Science.gov

Sample records for linac-based isocentric electron-photon

  1. Planning and delivery comparison of six linac-based stereotactic radiosurgery techniques

    NASA Astrophysics Data System (ADS)

    Thakur, Varun Singh

    This work presents planning and delivery comparison of linac-based SRS treatment techniques currently available for single lesion cranial SRS. In total, two dedicated SRS systems (Novalis Tx, Cyberknife) and a HI-ART TomoTherapy system with six different delivery techniques are evaluated. Four delivery techniques are evaluated on a Novalis Tx system: circular cones, dynamic conformal arcs (DCA), static non-coplanar intensity modulated radiotherapy (NCP-IMRT), and volumetric modulated arc therapy (RapidArc) techniques are compared with intensity modulation based helical Tomotherapy on the HI-ART Tomotherapy system and with non-isocentric, multiple overlapping based robotic radiosurgery using the CyberKnife system. Thirteen patients are retrospectively selected for the study. The target volumes of each patient are transferred to a CT scan of a Lucy phantom (Standard Imaging Inc., Middleton, WI, USA) designed for end-to-end SRS QA. In order to evaluate the plans, several indices scoring the conformality, homogeneity and gradients in the plan are calculated and compared for each of the plans. Finally, to check the clinical deliverability of the plans and the delivery accuracy of different systems, a few targets are delivered on each system. A comparison between planned dose on treatment planning system and dose delivered on Gafchromic EBT film (ISP, Wayne, New Jersey, USA) is carried out by comparing dose beam profiles, isodose lines and by calculating gamma index.

  2. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  3. Coupled electron-photon radiation transport

    SciTech Connect

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-17

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport.

  4. Poster — Thur Eve — 65: A dosimetric comparison of isocentric and non-isocentric coplanar SBRT VMAT plans for peripheral lung tumours

    SciTech Connect

    Conroy, L; Liu, HW; Lau, H; Smith, WL

    2014-08-15

    Volumetric modulated arc therapy (VMAT) delivers lung sterotactic body radiotherapy (SBRT) in shorter treatment time and less monitor units with comparable coverage and organ at risk sparing compared to conventional SBRT treatments. Isocentric VMAT treatment of peripheral lung tumours occasionally requires couch shifts that can inhibit 360° gantry rotation, resulting in additional imaging shifts for each treatment session, and increased potential for involuntary in-fraction motion. Here, we investigate whether non-isocentric VMAT plans can achieve comparable plan quality to isocentric plans for peripheral lung tumours. Three patient plans were selected with targets displaced > 8.5 cm (range: 8.8 – 9.9 cm) laterally from patient midline. For each patient, a plan with isocentre placed within the target volume (isocentric plan) was created and optimized. The same optimization parameters were then used to create a plan with the isocentre at patient midline (non-isocentric plan). Plan quality was evaluated and compared based on planning target volume (PTV) coverage, high dose spillage, dose homogeneity, intermediate dose spillage, dose fall-off gradient, and organ at risk contraints. Non-isocentric plans of equivalent plan quality to isocentric plans were achieved for all patients by optimizing collimator rotations. Field isocentres can be placed at patient midline, as opposed to inside the target volume, with no significant degradation in VMAT plan quality for lateral tumour displacements up to 10 cm. Non-isocentric treatment of peripheral lung tumours could result in decreased overall treatment session time and eliminate the need for imaging shifts prior to VMAT treatment.

  5. The linear accelerator mechanical and radiation isocentre assessment with an electronic portal imaging device (EPID).

    PubMed

    Liu, G; van Doorn, T; Bezak, E

    2004-09-01

    Regular checks on the performance of radiotherapy treatment units are essential and a variety of protocols has been published. These protocols identify that the determination of isocentre must be accurate and unambiguous since both the localization of a radiation field on a patient and positioning aids are referenced to it. An EPID (BIS 710) with a combined light and radiation scintillation detector screen was used to assess mechanical and radiation isocentres for different collimator and gantry angles. Crosshair positions within light field images were determined from fitted Gaussian intensity profiles and then used to calculate the displacement of the mechanical isocentre. For comparison, the position of the crosshair was also recorded on a graph paper. The radiation field centre was first calculated from the set up geometry for given gantry/collimator angles and then compared with measured values to assess the displacement of the radiation isocentre. The radiation isocentre was also checked by locating a marker, positioned on the couch, on the EPID radiation images for different treatment couch angles. The mechanical and radiation isocentres were determined from the EPID light field and radiation images respectively with an accuracy of 0.3 mm using simple PC based programs. The study has demonstrated the feasibility of using the EPID to assess mechanical and radiation isocentres of a linear accelerator in a quick and efficient way with a higher degree of accuracy achieved as compared to more conventional methods, e.g. the star shot.

  6. Isocentric stereotactic three-dimensional digitizer for neurosurgery.

    PubMed

    Takizawa, T

    1993-01-01

    A new system has been developed, comprising a frameless isocentric stereotactic mechanism and a three-dimensional (3-D) digitizer for intraoperative spatial monitoring. The 3-D digitizer's multiarticulated arm has three joints related to Cartesian coordinates, two quadrant arcs forming an isocenter system, a microdrive, and a probe holder. The frameless isocentric mechanism is useful for open stereotaxy. Routine CT- or MRI-guided stereotactic surgery is also possible, due to the high level of accuracy of the system. Before surgery, CT and/or MR images are acquired after placing on the scalp three or four external markers. For surgical procedures which require high accuracy, Laitinen's noninvasive CT or MRI localizing markers are used. CT or MR images are entered into a computer using an image scanner, and are stored on a floppy disk. After the patient's head is fixed to the operating table using a Mayfield clamp, the 3-D digitizer is used to read the spatial points and external markers on the scalp or the reference points of Laitinen's localizing markers. During the procedure, the coordinates on the patient's head are automatically entered into the computer and matched with those of the 3-D digitizer and CT/MR images on the CRT display. This system has been used in 22 cases of open craniotomy and 33 cases of burr hole surgery, both carried out using the stereotactic function and the 3-D spatial monitoring function in parallel. Errors in mechanical accuracy of the 3-D digitizer were less than 0.8 mm, and the maximum error during operation was presumed not to exceed 2 mm.

  7. Electron/Photon Verification Calculations Using MCNP4B

    SciTech Connect

    D. P. Gierga; K. J. Adams

    1999-04-01

    MCNP4BW was released in February 1997 with significant enhancements to electron/photon transport methods. These enhancements have been verified against a wide range of published electron/photon experiments, spanning high energy bremsstrahlung production to electron transmission and reflection. The impact of several MCNP tally options and physics parameters was explored in detail. The agreement between experiment and simulation was usually within two standard deviations of the experimental and calculational errors. Furthermore, sub-step artifacts for bremsstrahlung production were shown to be mitigated. A detailed suite of electron depth dose calculations in water is also presented. Areas for future code development have also been explored and include the dependence of cell and detector tallies on different bremsstrahlung angular models and alternative variance reduction splitting schemes for bremsstrahlung production.

  8. A new approach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries

    NASA Astrophysics Data System (ADS)

    Skworcow, Piotr; Mills, John A.; Haas, Olivier C. L.; Burnham, Keith J.

    2007-12-01

    In this paper a new method is proposed to quantify and reduce the radiation beam position uncertainty due to the radiotherapy treatment machine gantry deflection. A new tool has been designed and manufactured to provide the means to measure the alignment of the collimator axis and of the beam central axis in space, using the NDI Polaris optical tracking system and Gafchromic® films. The tool can be mounted onto the accessory tray of the linacs from different manufacturers. The approach has been demonstrated with measurements of the mechanical isocentre being performed on ten linacs from three major manufacturers at four clinical sites. Measurements of the radiation isocentre were performed on a single linac. The collimator axis trajectory is modelled using a vector-end effector in order to provide more information than standard mechanical assessment methods. The method uses a mathematical optimization technique to calculate the position of the mechanical isocentre and the 'size' of the collimator axes intersection locus. Deviations of the collimator axes from the isocentre are expressed in terms of systematic and random error. The effects of measurement uncertainties are evaluated both via simulations and experimentally. The use of optical tracking and optimization techniques combined with an operator-induced measurement error compensation algorithm leads to a faster measurement of the mechanical isocentre (20 min for 24 angles) and eliminates operator-induced uncertainties. The uncertainty of the measurement of the mechanical isocentre was between 40 µm and 70 µm in terms of standard deviation. For some of the linacs assessed, the mechanical isocentre obtained using a standard approach with an adjustable pointer was displaced by over 1 mm from that found with the proposed method. The radii of the collimator axes intersection locus found with the proposed method were between 0.4 mm and 0.72 mm for the linacs assessed. Film measurement revealed a misalignment of

  9. An Electron/Photon/Relaxation Data Library for MCNP6

    SciTech Connect

    Hughes, III, H. Grady

    2015-08-07

    The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.

  10. Electronic/photonic interfaces for ultrafast data processing.

    SciTech Connect

    Overberg, Mark E.; Geib, Kent Martin; Serkland, Darwin Keith; Hsu, Alan Yuan-Chun; Keeler, Gordon Arthur; Finnegan, Patrick Sean

    2008-09-01

    This report summarizes a 3-month program that explored the potential areas of impact for electronic/photonic integration technologies, as applied to next-generation data processing systems operating within 100+ Gb/s optical networks. The study included a technology review that targeted three key functions of data processing systems, namely receive/demultiplexing/clock recovery, data processing, and transmit/multiplexing. Various technical approaches were described and evaluated. In addition, we initiated the development of high-speed photodetectors and hybrid integration processes, two key elements of an ultrafast data processor. Relevant experimental results are described herein.

  11. Electron photon verification calculations using MCNP4B

    SciTech Connect

    Gierga, D.P.; Adams, K.J.

    1998-07-01

    MCNP4B was released in February 1997 with significant enhancements to electron/photon transport methods. These enhancements have been verified against a wide range of published electron/photon experiments, spanning high energy bremsstrahlung production to electron transmission and reflection. Three sets of bremsstrahlung experiments were simulated. The first verification calculations for bremsstrahlung production used the experimental results in Faddegon for 15 MeV electrons incident on lead, aluminum, and beryllium targets. The calculated integrated bremsstrahlung yields, the bremsstrahlung energy spectra, and the mean energy of the bremsstrahlung beam were compared with experiment. The impact of several MCNP tally options and physics parameters was explored in detail. The second was the experiment of O`Dell which measured the bremsstrahlung spectra from 10 and 20.9 MeV electrons incident on a gold/tungsten target. The final set was a comparison of relative experimental spectra with calculated results for 9.66 MeV electrons incident on tungsten based on the experiment of Starfelt and Koch. The transmission experiments of Ebert were also studied, including comparisons of transmission coefficients for 10.2 MeV electrons incident on carbon, silver, and uranium foils. The agreement between experiment and simulation was usually within two standard deviations of the experimental and calculational errors.

  12. Radial Moment Calculations of Coupled Electron-Photon Beams

    SciTech Connect

    FRANKE,BRIAN C.; LARSEN,EDWARD W.

    2000-07-19

    The authors consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of 3-D beams of radiation as a function of depth into the slab, by solving systems of 1-D transport equations. They implement these radial moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified P{sub N} synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. They demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, they obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.

  13. On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers.

    PubMed

    Treuer, H; Hoevels, M; Luyken, K; Gierich, A; Kocher, M; Müller, R P; Sturm, V

    2000-08-01

    We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.

  14. Induction-linac based free-electron laser amplifiers for plasma heating

    NASA Astrophysics Data System (ADS)

    Jong, R. A.

    1988-08-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging from 280 to 560 GHz.

  15. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  16. Magnetic field contribution to the last electron-photon scattering

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2010-11-01

    When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.

  17. Dosimetric comparison of helical tomothearpy and linac-based IMRT in whole abdomen radiotherapy

    NASA Astrophysics Data System (ADS)

    Kang, Young-nam; Kim, Dae-Hyun; Jang, Hong Seok; Song, Jin Ho; Choi, Byung Ock; Cho, Seok Goo; Jung, Ji-Young; Kay, Chul Seung

    2012-10-01

    Recent advances in radiotherapy techniques have allowed a significant improvement in the therapeutic ratio of whole abdominal irradiation (WAI) through linear-accelerator (Linac) based intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT). IMRT has been shown to reduce the dose to organs at risk (OAR) while adequately treating the tumor volume. HT operates by adjusting 51 beam directions, couch speed, pitch and shapes of a binary multileaf collimator (MLC), with the purpose of clinically increasing the befit to the patient. We incorporated helical tomotherapy as a new modality for WAI for the treatment of non-Hodgkin's lymphoma patients whose disease involved the intestine and the mesenteric lymph nodes. Excellent tumor coverage with effective sparing of normal organ sparings, and homogeneous dose distribution could be achieved. This study dosimetrically compared HT and linac-based IMRT by using several indices, including the conformity index (CI) and the homogeneity index (HI) for the planning target volume (PTV), as well as the, max dose and the mean dose and the quality index (QI) for five organs at risk (OARs). The HI and the CI were used to compare the quality of target coverage while the QI was used compare the dosimetric performans for OAR systems. The target coverages between the two systems were similar, but the most QIs were lower than 1, what means that HT is batter at sparing OARs than IMRT. Tomotherapy enabled excellent target coverage, effective sparing of normal tissues, and homogeneous dose distribution without severe acute toxicity.

  18. Optimizing LINAC-based stereotactic radiotherapy of uveal melanomas: 7 years' clinical experience

    SciTech Connect

    Dieckmann, Karin . E-mail: Karin.Dieckmann@akhwien.at; Georg, Dietmar; Bogner, Joachim; Zehetmayer, Martin; Petersch, Bernhard; Chorvat, Martin; Weitmann, Hajo; Poetter, Richard

    2006-11-15

    Purpose: To report on the clinical outcome of LINAC-based stereotactic radiotherapy (SRT) of uveal melanomas. Additionally, a new prototype (hardware and software) for automated eye monitoring and gated SRT using a noninvasive eye fixation technique is described. Patients and Methods: Between June 1997 and March 2004, 158 patients suffering from uveal melanoma were treated at a LINAC with 6 MV (5 x 14 Gy; 5 x 12 Gy prescribed to 80% isodose) photon beams. To guarantee identical patient setup during treatment planning (CT and MRI) and treatment delivery, patients were immobilized with a BrainLAB thermoplastic mask. Eye immobilization was achieved by instructing the patient to fixate on a light source integrated into the mask system. A mini-video camera was used to provide on-line information about the eye and pupil position, respectively. A new CT and magnetic resonance (MR) compatible prototype, based on head-and-neck fixation and the infrared tracking system ExacTrac, has been developed and evaluated since 2002. This system records maximum temporal and angular deviations during treatment and, based on tolerance limits, a feedback signal to the LINAC enables gated SRT. Results: After a median follow-up of 33.4 months (range, 3-85 months), local control was achieved in 98%. Fifteen patients (9.0%) developed metastases. Secondary enucleation was performed in 23 patients (13.8%). Long-term side effects were retinopathy (n = 70; 44%), cataract (n = 30; 23%), optic neuropathy (n = 65; 41%), and secondary neovascular glaucoma (n = 23; 13.8%). Typical situations when preset deviation criteria were exceeded were slow drifts (fatigue), large sudden eye movements (irritation), or eye closing (fatigue). In these cases, radiation was reliably interrupted by the gating system. In our clinical setup, the novel system for computer-controlled gated SRT of uveal melanoma was well tolerated by about 30 of the patients treated with this system so far. Conclusion: LINAC-based SRT of

  19. High Repetition Rate, LINAC-Based Nuclear Resonance Fluorescence FY 2008 Final Report

    SciTech Connect

    Scott M Watson; Mathew T Kinlaw; James L Jones; Alan W. Hunt; Glen A. Warren

    2008-12-01

    This summarizes the first year of a multi-laboratory/university, multi-year effort focusing on high repetition rate, pulsed LINAC-based nuclear resonance fluorescence (NRF) measurements. Specifically, this FY2008 effort centered on experimentally assessing NRF measurements using pulsed linear electron accelerators, operated at various repetition rates, and identifying specific detection requirements to optimize such measurements. Traditionally, interest in NRF as a detection technology, which continues to receive funding from DHS and DOE/NA-22, has been driven by continuous-wave (CW), Van de Graff-based bremsstrahlung sources. However, in addition to the relatively sparse present-day use of Van de Graff sources, only limited NRF data from special nuclear materials has been presented; there is even less data available regarding shielding effects and photon source optimization for NRF measurements on selected nuclear materials.

  20. Update on the Innovative Carbon/Proton Non-Scaling FFAG Isocentric gantries for Cancer Therapy

    SciTech Connect

    Trbojevic, D.

    2010-05-23

    There is a dramatic increase in numbers of proton/carbon cancer therapy facilities in recent years due to a clear advantage with respect to the other radiation therapy treatments. Cost of the ion cancer therapy is still to high for most of the hospitals and a dominating part comes from the delivery systems. We had previously presented design of the carbon and proton isocentric gantries using the principle of the non-scaling alternating gradient fixed field magnets (NS-FFAG), where a size and weight of the magnets should be dramatically reduced. The weight of the transport elements of the carbon isocentric gantry is estimated to be 1.5 tons compared to the 130 tons a weight of the Heidelberg gantry. The similar claim of 500 kg comes for the transport elements of the proton permanent magnet gantry. We present an update on these designs.

  1. Linac-based stereotactic radiotherapy and radiosurgery in patients with meningioma

    PubMed Central

    2014-01-01

    Background It was our purpose to analyze long-term clinical outcome and to identify prognostic factors after Linac-based fractionated stereotactic radiotherapy (Linac-based FSRT) and stereotactic radiosurgery (SRS) in patients with intracranial meningiomas. Materials and methods Between 10/1995 and 03/2009, 297 patients with a median age of 59 years were treated with FSRT for intracranial meningioma. 50 patients had a Grade I meningioma, 20 patients had a Grade II meningioma, 12 patients suffered from a Grade III tumor, and in 215 cases no histology was obtained (Grade 0). Of the 297 patients, 144 underwent FSRT as their primary treatment and 158 underwent postoperative FSRT. 179 patients received normofractionated radiotherapy (nFSRT), 92 patients received hypofractionated FSRT (hFSRT) and 26 patients underwent SRS. Patients with nFSRT received a mean total dose of 57.31 ± 5.82 Gy, patients with hFSRT received a mean total dose of 37.6 ± 4.4 Gy and patients who underwent SRS received a mean total dose of 17.31 ± 2.58 Gy. Results Median follow-up was 35 months. Overall progression free survival (PFS) was 92.3% at 3 years, 87% at 5 years and 84.1% at 10 years. Patients with adjuvant radiotherapy showed significantly better PFS-rates than patients who had been treated with primary radiotherapy. There was no significant difference between PFS-rates of nFSRT, hFSRT and SRS patients. PFS-rates were independent of tumor size. Patients who had received nFSRT showed less acute toxicity than those who had received hFSRT. In the Grade 0/I group the rate of radiologic focal reactions was significantly lower than in the atypical/malignant histology group. Conclusion This large study showed that FSRT is an effective and safe treatment modality with high PFS-rates for intracranial meningioma. We identified “pathological grading” and and “prior surgery” as significant prognostic factors. PMID:24650090

  2. Dosimetry of Gamma Knife and linac-based radiosurgery using radiochromic and diode detectors.

    PubMed

    Somigliana, A; Cattaneo, G M; Fiorino, C; Borelli, S; del Vecchio, A; Zonca, G; Pignoli, E; Loi, G; Calandrino, R; Marchesini, R

    1999-04-01

    In stereotactic radiosurgery the choice of appropriate detectors, whether for absolute or relative dosimetry, is very important due to the steep dose gradient and the incomplete lateral electronic equilibrium. For both linac-based and Leksell Gamma Knife radiosurgery units, we tested the use of calibrated radiochromic film to measure absolute doses and relative dose distributions. In addition a small diode was used to estimate the relative output factors. The data obtained using radiochromic and diode detectors were compared with measurements performed with other conventional methods of dosimetry, with calculated values by treatment planning systems and with data prestored in the treatment planning system supplied by the Leksell Gamma Knife (LGK) vendor. Two stereotactic radiosurgery techniques were considered: Leksell Gamma Knife (using gamma-rays from 60Co) and linac-based radiosurgery (LR) (6 MV x-rays). Different detectors were used for both relative and absolute dosimetry: relative output factors (OFs) were estimated by using radiochromic and radiographic films and a small diode; relative dose distributions in the axial and coronal planes of a spherical polystyrene phantom were measured using radiochromic film and calculated by two different treatment planning systems (TPSs). The absolute dose at the sphere centre was measured by radiochromic film and a small ionization chamber. An accurate selection of radiochromic film was made: samples of unexposed film showing a percentage standard deviation of less than 3% were used for relative dose profiles, and for absolute dose and OF evaluations this value was reduced to 1.5%. Moreover a proper calibration curve was made for each set of measurements. With regard to absolute doses, the results obtained with the ionization chamber are in good correlation with radiochromic film-generated data, for both LGK and LR, showing a dose difference of less than 1%. The output factor evaluations, performed using different methods

  3. SU-E-T-53: A New Method for Characterizing the Stability of the Treatment Couch Isocentre

    SciTech Connect

    Gete, E; Lee, R; Wilson, B

    2015-06-15

    Purpose: In this work we propose a new method for characterizing the accuracy of a linear accelerator treatment couch’s isocentre. This is accomplished by a direct determination of the coordinates of the center of rotation as a function of rotation angle. Methods: A phantom consisting of five metallic BBs arranged in a plane was constructed. The phantom was positioned on the treatment couch such that the plane of the BBs was horizontal, while the central BB was aligned with the linac isocentre. With the gantry in the vertical position, the couch was rotated through its full range of rotation while EPID images were acquired every 10 degrees. For each rotation angle, the coordinates of the rotation center were calculated from the displacement of each of the four off-center BBs identified on a pair of EPID images taken between successive rotations. The accuracy of the couch isocentre was evaluated from the distribution of the rotation center coordinates. Our results were compared with film based star-shot measurements of the couch isocentre. Results: The measured couch center of rotation consisted of a cloud of points clustered around the linac isocentre within < 0.7 mm distance. The deviations of these points from the linac isocentre were in the range of 0.01 to 0.20 mm in the cross-plane direction, and 0.10 to 0.61 mm in the in-plane direction, with mean values of 0.09 mm and 0.32 mm. These results were consistent with the results obtained from the star-shot method. Conclusion: A new method for determining the location and accuracy of the couch center of rotation has been successfully implemented. This method gives explicit values of the location and the stability of the couch isocentre, and it can be extended to gantry and collimator rotations.

