic acid, tannins and trypsin inhibitor as antinutrients were detected. The amino acid profile compared well with FAO/WHO recommended pattern except for cystine/methionine, isoleucine, tyrosine/phenylalanine, lysine and threonine. Also, the first limiting amino acid was lysine. Fatty acid composition showed that linoleic acid was the major fatty acid, followed by palmitic, stearic, oleic and arachidic acids. The seed oil showed absorbance in the ultraviolet ranges, thus it can be used as a broad spectrum UV protectant. For physicochemical and functional properties, acacia seeds flour had excellent water holding index, swelling index, foaming capacity and foam stability. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.
1980-01-01
Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.
Mass Flux of ZnSe by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Sha, Yi-Gao; Su, Ching-Hua; Palosz, W.; Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Liu, Hao-Chieh; Brebrick, R. F.
1995-01-01
Mass fluxes of ZnSe by physical vapor transport (PVT) were measured in the temperature range of 1050 to 1160 C using an in-situ dynamic technique. The starting materials were either baked out or distilled under vacuum to obtain near-congruently subliming compositions. Using an optical absorption technique Zn and Se, were found to be the dominant vapor species. Partial pressures of Zn and Se, over the starting materials at temperatures between 960 and 1140 C were obtained by measuring the optical densities of the vapor phase at the wavelengths of 2138, 3405, 3508, 3613, and 3792 A. The amount and composition of the residual gas inside the experimental ampoules were measured after the run using a total pressure gauge. For the first time, the experimentally determined partial pressures of Zn and Se, and the amount and composition of the residual gas were used in a one-dimensional diffusion limited analysis of the mass transport rates for a PVT system. Reasonable agreement between the experimental and theoretical results was observed.
Henderson, Gemma; Cox, Faith; Ganesh, Siva; Jonker, Arjan; Young, Wayne; Abecia, Leticia; Angarita, Erika; Aravena, Paula; Nora Arenas, Graciela; Ariza, Claudia; Attwood, Graeme T.; Mauricio Avila, Jose; Avila-Stagno, Jorge; Bannink, André; Barahona, Rolando; Batistotti, Mariano; Bertelsen, Mads F.; Brown-Kav, Aya; Carvajal, Andres M.; Cersosimo, Laura; Vieira Chaves, Alexandre; Church, John; Clipson, Nicholas; Cobos-Peralta, Mario A.; Cookson, Adrian L.; Cravero, Silvio; Cristobal Carballo, Omar; Crosley, Katie; Cruz, Gustavo; Cerón Cucchi, María; de la Barra, Rodrigo; De Menezes, Alexandre B.; Detmann, Edenio; Dieho, Kasper; Dijkstra, Jan; dos Reis, William L. S.; Dugan, Mike E. R.; Hadi Ebrahimi, Seyed; Eythórsdóttir, Emma; Nde Fon, Fabian; Fraga, Martín; Franco, Francisco; Friedeman, Chris; Fukuma, Naoki; Gagić, Dragana; Gangnat, Isabelle; Javier Grilli, Diego; Guan, Le Luo; Heidarian Miri, Vahideh; Hernandez-Sanabria, Emma; Gomez, Alma Ximena Ibarra; Isah, Olubukola A.; Ishaq, Suzanne; Jami, Elie; Jelincic, Juan; Kantanen, Juha; Kelly, William J.; Kim, Seon-Ho; Klieve, Athol; Kobayashi, Yasuo; Koike, Satoshi; Kopecny, Jan; Nygaard Kristensen, Torsten; Julie Krizsan, Sophie; LaChance, Hannah; Lachman, Medora; Lamberson, William R.; Lambie, Suzanne; Lassen, Jan; Leahy, Sinead C.; Lee, Sang-Suk; Leiber, Florian; Lewis, Eva; Lin, Bo; Lira, Raúl; Lund, Peter; Macipe, Edgar; Mamuad, Lovelia L.; Cuquetto Mantovani, Hilário; Marcoppido, Gisela Ariana; Márquez, Cristian; Martin, Cécile; Martinez, Gonzalo; Eugenia Martinez, Maria; Lucía Mayorga, Olga; McAllister, Tim A.; McSweeney, Chris; Mestre, Lorena; Minnee, Elena; Mitsumori, Makoto; Mizrahi, Itzhak; Molina, Isabel; Muenger, Andreas; Munoz, Camila; Murovec, Bostjan; Newbold, John; Nsereko, Victor; O’Donovan, Michael; Okunade, Sunday; O’Neill, Brendan; Ospina, Sonia; Ouwerkerk, Diane; Parra, Diana; Pereira, Luiz Gustavo Ribeiro; Pinares-Patino, Cesar; Pope, Phil B.; Poulsen, Morten; Rodehutscord, Markus; Rodriguez, Tatiana; Saito, Kunihiko; Sales, Francisco; Sauer, Catherine; Shingfield, Kevin; Shoji, Noriaki; Simunek, Jiri; Stojanović-Radić, Zorica; Stres, Blaz; Sun, Xuezhao; Swartz, Jeffery; Liang Tan, Zhi; Tapio, Ilma; Taxis, Tasia M.; Tomkins, Nigel; Ungerfeld, Emilio; Valizadeh, Reza; van Adrichem, Peter; Van Hamme, Jonathan; Van Hoven, Woulter; Waghorn, Garry; John Wallace, R.; Wang, Min; Waters, Sinéad M.; Keogh, Kate; Witzig, Maren; Wright, Andre-Denis G.; Yamano, Hidehisa; Yan, Tianhai; Yanez-Ruiz, David R.; Yeoman, Carl J.; Zambrano, Ricardo; Zeitz, Johanna; Zhou, Mi; Wei Zhou, Hua; Xia Zou, Cai; Zunino, Pablo; Janssen, Peter H.
2015-01-01
Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific. PMID:26449758
Methods of Forming Visual Hydrogen Detector with Variable Reversibility
NASA Technical Reports Server (NTRS)
Muradov, Nazim Z. (Inventor)
2014-01-01
Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100 C to plus 500 C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.
Visual hydrogen detector with variable reversibility
NASA Technical Reports Server (NTRS)
Muradov, Nazim (Inventor)
2011-01-01
Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.
Visual hydrogen detector with variable reversibilty
NASA Technical Reports Server (NTRS)
Muradov, Nazim Z. (Inventor)
2012-01-01
Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.
Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; ...
2015-01-07
Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating themore » irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.« less
Cell voltage versus electrode potential range in aqueous supercapacitors
Dai, Zengxin; Peng, Chuang; Chae, Jung Hoon; Ng, Kok Chiang; Chen, George Z.
2015-01-01
Supercapacitors with aqueous electrolytes and nanostructured composite electrodes are attractive because of their high charging-discharging speed, long cycle life, low environmental impact and wide commercial affordability. However, the energy capacity of aqueous supercapacitors is limited by the electrochemical window of water. In this paper, a recently reported engineering strategy is further developed and demonstrated to correlate the maximum charging voltage of a supercapacitor with the capacitive potential ranges and the capacitance ratio of the two electrodes. Beyond the maximum charging voltage, a supercapacitor may still operate, but at the expense of a reduced cycle life. In addition, it is shown that the supercapacitor performance is strongly affected by the initial and zero charge potentials of the electrodes. Further, the differences are highlighted and elaborated between freshly prepared, aged under open circuit conditions, and cycled electrodes of composites of conducting polymers and carbon nanotubes. The first voltammetric charging-discharging cycle has an electrode conditioning effect to change the electrodes from their initial potentials to the potential of zero voltage, and reduce the irreversibility. PMID:25897670
Slack, John F.; Dumoulin, Julie A.; Schmidt, J.M.; Young, L.E.; Rombach, Cameron
2004-01-01
The distribution and composition of Paleozoic strata in the western Brooks Range may have played a fundamental role in Zn-Pb mineralization of the Red Dog district. In our model, deposition and early lithification of biogenic chert and bedded siliceous rocks in the upper part of the Kuna Formation served as a regional hydrologic seal, acting as a cap rock to heat and hydrothermal fluids during Late Mississippian base-metal mineralization. Equally important was the iron-poor composition of black shales of the Kuna Formation (i.e., low Fe/Ti ratios), which limited synsedimentary pyrite formation in precursor sediments, resulting in significant H2S production in pore waters through the interaction of aqueous sulfate with abundant organic matter. This H2S may have been critical to the subsurface deposition of the huge quantities of Zn and Pb in the district. On the basis of this model, we propose that low Fe/Ti and S/C ratios in black shale sequences are potential basin-scale exploration guides for giant sediment-hosted, stratiform Zn-Pb-Ag deposits.
Climate change and early human land-use in a biodiversity hotspot, the Afromontane region
NASA Astrophysics Data System (ADS)
Ivory, S.; Russell, J. M.; Sax, D. F.; Early, R.
2015-12-01
African ecosystems are at great risk due to climate and land-use change. Paleo-records illustrate that changes in precipitation and temperature have led to dramatic alterations of African vegetation distribution over the Quaternary; however, despite the fact that the link between mankind and the environment has a longer history in the African tropics than anywhere else on earth, very little is known about pre-colonial land-use. Disentangling the influence of each is particularly critical in areas of exceptional biodiversity and endemism, such as the Afromontane forest region. This region is generally considered to be highly sensitive to temperature and thus at risk to future climate change. However, new evidence suggests that some high elevation species may have occupied warmer areas in the past and thus are not strongly limited by temperature and may be at greater risk from intensifying land-use. First, we use species distribution models constructed from modern and paleo-distributions of high elevation forests in order to evaluate differences in the climatic space occupied today compared to the past. We find that although modern Afromontane species ranges occupy very narrow climate conditions, and in particular that most species occur only in cold areas, in the past most species have tolerated warmer conditions. This suggests that many montane tree species are not currently limited by warm temperatures, and that the region has already seen significant reduction in the climate space occupied, possibly from Holocene land-use. Second, to evaluate human impacts on montane populations, we examine paleoecological records from lakes throughout sub-Saharan Africa that capture ecological processes at difference time scales to reconstruct Afromontane forest range changes. Over long time scales, we observe phases of forest expansion in the lowlands associated with climate variability alone where composition varies little from phase to phase but include both modern low and high altitude taxa. We then examine changes in biodiversity and species composition within the Afromontane region related to evidence different types of historical land-use, suggesting significant alteration of montane forest range and lowland forest composition.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-05-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-03-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
Evolution of a Quaternary peralkaline volcano: Mayor Island, New Zealand
Houghton, Bruce F.; Weaver, S.D.; Wilson, C.J.N.; Lanphere, M.A.
1992-01-01
Mayor Island is a Holocene pantelleritic volcano showing a wide range of dispersive power and eruptive intensity despite a very limited range in magma composition of only 2% SiO2. The primary controls on this range appear to have been the magmatic gas content on eruption and a varying involvement of basaltic magma, rather than major-element chemistry of the rhyolites. The ca. 130 ka subaerial history of the volcano contains portions of three geochemical cycles with abrupt changes in trace-element chemistry following episodes of caldera collapse. The uniform major-element chemistry of the magma may relate to a fine balance between rates of eruption and supply and the higher density of the more evolved (Ferich) magmas which could be tapped only after caldera-forming events had removed significant volumes of less evolved but lighter magma. ?? 1992.
Nemiroski, Alex; Soh, Siowling; Kwok, Sen Wai; Yu, Hai-Dong; Whitesides, George M
2016-02-03
Magnetic levitation (MagLev) of diamagnetic or weakly paramagnetic materials suspended in a paramagnetic solution in a magnetic field gradient provides a simple method to measure the density of small samples of solids or liquids. One major limitation of this method, thus far, has been an inability to measure or manipulate materials outside of a narrow range of densities (0.8 g/cm(3) < ρ < 2.3 g/cm(3)) that are close in density to the suspending, aqueous medium. This paper explores a simple method-"tilted MagLev"-to increase the range of densities that can be levitated magnetically. Tilting the MagLev device relative to the gravitational vector enables the magnetic force to be decreased (relative to the magnetic force) along the axis of measurement. This approach enables many practical measurements over the entire range of densities observed in matter at ambient conditions-from air bubbles (ρ ≈ 0) to osmium and iridium (ρ ≈ 23 g/cm(3)). The ability to levitate, simultaneously, objects with a broad range of different densities provides an operationally simple method that may find application to forensic science (e.g., for identifying the composition of miscellaneous objects or powders), industrial manufacturing (e.g., for quality control of parts), or resource-limited settings (e.g., for identifying and separating small particles of metals and alloys).
Computer simulation results for bounds on the effective conductivity of composite media
NASA Astrophysics Data System (ADS)
Smith, P. A.; Torquato, S.
1989-02-01
This paper studies the determination of third- and fourth-order bounds on the effective conductivity σe of a composite material composed of aligned, infinitely long, identical, partially penetrable, circular cylinders of conductivity σ2 randomly distributed throughout a matrix of conductivity σ1. Both bounds involve the microstructural parameter ζ2 which is a multifold integral that depends upon S3, the three-point probability function of the composite. This key integral ζ2 is computed (for the possible range of cylinder volume fraction φ2) using a Monte Carlo simulation technique for the penetrable-concentric-shell model in which cylinders are distributed with an arbitrary degree of impenetrability λ, 0≤λ≤1. Results for the limiting cases λ=0 (``fully penetrable'' or randomly centered cylinders) and λ=1 (``totally impenetrable'' cylinders) compare very favorably with theoretical predictions made by Torquato and Beasley [Int. J. Eng. Sci. 24, 415 (1986)] and by Torquato and Lado [Proc. R. Soc. London Ser. A 417, 59 (1988)], respectively. Results are also reported for intermediate values of λ: cases which heretofore have not been examined. For a wide range of α=σ2/σ1 (conductivity ratio) and φ2, the third-order bounds on σe significantly improve upon second-order bounds which just depend upon φ2. The fourth-order bounds are, in turn, narrower than the third-order bounds. Moreover, when the cylinders are highly conducting (α≫1), the fourth-order lower bound provides an excellent estimate of the effective conductivity for a wide range of volume fractions.
Leland, Harry V.
1995-01-01
Benthic-algal distributions in the Yakima River, Washington, basin were, examined in relation to geology, land use, water chemistry, and stream habitat using indicator-species classification (TWINSPAN) and canonical correspondence analysis (CCA). Algal assemblages identified byTWINSPAN were each associated with a narrow range of water-quality conditions. In the Cascade geologic province, where timber harvest and grazing are the dominant land uses, differences in community structure (CCA site scores) and concentrations of major ions (Ca and Mg) and nutrients (solute P, SiO2 and inorganic N) varied with dominant rock type of the basin. In agricultural areas of the Columbia Plateau province, differences in phytobenthos structure were based primarily on the degree of enrichment of dissolved solids, inorganic N, and solute P from irrigation-return flows and subsurface drainage. Habitat characteristics strongly correlated with community structure included reach altitude, turbidity, substratum embeddedness (Columbia Plateau), large woody-debris density (Cascade Range), and composition and density of the riparian vegetation. Algal biomass (AFDM) correlated with composition and density of the riparian vegetation but not with measured chemical-constituent concentrations. Nitrogen limitation in streams of the Cascade Range favored nitrogen-fixing blue-green algae and diatoms with endosymbiotic blue-greens, whereas nitrogen heterotrophs were abundant in agricultural areas of the Columbia Plateau.
Leland, Harry V.
1995-01-01
Benthic-algal distributions in the Yakima River, Washington, basin were, examined in relation to geology, land use, water chemistry, and stream habitat using indicator-species classification (TWINSPAN) and canonical correspondence analysis (CCA). Algal assemblages identified byTWINSPAN were each associated with a narrow range of water-quality conditions. In the Cascade geologic province, where timber harvest and grazing are the dominant land uses, differences in community structure (CCA site scores) and concentrations of major ions (Ca and Mg) and nutrients (solute P, SiO2 and inorganic N) varied with dominant rock type of the basin. In agricultural areas of the Columbia Plateau province, differences in phytobenthos structure were based primarily on the degree of enrichment of dissolved solids, inorganic N, and solute P from irrigation-return flows and subsurface drainage. Habitat characteristics strongly correlated with community structure included reach altitude, turbidity, substratum embeddedness (Columbia Plateau), large woody-debris density (Cascade Range), and composition and density of the riparian vegetation. Algal biomass (AFDM) correlated with composition and density of the riparian vegetation but not with measured chemical-constituent concentrations. Nitrogen limitation in streams of the Cascade Range favored nitrogen-fixing blue-green algae and diatoms with endosymbiotic blue-greens, whereas nitrogen heterotrophs were abundant in agricultural areas of the Columbia Plateau.
Interfacial behavior of Myristic acid in mixtures with DMPC and Cholesterol
NASA Astrophysics Data System (ADS)
Khattari, Z.; Sayyed, M. I.; Qashou, S. I.; Fasfous, I.; Al-Abdullah, T.; Maghrabi, M.
2017-06-01
Binary mixture monolayers of Myristic acid (MA) with the same length of saturated acyl chain lipid viz 1,2-myristoyl-sn-glycero-3-phosphocholine (DMPC) and Cholesterol (Chol), were investigated under different experimental conditions using Langmuir monolayers (LMs). The interfacial pressure-area (π-A) isotherms, excess molecular area, excess free energy and fluorescence microscopy (FM) images were recorded at the air/water interface. Monolayers of both systems (e.g. MA/DMPC, MA/Chol) reach the closest acyl hydrophobic chain packing in the range 0.20 < xMA < 0.70. Thermodynamic analysis indicates miscibility of the binary mixtures when spread at the air/water interface with negative deviation from the ideal behavior. Morphological features of MA/DMPC systems were found to depend strongly on MA mole fraction and pressures by showing two extreme minima in Gibbs free energy of mixing, while MA/Chol systems showed only an effective condensing effect at xMA = 0.90. In the whole range of compositions studied here, the liquid-expanded (LE) to liquid-condensed (LC) phase transition occurs at increasing xAM as it accomplished by a huge increase in the inverse compressibility modulus. FM observations confirmed the phase-transition and condensing effects of both mixture monolayers as evidenced by Gibbs free energy of mixing in a limited range of compositions.
Wattles, David W.; DeStefano, Stephen
2013-01-01
Moose (Alces alces) have recently re-occupied a portion of their range in the temperate deciduous forest of the northeastern United States after a >200 year absence. In southern New England, moose encounter different forest types, more human development, and higher temperatures than in other parts of their geographic range in North America. We analyzed seasonal minimum convex polygon home ranges, utilization distributions, movement rates, and home range composition of GPS-collared moose in Massachusetts. Seasonal home range sizes were not different for males and females and were within the range reported for low latitudes elsewhere in North America. Seasonal movement patterns reflected the seasonal changes in metabolic rate and the influence of the species’ reproductive cycle and weather. Home ranges consisted almost entirely of forested habitat, included large amounts of conservation land, and had lower road densities as compared to the landscape as a whole, indicating that human development may be a limiting factor for moose in the region. The size and configuration of home ranges, seasonal movement patterns, and use relative to human development have implications for conservation of moose and other wide-ranging species in more highly developed portions of their ranges.
NASA Astrophysics Data System (ADS)
Rathore, Priyanka; Mohan Singh Negi, Chandra; Singh Verma, Ajay; Singh, Amarjeet; Chauhan, Gayatri; Regis Inigo, Anto; Gupta, Saral K.
2017-08-01
Devices comprised of solution-processed poly (3-hexylthiophene) (P3HT)/multiwall carbon nanotubes (MWCNTs), with various concentrations of MWCNTs, were fabricated and characterized. The morphology of the P3HT: MWCNT nanocomposite was characterized by using field emission scanning electron microscopy (FESEM). The optical characteristics of the nanocomposite were studied by UV/VIS/NIR spectroscopy and Raman spectroscopy. The electrical properties of the fabricated devices were characterized by measuring the current density-voltage (J-V) characteristics. While the J-V characteristics of a pristine P3HT device reveal thermal injection limited charge transport, the P3HT: MWCNT nanocomposite-based devices exhibit three distinct voltage-dependent conduction regimes. The fitting curve with measured data reveals Ohmic conduction for a low voltage range, a trap-charge limited conduction (TCLC) process at an intermediate voltage range followed by a trap free space-charge limited conduction (SCLC) process at much higher voltages. A fundamental understanding of this work can assist in creating new charge transport pathways which will provide new avenues for the development of highly efficient polymer-based optoelectronic devices.
Biancarosa, Irene; Belghit, Ikram; Bruckner, Christian G; Liland, Nina S; Waagbø, Rune; Amlund, Heidi; Heesch, Svenja; Lock, Erik-Jan
2018-03-01
In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro- and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Cui, Beijiao; Guo, Bin; Wang, Huimin; Zhang, Doudou; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan; Han, Dandan
2018-08-15
A composite monolithic column was prepared by redox initiation method for the on-line purification and enrichment of β-sitosterol, in which graphene oxide (GO) was embedded. The obtained monolithic column was characterized by scanning electron microscopy (SEM) and nitrogen adsorption-desorption isotherm measurement, which indicated that the monolith possessed characteristics of porous structure and high permeability. Under the optimum conditions for extraction and determination, the calibration equation was y = 47.92 × -0.1391; the linear range was 0.008-1.0 mg mL -1 ; the linear regression coefficient was 0.998; the limit of detection (LOD) is 2.4 μg mL -1 ; the limit of quantitation (LOQ) was 8 μg mL -1 ; precisions for intra-day and inter-day assays presented as relative standard deviations were less than 4.3% and 6.8%, respectively. Under the selective conditions, the enrichment factor of the method was 119. The recovery was in the range of 80.40-98.00%. Moreover, the adsorption amount of the monolith was compared with silica gel-C18 adsorbent and the monolith without graphene oxide being embedded. The polymerization monolithic column showed high selectivity and good permeability, and it was successfully used as on-line solid-phase extraction (SPE) column for determination of β-sitosterol in edible oil. Copyright © 2018 Elsevier B.V. All rights reserved.