  4. Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.

    2017-02-01

    To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.

  5. Analytical bunch compression studies for a linac-based electron accelerator

    NASA Astrophysics Data System (ADS)

    Schreck, M.; Wesolowski, P.

    2015-10-01

    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general.

  6. Modeling Of Induction-Linac Based Free-Electron Laser Amplifiers

    NASA Astrophysics Data System (ADS)

    Jong, Raynard A.; Fawley, William M.; Scharlemann, Ernst T.

    1989-05-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multi-megawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices.

  7. Modeling of induction-linac based free-electron laser amplifiers

    NASA Astrophysics Data System (ADS)

    Jong, R. A.; Fawley, W. M.; Scharlemann, E. T.

    1988-12-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for Free-Electron Laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices.

  8. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    SciTech Connect

    Schmerge, J.; Adolphsen, C.; Corbett, J.; Dolgashev, V.; Durr, H.; Fazio, M.; Fisher, A.; Frisch, J.; Gaffney, K.; Guehr, M.; Hastings, J.; Hettel, B.; Hoffmann, M.; Hogan, M.; Holtkamp, N.; Huang, X.; Huang, Z.; Kirchmann, P.; LaRue, J.; Limborg, C.; Lindenberg, A.; Loos, H.; Maxwell, T.; Nilsson, A.; Raubenheimer, T.; Reis, D.; Ross, M.; Shen, Z. -X.; Stupakov, G.; Tantawi, S.; Tian, K.; Wu, Z.; Xiang, D.; Yakimenko, V.

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  9. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation.

  10. Pediatric cerebral arteriovenous malformations: The role of stereotactic linac-based radiosurgery

    SciTech Connect

    Zabel-du Bois, Angelika . E-mail: A.Zabel@dkfz-heidelberg.de; Milker-Zabel, Stefanie; Huber, Peter; Schlegel, Wolfgang; Debus, Juergen

    2006-07-15

    Purpose: To evaluate retrospectively clinical outcome and obliteration rates after linac-based radiosurgery (RS) in children with cerebral arteriovenous malformations (AVM). Methods and Materials: Between 1996 and 2002, 22 children with cerebral AVM were treated at our institution. Mean age at treatment was 11.8 years (range, 4.4-16.4 years). Classification according to Spetzler-Martin was 1 child grade I (4%), 7 grade II (32%), 12 grade III (56%), 1 grade IV (4%), and 1 grade V (4%). Median single dose was 18 Gy/80%-isodose. Median AVM volume was 4.2 mL (range, 0.4-26.5 mL). Median RS-based AVM-score was 1.07 (range, 0.61-3.55). Fifty-nine percent of children experienced intracranial hemorrhage before RS. Median follow-up was 3.1 years (range, 1.7-7.3 years). Results: Actuarial complete obliteration rate (CO) was 54% after 3 years and 65% after 4 years, respectively. Median time interval to CO was 27.1 months. Intracranial hemorrhage after RS was seen in five children after median 13.9 months. Annual bleeding risk was 9.1% after 1 year and 13.6% after 2 years. Maximum diameter {>=}3 cm and AVM-volume {>=}6 mL were significant predictors for intracranial hemorrhage. Neurologic deficits were improved/completely dissolved in 58% of children and remained stable in 42%. No new onset of neurologic dysfunction was seen after RS. Conclusions: RS is safe and effective in pediatric cerebral AVM with high obliteration rates. Size and volume of AVM are significant predictors for intracranial bleeding. The same treatment guidelines as in adults should be applied. Careful long-term follow-up observation is required after RS from long life expectation.

  11. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI.

    PubMed

    Riis, Hans L; Moltke, Lars N; Zimmermann, Sune J; Ebert, Martin A; Rowshanfarzad, Pejman

    2016-06-07

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  12. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    NASA Astrophysics Data System (ADS)

    Riis, Hans L.; Moltke, Lars N.; Zimmermann, Sune J.; Ebert, Martin A.; Rowshanfarzad, Pejman

    2016-06-01

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  13. Dosimetric analysis of isocentrically shielded volumetric modulated arc therapy for locally recurrent nasopharyngeal cancer

    PubMed Central

    Lu, Jia-Yang; Huang, Bao-Tian; Xing, Lei; Chang, Daniel T.; Peng, Xun; Xie, Liang-Xi; Lin, Zhi-Xiong; Li, Mei

    2016-01-01

    This study aimed to investigate the dosimetric characteristics of an isocentrically shielded RapidArc (IS-RA) technique for treatment of locally recurrent nasopharyngeal cancer (lrNPC). In IS-RA, the isocenter was placed at the center of the pre-irradiated brainstem (BS)/spinal cord (SC) and the jaws were set to shield the BS/SC while ensuring the target coverage during the whole gantry rotation. For fifteen patients, the IS-RA plans were compared with the conventional RapidArc (C-RA) regarding target coverage, organ-at-risk (OAR) sparing and monitor units (MUs). The relationship between the dose reduction of BS/SC and some geometric parameters including the angle extended by the target with respect to the axis of BS/SC (Ang_BSSC), the minimum distance between the target and BS/SC (Dist_Min) and the target volume were evaluated. The IS-RA reduced the BS/SC doses by approximately 1–4 Gy on average over the C-RA, with more MUs. The IS-RA demonstrated similar target coverage and sparing of other OARs except for slightly improved sparing of optic structures. More dose reduction in the isocentric region was observed in the cases with larger Ang_BSSC or smaller Dist_Min. Our results indicated that the IS-RA significantly improves the sparing of BS/SC without compromising dosimetric requirements of other involved structures for lrNPC. PMID:27173670

  14. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  15. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  16. An experimental study of correlations in the development of the electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Kratenko, Y. P.; Caharishnikov, S. A.

    1985-01-01

    In terms of the experimental data on the development of the electron photon cascades (EPC) in Pb from electrons and photons of cosmic rays in the tens GeV energy region a calculation of correlations between the characteristics of longitudinal and lateral development of the EPC as well as those between fluctuations of the cascade particle numbers at different stages of the cascade development was carried out. The results obtained are compared to the numerical EPC calculations.

  17. Single Fraction Versus Fractionated Linac-Based Stereotactic Radiotherapy for Vestibular Schwannoma: A Single-Institution Experience

    SciTech Connect

    Collen, Christine; Ampe, Ben; Gevaert, Thierry; Moens, Maarten; Linthout, Nadine; De Ridder, Mark; Verellen, Dirk; D'Haens, Jean; Storme, Guy

    2011-11-15

    Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11-14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3-4 Gy, and 10 patients received 25 sessions of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6-136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade {>=}3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade {>=}3) remains a challenge because of increased facial nerve neuropathy.

  18. Physical parameters of very small diameter 10 MV X-ray beams for linac-based stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Sham, Edwin

    Physical aspects of very small diameter X-ray beams used for a linac-based stereotactic radiosurgery are presented in this thesis. A 10 MV linac was used as the radiation source. Very small 10 MV photon fields with diameters of 1.5 mm, 3 mm, and 5 mm are produced by special collimators attached to the treatment head of the linac. The radiation beam data were measured with a small field diode detector as well as radiographic and radiochromic films. Measured beam parameters were compared with the same parameters calculated with Monte Carlo (MC) simulations. For very small photon fields with diameters on the order of the focal spot size, MC calculations show that both the percentage depth dose (PDD) distributions and dose profiles are sensitive to the focal spot size. A simple sliding slit technique was developed to measure the focal spot size and shape for accurate MC simulations of very small diameter beams. The measured focal spot of the 10 MV linac is elliptical in shape and fitted by a Gaussian distribution with full-widths-at-half-maximum (FWHMs) of 2.05 mm and 1.34 mm in the principal axes of the ellipse. A Gaussian circle equivalent in area to the experimentally determined focal spot ellipse was used in MC simulations. The resulting PDD and beam profile calculations are in good agreement with the measurements. Dynamic radiosurgery with very small diameter photon beams was carried out using the 10 MV linac. Radiosurgical isodose distributions were measured with radiographic films in a spherical head phantom and calculated with the MC technique. A good agreement between the measured and MC-calculated isodose distributions for very small diameter fields is achieved. The displacement of the center of the measured isodose distributions relative to the laser-defined isocenter was on the order of 0.7 mm. All these results show the potential of linac-based radiosurgery with very small diameter photon beams for clinical use.

  19. On achieving a clinically useful D-T neutron isocentric therapy system

    SciTech Connect

    Hilton, J.L.; Hendry, G.O.

    1981-04-01

    The Cyclotron Corporation's Model 4100 Neutron Cancer Therapy System with its output of 8 x 10/sup 12/ (14 MeV) neutron/sec designed for 500 hours is made up of: a factory recyclable miniature 200 kV sealed tube which radially accelerates up to 450 mA of deuterium and tritium ions from four duoplasmatron-type ion sources onto a central target; hand changeable radiation collimators; boronated hydrogenous shielding; isocentric gantry mounting; clinical diagnostics; and controls. The self-contained gas handling system which provides the needed differential gas pressure also stores, pumps, cleans, and recycles the D-T inventory. It is composed of a reversible getter high vacuum pump, a selective noble gas sputter ion pump, and a specialized uranium trap which, by controlled thermal decomposition of uranium hydride, regulates the ion source pressure. A D-T gas inventory of 3.7 k curies provides beam-on time of about three hours, while the gas recycle requires one to two hours. The four-sided target is made up from an array of heat transfer-optimized small copper tubes and their metal surface cladding which results in relatively high neutron output and long target life. The double vacuum walls, providing redundant tritium containment, are combined with other safety features.

  20. Isocentric rotational performance of the Elekta Precise Table studied using a USB-microscope.

    PubMed

    Riis, Hans L; Zimmermann, Sune J; Riis, Poul

    2010-12-21

    The isocentric three-dimensional performance of the Elekta Precise Table was investigated. A pointer was attached to the radiation head of the accelerator and positioned at the geometric rotational axis of the head. A USB-microscope was mounted on the treatment tabletop to measure the table position relative to the pointer tip. The table performance was mapped in terms of USB-microscope images of the pointer tip at different table angles and load configurations. The USB-microscope was used as a detector to measure the pointer tip positions with a resolution down to 0.01 mm. A new elastic model of the treatment table was developed. This model describes the performance of the treatment table quite well except from some deviations due to backlash effects. Geometric and elastic features are described through six parameters. These parameters are calculated using the linear least squares fitting technique. A new method to ensure optimal positioning of the table relative to the accelerator is presented. This method cannot eliminate systematic errors completely. To eliminate systematic errors we suggest that geometric and elastic models of the table and accelerator gantry arm are incorporated in the dose planning system.

  1. Isocentric rotational performance of the Elekta Precise Table studied using a USB-microscope

    NASA Astrophysics Data System (ADS)

    Riis, Hans L.; Zimmermann, Sune J.; Riis, Poul

    2010-12-01

    The isocentric three-dimensional performance of the Elekta Precise Table was investigated. A pointer was attached to the radiation head of the accelerator and positioned at the geometric rotational axis of the head. A USB-microscope was mounted on the treatment tabletop to measure the table position relative to the pointer tip. The table performance was mapped in terms of USB-microscope images of the pointer tip at different table angles and load configurations. The USB-microscope was used as a detector to measure the pointer tip positions with a resolution down to 0.01 mm. A new elastic model of the treatment table was developed. This model describes the performance of the treatment table quite well except from some deviations due to backlash effects. Geometric and elastic features are described through six parameters. These parameters are calculated using the linear least squares fitting technique. A new method to ensure optimal positioning of the table relative to the accelerator is presented. This method cannot eliminate systematic errors completely. To eliminate systematic errors we suggest that geometric and elastic models of the table and accelerator gantry arm are incorporated in the dose planning system.

  2. LEPS2 : the second Laser-Electron Photon facility at SPring-8

    NASA Astrophysics Data System (ADS)

    Yosoi, M.

    2011-10-01

    A new project to construct the second beamline for the laser-electron photon beam at SPring-8 (LEPS2) has started. Based on the LEPS experience, the project aims to improve the intensity of the photon beam and to expand the detector acceptance by adopting the BNL-E949 detector, which is a hermetic detector in a large 1 T solenoid magnet. The central region of tracking chambers will be upgraded for the LEPS2. A new LEPS2 experimental building has just been constructed outside the experimental hall of the storage ring. The present status of the development of a frozen-spin polarized HD target is also reported.

  3. Poster — Thur Eve — 55: An automated XML technique for isocentre verification on the Varian TrueBeam

    SciTech Connect

    Asiev, Krum; Mullins, Joel; DeBlois, François; Liang, Liheng; Syme, Alasdair

    2014-08-15

    Isocentre verification tests, such as the Winston-Lutz (WL) test, have gained popularity in the recent years as techniques such as stereotactic radiosurgery/radiotherapy (SRS/SRT) treatments are more commonly performed on radiotherapy linacs. These highly conformal treatments require frequent monitoring of the geometrical accuracy of the isocentre to ensure proper radiation delivery. At our clinic, the WL test is performed by acquiring with the EPID a collection of 8 images of a WL phantom fixed on the couch for various couch/gantry angles. This set of images is later analyzed to determine the isocentre size. The current work addresses the acquisition process. A manual WL test acquisition performed by and experienced physicist takes in average 25 minutes and is prone to user manipulation errors. We have automated this acquisition on a Varian TrueBeam STx linac (Varian, Palo Alto, USA). The Varian developer mode allows the execution of custom-made XML script files to control all aspects of the linac operation. We have created an XML-WL script that cycles through each couch/gantry combinations taking an EPID image at each position. This automated acquisition is done in less than 4 minutes. The reproducibility of the method was verified by repeating the execution of the XML file 5 times. The analysis of the images showed variation of the isocenter size less than 0.1 mm along the X, Y and Z axes and compares favorably to a manual acquisition for which we typically observe variations up to 0.5 mm.

  4. Design of a 10 MeV normal conducting CW proton linac based on equidistant multi-gap CH cavities

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Hui

    2015-09-01

    Continuous wave (CW) high current proton linacs have wide applications as the front end of high power proton machines. The low energy part of such a linac is the most difficult and there is currently no widely accepted solution. Based on the analysis of the focusing properties of the CW low energy proton linac, a 10 MeV low energy normal conducting proton linac based on equidistant seven-gap Cross-bar H-type (CH) cavities is proposed. The linac is composed of ten 7-gap CH cavities and the transverse focusing is maintained by quadrupole doublets located between the cavities. The total length of the linac is less than 6 meters and the average acceleration gradient is about 1.2 MeV/m. The electromagnetic properties of the cavities are investigated by Microwave Studio. At the nominal acceleration gradient the maximum surface electric field in the cavities is less than 1.3 times the Kilpatrick limit, and the Ohmic loss of each cavity is less than 35 kW. Multi-particle beam dynamics simulations are performed with Tracewin code, and the results show that the beam dynamics of the linac are quite stable, the linac has the capability to accelerate up to 30 mA beam with acceptable dynamics behavior. Supported by National Natural Science Foundation of China (11375122, 91126003)

  5. A Single-Shot Method for Measuring Femtosecond Bunch Length in Linac-Based Free-Electron Lasers

    SciTech Connect

    Huang, Z.; Bane, K.; Ding, Y.; Emma, P.; /SLAC

    2010-08-26

    There is growing interest in the generation and characterization of femtosecond and subfemtosecond pulses from linac-based free-electron lasers (FELs). In this report, following the method of Ricci and Smith [Phys. Rev. ST Accel. Beams 3, 032801 (2000)], we investigate the measurement of the longitudinal bunch profile of an ultrashort electron bunch produced by these FELs. We show that this method can be applied in a straightforward manner at x-ray FEL facilities such as the Linac Coherent Light Source by slightly adjusting the second bunch compressor followed by running the bunch on an rf zero-crossing phase of the final linac. We find that the linac wakefield strongly perturbs the measurement, and through analysis show that it can be compensated in a simple way. We demonstrate the effectiveness of this method and wakefield compensation through numerical simulations, including effects of coherent synchrotron radiation and longitudinal space charge. When used in conjunction with a high-resolution electron spectrometer, this method potentially reveals the temporal profile of the electron beam down to the femtosecond and subfemotsecond scale.

  6. Program EPICP: Electron photon interaction code, photon test module. Version 94.2

    SciTech Connect

    Cullen, D.E.

    1994-09-01

    The computer code EPICP performs Monte Carlo photon transport calculations in a simple one zone cylindrical detector. Results include deposition within the detector, transmission, reflection and lateral leakage from the detector, as well as events and energy deposition as a function of the depth into the detector. EPICP is part of the EPIC (Electron Photon Interaction Code) system. EPICP is designed to perform both normal transport calculations and diagnostic calculations involving only photons, with the objective of developing optimum algorithms for later use in EPIC. The EPIC system includes other modules that are designed to develop optimum algorithms for later use in EPIC; this includes electron and positron transport (EPICE), neutron transport (EPICN), charged particle transport (EPICC), geometry (EPICG), source sampling (EPICS). This is a modular system that once optimized can be linked together to consider a wide variety of particles, geometries, sources, etc. By design EPICP only considers photon transport. In particular it does not consider electron transport so that later EPICP and EPICE can be used to quantitatively evaluate the importance of electron transport when starting from photon sources. In this report I will merely mention where we expect the results to significantly differ from those obtained considering only photon transport from that obtained using coupled electron-photon transport.

  7. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  8. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR Penta-Guide phantom.

    PubMed

    Sykes, J R; Lindsay, R; Dean, C J; Brettle, D S; Magee, D R; Thwaites, D I

    2008-10-07

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF(50)) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s=0.15 mm). The mean MTF(50) for five measurements was 0.278+/-0.004 lp mm(-1) with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF(50) enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems.

  9. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR™ Penta-Guide phantom

    NASA Astrophysics Data System (ADS)

    Sykes, J. R.; Lindsay, R.; Dean, C. J.; Brettle, D. S.; Magee, D. R.; Thwaites, D. I.

    2008-10-01

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR™ Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF50) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s = 0.15 mm). The mean MTF50 for five measurements was 0.278 ± 0.004 lp mm-1 with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF50 enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT MV coincidence and image sharpness on CBCT-IGRT systems.

  10. Photonic analog-to-digital conversion with electronic-photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Kärtner, F. X.; Amatya, R.; Araghchini, M.; Birge, J.; Byun, H.; Chen, J.; Dahlem, M.; DiLello, N. A.; Gan, F.; Holzwarth, C. W.; Hoyt, J. L.; Ippen, E. P.; Khilo, A.; Kim, J.; Kim, M.; Motamedi, A.; Orcutt, J. S.; Park, M.; Perrott, M.; Popović, M. A.; Ram, R. J.; Smith, H. I.; Zhou, G. R.; Spector, S. J.; Lyszczarz, T. M.; Geis, M. W.; Lennon, D. M.; Yoon, J. U.; Grein, M. E.; Schulein, R. T.

    2008-02-01

    Photonic Analog-to-Digital Conversion (ADC) has a long history. The premise is that the superior noise performance of femtosecond lasers working at optical frequencies enables us to overcome the bottleneck set by jitter and bandwidth of electronic systems and components. We discuss and demonstrate strategies and devices that enable the implementation of photonic ADC systems with emerging electronic-photonic integrated circuits based on silicon photonics. Devices include 2-GHz repetition rate low noise femtosecond fiber lasers, Si-Modulators with up to 20 GHz modulation speed, 20 channel SiN-filter banks, and Ge-photodetectors. Results towards a 40GSa/sec sampling system with 8bits resolution are presented.

  11. Space applications of the MITS electron-photon Monte Carlo transport code system

    SciTech Connect

    Kensek, R.P.; Lorence, L.J.; Halbleib, J.A.; Morel, J.E.

    1996-07-01

    The MITS multigroup/continuous-energy electron-photon Monte Carlo transport code system has matured to the point that it is capable of addressing more realistic three-dimensional adjoint applications. It is first employed to efficiently predict point doses as a function of source energy for simple three-dimensional experimental geometries exposed to simulated uniform isotropic planar sources of monoenergetic electrons up to 4.0 MeV. Results are in very good agreement with experimental data. It is then used to efficiently simulate dose to a detector in a subsystem of a GPS satellite due to its natural electron environment, employing a relatively complex model of the satellite. The capability for survivability analysis of space systems is demonstrated, and results are obtained with and without variance reduction.

  12. Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes System.

    SciTech Connect

    VALDEZ, GREG D.

    2012-11-30

    Version: 00 Distribution is restricted to US Government Agencies and Their Contractors Only. The Integrated Tiger Series (ITS) is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. The goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 95. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.

  13. Extension of the Integrated Tiger Series (ITS) of electron-photon Monte Carlo codes to 100 GeV

    SciTech Connect

    Miller, S.G.

    1988-08-01

    Version 2.1 of the Integrated Tiger Series (ITS) of electron-photon Monte Carlo codes was modified to extend their ability to model interactions up to 100 GeV. Benchmarks against experimental results conducted at 10 and 15 GeV confirm the accuracy of the extended codes. 12 refs., 2 figs., 2 tabs.

  14. SU-E-J-70: Evaluation of Multiple Isocentric Intensity Modulated and Volumetric Modulated Arc Therapy Techniques Using Portal Dosimetry

    SciTech Connect

    Muralidhar, K Raja; Pangam, S; Kolla, J; Ponaganti, S; Ali, M; Vuba, S; Mariyappan, P; Babaiah, M; Komanduri, K

    2015-06-15

    Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence of beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.

  15. Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus

    DOE PAGES

    Ling, Xi; Huang, Shengxi; Hasdeo, Eddwi; ...

    2016-03-10

    Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to-date, as shown by a number of inconsistencies in the recent literatures. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight a non-trivial dependence between anisotropies andmore » flake thickness, photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.« less

  16. Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus

    SciTech Connect

    Ling, Xi; Huang, Shengxi; Hasdeo, Eddwi; Liang, Liangbo; Parkin, William; Tatsumi, Yuki; Nugraha, Ahmad; Puretzky, Alexander A; Das, Paul; Sumpter, Bobby G; Geohegan, David B; Kong, Jing; Saito, Riichiro; Drndic, Marija; Meunier, Vincent; Dresselhaus, M

    2016-03-10

    Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to-date, as shown by a number of inconsistencies in the recent literatures. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight a non-trivial dependence between anisotropies and flake thickness, photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.

  17. Means and method for calibrating a photon detector utilizing electron-photon coincidence

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K. (Inventor)

    1984-01-01

    An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.

  18. Polymer ring resonators for high density photonic and electronic-photonic integration

    NASA Astrophysics Data System (ADS)

    Sun, Haishan

    2009-12-01

    Electrical interconnect based on the copper wires will be the bottleneck for the future performance improvement of multi-core CPUs. Chip scale optical interconnect based on high density photonic and electronic-photonic integration is one of the feasible solutions. Ring resonators are promising photonic components serving as building blocks. High density integration of ring resonators is also important for high throughput lab-on-a-chip biosensors and opto-microwave integrated circuits. Polymer materials are compatible with most semiconductor fabrication processes. Polymers can be easily doped with rare earth ions, quantum dots etc. to make active optical devices. Especially, over several hundreds pm/V electro-optic (EO) coefficients and femtosecond scale response time of EO polymers enables photonic devices with sub 1V to millivolt drive voltages and terahertz bandwidth. This dissertation describes several technologies about design, simulation, fabrication, integration with electronic circuits and fiber optics of polymer ring resonators, and demonstrates three application examples of polymer ring resonators in communications and biochemical sensing. First the Beam Propagation Method (BPM) and the matrix analysis are combined to provide a fast circuit level simulation and design procedure of polymer ring resonators. Several low cost fabrication techniques based on electron beam irradiation effects on EO polymers are introduced. For the practical electronicphotonic integration, a hybrid integration scheme of EO polymer waveguide devices with Si integrated circuits is developed. One application is an all-dielectric RF sensor or receiver with sensitivity of 100 V/m and theoretical bandwidth over 100 GHz. This device is based on a novel structure with polymer ring resonator directly coupled to a side polished optical fiber. The other two examples are biochemical sensors based on multi-slot waveguide and ring resonator reflector structures.

  19. Utilization of optical tracking to validate a software-driven isocentric approach to robotic couch movements for proton radiotherapy

    SciTech Connect

    Hsi, Wen C. E-mail: Wenchien.hsi@sphic.org.cn; Zeidan, Omar A.; Law, Aaron; Schreuder, Andreas N.

    2014-08-15

    Purpose: An optical tracking and positioning system (OTPS) was developed to validate the software-driven isocentric (SDI) approach to control the six-degrees-of-freedom movement of a robotic couch. Methods: The SDI approach to movements rotating around a predefined isocenter, referred to as a GeoIso, instead of a mechanical pivot point was developed by the robot automation industry. With robotic couch-sag corrections for weight load in a traditional SDI approach, movements could be accurately executed for a GeoIso located within a 500 mm cubic volume on the couch for treatments. The accuracy of SDI movement was investigated using the OTPS. The GeoIso was assumed to align with the proton beam isocenter (RadIso) for gantry at the reference angle. However, the misalignment between GeoIso and RadIso was quantitatively investigated by measuring the displacements at various couch angles for a target placed at the RadIso at an initial couch angle. When circular target displacements occur on a plane, a relative isocenter shift (RIS) correction could be applied in the SDI movement to minimize target displacements. Target displacements at a fixed gantry angle without and with RIS correction were measured for 12 robotic couches. Target displacements for various gantry angles were performed on three couches in gantry rooms to study the gantry-induced RadIso shift. The RIS correction can also be applied for the RadIso shift. A new SDI approach incorporating the RIS correction with the couch sag is described in this study. In parallel, the accuracy of SDI translation movements for various weight loads of patients on the couch was investigated during positioning of patients for proton prostate treatments. Results: For a fixed gantry angle, measured target displacements without RIS correction for couch rotations in the horizontal plane varied from 4 to 20 mm. However, measured displacements perpendicular to couch rotation plane were about 2 mm for all couches. Extracted

  20. Results for local control and functional outcome after linac-based image-guided stereotactic radiosurgery in 190 patients with vestibular schwannoma

    PubMed Central

    Badakhshi, Harun; Graf, Reinhold; Böhmer, Dirk; Synowitz, Michael; Wiener, Edzard; Budach, Volker

    2014-01-01

    Background We assessed local control (LC) and functional outcome after linac-based stereotactic radiosurgery (SRS) for vestibular schwannoma (VS). Methods Between 1998 and 2008, 190 patients with VS were treated with SRS. All patients had tumors <2 cm diameter. Patients received 13.5 Gy prescribed to the 80th isodose at the tumor margin. The primary endpoint was LC. Secondary endpoints were symptomatic control and morbidity. Results Median follow-up was 40 months. LC was achieved in 88% of patients. There were no acute reactions exceeding Grade I. Trigeminal nerve dysfunction was present in 21.6% (n = 41) prior to SRS. After treatment, 85% (n = 155) had no change, 4.4,% (n = 8) had a relief of symptoms, 10.4% (n = 19) had new symptoms. Facial nerve dysfunction was present in some patients prior to treatment, e.g. paresis (12.6%; n = 24) and dysgeusia (0.5%; n = 1). After treatment 1.1% (n = 2) reported improvement and 6.1% (n = 11) experienced new symptoms. Hearing problems before SRS were present in 69.5% of patients (n = 132). After treatment, 62.6% (n = 144) had no change, 10.4% (n = 19) experienced improvement and 26.9% (n = 49) became hearing impaired. Conclusion This series of SRS for small VS provided similar LC rates to microsurgery; thus, it is effective as a non-invasive, image-guided procedure. The functional outcomes observed indicate the safety and effectiveness of linac-based SRS. Patients may now be informed of the clinical equivalence of SRS to microsurgery. PMID:23979079

  1. Equivalence in Dose Fall-Off for Isocentric and Nonisocentric Intracranial Treatment Modalities and Its Impact on Dose Fractionation Schemes

    SciTech Connect

    Ma Lijun; Sahgal, Arjun; Descovich, Martina; Cho, Y.-B.; Chuang, Cynthia; Huang, Kim; Laperriere, Normand J.; Shrieve, Dennis C.; Larson, David A.

    2010-03-01

    Purpose: To investigate whether dose fall-off characteristics would be significantly different among intracranial radiosurgery modalities and the influence of these characteristics on fractionation schemes in terms of normal tissue sparing. Methods and Materials: An analytic model was developed to measure dose fall-off characteristics near the target independent of treatment modalities. Variations in the peripheral dose fall-off characteristics were then examined and compared for intracranial tumors treated with Gamma Knife, Cyberknife, or Novalis LINAC-based system. Equivalent uniform biologic effective dose (EUBED) for the normal brain tissue was calculated. Functional dependence of the normal brain EUBED on varying numbers of fractions (1 to 30) was studied for the three modalities. Results: The derived model fitted remarkably well for all the cases (R{sup 2} > 0.99). No statistically significant differences in the dose fall-off relationships were found between the three modalities. Based on the extent of variations in the dose fall-off curves, normal brain EUBED was found to decrease with increasing number of fractions for the targets, with alpha/beta ranging from 10 to 20. This decrease was most pronounced for hypofractionated treatments with fewer than 10 fractions. Additionally, EUBED was found to increase slightly with increasing number of fractions for targets with alpha/beta ranging from 2 to 5. Conclusion: Nearly identical dose fall-off characteristics were found for the Gamma Knife, Cyberknife, and Novalis systems. Based on EUBED calculations, normal brain sparing was found to favor hypofractionated treatments for fast-growing tumors with alpha/beta ranging from 10 to 20 and single fraction treatment for abnormal tissues with low alpha/beta values such as alpha/beta = 2.

  2. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2004-06-01

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  3. SU-E-T-514: Simultaneously Determination of Radiation Isocentricity of Gantry, Collimator and Couch Using a Commercial Three-Dimensional Dosimetry QA Apparatus

    SciTech Connect

    Yan, S; Song, H; Wu, Q

    2014-06-01

    Purpose: Radiation isocentricity is an important benchmark for a LINAC and is typically determined by 3 separate film star-shots. We developed a technique to simultaneously determine the radiation isocenter of gantry, collimator and couch with a commercial 3D QA apparatus. Methods: The ArcCHECK from SunNuclear was used on two LINACs. It was aligned with room lasers. For gantry rotation, collimator and couch were set to zero and gantry was placed to 0, 49, 213 and 311 degrees. Similarly, a set of collimator/couch angles were chosen with the other two axes at neutral positions. The measured dose matrices were analyzed by an in-house MATLAB program. For each shot, the central axis was determined by computing the FWHM of the diode arrays. The largest inscribed circle from these central axis lines was used to determine isocenter: the radius as the benchmark of isocentricity and the coordinates of the center as the discrepancy of radiation isocenter to the origin defined by lasers. To validate the method, the couch was shifted by ~5 mm in all three directions and measurements were repeated. Results: The radius of the largest inscribed circle for gantry, collimator and couch are (0.3, 0.5, 0.2) mm for one LINAC and (0.2, 0.3, 0.1) mm for the other, in agreement with the film star-shots at annual QA. The discrepancies of radiation isocenter are generally within 1 mm, except gantry rotation on one LINAC due to the drift of foot laser. The differences in positions detected are consistent with the intentional predefined shift. Conclusion: We have demonstrated a technique for the simultaneous measurement of gantry, collimator, and couch isocentricity with a set of carefully chosen irradiation parameters based on the specific construction geometry of the 3D detector ArcCheck. This can replace the standard film star-shots. The future work includes improving operation efficiency.

  4. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-02-01

    A Langley research center (LaRC) developed deterministic suite of radiation transport codes describing the propagation of electron, photon, proton and heavy ion in condensed media is used to simulate the exposure from the spectral distribution of the aforementioned particles in the Jovian radiation environment. Based on the measurements by the Galileo probe (1995-2003) heavy ion counter (HIC), the choice of trapped heavy ions is limited to carbon, oxygen and sulfur (COS). The deterministic particle transport suite consists of a coupled electron photon algorithm (CEPTRN) and a coupled light heavy ion algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means to the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, photon, proton and heavy ion exposure assessment in a complex space structure. In this paper, the reference radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron and proton spectra of the Jovian environment as generated by the jet propulsion laboratory (JPL) Galileo interim radiation electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter system mission (EJSM), the JPL provided Europa mission fluence spectrum, is used to produce the corresponding depth dose curve in silicon behind a default aluminum shield of 100 mils (˜0.7 g/cm2). The transport suite can also accept a geometry describing ray traced thickness file from a computer aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point within the interior of the vehicle. In that regard, using a low fidelity CAD model of the Galileo probe generated by the authors, the transport suite was verified versus Monte Carlo (MC) simulation for orbits JOI-J35 of the Galileo probe

  5. Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits.

    PubMed

    Wang, Yadong; Wei, Yongqiang; Huang, Yingyan; Tu, Yongming; Ng, Doris; Lee, Cheewei; Zheng, Yunan; Liu, Boyang; Ho, Seng-Tiong

    2011-01-31

    We have demonstrated a heterogeneously integrated III-V-on-Silicon laser based on an ultra-large-angle super-compact grating (SCG). The SCG enables single-wavelength operation due to its high-spectral-resolution aberration-free design, enabling wavelength division multiplexing (WDM) applications in Electronic-Photonic Integrated Circuits (EPICs). The SCG based Si/III-V laser is realized by fabricating the SCG on silicon-on-insulator (SOI) substrate. Optical gain is provided by electrically pumped heterogeneous integrated III-V material on silicon. Single-wavelength lasing at 1550 nm with an output power of over 2 mW and a lasing threshold of around 150 mA were achieved.

  6. SU-E-T-355: A Comparative Study of Robotic and Linac-Based Stereotactitc Body Radiation Therapy for Lumbar Spinal Tumors

    SciTech Connect

    Bossart, E; Monterroso, M; Couto, M; Ly, B; Mihaylov, I

    2014-06-01

    Purpose: Dosimetrically compare CyberKnife (CK) and linac-based (LB) stereotactic body radiotherapy (SBRT) plans for lumbar spine. Methods: Ten patient plans with lumbar spine tumors treated with CK were selected and retrospectively optimized using three techniques: CK, volumetric modulated arc (VMAT, three arcs), and 9-field-intensity modulated radiotherapy (IMRT). For the LB plans, the target volume was expanded by 1mm to accommodate additional uncertainty in patient positioning. All plans were optimized to a prescription dose of 27Gy in 3 fractions covering 90% of the PTV. If the dose constraints to the cauda equina (cauda) were not met, the prescription dose was lowered to 24Gy. Parameters evaluated included Paddick Conformity-Index (CI) and Gradient-Index (GI). A two-tailed paired t-test was used to establish statistically significant differences in cauda doses. Results: Target volumes for LB plans were on average 38% larger. In terms of the indices, the closer the index values to unity the steeper the dose falloff and the higher the dose conformity to the target. The results showed that LB plans were in general statistically superior to CK plans. The IMRT plan showed the best average gradient index of 2.995, with VMAT and CK GI values of 3.699 and 5.476, respectively. Similarly, the same trend occurs with the average CI results: 0.821, 0.814, and 0.758, corresponding to IMRT, VMAT, and CK. Notably, in one CK plan the target dose was reduced to 24Gy to meet cauda constraints. Additionally, there was a statistically significant dose difference for the cauda between the CK and LB plans. Conclusion: This study demonstrates that LB plans for lumbar spine SBRT can be as effective or even better than CK plans. Despite the expansion of the target volume, the LB plans did not demonstrate dosimetric inferiority. The LB plans Resultin 2-to-3 fold decrease of treatment time.

  7. Dosimetric comparison of Linac-based (BrainLAB®) and robotic radiosurgery (CyberKnife ®) stereotactic system plans for acoustic schwannoma.

    PubMed

    Dutta, Debnarayan; Balaji Subramanian, S; Murli, V; Sudahar, H; Gopalakrishna Kurup, P G; Potharaju, Mahadev

    2012-02-01

    A dosimetric comparison of linear accelerator (LA)-based (BrainLAB) and robotic radiosurgery (RS) (CyberKnife) systems for acoustic schwannoma (Acoustic neuroma, AN) was carried out. Seven patients with radiologically confirmed unilateral AN were planned with both an LA-based (BrainLAB) and robotic RS (CyberKnife) system using the same computed tomography (CT) dataset and contours. Gross tumour volume (GTV) was contoured on post-contrast magnetic resonance imaging (MRI) scan [planning target volume (PTV) margin 2 mm]. Planning and calculation were done with appropriate calculation algorithms. The prescribed isodose in both systems was considered adequate to cover at least 95% of the contoured target. Plan evaluations were done by examining the target coverage by the prescribed isodose line, and high- and low-dose volumes. Isodose plans and dose volume histograms generated by the two systems were compared. There was no statistically significant difference between the contoured volumes between the systems. Tumour volumes ranged from 380 to 3,100 mm(3). Dose prescription was 13-15 Gy in single fraction (median prescribed isodose 85%). There were no significant differences in conformity index (CI) (0.53 versus 0.58; P = 0.225), maximum brainstem dose (4.9 versus 4.7 Gy; P = 0.935), 2.5-Gy volume (39.9 versus 52.3 cc; P = 0.238) or 5-Gy volume (11.8 versus 16.8 cc; P = 0.129) between BrainLAB and CyberKnife system plans. There were statistically significant differences in organs at risk (OAR) doses, such as mean cochlear dose (6.9 versus 5.4 Gy; P = 0.001), mean mesial temporal dose (2.6 versus 1.7 Gy; P = 0.07) and high-dose (10 Gy) volume (3.2 versus 5.2 cc; P = 0.017). AN patients planned with the CyberKnife system had superior OAR (cochlea and mesial temporal lobe) sparing compared with those planned with the Linac-based system. Further evaluation of these findings in prospective studies with clinical correlation will provide actual clinical benefit from the

  8. Monte Carlo electron-photon transport using GPUs as an accelerator: Results for a water-aluminum-water phantom

    SciTech Connect

    Su, L.; Du, X.; Liu, T.; Xu, X. G.

    2013-07-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - is being developed at Rensselaer Polytechnic Institute as a software test bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. In this paper, the preliminary results of code development and testing are presented. The electron transport in media was modeled using the class-II condensed history method. The electron energy considered ranges from a few hundred keV to 30 MeV. Moller scattering and bremsstrahlung processes above a preset energy were explicitly modeled. Energy loss below that threshold was accounted for using the Continuously Slowing Down Approximation (CSDA). Photon transport was dealt with using the delta tracking method. Photoelectric effect, Compton scattering and pair production were modeled. Voxelised geometry was supported. A serial ARHCHER-CPU was first written in C++. The code was then ported to the GPU platform using CUDA C. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. ARHCHER was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and lateral dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x10{sup 6} histories of electrons were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively, on a CPU with a single core used. (authors)

  9. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute

  10. Comparison of Isocentric C-Arm 3-Dimensional Navigation and Conventional Fluoroscopy for Percutaneous Retrograde Screwing for Anterior Column Fracture of Acetabulum

    PubMed Central

    He, Jiliang; Tan, Guoqing; Zhou, Dongsheng; Sun, Liang; Li, Qinghu; Yang, Yongliang; Liu, Ping

    2016-01-01

    Abstract Percutaneous screw insertion for minimally displaced or reducible acetabular fracture using x-ray fluoroscopy and computer-assisted navigation system has been advocated by some authors. The purpose of this study was to compare intraoperative conditions and clinical results between isocentric C-arm 3-dimensional (Iso-C 3D) fluoroscopy and conventional fluoroscopy for percutaneous retrograde screwing of acetabular anterior column fracture. A prospective cohort study was conducted. A total of 22 patients were assigned to 2 different groups: 10 patients in the Iso-C 3D navigation group and 12 patients in the conventional group. The operative time, fluoroscopic time, time of screw insertion, blood loss, and accuracy were analyzed between the 2 groups. There were significant differences in operative time, screw insertion time, fluoroscopy time, and mean blood loss between the 2 groups. Totally 2 of 12 (16.7%) screws were misplaced in the conventional fluoroscopy group, and all 10 screws were in safe zones in the navigation group. Percutaneous screw fixation using the Iso-C 3D computer-assisted navigation system significantly reduced the intraoperative fluoroscopy time and blood loss in percutaneous screwing for acetabular anterior column fracture. The Iso-C 3D computer-assisted navigation system provided a reliable and effective method for percutaneous screw insertion in acetabular anterior column fractures compared to conventional fluoroscopy. PMID:26765448

  11. Dose Gradient Near Target-Normal Structure Interface for Nonisocentric CyberKnife and Isocentric Intensity-Modulated Body Radiotherapy for Prostate Cancer

    SciTech Connect

    Hossain, Sabbir; Xia Ping; Huang, Kim; Descovich, Martina; Chuang, Cynthia; Gottschalk, Alexander R.; Roach, Mack; Ma Lijun

    2010-09-01

    Purpose: The treatment planning quality between nonisocentric CyberKnife (CK) and isocentric intensity modulation treatment was studied for hypofractionated prostate body radiotherapy. In particular, the dose gradient across the target and the critical structures such as the rectum and bladder was characterized. Methods and Materials: In the present study, patients treated with CK underwent repeat planning for nine fixed-field intensity-modulated radiotherapy (IMRT) using identical contour sets and dose-volume constraints. To calculate the dose falloff, the clinical target volume contours were expanded 30 mm anteriorly and posteriorly and 50 mm uniformly in other directions for all patients in the CK and IMRT plans. Results: We found that all the plans satisfied the dose-volume constraints, with the CK plans showing significantly better conformity than the IMRT plans at a relative greater dose inhomogeneity. The rectal and bladder volumes receiving a low dose were also lower for CK than for IMRT. The average conformity index, the ratio of the prescription isodose volume and clinical target volume, was 1.18 {+-} 0.08 for the CK plans vs. 1.44 {+-} 0.11 for the IMRT plans. The average homogeneity index, the ratio of the maximal dose and the prescribed dose to the clinical target volume, was 1.45 {+-} 0.12 for the CK plans vs. 1.28 {+-} 0.06 for the IMRT plans. The average percentage of dose falloff was 2.9% {+-} 0.8%/mm for CK and 3.1% {+-} 1.0%/mm for IMRT in the anterior direction, 3.8% {+-} 1.6%/mm for CK and 3.2% {+-} 1.9%/mm for IMRT in the posterior direction, and 3.6% {+-} 0.4% for CK and 3.6% {+-} 0.4% for IMRT in all directions. Conclusion: Nonisocentric CK was as capable of producing equivalent fast dose falloff as high-number fixed-field IMRT delivery.

  12. Thermally controlled coupling of a rolled-up microtube integrated with a waveguide on a silicon electronic-photonic integrated circuit.

    PubMed

    Zhong, Qiuhang; Tian, Zhaobing; Veerasubramanian, Venkat; Dastjerdi, M Hadi Tavakoli; Mi, Zetian; Plant, David V

    2014-05-01

    We report on the first experimental demonstration of the thermal control of coupling strength between a rolled-up microtube and a waveguide on a silicon electronic-photonic integrated circuit. The microtubes are fabricated by selectively releasing a coherently strained GaAs/InGaAs heterostructure bilayer. The fabricated microtubes are then integrated with silicon waveguides using an abruptly tapered fiber probe. By tuning the gap between the microtube and the waveguide using localized heaters, the microtube-waveguide evanescent coupling is effectively controlled. With heating, the extinction ratio of a microtube whispering-gallery mode changes over an 18 dB range, while the resonant wavelength remains approximately unchanged. Utilizing this dynamic thermal tuning effect, we realize coupling modulation of the microtube integrated with the silicon waveguide at 2 kHz with a heater voltage swing of 0-6 V.

  13. Volume CT with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery.

    PubMed

    Siewerdsen, J H; Moseley, D J; Burch, S; Bisland, S K; Bogaards, A; Wilson, B C; Jaffray, D A

    2005-01-01

    A mobile isocentric C-arm (Siemens PowerMobil) has been modified in our laboratory to include a large area flat-panel detector (in place of the x-ray image intensifier), providing multi-mode fluoroscopy and cone-beam computed tomography (CT) imaging capability. This platform represents a promising technology for minimally invasive, image-guided surgical procedures where precision in the placement of interventional tools with respect to bony and soft-tissue structures is critical. The image quality and performance in surgical guidance was investigated in pre-clinical evaluation in image-guided spinal surgery. The control, acquisition, and reconstruction system are described. The reproducibility of geometric calibration, essential to achieving high three-dimensional (3D) image quality, is tested over extended time scales (7 months) and across a broad range in C-arm angulation (up to 45 degrees), quantifying the effect of improper calibration on spatial resolution, soft-tissue visibility, and image artifacts. Phantom studies were performed to investigate the precision of 3D localization (viz., fiber optic probes within a vertebral body) and effect of lateral projection truncation (limited field of view) on soft-tissue detectability in image reconstructions. Pre-clinical investigation was undertaken in a specific spinal procedure (photodynamic therapy of spinal metastases) in five animal subjects (pigs). In each procedure, placement of fiber optic catheters in two vertebrae (L1 and L2) was guided by fluoroscopy and cone-beam CT. Experience across five procedures is reported, focusing on 3D image quality, the effects of respiratory motion, limited field of view, reconstruction filter, and imaging dose. Overall, the intraoperative cone-beam CT images were sufficient for guidance of needles and catheters with respect to bony anatomy and improved surgical performance and confidence through 3D visualization and verification of transpedicular trajectories and tool placement

  14. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  15. [Linac based radiosurgery; a technical report].