Heydari, Hamid; Gholivand, Mohammad B; Abdolmaleki, Abbas
2016-09-01
In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS-MWCNTs composite sensor (CuNS-MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800μM with a low detection limit of 70nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50-800μM with the detection limit of 4.3μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. Copyright © 2016. Published by Elsevier B.V.
Accuracy of aging ducks in the U.S. Fish and Wildlife Service Waterfowl Parts Collection Survey
Pearse, Aaron T.; Johnson, Douglas H.; Richkus, Kenneth D.; Rohwer, Frank C.; Cox, Robert R.; Padding, Paul I.
2014-01-01
The U.S. Fish and Wildlife Service conducts an annual Waterfowl Parts Collection Survey to estimate composition of harvested waterfowl by species, sex, and age (i.e., juv or ad). The survey relies on interpretation of duck wings by a group of experienced biologists at annual meetings (hereafter, flyway wingbees). Our objectives were to estimate accuracy of age assignment at flyway wingbees and to explore how accuracy rates may influence bias of age composition estimates. We used banded mallards (Anas platyrhynchos; n = 791), wood ducks (Aix sponsa; n = 242), and blue-winged teal (Anas discors; n = 39) harvested and donated by hunters as our source of birds used in accuracy assessments. We sent wings of donated birds to wingbees after the 2002–2003 and 2003–2004 hunting seasons and compared species, sex, and age determinations made at wingbees with our assessments based on internal and external examination of birds and corresponding banding records. Determinations of species and sex of mallards, wood ducks, and blue-winged teal were accurate (>99%). Accuracy of aging adult mallards increased with harvest date, whereas accuracy of aging juvenile male wood ducks and juvenile blue-winged teal decreased with harvest date. Accuracy rates were highest (96% and 95%) for adult and juvenile mallards, moderate for adult and juvenile wood ducks (92% and 92%), and lowest for adult and juvenile blue-winged teal (84% and 82%). We used these estimates to calculate bias for all possible age compositions (0–100% proportion juv) and determined the range of age compositions estimated with acceptable levels of bias. Comparing these ranges with age compositions estimated from Parts Collection Surveys conducted from 1961 to 2008 revealed that mallard and wood duck age compositions were estimated with insignificant levels of bias in all national surveys. However, 69% of age compositions for blue-winged teal were estimated with an unacceptable level of bias. The low preliminary accuracy rates of aging blue-winged teal based on our limited sample suggest a more extensive accuracy assessment study may be considered for interpreting age compositions of this species.
International society of sports nutrition position stand: diets and body composition.
Aragon, Alan A; Schoenfeld, Brad J; Wildman, Robert; Kleiner, Susan; VanDusseldorp, Trisha; Taylor, Lem; Earnest, Conrad P; Arciero, Paul J; Wilborn, Colin; Kalman, Douglas S; Stout, Jeffrey R; Willoughby, Darryn S; Campbell, Bill; Arent, Shawn M; Bannock, Laurent; Smith-Ryan, Abbie E; Antonio, Jose
2017-01-01
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of diet types (macronutrient composition; eating styles) and their influence on body composition. The ISSN has concluded the following. 1) There is a multitude of diet types and eating styles, whereby numerous subtypes fall under each major dietary archetype. 2) All body composition assessment methods have strengths and limitations. 3) Diets primarily focused on fat loss are driven by a sustained caloric deficit. The higher the baseline body fat level, the more aggressively the caloric deficit may be imposed. Slower rates of weight loss can better preserve lean mass (LM) in leaner subjects. 4) Diets focused primarily on accruing LM are driven by a sustained caloric surplus to facilitate anabolic processes and support increasing resistance-training demands. The composition and magnitude of the surplus, as well as training status of the subjects can influence the nature of the gains. 5) A wide range of dietary approaches (low-fat to low-carbohydrate/ketogenic, and all points between) can be similarly effective for improving body composition. 6) Increasing dietary protein to levels significantly beyond current recommendations for athletic populations may result in improved body composition. Higher protein intakes (2.3-3.1 g/kg FFM) may be required to maximize muscle retention in lean, resistance-trained subjects under hypocaloric conditions. Emerging research on very high protein intakes (>3 g/kg) has demonstrated that the known thermic, satiating, and LM-preserving effects of dietary protein might be amplified in resistance-training subjects. 7) The collective body of intermittent caloric restriction research demonstrates no significant advantage over daily caloric restriction for improving body composition. 8) The long-term success of a diet depends upon compliance and suppression or circumvention of mitigating factors such as adaptive thermogenesis. 9) There is a paucity of research on women and older populations, as well as a wide range of untapped permutations of feeding frequency and macronutrient distribution at various energetic balances combined with training. Behavioral and lifestyle modification strategies are still poorly researched areas of weight management.
García-Hernández, Celia; García-Cabezón, Cristina; Martín-Pedrosa, Fernando; De Saja, José Antonio
2016-01-01
The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs), copper phthalocyanine (PEDOT/PSS/CuPc) or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2). Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α) confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10−4 to 4.0 × 10−6 mol·L−1 with a limit of detection on the scale of μmol·L−1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained. PMID:28144543
NASA Astrophysics Data System (ADS)
Zhang, Jie; Marto, Joseph P.; Schwab, James J.
2018-05-01
Two optical scattering instruments for particle mass measurement, the Thermo Personal Data RAM (PDR-1500) and the TSI Environmental DustTrak DRX (Model 8543) were evaluated by (1) using poly- and mono-disperse test aerosol in the laboratory, and (2) sampling ambient aerosol. The responses of these optical scattering instruments to different particle characteristics (size, composition, concentration) were compared with responses from reference instruments. A Mie scattering calculation was used to explain the dependence of the optical instruments' response to aerosol size and composition. Concurrently, the detection efficiency of one Alphasense Optical Particle Counter (OPC-N2) was evaluated in the laboratory as well. The relationship between aerosol mass concentration and optical scattering was determined to be strongly dependent on aerosol size and to a lesser extent on aerosol composition (as reflected in the refractive indices of the materials tested) based on ambient measurements. This confirms that there is no simple way to use optical scattering instruments over a wide range of conditions without adjustments based on knowledge of aerosol size and composition. In particular, a test period measuring ambient aerosol with optical scattering instruments and a mass based method (an Aerodyne Aerosol Mass Spectrometer) determined that roughly two thirds of the variance (R2 = 0.64) of the optical to mass signal ratio is explained by the aerosol mass median diameter alone. These observations and calculations help evaluate the applicability and limitations of these optical scattering instruments, and provide guidance to designing suitable applications for each instrument by considering aerosol sources and aerosol size.
Polybenzoxazole-filled nitrile butadiene rubber compositions
NASA Technical Reports Server (NTRS)
Gajiwala, Himansu M. (Inventor); Guillot, David G. (Inventor)
2008-01-01
An insulation composition that comprises at least one nitrile butadiene rubber (NBR) having an acrylonitrile content that ranges from approximately 26% by weight to approximately 35% by weight and polybenzoxazole (PBO) fibers. The NBR may be a copolymer of acrylonitrile and butadiene and may be present in the insulation composition in a range of from approximately 45% by weight to approximately 56% by weight of a total weight of the insulation composition. The PBO fibers may be present in a range of from approximately 3% by weight to approximately 10% by weight of a total weight of the insulation composition. A rocket motor including the insulation composition and a method of insulating a rocket motor are also disclosed.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary d.; Goldberg, Robert K.
2008-01-01
In previous work, the ballistic impact resistance of triaxial braided carbon/epoxy composites made with large flat tows (12k and 24k) was examined by impacting 2 X2 X0.125" composite panels with gelatin projectiles. Several high strength, intermediate modulus carbon fibers were used in combination with both untoughened and toughened matrix materials. A wide range of penetration thresholds were measured for the various fiber/matrix combinations. However, there was no clear relationship between the penetration threshold and the properties of the constituents. During some of these experiments high speed cameras were used to view the failure process, and full-field strain measurements were made to determine the strain at the onset of failure. However, these experiments provided only limited insight into the microscopic failure processes responsible for the wide range of impact resistance observed. In order to investigate potential microscopic failure processes in more detail, quasi-static tests were performed in tension, compression, and shear. Full-field strain measurement techniques were used to identify local regions of high strain resulting from microscopic failures. Microscopic failure events near the specimen surface, such as splitting of fiber bundles in surface plies, were easily identified. Subsurface damage, such as fiber fracture or fiber bundle splitting, could be identified by its effect on in-plane surface strains. Subsurface delamination could be detected as an out-of-plane deflection at the surface. Using this data, failure criteria could be established at the fiber tow level for use in analysis. An analytical formulation was developed to allow the microscopic failure criteria to be used in place of macroscopic properties as input to simulations performed using the commercial explicit finite element code, LS-DYNA. The test methods developed to investigate microscopic failure will be presented along with methods for determining local failure criteria that can be used in analysis. Results of simulations performed using LS-DYNA will be presented to illustrate the capabilities and limitations for simulating failure during quasi-static deformation and during ballistic impact of large unit cell size triaxial braid composites.
Identification and Quantitation of Flavanols and Proanthocyanidins in Foods: How Good are the Datas?
Kelm, Mark A.; Hammerstone, John F.; Schmitz, Harold H.
2005-01-01
Evidence suggesting that dietary polyphenols, flavanols, and proanthocyanidins in particular offer significant cardiovascular health benefits is rapidly increasing. Accordingly, reliable and accurate methods are needed to provide qualitative and quantitative food composition data necessary for high quality epidemiological and clinical research. Measurements for flavonoids and proanthocyanidins have employed a range of analytical techniques, with various colorimetric assays still being popular for estimating total polyphenolic content in foods and other biological samples despite advances made with more sophisticated analyses. More crudely, estimations of polyphenol content as well as antioxidant activity are also reported with values relating to radical scavenging activity. High-performance liquid chromatography (HPLC) is the method of choice for quantitative analysis of individual polyphenols such as flavanols and proanthocyanidins. Qualitative information regarding proanthocyanidin structure has been determined by chemical methods such as thiolysis and by HPLC-mass spectrometry (MS) techniques at present. The lack of appropriate standards is the single most important factor that limits the aforementioned analyses. However, with ever expanding research in the arena of flavanols, proanthocyanidins, and health and the importance of their future inclusion in food composition databases, the need for standards becomes more critical. At present, sufficiently well-characterized standard material is available for selective flavanols and proanthocyanidins, and construction of at least a limited food composition database is feasible. PMID:15712597
Muir, Anna P.; Nunes, Flavia L. D.; Dubois, Stanislas F.; Pernet, Fabrice
2016-01-01
Acclimation and adaptation, which are key to species survival in a changing climate, can be observed in terms of membrane lipid composition. Remodelling membrane lipids, via homeoviscous adaptation (HVA), counteracts membrane dysfunction due to temperature in poikilotherms. In order to assess the potential for acclimation and adaptation in the honeycomb worm, Sabellaria alveolata, a reef-building polychaete that supports high biodiversity, we carried out common-garden experiments using individuals from along its latitudinal range. Individuals were exposed to a stepwise temperature increase from 15 °C to 25 °C and membrane lipid composition assessed. Our results suggest that S. alveolata was able to acclimate to higher temperatures, as observed by a decrease in unsaturation index and 20:5n-3. However, over the long-term at 25 °C, lipid composition patterns are not consistent with HVA expectations and suggest a stress response. Furthermore, unsaturation index of individuals from the two coldest sites were higher than those from the two warmest sites, with individuals from the thermally intermediate site being in-between, likely reflecting local adaptation to temperature. Therefore, lipid remodelling appears limited at the highest temperatures in S. alveolata, suggesting that individuals inhabiting warm environments may be close to their upper thermal tolerance limits and at risk in a changing climate. PMID:27762300
Performance of a Borehole XRF Spectrometer for Planetary Exploration
NASA Technical Reports Server (NTRS)
Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; WIllard-Schmoe, Ella
2007-01-01
We have designed and constructed a borehole XRF Spectrometer (XRFS) as part of the Mars Subsurface Access program. It will be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary performance metrics for the instrument are the lower limits of detection over a wide range of the periodic table. Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight parts-per-million for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.
Wu, Mingxue; Chen, Gang; Liu, Ping; Zhou, Weihong; Jia, Qiong
2016-01-07
A novel hybrid material incorporating porous aromatic frameworks and an ionic liquid, 1-(triethoxy silyl)propyl-3-aminopropyl imidazole hexafluorophosphate, was prepared as solid-phase microextraction coating and employed for the extraction of organochlorine pesticides. Combining the advantages of porous aromatic frameworks and an ionic liquid, the fiber exhibited a high adsorption capacity for organochlorine pesticides. Under optimized experimental conditions, enhancement factors of 247-1696 were obtained with good linearity in the range of 1-500 μg L(-1). The detection limits and quantification limits were determined to be in the range of 0.11-0.29 μg L(-1) and 0.35-0.93 μg L(-1). The relative standard deviations for six replicates of organochlorine pesticides were in the range of 4.4%-7.2% and 5.7%-10.1% for one fiber and fiber-to-fiber, respectively. By coupling with a gas chromatography-electron capture detector, the novel fiber was successfully used for the determination of organochlorine pesticides in juice and milk samples with recoveries of 76.1%-121.3%.
Hoffman, Louwrens C; Tlhong, Tumelo M
2012-10-01
Poultry is one of the leading meat products in South Africa, and its nutritional composition can be affected by the cut and cooking method. Limited food composition data are available for typical South African poultry products. This study investigated the effect of different cuts and cooking methods on the proximate and fatty acid composition as well as the cholesterol content of guinea fowl (Numida meleagris) meat. The open-roasting method produced the highest moisture content for all cuts, and the baking bag method the lowest. The baking bag method resulted in the highest protein content. Cooking method had no effect on fat content, although breast had the lowest and thigh the highest fat content. Ash content was highest in the open-roasted drumstick. All cuts, regardless of cooking method, had a favourable polyunsaturated/saturated fatty acid (P/S) ratio (>0.4). Their n-6/n-3 ratio was also within the recommended beneficial range (<4:1). Both cooking method and cut affected cholesterol content. Different cuts of guinea fowl vary in proximate and fatty acid composition as well as in cholesterol content, which in turn is affected to varying degrees by cooking method. Copyright © 2012 Society of Chemical Industry.
Model Determined for Predicting Fatigue Lives of Metal Matrix Composites Under Mean Stresses
NASA Technical Reports Server (NTRS)
Lerch, Bradley
1997-01-01
Aircraft engine components invariably are subjected to mean stresses over and above the cyclic loads. In monolithic materials, it has been observed that tensile mean stresses are detrimental and compressive mean stresses are beneficial to fatigue life in comparison to a base of zero mean stress. Several mean stress models exist for monolithic metals, but each differ quantitatively in the extent to which detrimental or beneficial effects are ascribed. There have been limited attempts to apply these models to metal matrix composites. At the NASA Lewis Research Center, several mean stress models--the Smith-Watson- Topper, Walker, Normalized Goodman, and Soderberg models--were examined for applicability to this class of composite materials. The Soderberg approach, which normalizes the mean stress to a 0.02-percent yield strength, was shown to best represent the effect of mean stresses over the range covered. The other models varied significantly in their predictability and often failed to predict the composite behavior at very high tensile mean stresses. This work is the first to systematically demonstrate the influence of mean stresses on metal matrix composites and model their effects. Attention also was given to fatigue-cracking mechanisms in the Ti-15-3 matrix and to micromechanics analyses of mean stress effects.
SU-E-J-149: Secondary Emission Detection for Improved Proton Relative Stopping Power Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, J; Musall, B; Erickson, A
Purpose: This research investigates application of secondary prompt gamma (PG) emission spectra, resulting from nuclear reactions induced by protons, to characterize tissue composition along the particle path. The objective of utilizing the intensity of discrete high-energy peaks of PG is to improve the accuracy of relative stopping power (RSP) values available for proton therapy treatment planning on a patient specific basis and to reduce uncertainty in dose depth calculations. Methods: In this research, MCNP6 was used to simulate PG emission spectra generated from proton induced nuclear reactions in medium of varying composition of carbon, oxygen, calcium and nitrogen, the predominantmore » elements found in human tissue. The relative peak intensities at discrete energies predicted by MCNP6 were compared to the corresponding atomic composition of the medium. Results: The results have shown a good general agreement with experimentally measured values reported by other investigators. Unexpected divergence from experimental spectra was noted in the peak intensities for some cases depending on the source of the cross-section data when using compiled proton table libraries vs. physics models built into MCNP6. While the use of proton cross-section libraries is generally recommended when available, these libraries lack data for several less abundant isotopes. This limits the range of their applicability and forces the simulations to rely on physics models for reactions with natural atomic compositions. Conclusion: Current end-of-range proton imaging provides an average RSP for the total estimated track length. The accurate identification of tissue composition along the incident particle path using PG detection and characterization allows for improved determination of the tissue RSP on the local level. While this would allow for more accurate depth calculations resulting in tighter treatment margins, precise understanding of proton beam behavior in tissue of various compositions is necessary requiring detailed simulations with a high degree of accuracy.« less
Elevated Temperature, Notched Compression Performance of Out of Autoclave Processed Composites
NASA Technical Reports Server (NTRS)
Grimsley, Brian W.; Sutter, James K.; Dixon, Genevieve D.; Smeltzer, Satn S.
2013-01-01
Curved honeycomb sandwich panels composed of carbon fiber reinforced toughened-epoxy polymer facesheets are being evaluated for potential use as payload fairing components on the NASA heavy-lift space launch system (HL-SLS). These proposed composite sandwich panels provide the most efficient aerospace launch structures, and offer mass and thermal advantages when compared with existing metallic payload fairing structures. NASA and industry are investigating recently developed carbon fiber epoxy prepreg systems which can be fabricated using out-of autoclave (OOA) processes. Specifically, OOA processes using vacuum pressure in an oven and thereby significantly reducing the cost associated with manufacturing large (up to 10 m diameter) composite structures when compared with autoclave. One of these OOA composite material systems, CYCOM(R) 5320-1, was selected for manufacture of a 1/16th scale barrel portion of the payload fairing; such that, the system could be compared with the well-characterized prepreg system, CYCOM(R) 977-3, typically processed in an autoclave. Notched compression coupons for each material were obtained from the minimum-gauge flat laminate [60/-60/0]S witness panels produced in this manufacturing study. The coupons were also conditioned to an effective moisture equilibrium point and tested according to ASTM D6484M-09 at temperatures ranging from 25 C up to 177 C. The results of this elevated temperature mechanical characterization study demonstrate that, for thin coupons, the OHC strength of the OOA laminate was equivalent to the flight certified autoclave processed composite laminates; the limitations on the elevated temperature range are hot-wet conditions up to 163 C and are only within the margins of testing error. At 25 C, both the wet and dry OOA material coupons demonstrated greater OHC failure strengths than the autoclave processed material laminates. These results indicate a substantial improvement in OOA material development and processing since previous studies have consistently reported OOA material strengths on par or below those of autoclave processed composite laminates.
Rodríguez, Cristian Fonseca; Solera, Fabián Chavarriá; Mejía-Arana, Fernando
2013-03-01
Nutritional value of seafood for human consumption is worldwide recognized. Some information have been generated in other countries, nevertheless, there is limited information describing the chemical composition of some fishery important species caught in the Gulf of Nicoya. For this reason, we studied the levels of proximal components of the edible parts (fresh) of three commercially important species. The meat samples of snook Centropomus unionesis, the shrimp Trachypenaeus byrdi and the bivalve Polymesoda radiata, were collected from the Puntarenas local fish market during the fishing season of February 2009 to January 2010. Proximate composition analysis was determined according to AOAC methodology, and evaluated the moisture content, and protein and lipid composition of shellfish meats. The results indicated that the moisture content ranged from 74.6-80.6g/100g for snook 76.9-80.0g/100g for shrimp and 77.9-89.5g/100g for green mussel. After the moisture, the protein was the most abundant chemical fraction (6.8 to 21g/100g) showing the highest values in February for the shrimp and green mussel, and December for snook. The largest fluctuations in the lipid content were found in the snook, ranging from 0.7g/100g to 5.6g/100g; the highest values in this fraction were found in shrimp, green mussel and snook, for July, February and April samples respectively. Considering these results, we concluded that fish and shrimp species studied are a good alternative for human consumption as a source of protein and low lipid content.
NASA Astrophysics Data System (ADS)
Uji, K.; Waki, T.; Tabata, Y.; Nakamura, H.