    PubMed

    Hayashi, H; Asaga, A; Sakudoh, M; Hoshino, S; Katsuta, S; Akine, Y

    1992-07-01

    A method for highly dose-localized irradiation using a linear accelerator (linac) for a brain tumor has been developed. The method requires a linac, a computed tomography (CT) system, a CT simulator, and a treatment planning system for radiotherapy, with which most major radiotherapy centers are equipped. To immobilize a patient during irradiation, a custom-made device made of synthetic material which became flexible with heating was used. With the CT system and the CT simulator the target was identified and geometrical data for positioning the tumor at a point to which x-ray beams were directed (an isocenter of the linac) were obtained. By rotating a treatment couch it was made possible for the x-ray source to rotate around the isocenter on multiple planes. Dose distribution obtained with this method was compared to that of the gamma unit and found comparable. Since the method requires no invasive procedure, it appears suitable for treatment, with fractionated irradiation, of malignant tumors.

  16. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: Quality-assurance implications for target volume and organ-at-risk margination using daily CT-on-rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.

    2016-01-01

    Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151

  17. Enigmatic electrons, photons, and ``empty`` waves

    SciTech Connect

    MacGregor, M.H.

    1995-08-22

    A spectroscopic analysis is made of electrons and photons from the standpoint of physical realism. In this conceptual framework, moving particles are portrayed as localized entities which are surrounded by ``empty`` waves. A spectroscopic model for the electron Stands as a guide for a somewhat similar, but in essential respects radically different, model for the photon. This leads in turn to a model for the ``zeron``. the quantum of the empty wave. The properties of these quanta mandate new basis states, and hence an extension of our customary framework for dealing with them. The zeron wave field of a photon differs in one important respect from the standard formalism for an electromagnetic wave. The vacuum state emerges as more than just a passive bystander. Its polarization properties provide wave stabilization, particle probability distributions, and orbit quantization. Questions with regard to special relativity are discussed.

  18. FLUTE: a versatile linac-based THz source.

    PubMed

    Nasse, M J; Schuh, M; Naknaimueang, S; Schwarz, M; Plech, A; Mathis, Y-L; Rossmanith, R; Wesolowski, P; Huttel, E; Schmelling, M; Müller, A-S

    2013-02-01

    A new compact versatile linear accelerator named FLUTE is currently being designed at the Karlsruhe Institute of Technology. This paper presents the status of this 42 MeV machine. It will be used to generate strong (several 100 MV/m) ultra-short (~1 ps) THz pulses (up to ~4-25 THz) for photon science experiments, as well as to conduct a variety of accelerator studies. The latter range from comparing different coherent THz radiation generation schemes to compressing electron bunches and studying the electron beam stability. The bunch charge will cover a wide range (~100 pC-3 nC). Later we plan to also produce ultra-short x-ray pulses from the electron bunches, which, for example, could then be combined for THz pump-x-ray probe experiments.

  19. FLUTE: A versatile linac-based THz source

    SciTech Connect

    Nasse, M. J.; Schuh, M.; Schwarz, M.; Naknaimueang, S.; Mathis, Y.-L.; Rossmanith, R.; Wesolowski, P.; Huttel, E.; Plech, A.; Schmelling, M.; Mueller, A.-S.

    2013-02-15

    A new compact versatile linear accelerator named FLUTE is currently being designed at the Karlsruhe Institute of Technology. This paper presents the status of this 42 MeV machine. It will be used to generate strong (several 100 MV/m) ultra-short ({approx}1 ps) THz pulses (up to {approx}4-25 THz) for photon science experiments, as well as to conduct a variety of accelerator studies. The latter range from comparing different coherent THz radiation generation schemes to compressing electron bunches and studying the electron beam stability. The bunch charge will cover a wide range ({approx}100 pC-3 nC). Later we plan to also produce ultra-short x-ray pulses from the electron bunches, which, for example, could then be combined for THz pump-x-ray probe experiments.

  20. Linac-Based Photonuclear Applications at the Idaho Accelerator Center

    NASA Astrophysics Data System (ADS)

    Mamtimin, Mayir; Starovoitova, Valeriia N.; Harmon, Frank

    2014-02-01

    In this paper, current Idaho Accelerator Center (IAC) activities based on the exploitation of high energy bremsstrahlung photons generated by linear electron accelerators will be reviewed. These beams are used to induce photonuclear interactions for a wide variety of applications in materials science, activation analysis, medical research, and nuclear technology. Most of the exploited phenomena are governed by the familiar giant dipole resonance cross section in nuclei. By proper target and converter design, optimization of photon and photoneutron production can be achieved, allowing radiation fields produced with both photons and neutrons to be used for medical isotope production and for fission product transmutation. The latter provides a specific application example that supports long-term fission product waste management. Using high-energy, highpower electron accelerators, we can demonstrate transmutation of radio-toxic, long-lived fission products (LLFP) such as 99Tc and 129I into short lived species. The latest experimental and simulation results will be presented.

  1. Verification procedure for isocentric alignment of proton beams.

    PubMed

    Ciangaru, George; Yang, James N; Oliver, Patrick J; Bues, Martin; Zhu, Mengping; Nakagawa, Fumio; Chiba, Hitoshi; Nakamura, Shin; Yoshino, Hirofumi; Umezawa, Mosumi; Smith, Alfred R

    2007-10-24

    We present a technique--based on the Lutz, Winston, and Maleki test used in stereotactic linear accelerator radiosurgery--for verifying whether proton beams are being delivered within the required spatial coincidence with the gantry mechanical isocenter. Our procedure uses a proton beam that is collimated by a circular aperture at its central axis and is then intercepted by a small steel sphere rigidly supported by the patient couch. A laser tracker measurement system and a correction algorithm for couch position assures precise positioning of the steel sphere at the mechanical isocenter of the gantry. A film-based radiation dosimetry technique, chosen for the good spatial resolution it achieves, records the proton dose distribution for optical image analysis. The optical image obtained presents a circular high-dose region surrounding a lower-dose area corresponding to the proton beam absorption by the steel sphere, thereby providing a measure of the beam alignment with the mechanical isocenter. We found the self-developing Gafchromic EBT film (International Specialty Products, Wayne, NJ) and commercial Epson 10000 XL flatbed scanner (Epson America, Long Beach, CA) to be accurate and efficient tools. The positions of the gantry mechanical and proton beam isocenters, as recorded on film, were clearly identifiable within the scanning resolution used for routine alignment testing (0.17 mm per pixel). The mean displacement of the collimated proton beam from the gantry mechanical isocenter was 0.22 +/- 0.1 mm for the gantry positions tested, which was well within the maximum deviation of 0.50 mm accepted at the Proton Therapy Center in Houston.

  2. Electron, photons, and molecules: Storing energy from light

    SciTech Connect

    Miller, J.R.

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  3. Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices

    DTIC Science & Technology

    2012-01-05

    variety of wide bandgap nanowires using GaN and ZnO and made functional devices from them for sensing,electronics and photonics.These included a very...showed highly stable operation.This effort grew out of the work on ZnO nanowires ,where we noticed severe segregation effects when we tried to grow...AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS GaN, ZnO , nanowires S.Pearton

  4. MEMS-Electronic-Photonic Heterogeneous Integrated FMCW Ladar Source

    DTIC Science & Technology

    2015-12-18

    couplers .  This  approach  has  several  advantages.  It  is  modular,  flexible,  and  can...coupled  into  it  from  the  MEMS  tunable  hybrid   Silicon-­‐III/V  laser  by  fiber  grating   couplers .     1.2.   Summary...a  voltage  to  derive  the  PFD,  the  integrator   followed  by  a   buffer  to  drive  the

  5. LDRD project 151362 : low energy electron-photon transport.

    SciTech Connect

    Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

    2013-09-01

    At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

  6. Electron-photon coupling in mesoscopic quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Cottet, A.; Kontos, T.; Douçot, B.

    2015-05-01

    Understanding the interaction between cavity photons and electronic nanocircuits is crucial for the development of mesoscopic quantum electrodynamics (QED). One has to combine ingredients from atomic cavity QED, such as orbital degrees of freedom, with tunneling physics and strong cavity field inhomogeneities, specific to superconducting circuit QED. It is therefore necessary to introduce a formalism which bridges between these two domains. We develop a general method based on a photonic pseudopotential to describe the electric coupling between electrons in a nanocircuit and cavity photons. In this picture, photons can induce simultaneously orbital energy shifts, tunneling, and local orbital transitions. We study in detail the elementary example of a single quantum dot with a single normal metal reservoir, coupled to a cavity. Photon-induced tunneling terms lead to a nonuniversal relation between the cavity frequency pull and the damping pull. Our formalism can also be applied to multiple quantum dot circuits, molecular circuits, quantum point contacts, metallic tunnel junctions, and superconducting nanostructures enclosing Andreev bound states or Majorana bound states, for instance.

  7. Comparative analyses of linac and Gamma Knife radiosurgery for trigeminal neuralgia treatments

    NASA Astrophysics Data System (ADS)

    Ma, L.; Kwok, Y.; Chin, L. S.; Yu, C.; Regine, W. F.

    2005-11-01

    Dedicated linac-based radiosurgery has been reported for trigeminal neuralgia treatments. In this study, we investigated the dose fall-off characteristics and setup error tolerance of linac-based radiosurgery as compared with standard Gamma Knife radiosurgery. In order to minimize the errors from different treatment planning calculations, consistent imaging registration, dose calculation and dose volume analysis methods were developed and implemented for both Gamma Knife and linac-based treatments. Intra-arc setup errors were incorporated into the treatment planning process of linac-based deliveries. The effects of intra-arc setup errors with increasing number of arcs were studied and benchmarked against Gamma Knife deliveries with and without plugging patterns. Our studies found equivalent dose fall-off properties between Gamma Knife and linac-based radiosurgery given a sufficient number of arcs (>7) and small intra-arc errors (<0.5 mm) were satisfied for linac-based deliveries. Increasing the number of arcs significantly decreased the variations in the dose fall-off curve at the low isodose region (e.g. from 40% to 10%) and also improved dose uniformity at the high isodose region (e.g. from 70% to 90%). As the number of arcs increased, the effects of intra-arc setup errors on the dose fall-off curves decreased. Increasing the number of arcs also reduced the integral dose to the distal normal brain tissues. In conclusion, linac-based radiosurgery produces equivalent dose fall-off characteristics to Gamma Knife radiosurgery with a high number of arcs. However, one must note the increased treatment time for a large number of arcs and isocentre accuracies.

  8. LUX - A recirculating linac-based ultrafast X-ray source

    SciTech Connect

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.R.; Lidia, S.; Li, D.; Parmigiani, F.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Zholents, A.

    2003-08-01

    We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightness rf photocathode provides electron bunches. An injector linac accelerates the beam to the 100 MeV range, and is followed by four passes through a 700 MeV recirculating linac. Ultrafast hard x-ray pulses are obtained by a combination of electron bunch manipulation, transverse temporal correlation of the electrons, and x-ray pulse compression. EUV and soft x-ray pulses as short as 10 fs are generated in a harmonic-cascade free electron laser scheme.

  9. LUX - a recirculating linac-based facility for ultrafast X-ray science

    SciTech Connect

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Penn, G.; Ratti, A.; Reinsch, M.; Schoenlein, R.; Staples, J.; Stover, G.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Wurtele, J.; Zholents, A.

    2004-06-29

    We present recent developments in design concepts for LUX - a source of ultra-short synchrotron radiation pulses based on a recirculating superconducting linac. The source produces high-flux x-ray pulses with duration of 100 fs or less at a 10 kHz repetition rate, optimized for the study of ultra-fast dynamics across many fields of science [1]. Cascaded harmonic generation in free-electron lasers (FEL's) produces coherent radiation in the VUV-soft x-ray regime, and a specialized technique is used to compress spontaneous emission for ultra-short-pulse photon production in the 1-10 keV range. High-brightness electron bunches of 2-3 mm-mrad emittance at 1 nC charge in 30 ps duration are produced in an rf photocathode gun and compressed to 3 ps duration following an injector linac, and recirculated three times through a 1 GeV main linac. In each return path, independently tunable harmonic cascades are inserted to produce seeded FEL radiation in selected photon energy ranges from approximately 20 eV with a single stage of harmonic generation, to 1 keV with a four-stage cascade. The lattice is designed to minimize emittance growth from effects such as coherent synchrotron radiation (CSR), and resistive wall wakefields. Timing jitter between pump lasers and x-ray pulses is minimized by use of a stable optical master oscillator, distributing timing signals over actively stabilized fiber-optic, phase-locking all lasers to the master oscillator, and generating all rf signals from the master oscillator. We describe technical developments including techniques for minimizing power dissipation in a high repetition rate rf photocathode gun, beam dynamics in two injector configurations, independently tunable beamlines for VUV and soft x-ray production by cascaded harmonic generation, a fast kicker design, timing systems for providing synchronization between experimental pump lasers and the x-ray pulse, and beamline design for maintaining nm-scale density modulation.

  10. SU-E-T-536: LINAC-Based Single Isocenter Frameless SRT for Brain Metastases

    SciTech Connect

    Liu, B; Zhang, L; Rigor, N; Kim, J

    2015-06-15

    Purpose: Single-isocenter Stereotactic Radiotherapy of multiple brain metastases with Varian 21 IX LINAC, using Aktina Pinpoint system for patient setup. Methods: In 2014, five single-isocenter RapidArc SRT plans were delivered to five patients with 2 to 8 brain metastases using Varian 21 IX. Aktina Pinpoint system was used for setup and 2mm PTV margin were used. CBCT was acquired before and after the beam delivery. The prescription is 2100 cGy in 3 fractions. Eclipse planning system was used for treatment planning. Depending on the number of metastases and their locations, 1 to 5 coplanar or non coplanar arcs were used. Typically, 2 or 3 arcs are used. IMRT QAs were performed by comparing an A1SL ion chamber point dose measurement in solid water phantom to point dose of the plan; also, based on EPID measurement, 3D spatial dose was calculated using DosimetryCheck software package from MathResolutions Inc. The EPID system has an active area of 40cm by 30cm with 1024 by 768 photodiodes, which corresponds to a resolution of 0.4mm by 0.4mm pixel dimension. Results: for all the plans, at least 95% PTV coverage was achieved for full prescription dose, with plan normalization > 75%. RTOG conformity indices are less than 1.1 and Paddick gradient indices are less than 4.5. The distance from prescription IDL to 50% IDL increases as the number of metastases increases, and it ranges from 0.6mm to 0.8mm. Treatment time varies from 10mins to 30mins, depending on the number of arcs and if the arcs are coplanar. IMRT QA shows that the ion chamber measurement agree with the eclipse calculation within 3%, and 95% of the points passed Gamma, using 3% dose difference and 3mm DTA Conclusion: High quality single isocenter RapidArc SRT plan can be optimized and accurately delivered using Eclipse and Varian 21IX.

  11. Isocenter verification for linac-based stereotactic radiation therapy: review of principles and techniques.

    PubMed

    Rowshanfarzad, Pejman; Sabet, Mahsheed; O'Connor, Daryl J; Greer, Peter B

    2011-11-15

    There have been several manual, semi-automatic and fully-automatic methods proposed for verification of the position of mechanical isocenter as part of comprehensive quality assurance programs required for linear accelerator-based stereotactic radiosurgery/radiotherapy (SRS/SRT) treatments. In this paper, a systematic review has been carried out to discuss the present methods for isocenter verification and compare their characteristics, to help physicists in making a decision on selection of their quality assurance routine.

  12. High Repetition Rate, LINAC-based Nuclear Resonance Fluorescence FY 2009 Final Report

    SciTech Connect

    Mathew Kinlaw; Scott Watson; James Johnson; Alan Hunt; Heather Seipel; Edward Reedy

    2009-10-01

    Nuclear Resonance Fluorescence (NRF), which is possible for nuclei with atomic numbers greater than helium (Z=2), occurs when a nuclear level is excited by resonant absorption of a photon and subsequently decays by reemission of a photon. The excited nuclear states can become readily populated, provided the incident photon’s energy is within the Doppler-broadened width of the energy level being excited. Utilizing continuous energy photon spectra, as is characteristic of a bremsstrahlung photon beam, as the inspection source, ensures that at least some fraction of the impinging beam will contribute to the population of the excited energy levels in the material of interest. Upon de-excitation, either to the ground state or to a lower-energy excited state, the emitted fluorescence photon’s energy will correspond to the energy difference between the excited state and the state to which it decays. As each isotope inherently contains unique nuclear energy levels, the NRF states for each isotope are also unique. By exploiting this phenomenon, NRF photon detection provides a well-defined signature for identifying the presence of individual nuclear species. This report summarizes the second year (Fiscal Year [FY] 2009) of a collaborative research effort between Idaho National Laboratory, Idaho State University’s Idaho Accelerator Center, and Pacific Northwest National Laboratory. This effort focused on continuing to assess and optimize NRF-based detection techniques utilizing a slightly modified, commercially available, pulsed medical electron accelerator.

  13. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  14. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    SciTech Connect

    Corlett, J.N.; Barry, W.; Barletta, W.A.; Byrd, J.M.; DeSantis, S.; Doolittle, L.; Fawley, W.; Green, M.A.; Hartman, N.; Heimann, P.; Kairan, D.; Kujawski, E.; Li, D.; Lidia, S.; Luft, P.; McClure, R.; Parmigiani, F.; Petroff, Y.; Pirkl, W.; Placidi, M.; Reavill, D.; Reichel, I.; Rimmer, R.A.; Ratti, A.; Robinson, K.E.; Sannibale, F.; Schoenlein, R.; Staples, J.; Tanabe, J.; Truchlikova, D.; Wan, W.; Wang, S.; Wells, R.; Wolski, A.; Zholents, A.

    2002-12-21

    LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length ({approx}60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimize high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating geometry to provide beam-based signals from early passes through the machine are being studied.

  15. Conformity of LINAC-Based Stereotactic Radiosurgery Using Dynamic Conformal Arcs and Micro-Multileaf Collimator

    SciTech Connect

    Hazard, Lisa J. Wang, Brian; Skidmore, Thomas B.; Chern, Shyh-Shi; Salter, Bill J.; Jensen, Randy L.; Shrieve, Dennis C.

    2009-02-01

    Purpose: To assess the conformity of dynamic conformal arc linear accelerator-based stereotactic radiosurgery and to describe a standardized method of isodose surface (IDS) selection. Methods and Materials: In 174 targets, the conformity index (CI) at the prescription IDS used for treatment was calculated as CI = (PIV/PVTV)/(PVTV/TV), where TV is the target volume, PIV (prescription isodose volume) is the total volume encompassed by the prescription IDS, and PVTV is the TV encompassed by the IDS. In addition, a 'standardized' prescription IDS (sIDS) was chosen according to the following criteria: 95% of the TV was encompassed by the PIV and 99% of TV was covered by 95% of the prescription dose. The CIs at the sIDS were also calculated. Results: The median CI at the prescription IDS and sIDS was 1.63 and 1.47, respectively (p < 0.001). In 132 of 174 cases, the volume of normal tissue in the PIV was reduced by the prescription to the sIDS compared with the prescription IDS, in 20 cases it remained unchanged, and in 22 cases it was increased. Conclusion: The CIs obtained with linear accelerator-based stereotactic radiosurgery are comparable to those previously reported for gamma knife stereotactic radiosurgery. Using a uniform method to select the sIDS, adequate target coverage was usually achievable with prescription to an IDS greater than that chosen by the treating physician (prescription IDS), providing sparing of normal tissue. Thus, the sIDS might aid physicians in identifying a prescription IDS that balances coverage and conformity.

  16. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT 4

    SciTech Connect

    Ahmad, Syed Bilal; Sarfehnia, Arman; Kim, Anthony; Sahgal, Arjun; Keller, Brian; Paudel, Moti Raj; Hissoiny, Sami

    2016-02-15

    Purpose: This paper provides a comparison between a fast, commercial, in-patient Monte Carlo dose calculation algorithm (GPUMCD) and GEANT4. It also evaluates the dosimetric impact of the application of an external 1.5 T magnetic field. Methods: A stand-alone version of the Elekta™ GPUMCD algorithm, to be used within the Monaco treatment planning system to model dose for the Elekta™ magnetic resonance imaging (MRI) Linac, was compared against GEANT4 (v10.1). This was done in the presence or absence of a 1.5 T static magnetic field directed orthogonally to the radiation beam axis. Phantoms with material compositions of water, ICRU lung, ICRU compact-bone, and titanium were used for this purpose. Beams with 2 MeV monoenergetic photons as well as a 7 MV histogrammed spectrum representing the MRI Linac spectrum were emitted from a point source using a nominal source-to-surface distance of 142.5 cm. Field sizes ranged from 1.5 × 1.5 to 10 × 10 cm{sup 2}. Dose scoring was performed using a 3D grid comprising 1 mm{sup 3} voxels. The production thresholds were equivalent for both codes. Results were analyzed based upon a voxel by voxel dose difference between the two codes and also using a volumetric gamma analysis. Results: Comparisons were drawn from central axis depth doses, cross beam profiles, and isodose contours. Both in the presence and absence of a 1.5 T static magnetic field the relative differences in doses scored along the beam central axis were less than 1% for the homogeneous water phantom and all results matched within a maximum of ±2% for heterogeneous phantoms. Volumetric gamma analysis indicated that more than 99% of the examined volume passed gamma criteria of 2%—2 mm (dose difference and distance to agreement, respectively). These criteria were chosen because the minimum primary statistical uncertainty in dose scoring voxels was 0.5%. The presence of the magnetic field affects the dose at the interface depending upon the density of the material on either sides of the interface. This effect varies with the field size. For example, at the water-lung interface a 33.94% increase in dose was observed (relative to the D{sub max}), by both GPUMCD and GEANT4 for the field size of 2 × 2 cm{sup 2} (compared to no B-field case), which increased to 47.83% for the field size of 5 × 5 cm{sup 2} in the presence of the magnetic field. Similarly, at the lung-water interface, the dose decreased by 19.21% (relative to D{sub max}) for a field size of 2 × 2 cm{sup 2} and by 30.01% for 5 × 5 cm{sup 2} field size. For more complex combinations of materials the dose deposition also becomes more complex. Conclusions: The GPUMCD algorithm showed good agreement against GEANT4 both in the presence and absence of a 1.5 T external magnetic field. The application of 1.5 T magnetic field significantly alters the dose at the interfaces by either increasing or decreasing the dose depending upon the density of the material on either side of the interfaces.