2017-01-01
The cation compositions in the Ca-La magnetoplumbite-type (M-type) ferrite, CaxLayFezO19, prepared from various initial fractions of reagents, were analyzed by wavelength-dispersive X-ray (WDX) spectroscopy. The reliability of the WDX composition analysis was confirmed by a crosscheck using inductively coupled plasma atomic emission spectrometry (ICP-AES). For particular polycrystalline samples furnace-cooled from 1250 ° C , the solubility ranges of Ca, La, and Fe were found to be 0.45 ≤ x ≤ 0.70 , 0.39 ≤ y ≤ 0.66 , and 11.82 ≤ z ≤ 11.92 , respectively, assuming x + y + z = 13 . Despite that the samples were synthesized from various starting compositions, the values of z / (x + y) of the matrix M phase are smaller than the M-type regular value, 12, for all the samples and comes in a very limited range at ∼ 11 , suggesting most probably Ca occupation at particular Fe sites or Fe deficiency due to insertion of stacking fault to Ca/La/O packing. Single crystals of CaxLayFezO19 with various x / y ratios were synthesized successfully by the self-flux method, followed by the characterization of their magnetic properties. The saturation magnetization and the Curie temperature were found to be almost independent of the cation composition. In contrast, the hard-axis magnetization process at low temperature depended significantly on the Ca/La ratio, and showed a sharp jump at ≲ 10 kOe, which can be attributed to a spin reorientation transition associated with the appearance of Fe2+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Pei; Fang, Z. Zak; Koopman, Mark
Hydrogen has been investigated for decades as a temporary alloying element to refine the microstructure of Ti-6Al-4V, and is now being used in a novel powder metallurgy method known as "hydrogen sintering and phase transformation". Pseudo-binary phase diagrams of (Ti-6Al-4V)-xH have been studied and developed, but are not well established due to methodological limitations. In this paper, in situ studies of phase transformations during hydrogenation and dehydrogenation of (Ti-6Al-4V)-xH alloys were conducted using high-energy synchrotron X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The eutectoid phase transformation of β ↔ α + δ was observed in themore » (Ti-6Al-4V)-xH alloy via in situ synchrotron XRD at 211 °C with a hydrogen concentration of 37.5 at.% (measured using TGA-DSC). The relationships of hydrogen composition to partial pressure and temperature were investigated in the temperature range 450-900°C. Based on these results, a partial pseudo-binary phase diagram of (Ti-6Al-4V)-xH is proposed for hydrogen compositions up to 60 at.% in the temperature range 100-900°C. Using the data collected in real time under controlled parameters of temperature, composition and hydrogen partial pressure, this work characterizes relevant phase transformations and microstructural evolution for practical titanium-hydrogen technologies of Ti-6Al-4V.« less
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-01-01
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly. PMID:27196938
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-05-16
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.
Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T
2015-11-10
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
NASA Astrophysics Data System (ADS)
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-11-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
Amaral, Jose Jussi; Wan, Jacky; Rodarte, Andrea L.; ...
2014-10-22
The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce ‘meta-materials’ has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small appliedmore » magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.« less
Composites comprising biologically-synthesized nanomaterials
Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun
2013-04-30
The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.
Digital enhancement of multispectral MSS data for maximum image visibility
NASA Technical Reports Server (NTRS)
Algazi, V. R.
1973-01-01
A systematic approach to the enhancement of images has been developed. This approach exploits two principal features involved in the observation of images: the properties of human vision and the statistics of the images being observed. The rationale of the enhancement procedure is as follows: in the observation of some features of interest in an image, the range of objective luminance-chrominance values being displayed is generally limited and does not use the whole perceptual range of vision of the observer. The purpose of the enhancement technique is to expand and distort in a systematic way the grey scale values of each of the multispectral bands making up a color composite, to enhance the average visibility of the features being observed.
Fatigue evaluation of composite-reinforced, integrally stiffened metal panels
NASA Technical Reports Server (NTRS)
Dumesnil, C. E.
1973-01-01
The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.
Hall, Edward K.; Singer, Gabriel A.; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J.
2011-01-01
Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.
Hall, Edward K; Singer, Gabriel A; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J
2011-01-01
Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity. PMID:20703314
Manuel, Sarah A; Coates, Kathryn A; Kenworthy, W Judson; Fourqurean, James W
2013-08-01
Surveys were undertaken on the shallow Bermuda marine platform between 2006 and 2008 to provide a baseline of the distribution, condition and environmental characteristics of benthic communities. Bermuda is located in temperate latitudes but coral reefs, tropical seagrasses and calcareous green algae are common in the shallow waters of the platform. The dominant organisms of these communities are all living at or near their northern latitudinal range limits in the Atlantic Ocean. Among the major benthic autotrophs surveyed, seagrasses were most restricted by light availability. We found that the relatively slow-growing and long-lived seagrass Thalassia testudinum is restricted to habitats with much higher light availability than in the tropical locations where this species is commonly found. In contrast, the faster growing tropical seagrasses in Bermuda, Syringodium filiforme, Halodule sp. and Halophila decipiens, had similar ecological compensation depths (ECD) as in tropical locations. Increasing sea surface temperatures, concomitant with global climate change, may either drive or allow the poleward extensions of the ranges of such tropical species. However, due to latitudinal light limitations at least one abundant and common tropical autotroph, T. testudinum, is able to occupy only shallower depths at the more temperate latitudes of Bermuda. We hypothesize that the poleward shift of seagrass species ranges would be accompanied by restrictions to even shallower depths of T. testudinum and by very different seagrass community structures than in tropical locations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Eruptive history and petrology of Mount Drum volcano, Wrangell Mountains, Alaska
Richter, D.H.; Moll-Stalcup, E. J.; Miller, T.P.; Lanphere, M.A.; Dalrymple, G.B.; Smith, R.L.
1994-01-01
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80x200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occured in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. ?? 1994 Springer-Verlag.
A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine.
Rajkumar, Chellakannu; Thirumalraj, Balamurugan; Chen, Shen-Ming; Chen, His-An
2017-02-01
In this study, we demonstrate a simple preparation of graphite (GR) sheets assisted with gelatin (GLN) polypeptide composite was developed for sensitive detection of dopamine (DA) sensor. The GR/GLN composite was prepared by GR powder in GLN solution (5mg/mL) via sonication process. The prepared GR/GLN composite displays well dispersion ability in biopolymer matrix and characterized via scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS) studies. The GR/GLN modified electrode showed an excellent electrocatalytic activity toward the oxidation of DA, suggesting that the successful formation of GR sheets crosslinked with the functional groups of GLN polypeptide. In addition, the GR/GLN modified electrode achieved a wide linear response ranging from 0.05 to 79.5μM with a detection limit of 0.0045μM. The calculated analytical sensitivity of the sensor was 1.36±0.02μAμM -1 cm -2 . Conversely, the modified electrode demonstrates a good storage stability, reproducibility and repeatability. In addition, the sensor manifests the determination of DA in human serum and urine samples for practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Bellmann, Bernd; Schaeffer, Helmut A; Muhle, Hartwig
2010-08-01
The chronic toxicity of vitreous fibers is substantially dependent on their biopersistence. Removal of fibers deposited in the respiratory tract is dependent on a combination of physiological clearance processes (like mechanical translocation) and physico-chemical processes like dissolution and leaching. This publication presents data of about 60 different fibers investigated in the biopersistence test which was standardized in the European Union. This test is based on in vivo investigation of biopersistence after intratracheal instillation in rats of a respirable fiber fraction, and it is a basis for the regulatory classification of vitreous fibers. Regression analysis is carried out employing the data of glass fiber compositions and the corresponding results of biopersistence tests (half-times). The study leads to a model that enables prediction of half-times for stone wool fibers as well as for glass wool fibers on the basis of their chemical composition. The aim of this paper was to investigate the stringency of the existing limits for the range of the chemical composition of glass and stone wools in view of the currently available data base. For regulatory purposes, however, this model is currently not sufficient to replace biopersistence tests completely.
Fei, Airong; Liu, Qian; Huan, Juan; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun
2015-08-15
Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.
Composition and functionality of whey protein phospholipid concentrate and delactosed permeate.
Levin, M A; Burrington, K J; Hartel, R W
2016-09-01
Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underused. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to 1 WPPC supplier. The objective of this research was to fully characterize a range of WPPC. Four WPPC samples and 1 DLP sample were analyzed for chemical composition and functionality. This analysis showed that WPPC composition was highly variable between suppliers and lots. In addition, the functionality of the WPPC varies depending on the supplier and testing pH, and cannot be correlated with fat or protein content because of differences in processing. The addition of DLP to WPPC affects functionality. In general, WPPC has a high water-holding capacity, is relatively heat stable, has low foamability, and does not aid in emulsion stability. The gel strength and texture are highly dependent on the amount of protein. To be able to use these 2 dairy products, the composition and functionality must be fully understood. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Angelica, P. E.; Griffin, K. L.
2016-12-01
The Hudson Valley Region of New York State, USA is known for a convergence of tree species within the eastern deciduous forest that are near the margin of their geographical range limits. This convergence of primarily southern ranged species with primarily northern ranged species provides the back drop to our study of respiratory activity of 16 forest tree species - 10 broadleaf and 6 coniferous. We found that broadleaved species at the southern edge of their range have significantly higher rates of respiration than trees that are in the center or northern edge of their range, which is contrasting to the lower respiration rates found in northern ranged conifers when compared to their central ranged counterparts . Using a simple closed system to estimate the Respiratory Quotient (RQ - CO2 uptake vs. O2 released) for 10 broadleaved species, we found that northern broadleaved species were more likely to be incorporating some proteins and/or fats as respiratory substrates (RQ<1), compared to central or southern species (RQ 1). All 16 species had similar temperature response of respiration, regardless of the species range or growth type (broadleaved vs. coniferous). In addition, broadleaved species showed an increasing RQ with increasing leaf temperature (from <1 at 15 °C to >1 at 35 °C) indicating the temperature dependence of respiratory substrates that transitions from proteins and fats to carbohydrates and eventually some organic acids as temperatures increase. Overall, this work suggests the fate of fixed carbon in an eastern deciduous forest is controlled by a variety of factors including genetic and environmental variables. As a result, the impact of climate change is likely to change the composition and biogeochemistry of this widespread forest biome.
NASA Astrophysics Data System (ADS)
Zou, Xiaojun; Shang, Fang; Wang, Sui
2017-02-01
In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.
NASA Astrophysics Data System (ADS)
Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.
2018-06-01
A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.
NASA/JPL Aircraft SAR Workshop Proceedings
NASA Technical Reports Server (NTRS)
Donovan, N. (Editor); Evans, D. L. (Editor); Held, D. N. (Editor)
1985-01-01
Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed.
Edwards, Lana
2003-01-01
This review examines the literature on how to teach kindergarten children with reading and writing difficulties how to write. Specifically, research on handwriting instruction, spelling instruction, and composition writing is discussed. Due to the limited number of empirical studies on writing that included kindergarten students with diagnosed reading and writing difficulties, selected studies conducted with the full range of kindergarten children, as well as studies conducted in the early elementary grades, are presented to highlight future directions for research.
Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian
2013-12-15
A composite consisting of reduced graphite oxide and highly dispersed polypyrrole nanospheres was synthesized by a straightforward technique, by in situ chemical oxidative polymerization. The novel polypyrrole nanospheres can prevent the aggregation of reduced graphite oxide sheets by electrostatic repulsive interaction, and enhance their electrochemical properties in the nano-molar measurement of dopamine in biological systems with a linear range of 1-8000 nM and a detection limit as low as 0.3 nM. © 2013 Elsevier B.V. All rights reserved.
Pervaporation separation of ethanol-water mixtures using polyacrylic acid composite membranes
Neidlinger, H.H.
1985-05-07
Synthetic, organic, polymeric membranes were prepared from polyacrylic acid salts for use with pervaporation apparatus in the separation of ehthanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanata solution, after which the prepared membrane was heat-cured. The resulting membrane structure showed selectivity in permeating water over a wide range of feed concentrations. 4 tabs.
Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.
1985-06-19
Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations. 2 tabs.
3D Reconstruction of SPM Probes by Electron Tomography
NASA Astrophysics Data System (ADS)
Xu, X.; Peng, Y.; Saghi, Z.; Gay, R.; Inkson, B. J.; Möbus, G.
2007-04-01
Three-dimensional morphological and compositional structures of tungsten tips consisting of layered amorphous oxide shell and crystalline W core are reconstructed by electron tomography using both coherent and incoherent imaging modes. The fidelity of the reconstruction is dependent on three criteria, suppression of unwanted crystal orientation contrast in the crystalline core, nonlinear intensity-thickness relations above a certain thickness limit, and artefacts due to missing angular ranges when acquiring a tilt series of images. Annular dark field (ADF), and EDX chemical mapping are discussed as alternatives to standard bright field (BF) TEM imaging.
Dawn Framing Camera: Morphology and morphometry of impact craters on Ceres
NASA Astrophysics Data System (ADS)
Platz, T.; A; Nathues; Schäfer, M.; Hoffmann, M.; Kneissl, T.; Schmedemann, N.; Vincent, J.-B.; Büttner, I.; Gutierrez-Marques, P.; Ripken, J.; Russell, C. T.; Schäfer, T.; Thangjam, G. S.
2015-10-01
In the first approach images of Ceres we tried to discern the simple-to-complex transition diameter of impact craters. Limited by spatial resolution we found the smallest complex crater without central peak development to be around 21.4 km in diameter. Hence, the transition diameter is expected to be between 21.4 km and 10.6 km, the predicted transition diameter for an icy target. It appears likely that either Ceres' surface material contains a rocky component or has a laterally inhomogeneous composition ranging from icy to ice-rocky
Code of Federal Regulations, 2014 CFR
2014-04-01
... which would in accordance with Revenue Procedure 64-21 be entitled to use a composite guideline class... depreciation range is in effect for the taxable year, elect to apply this section on the basis of a composite... Procedure 64-21 to such property. The asset depreciation range for such a composite asset guideline class...
Code of Federal Regulations, 2012 CFR
2012-04-01
... which would in accordance with Revenue Procedure 64-21 be entitled to use a composite guideline class... depreciation range is in effect for the taxable year, elect to apply this section on the basis of a composite... Procedure 64-21 to such property. The asset depreciation range for such a composite asset guideline class...
Code of Federal Regulations, 2011 CFR
2011-04-01
... which would in accordance with Revenue Procedure 64-21 be entitled to use a composite guideline class... depreciation range is in effect for the taxable year, elect to apply this section on the basis of a composite... Procedure 64-21 to such property. The asset depreciation range for such a composite asset guideline class...
Code of Federal Regulations, 2013 CFR
2013-04-01
... which would in accordance with Revenue Procedure 64-21 be entitled to use a composite guideline class... depreciation range is in effect for the taxable year, elect to apply this section on the basis of a composite... Procedure 64-21 to such property. The asset depreciation range for such a composite asset guideline class...
Crespo-Medina, Melitza; Twing, Katrina I.; Kubo, Michael D. Y.; Hoehler, Tori M.; Cardace, Dawn; McCollom, Tom; Schrenk, Matthew O.
2014-01-01
Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite–hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate, and formate), with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the 3 month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However, the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems. PMID:25452748
Crespo-Medina, Melitza; Twing, Katrina I; Kubo, Michael D Y; Hoehler, Tori M; Cardace, Dawn; McCollom, Tom; Schrenk, Matthew O
2014-01-01
Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite-hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate, and formate), with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the 3 month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However, the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems.
Walker, R.J.; Morgan, J.W.; Horan, M.F.; Czamanske, G.K.; Krogstad, E.J.; Fedorenko, V.A.; Kunilov, V.E.
1994-01-01
Magmatic Cu-Ni sulfide ores and spatially associated ultramafic and mafic rocks from the Noril'sk I, Talnakh, and Kharaelakh intrusions are examined for Re-Os isotopic systematics. Neodymium and lead isotopic data also are reported for the ultramafic and mafic rocks. The Re-Os data for most samples indicate closed-system behavior since the ca. 250 Ma igneous crystallization age of the intrusions. There are small but significant differences in the initial osmium isotopic compositions of samples from the three intrusions. Ores from the Noril'sk I intrusion have ??Os values that vary from +0.4 to +8.8, but average +5.8. Ores from the Talnakh intrusion have ??Os values that range from +6.7 to +8.2, averaging +7.7. Ores from the Kharaelakh intrusion have ??Os values that range from +7.8 to +12.9, with an average value of +10.4. The osmium isotopic compositions of the ore samples from the Main Kharaelakh orebody exhibit minimal overlap with those for the Noril'sk I and Talnakh intrusions, indicating that these Kharaelakh ores were derived from a more radiogenic source of osmium than the other ores. Combined osmium and lead data for major orebodies in the three intrusions plot in three distinct fields, indicating derivation of osmium and lead from at least three isotopically distinct sources. Some of the variation in lead isotopic compositions may be the result of minor lower-crustal contamination. However, in contrast to most other isotopic and trace element data, Os-Pb variations are generally inconsistent with significant crustal contamination or interaction with the subcontinental lithosphere. Thus, the osmium and lead isotopic compositions of these intrusions probably reflect quite closely the compositions of their mantle source, and suggest that these two isotope systems were insensitive to lithospheric interaction. Ultramafic and mafic rocks have osmium and lead isotopic compositions that range only slightly beyond the compositions of the ores. These rocks also have relatively uniform ??{lunate}Nd values that range only from -0.8 to + 1.1. This limited variation in neodymium isotopic composition may reflect the characteristics of the mantle sources of the rocks, or it may indicate that somehow similar proportions of crust contaminated the parental melts. The osmium, lead, and neodymium isotopic data for these rocks most closely resemble the mantle sources of certain ocean island basalts (OIB), such as some Hawaiian basalts. Hence, these data are consistent with derivation of primary melts from a mantle source similar to that of some types of hotspot activity. The long-term Re/Os enrichment of this and similar mantle sources, relative to chondritic upper mantle, may reflect 1. (1) incorporation of recycled oceanic crust into the source more than 1 Ga ago, 2. (2) derivation from a mantle plume that originated at the outer core-lower mantle interface, or 3. (3) persistence of primordial stratification of rhenium and osmium in the mantle. ?? 1994.
Prosthetic limb sockets from plant-based composite materials.
Campbell, Andrew I; Sexton, Sandra; Schaschke, Carl J; Kinsman, Harry; McLaughlin, Brian; Boyle, Martin
2012-06-01
There is a considerable demand for lower limb prostheses globally due to vascular disease, war, conflict, land mines and natural disasters. Conventional composite materials used for prosthetic limb sockets include acrylic resins, glass and carbon fibres, which produce harmful gasses and dust in their manufacture. To investigate the feasibility of using a renewable plant oil-based polycarbonate-polyurethane copolymer resin and plant fibre composite, instead of conventional materials, to improve safety and accessibility of prosthetic limb manufacture. Experimental, bench research. Test pieces of the resin with a range of plant fibres (10.0% by volume) were prepared and tensile strengths were tested. Test sockets of both conventional composite materials and plant resin with plant fibres were constructed and tested to destruction. Combinations of plant resin and either banana or ramie fibres gave high tensile strengths. The conventional composite material socket and plant resin with ramie composite socket failed at a similar loading, exceeding the ISO 10328 standard. Both wall thickness and fibre-matrix adhesion played a significant role in socket strength. From this limited study we conclude that the plant resin and ramie fibre composite socket has the potential to replace the standard layup. Further mechanical and biocompatibility testing as well as a full economic analysis is required. Using readily sourced and renewable natural fibres and a low-volatile bio-resin has potential to reduce harm to those involved in the manufacture of artificial limb sockets, without compromising socket strength and benefitting clinicians working in poorer countries where safety equipment is scarce. Such composite materials will reduce environmental impact.
New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach
NASA Astrophysics Data System (ADS)
Bowman, M. M.; Sanclements, M.; McKnight, D. M.
2017-12-01
Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase fluorescence, which provide new insights into fluorescence studies in terrestrial systems.
Rapant, S; Cvečková, V; Fajčíková, K; Dietzová, Z; Stehlíková, B
2017-02-01
This study deals with the analysis of relationship between chemical composition of the groundwater/drinking water and the data on mortality from oncological diseases (MOD) in the Slovak Republic. Primary data consist of the Slovak national database of groundwater analyses (20,339 chemical analyses, 34 chemical elements/compounds) and data on MOD (17 health indicators) collected for the 10-year period (1994-2003). The chemical and health data were unified in the same form and expressed as the mean values for each of 2883 municipalities within the Slovak Republic. Pearson and Spearman correlation as well as artificial neural network (ANN) methods were used for analysis of the relationship between chemical composition of groundwater/drinking water and MOD. The most significant chemical elements having influence on MOD were identified together with their limit values (limit and optimal contents). Based on the results of calculations, made through the neural networks, the following eight chemical elements/parameters in the groundwater were defined as the most significant for MOD: Ca + Mg (mmol l -1 ), Ca, Mg, TDS, Cl, HCO 3 , SO 4 and NO 3 . The results document the highest relationship between MOD and groundwater contents of Ca + Mg (mmol l -1 ), Ca and Mg. We observe increased MOD with low (deficit) contents of these three parameters of groundwater/drinking water. The following limit values were set for the most significant groundwater chemicals/parameters: Ca + Mg 1.73-5.85 mmol l -1 , Ca 60.5-196.8 mg l -1 and Mg 25.6-35.8 mg l -1 . At these concentration ranges, the mortality for oncological diseases in the Slovak Republic is at the lowest levels. These limit values are about twice higher in comparison with the current Slovak valid guideline values for the drinking water.