  17. Investigation of Linac-Based Image-Guided Hypofractionated Prostate Radiotherapy

    SciTech Connect

    Pawlicki, Todd . E-mail: tpaw@stanford.edu; Kim, Gwe-Ya; Hsu, Annie; Cotrutz, Cristian; Boyer, Arthur L.; Xing Lei; King, Christopher R.; Luxton, Gary

    2007-07-01

    A hypofractionation treatment protocol for prostate cancer was initiated in our department in December 2003. The treatment regimen consists of a total dose of 36.25 Gy delivered at 7.25 Gy per fraction over 10 days. We discuss the rationale for such a prostate hypofractionation protocol and the need for frequent prostate imaging during treatment. The CyberKnife (Accuray Inc., Sunnyvale, CA), a linear accelerator mounted on a robotic arm, is currently being used as the radiation delivery device for this protocol, due to its incorporation of near real-time kV imaging of the prostate via 3 gold fiducial seeds. Recently introduced conventional linac kV imaging with intensity modulated planning and delivery may add a new option for these hypofractionated treatments. The purpose of this work is to investigate the use of intensity modulated radiotherapy (IMRT) and the Varian Trilogy Accelerator with on-board kV imaging (Varian Medical Systems Inc., Palo Alto, CA) for treatment of our hypofractionated prostate patients. The dose-volume histograms and dose statistics of 2 patients previously treated on the CyberKnife were compared to 7-field IMRT plans. A process of acquiring images to observe intrafraction prostate motion was achieved in an average time of about 1 minute and 40 seconds, and IMRT beam delivery takes about 40 seconds per field. A complete 7-field IMRT plan can therefore be imaged and delivered in 10 to 17 minutes. The Varian Trilogy Accelerator with on-board imaging and IMRT is well suited for image-guided hypofractionated prostate treatments. During this study, we have also uncovered opportunities for improvement of the on-board imaging hardware/software implementation that would further enhance performance in this regard.

  18. EDITORIAL: Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-04-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of 'Nano and Giga Challenges in Electronics and Photonics'— NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix— were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10-14 August, Hamilton, Ontario, Canada) and the scope was expanded to include renewable energy research and development. This special issue of Nanotechnology is devoted to a better understanding of the function and design of semiconductor devices that are relevant to information technology (both electronics and photonics based) and renewable energy applications. The papers contained in this special issue are selected from the NGC/CSTC2009 symposium. Among them is a report by Ray LaPierre from McMaster University and colleagues at the University of Waterloo in Canada on the ability to manipulate single spins in nanowire quantum bits. The paper also reports the development of a testbed of a few qubits for general quantum information processing tasks [1]. Lower cost and greater energy conversion efficiency compared with thin film devices have led to a high level of activity in nanowire research related to photovoltaic applications. This special issue also contains results from an impedance spectroscopy study of core-shell GaAs nanowires to throw light on the transport and recombination mechanisms relevant to solar cell research [2]. Information technology research and renewable energy sources are research areas of enormous public interest. This special issue addresses both theoretical and experimental achievements and provides a stimulating outlook for technological developments in these highly topical fields of research. References [1] Caram J, Sandoval C, Tirado M, Comedi D, Czaban J, Thompson D A and LaPierre R R 2101 Nanotechnology 21 134007 [2] Baugh J, Fung J S and LaPierre RR 2010 Nanotechnology 21 134018

  19. Development and Evaluation of Multiple Isocentric Volumetric Modulated Arc Therapy Technique for Craniospinal Axis Radiotherapy Planning

    SciTech Connect

    Lee, Young K.; Brooks, Corrinne J.; Bedford, James L.; Warrington, Alan P.; Saran, Frank H.

    2012-02-01

    Purpose: To develop and compare a volumetric modulated arc therapy (VMAT) technique with conventional radiotherapy for craniospinal irradiation with respect to improved dose conformity and homogeneity in the planning target volume (PTV) and to reduced dose to organs at risk (OAR). Methods and Materials: Conventional craniospinal axis radiotherapy plans of 5 patients were acquired. The median (range) length of the PTV was 58.9 (48.1-83.7) cm. The 6-MV VMAT plans were inversely planned with one isocenter near the base of the brain and the minimum number of isocenters required for the specified lengths of spine. The plans were optimized with high weighting for PTV coverage and low weighting for OAR sparing. Conformity and heterogeneity indices, dose-volume histograms, mean doses, and non-PTV integral doses from the two plans (prescription dose 23.4 Gy in 13 fractions) were compared. Results: The median (range) conformity index of VMAT was 1.22 (1.09-1.45), compared with 1.69 (1.44-2.67) for conventional plans (p = 0.04). The median (range) heterogeneity index was also lower for VMAT compared with conventional plans: 1.04 (1.03-1.07) vs. 1.12 (1.09-1.19), respectively (p = 0.04). A significant reduction of mean and maximum doses was observed in the heart, thyroid, esophagus, optic nerves, and eyes with VMAT when compared with conventional plans. A decrease in body V{sub 10Gy} was observed, but for 4 of 5 patients non-PTV integral dose was increased with VMAT when compared with the conventional plans. Conclusions: A VMAT technique to treat the craniospinal axis significantly reduces OAR dose, potentially leading to lower late organ toxicity. However, this is achieved at the expense of increased low-dose volumes, which is inherent to the technique, carrying a potentially increased risk of secondary malignancies.

  20. Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns

    PubMed Central

    Teng, Dongdong; Chen, Dihu; Tan, Hongzhou

    2015-01-01

    The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz. PMID:26426929

  1. Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns.

    PubMed

    Pang, Zhiyong; Wei, Chuansheng; Teng, Dongdong; Chen, Dihu; Tan, Hongzhou

    2015-01-01

    The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz.

  2. Total-body irradiation on an isocentric linear accelerator: a radiation output compensation technique.

    PubMed

    Hugtenburg, R P; Turner, J R; Baggarley, S P; Pinchin, D A; Oien, N A; Atkinson, C H; Tremewan, R N

    1994-05-01

    A treatment technique for total-body irradiation (TBI) is proposed that combines arc therapy with dynamic output control to achieve high-grade dose uniformity. The patient lies on a low couch and receives exposure in the prone and supine positions from a modulated arcing beam. The technique has been validated using a personal computer to control the linear accelerator and we demonstrate that only minor alterations to current dynamic therapy systems would be required. We have examined the practical application of this treatment with emphasis on methods of conformal therapy where an optimized dose distribution is prepared from a matrix of caliper measurements taken from the patient. This technique provides a means for regular TBI treatment on a computer-controlled linear accelerator that is easy to set up, requires short exposure times and is comfortable for the patient.

  3. SU-E-T-54: A New Method for Optimizing Radiation Isocenter for Linac-Based SRS

    SciTech Connect

    Hancock, S; Hyer, D; Nixon, E

    2015-06-15

    Purpose: To develop a new method to minimize deviation of linac x-ray beams from the centroid of the volumetric radiation isocenter for all combinations of gantry and table angle. Methods: A set of ball-bearing (Winston-Lutz) images was used to determine the gantry radiation isocenter as the midrange of deviation values. Deviations in the cross-plane direction were minimized by calibration of MLC leaf position offset, and by adjusting beam position steering for each energy. Special attention was also paid to matching the absolute position of isocenter across all energies by adjusting position steering in the gun-target axis. Displacement of table axis from the gantry isocenter, and recommended table axis adjustment for contemporary Elekta linacs, was also determined. Eight images were used to characterize the volumetric isocenter for the full range of gantry and table rotations available. Tabulation of deviation for each beam was used to test compliance with isocenter tolerance. Results: Four contemporary Elekta linacs were evaluated and the radius in the gun-target axis of the radiation isocenter was 0.5 to 0.7 mm. After beam steering adjustment, the radius in the cross-plane direction was typically 0.2 to 0.4 mm. Position matching between energies can be reduced to 0.28 mm. Maximum total deviation was 0.68 to 1.07 mm, depending primarily on the effect of systematic table axis wobble with rotation. Conclusion: This new method effectively facilitates minimization of deviation between beam center and target position. The test, which requires a few minutes to perform, can be easily incorporated into a routine machine QA program. A tighter radiation isocenter for contemporary Elekta linacs would require reducing the effect of gantry arm flex and/or table axis wobble that are the two main components of deviation from the designated isocenter point.

  4. A new scheme to accumulate positrons in a Penning-Malmberg trap with a linac-based positron pulsed source

    NASA Astrophysics Data System (ADS)

    Dupré, P.

    2013-03-01

    The Gravitational Behaviour of Antimatter at Rest experiment (GBAR) is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration of anti-hydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium (Ps) cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. The Ps target will be produced by a pulse of few 1010 positrons injected onto a positron-positronium converter. For this purpose, a slow positron source using an electron Linac has been constructed at Saclay. The present flux is comparable with that of 22Na-based sources using solid neon moderator. A new positron accumulation scheme with a Penning-Malmberg trap has been proposed taking advantage of the pulsed time structure of the beam. In the trap, the positrons are cooled by interaction with a dense electron plasma. The overall trapping efficiency has been estimated to be ˜70% by numerical simulations.

  5. Linac-based positron source and generation of a high density positronium cloud for the GBAR experiment

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Dupré, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Ruiz, N.; Sacquin, Y.

    2013-06-01

    The aim of the recently approved GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment is to measure the acceleration of neutral antihydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. We introduce briefly the experimental scheme and present the ongoing efforts at IRFU CEA Saclay to develop the positron source and the positron-positronium converter, which are key parts of the experiment. We have constructed a slow positron source in Saclay, based on a low energy (4.3 MeV) linear electron accelerator (linac). By using an electron target made of tungsten and a stack of thin W meshes as positron moderator, we reached a slow positron intensity that is comparable with that of 22Na-based sources using a solid neon moderator. The source feeds positrons into a high field (5 T) Penning-Malmberg trap. Intense positron pulses from the trap will be converted to slow ortho-positronium (o-Ps) by a converter structure. Mesoporous silica films appear to date to be the best candidates as converter material. We discuss our studies to find the optimal pore configuration for the positron-positronium converter.

  6. SU-E-T-305: Dosimetric Comparison of Cyberknife Versus Linac Based VMAT Stereotactic Treatment Planning for Localised Prostate Cancer

    SciTech Connect

    Senniandavar, V; Vikraman, S; KP, K; Rajesh, T; Sambasivaselli, R; Ramu, M; Maragathaveni, S; Dhivya, N; Tejinder, K

    2015-06-15

    Purpose: The purpose of this study was to compare dosimetric indices of Cyberknife versus Linac for localised prostate cancer Methods: In this study, twenty patients were taken from Cyberknife Multiplan TPS v 4.6.0. All these patients underwent hypo fractionated boost treatment for localised prostate cancer in Cyberknife with the prescription dose of 18Gy in 3 fractions. For each patient VMAT stereotactic plans were generated in Monaco TPS v 5.0 using Elekta beam modulator MLC machine for 6MV photon beam. The plans quality were evaluated by comparing dosimetry indices such that D95, D90, D5 for target volume and V100, V80, V50, V30 for critical organs. The p values were calculated for target and OAR to ascertain the significant differences. Results: For each case, D95 of target coverage was achieved with 100% prescription dose with p value of 0.9998. The p value for D90, D5 and V100 for linac and Cyberknife plans was 0.9938, 0.9918 and 0.9838 respectively. For rectum, rectum-PTV and bladder doses were significantly less in Cyberknife compared to linac plans. For rectum, rectum-PTV and bladder at V100 the p value is 0.2402, 0.002, and 0.1615 respectively. Other indices V80, V50 and V30 were comparable in both plans. Conclusion: This study demonstrated that both linac and Cyberknife plans were shown adequate target coverage, while in Cyberknife the treatment time is longer and more MUs to be delivered. However, better conformity, lesser doses to the critical organs and dose gradient outside target for localised prostate treatment were achieved in Cyberknife plans due to multiple non coplanar beam arrangements.

  7. SU-E-J-239: IMRT Planning of Prostate Cancer for a MRI-Linac Based On MRI Only

    SciTech Connect

    Chen, X; Prior, P; Paulson, E; Lawton, C; Li, X

    2014-06-01

    Purpose: : To investigate dosimetric differences between MRI- and CT-based IMRT planning for prostate cancer, the impact of a magnetic field in a MRI-Linac, and to explore the feasibility of IMRT planning based on MRI alone. Methods: IMRT plans were generated based on CT and MRI images acquired on two representative prostate-cancer patients using clinical dose volume constraints. A research planning system (Monaco, Elekta), which employs a Monte Carlo dose engine and includes a perpendicular magnetic field of 1.5T from an MRI-Linac, was used. Bulk electron density assignments based on organ-specific values from ICRU 46 were used to convert MRI (T2) to pseudo CT. With the same beam configuration as in the original CT plan, 5 additional plans were generated based on CT or MRI, with or without optimization (i.e., just recalculation) and with or without the magnetic field. The plan quality in terms of commonly used dose volume (DV) parameters for all plans was compared. The statistical uncertainty on dose was < 1%. Results: For plans with the same contour set but without re-optimization, the DV parameters were different from those for the original CT plan, mostly less than 5% with a few exceptions. These differences were reduced to mostly less than 3% when the plans were re-optimized. For plans with contours from MRI, the differences in the DV parameters varied depending on the difference in the contours as compared to CT. For the optimized plans with contours from MR, the differences for PTV were less than 3%. Conclusion: The prostate IMRT plans based on MRI-only for a MR-Linac were practically similar as compared to the CT plan under the same beam and optimization configuration if the difference on the structure delineation is excluded, indicating the feasibility of using MRI-only for prostate IMRT.

  8. SU-E-J-48: Imaging Origin-Radiation Isocenter Coincidence for Linac-Based SRS with Novalis Tx

    SciTech Connect

    Geraghty, C; Workie, D; Hasson, B

    2015-06-15

    Purpose To implement and evaluate an image-based Winston-Lutz (WL) test to measure the displacement between ExacTrac imaging origin and radiation isocenter on a Novalis Tx system using RIT V6.2 software analysis tools. Displacement between imaging and radiation isocenters was tracked over time. The method was applied for cone-based and MLC-based WL tests. Methods The Brainlab Winston-Lutz phantom was aligned to room lasers. The ExacTrac imaging system was then used to detect the Winston- Lutz phantom and obtain the displacement between the center of the phantom and the imaging origin. EPID images of the phantom were obtained at various gantry and couch angles and analyzed with RIT calculating the phantom center to radiation isocenter displacement. The RIT and Exactrac displacements were combined to calculate the displacement between imaging origin and radiation isocenter. Results were tracked over time. Results Mean displacements between ExacTrac origin and radiation isocenter were: VRT: −0.1mm ± 0.3mm, LNG: 0.5mm ± 0.2mm, LAT: 0.2mm ± 0.2mm (vector magnitude of 0.7 ± 0.2mm). Radiation isocenter was characterized by the mean of the standard deviations of the WL phantom displacements: σVRT: 0.2mm, σLNG: 0.4mm, σLAT: 0.6mm. The linac couch base was serviced to reduce couch walkout. This reduced σLAT to 0.2mm. These measurements established a new baseline of radiation isocenter-imaging origin coincidence. Conclusion The image-based WL test has ensured submillimeter localization accuracy using the ExacTrac imaging system. Standard deviations of ExacTrac-radiation isocenter displacements indicate that average agreement within 0.3mm is possible in each axis. This WL test is a departure from the tradiational WL in that imaging origin/radiation isocenter agreement is the end goal not lasers/radiation isocenter.

  9. Development of a Comprehensive Linac-based Quality Assurance Program for a Retrofitted Micro-MLC SRS System

    NASA Astrophysics Data System (ADS)

    Hancock, George

    In Stereotactic Radiosurgery, one of the most import factors that must be measured is the accuracy of the localization system, whether it be lasers or camera system; and the coincidence of the localized isocenter to the radiation isocenter. According to TG-142 the minimum deviation between the isocenter determined by the localization device and the radiation isocenter of the machine must be no more that 1 mm. In addition, the minimum deviation, also recommended by TG-142, between the radiation isocenter and the mechanical isocenter of the machine must be no more that 1mm. The purpose of this research was to develop a method that both of these parameters could be measured and add these tests to our patient specific QA, monthly QA, and annual QA procedures. A plastic phantom was constructed with holes drilled in each of the sides to meet at a common point in the middle of the phantom. This common intersection was then set as the isocenter for the treatment beams, and the coordinates of the point were sent to the camera system. Measurements were than taken with both the EPID and GafChromic film with the use of rigid tungsten rods in each hole to mark the position of the holes on the film and EPID. The films were then scanned and the field edges and isocenter positions were determined by taking the coordinates of a point that was halfway between the minimum and maximum points in all cases.

  10. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    NASA Astrophysics Data System (ADS)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  11. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  12. SU-E-T-245: Detection of the Photon Target Damage in Varian Linac Based On Periodical Quality Assurance Measurements

    SciTech Connect

    Gao, S; Balter, P; Wang, X; Sadagopan, R; Pollard, J

    2015-06-15

    Purpose: To determine the best dosimetric metric measured by our routine QA devices for diagnosing photon target failure on a Varian C-series linac. Methods: We have retrospectively reviewed and analyzed the dosimetry data from a Varian linac with a target degradation that was undiagnosed for one year. A failure in the daily QA symmetry tests was the first indication of an issue. The beam was steered back to a symmetric shape and water scans indicated the beam energy had changed but stayed within the manufacturer’s specifications and agreed reasonably with our treatment planning system data. After the problem was identified and the target was replaced, we retrospectively analyzed our QA data including diagonals normalized flatness (F-DN) from the daily device (DQA3), profiles from an ionization chamber array (IC Profiler), as well as profiles and PDDs from a 3D water Scanner (3DS). These metrics were cross-compared to determine which was the best early indicator of target degradation. Results: A 3% change in FDN measured by the DQA3 was found to be an early indicator of target degradation. It is more sensitive than changes in output, symmetry, flatness or PDD. All beam shape metrics (flatness at dmax and 10 cm depth, and F-DN) indicated an energy increase while the PDD indicated an energy decrease. This disagreement between the beam-shape based energy metrics (F-DN and flatness) and PDD based energy metric may indicate target failure as opposed to an energy change resulting from changes in the incident electron energy. Conclusion: Photon target degradation has been identified as a failure mode for linacs. The manufacturer’s test for this condition is highly invasive and requires machine down time. We have demonstrated that the condition could be caught early based upon data acquired during routine QA activities, such as the F-DN.

  13. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    SciTech Connect

    Luo, Tianhuan

    2011-08-01

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  14. An empirical method for deriving RBE values associated with electrons, photons and radionuclides.

    PubMed

    Bellamy, M; Puskin, J; Hertel, N; Eckerman, K

    2015-12-01

    There is substantial evidence to justify using relative biological effectiveness (RBE) values of >1 for low-energy electrons and photons. But, in the field of radiation protection, radiation associated with low linear energy transfer has been assigned a radiation weighting factor wR of 1. This value may be suitable for radiation protection but, for risk considerations, it is important to evaluate the potential elevated biological effectiveness of radiation to improve the quality of risk estimates. RBE values between 2 and 3 for tritium are implied by several experimental measurements. Additionally, elevated RBE values have been found for other similar low-energy radiation sources. In this work, RBE values are derived for electrons based upon the fractional deposition of absorbed dose of energies less than a few kiloelectron volts. Using this empirical method, RBE values were also derived for monoenergetic photons and 1070 radionuclides from ICRP Publication 107 for which photons and electrons are the primary emissions.

  15. Electron-photon coupling in semimetals in a high magnetic field

    SciTech Connect

    Mihaila, Bogdan; Albers, Robert C; Littlewood, Peter B

    2009-01-01

    We consider the effect of electron-phonon coupling in semimetals in high magnetic fields, with regard to elastic modes that can lead to a redistribution of carriers between pockets. We show that in a clean three dimensional system, at each Landau level crossing, this leads to a discontinuity in the magnetostriction, and a divergent contribution to the elastic modulus. We estimate the magnitude of this effect in the group V semimetal Bismuth.

  16. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  17. First results from electron-photon damage equivalence studies on a generic ethylene-propylene rubber

    SciTech Connect

    Buckalew, W.H.

    1986-04-01

    As part of a simulator adequacy assessment program, the relative effectiveness of electrons and photons to produce damage in a generic ethylene propylene rubber (EPR) has been investigated. The investigation was limited in extent in that a single EPR material, in three thickness, was exposed to Cobalt-60 photons and three electron beam energies. Basing material damage on changes in the EPR mechanical properties elongation and tensile strength, we observed that EPR damage was a smoothly varying function of absorbed energy and independent of irradiating particle type. EPR damage tracked equally well as a function of both incident particle energy and material front surface dose. Based on these preliminary data, we tentatively concluded that a correlation between particle, particle energy, and material damage (as measured by changes in material elongation and/or tensile strength) has been demonstrated. 14 figs.

  18. Integral functions of electron lateral distribution and their fluctuations in electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Ivanenko, I. P.; Kanevsky, B. L.; Kirillov, A. A.; Linde, I. A.; Lyutov, Y. G.

    1985-01-01

    Monte Carlo simulated lateral distribution functions for electrons of EPC developing in lead, at superhigh energies (.1-1 PeV) for depths t or = 60 c.u. delta t=1t. c.u. are presented. The higher moment characteristics, i.e., variation, asymmetry, excess, are presented along with analytical solutions for the same characteristics at fixed observation level calculated to theory approximations A and B by using numerical inversion of the Laplace transformation. The conclusion is made of a complex, usually non-Gaussian shape of the function of the particle number distribution within a circle of given radius at fixed depth.

  19. An Empirical Method for deriving RBE values associated with Electrons, Photons and Radionuclides

    DOE PAGES

    Bellamy, Michael B; Puskin, J.; Eckerman, Keith F.; ...

    2015-01-01

    There is substantial evidence to justify using relative biological effectiveness (RBE) values greater than one for low-energy electrons and photons. But, in the field of radiation protection, radiation associated with low linear energy transfer (LET) has been assigned a radiation weighting factor wR of one. This value may be suitable for radiation protection but, for risk considerations, it is important to evaluate the potential elevated biological effectiveness of radiation to improve the quality of risk estimates. RBE values between 2 and 3 for tritium are implied by several experimental measurements. Additionally, elevated RBE values have been found for other similarmore » low-energy radiation sources. In this work, RBE values are derived for electrons based upon the fractional deposition of absorbed dose of energies less than a few keV. Using this empirical method, RBE values were also derived for monoenergetic photons and 1070 radionuclides from ICRP Publication 107 for which photons and electrons are the primary emissions.« less

  20. Photon-photon and electron-photon colliders with energies below a TeV

    SciTech Connect

    Mayda M. Velasco et al.

    2001-11-29

    We investigate the potential for detecting and studying Higgs bosons in {gamma}{gamma} and e{gamma} collisions at future linear colliders with energies below a TeV. Our study incorporates realistic {gamma}{gamma}spectra based on available laser technology, and NLC and CLIC acceleration techniques. Results include detector simulations. We study the cases of: (a) a SM-like Higgs boson based on a devoted low energy machine with {radical}s{sub ee} {le} 200 GeV; (b) the heavy MSSM Higgs bosons; and (c) charged Higgs bosons in e{gamma} collisions.

  1. An Empirical Method for deriving RBE values associated with Electrons, Photons and Radionuclides

    SciTech Connect

    Bellamy, Michael B; Puskin, J.; Eckerman, Keith F.; Hertel, Nolan

    2015-01-01

    There is substantial evidence to justify using relative biological effectiveness (RBE) values greater than one for low-energy electrons and photons. But, in the field of radiation protection, radiation associated with low linear energy transfer (LET) has been assigned a radiation weighting factor wR of one. This value may be suitable for radiation protection but, for risk considerations, it is important to evaluate the potential elevated biological effectiveness of radiation to improve the quality of risk estimates. RBE values between 2 and 3 for tritium are implied by several experimental measurements. Additionally, elevated RBE values have been found for other similar low-energy radiation sources. In this work, RBE values are derived for electrons based upon the fractional deposition of absorbed dose of energies less than a few keV. Using this empirical method, RBE values were also derived for monoenergetic photons and 1070 radionuclides from ICRP Publication 107 for which photons and electrons are the primary emissions.

  2. Comptonization of X-rays by low-temperature electrons. [photon wavelength redistribution in cosmic sources

    NASA Technical Reports Server (NTRS)

    Illarionov, A.; Kallman, T.; Mccray, R.; Ross, R.

    1979-01-01

    A method is described for calculating the spectrum that results from the Compton scattering of a monochromatic source of X-rays by low-temperature electrons, both for initial-value relaxation problems and for steady-state spatial diffusion problems. The method gives an exact solution of the inital-value problem for evolution of the spectrum in an infinite homogeneous medium if Klein-Nishina corrections to the Thomson cross section are neglected. This, together with approximate solutions for problems in which Klein-Nishina corrections are significant and/or spatial diffusion occurs, shows spectral structure near the original photon wavelength that may be used to infer physical conditions in cosmic X-ray sources. Explicit results, shown for examples of time relaxation in an infinite medium and spatial diffusion through a uniform sphere, are compared with results obtained by Monte Carlo calculations and by solving the appropriate Fokker-Planck equation.

  3. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    PubMed Central

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  4. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology.

    PubMed

    Claridge, Shelley A; Schwartz, Jeffrey J; Weiss, Paul S

    2011-02-22

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution.

  5. The feasibility of MR-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre.

    PubMed

    Elhawary, Haytham; Zivanovic, Aleksander; Rea, Marc; Davies, Brian; Besant, Collin; McRobbie, Donald; de Souza, Nandita; Young, Ian; Lampérth, Michael

    2006-01-01

    The excellent soft tissue contrast of Magnetic Resonance Imaging (MRI) has encouraged the development of MRI compatible systems capable of combining the advantages of robotic manipulators with high quality anatomical images. Continuing this development, a new five DOF prostate biopsy manipulator has been designed for use inside a closed 1.5T MRI scanner. Space constraints in the bore and the current trend to restrict field strength exposure for operators indicate that a master-slave configuration is ideal for controlling the robotic system from outside the bore. This system has been designed to work with piezoceramic motors and optical encoders placed inside or near the field of view of the scanner, using real time image guidance for targeting biopsies to specific lesions in the prostate. MRI tests have been performed to prove the feasibility of this concept and a one DOF proof-of-concept test rig implementing closed loop position control has been tested and is presented here. A first prototype of the slave manipulator has been designed and manufactured incorporating this new technology.

  6. Determination of isocentric machine parameters for inclined treatment volumes: a single solution for angled transverse or coronal treatment planes.

    PubMed

    Bradley, F L

    2001-01-01

    The derivation of the trigonometric equations necessary to calculate gantry, floor and collimator settings for a treatment plane at an angle phi to the transverse plane of the patient has been described previously. The derivation of a second set of equations to facilitate treatment in a plane at an angle phi to the coronal plane has also been described previously. This work reinterprets the geometry of inclined volumes and shows that essentially only one set of equations is required to determine the settings for treatment planes at an angle phi to either the transverse or coronal planes of the patient.

  7. Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: Feasibility and initial experience.

    PubMed

    Cilla, Savino; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Ianiro, Anna; Viola, Pietro; Craus, Maurizio; Valentini, Vincenzo; Piermattei, Angelo; Morganti, Alessio G

    2016-01-01

    We reported our initial experience in using Elekta volumetric modulated arc therapy (VMAT) and an anatomy-based treatment planning system (TPS) for single high-dose radiosurgery (SRS-VMAT) of liver metastases. This study included a cohort of 12 patients treated with a 26-Gy single fraction. Single-arc VMAT plans were generated with Ergo++ TPS. The prescription isodose surface (IDS) was selected to fulfill the 2 following criteria: 95% of planning target volume (PTV) reached 100% of the prescription dose and 99% of PTV reached a minimum of 90% of prescription dose. A 1-mm multileaf collimator (MLC) block margin was added around the PTV. For a comparison of dose distributions with literature data, several conformity indexes (conformity index [CI], conformation number [CN], and gradient index [GI]) were calculated. Treatment efficiency and pretreatment dosimetric verification were assessed. Early clinical data were also reported. Our results reported that target and organ-at-risk objectives were met for all patients. Mean and maximum doses to PTVs were on average 112.9% and 121.5% of prescribed dose, respectively. A very high degree of dose conformity was obtained, with CI, CN, and GI average values equal to 1.29, 0.80, and 3.63, respectively. The beam-on-time was on average 9.3 minutes, i.e., 0.36min/Gy. The mean number of monitor units was 3162, i.e., 121.6MU/Gy. Pretreatment verification (3%-3mm) showed an optimal agreement with calculated values; mean γ value was 0.27 and 98.2% of measured points resulted with γ < 1. With a median follow-up of 16 months complete response was observed in 12/14 (86%) lesions; partial response was observed in 2/14 (14%) lesions. No radiation-induced liver disease (RILD) was observed in any patients as well no duodenal ulceration or esophagitis or gastric hemorrhage. In conclusion, this analysis demonstrated the feasibility and the appropriateness of high-dose single-fraction SRS-VMAT in liver metastases performed with Elekta VMAT and Ergo++ TPS. Preliminary clinical outcomes showed a high rate of local control and minimum incidence of acute toxicity.

  8. Linac-based on-board imaging feasibility and the dosimetric consequences of head roll in head-and-neck IMRT plans.

    PubMed

    Kim, Gwe-Ya; Pawlicki, Todd; Le, Quynh-Thu; Luxton, Gary

    2008-01-01

    Kilovoltage imaging systems on linear accelerators are used for patient localization in many clinics. The purpose of this work is to assess on-board imaging (OBI) detection of systematic setup errors and in particular, the dosimetric consequences of undetected head roll in head-and-neck intensity modulated radiation therapy (IMRT) plans when using these systems. The system used in this study was the Trilogy linear accelerator and associated software (Varian Medical Systems, Palo Alto, CA). Accuracy of OBI localization was evaluated using an anthropomorphic head phantom. The head phantom is rigidly attached to a specially designed positioning device with 5 degrees of freedom, 3 translational and 2 rotational in the axial and coronal planes. Simulated setup errors were 3 degrees and 5 degrees rotations in the axial plane and displacements of 5 mm in the left-right, anterior-posterior, and superior-inferior directions. The coordinates set by the positioning device were compared with the coordinates obtained as measured by using the image matching tools of paired 2-dimensional (2D) orthogonal image matching, and 3D cone-beam computed tomography (CT) volume matching. In addition, 6 physician-approved IMRT plans of nasopharynx and tonsil carcinoma were recalculated to evaluate the impact of undetected 3 degrees and 5 degrees head roll. Application of cone-beam CT (CBCT) for patient localization was superior to 2D matching techniques for detecting rotational setup errors. The use of CBCT allowed the determination of translational errors to within 0.5 mm, whereas kV planar was within 1 to 2 mm. Head roll in the axial plane was not easily detected with orthogonal image sets. Compared to the IMRT plans with no head roll, dose-volume histogram analysis demonstrated an average increase in the maximal spinal cord dose of 3.1% and 6.4% for 3 degrees and 5 degrees angles of rotation, respectively. Dose to the contralateral parotid was unchanged with 3 degrees roll and increased by 2.7% with 5 degrees roll. The results of this study show that volumetric setup verification using CBCT can improve bony anatomy setup detection to millimeter accuracy, and is a reliable method to detect head roll. However, the magnitude of possible dose errors due to undetected head roll suggests that CBCT does not need to be performed on a daily basis but rather weekly or bi-weekly to ensure fidelity of the head position with the immobilization system.

  9. Linac-based on-board imaging feasibility and the dosimetric consequences of head roll in head-and-neck IMRT plans

    SciTech Connect

    Kim, Gwe-Ya; Pawlicki, Todd Le, Quynh-Thu; Luxton, Gary

    2008-04-01

    Kilovoltage imaging systems on linear accelerators are used for patient localization in many clinics. The purpose of this work is to assess on-board imaging (OBI) detection of systematic setup errors and in particular, the dosimetric consequences of undetected head roll in head-and-neck intensity modulated radiation therapy (IMRT) plans when using these systems. The system used in this study was the Trilogy linear accelerator and associated software (Varian Medical Systems, Palo Alto, CA). Accuracy of OBI localization was evaluated using an anthropomorphic head phantom. The head phantom is rigidly attached to a specially designed positioning device with 5 deg. of freedom, 3 translational and 2 rotational in the axial and coronal planes. Simulated setup errors were 3 deg. and 5 deg. rotations in the axial plane and displacements of 5 mm in the left-right, anterior-posterior, and superior-inferior directions. The coordinates set by the positioning device were compared with the coordinates obtained as measured by using the image matching tools of paired 2-dimensional (2D) orthogonal image matching, and 3D cone-beam computed tomography (CT) volume matching. In addition, 6 physician-approved IMRT plans of nasopharynx and tonsil carcinoma were recalculated to evaluate the impact of undetected 3 deg. and 5 deg. head roll. Application of cone-beam CT (CBCT) for patient localization was superior to 2D matching techniques for detecting rotational setup errors. The use of CBCT allowed the determination of translational errors to within 0.5 mm, whereas kV planar was within 1 to 2 mm. Head roll in the axial plane was not easily detected with orthogonal image sets. Compared to the IMRT plans with no head roll, dose-volume histogram analysis demonstrated an average increase in the maximal spinal cord dose of 3.1% and 6.4% for 3 deg. and 5 deg. angles of rotation, respectively. Dose to the contralateral parotid was unchanged with 3 deg. roll and increased by 2.7% with 5 deg. roll. The results of this study show that volumetric setup verification using CBCT can improve bony anatomy setup detection to millimeter accuracy, and is a reliable method to detect head roll. However, the magnitude of possible dose errors due to undetected head roll suggests that CBCT does not need to be performed on a daily basis but rather weekly or bi-weekly to ensure fidelity of the head position with the immobilization system.

  10. Stereotactic linac-based radiosurgery in the treatment of cerebral arteriovenous malformations located deep, involving corpus callosum, motor cortex, or brainstem

    SciTech Connect

    Zabel-du Bois, Angelika . E-mail: A.Zabel@dkfz-heidelberg.de; Milker-Zabel, Stefanie; Huber, Peter; Schlegel, Wolfgang; Debus, Juergen

    2006-03-15

    Purpose: To evaluate patient outcome and obliteration rates after radiosurgery (RS) for cerebral arteriovenous malformations (AVM) located deep, in the motor cortex or brainstem and those involving corpus callosum. Methods and Materials: This analysis is based on 65 patients. AVM classification according to Spetzler-Martin was 13 patients Grade 2, 39 Grade 3, 12 Grade 4, and 1 Grade 5. Median RS-based AVM score was 1.69. Median single dose was 18 Gy. Mean treatment volume was 5.2 cc (range, 0.2-26.5 cc). Forty patients (62%) experienced intracranial hemorrhage before RS. Median follow-up was 3.0 years. Results: Actuarial complete obliteration rate (CO) was 50% and 65% after 3 and 5 years, respectively. CO was significantly higher in AVM <3 cm (p < 0.02) and after doses >18 Gy (p < 0.009). Annual bleeding risk after RS was 4.7%, 3.4%, and 2.7% after 1, 2, and 3 years, respectively. AVM >3 cm (p < 0.01), AVM volume >4 cc (p < 0.009), and AVM score >1.5 (p < 0.02) showed a significant higher bleeding risk. Neurologic dysfunction improved, completely dissolved, or remained stable in 94% of patients. Conclusions: Surgically inaccessible AVM can be successfully treated using RS with acceptable obliteration rates and low risk for late morbidity. The risk of intracranial hemorrhage is reduced after RS and depends on RS-based AVM score.

  11. Differences in Clinical Results After LINAC-Based Single-Dose Radiosurgery Versus Fractionated Stereotactic Radiotherapy for Patients With Vestibular Schwannomas

    SciTech Connect

    Combs, Stephanie E.; Welzel, Thomas; Schulz-Ertner, Daniela; Huber, Peter E.; Debus, Juergen

    2010-01-15

    Purpose: To evaluate the outcomes of patients with vestibular schwannoma (VS) treated with fractionated stereotactic radiotherapy (FSRT) vs. those treated with stereotactic radiosurgery (SRS). Methods and Materials: This study is based on an analysis of 200 patients with 202 VSs treated with FSRT (n = 172) or SRS (n = 30). Patients with tumor progression and/or progression of clinical symptoms were selected for treatment. In 165 out of 202 VSs (82%), RT was performed as the primary treatment for VS, and for 37 VSs (18%), RT was conducted for tumor progression after neurosurgical intervention. For patients receiving FSRT, a median total dose of 57.6 Gy was prescribed, with a median fractionation of 5 x 1.8 Gy per week. For patients who underwent SRS, a median single dose of 13 Gy was prescribed to the 80% isodose. Results: FSRT and SRS were well tolerated. Median follow-up time was 75 months. Local control was not statistically different for both groups. The probability of maintaining the pretreatment hearing level after SRS with doses of <=13 Gy was comparable to that of FSRT. The radiation dose for the SRS group (<=13 Gy vs. >13 Gy) significantly influenced hearing preservation rates (p = 0.03). In the group of patients treated with SRS doses of <=13 Gy, cranial nerve toxicity was comparable to that of the FSRT group. Conclusions: FSRT and SRS are both safe and effective alternatives for the treatment of VS. Local control rates are comparable in both groups. SRS with doses of <=13 Gy is a safe alternative to FSRT. While FSRT can be applied safely for the treatment of VSs of all sizes, SRS should be reserved for smaller lesions.

  12. Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: Feasibility and initial experience

    SciTech Connect

    Cilla, Savino; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Ianiro, Anna; Viola, Pietro; Craus, Maurizio; Valentini, Vincenzo; Piermattei, Angelo; Morganti, Alessio G.

    2016-07-01

    We reported our initial experience in using Elekta volumetric modulated arc therapy (VMAT) and an anatomy-based treatment planning system (TPS) for single high-dose radiosurgery (SRS-VMAT) of liver metastases. This study included a cohort of 12 patients treated with a 26-Gy single fraction. Single-arc VMAT plans were generated with Ergo++ TPS. The prescription isodose surface (IDS) was selected to fulfill the 2 following criteria: 95% of planning target volume (PTV) reached 100% of the prescription dose and 99% of PTV reached a minimum of 90% of prescription dose. A 1-mm multileaf collimator (MLC) block margin was added around the PTV. For a comparison of dose distributions with literature data, several conformity indexes (conformity index [CI], conformation number [CN], and gradient index [GI]) were calculated. Treatment efficiency and pretreatment dosimetric verification were assessed. Early clinical data were also reported. Our results reported that target and organ-at-risk objectives were met for all patients. Mean and maximum doses to PTVs were on average 112.9% and 121.5% of prescribed dose, respectively. A very high degree of dose conformity was obtained, with CI, CN, and GI average values equal to 1.29, 0.80, and 3.63, respectively. The beam-on-time was on average 9.3 minutes, i.e., 0.36 min/Gy. The mean number of monitor units was 3162, i.e., 121.6 MU/Gy. Pretreatment verification (3%-3 mm) showed an optimal agreement with calculated values; mean γ value was 0.27 and 98.2% of measured points resulted with γ < 1. With a median follow-up of 16 months complete response was observed in 12/14 (86%) lesions; partial response was observed in 2/14 (14%) lesions. No radiation-induced liver disease (RILD) was observed in any patients as well no duodenal ulceration or esophagitis or gastric hemorrhage. In conclusion, this analysis demonstrated the feasibility and the appropriateness of high-dose single-fraction SRS-VMAT in liver metastases performed with Elekta VMAT and Ergo++ TPS. Preliminary clinical outcomes showed a high rate of local control and minimum incidence of acute toxicity.

  13. Detection of dark states in two-dimensional electronic photon-echo signals via ground-state coherence

    SciTech Connect

    Egorova, Dassia

    2015-06-07

    Several recent experiments report on possibility of dark-state detection by means of so called beating maps of two-dimensional photon-echo spectroscopy [Ostroumov et al., Science 340, 52 (2013); Bakulin et al., Ultrafast Phenomena XIX (Springer International Publishing, 2015)]. The main idea of this detection scheme is to use coherence induced upon the laser excitation as a very sensitive probe. In this study, we investigate the performance of ground-state coherence in the detection of dark electronic states. For this purpose, we simulate beating maps of several models where the excited-state coherence can be hardly detected and is assumed not to contribute to the beating maps. The models represent strongly coupled electron-nuclear dynamics involving avoided crossings and conical intersections. In all the models, the initially populated optically accessible excited state decays to a lower-lying dark state within few hundreds femtoseconds. We address the role of Raman modes and of interstate-coupling nature. Our findings suggest that the presence of low-frequency Raman active modes significantly increases the chances for detection of dark states populated via avoided crossings, whereas conical intersections represent a more challenging task.

  14. An R-matrix approach to electron-photon-molecule collisions: photoelectron angular distributions from aligned molecules

    NASA Astrophysics Data System (ADS)

    Harvey, Alex G.; Brambila, Danilo S.; Morales, Felipe; Smirnova, Olga

    2014-11-01

    We present a new extension of the UKRmol electron-molecule scattering code suite, which allows one to compute ab initio photoionization and photorecombination amplitudes for complex molecules, resolved both on the molecular alignment (orientation) and the emission angle and energy of the photoelectron. We illustrate our approach using CO2 as an example, and analyze the importance of multi-channel effects by performing our calculations at different, increasing levels of complexity. We benchmark our method by comparing the results of our calculations with experimental data and with theoretical calculations available in the literature.

  15. Result of Monte-Carlo simulation of electron-photon cascades in lead and layers of lead-scintillator

    NASA Technical Reports Server (NTRS)

    Wasilewski, A.; Krys, E.

    1985-01-01

    Results of Monte-Carlo simulation of electromagnetic cascade development in lead and lead-scintillator sandwiches are analyzed. It is demonstrated that the structure function for core approximation is not applicable in the case in which the primary energy is higher than 100 GeV. The simulation data has shown that introducing an inhomogeneous chamber structure results in subsequent reduction of secondary particles.

  16. Dosimetric comparison of intensity modulated radiotherapy isocentric field plans and field in field (FIF) forward plans in the treatment of breast cancer.

    PubMed

    Al-Rahbi, Zakiya Salem; Al Mandhari, Zahid; Ravichandran, Ramamoorthy; Al-Kindi, Fatma; Davis, Cheriyathmanjiyil Anthony; Bhasi, Saju; Satyapal, Namrata; Rajan, Balakrishnan

    2013-01-01

    The present study is aimed at comparing the planning and delivery efficiency between three-dimensional conformal radiotherapy (3D-CRT), field-in-field, forward planned, intensity modulated radiotherapy (FIF-FP-IMRT), and inverse planned intensity modulated radiotherapy (IP-IMRT). Treatment plans of 20 patients with left-sided breast cancer, 10 post-mastectomy treated to a prescribed dose of 45 Gy to the chest wall in 20 fractions, and 10 post-breast-conserving surgery to a prescribed dose of 50 Gy to the whole breast in 25 fractions, with 3D-CRT were selected. The FiF-FP-IMRT plans were created by combining two open fields with three to four segments in two tangential beam directions. Eight different beam directions were chosen to create IP-IMRT plans and were inversely optimized. The homogeneity of dose to planning target volume (PTV) and the dose delivered to heart and contralateral breast were compared among the techniques in all the 20 patients. All the three radiotherapy techniques achieved comparable radiation dose delivery to PTV-95% of the prescribed dose covering > 95% of the breast PTV. The mean volume of PTV receiving 105% (V105) of the prescribed dose was 1.7% (range 0-6.8%) for IP-IMRT, 1.9% for FP-IMRT, and 3.7% for 3D-CRT. The homogeneity and conformity indices (HI and CI) were similar for 3D-CRT and FP-IMRT, whereas the IP-IMRT plans had better conformity index at the cost of less homogeneity. The 3D-CRT and FiF-FP-IMRT plans achieved similar sparing of critical organs. The low-dose volumes (V5Gy) in the heart and lungs were larger in IP-IMRT than in the other techniques. The value of the mean dose to the ipsilateral lung was higher for IP-IMRT than the values for with FiF-FP-IMRT and 3D-CRT. In the current study, the relative volume of contralateral breast receiving low doses (0.01, 0.6, 1, and 2Gy) was significantly lower for the FiF-FP-IMRT and 3D-CRT plans than for the IP-IMRT plan. Compared with 3D-CRT and IP-IMRT, FiF-FP-IMRT proved to be a simple and efficient planning technique for breast irradiation. It provided dosimetric advantages, significantly reducing the size of the hot spot and minimally improving the coverage of the target volume. In addition, it was felt that FiF-FP-IMRT required less planning time and easy field placements.