NASA Astrophysics Data System (ADS)
Liang, Y.; Duveneck, M.; Gustafson, E. J.; Serra-Diaz, J. M.; Thompson, J. R.
2017-12-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically-based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually < 20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species` recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.
Liang, Yu; Duveneck, Matthew J; Gustafson, Eric J; Serra-Diaz, Josep M; Thompson, Jonathan R
2018-01-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high-emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high-emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts. © 2017 John Wiley & Sons Ltd.
Origin of Aphyric Phonolitic Magmas: Natural Evidences and Experimental Constraints
NASA Astrophysics Data System (ADS)
Masotta, M.; Freda, C.; Gaeta, M.
2010-12-01
Large explosive phonolitic eruptions are commonly characterised by aphyric juvenile eruptive products. Taking into account the low density contrast among phonolitic composition and settling phases (i.e., feldspar and leucite), the almost complete lack of crystals in these differentiated compositions rises the question of which process could produce such an efficient crystal-melt separation. Seeking for an answer, we have investigated crystallization in presence of a thermal gradient as a possible mechanism for crystal-melt separation, considering both chemical and physical effects acting on a variably crystallized system. Using a natural tephri-phonolitic composition as starting material (M.te Aguzzo scoria cone, Sabatini Volcanic District, Central Italy), we have reproduced thermal gradient-driven crystallization in order to simulate the crystallization process in a thermally zoned magma chamber. Crystallization degree (paragenesis made of clinopyroxene±feldspars±leucite) as well as melt composition varies along the thermal gradient. In particular, melt composition ranges from the tephri-phonolitic starting composition at the bottom of the charge (hottest and aphyric zone) to phonolitic at the top (cooler and heterogeneously-crystallised zone). Backscattered images of experimental products clearly evidence: i) the aphyric tephri-phonolitic melt region at the bottom of the charge; ii) a drop-shaped crystal clustering in the middle zone; and iii) large aphyric belt and pockets (up to 100 µm wide) of phonolitic melt, with large deformed-shaped sanidine occurring at their margin, at the charge top region. The latter two features, resulting from solid-melt displacements, suggest that the segregation of phonolitic melt can be related to crystal sinking and compaction. On the other hand, the compositional variability of the melt along the thermal gradient is directly related to the crystallization degree, indicating that chemical diffusion and thermal migration have negligible effect at the experimental scale. Experimental results suggest that, in presence of a thermal gradient, a filter-press differentiation mechanism (i.e. sinking+compaction) is able to produce heterogeneous magma differentiation characterised by a wide range of melt compositions (in our case from tephri-phonolitic to phonolitic). Although the limitation due to the vertical shape of the charge and consequent shear effects occurring at the lateral walls (thus limiting the mobility of the crystal clusters), experimental duration of 24 h is enough to allow crystal-melt separation by means of settling and compaction, indicating that timescale for such a process is extremely rapid and effective at experimental conditions. Actually, experimental textures and phase relations are in good agreement with those observed in natural lithic enclaves (from Sabatini Volcanic District) representative of the crystallizing boundary layer of a phonolitic magma chamber. Thus, we speculate that gravitative collapses of a mushy zone from the magma chamber roof of a thermally zoned magma chamber may produce top accumulation of highly differentiated and aphyric melts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D.; Edwards, T.
High-level waste (HLW) throughput (i.e., the amount of waste processed per unit of time) is primarily a function of two critical parameters: waste loading (WL) and melt rate. For the Defense Waste Processing Facility (DWPF), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). Significant increases in waste throughput have been achieved at DWPF since initial radioactive operations began in 1996. Key technical and operational initiatives that supported increased waste throughput included improvements in facility attainment, the Chemical Processing Cell (CPC) flowsheet, process control models and frit formulations. As a resultmore » of these key initiatives, DWPF increased WLs from a nominal 28% for Sludge Batch 2 (SB2) to {approx}34 to 38% for SB3 through SB6 while maintaining or slightly improving canister fill times. Although considerable improvements in waste throughput have been obtained, future contractual waste loading targets are nominally 40%, while canister production rates are also expected to increase (to a rate of 325 to 400 canisters per year). Although implementation of bubblers have made a positive impact on increasing melt rate for recent sludge batches targeting WLs in the mid30s, higher WLs will ultimately make the feeds to DWPF more challenging to process. Savannah River Remediation (SRR) recently requested the Savannah River National Laboratory (SRNL) to perform a paper study assessment using future sludge projections to evaluate whether the current Process Composition Control System (PCCS) algorithms would provide projected operating windows to allow future contractual WL targets to be met. More specifically, the objective of this study was to evaluate future sludge batch projections (based on Revision 16 of the HLW Systems Plan) with respect to projected operating windows using current PCCS models and associated constraints. Based on the assessments, the waste loading interval over which a glass system (i.e., a projected sludge composition with a candidate frit) is predicted to be acceptable can be defined (i.e., the projected operating window) which will provide insight into the ability to meet future contractual WL obligations. In this study, future contractual WL obligations are assumed to be 40%, which is the goal after all flowsheet enhancements have been implemented to support DWPF operations. For a system to be considered acceptable, candidate frits must be identified that provide access to at least 40% WL while accounting for potential variation in the sludge resulting from differences in batch-to-batch transfers into the Sludge Receipt and Adjustment Tank (SRAT) and/or analytical uncertainties. In more general terms, this study will assess whether or not the current glass formulation strategy (based on the use of the Nominal and Variation Stage assessments) and current PCCS models will allow access to compositional regions required to targeted higher WLs for future operations. Some of the key questions to be considered in this study include: (1) If higher WLs are attainable with current process control models, are the models valid in these compositional regions? If the higher WL glass regions are outside current model development or validation ranges, is there existing data that could be used to demonstrate model applicability (or lack thereof)? If not, experimental data may be required to revise current models or serve as validation data with the existing models. (2) Are there compositional trends in frit space that are required by the PCCS models to obtain access to these higher WLs? If so, are there potential issues with the compositions of the associated frits (e.g., limitations on the B{sub 2}O{sub 3} and/or Li{sub 2}O concentrations) as they are compared to model development/validation ranges or to the term 'borosilicate' glass? If limitations on the frit compositional range are realized, what is the impact of these restrictions on other glass properties such as the ability to suppress nepheline formation or influence melt rate? The model based assessments being performed make the assumption that the process control models are applicable over the glass compositional regions being evaluated. Although the glass compositional region of interest is ultimately defined by the specific frit, sludge, and WL interval used, there is no prescreening of these compositional regions with respect to the model development or validation ranges which is consistent with current DWPF operations.« less
Chen, Tao; Fan, Jun; Gao, Ruiqi; Wang, Tai; Yu, Ying; Zhang, Weiguang
2016-10-07
Chiral stationary phase-high performance liquid chromatography coupled with various detectors has been one of most commonly used methods for analysis and separation of chiral compounds over the past decades. Various detectors exhibit different characteristics in qualitative and quantitative studies under different chromatographic conditions. Herein, a comparative evaluation of HPLC coupled with ultraviolet, optical rotation, refractive index, and evaporative light scattering detectors has been conducted for qualitative and quantitative analyses of metalaxyl racemate. Effects of separation conditions on the peak area ratio between two enantiomers, including sample concentration, column temperature, mobile phase composition, as well as flow rate, have been investigated in detail. In addition, the limits of detection, the limits of quantitation, quantitative range and precision for these two enantiomers by using four detectors have been also studied. As indicated, the chromatographic separation conditions have been slight effects on ultraviolet and refractive index detections and the peak area ratio between two enantiomers remains almost unchanged, but the evaporative light scattering detection has been significantly affected by the above-mentioned chromatographic conditions and the corresponding peak area ratios varied greatly. Moreover, the limits of detection, the limits of quantitation, and the quantitative ranges of two enantiomers with UV detection were remarkably lower by 1-2 magnitudes than the others. Copyright © 2016 Elsevier B.V. All rights reserved.
SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2008-01-01
Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.
Direct measurement of methane hydrate composition along the hydrate equilibrium boundary
Circone, S.; Kirby, S.H.; Stern, L.A.
2005-01-01
The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.
NASA Technical Reports Server (NTRS)
Shearer, C. K.; Messenger, S.; Sharp, Z. D.; Burger, P. V.; Nguyen, N.; McCubbin, F. M.
2017-01-01
The style, magnitude, timing, and mixing components involved in the interaction between mantle derived Martian magmas and Martian crust have long been a point of debate. Understanding this process is fundamental to deciphering the composition of the Martian crust and its interaction with the atmosphere, the compositional diversity and oxygen fugacity variations in the Martian mantle, the bulk composition of Mars and the materials from which it accreted, and the noble gas composition of Mars and the Sun. Recent studies of the chlorine isotopic composition of Martian meteorites imply that although the variation in delta (sup 37) Cl is limited (total range of approximately14 per mille), there appears to be distinct signatures for the Martian crust and mantle. However, there are potential issues with this interpretation. New Cl isotope data from the SAM (Sample Analysis at Mars) instrument on the Mars Science Lab indicate a very wide range of Cl isotopic compositions on the Martian surface. Recent measurements by [10] duplicated the results of [7,8], but placed them within the context of SAM surface data. In addition, Martian meteorite Chassigny contains trapped noble gases with isotopic ratios similar to solar abundance, and has long been considered a pristine, mantle derived sample. However, previous studies of apatite in Chassigny indicate that crustal fluids have interacted with regions interstitial to the cumulus olivine. The initial Cl isotope measurements of apatite in Chassigny suggest an addition of crustal component to this lithology, apparently contradicting the rare gas data. Here, we examine the Cl isotopic composition of multiple generations and textures of apatite in Chassigny to extricate the crustal and mantle components in this meteorite and to reveal the style and timing of the addition of crustal components to mantle-derived magmas. These data reveal distinct Martian Cl sources whose signatures have their origins linked to both the early Solar System and the evolving Martian atmosphere.
Effect of staining beverages on color and translucency of CAD/CAM composites.
Quek, S H Q; Yap, A U J; Rosa, V; Tan, K B C; Teoh, K H
2018-03-01
This study investigated the color (ΔE) and translucency changes (ΔTP) of CAD/CAM composites after exposure to staining solutions using both spectrophotometer and shade-matching device. Direct (Filtek Z350XT [ZT]), indirect (Shofu Ceramage [CE]) and CAD/CAM (Shofu HC Block [HC], Lava Ultimate [LU], Vita Enamic [EN]) composite specimens measuring 12 × 14 × 1.5 mm were fabricated, divided into five groups (n = 8), and immersed in cola, tea, coffee, red wine, distilled water (control) at 37°C for 7 days. Color parameters were determined with both spectrophotometer and shade-taking device at baseline and 1 week. Delta E (ΔE) with white and black backgrounds, and Delta TP (ΔTP) were computed. Statistical testing was performed with ANOVA and Tukey post hoc test (P < .05). Mean ΔE (white) values ranged from 0.20 ± 0.06 to 12.26 ± 1.95 while mean ΔE (black) varied from 0.22 ± 0.11 to 14.21 ± 2.37. Mean ΔTP values ranged from 0.13 ± 0.17 to -3.87 ± 2.16. CAD/CAM composites fared better in red wine than direct and indirect materials. Clinically perceptible color changes (ΔE > 3.3) were observed for almost all materials when exposed to wine, coffee and tea. Direct, indirect, and CAD/CAM composites are all susceptible to various degrees of discoloration and translucency changes after exposure to staining beverages. Red wine caused the most discoloration and translucency changes. Limitations of these materials must be considered when placing an aesthetic restoration. Direct, indirect, and CAD/CAM composites are all susceptible to various degrees of discoloration and translucency changes after exposure to staining beverages. Red wine generally caused the most discoloration and translucency changes. Although CAD/CAM composites were more color stable than direct and indirect materials when exposed to red wine, color changes were still clinically perceptible. © 2017 Wiley Periodicals, Inc.
Quant, Hayley S; Sammel, Mary D; Parry, Samuel; Schwartz, Nadav
2016-08-01
We previously reported the association between first-trimester 3-dimensional (3D) placental measurements and small-for-gestational-age (SGA) neonates. In this study, we sought to determine whether second-trimester measurements further contribute to the antenatal detection of SGA and preeclampsia. We prospectively collected 3D sonographic volume sets and uterine artery pulsatility indices of singleton pregnancies at 18 to 24 weeks. Placental volume, placental quotient (placental volume/gestational age), mean placental diameter and chorionic diameter, placental morphologic index (mean placental diameter/placental quotient), placental chorionic index (mean chorionic diameter/placental quotient), and placental growth (volume per week) were assessed and evaluated as predictors of SGA and preeclampsia as a composite and alone. Of 373 pregnancies, the composite outcome occurred in 67 (18.0%): 36 (9.7%) manifested SGA alone; 27 (7.2%) developed preeclampsia alone, and 4 (1.1%) developed both. The placental volume, placental quotient, mean placental diameter, mean chorionic diameter, and volume per week were significantly smaller, whereas the placental morphologic index and chorionic index were significantly larger in pregnancies with the composite outcome (P < .01). Further analyses revealed that the significant associations with placental parameters were limited to the SGA outcome. Each placental measure remained significantly associated with SGA after adjusting for confounders. The mean uterine artery pulsatility index was not associated with either outcome. Placental parameters were moderately predictive of SGA, with adjusted areas under the curve ranging from 0.72 to 0.76. Sensitivity for detection of SGA ranged from 32.5% to 45.0%, with positive predictive values ranging from 17.3% to 22.7%. Second-trimester 3D placental measurements can identify pregnancies at risk of SGA. However, there appears to be no significant improvement compared to those obtained in the first trimester.
Gentile, John V; Weinert, Carl R; Schlechter, John A
2013-01-01
Multiple treatment modalities exist for unicameral bone cysts (UBC), including steroid injection, autologous bone marrow injection, mechanical decompression, intramedullary fixation, curettage, and bone grafting. All have their own potential limitations such as high recurrence rates, cyst persistence, need for multiple procedures, and prolonged immobilization. A minimally invasive regimen consisting of curettage, decompression, and injection of a calcium sulfate-calcium phosphate (CaSO4-CaPO4) composite has been utilized at our institution in an attempt to obtain optimal results for the treatment of UBCs in the pediatric population. We retrospectively evaluated 16 patients with pathologically confirmed UBC who were treated with curettage, decompression, and injection of a calcium sulfate-calcium phosphate composite between April 2006 and August 2010 at a single institution. The average age of the patients at time of surgical intervention was 9.4 years of age (range, 3 to 16 y). Average follow-up was 16 months (range, 6 to 36 mo). Radiographic healing, clinical outcomes, and complications were evaluated. Final follow-up radiographs demonstrated healing in 93.7% (15 of 16) of patients after a single procedure. Complete healing was observed in 14 of 16 patients and partially healed with a defect in 1 of 16 patients. One patient had a persistent cyst but did not wish to receive further treatment. All patients returned to full activities including sports on average at 3.1 months (range, 1 to 6 mo) and were asymptomatic on most recent follow-up. No postoperative complications, including refracture, were observed. Curettage, decompression, and injection of a calcium sulfate-calcium phosphate composite for UBC in the pediatric population demonstrates encouraging results with low recurrence rates and complications compared with conventional methods. Case series, Level of Evidence IV.
Tuning jammed frictionless disk packings from isostatic to hyperstatic.
Schreck, Carl F; O'Hern, Corey S; Silbert, Leonardo E
2011-07-01
We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression and decompression in small steps to reach packing fractions φ(J) at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to φ(J). Using these protocols, we generate more than 10(4) static packings over a wide range of packing fraction, contact number, and compositional and positional order. We find that disordered, isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with previous calculations, the most dilute mechanically stable packings with φ min ≈ 0.84 are obtained for r > r*, where r* is the rate above which φ(J) is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered (with only small changes in a number of order parameters), whereas bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings differ from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.
A Spitzer search for transits of radial velocity detected super-Earths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammer, J. A.; Knutson, H. A.; Desert, J.-M.
2014-02-01
Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable massmore » estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.« less
Paravina, Rade D; Roeder, Leslie; Lu, Huan; Vogel, Karin; Powers, John M
2004-08-01
To evaluate the effects of different finishing and polishing procedures on surface roughness, gloss and color of five resin composites: two experimental microhybrid composites - FZ-Dentin (FZD) and FZ-Enamel (FZE), one commercial microhybrid composite - Esthet-X (EX), and two microfilled composites - Heliomolar (HM) and Renamel Microfill (RM). Surface roughness, gloss and color of the disc-shaped specimens (10 mm in diameter and 2-mm thick) were measured as Mylar (baseline), 16-fluted carbide bur and polishing were completed. Sixteen specimens of each composite were randomized to four groups of four. After finishing with a 16-fluted finishing bur, each group was polished by a different system: 1. Astropol (A), 2. Sof-lex disc (S), 3. Po-Go (P), 4. Enhance (E). Average surface roughness (Ra) was measured with a profilometer. Gloss measurements were performed using small-area glossmeter, while color coordinate values were recorded using a spectrophotometer. A deltaE*ab< or =1 was considered to be the limit of perceptibility. The order of surface roughness ranked according to polishing system (for all five composites together) was: P < S < E < A. The order of surface roughness ranked according to composites was: RM < FZD < FZ < HM < EX. The order of gloss ranked according to polishing system (for all five composites together) was: P > E > A > S. The order of gloss values for the polished composites (for each of four polishing systems) was: RM > FZD > FZE > HM > EX. Fisher's PLSD intervals at the 0.05 level of significance for comparisons of means of surface roughness among five composites and four polishing systems were 0.01 and 0.01 microm, respectively. Fisher's PLSD intervals at the 0.05 level of significance for comparisons of means of gloss among five composites and four polishing systems were 6 and 5 GU, respectively. Color differences (deltaE*ab) among five composites and four polishing methods were found to range from 0.2 to 1.1.
Alula, Melisew Tadele; Yang, Jyisy
2014-12-01
In this study, silver nanostructures decorated magnetic nanoparticles for surface-enhanced Raman scattering (SERS) measurements were prepared via photoreduction utilizing the catalytic activity of ZnO nanostructure. The ZnO/Fe3O4 composite was first prepared by dispersing pre-formed magnetic nanoparticles into alkaline zinc nitrate solutions. After annealing of the precipitates, the formed ZnO/Fe3O4 composites were successfully decorated with silver nanostructures by soaking the composites into silver nitrate/ethylene glycol solution following UV irradiations. To find the optimal condition when preparing Ag@ZnO/Fe3O4 composites for SERS measurements, factors such as the reaction conditions, photoreduction time, concentration of zinc nitrate and silver nitrate were studied. Results indicated that the photoreduction efficiency was significantly improved with the assistance of ZnO but the amount of ZnO in the composite is not critical. The concentration of silver nitrate and UV irradiation time affected the morphologies of the formed composites and optimal condition in preparation of the composites for SERS measurement was found using 20mM of silver nitrate with an irradiation time of 90 min. Under the optimized condition, the obtained SERS intensities were highly reproducible with a SERS enhancement factor in the order of 7. Quantitative analyses showed that a linear range up to 1 µM with a detection limit lower than 0.1 µM in the detection of creatinine in aqueous solution could be obtained. Successful applying of these prepared composites to determine creatinine in urine sample was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Electric polarization switching in an atomically thin binary rock salt structure
NASA Astrophysics Data System (ADS)
Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.
2018-01-01
Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.
Satellite Observations of Tropospheric Chemistry
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.; Jacob, Daniel J.; Hipskind, R. Stephen (Technical Monitor)
2001-01-01
The troposphere is an essential component of the earth's life support system as well as the gateway for the exchange of chemicals between different geochemical reservoirs of the earth. The chemistry of the troposphere is sensitive to perturbation from a wide range of natural phenomena and human activities. The societal concern has been greatly enhanced in recent decades due to ever increasing pressures of population growth and industrialization. Chemical changes within the troposphere control a vast array of processes that impact human health, the biosphere, and climate. A main goal of tropospheric chemistry research is to measure and understand the response of atmospheric composition to natural and anthropogenic perturbations, and to develop the capability to predict future change. Atmospheric chemistry measurements are extremely challenging due to the low concentrations of critical species and the vast scales over which the observations must be made. Available tropospheric data are mainly from surface sites and aircraft missions. Because of the limited temporal extent of aircraft observations, we have very limited information on tropospheric composition above the surface. This situation can be contrasted to the stratosphere, where satellites have provided critical and detailed chemical data on the global distribution of key trace gases.
Effects Of Light Pollution On The Movements Of Leptonycteris Curasoae Yerbabuenae In The Tucson Area
NASA Astrophysics Data System (ADS)
Barringer, Daniel; Walker, C.