  17. Dosimetric comparison of intensity modulated radiotherapy isocentric field plans and field in field (FIF) forward plans in the treatment of breast cancer

    PubMed Central

    Al-Rahbi, Zakiya Salem; Al Mandhari, Zahid; Ravichandran, Ramamoorthy; Al-Kindi, Fatma; Davis, Cheriyathmanjiyil Anthony; Bhasi, Saju; Satyapal, Namrata; Rajan, Balakrishnan

    2013-01-01

    The present study is aimed at comparing the planning and delivery efficiency between three-dimensional conformal radiotherapy (3D-CRT), field-in-field, forward planned, intensity modulated radiotherapy (FIF-FP-IMRT), and inverse planned intensity modulated radiotherapy (IP-IMRT). Treatment plans of 20 patients with left-sided breast cancer, 10 post-mastectomy treated to a prescribed dose of 45 Gy to the chest wall in 20 fractions, and 10 post-breast-conserving surgery to a prescribed dose of 50 Gy to the whole breast in 25 fractions, with 3D-CRT were selected. The FiF-FP-IMRT plans were created by combining two open fields with three to four segments in two tangential beam directions. Eight different beam directions were chosen to create IP-IMRT plans and were inversely optimized. The homogeneity of dose to planning target volume (PTV) and the dose delivered to heart and contralateral breast were compared among the techniques in all the 20 patients. All the three radiotherapy techniques achieved comparable radiation dose delivery to PTV-95% of the prescribed dose covering > 95% of the breast PTV. The mean volume of PTV receiving 105% (V105) of the prescribed dose was 1.7% (range 0-6.8%) for IP-IMRT, 1.9% for FP-IMRT, and 3.7% for 3D-CRT. The homogeneity and conformity indices (HI and CI) were similar for 3D-CRT and FP-IMRT, whereas the IP-IMRT plans had better conformity index at the cost of less homogeneity. The 3D-CRT and FiF-FP-IMRT plans achieved similar sparing of critical organs. The low-dose volumes (V5Gy) in the heart and lungs were larger in IP-IMRT than in the other techniques. The value of the mean dose to the ipsilateral lung was higher for IP-IMRT than the values for with FiF-FP-IMRT and 3D-CRT. In the current study, the relative volume of contralateral breast receiving low doses (0.01, 0.6, 1, and 2Gy) was significantly lower for the FiF-FP-IMRT and 3D-CRT plans than for the IP-IMRT plan. Compared with 3D-CRT and IP-IMRT, FiF-FP-IMRT proved to be a simple and efficient planning technique for breast irradiation. It provided dosimetric advantages, significantly reducing the size of the hot spot and minimally improving the coverage of the target volume. In addition, it was felt that FiF-FP-IMRT required less planning time and easy field placements. PMID:23531607

  18. Dynamics of multiple ionization of atoms and molecules by electron, photon, and ion impact—investigated by the COLTRIMS imaging method

    NASA Astrophysics Data System (ADS)

    Schmidt-Böcking, H.; Schmidt, L.; Weber, Th.; Mergel, V.; Jagutzki, O.; Czasch, A.; Hagmann, S.; Doerner, R.; Demkov, Y.; Jahnke, T.; Prior, M.; Cocke, C. L.; Osipov, T.; Landers, A.

    2004-10-01

    Fully differential cross-sections in momentum space for multiple ionization processes of atoms and molecules have been investigated by a multi-coincidence imaging technique, called COLTRIMS (cold target recoil ion momentum spectroscopy) (J. Phys. B 30 (1997) 2917; Nucl. Instrum. Methods B 108 (1996) 425; In: Ullrich, J., Shevelko, V.P. (Eds.), Many Particle Quantum Dynamics in Atomic Fragmentation, Series Atomic, Optical, and Plasma Physics, Vol. 35. Springer, Berlin, 2003; Phys. Rep. 330 (2000) 95). This technique is as powerful as the bubble chamber system in high-energy physics. It has opened a new observation window into the hidden world of many-particle dynamics: correlated many-particle dynamics in Coulombic systems can now be experimentally approached with unprecedented completeness and precision. The principle of the method, namely measuring the momentum of the emitted charged particles from an atomic or molecular fragmentation process, is as simple as determining the trajectory of a thrown stone. From knowing the position from where the stone was slung and where it hits the target, as well as measuring its time-of-flight, the trajectory of the stone and thus its initial velocity vector can be determined precisely. Furthermore, in order to achieve good precision we have to know whether the person, who throws the stone, was at rest in the frame of observation or with which relative velocity this person was moving. Thus, to obtain optimal momentum resolution for the exploding fragments one has to bring the fragmenting object to a complete rest in the frame of measurement before the reaction occurs, i.e. if the object is a gas atom or molecule one has to cool it down to sub-milli Kelvin temperatures.

  19. The lateral distributions of charged particles of energy greater than 0.3 E sub crit in electron-photon cascades in lead and air

    NASA Technical Reports Server (NTRS)

    Wasilewski, A.; Krys, E.

    1985-01-01

    In recent investigations, both theoretical and experimental, the agreement between cascade theory and experimental data is pointed out. The radial distributions obtained from the Monte Carlo simulation are compared ith the results of the analytical theory for all particles in cascades. The data on the mean radius of electron lateral distribution in air are compared with those in lead.

  20. A pulsed electron-photon fluorescence diagnostic technique for temperature and specie concentration measurement at points in relatively dense, unseedded air flows

    NASA Technical Reports Server (NTRS)

    Muntz, E. P.; Kunc, J. A.; Erwin, D. A.

    1987-01-01

    An analysis is presented on the use of the fluorescence stimulated by combined pulsed electron and photon beams for the study of gas flows up to densities equivalent to an altitude of about 20 km (number density of about 3 x 10 to the 18th/cu cm). The electron beam acts as a pump, requiring no seed gas, to provide a localized concentration of ions or excited state neutrals that can be probed by saturation optical pulses. A short pulse (10ns) electron beam can be used by itself to provide effectively quench-free emission up to number densities of around 10 to the 18th/cm, but is is difficult to maintain satisfactory spatial resolution at this high density. The use of a nearly simultaneous strong optical pulse increases the flexibility of the diagnostic technique, permitting use at densities greater than 10 to the 18th/cu cm with good spatial resolution. The use of flash X-ray sources combined with optical probing also appears promising for densities above 10 to the 19th/cu cm.

  1. Monte Carlo study of Siemens PRIMUS photoneutron production.

    PubMed

    Pena, J; Franco, L; Gómez, F; Iglesias, A; Pardo, J; Pombar, M

    2005-12-21

    Neutron production in radiotherapy facilities has been studied from the early days of modern linacs. Detailed studies are now possible using photoneutron capabilities of general-purpose Monte Carlo codes at energies of interest in medical physics. The present work studies the effects of modelling different accelerator head and room geometries on the neutron fluence and spectra predicted via Monte Carlo. The results from the simulation of a 15 MV Siemens PRIMUS linac show an 80% increase in the fluence scored at the isocentre when, besides modelling the components necessary for electron/photon simulations, other massive accelerator head components are included. Neutron fluence dependence on inner treatment room volume is analysed showing that thermal neutrons have a 'gaseous' behaviour and then a 1/V dependence. Neutron fluence maps for three energy ranges, fast (E > 0.1 MeV), epithermal (1 eV < E < 0.1 MeV) and thermal (E < 1 eV), are also presented and the influence of the head components on them is discussed.

  2. Monte Carlo study of Siemens PRIMUS photoneutron production

    NASA Astrophysics Data System (ADS)

    Pena, J.; Franco, L.; Gómez, F.; Iglesias, A.; Pardo, J.; Pombar, M.

    2005-12-01

    Neutron production in radiotherapy facilities has been studied from the early days of modern linacs. Detailed studies are now possible using photoneutron capabilities of general-purpose Monte Carlo codes at energies of interest in medical physics. The present work studies the effects of modelling different accelerator head and room geometries on the neutron fluence and spectra predicted via Monte Carlo. The results from the simulation of a 15 MV Siemens PRIMUS linac show an 80% increase in the fluence scored at the isocentre when, besides modelling the components neccessary for electron/photon simulations, other massive accelerator head components are included. Neutron fluence dependence on inner treatment room volume is analysed showing that thermal neutrons have a 'gaseous' behaviour and then a 1/V dependence. Neutron fluence maps for three energy ranges, fast (E > 0.1 MeV), epithermal (1 eV < E < 0.1 MeV) and thermal (E < 1 eV), are also presented and the influence of the head components on them is discussed.

  3. Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept

    SciTech Connect

    Rüegsegger, Michael B.; Steiner, Patrick; Kowal, Jens H.; Geiser, Dominik; Pica, Alessia; Aebersold, Daniel M.

    2014-08-15

    Purpose: External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). Methods: A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. Results: Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. Conclusions: The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.

  4. Terrestrial gamma ray flashes from electron avalanches in thunderstorms - the detailed structure and time evolution of electron, photon, optical and radio emission - results from a new simulation software package

    NASA Astrophysics Data System (ADS)

    Connell, P. H.

    2013-12-01

    To design the MXGS coded mask imager of the ASIM mission to the ISS, to detect and locate TGF gamma-rays, a first order software package was written at UV to simulate the vertical expansion of gamma-ray photons from 15-20 km altitudes up to 300-600 km orbital altitudes, to make some estimate of the probable TGF spectra and diffuse beam structure that might be observed by MXGS. A new software package includes the simulation of the Runaway Electron Avalanche (REA) origin of TGFs by electron ionization and Bremsstrahlung scattering and photon emission. It uses the standard KeV-MeV scattering physics of electron and photon interactions, close range Moller electron ionization, Binary-Electron-Bethe models of electron scattering, positron Bhabha scattering and annihilation, electron excitation and photon emission. It also uses a super particle spatial mesh system to control particle-momentum flux densities, electric field evolution and exponential avalanche growth and falloff. The package takes care of all high energy scattering physics, leaving the user free to concentrate on defining the three components of scattering medium, electric-magnetic field geometry, and free electron flux field geometry whose details are the main unknown in TGF research. Results will be presented from TGF simulations using realistic electric fields expected within and above storm clouds, and will include video displays showing the evolving ionization structure of electron trajectories, the time evolution of photon flux fields, electron-positron flux fields, their important circular feedback movement in the local earth magnetic field, local molecular ion densities, and the dielectric effect of induced local electric fields. The second aim of the package is as a step in creating open source software which could evolve into a standard research software package approved by the REA-TGF research community to correctly simulate all the relevant physical processes involved in the complex phenomenon of REA in thunderstorms. TGF photon expansion in stratosphere TGF photon expansion to orbital altitudes

  5. High energy photon reference for radiation protection: technical design of the LINAC beam and ionization chambers; and calculation of monoenergetic conversion coefficients

    NASA Astrophysics Data System (ADS)

    Dusciac, D.; Bordy, J.-M.; Daures, J.; Blideanu, V.

    2016-09-01

    In this work, we present the results of the first part of a research project aimed at offering a complete response to dosimeters providers and nuclear physicists' demands for high-energy (6 - 9 MeV) photon beams for radiation protection purposes. Classical facilities allowing the production of high-energy photonic radiation (proton accelerators, nuclear reactors) are very rare and need large investment for development and use. A novel solution is proposed, consisting in the use of a medical linear accelerator, allowing a significant decrease of all costs.Using Monte Carlo simulations (MCNP5 and PENELOPE codes), a specifically designed electron-photon conversion target allowing for obtaining a high energy photon beam (with an average energy weighted by fluence of about 6 MeV) has been built for radiation protection purposes. Due to the specific design of the target, this "realistic" radiation protection high-energy photon beam presents a uniform distribution of air kerma rate at a distance of 1 m, over a 30 × 30 cm2 surface. Two graphite cavity ionizing chambers for ionometric measurements have been built. For one of these chambers, the charge collection volume has been measured allowing for its use as a primary standard. The second ionizing chamber is used as a transfer standard; as such it has been calibrated in a 60Co beam, and in the high energy photon beam for radiation protection.The measurements with these ionizing chambers allowed for an evaluation of the air kerma rate in the LINAC based high-energy photon beam for radiation protection: the values cover a range between 36 mGy/h and 210 mGy/h, compatible with radiation protection purposes.Finally, using Monte Carlo simulations, conversion coefficients from air kerma to dose equivalent quantities have been calculated in the range between 10 keV and 22.4 MeV, for the spectral distribution of the fluence corresponding to the beam produced by the linear accelerator of the LNE-LNHB.

  6. In-vivo dosimetry for conformal arc therapy using several MOSFET in stereotactic radiosurgery computed by an inverse model

    NASA Astrophysics Data System (ADS)

    Sors, Aurélie; Cassol, Emmanuelle; Masquère, Mathieu; Latorzeff, Igor; Duthil, Pierre; Chauveau, Nicolas; Lotterie, Jean-Albert; Sabatier, Jean; Redon, Alain; Berry, Isabelle; Franceries, Xavier

    2016-09-01

    In-vivo dosimetry is still a challenge in stereotactic radiosurgery since most of treatments are delivered using rotational technique with small fields. A realistic and practical solution for these treatments delivered in conformal radiotherapy is proposed to control the absorbed dose at isocentre, using multiple surface MOSFET measurements over an arc. On the one hand, a forward method was developed to optimize the location of the detectors at the patient surface, taking into account arc length, prescribed isocentre dose, collimator and field size. On the other hand, an inverse method was used to compute the dose at isocentre for conformal arc therapy in stereotactic radiosurgery, using MOSFET measurements. Finally, the reconstructed dose at isocentre was compared to real measurement, obtained for several detectors positioned at a phantom surface. Results show that the inverse method gives good results with five MOSFET equi-spaced positioned within the arc beam course: deviation between prescribed and computed average total dose at isocentre was below 2% both for 30×30 mm2 and 18×18 mm2 field size

  7. An anthropomorphic phantom study of visualisation of surgical clips for partial breast irradiation (PBI) setup verification.

    PubMed

    Thomas, Carys W; Nichol, Alan M; Park, Julie E; Hui, Jason F; Giddings, Alison A; Grahame, Sheri; Otto, Karl

    2009-01-01

    Surgical clips were investigated for partial breast image-guided radiotherapy (IGRT). Small titanium clips were insufficiently well visualised. Medium tantalum clips were best for megavoltage IGRT and small tantalum clips were best for floor mounted kilovoltage IGRT (ExacTrac). Both small tantalum and medium titanium clips were suitable for isocentric kilovoltage IGRT.

  8. The use of enriched 6Li and 7Li Lif:Mg,Cu,P glass-rod thermoluminescent dosemeters for linear accelerator out-of-field radiation dose measurements.

    PubMed

    Takam, R; Bezak, E; Liu, G; Marcu, L

    2012-06-01

    (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescent dosemeters (TLDs) were used for measurements of out-of-field photon and neutron doses produced by Varian iX linear accelerator. Both TLDs were calibrated using 18-MV X-ray beam to investigate their dose-response sensitivity and linearity. CR-39 etch-track detectors (Luxel+, Landauer) were employed to provide neutron dose data to calibrate (6)LiF:Mg,Cu,P TLDs at various distances from the isocentre. With cadmium filters employed, slow neutrons (<0.5 eV) were distinguished from fast neutrons. The average in-air photon dose equivalents per monitor unit (MU) ranged from 1.5±0.4 to 215.5±94.6 μSv at 100 and 15 cm from the isocentre, respectively. Based on the cross-calibration factors obtained with CR-39 etch-track detectors, the average in-air fast neutron dose equivalents per MU range from 10.6±3.8 to 59.1±49.9 μSv at 100 and 15 cm from the isocentre, respectively. Contribution of thermal neutrons to total neutron dose equivalent was small: 3.1±7.2 μSv per MU at 15 cm from the isocentre.

  9. Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer.

    PubMed

    Demiral, S; Beyzadeoglu, M; Uysal, B; Oysul, K; Kahya, Y Elcim; Sager, O; Dincoglan, F; Gamsiz, H; Dirican, B; Surenkok, S

    2013-01-01

    The purpose of this study is to evaluate the use of linear accelerator (LINAC)-based stereotactic body radiotherapy (SBRT) boost with multileaf collimator technique after pelvic radiotherapy (RT) in patients with endometrial cancer. Consecutive patients with endometrial cancer treated using LINAC-based SBRT boost after pelvic RT were enrolled in the study. All patients had undergone surgery including total abdominal hysterectomy and bilateral salpingo-oophorectomy ± pelvic/paraortic lymphadenectomy before RT. Prescribed external pelvic RT dose was 45 Gray (Gy) in 1.8 Gy daily fractions. All patients were treated with SBRT boost after pelvic RT. The prescribed SBRT boost dose to the upper two thirds of the vagina including the vaginal vault was 18 Gy delivered in 3 fractions with 1-week intervals. Gastrointestinal and genitourinary toxicity was assessed using the Common Terminology Criteria for Adverse Events version 3 (CTCAE v3).Between April 2010 and May 2011, 18 patients with stage I-III endometrial cancer were treated with LINAC-based SBRT boost after pelvic RT. At a median follow-up of 24 (8-26) months with magnetic resonance imaging (MRI) and gynecological examination, local control rate of the study group was 100 % with negligible acute and late toxicity.LINAC-based SBRT boost to the vaginal cuff is a feasible gynecological cancer treatment modality with excellent local control and minimal toxicity that may replace traditional brachytherapy boost in the management of endometrial cancer.

  10. Photon-Electron Interaction and Condense Beams

    SciTech Connect

    Chattopadhyay, S.

    1998-11-01

    We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations.

  11. Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993

    SciTech Connect

    Not Available

    1993-09-30

    This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

  12. SU-E-T-376: 3-D Commissioning for An Image-Guided Small Animal Micro- Irradiation Platform

    SciTech Connect

    Qian, X; Wuu, C; Admovics, J

    2014-06-01

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360° with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated using star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90°, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360° to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 ± 0.1 mm and mouse stage rotation isocentricity is about 0.91 ± 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 ± 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 ± 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  13. Dose verification of intensity-modulated arc therapy using an ERGO++ treatment planning system and Elekta internal multileaf collimators for prostate cancer treatment.

    PubMed

    Yoda, K; Nakagawa, K; Shiraishi, K; Okano, Y; Ohtomo, K; Pellegrini, R G

    2009-04-01

    Dose verification of intensity-modulated arc therapy using an ERGO++ treatment planning system and Elekta internal multileaf collimators is described. Prostate intensity-modulated arc therapy was planned using the arc modulation optimization algorithm inverse planning module of ERGO++. After transferring the plan to Elekta Synergy's controller (Elekta Ltd, Crawley, UK), the isocentre dose was measured and compared with a calculated dose using a pinpoint chamber and a water phantom in a cylindrical acrylic enclosure. Subsequently, an EDR2 film was placed inside a multilayer plastic phantom, and total dose distributions were measured in three axial planes as well as in the coronal and sagittal planes to compare the actual dose with the calculated dose. The dose discrepancy at the isocentre was 1.7%. The calculated gamma indices were less than 1 over 90% of the three axial planes, as well as in the coronal and sagittal planes, having a dose greater than 50% of the maximum target dose.

  14. A calculator based program to optimize the simulation of breast irradiation.

    PubMed

    Lederer, E W; Schwendener, H

    1997-01-01

    The simulation of breast fields using an isocentric set-up technique can be a lengthy process involving the placement of the isocentre, the determination of the gantry angles, and the selection of the lung shields, which in our center is one of six standard blocks. We show that with a body contour taken through central axis, five measurements and a calculator program, it is possible to significantly decrease the amount of time required to simulate a breast patient. We have developed a program for an HP48GX handheld calculator to determine the gantry angles, the isocentre, the field width, the standard angled block, and the couch and collimator rotation. The calculations are based on measurements of the field length, the horizontal distance between midline and mid axillary line, and the vertical distances from the mid axillary line to the inferior and superior beam border and central axis at midline. We use spherical geometry to perform the calculations to reflect the true environment and do not make any assumptions about the average patient's shape. For the simulation process a jig was developed that is inserted into the tray holder of the simulator to show the optical and radiological shadow of the calculated shielding along the patient's midline for clinical assessment during simulation and on the simulation film. The jig also has a holder for an aluminum wedge to improve the image quality of the simulation film. We admit that the lung shield increases the dose to the contralateral breast because of increased scatter and transmission through the shield; however, the block decreases the volume of irradiated lung while keeping the beam edge along the midline of the patient. The technique has been in use for two years and has resulted in time savings of up to 30% per patient. It has proven to be an easy and accurate way of setting up isocentric treatments to the breast.

  15. 140 GHz microwave FEL experiments using ELF-II

    SciTech Connect

    Throop, A.L.; Jong, R.A.; Atkinson, D.P.; Clark, J.C.; Felker, B.; Ferguson, S.W.; Makowski, M.A.; Nexsen, W.E.; Stallard, B.W.; Stever, R.D.; Turner, W.C.

    1989-09-01

    We describe the modeling, the experimental facility, and the initial operating results for ELF-II, an induction-linac based free-electron laser designed to produce up to 2 GW of peak power at 140 GHz. ELF-II is the initial configuration of an FEL system which will eventually produce up to 2 MW of average power at a frequency of 250 GHz, for use in plasma heating experiments in the Microwave Tokamak Experiment. 6 refs., 9 figs.

  16. Spallation neutron source and other high intensity froton sources

    SciTech Connect

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  17. Design Study of Linear Accelerator-Based Positron Re-Emission Microscopy

    NASA Astrophysics Data System (ADS)

    Ogawa, Hiroshi; Kinomura, Atsushi; Oshima, Nagayasu; Suzuki, Ryoichi; O'Rourke, Brian E.

    In order to shorten the acquisition time of positron re-emission microscopy (PRM), a linear accelerator (LINAC)-based PRM system has been studied. The beam focusing system was designed to obtain a high brightness positron beam on the PRM sample. The beam size at the sample was calculated to be 0.8mm (FWHM), and the positron intensity within the field of view of the PRM was more than one order of magnitude higher in comparison with the previous studies.

  18. Volume Changes After Stereotactic LINAC Radiotherapy in Vestibular Schwannoma: Control Rate and Growth Patterns

    SciTech Connect

    Langenberg, Rick van de; Dohmen, Amy J.C.; Bondt, Bert J. de; Nelemans, Patty J.; Baumert, Brigitta G.; Stokroos, Robert J.

    2012-10-01

    Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention after radiotherapy was defined as 'no additional intervention group, ' absence of radiological growth was defined as 'radiological control group. ' Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% {+-} 0.03; the 4-year radiological control probability was 85.4% {+-} 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.