2011-01-01
We used data from the GLOBE at Night project and telemetry tracking data of lesser long-nosed bats obtained by the Arizona Game and Fish Department to study the effects of light pollution on the flight paths of the bats between their day roosts and night foraging areas around the city of Tucson, AZ. With the visual limiting magnitude data from GLOBE at Night, we ran a compositional analysis with respect to the bats’ flight paths to determine whether the bats were selecting for or against flight through regions of particular night sky brightness levels. We found that the bats selected for the regions in which the limiting sky magnitudes fell between the ranges of 2.8-3.0 to 3.6-3.8 and 4.4-4.6 to 5.0-5.2, suggesting that the lesser long-nosed bat can tolerate a fair degree of urbanization. We also compared this result to contour maps created with digital Sky Quality Meter data. In this presentation, we present the results from our compositional analysis with respect to the habits of the lesser long-nosed bat. For more information, please visit www.globeatnight.org.
Validation of uranium determination in urine by ICP-MS.
Bouvier-Capely, C; Baglan, N; Montègue, A; Ritt, J; Cossonnet, C
2003-08-01
A rapid procedure--dilution of urine+ICP-MS measurement--for the determination of uranium in urine was validated. Large ranges of concentration and isotopic composition were studied on urine samples excreted by occupationally exposed workers. The results were consistent with those obtained by fluorimetry and by alpha spectrometry after a purification procedure, two currently used techniques. However, the proposed procedure is limited for determination of the minor isotope 234U. Thus for worker monitoring, the conversion of 234U mass concentration into activity concentration can lead to an erroneous value of the effective dose, in particular for a contamination at very low level with highly enriched uranium. A solution to avoid this hazard is to perform a chemical purification prior to ICP-MS measurement to lower uncertainty and detection limit for 234U.
Yan, Zijun; He, Man; Chen, Beibei; Gui, Bo; Wang, Cheng; Hu, Bin
2017-11-24
Covalent triazine frameworks (CTFs), featuring with high surface area, good thermal, chemical and mechanical stability, are good adsorbents in sample pretreatment. Herein, magnetic CTFs/Ni composite was prepared by in situ reduction of nickel ions on CTFs matrix with a solvothermal method. The prepared CTFs/Ni composite exhibited good preparation reproducibility, high chemical stability, and high extraction efficiency for targeted phthalate esters (PAEs) due to π-π interaction and hydrophobic effect. The porous structure of CTFs/Ni composite benefited the fast transfer of target PAEs from aqueous solution to the adsorbents, and the integrated magnetism contributed to the rapid separation of adsorbents from sample and elution solution. Based on it, a novel method of magnetic solid phase extraction (MSPE) combined with gas chromatography-flame ionization detector (GC-FID) was developed for the analysis of PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexl phthalate (DEHP), and di-n-octyl phthalate (DNOP) in plastic packaging materials. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) for six PAEs were found to be in the range of 0.024-0.085mg/kg. The linear range was 0.32-16mg/kg for DMP, DEP, 0.08-80mg/kg for DBP, 0.16-32mg/kg for BBP, DEHP, and 0.32-32mg/kg for DNOP, respectively. The enrichment factors ranged from 59 to 88-fold (theoretical enrichment factor was 133-fold). The proposed method was successfully applied to the analysis of PAEs in various plastic packaging materials with recoveries in the range of 70.6-119% for the spiked samples. This method is characterized with short operation time, high sensitivity, low consumption of harmful organic solvents and can be extended to the analysis of other trace aromatic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Gopinath, Bamini; Schneider, Julie; Hickson, Louise; McMahon, Catherine M; Burlutsky, George; Leeder, Stephen R; Mitchell, Paul
2012-06-01
We aimed to determine the prospective association between measured hearing impairment, self-reported hearing handicap and hearing aid use with quality of life. 829 Blue Mountains Hearing Study participants (≥ 55 years) were examined between 1997-1999 and 2007-2009. The shortened version of the hearing handicap inventory was administered. Hearing levels were measured using pure-tone audiometry. Quality of life was assessed using the 36-Item Short-Form Survey (SF-36); higher scores reflect better quality of life. Hearing impairment at baseline compared with no impairment was associated with lower mean SF-36 mental composite score 10 years later (multivariable-adjusted p=0.03). Physical composite score and mean scores for seven of the eight SF-36 domains after 10-year follow-up were significantly lower among participants who self-reported hearing handicap at baseline. Differences in the adjusted means between participants with and without hearing handicap ranged from 2.7 (physical composite score) to 10.4 units ('role limitations due to physical problems' domain). Individuals who developed incident hearing impairment compared to those who did not, had adjusted mean scores 9.5- and 7.7-units lower in the 'role limitation due to physical problems', and 'bodily pain' domains, respectively, at the 10-year follow-up. Hearing aid users versus non-users at baseline showed a 1.82-point (p=0.03) and 3.32-point (p=0.01) increase in SF-36 mental composite score and mental health domain over the 10-year follow-up, respectively. Older adults with self-perceived hearing handicap constitute a potential risk group for overall deterioration in quality of life, while hearing aid use could help improve the well-being of hearing impaired adults. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep
NASA Technical Reports Server (NTRS)
Hah, Chunill; Shin, Hyoun-Woo
2011-01-01
Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.
Reeb-Whitaker, Carolyn; Whittaker, Stephen G; Ceballos, Diana M; Weiland, Elisa C; Flack, Sheila L; Fent, Kenneth W; Thomasen, Jennifer M; Trelles Gaines, Linda G; Nylander-French, Leena A
2012-01-01
Isocyanate exposure was evaluated in 33 spray painters from 25 Washington State autobody shops. Personal breathing zone samples (n = 228) were analyzed for isophorone diisocyanate (IPDI) monomer, 1,6-hexamethylene diisocyanate (HDI) monomer, IPDI polyisocyanate, and three polyisocyanate forms of HDI. The objective was to describe exposures to isocyanates while spray painting, compare them with short-term exposure limits (STELs), and describe the isocyanate composition in the samples. The composition of polyisocyanates (IPDI and HDI) in the samples varied greatly, with maximum amounts ranging from up to 58% for HDI biuret to 96% for HDI isocyanurate. There was a significant inverse relationship between the percentage composition of HDI isocyanurate to IPDI and to HDI uretdione. Two 15-min STELs were compared: (1) Oregon's Occupational Safety and Health Administration (OR-OSHA) STEL of 1000 μg/m(3) for HDI polyisocyanate, and (2) the United Kingdom's Health and Safety Executive (UK-HSE) STEL of 70 μg NCO/m(3) for all isocyanates. Eighty percent of samples containing HDI polyisocyanate exceeded the OR-OSHA STEL while 98% of samples exceeded the UK-HSE STEL. The majority of painters (67%) wore half-face air-purifying respirators while spray painting. Using the OR-OSHA and the UK-HSE STELs as benchmarks, 21% and 67% of painters, respectively, had at least one exposure that exceeded the respirator's OSHA-assigned protection factor. A critical review of the STELs revealed the following limitations: (1) the OR-OSHA STEL does not include all polyisocyanates, and (2) the UK-HSE STEL is derived from monomeric isocyanates, whereas the species present in typical spray coatings are polyisocyanates. In conclusion, the variable mixtures of isocyanates used by autobody painters suggest that an occupational exposure limit is required that includes all polyisocyanates. Despite the limitations of the STELs, we determined that a respirator with an assigned protection factor of 25 or greater is required to protect against isocyanate exposures during spray painting. Consequently, half-face air-purifying respirators, which are most commonly used and have an assigned protection factor of 10, do not afford adequate respiratory protection.
Reeb-Whitaker, Carolyn; Whittaker, Stephen G.; Ceballos, Diana M.; Weiland, Elisa C.; Flack, Sheila L.; Fent, Kenneth W.; Thomasen, Jennifer M.; Gaines, Linda G. Trelles; Nylander-French, Leena A.
2014-01-01
Isocyanate exposure was evaluated in 33 spray painters from 25 Washington State autobody shops. Personal breathing zone samples (n = 228) were analyzed for isophorone diisocyanate (IPDI) monomer, 1,6-hexamethylene diisocyanate (HDI) monomer, IPDI polyisocyanate, and three polyisocyanate forms of HDI. The objective was to describe exposures to isocyanates while spray painting, compare them with short-term exposure limits (STELs), and describe the isocyanate composition in the samples. The composition of polyisocyanates (IPDI and HDI) in the samples varied greatly, with maximum amounts ranging from up to 58% for HDI biuret to 96% for HDI isocyanurate. There was a significant inverse relationship between the percentage composition of HDI isocyanurate to IPDI and to HDI uretdione. Two 15-min STELs were compared: (1) Oregon's Occupational Safety and Health Administration (OR-OSHA) STEL of 1000 μg/m3 for HDI polyisocyanate, and (2) the United Kingdom's Health and Safety Executive (UK-HSE) STEL of 70 μg NCO/m3 for all isocyanates. Eighty percent of samples containing HDI polyisocyanate exceeded the OR-OSHA STEL while 98% of samples exceeded the UKHSE STEL. The majority of painters (67%) wore half-face air-purifying respirators while spray painting. Using the OROSHA and the UK-HSE STELs as benchmarks, 21% and 67% of painters, respectively, had at least one exposure that exceeded the respirator's OSHA-assigned protection factor. A critical review of the STELs revealed the following limitations: (1) the OR-OSHA STEL does not include all polyisocyanates, and (2) the UK-HSE STEL is derived from monomeric isocyanates, whereas the species present in typical spray coatings are polyisocyanates. In conclusion, the variable mixtures of isocyanates used by autobody painters suggest that an occupational exposure limit is required that includes all polyisocyanates. Despite the limitations of the STELs, we determined that a respirator with an assigned protection factor of 25 or greater is required to protect against isocyanate exposures during spray painting. Consequently, half-face air-purifying respirators, which are most commonly used and have an assigned protection factor of 10, do not afford adequate respiratory protection. PMID:22500941
Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling
2011-01-01
A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117
On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.
2001-06-01
Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.
On temporal stochastic modeling of precipitation, nesting models across scales
NASA Astrophysics Data System (ADS)
Paschalis, Athanasios; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2014-01-01
We analyze the performance of composite stochastic models of temporal precipitation which can satisfactorily reproduce precipitation properties across a wide range of temporal scales. The rationale is that a combination of stochastic precipitation models which are most appropriate for specific limited temporal scales leads to better overall performance across a wider range of scales than single models alone. We investigate different model combinations. For the coarse (daily) scale these are models based on Alternating renewal processes, Markov chains, and Poisson cluster models, which are then combined with a microcanonical Multiplicative Random Cascade model to disaggregate precipitation to finer (minute) scales. The composite models were tested on data at four sites in different climates. The results show that model combinations improve the performance in key statistics such as probability distributions of precipitation depth, autocorrelation structure, intermittency, reproduction of extremes, compared to single models. At the same time they remain reasonably parsimonious. No model combination was found to outperform the others at all sites and for all statistics, however we provide insight on the capabilities of specific model combinations. The results for the four different climates are similar, which suggests a degree of generality and wider applicability of the approach.
Welding Behavior of Free Machining Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.
2000-07-24
The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metalmore » at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.« less
NASA Astrophysics Data System (ADS)
Toko, K.; Kusano, K.; Nakata, M.; Suemasu, T.
2017-10-01
A composition tunable Si1-xGex alloy has a wide range of applications, including in electronic and photonic devices. We investigate the Al-induced layer exchange (ALILE) growth of amorphous Si1-xGex on an insulator. The ALILE allowed Si1-xGex to be large grained (> 50 μm) and highly (111)-oriented (> 95%) over the whole composition range by controlling the growth temperature (≤ 400 °C). From a comparison with conventional solid-phase crystallization, we determined that such characteristics of the ALILE arose from the low activation energy of nucleation and the high frequency factor of lateral growth. The Si1-xGex layers were highly p-type doped, whereas the process temperatures were low, thanks to the electrically activated Al atoms with the amount of solid solubility limit. The electrical conductivities approached those of bulk single crystals within one order of magnitude. The resulting Si1-xGex layer on an insulator is useful not only for advanced SiGe-based devices but also for virtual substrates, allowing other materials to be integrated on three-dimensional integrated circuits, glass, and even a plastic substrate.
NASA Astrophysics Data System (ADS)
Detsri, Ekarat; Rujipornsakul, Sirilak; Treetasayoot, Tanapong; Siriwattanamethanon, Pawarit
2016-10-01
In the present study, multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and glutathione (GSH) were used to fabricate multilayer nanoscale thin films. The composite thin films were fabricated by layer-by-layer technique as the films were constructed by the alternate deposition of cationic and anionic polyelectrolytes. The MWCNTs were modified via a noncovalent surface modification method using poly(diallydimethylammonium chloride) to form a cationic polyelectrolyte. An anionic polyelectrolyte was prepared by the chemical reduction of HAuCl4 using sodium citrate as both the stabilizing and reducing agent to form anionic AuNPs. GSH was used as an electrocatalyst toward the electro-oxidation of dopamine. The constructed composite electrode exhibits excellent electrocatalytic activity toward dopamine with a short response time and a wide linear range from 1 to 100 μmol/L. The limits of detection and quantitation of dopamine are (0.316 ± 0.081) μmol/L and (1.054 ± 0.081) μmol/L, respectively. The method is satisfactorily applied for the determination of dopamine in plasma and urine samples to obtain the recovery in the range from 97.90% to 105.00%.
Lin, Mei Fang; Chou, Wen Hwa; Kitahara, Marcelo V.; Chen, Chao Lun Allen
2016-01-01
Calcification is one of the most distinctive traits of scleractinian corals. Their hard skeletons form the substratum of reef ecosystems and confer on corals their remarkable diversity of shapes. Corallimorpharians are non-calcifying, close relatives of scleractinian corals, and the evolutionary relationship between these two groups is key to understanding the evolution of calcification in the coral lineage. One pivotal question is whether scleractinians are a monophyletic group, paraphyly being an alternative possibility if corallimorpharians are corals that have lost their ability to calcify, as is implied by the “naked-coral” hypothesis. Despite major efforts, relationships between scleractinians and corallimorpharians remain equivocal and controversial. Although the complete mitochondrial genomes of a range of scleractinians and corallimorpharians have been obtained, heterogeneity in composition and evolutionary rates means that mitochondrial sequences are insufficient to understand the relationship between these two groups. To overcome these limitations, transcriptome data were generated for three representative corallimorpharians. These were used in combination with sequences available for a representative range of scleractinians to identify 291 orthologous single copy protein-coding nuclear markers. Unlike the mitochondrial sequences, these nuclear markers do not display any distinct compositional bias in their nucleotide or amino-acid sequences. A range of phylogenomic approaches congruently reveal a topology consistent with scleractinian monophyly and corallimorpharians as the sister clade of scleractinians. PMID:27761308
Bedrock composition regulates mountain ecosystems and landscape evolution
Hahm, W. Jesse; Riebe, Clifford S.; Lukens, Claire E.; Araki, Sayaka
2014-01-01
Earth’s land surface teems with life. Although the distribution of ecosystems is largely explained by temperature and precipitation, vegetation can vary markedly with little variation in climate. Here we explore the role of bedrock in governing the distribution of forest cover across the Sierra Nevada Batholith, California. Our sites span a narrow range of elevations and thus a narrow range in climate. However, land cover varies from Giant Sequoia (Sequoiadendron giganteum), the largest trees on Earth, to vegetation-free swaths that are visible from space. Meanwhile, underlying bedrock spans nearly the entire compositional range of granitic bedrock in the western North American cordillera. We explored connections between lithology and vegetation using measurements of bedrock geochemistry and forest productivity. Tree-canopy cover, a proxy for forest productivity, varies by more than an order of magnitude across our sites, changing abruptly at mapped contacts between plutons and correlating with bedrock concentrations of major and minor elements, including the plant-essential nutrient phosphorus. Nutrient-poor areas that lack vegetation and soil are eroding more than two times slower on average than surrounding, more nutrient-rich, soil-mantled bedrock. This suggests that bedrock geochemistry can influence landscape evolution through an intrinsic limitation on primary productivity. Our results are consistent with widespread bottom-up lithologic control on the distribution and diversity of vegetation in mountainous terrain. PMID:24516144
NASA Astrophysics Data System (ADS)
Longbiao, Li
2016-10-01
In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.
Ball, J.R.; Esler, Daniel N.; Schmutz, J.A.
2007-01-01
Changing ocean conditions and subsequent shifts in forage fish communities have been linked to numerical declines of some piscivorous marine birds and mammals in the North Pacific. However, limited information about fish communities is available for some regions, including nearshore waters of the eastern Bering Sea, where many piscivores reside. We determined proximate composition and energetic value of a suite of potential forage fish collected from an estuary on the Yukon-Kuskokwim Delta, Alaska, during 2002 and 2003. Across species, energy density ranged from 14.5 to 20.7 kJ g−1 dry mass and varied primarily as a function of lipid content. Total energy content was strongly influenced by body length and we provide species-specific predictive models of total energy based on this relationship; some models may be improved further by incorporating year and date effects. Based on observed energetic differences, we conclude that variation in fish size, quantity, and species composition of the prey community could have important consequences for piscivorous predators.
Advanced methods for preparation and characterization of infrared detector materials
NASA Technical Reports Server (NTRS)
Broerman, J. G.; Morris, B. J.; Meschter, P. J.
1983-01-01
Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.
Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine.
Palanisamy, Selvakumar; Sakthinathan, S; Chen, Shen-Ming; Thirumalraj, Balamurugan; Wu, Tsung-Han; Lou, Bih-Show; Liu, Xiaoheng
2016-01-01
A simple dopamine (DA) electrochemical sensor was developed based on a screen-printed carbon electrode (SPCE) modified with β-cyclodextrin entrapped graphite (GR/β-CD) composite for the first time. The polar hydroxyl groups on the β-CD rims interact with polar groups of edges of GR sheets resulting into the high dispersion ability of GR in β-CD solution. The GR/β-CD modified electrode exhibited a higher electrochemical response to DA with a lower oxidation potential (0.224V) than that of bare/β-CD (0.38V) and GR (0.525V) modified SPCEs, revealing an excellent electro-oxidation behavior of GR/β-CD composite toward DA. Under optimum conditions, the fabricated sensor detects the DA in the linear concentration range from 0.1 to 58.5μM with a limit of detection of 0.011μM and the sensitivity of 1.27±0.02μAμM(-1)cm(-2). The fabricated sensor also exhibits the excellent repeatability, practicality, reproducibility, storage stability along with acceptable selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determination of the solubility of tin indium oxide using in situ and ex x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, G. B.; Mason, T. O.; Okasinski, J. S.
A novel approach to determine the thermodynamic solubility of tin in indium oxide via the exsolution from tin overdoped nano-ITO powders is presented. High-energy, in situ and ex situ synchrotron X-ray diffraction was utilized to study the solubility limit at temperatures ranging from 900 C to 1375 C. The tin exsolution from overdoped nanopowders and the formation of In{sub 4}Sn{sub 3}O{sub 12} were observed in situ during the first 4-48 h of high-temperature treatment. Samples annealed between 900 C and 1175 C were also studied ex situ with heat treatments for up to 2060 h. Structural results obtained from Rietveldmore » analysis include compositional phase analysis, atomic positions, and lattice parameters. The tin solubility in In{sub 2}O{sub 3} was determined using the phase analysis compositions from X-ray diffraction and the elemental compositions obtained from X-ray fluorescence. Experimental complications that can lead to incorrect tin solubility values in the literature are discussed.« less
NASA Astrophysics Data System (ADS)
Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei
2015-10-01
Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.
Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.
Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C
2014-01-21
Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.
NASA Astrophysics Data System (ADS)
Mu, Mulan; Teblum, Eti; Figiel, Łukasz; Nessim, Gilbert Daniel; McNally, Tony
2018-04-01
The correlation between MWCNT aspect ratio and the quasi-static and dynamic mechanical properties of composites of MWCNTs and PMMA was studied for relatively long MWCNT lengths, in the range 0.3 mm to 5 mm (aspect ratios up to 5 × 105) and at low loading (0.15 wt%). The height of the MWCNTs prepared were modulated by controlling the amount of water vapour introduced in the reactor limiting Ostwald ripening of the catalyst, the formation of amorphous carbon and any increase in CNT diameter. The Tg of PMMA increased by up to 4 °C on addition of the longest tubes as they have the ability to form physical junctions with the polymer chains which lead to enhanced PMMA-MWCNTs interactions and increased mechanical properties, Young’s modulus by 20% on addition of 5 mm long MWCNTs. Predictions of the Young’s modulus of the composites of PMMA and MWCNT with the Mori-Tanaka theory show that future micromechanical models should account for MWCNT agglomeration and polymer-nanotube interactions as a function of CNT length.
Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul
2016-06-29
A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.
In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less
Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei
2016-01-01
In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). Copyright © 2015 Elsevier B.V. All rights reserved.
Ling, Xu; Zou, Li; Chen, Zilin
2017-09-01
A polymeric column that contains multiwalled carbon nanotubes-β-cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate-ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid-phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high-performance liquid chromatography with C 18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β-cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.; ...
2017-11-14
In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less
The effect of alloying on gamma and gamma prime in nickel-base superalloys
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.; Wallace, J. F.
1972-01-01
An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.
Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi
2014-12-01
Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.
Flexible Cryogenic Heat Pipe Development Program
NASA Technical Reports Server (NTRS)
1976-01-01
A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.
Sakarika, Myrsini; Kornaros, Michael
2016-11-01
The goal of the present study was to investigate the pH range that can support the growth of C. vulgaris, and, more specifically, to identify the optimal pH for the microalga's growth, under heterotrophic conditions. Furthermore, the effect of pH on the accumulation of intracellular lipids was studied. A wide range of pH values was tested using the respective buffer solutions. The optimal pH for biomass growth and lipid accumulation under sulfur limitation was found to be 7.5, resulting in maximum specific growth rate of 0.541days(-1) and maximum total lipid content of 53.43%ggDW(-1). The fatty acid composition of C. vulgaris was found to be unrelated to pH, as the lipid content did not present significant variations in the pH values tested. The fatty acid profile was mainly composed of monounsaturated fatty acids (MUFAs) with the dominant one being oleic acid (C18:1). Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement Protocols for In situ Analysis of Organic Compounds at Mars and Comets
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Brinckerhuff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.; Navarro-Gonzalez, R.
2005-01-01
The determination of the abundance and chemical and isotopic composition of organic molecules in comets and those that might be found in protected environments at Mars is a first step toward understanding prebiotic chemistries on these solar system bodies. While future sample return missions from Mars and comets will enable detailed chemical and isotopic analysis with a wide range of analytical techniques, precursor insitu investigations can complement these missions and facilitate the identification of optimal sites for sample return. Robust automated experiments that make efficient use of limited spacecraft power, mass, and data volume resources are required for use by insitu missions. Within these constraints we continue to explore a range of instrument techniques and measurement protocols that can maximize the return from such insitu investigations.
NASA Technical Reports Server (NTRS)
Gordon, Sanford
1991-01-01
The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.
NASA Astrophysics Data System (ADS)
Rumble, Christopher A.; Maroncelli, Mark
2018-05-01
Time-resolved emission techniques were used to study the excited-state intramolecular electron transfer of 9-(4-biphenyl)-10-methylacridinium (BPAc+) in mixtures of 1-butyl-3-methylimidizolium tetrafluoroborate ([Im41][BF4])+ acetonitrile (ACN), a mixture previously shown to be of nearly constant polarity and nearly ideal mixing behavior. Reaction times (τrxn) track solvation times (τsolv) as a function of mixture composition over a range of more than 3 orders of magnitude in τsolv. This same correlation extends to a variety of neat dipolar solvents and ionic liquids. Reaction times are ˜2-fold larger than τsolv over most of the range studied but appear to reach a limiting value of ˜3 ps in the fastest solvents.
Measurement Protocols for In Situ Analysis of Organic Compounds at Mars and Comets
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Brinckerhoff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.; Navarro-Gonzalez, R.
2005-01-01
The determination of the abundance and chemical and isotopic composition of organic molecules in comets and those that might be found in protected environments at Mars is a first step toward understanding prebiotic chemistries on these solar system bodies. While future sample return missions from Mars and comets will enable detailed chemical and isotopic analysis with a wide range of analytical techniques, precursor insitu investigations can complement these missions and facilitate the identification of optimal sites for sample return. Robust automated experiments that make efficient use of limited spacecraft power, mass, and data volume resources are required for use by insitu missions. Within these constraints we continue to explore a range of instrument techniques and measurement protocols that can maximize the return from such insitu investigations.
Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite
NASA Technical Reports Server (NTRS)
2005-01-01
Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the isothermal, LCF behavior of a [0]_32 MMC tested under strain- and load-controlled conditions for both zero-tension and tension-compression loading conditions. These tests were run at 427 C on thick specimens of SiC-reinforced Ti-15-3. For the fully-reversed tests, no difference was observed in the lives between the load- and strain-controlled tests. However, for the zero-tension tests, the strain-controlled tests had longer lives by a factor of 3 in comparison to the load-controlled tests. This was due to the fact that under strain-control the specimens cyclically softened, reducing the cracking potential. In contrast, the load-controlled tests ratcheted toward larger tensile strains leading to an eventual overload of the fibers. Fatigue tests revealed that specimens tested under fully-reversed conditions had lives approximately an order of magnitude longer than for those specimens tested under zero tension. When examined on a strain-range basis, the fully reversed specimens had similar, but still shorter lives than those of the unreinforced matrix material. However, the composite had a strain limitation at short lives because of the limited strain capacity of the brittle ceramic fiber. The composite also suffered at very high lives because of the lack of an apparent fatigue limit in comparison to the unreinforced matrix. The value of adding fibers to the matrix is apparent when the fatigue lives are plotted as a function of stress range. Here, the composite is far superior to the unreinforced matrix because of the additional load-carrying capacity of the fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majetich, Sara
In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magneticmore » order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500 MHz), and high frequency (up to 20 GHz) regimes. Our results will demonstrate whether a DC dipolar ferromagnet shows collective frequency-dependent reponse similar to that of an exchange-based ferromagnet, and will provide data for comparison of optimal nanocomposite properties with those of ferrites used in high frequency applications. Both the magnetic and electronic response of the composites will be examined in order to determine the frequency range where hopping conductivity leads to significant eddy current power losses. In the high frequency regime we will look for evidence of spin wave quantization and the resulting decrease in non-linear spin wave processes that could affect the performance of high frequency magnetic devices.« less
Wang, Tianshuang; Yu, Qi; Zhang, Sufang; Kou, Xueying; Sun, Peng; Lu, Geyu
2018-03-08
The lower gas sensitivity, humidity dependence of the gas sensing properties, and long recovery times of room-temperature gas sensors severely limit their applications. Herein, to address these issues, a series of 3D inverse opal (IO) In 2 O 3 -ZnO heterogeneous composite microspheres (HCMs) are fabricated by ultrasonic spray pyrolysis (USP) employing self-assembled sulfonated polystyrene (S-PS) spheres as a sacrificial template. The 3D IO In 2 O 3 -ZnO HCMs possess highly ordered 3D inverse opal structures and bimodal (meso-scale and macro-scale) pores, which can provide large accessible surface areas and rapid mass transfer, resulting in enhanced gas sensing characteristics. Furthermore, the 3D IO architecture and n-n heterojunctions can extend the photoabsorption range to the visible light area, effectively prolonging the lifetimes of photo-generated charge carriers, and can increase separation of visible light-generated charges. As a result, the as-prepared 3D IO In 2 O 3 -ZnO HCMs deliver excellent NO 2 sensing performance under visible light irradiation at room temperature, such as high sensitivity (R gas /R air = 54.3 to 5 ppm NO 2 ), low detection limit (250 ppb), fast recovery time (188 s), excellent selectivity and humidity independence. These enhanced photo-electronic gas sensing properties are attributed to the combination of highly ordered 3D IO microspheres and In 2 O 3 -ZnO heterogeneous composites.
Liu, Zhao; Zheng, Chaorong; Wu, Yue
2017-09-01
Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.
Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo
1999-11-01
Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.
Combining Hard with Soft Materials in Nanoscale Under High-Pressure High-Temperature Conditions
NASA Technical Reports Server (NTRS)
Palosz, B.; Gierlotka, S.; Swiderska-Sroda, A.; Fietkiewicz, K.; Kalisz, G.; Grzanka, E.; Stel'makh, S.; Palosz, W.
2004-01-01
Nano-composites with a primary nanocrystalline ceramic matrix and a secondary nanocrystalline material (metal or semiconductor) were synthesized by infiltration of an appropriate liquid into ceramic compacts under pressures of up to 8 GPa and temperatures of up to 2000 K. The purpose of our work is to obtain nanocomposites which constitute homoger?ous mixtures of two phases, both forming nano- grains of about 10 nm in size. The high pressure is used to bring the porosity of the compacted powders down to the nano-scale and force a given liquid into the nano-sized pores. The advantage of the infiltration technique is that, in a single, continuous process, we start with a nanocrystalline powder, compress it to form the matrix of the composite, and crystallize and/or synthesize a second nanomaterial in the matrix pores. The key limitation of this technology is, that the pores in the matrix need to stay open during the entire process of infiltration. Thus the initial powder should form a rigid skeleton, otherwise the so-called self-stop process can limit cr block a further flow of the liquid phase and hinder the process of the composite formation. Therefore powders of only very hard ceramic materials like diamond, Sic, or Alz03, which can withstand a substantial external load without undesired deformation, can be used as the primary phase. With this technique, using diamond and S i c ceramic powders infiltrated by liquid metals (AI, Zn, Sn, Ag, Au) and semiconductors (Si, Ge, GaAs, CdTe), we obtained nano-composites with the grain size in the range of 10 - 30 nm. Our work addresses the key problem in manufacturing bulk nanocrystalline materials, i.e. preservation of nano-scale during the fabrication process. In this paper we discuss basic technical and methodological problems associated with nano-infiltration based on the results obtained for Zn-Sic composites.
Solar-powered oxygen delivery: proof of concept.
Turnbull, H; Conroy, A; Opoka, R O; Namasopo, S; Kain, K C; Hawkes, M
2016-05-01
A resource-limited paediatric hospital in Uganda. Pneumonia is a leading cause of child mortality worldwide. Access to life-saving oxygen therapy is limited in many areas. We designed and implemented a solar-powered oxygen delivery system for the treatment of paediatric pneumonia. Proof-of-concept pilot study. A solar-powered oxygen delivery system was designed and piloted in a cohort of children with hypoxaemic illness. The system consisted of 25 × 80 W photovoltaic solar panels (daily output 7.5 kWh [range 3.8-9.7kWh]), 8 × 220 Ah batteries and a 300 W oxygen concentrator (output up to 5 l/min oxygen at 88% [±2%] purity). A series of 28 patients with hypoxaemia were treated with solar-powered oxygen. Immediate improvement in peripheral blood oxygen saturation was documented (median change +12% [range 5-15%], P < 0.0001). Tachypnoea, tachycardia and composite illness severity score improved over the first 24 h of hospitalisation (P < 0.01 for all comparisons). The case fatality rate was 6/28 (21%). The median recovery times to sit, eat, wean oxygen and hospital discharge were respectively 7.5 h, 9.8 h, 44 h and 4 days. Solar energy can be used to concentrate oxygen from ambient air and oxygenate children with respiratory distress and hypoxaemia in a resource-limited setting.
NASA Astrophysics Data System (ADS)
Walker, Richard J.; Storey, Michael; Kerr, Andrew C.; Tarney, John; Arndt, Nicholas T.
1999-03-01
Recent work has suggested that the mafic-ultramafic volcanism in evidence throughout portions of the Caribbean, Central America, and northern South America, including the islands of Gorgona and Curaçao, was generated as part of a middle-Cretaceous, large igneous province. New Re-Os isochron results for tholeiitic basalts from Gorgona and Curaçao indicate crystallization ages of 89.2 ± 5.2 and 85.6 ± 8.1 Ma, respectively, consistent with reported Ar ages. The Gorgona ultramafic suite shows a large range in initial Os isotopic composition, with γ Os values ranging from -0.5 to +12.4. This large range reflects isotopic heterogeneities in the mantle source similar to those observed for modern ocean island basalts. In contrast to ocean island basalts, however, Os isotopic compositions do not correlate with variations in Nd, Sr, or Pb isotopic compositions, which are within the range of depleted mid-ocean ridge basalts. The processes that produced these rocks evidently resulted in the decoupling of Os isotopes from the Nd, Sr, and Pb isotopic systems. Picrites from Curaçao have very uniform, chondritic initial Os isotopic compositions, with initial γ Os values ranging only from -0.4 to ±1.4. Basalts from Curaçao, however, define an isochron with a 187Os-enriched initial isotopic composition (γ Os = +9.5). In contrast to the 187Os-enriched ultramafic rocks from Gorgona, the enrichment in these basalts could have resulted from lithospheric contamination. If the Gorgona and Curaçao rocks were derived from the same plume, Os results, combined with Sr, Nd, and Pb data indicate a heterogeneous plume, with multiple compositionally and isotopically distinct domains. The Os isotopic results require derivation of Os from a minimum of two distinct reservoirs, one with a composition very similar to the chondritic average and one with long-term enriched Re/Os. Oceanic crustal recycling has been invoked to explain most of the 187Os enrichments that have been observed in ocean island basalt sources and could potentially apply to the Gorgona suite. Crustal recycling, however, requires large proportions of very ancient recycled basaltic crust in the sources of the 187Os-enriched ultramafic rocks to explain the magnitude of 187Os enrichments observed. For example, addition of 20% oceanic crust to fertile mantle, and nearly 3 billion years are necessary to generate a reservoir with the Os isotopic composition of the most radiogenic komatiites. If the recycled oceanic crust was added to basalt-depleted mantle, as may be indicated by ɛ Nd values for the komatiites averaging about +10, even larger proportions of older crust are required. Large proportions of oceanic mafic crust in the sources of the 187Os-enriched komatiites, although petrologically conceivable under certain melting conditions, is unlikely here given the limited trace element and lithophile isotope system variations. These results raise questions about the efficacy of using Os isotopes to constrain the proportion of recycled oceanic crust in other plumes. Other possible mechanisms for generating 187Os-enriched mantle include invoking the existence of a 187Os-enriched lower mantle, and minor outer core-lower mantle interactions.
Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo
2016-07-01
In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Bioinorganic chemical composition of the lens and methods of its investigation].
Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G
2018-01-01
Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.
NASA Astrophysics Data System (ADS)
Kelnar, Ivan; Kratochvíl, Jaroslav
2016-05-01
Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.
Mangoush, Enas; Säilynoja, Eija; Prinssi, Roosa; Lassila, Lippo; Vallittu, Pekka K.
2017-01-01
Background Fiber reinforced composite (FRC) is a promising class of material that gives clinicians alternative treatment options. There are many FRC products available in the market based on either glass or polyethylene fiber type. The aim of this study was to present a comparison between glass and polyethylene fiber reinforced composites based on available literature review. Material and Methods A thorough literature search, with no limitation, was done up to June 2017. The range of relevant publications was surveyed using PubMed and Google Scholar. From the search results, articles related to our search terms were only considered. An assessment of these articles was done by two individuals in order to include only articles directly compare between glass and polyethylene FRCs. The search terms used were “fiber reinforced dental composites” and “glass and polyethylene fibers in dentistry”. Results The search provided 276 titles. Full-text analysis was performed for 29 articles that met the inclusion criteria. Most were laboratory-based research with various test specimen designs prepared according to ISO standard or with extracted teeth and only three articles were clinical studies. Most of studies (n=23) found superior characteristics of glass FRCs over polyethylene FRCs. Conclusions Significant reinforcement differences between commercial glass and polyethylene fiber reinforced composites were found. Key words:Fiber reinforced composite, glass fiber, polyethylene fiber. PMID:29410756
Miriyev, Aslan; Grützner, Steffen; Krüger, Lutz; Kalabukhov, Sergey; Frage, Nachum
2016-01-01
A combination of the high damage tolerance of TRIP-steel and the extremely low thermal conductivity of partially stabilized zirconia (PSZ) can provide controlled thermal-mechanical properties to sandwich-shaped composite specimens comprising these materials. Sintering the (TRIP-steel-PSZ)/PSZ sandwich in a single step is very difficult due to differences in the sintering temperature and densification kinetics of the composite and the ceramic powders. In the present study, we successfully applied a two-step approach involving separate SPS consolidation of pure (3Y)-TZP and composites containing 20 vol % TRIP-steel, 40 vol % Al2O3 and 40 vol % (3Y)-TZP ceramic phase, and subsequent diffusion joining of both sintered components in an SPS apparatus. The microstructure and properties of the sintered and bonded specimens were characterized. No defects at the interface between the TZP and the composite after joining in the 1050–1150 °C temperature range were observed. Only limited grain growth occurred during joining, while crystallite size, hardness, shear strength and the fraction of the monoclinic phase in the TZP ceramic virtually did not change. The slight increase of the TZP layer’s fracture toughness with the joining temperature was attributed to the effect of grain size on transformation toughening. PMID:28773680
He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong
2018-01-24
An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.
NASA Astrophysics Data System (ADS)
Blinkov, Pavel; Ogorodov, Leonid; Grabovyy, Peter
2018-03-01
Modern high-rise construction introduces a number of limitations and tasks. In addition to durability, comfort and profitability, projects should take into account energy efficiency and environmental problems. Polymer building materials are used as substitutes for materials such as brick, concrete, metal, wood and glass, and in addition to traditional materials. Plastic materials are light, can be formed into complex shapes, durable and low, and also possess a wide range of properties. Plastic materials are available in various forms, colors and textures and require minimal or no color. They are resistant to heat transfer and diffusion of moisture and do not suffer from metal corrosion or microbial attack. Polymeric materials, including thermoplastics, thermoset materials and wood-polymer composites, have many structural and non-structural applications in the construction industry. They provide unique and innovative solutions at a low cost, and their use is likely to grow in the future. A number of polymer composite materials form complex material compositions, which are applied in the construction in order to analyze the processes of damage accumulation under the conditions of complex nonstationary loading modes, and to determine the life of structural elements considering the material aging. This paper present the results of tests on short-term compression loading with a deformation rate of v = 2 mm/min using composite samples of various shapes and sizes.
COMPARATIVE ASSESSMENT OF THE COMPOSITION AND CHARGE STATE OF NITROGENASE FeMo-COFACTOR
Harris, Travis V.; Szilagyi, Robert K.
2011-01-01
A significant limitation in our understanding of the molecular mechanism of biological nitrogen fixation is the uncertain composition of the FeMo-cofactor (FeMo-co) of nitrogenase. In this study we present a systematic, density functional theory-based evaluation of spin coupling schemes, iron oxidation states, ligand protonation states, and interstitial ligand composition using a wide range of experimental criteria. The employed functionals and basis sets were validated with molecular orbital information from X-ray absorption spectroscopic data of relevant iron-sulfur clusters. Independently from the employed level of theory, the electronic structure with the greatest number of antiferromagnetic interactions corresponds to the lowest energy state for a given charge and oxidation state distribution of the iron ions. The relative spin state energies of resting and oxidized FeMo-co already allowed the exclusion of certain iron oxidation state distributions and interstitial ligand compositions. Geometry optimized FeMo-co structures of several models further eliminated additional states and compositions, while reduction potentials indicated a strong preference for the most likely charge state of FeMo-co. Mössbauer and ENDOR parameter calculations were found to be remarkably dependent on the employed training set, density functional and basis set. Overall, we found that a more oxidized [MoIV-2FeII-5FeIII-9S2−-C4−] composition with a hydroxyl-protonated homocitrate ligand satisfies all of the available experimental criteria, and is thus favored over the currently preferred composition of [MoIV-4FeII-3FeIII-9S2−-N3−] from the literature. PMID:21545160
NASA Technical Reports Server (NTRS)
Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E
1951-01-01
A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.
Kim, Soochan; Lee, Sang Ha; Cho, Misuk; Lee, Youngkwan
2016-11-15
Morphology-controlled synthesis of nickel sulfide (Ni3S2) was performed directly on Ni foam using thioacetamide as a sulfur ion source. Various morphologies of nickel sulfide were fabricated using a hydrothermal process by adjusting the solvent composition of ethanol and water. In the water-dominant condition, a dendrite structure was obtained; otherwise, a flaky structure was achieved. A hierarchical cauliflower-like structure was obtained at a solvent mixture composition of 1:1 and was used as non-enzymatic glucose sensor. The hierarchical Ni3S2 electrode showed a high level of electro-catalytic activity toward the oxidation of glucose (16,460μAmM(-1)cm(-2)) over a wide range of detection (0.0005-3mM) and a low detection limit (0.82μM) with excellent selectivity in the presence of several electroactive species. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers
Wang, Huiqun; Lu, Wei; Wang, Weiyu; ...
2017-09-28
Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less
Tree regeneration by seed in bottomland hardwood forests: A review
Kroschel, Whitney A.; King, Sammy L.; Keim, Richard F.
2016-01-01
Bottomland hardwood forests (BLH) are found in temperate, humid regions of the southeastern US, primarily on alluvial floodplains adjacent to rivers. Altered hydrology in rivers and floodplains has caused changes in stand development and species composition of BLHs. We hypothesize that the driving mechanisms behind these changes are related to the regeneration process because of the complexity of recruitment and the vulnerability of species at that age in development. Here we review the state of our understanding regarding BLH regeneration, and identify potential bottlenecks throughout the stages of seed production, seed dispersal, germination, establishment, and survival. Our process-level understanding of regeneration by seed in BLHs is rudimentary, thus limiting our ability to predict the effects of hydrologic alterations on species composition. By focusing future research on the appropriate stages of regeneration, we can better understand the sources of forest-community transitions across the diverse range of BLH systems.
Deng, Peihong; Xu, Zhifeng; Kuang, Yunfei
2014-08-15
Herein, a novel electrochemical sensor based on an acetylene black paste electrode modified with molecularly imprinted chitosan-graphene composite film for sensitive and selective detection of bisphenol A (BPA) has been developed. Several important parameters controlling the performance of the sensor were investigated and optimised. The imprinted sensor offers a fast response and sensitive BPA quantification. Under the optimal conditions, a linear range from 8.0 nM to 1.0 μM and 1.0 to 20 μM for the detection of BPA was observed with the detection limit of 6.0 nM (S/N=3). Meanwhile, the fabricated sensor showed excellent specific recognition to template molecule among the structural similarities and coexistence substances. Furthermore, this imprinted electrochemical sensor was successfully employed to detect BPA in plastic bottled drinking water and canned beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Xiaofang; Wei, Shaping; Chen, Shihong; Yuan, Dehua; Zhang, Wen
2014-08-01
In this paper, graphene-multiwall carbon nanotube-gold nanocluster (GP-MWCNT-AuNC) composites were synthesized and used as modifier to fabricate a sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrochemical behavior of the sensor was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The combination of GP, MWCNTs, and AuNCs endowed the electrode with a large surface area, good catalytic activity, and high selectivity and sensitivity. The linear response range for simultaneous detection of AA, DA, and UA at the sensor were 120-1,701, 2-213, and 0.7-88.3 μM, correspondingly, and the detection limits were 40, 0.67, and 0.23 μM (S/N=3), respectively. The proposed method offers a promise for simple, rapid, selective, and cost-effective analysis of small biomolecules.
Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian
2013-12-01
Gold nanoparticles coated polystyrene/reduced graphite oxide (AuNPs@PS/RGO) microspheres have been successfully prepared via a facile process, and the decorative gold nanoparticles could prevent the aggregation of RGO by electrostatic repulsive interaction, and lead to high dispersibility of the composite. The prepared composite has a highly increased conductivity of 129Sm(-1) due to the unique electrical properties of citrate reduced gold nanoparticles. Being employed as an electrochemical sensor for detection of dopamine, the modified electrode exhibits remarkable sensitivity (3.44μA/μM) and lower detection limit (5nM), with linear response in a range of 0.05-20μM. Moreover, valid response to dopamine obtained in present work also indicates the prospective performances of AuNPs@PS/RGO microspheres to other biological molecules, such as nucleic acids, proteins and enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.
Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure
NASA Technical Reports Server (NTRS)
Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.
2013-01-01
One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.
NASA Astrophysics Data System (ADS)
Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan
2017-11-01
A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huiqun; Lu, Wei; Wang, Weiyu
Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less
Issues to be addressed in the design and fabrication of ultralightweight meter-class optics
NASA Astrophysics Data System (ADS)
Krumweide, Gary C.
1998-08-01
There is a growing need for large aperture, ultralightweight, deployable optics for various science, military and commercial compact satellites. This paper will examine the engineering and manufacturing considerations that must be addressed in order to satisfy the requirements for these sought after optics. In order to limit the scope of this paper, only Graphite Fiber Reinforced/Polymer Matrix Composites (GFR/PMC) will be under consideration because of the potential to satisfy ultralightweight mirror requirements. The requirements associated with specular mirror concepts that Composite Optics, Incorporated (COI) has proposed to Air Force Research Laboratory and NASA Langley Research Center for visible range optics and LIDAR optics, respectively, will also be our interest. Moreover, it is the intent of this paper to illustrate how COI's proposed design/manufacturing concepts for visible and LIDAR optics have evolved based on overcoming, or working around, material constraints and/or undesirable characteristics associated with GFR/PMC.
Yu, Xinhong; Ling, Xu; Zou, Li; Chen, Zilin
2017-04-01
A novel polymeric monolith column with a β-cyclodextrin-graphene composite was prepared for extraction of methyl jasmonate. A simple, sensitive, and effective polymeric monolith microextraction with high-performance liquid chromatography method has been presented for the determination. To carry out the best microextraction efficiency, several parameters such as sample flow rate, sample volume, and sample pH value were systematically optimized. In addition, the method validation showed a wide linear range of 5-2000 ng/mL, with a good linearity and low limits of detection for methyl jasmonate. The proposed method was successfully applied for the determination of methyl jasmonate in wintersweet flowers with recoveries of 90.67%. The result was confirmed by high-performance liquid chromatography with mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.
Dazzi, Alexandre; Prater, Craig B
2016-12-13
Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.
NASA Technical Reports Server (NTRS)
Lait, L. R.; Newman, P. A.; Schoeberl, M. R.; McGee, T.; Twigg, T.; Browell, E.; Bevilacqua, R.; Andersen, S. B.; DeBacker, H.; Benesova, A.
2004-01-01
Ozone measurements from ozonesondes, AROTAL, DIAL, and POAM III instruments during the SOLVE-2/VINTERSOL period are composited in a time-varying, flow-following quasi-conservative (PV-6) coordinate space; the resulting composites from each instrument are mapped onto the other instruments locations and times. The mapped data are then used to intercompare data from the different instruments. Overall, the four data sets are found to be in good agreement. AROTAL shows somewhat lower values below 16 km, and DIAL has a positive bias at the upper limits of its altitude range. These intercomparisons are consistent with those obtained from more conventional near-coincident profiles, where available. Although the PV-theta mapping technique entails larger uncertainties of individual profile differences compared to direct near-coincident comparisons, the ability to include much larger numbers of comparisons can make this technique advantageous.
SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Edwards, T.
2012-05-08
This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to developmore » a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a sulfur salt layer is not formed on top of the melt pool while allowing higher sulfur based feeds to be processed through DWPF.« less
Martin-Creuzburg, Dominik; Oexle, Sarah; Wacker, Alexander
2014-09-01
Arthropods are incapable of synthesizing sterols de novo and thus require a dietary source to cover their physiological demands. The most prominent sterol in animal tissues is cholesterol, which is an indispensable structural component of cell membranes and serves as precursor for steroid hormones. Instead of cholesterol, plants and algae contain a variety of different phytosterols. Consequently, herbivorous arthropods have to metabolize dietary phytosterols to cholesterol to meet their requirements for growth and reproduction. Here, we investigated sterol-limited growth responses of the freshwater herbivore Daphnia magna by supplementing a sterol-free diet with increasing amounts of 10 different phytosterols and comparing thresholds for sterol-limited growth. In addition, we analyzed the sterol composition of D. magna to explore sterol metabolic constraints and bioconversion capacities. We show that dietary phytosterols strongly differ in their potential to support somatic growth of D. magna. The dietary threshold concentrations obtained by supplementing the different sterols cover a wide range (3.5-34.4 μg mg C(-1)) and encompass the one for cholesterol (8.9 μg mg C(-1)), indicating that certain phytosterols are more efficient in supporting somatic growth than cholesterol (e.g., fucosterol, brassicasterol) while others are less efficient (e.g., dihydrocholesterol, lathosterol). The dietary sterol concentration gradients revealed that the poor quality of particular sterols can be alleviated partially by increasing dietary concentrations, and that qualitative differences among sterols are most pronounced at low to moderate dietary concentrations. We infer that the dietary sterol composition has to be considered in zooplankton nutritional ecology to accurately assess potential sterol limitations under field conditions.
An inversion-based self-calibration for SIMS measurements: Application to H, F, and Cl in apatite
NASA Astrophysics Data System (ADS)
Boyce, J. W.; Eiler, J. M.
2011-12-01
Measurements of volatile abundances in igneous apatites can provide information regarding the abundances and evolution of volatiles in magmas, with applications to terrestrial volcanism and planetary evolution. Secondary ion mass spectrometry (SIMS) measurements can produce accurate and precise measurements of H and other volatiles in many materials including apatite. SIMS standardization generally makes use of empirical linear transfer functions that relate measured ion ratios to independently known concentrations. However, this approach is often limited by the lack of compositionally diverse, well-characterized, homogeneous standards. In general, SIMS calibrations are developed for minor and trace elements, and any two are treated as independent of one another. However, in crystalline materials, additional stoichiometric constraints may apply. In the case of apatite, the sum of concentrations of abundant volatile elements (H, Cl, and F) should closely approach 100% occupancy of their collective structural site. Here we propose and document the efficacy of a method for standardizing SIMS analyses of abundant volatiles in apatites that takes advantage of this stoichiometric constraint. The principle advantage of this method is that it is effectively self-standardizing; i.e., it requires no independently known homogeneous reference standards. We define a system of independent linear equations relating measured ion ratios (H/P, Cl/P, F/P) and unknown calibration slopes. Given sufficient range in the concentrations of the different elements among apatites measured in a single analytical session, solving this system of equations allows for the calibration slope for each element to be determined without standards, using only blank-corrected ion ratios. In the case that a data set of this kind lacks sufficient range in measured compositions of one or more of the relevant ion ratios, one can employ measurements of additional apatites of a variety of compositions to increase the statistical range and make the inversion more accurate and precise. These additional non-standard apatites need only be wide-ranging in composition: They need not be homogenous nor have known H, F, or Cl concentrations. Tests utilizing synthetic data and data generated in the laboratory indicate that this method should yield satisfactory results provided apatites meet the criteria of the model. The inversion method is able to reproduce conventional calibrations to within <2.5%, a level of accuracy comparable to or even better than the uncertainty of the conventional calibration, and one that includes both error in the inversion method as well as any true error in the independently determined values of the standards. Uncertainties in the inversion calibrations range from 0.1-1.7% (2σ), typically an order of magnitude smaller than the uncertainties in conventional calibrations (~4-5% for H2O, 1-19% for F and Cl). However, potential systematic errors stem from the model assumption of 100% occupancy of this site by the measured elements. Use of this method simplifies analysis of H, F, and Cl in apatites by SIMS, and may also be amenable to other stoichiometrically limited substitution groups, including P+As+S+Si+C in apatite, and Zr+Hf+U+Th in non-metamict zircon.
High-transition-temperature superconductors in the Nb-Al-Ge system
Giorgi, A.L.; Szklarz, E.G.
1972-09-26
The patent describes superconducting materials of the nominal composition Nb(x)Al(y)Ge(l-y), where x is in the range of 1.9 to 2.8 and y is in the range of 0.5 to 0.9, having transition temperatures in the 19 -20K. range which are readily produced by annealing arc-melted compositions, or cold-pressed, heat-treated compositions at moderate temperatures for reasonably long times (about 50 hours).
NASA Technical Reports Server (NTRS)
Ellis, J. R.; Sandlass, G. S.; Bayyari, M.
2001-01-01
A design study was undertaken to investigate the feasibility of using simple specimen designs and reusable fixturing for in-plane biaxial tests planned for advanced aeropropulsion materials. Materials of interest in this work include: advanced metallics, polymeric matrix composites, metal and intermetallic matrix composites, and ceramic matrix composites. Early experience with advanced metallics showed that the cruciform specimen design typically used in this type of testing was impractical for these materials, primarily because of concerns regarding complexity and cost. The objective of this research was to develop specimen designs, fixturing, and procedures which would allow in-plane biaxial tests to be conducted on a wide range of aeropropulsion materials while at the same time keeping costs within acceptable limits. With this goal in mind. a conceptual design was developed centered on a specimen incorporating a relatively simple arrangement of slots and fingers for attachment and loading purposes. The ANSYS finite element code was used to demonstrate the feasibility of the approach and also to develop a number of optimized specimen designs. The same computer code was used to develop the reusable fixturing needed to position and grip the specimens in the load frame. The design adopted uses an assembly of slotted fingers which can be reconfigured as necessary to obtain optimum biaxial stress states in the specimen gage area. Most recently, prototype fixturing was manufactured and is being evaluated over a range of uniaxial and biaxial loading conditions.
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-01-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-10-26
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less
Petroleomics: the next grand challenge for chemical analysis.
Marshall, Alan G; Rodgers, Ryan P
2004-01-01
Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry has recently revealed that petroleum crude oil contains heteroatom-containing (N,O,S) organic components having more than 20,000 distinct elemental compositions (C(c)H(h)N(n)O(o)S(s)). It is therefore now possible to contemplate the ultimate characterization of all of the chemical constituents of petroleum, along with their interactions and reactivity, a concept we denote as "petroleomics". Such knowledge has already proved capable of distinguishing petroleum and its distillates according to their geochemical origin and maturity, distillation cut, extraction method, catalytic processing, etc. The key features that have opened up this new field have been (a) ultrahigh-resolution FT-ICR mass analysis, specifically, the capability to resolve species differing in elemental composition by C(3) vs SH(4) (i.e., 0.0034 Da); (b) higher magnetic field to cover the whole mass range at once; (c) dynamic range extension by external mass filtering; and (d) plots of Kendrick mass defect vs nominal Kendrick mass as a means for sorting different compound "classes" (i.e., numbers of N, O, and S atoms), "types" (rings plus double bonds), and alkylation ((-CH(2))(n)) distributions, thereby extending to >900 Da the upper limit for unique assignment of elemental composition based on accurate mass measurement. The same methods are also being applied successfully to analysis of humic and fulvic acids, coals, and other complex natural mixtures, often without prior or on-line chromatographic separation.
Zhang, Panjie; Cui, Xiangqian; Yang, Xiaoling; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang; Lu, Runhua
2016-01-01
A β-cyclodextrin-modified attapulgite composite was prepared and used as a dispersive micro-solid-phase extraction sorbent for the determination of benzoylurea insecticides in honey samples. Parameters that may influence the extraction efficiency, such as the type and volume of the eluent, the amount of the sorbent, the extraction time and the ionic strength were investigated and optimized using batch and column procedures. Under optimized conditions, good linearity was obtained for all of the tested compounds, with R(2) values of at least 0.9834. The limits of detection were determined in the range of 0.2-1.0 μg/L. The recoveries of the four benzoylurea insecticides in vitex honey and acacia honey increased from 15.2 to 81.4% and from 14.2 to 82.0%, respectively. Although the β-cyclodextrin-modified attapulgite composite did not show a brilliant adsorption capacity for the selected benzoylurea insecticides, it exhibited a higher adsorption capacity toward relatively hydrophobic compounds, such as chlorfluazuron and hexaflumuron (recoveries in vitex honey samples ranged from 70.0 to 81.4% with a precision of 1.0-3.7%). It seemed that the logPow of the benzoylurea insecticides is related to their recoveries. The results confirmed the possibility of using cyclodextrin-modified palygorskite in the determination of relatively hydrophobic trace pharmaceutical residues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Willemet, Romain
2012-05-18
The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular ("mosaic evolution") to coordinated changes in brain structure size ("concerted evolution") or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a "taxon cerebrotype". In other taxa, no clear pattern is found, reflecting heterogeneity of the species' lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex "space" of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution.
Understanding the Evolution of Mammalian Brain Structures; the Need for a (New) Cerebrotype Approach
Willemet, Romain
2012-01-01
The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular (“mosaic evolution”) to coordinated changes in brain structure size (“concerted evolution”) or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a “taxon cerebrotype”. In other taxa, no clear pattern is found, reflecting heterogeneity of the species’ lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex “space” of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution. PMID:24962772
Thermal design of composite materials high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
The thermal aspects of using filamentary composite materials as primary airframe structures on advanced atmospheric entry spacecraft such as the space shuttle vehicle were investigated to identify and evaluate potential design approaches for maintaining composite structures within allowable temperature limits at thermal protection system (TPS) attachments and/or penetrations. The investigation included: (1) definition of thermophysical data for composite material structures; (2) parametric characterization and identification of the influence of the aerodynamic heating and attachment design parameters on composite material temperatures; (3) conceptual design, evaluation, and detailed thermal analyses of temperature limiting design concepts; and (4) the development of experimental data for assessment of the thermal design methodologies and data used for evaluation of the temperature-limiting design concepts. Temperature suppression attachment concepts were examined for relative merit. The simple isolator was identified as the most weight-effective concept and was selected for detail design, thermal analysis, and testing. Tests were performed on TPS standoff attachments to boron/aluminum, boron/polyimide and graphite/epoxy composite structures.
Paulson, Anthony J.; Wagner, Richard J.; Sanzolone, Richard F.; Cox, Steven E.
2006-01-01
Twenty-eight composite and replicate sediment samples from 8 Lake Roosevelt sites were collected and analyzed for 10 alkali and alkaline earth elements, 2 non-metals, 20 metals, and 4 lanthanide and actinide elements. All elements were detected in all sediment samples except for silver (95 percent of the elements detected for 1,008 analyses), which was detected only in 4 samples. Sequential selective extraction procedures were performed on single composite samples from the eight sites. The percentage of detections for the 31 elements analyzed ranged from 76 percent for the first extraction fraction using a weak extractant to 93 percent for the four-acid dissolution of the sediments remaining after the third sequential selective extraction. Water samples in various degrees of contact with the sediment were analyzed for 10 alkali and alkaline earth elements, 5 non-metals, 25 metals, and 16 lanthanide and actinide elements. The filtered water samples included 10 samples from the reservoir water column at 8 sites, 32 samples of porewater, 55 samples from reservoir water overlying sediments in 8 cores from the site incubated in a field laboratory, and 24 water samples that were filtered after being tumbled with sediments from 8 sites. Overall, the concentrations of only 37 percent of the 6,776 analyses of the 121 water samples were greater than the reporting limit. Selenium, bismuth, chromium, niobium, silver, and zirconium were not detected in any water samples. The percentage of concentrations for the water samples that were above the reporting limit ranged from 14 percent for the lanthanide and actinide elements to 77 percent for the alkali and alkaline earth elements. Concentrations were greater than reporting limits in only 23 percent of the analyses of reservoir water and 29 percent of the analyses of reservoir water overlying incubation cores. In contrast, 47 and 48 percent of the concentrations of porewater and water samples tumbled with sediments, respectively, were greater than the reporting limit.
NASA Astrophysics Data System (ADS)
Clancy, R. T.; Smith, M. D.; Wolff, M. J.; Toigo, A. D.; Seelos, K. D.; Murchie, S. L.
2016-12-01
Since 2009, the CRISM visible-nearIR imaging spectrometer onboard the Mars Reconnaissance Orbiter (MRO) has returned over 70 orbits of Mars limb image scans over the 0-130 km altitude range. Pole-to-pole latitudinal coverage is obtained from the near-polar, sun-synchronous (LT 3pm) MRO orbit for a limited set of surface longitudes centered on Tharsis, Valles Mariners, Meridioni, and Hellas regions. Seasonal coverage extends over the full seasonal range (Ls=0-360°), as accumulated over 2009-2016 (MY 29-33), supporting a range of aerosol and airglow studies (Smith et al., 2013; Clancy et al., 2012, 2013). The 0.4-4.0 μm wavelength range of these CRISM limb observations proves particularly suitable to characterizing aerosol composition and particle sizes, particularly for the Mars mesosphere (z=50-100 km), which has only recently been observed with any dedication by MCS (Sefton-Nash et al, 2013) and CRISM limb measurements. Dust and H2O, CO2 ice aerosols are clearly distinguished by their distinct scattering and absorption behaviors over the key 2-4 μm wavelength region, and their particle sizes are well determined by the 0.4-3 μm wavelength region. Several key attributes are determined for Mars mesospheric aerosols. Dust aerosols are largely undetected, and are apparently injected to such heights only during global dust storms (Clancy et al, 2010). Ice clouds are generally common at 55-75 km altitudes, although in separate halves of the Mars year. CO2 and H2O ice clouds are most prominent during the aphelion and perihelion portions of the Mars orbit, respectively. CO2 ice clouds, which occur at low latitudes over specific surface longitudes, present distinct particle size populations ranging from 0.5 to 1.5 μm (Reff). Mesospheric H2O ice clouds exhibit somewhat smaller particle sizes (Reff=0.3-1 μm) and extend over low to mid latitudes. This orbital dependence for mesospheric ice aerosol composition indicates extreme annual (orbital) variation in mesospheric water vapor.
NASA Technical Reports Server (NTRS)
Beier, J. A.; Hayes, J. M.
1989-01-01
The upper part of the New Albany Shale is divided into three members. In ascending order, these are (1) the Morgan Trail Member, a laminated brownish-black shale; (2) the Camp Run Member, an interbedded brownish-black and greenish-gray shale; and (3) the Clegg Creek Member, also a laminated brownish-black shale. The Morgan Trail and Camp Run Members contain 5% to 6% total organic carbon (TOC) and 2% sulfide sulfur. Isotopic composition of sulfide in these members ranges from -5.0% to -20.0%. C/S plots indicate linear relationships between abundances of these elements, with a zero intercept characteristic of sediments deposited in a non-euxinic marine environment. Formation of diagenetic pyrite was carbon limited in these members. The Clegg Creek Member contains 10% to 15% TOC and 2% to 6% sulfide sulfur. Isotopic compositions of sulfide range from -5.0% to -40%. The most negative values occur in the uppermost Clegg Creek Member and are characteristic of syngenetic pyrite, formed within an anoxic water column. Abundances of carbon and sulfur are greater and uncorrelated in this member, consistent with deposition in as euxinic environment. In addition, DOP (degree of pyritization) values suggest that formation of pyrite was generally iron limited throughout Clegg Creek deposition, but sulfur isotopes indicate that syngenetic (water-column) pyrite becomes an important component in the sediment only in the upper part of the member. At the top of the Clegg Creek Member, a zone of phosphate nodules and trace-metal enrichment coincides with maximal TOC values. During euxinic deposition, phosphate and trace metals accumulated below the chemocline because of limited vertical circulation in the water column. Increased productivity would have resulted in an increased flux of particulate organic matter to the sediment, providing an effective sink for trace metals in the water column. Phosphate and trace metals released from organic matter during early diagenesis resulted in precipitation of metal-rich phosphate nodules.
Enzymatic Regulation of Organic Matter Metabolism in Siberia's Kolyma River Watershed
NASA Astrophysics Data System (ADS)
Mann, P. J.; Sobczak, W. V.; Vonk, J. E.; Davydova, A.; Schade, J. D.; Bulygina, E. B.; Davydov, S.; Zimov, N.; Holmes, R. M.
2011-12-01
Arctic soils contain vast amounts of ancient organic carbon locked up in permafrost. This organic matter can be unlocked via permafrost thaw and bacterial processing. Microbial communities release enzymes into the environment (ectoenzymes) as a means of degrading organic matter and to acquire carbon, nitrogen and phosphorus for assimilation. Limited ectoenzyme production, or unfavourable in-situ conditions (e.g. temperature, oxygen) can limit degradation of permafrost on land. Environmental conditions may become more favourable for bacterial degradation as carbon compounds are released from permafrost into Arctic streams and rivers. We measured the potential activities of a suite of ectoenzymes within surface waters collected from a range of streams and rivers throughout the Kolyma River basin, Siberia. Ectoenzyme activities were additionally measured in Kolyma river waters collected at three distinct periods of the hydrograph (under-ice, freshet and summer conditions). In total, seven enzymes were studied allowing bacterial requirements for a wide range of compounds including lignin, carbohydrates, proteins and cellulose to be assessed. To investigate the lability of the carbon pool within these waters, we measured the biological oxygen demand over 5 days (BOD). Significant correlations were observed between phenol oxidase activity and BOD across all of the study sites, suggesting the rate of phenolic degradation may be a controlling factor in organic carbon metabolism. The activity rate in ectoenzymes that catalyze phosphate, lignin and carbon substrates varied significantly within the Kolyma river over the hydrograph, indicating that seasonal changes in organic matter composition may also shift the limiting resource for bacterial degradation. High activity rates in ectoenzymes that catalyze lignin, chitin, cellulose and proteins were measured in waters draining permafrost ice complexes. These results suggest that organic carbon is continually processed throughout the stream network, and that its ultimate fate is linked to organic matter composition. We demonstrate that organic carbon derived from ancient permafrost thaw may be highly labile to bacterial communities within Arctic aquatic ecosystems.
Development of ingan quantum dots by the Stranski-Krastanov method and droplet heteroepitaxy
NASA Astrophysics Data System (ADS)
Woodward, Jeffrey Michael
The development of InGaN quantum dots (QDs) is both scienti?cally challenging and promising for applications in visible spectrum LEDs, lasers, detectors, electroabsorption modulators and photovoltaics. Such QDs are typically grown using the Stranski-Krastanov (SK) growth mode, in which accumulated in-plane compressive strain induces a transition from 2D to 3D growth. This method has a number of inherent limitations, including the unavoidable formation of a 2D wetting layer and the di?culty of controlling the composition, areal density, and size of the dots. In this research, I have developed InGaN QDs by two methods using a plasma-assisted molecular beam epitaxy reactor. In the ?rst method, InGaN QDs were formed by SK growth mode on (0001) GaN/sapphire. In the second, I have addressed the limitations of the SK growth of InGaN QDs by developing a novel alternative method, which was utilized to grow on both (0001) GaN/sapphire and AlN/sapphire. This method relies upon the ability to form thermodynamically stable In-Ga liquid solutions throughout the entire compositional range at relatively low temperatures. Upon simultaneous or sequential deposition of In and Ga on a substrate, the adatoms form a liquid solution, whose composition is controlled by the ratio of the fluxes of the two constituents FIn/(FIn+FGa ). Depending on the interfacial free energy between the liquid deposit and substrate, the liquid deposit and vapor, and the vapor and substrate, the liquid deposit forms Inx-Ga1- x nano-droplets on the substrate. These nano-droplets convert into InxGa1-xN QDs upon exposure to nitrogen RF plasma. InGaN QDs produced by both methods were investigated in-situ by reflection high-energy electron diffraction and ex-situ by atomic force microscopy, field emission scanning electron microscopy, transmission electron microscopy, high resolution x-ray diffraction, and grazing incidence small angle x-ray scattering. The optical activity and device potential of the QDs were investigated by photoluminescence measurements and the formation and evaluation of PIN devices (in which the intrinsic region contains QDs embedded within a higher bandgap matrix). InGaN QDs with areal densities ranging from 109 to 1011 cm -2 and diameters ranging from 11 to 39 nm were achieved.
NASA Astrophysics Data System (ADS)
Ridolfi, Filippo; Renzulli, Alberto
2012-05-01
The following article presents constraints of the stability of Mg-rich (Mg/(Mg + Fe2+) > 0.5) calcic amphibole in both calc-alkaline and alkaline magmas, testing of previous thermobarometers, and formulation of new empirical equations that take into consideration a large amount of literature data (e.g. more than one thousand amphibole compositions among experimental and natural crystals). Particular care has been taken in choosing a large number of natural amphiboles and selecting quality experimental data from literature. The final database of experimental data, composed of 61 amphiboles synthesized in the ranges of 800-1,130°C and 130-2,200 MPa, indicates that amphibole crystallization occurs in a horn-like P- T stability field limited by two increasing curves (i.e. the thermal stability and an upper limit), which should start to bend back to higher pressures. Among calcic amphiboles, magnesiohornblendes and tschermakitic pargasites are only found in equilibrium with calc-alkaline melts and crystallize at relatively shallow conditions ( P up to ~1 GPa). Kaersutite and pargasite are species almost exclusively found in alkaline igneous products, while magnesiohastingsite is equally distributed in calc-alkaline and alkaline rocks. The reliability of previous amphibole applications was checked using the selected experimental database. The results of this testing indicate that none of the previous thermobarometers can be successfully used to estimate the P, T and fO2 in a wide range of amphibole crystallization conditions. Multivariate least-square analyses of experimental amphibole compositions and physico-chemical parameters allowed us to achieve a new thermobarometric model that gives reasonably low uncertainties ( T ± 23.5°C, P ± 11.5%, H2Omelt ± 0.78wt%) for calc-alkaline and alkaline magmas in a wide range of P- T conditions (up to 1,130°C and 2,200 MPa) and ΔNNO values (±0.37 log units) up to 500 MPa. The AK-[4]Al relation in amphibole can be readily used to distinguish crystals of calc-alkaline liquids from those of alkaline magmas. In addition, several chemometric equations allowing to estimate the anhydrous composition of the melts in equilibrium with amphiboles of calc-alkaline magmas were derived.
Effect of low velocity impact damage on the natural frequency of composite plates
NASA Astrophysics Data System (ADS)
Chok, E. Y. L.; Majid, D. L. A. A.; Harmin, M. Y.
2017-12-01
Biodegradable natural fibers have been suggested to replace the hazardous synthetic fibers in many aerospace applications. However, this notion has been limited due to their low mechanical properties, which leads to the idea of hybridizing the two materials. Many aircraft components such as radome, aft body and wing are highly susceptible to low velocity impact damage while in-service. The damages degrade the structural integrity of the components and change their dynamic characteristics. In worst case scenario, the changes can lead to resonance, which is an excessive vibration. This research is conducted to study the dynamic characteristic changes of low velocity impact damaged hybrid composites that is designed for aircraft radome applications. Three materials, which are glass fiber, kenaf fiber and kenaf/glass fiber hybrid composites, have been impacted with 3J, 6J and 9J of energy. Cantilevered and also vertically clamped boundary conditions are used and the natural frequencies are extracted for each of the specimens. The obtained results show that natural frequency decreases with increasing impact level. Cantilevered condition is found to induce lower modes due to the gravitational pull. To eliminate mass and geometrical effects, normalized modes are computed. Among the three materials considered, glass fiber composites have displayed the highest normalized frequency that reflects on its higher stiffness compared to the other two materials. As the damage level is increased, glass fiber composites have shown the highest frequency reduction to a maximum of 35% while kenaf composites have the least frequency reduction in the range of 1 - 18%. Thus, kenaf fiber is taken to be helpful in stalling the damage progression and reducing the effect of damage. This has been proven when the percentage frequency decrement shown by kenaf/glass fiber composite lies between glass fiber and kenaf fiber composites.
Selective removal of composite sealants with near-UV laser pulses
NASA Astrophysics Data System (ADS)
Louie, Tiffany M.; Jones, Robert S.; Sarma, Anupama V.; Fried, Daniel
2004-05-01
It is often necessary to replace pit and fissure sealants and composite restorations. This task is complicated by the necessity for complete removal of the remaining composite to enable suitable adhesion of new composite. Previous studies have shown that lasers pulses from a frequency-tripled Nd:YAG laser (355-nm) can selectively remove residual composite after orthodontic bracket removal on enamel surfaces. UV laser light is preferentially absorbed by polymeric resins and the organic content of the tooth enamel. The objective of this study was to determine if such laser pulses are suitable for selective removal of the old composite from pit and fissure sealants and restorations without damaging surrounding sound tissues. Optical coherence tomography was used to acquire optical cross sections of the occlusal topography and peripheral tooth structure non-destructively before application of the sealants, after sealant application, and after sealant removal with 355-nm laser pulses with intensities ranging from 0-10 J/cm2. Thermocouples were used to monitor the temperature in the pulp chamber during composite removal under clinically relevant ablation rates, i.e., 30 Hz and 30 mJ per laser pulse. At an irradiation intensity of 1.3 J/cm2 pit and fissure sealants were completely removed without visible damage to the underlying enamel. At intensities above 1.5 J/cm2, the laser removes the resin layer while at the same time preferentially etching the surface of the enamel. Temperature excursions in the pulp chamber of extracted teeth was limited to less than 5°C if air-cooling was used during the rapid removal (1-2 min) of sealants, water-cooling was not needed. This is the first presentation of a method for the selective removal of composite restorative materials without damage to the underlying sound tooth structure.
Polymerization kinetics of experimental bioactive composites containing bioactive glass.
Par, Matej; Tarle, Zrinka; Hickel, Reinhard; Ilie, Nicoleta
2018-06-21
To investigate the polymerization kinetics and the degree of conversion (DC) of experimental resin composites with varying amount of bioactive glass 45S5 (BG). Experimental resin composites based on a photo-curable Bis-GMA/TEGDMA resin system were prepared. The composite series contained 0, 5, 10, 20, and 40 wt% of BG and reinforcing fillers up to the total filler amount of 70 wt%. Composite specimens were light cured with 1,219 mW/cm 2 for 20 or 40 s and their DC was monitored during 5 min at the data collection rate of 2 s -1 using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The 5-min DC values for experimental composites were in the range of 42.4-55.9% and 47.3-57.9% for curing times of 20 and 40 s, respectively. The differences in the 5-min DC between curing times of 20 s or 40 s became more pronounced in materials with higher BG amount. Within both curing times, a decreasing trend of the 5-min DC values was observed with the increasing percentage of BG fillers. The maximum polymerization rate also decreased consistently with the increasing BG amount. Unsilanized BG fillers showed a dose-dependent inhibitory effect on polymerization rate and the DC. Extending the curing time from 20 to 40 s showed a limited potential to improve the DC of composites with higher BG amount. The observed inhibitory effect of BG fillers on the polymerization of resin composites may have a negative influence on mechanical properties and biocompatibility. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gholami, Fatemeh; Noor, Ahmad-Fauzi Mohd
2016-12-01
The similarity of the chemical composition of HA to the mineral phase of bone and its excellent biocompatibility meets the requirement of materials designed for bone substitute purpose. The application of HA in load bearing devices is limited by its poor mechanical properties. CNTs with outstanding stiffness, strength, combined with their small size and large interfacial area, suggest that they may have great potential as a reinforcing agent for HA. This work aims to develop the Hydroxyapatite/Multi-walled Carbon Nanotubes/Bovine Serum Albumin (HA/MWCNTs/BSA) composites with different types of MWCNTs including hydroxylated and carboxylated MWCNTs (MWCNTs-OH, MWCNTs-COOH), and evaluation of mechanical strength and in vitro cellular response of developed composites. HA powder was mixed with de-ionized water, 15 wt.% BSA, and 0.5 wt.% of different MWCNTs* (> 95%), MWCNTs (> 99.9%), MWCNTs-OH (> 99.9%), MWCNTs-COOH (> 99.9%) to produce composites. Among all developed composites, the HA/MWCNTs-COOH/BSA shows the highest compressive strength (29.57 MPa). The cytotoxic effect of HA/MWCNTs-COOH/BSA with different concentrations (6.25 to 200 µg/ml) was evaluated by MTT assay against normal human colon fibroblast (CCD-18Co cell line). At low concentration, all developed composites were found to be non-cytotoxic when treated to the human fibroblast cells and did not elicit cytotoxic effects on cell proliferation and the highest values of cell viability (283%) for the HA/MWCNTs-COOH/BSA composites obtained; whereas when the concentration was increased, the reduction in cell viability was observed. The novel composites showed favorable cytocompatibility with improved compressive strength which make it applicable to use in range of trabecular bone.
NASA Astrophysics Data System (ADS)
Darling, W. G.; Bath, A. H.; Talbot, J. C.
The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic "baseline" for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003) considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams) are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history) could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers some ‰ for δ18O and 30‰ for δ2H. Over lowland areas the "altitude effect" is of little significance, but in upland areas is consistent with a range of -0.2 to -0.3‰ per 100 m increase in altitude. Groundwaters dating from the late Pleistocene are usually modified in δ18O and δ2H owing to the effects of climate change on the isotopic composition of rainfall and thus of recharge. Contour maps of isotopic variability prior to 10 ka BP, based on the relatively limited information available from the British Isles, allow a first comparison between groundwaters now and at the end of the last Ice Age. The position of the British Isles in the context of the stable isotope systematics of NW Europe is reviewed briefly.
Composition-dependent stability of the medium-range order responsible for metallic glass formation
Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...
2014-09-18
The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less
NASA Technical Reports Server (NTRS)
Gajiwala, Himansu M. (Inventor)
2010-01-01
An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.
NASA Technical Reports Server (NTRS)
Gajiwala, Himansu M. (Inventor)
2011-01-01
An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.
NASA Astrophysics Data System (ADS)
Xie, Shuai; Wang, Jing; Wang, Wufeng; Hou, Guoyan; Li, Bin; Shui, Zhonghe; Ji, Zhijiang
2018-02-01
In order to develop a cement based composites with high electromagnetic (EM) wave absorbing performance, helical carbon fibers (HCFs) were added into the cement matrix as an absorbent. The reflection loss (RL) of the prepared HCFs/cement based composites was studied by arched testing method in the frequency ranges of 1-8 GHz and 8-18 GHz. The results show that the EM wave absorption properties of the cement based composites can be evidently enhanced by the addition of HCFs. The composites with 1.5% HCFs exhibits optimum EM wave absorption performance in the frequency range of 1-8 GHz. However, in 8-18 GHz frequency range, the EM wave absorption performance of the cement composites with 1% HCFs is much better than others. The RL values of the prepared HCFs/cement based composites are less than -5 dB in the whole testing frequency regions, which can be attributed to the strong dielectric loss ability and unique chiral structure of HCFs.
Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen
2015-01-01
A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632
Ashley, Roger P.; Goetz, A.F.H.; Rowan, L.C.; Abrams, M.J.
1979-01-01
The Virginia Range, immediately southeast of Reno, Nev., consists mainly of flows, breccias, and turfs of Miocene age. Most of these volcanic rocks are of intermediate composition; rhyodacite is the most common rock type. Basalt, rhyolite and rhyolite tuff, and tuffaceous sedimentary rocks of Miocene and Pliocene age also cover substantial areas in the range. Pre-Tertiary metasedimentary, metavolcanic, and granitic rocks are exposed in scattered inliers, mostly along the southern and eastern margins of the range. Several large areas and many small areas within the volcanic pile were subjected to hydrothermal alteration during and after the period of intermediate volcanic activity. Economic precious metal mineralization is spatially and temporally associated with the hydrothermal alteration in several areas. The most important deposit is the Comstock Lode, which produced 192 million troy ounces of silver and 8.3 million troy ounces of gold from epithermal veins (Bonham, 1969). The hydrothermally altered rocks include silicified, advanced argillic, montmorillonite-bearing argillic, and propylitic types. The first three types typically contain pyrite, and some propylitic rocks contain pyrite as well. Supergene oxidation of these pyritic rocks produces limonitic bleached rocks. The term 'limonite,' as used here, refers to any combination of the minerals hematite, goethite, and Jarosite. Where vegetation cover is sparse to moderate, these limonitic rocks are readily identified on Landsat images enhanced by the color-ratio composite technique developed by Rowan and others (1974), so the altered areas can be mapped. About 30 percent tree cover (here mainly pinyon pine) is sufficient to change the spectral signature of individual picture elements (pixels) enough so that limonitic materials can no longer be uniquely identified. As in all other areas where this technique has been applied, limonitic unaltered rocks with intermediate to high albedos have the same appearance on the color-ratio composite as limonitic altered rocks. This problem represents the most important limitation to the use of enhanced Landsat images for detection and mapping of hydrothermally altered rocks. Reflectance spectra of altered and unaltered rocks taken in the field in the Virginia Range show that most altered rocks have a conspicuous absorption band near 2.2 ?m produced by clay minerals or alunite, whereas unaltered rocks have no features in this spectral region. Thus spectral information for selected bands in the 1.1-2.5 ?m region may allow discrimination between limonitic altered and limonitic unaltered rocks (Rowan and others, 1977; Abrams and others, 1977; Rowan and Abrams, 1978). Another potential limitation is loss of spectral information on slopes with low effective sun angle. Although a minor problem in the Virginia Range, loss of information sufficient to preclude identification of limonitic altered rocks occurs with effective sun angle lower than 20-25 degrees. Thus, even at moderate latitudes substantial parts of areas with high topographic relief may be lost to observation.
Himeda, Makhlouf; Njintang Yanou, Nicolas; Fombang, Edith; Facho, Balaam; Kitissou, Pierre; Mbofung, Carl M F; Scher, Joel
2014-09-01
The physicochemical, alveographic and sensory characteristics of precooked taro-wheat composite flours and their biscuits were investigated. A 2x7 factorial design consisting of two varieties of taro flour (Red Ibo Ngaoundere, RIN, and egg-like varieties) and 7 levels of wheat substitutions (0, 5, 10, 15, 20, 25 and 30 %) was used for this purpose. It was observed that water absorption capacity (range 95-152 g/100 g), water solubility index (range 18.8-29.5 g/100 g) and swelling capacity (range 125.4-204.6 mL/100 g) of composite flours significantly (p < 0.05) increased with increase in taro level. Conversely the dough elasticity index (range 59.8-0 %), extensibility (78-22 mm) and strength (range 281-139 × 10(-4) joules) significantly (p < 0.05) diminished with increase in wheat substitution. Up to 10 % substitution with RIN taro flour and 15 % with egg-like taro flour, the composite taro-wheat dough exhibited elasticity indices acceptable for the production of baking products, whereas at all levels of taro substitution, the composite biscuits samples were either acceptable as or better (5-10 % substitution with RIN flour) than 100 % wheat biscuit.
NASA Astrophysics Data System (ADS)
Xu, Dapeng; Zhang, Song; Yang, Wei; Chen, Jian
2017-10-01
Centimeter level AgCuAu composite nanowires were prepared by a solid-state ionics method under a direct current electric field (DCEF) using fast ionic conductor RbAg4I5 films and vacuum thermal evaporation method. The surface morphology and chemical composition of the AuAgCu composite nanowires were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Raman enhancement performance of the AgCuAu composite nanowires substrates was detected by Rhodamine 6G (R6G) aqueous solutions as probe molecules. Long-range order and short-range order AgCuAu composite nanowires with the length of 1 cm were prepared. The nanowires were bamboo-shaped with high surface roughness and the diameters of nanowires ranged from 60 to 100 nm. The molar ratio of Ag:Cu:Au in composite nanowires is 15:2:1. The intrinsic Raman peaks of 10-16 mol/L R6G at 612, 773, 1125, 1182, 1307, 1361, 1418, 1506, 1545, 1575, 1597, 1650 cm-1 are all present when AgCuAu composite nanowires were used as the SERS substrates.
Tu, Wenwen; Lei, Jianping; Ju, Huangxian
2009-01-01
A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.
C-QDs@UiO-66-(COOH)2 Composite Film via Electrophoretic Deposition for Temperature Sensing.
Feng, Ji-Fei; Gao, Shui-Ying; Shi, Jianlin; Liu, Tian-Fu; Cao, Rong
2018-03-05
Temperature plays a crucial role in both scientific research and industry. However, traditional temperature sensors, such as liquid-filled thermometers, thermocouples, and transistors, require contact to obtain heat equilibrium between the probe and the samples during the measurement. In addition, traditional temperature sensors have limitations when being used to detect the temperature change of fast-moving samples at smaller scales. Herein, the carbon quantum dots (C-QDs) functionalized metal-organic framework (MOF) composite film, a novel contactless solid optical thermometer, has been prepared via electrophoretic deposition (EPD). Instead of terephthalic acid (H 2 BDC), 1',2',4',5'-benzenetetracarboxylic (H 4 BTEC) acid was employed to construct a UiO-66 framework to present two uncoordinated carboxylic groups decorated on the pore surface. The uncoordinated carboxylic groups can generate negative charges, which facilitates the deposition of film on the positive electrode during the EPD process. Moreover, UiO-66-(COOH) 2 MOFs can absorb C-QDs from the solution and prevent C-QDs from aggregating, and the well-dispersed C-QDs impart fluorescence characteristics to composites. As-synthesized composite film was successfully used to detect temperature change in the range of 97-297 K with a relative sensitivity up to 1.3% K -1 at 297 K.