  19. Automated treatment planning for a dedicated multi-source intra-cranial radiosurgery treatment unit accounting for overlapping structures and dose homogeneity

    SciTech Connect

    Ghobadi, Kimia; Ghaffari, Hamid R.; Aleman, Dionne M.; Jaffray, David A.; Ruschin, Mark

    2013-09-15

    Purpose: The purpose of this work is to advance the two-step approach for Gamma Knife{sup ®} Perfexion™ (PFX) optimization to account for dose homogeneity and overlap between the planning target volume (PTV) and organs-at-risk (OARs).Methods: In the first step, a geometry-based algorithm is used to quickly select isocentre locations while explicitly accounting for PTV-OARs overlaps. In this approach, the PTV is divided into subvolumes based on the PTV-OARs overlaps and the distance of voxels to the overlaps. Only a few isocentres are selected in the overlap volume, and a higher number of isocentres are carefully selected among voxels that are immediately close to the overlap volume. In the second step, a convex optimization is solved to find the optimal combination of collimator sizes and their radiation duration for each isocentre location.Results: This two-step approach is tested on seven clinical cases (comprising 11 targets) for which the authors assess coverage, OARs dose, and homogeneity index and relate these parameters to the overlap fraction for each case. In terms of coverage, the mean V{sub 99} for the gross target volume (GTV) was 99.8% while the V{sub 95} for the PTV averaged at 94.6%, thus satisfying the clinical objectives of 99% for GTV and 95% for PTV, respectively. The mean relative dose to the brainstem was 87.7% of the prescription dose (with maximum 108%), while on average, 11.3% of the PTV overlapped with the brainstem. The mean beam-on time per fraction per dose was 8.6 min with calibration dose rate of 3.5 Gy/min, and the computational time averaged at 205 min. Compared with previous work involving single-fraction radiosurgery, the resulting plans were more homogeneous with average homogeneity index of 1.18 compared to 1.47.Conclusions: PFX treatment plans with homogeneous dose distribution can be achieved by inverse planning using geometric isocentre selection and mathematical modeling and optimization techniques. The quality of the

  20. Robust frameless stereotactic localization in extra-cranial radiotherapy

    SciTech Connect

    Riboldi, Marco; Baroni, Guido; Spadea, Maria Francesca; Bassanini, Fabio; Tagaste, Barbara; Garibaldi, Cristina; Orecchia, Roberto; Pedotti, Antonio

    2006-04-15

    In the field of extra-cranial radiotherapy, several inaccuracies can make the application of frameless stereotactic localization techniques error-prone. When optical tracking systems based on surface fiducials are used, inter- and intra-fractional uncertainties in marker three-dimensional (3D) detection may lead to inexact tumor position estimation, resulting in erroneous patient setup. This is due to the fact that external fiducials misdetection results in deformation effects that are poorly handled in a rigid-body approach. In this work, the performance of two frameless stereotactic localization algorithms for 3D tumor position reconstruction in extra-cranial radiotherapy has been specifically tested. Two strategies, unweighted versus weighted, for stereotactic tumor localization were examined by exploiting data coming from 46 patients treated for extra-cranial lesions. Measured isocenter displacements and rotations were combined to define isocentric procedures, featuring 6 degrees of freedom, for correcting patient alignment (isocentric positioning correction). The sensitivity of the algorithms to uncertainties in the 3D localization of fiducials was investigated by means of 184 numerical simulations. The performance of the implemented isocentric positioning correction was compared to conventional point-based registration. The isocentric positioning correction algorithm was tested on a clinical dataset of inter-fractional and intra-fractional setup errors, which was collected by means of an optical tracker on the same group of patients. The weighted strategy exhibited a lower sensitivity to fiducial localization errors in simulated misalignments than those of the unweighted strategy. Isocenter 3D displacements provided by the weighted strategy were consistently smaller than those featured by the unweighted strategy. The peak decrease in median and quartile values of isocenter 3D displacements were 1.4 and 2.7 mm, respectively. Concerning clinical data, the

  1. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer.

    PubMed

    Merna, Catherine; Rwigema, Jean-Claude M; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A; Kupelian, Patrick; Steinberg, Michael L; Lee, Percy

    2016-01-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further

  2. A PEDA approach for monolithic photonic BiCMOS technologies

    NASA Astrophysics Data System (ADS)

    Simon, Stefan; Winzer, Georg; Roßmann, Helmut; Kroh, Marcel; Zimmermann, Lars; Mausolf, Thomas

    2015-06-01

    The paper describes a novel approach to photonic electronic design automation (PEDA) based on the commercial design suite Laytools for circuit and physical layout design and simulation. The goal of this work is the integration of an electronic-photonic design flow into an existing electronic design automation (EDA) tool. Contrary to other solutions, with this approach, it is possible to minimize the required interfaces to other third party tools. In addition to existing electronic device models, photonic components are described with behavioral models. The mask layout has been extended to the needs of the electronic photonic integrated circuit (ePIC) designer and the verification flow was adapted to the photonic structures.

  3. Photonics in Processing (BRIEFING CHARTS)

    DTIC Science & Technology

    2007-03-06

    nm ena ble s PIGGYBANK ON CMOS INFRASTRUCTURE AND PROGRESS Seamless Photonics-Electronics Interface Slide 5 Signal Processing with Integrated ... Photonics “Application Specific Electronic-Photonic Integrated Circuit” (AS-EPIC) demonstration vehicle: Broadband RF Receiver (HF to Ku) using optical

  4. Effective field theory for plasmas at all temperatures and densities

    NASA Astrophysics Data System (ADS)

    Braaten, Eric

    1993-05-01

    The solution of the plasmon problem and the subsequent development of an effective field-theory approach to ultrarelativistic plasmas are reviewed. The effective Lagrangians that summarize collective effects in ultrarelativistic quark-gluon and electron-photon plasmas are presented. A generalization that describes an electromagnetic plasma at all temperatures and densities is proposed.

  5. The EPRDATA Format: A Dialogue

    SciTech Connect

    Hughes, III, Henry Grady

    2015-08-18

    Recently the Los Alamos Nuclear Data Team has communicated certain issues of concern in relation to the new electron/photon/relaxation ACE data format as released in the eprdata12 library. In this document those issues are parsed, analyzed, and answered.

  6. Improved geometry representations for Monte Carlo radiation transport.

    SciTech Connect

    Martin, Matthew Ryan

    2004-08-01

    ITS (Integrated Tiger Series) permits a state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/photon radiation transport problems with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. ITS allows designers to predict product performance in radiation environments.

  7. The DAMPE experiment: first data from space

    NASA Astrophysics Data System (ADS)

    De Mitri, Ivan

    2017-03-01

    The DAMPE satellite has been successfully launched in orbit on December 2015. The science goals of the mission include the study of high energy cosmic ray electrons, photons, protons and nuclei in a wide energy range: 109 - 1014 eV. A report on the mission status will be presented, together with on-orbit detector performance and first data coming from space.

  8. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators.

    PubMed

    Hashemi, Seyed Mehdi; Hashemi-Malayeri, Bijan; Raisali, Gholamreza; Shokrani, Parvaneh; Sharafi, Ali Akbar; Jafarizadeh, Mansour

    2008-01-01

    High-energy linear accelerators (linacs) have several advantages, including low skin doses and high dose rates at deep-seated tumours. But, at energies more than 8 MeV, photonuclear reactions produce neutron contamination around the therapeutic beam, which may induce secondary malignancies. In spite of improvements achieved in medical linac designs, many countries still use conventional (non-intensity-modulated radiotherapy) linacs. Hence, in these conventional machines, fitting the beam over the treatment volume may require using blocks. Therefore, the effect of these devices on neutron production of linacs needs to be studied. The aim of this study was to investigate the effect of field shaping blocks on photoneutron dose in the treatment plane for two high-energy medical linacs. Two medical linacs, a Saturn 43 (25 MeV) and an Elekta SL 75/25 (18 MeV), were studied. Polycarbonate (PC) films were used to measure the fluence of photoneutrons produced by these linacs. After electrochemical etching of the PC films, the neutron dose equivalent was calculated at the isocentre and 50 cm away from the isocentre. It was noted that by increasing the distance from the centre of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both the open and blocked fields. Increasing the energy of the photons causes an increase in the amount of photoneutron dose equivalent. At 25 MeV photon energy, the lead blocks cause a meaningful increase in the dose equivalent of photoneutrons. In this research, a 30% increase was seen in neutron dose contribution to central axis dose at the isocentre of a 25 MeV irregular field shaped by lead blocks. It is concluded that lead blocks must be considered as a source of photoneutron production when treating irregular fields with high-energy photons.

  9. Investigation into the impact of couch sag on delivered dose.

    PubMed

    Arts, J K; Bailey, M J; Bannister, K; Lee, M; Holloway, L

    2006-09-01

    The effect of couch sag on treatment delivery accuracy has been investigated by modelling the variation of delivered dose from planned dose due to the difference between the treatment and simulation couches. The couch sag of the Siemens (Concord, USA) Primus linac was determined relative to the couch sag of the Siemens (Germany) Sensation 4 CT Scanner. A phantom planning study was then undertaken to evaluate the likely clinical impact of the couch sag through an evaluation of changes in dose distribution, dose volume histograms and monitor units. The couch sag was simulated by altering the angle of the CT gantry when obtaining image studysets. A second investigation into the effects of couch sag was undertaken using an existing patient CT studyset. For this investigation, the couch sag was simulated by appropriate rotation of the gantry and collimator angles. The effect of couch sag on calculated monitor units (MU) was found to be statistically insignificant. The small monitor unit changes observed were likely to result from differences in the average linear attenuation coefficient along the beam path to the isocentre. The major differences seen however were in the regions away from the central axis. The dose volume histograms showed that both the bladder and rectum were further spared with increasing tilt angle whilst the PTV dose was unchanged. The only issue at South West Sydney Cancer Services (SWSCS) in terms of patient position variation arises from the angle induced by the couch sag (or more precisely, the difference in couch sag angle between the CT and Linac couches). Due to the relatively uniform structures (of PTV, bladder and rectum), and the proximity of these critical structures to the isocentre, this angular rotation about the isocentre did not cause any major variations to the DVH, MU and isodoses for realistic levels of couch sag (i.e. less than 20mm).

  10. Quantitative analysis of errors in fractionated stereotactic radiotherapy.

    PubMed

    Choi, D R; Kim, D Y; Ahn, Y C; Huh, S J; Yeo, I J; Nam, D H; Lee, J I; Park, K; Kim, J H

    2001-01-01

    Fractionated stereotactic radiotherapy (FSRT) offers a technique to minimize the absorbed dose to normal tissues; therefore, quality assurance is essential for these procedures. In this study, quality assurance for FSRT of 58 cases, between August 1995 and August 1997 are described, and the errors for each step and overall accuracy were estimated. Some of the important items for FSRT procedures are: accuracy in CT localization, transferred image distortion, laser alignment, isocentric accuracy of linear accelerator, head frame movement, portal verification, and various human errors. A geometric phantom, that has known coordinates was used to estimate the accuracy of CT localization. A treatment planning computer was used for checking the transferred image distortion. The mechanical isocenter standard (MIS), rectilinear phantom pointer: (RLPP), and laser target localizer frame (LTLF) were used for laser alignment and target coordinates setting. Head-frame stability check was performed by a depth confirmation helmet (DCH). A film test was done to check isocentric accuracy and portal verification. All measured data for the 58 patients were recorded and analyzed for each item. 4-MV x-rays from a linear accelerator, were used for FSRT, along with homemade circular cones with diameters from 20 to 70 mm (interval: 5 mm). The accuracy in CT localization was 1.2+/-0.5 mm. The isocentric accuracy of the linear accelerator, including laser alignment, was 0.5+/-0.2 mm. The reproducibility of the head frame was 1.1+/-0.6 mm. The overall accuracy was 1.7+/-0.7 mm, excluding human errors.

  11. Photon and electron collimator effects on electron output and abutting segments in energy modulated electron therapy

    SciTech Connect

    Olofsson, Lennart; Karlsson, Magnus G.; Karlsson, Mikael

    2005-10-15

    In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied.

  12. Varying MLC end projection size: an effect of the double-focused Siemens multileaf collimator.

    PubMed

    Buckle, A H

    2006-04-21

    Siemens linacs use multileaf collimators (MLCs) that move in an arc such that the flat faces of the leaf ends are always in the same plane as the radiation focus. An effect of this is that the magnification of the leaf end projection at the isocentric plane normal to the collimator rotation axis varies with the drive position of the leaves. This effect is quantified theoretically and empirically verified. A method is introduced for assessing the importance of the effect for a particular MLC pattern. The significance of the effect is discussed.

  13. Physical considerations in the treatment of advanced carcinomas of the larynx and pyriform sinuses using 10 MV x rays

    SciTech Connect

    Doppke, K.; Novack, D.; Wang, C.C.

    1980-09-01

    A technique for treating patients who have advanced tumors of the larynx and pyriform sinus was developed using isocentric anterior and posterior opposed fields with 10 MV x rays. This technique can be used to deliver a tumor dose of 45 Gray to the primary site and regional nodes and approximately 40 Gray to the spinal cord. The method eliminates problems of multi-field junctures and lowers the daily spinal cord dose when compared to the standard parallel opposed lateral portals and anterior neck fields.

  14. Radiotherapy in the UK

    SciTech Connect

    Ramsay, S.

    1993-10-09

    What is wrong with radiation treatment in the UK Is it bad practice or merely bad publicity Between 1982 and 1991, 1,000 patients receiving isocentric radiation therapy at the North Staffordshire Royal Infirmary received a substantial underdose of radiation; the clinical report on this incident was published last week. The operator had been using a correction factor for tumor-to-skin distance, unaware that this factor had already been applied by the computer system. Although the report pointed out that it is not surprising that the clinicians were not alerted to the undertreatment, is also noted that there were no resources at the hospital to audit the outcome of radiotherapy.

  15. Pilot study on interfractional and intrafractional movements using surface infrared markers and EPID for patients with rectal cancer treated in the prone position

    PubMed Central

    Eom, K-Y; Kim, K; Chang, J H; Koo, T R; Park, J I; Park, Y-G; Ye, S-J; Ha, S W

    2015-01-01

    Objective: To evaluate interfractional and intrafractional movement of patients with rectal cancer during radiotherapy with electronic portal imaging device (EPID) and surface infrared (IR) markers. Methods: 20 patients undergoing radiotherapy for rectal cancer with body mass index ranging from 18.5 to 30 were enrolled. Patients were placed in the prone position on a couch with a leg pillow. Three IR markers were put on the surface of each patient and traced by two stereo cameras during radiotherapy on a twice-weekly basis. Interfractional isocentre movement was obtained with EPID images on a weekly basis. Movement of the IR markers was analysed in correlation with the isocentre movement obtained from the EPID images. Results: The maximum right-to-left (R-L) movement of the laterally located markers in the horizontal isocentre plane was correlated with isocentre translocation with statistical significance (p = 0.018 and 0.015, respectively). Movement of the surface markers was cyclical. For centrally located markers, the 95% confidence intervals for the average amplitude in the R-L, cranial-to-caudal (C-C) and anterior-to-posterior (A-P) directions were 0.86, 2.25 and 3.48 mm, respectively. In 10 patients, intrafractional movement exceeding 5 mm in at least one direction was observed. Time-dependent systematic movement of surface markers during treatment, which consisted of continuous movement towards the cranial direction and a sail back motion in the A-P direction, was also observed. Conclusion: Intrafractional movement of surface markers has both cyclic components and time-dependent systematic components. Marker deviations exceeding 5 mm were mainly seen in the A-P direction. Pre- or post-treatment EPID images may not provide adequate information regarding intrafractional movement because of systematic movement in the A-P direction during radiotherapy. Advances in knowledge: This work uncovered a sail back motion of patients in the A-P direction during

  16. Superconductivity in Medicine

    NASA Astrophysics Data System (ADS)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  17. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  18. Effect of Treatment Modality on the Hypothalamic–Pituitary Function of Patients Treated with Radiation Therapy for Pituitary Adenomas: Hypothalamic Dose and Endocrine Outcomes

    PubMed Central

    Elson, Andrew; Bovi, Joseph; Kaur, Kawaljeet; Maas, Diana; Sinson, Grant; Schultz, Chris

    2014-01-01

    Background: Both fractionated external beam radiotherapy and single fraction radiosurgery for pituitary adenomas are associated with the risk of hypothalamic–pituitary (HP) axis dysfunction. Objective: To analyze the effect of treatment modality (Linac, TomoTherapy, or gamma knife) on hypothalamic dose and correlate these with HP-axis deficits after radiotherapy. Methods: Radiation plans of patients treated post-operatively for pituitary adenomas using Linac-based 3D-conformal radiotherapy (CRT) (n = 11), TomoTherapy-based intensity modulated radiation therapy (IMRT) (n = 10), or gamma knife stereotactic radiosurgery (n = 12) were retrospectively reviewed. Dose to the hypothalamus was analyzed and post-radiotherapy hormone function including growth hormone, thyroid stimulating hormone, adrenocorticotropic hormone, prolactin, and gonadotropins (follicle stimulating hormone/luteinizing hormone) were assessed. Results: Post-radiation, 13 of 27 (48%) patients eligible for analysis developed at least one new hormone deficit, of which 8 of 11 (72%) occurred in the Linac group, 4 of 8 (50%) occurred in the TomoTherapy group, and 1 of 8 (12.5%) occurred in the gamma knife group. Compared with fractionated techniques, gamma knife showed improved hypothalamic sparing for DMax Hypo and V12Gy. For fractionated modalities, TomoTherapy showed improved dosimetric characteristics over Linac-based treatment with hypothalamic DMean (44.8 vs. 26.8 Gy p = 0.02), DMax (49.8 vs. 39.1 Gy p = 0.04), and V12Gy (100 vs. 76% p = 0.004). Conclusion: Maximal dosimetric avoidance of the hypothalamus was achieved using gamma knife-based radiosurgery followed by TomoTherapy-based IMRT, and Linac-based 3D conformal radiation therapy, respectively. PMID:24782984

  19. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  20. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  1. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based stereotactic body radiotherapy for central early-stage non−small cell lung cancer

    SciTech Connect

    Merna, Catherine; Rwigema, Jean-Claude M.; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U.; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A.; Kupelian, Patrick; Steinberg, Michael L.; Lee, Percy

    2016-04-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non−small cell lung cancer with a tri-cobalt-60 (tri-{sup 60}Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)–based SBRT. In all, 20 patients with large central early-stage non−small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-{sup 60}Co system for a prescription dose of 50 Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R{sub 100} values were calculated as the total tissue volume receiving 100% of the dose (V{sub 100}) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-{sup 60}Co SBRT plans were performed using Student's t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3 cc (range: 12.1 to 139.4 cc). Of the tri-{sup 60}Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R{sub 100} values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-{sup 60}Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-{sup 60}Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving

  2. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams.

    PubMed

    Naseri, Alireza; Mesbahi, Asghar

    2010-09-22

    In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated mainly in linacs head thorough (γ,n) interactions of photons with nuclei of high atomic number materials that constitute the linac head and the beam collimation system. These neutrons affect the shielding requirements in radiation therapy rooms and also increase the out-of-field radiation dose of patients undergoing radiation therapy with high-energy photon beams. In the current review, the authors describe the factors influencing the neutron production for different medical linacs based on the performed measurements and Monte Carlo studies in the literature.

  3. Development of 325 MHz single spoke resonators at Fermilab

    SciTech Connect

    Apollinari, G.; Gonin, I.V.; Khabiboulline, T.N.; Lanfranco, G.; Mukherjee, A.; Ozelis, J.; Ristori, L.; Sergatskov, D.; Wagner, R.; Webber, R.; /Fermilab

    2008-08-01

    The High Intensity Neutrino Source (HINS) project represents the current effort at Fermilab to produce an 8-GeV proton linac based on 400 independently phased superconducting cavities. Eighteen ?=0.21 single spoke resonators, operating at 325 MHz, comprise the first stage of the linac cold section. In this paper we present the current status of the production and testing of the first two prototype cavities. This includes descriptions of the fabrication, frequency tuning, chemical polishing, high pressure rinse, and high-gradient cold tests.

  4. The 4th Generation Light Source at Jefferson Lab

    SciTech Connect

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  5. Comparison of Lattice Options for the NLC Main Linac (LCC-0024)

    SciTech Connect

    Nosochkov, Y.

    2004-03-23

    The goal of this study was to select an optimal lattice for the NLC main linac, based on the analysis and comparison of several lattice options. In this study, we examined the FODO and doublet optics, combinations of 2 vs. 3 accelerator structures per girder, three options for the phase advance per cell and various configurations for the BNS autophasing energy spread. In the lattice analysis, we compared the calculations of emittance growth and misalignment tolerances due to ground motion, as well as magnet parameters.

  6. Effects of bone- and air-tissue inhomogeneities on the dose distributions of the Leksell Gamma Knife® calculated with PENELOPE

    NASA Astrophysics Data System (ADS)

    Al-Dweri, Feras M. O.; Rojas, E. Leticia; Lallena, Antonio M.

    2005-12-01

    Monte Carlo simulation with PENELOPE (version 2003) is applied to calculate Leksell Gamma Knife® dose distributions for heterogeneous phantoms. The usual spherical water phantom is modified with a spherical bone shell simulating the skull and an air-filled cube simulating the frontal or maxillary sinuses. Different simulations of the 201 source configuration of the Gamma Knife have been carried out with a simplified model of the geometry of the source channel of the Gamma Knife recently tested for both single source and multisource configurations. The dose distributions determined for heterogeneous phantoms including the bone- and/or air-tissue interfaces show non-negligible differences with respect to those calculated for a homogeneous one, mainly when the Gamma Knife isocentre approaches the separation surfaces. Our findings confirm an important underdosage (~10%) nearby the air-tissue interface, in accordance with previous results obtained with the PENELOPE code with a procedure different from ours. On the other hand, the presence of the spherical shell simulating the skull produces a few per cent underdosage at the isocentre wherever it is situated.

  7. Dosimetric characteristics of the Elekta Beam Modulator.

    PubMed

    Patel, I; Glendinning, A G; Kirby, M C

    2005-12-07

    The dosimetric characteristics of a production pilot multi-leaf collimator (Elekta Beam Modulator, Elekta Oncology Systems, Crawley, UK) having a 4 mm leaf width (at isocentre) have been investigated. Characteristics explored included leaf bank set-up, penumbra width (80-20%) as a function of leaf position, leaf positioning reproducibility, interleaf leakage and leaf transmission. The penumbra values for leaf ends were measured to be between 4.2 and 4.8 mm for various large rectangular fields studied using Kodak X-omat V film at isocentre (1.5 cm deep). Similar films were taken with a standard 1 cm width multi-leaf collimator (MLC) and the penumbra for leaf ends was found to range from 4.3 to 5.2 mm. Other results showed that the rounded leaf tip provided tight control of the penumbra across the leaves' full range of travel. The positioning of the leaves was within a 0.5 mm range when approaching from the same direction. The maximum interleaf leakage was found to be 1.7% and the average leaf transmission less than 1.0%. No major differences were observed in leakage and transmission with changing gantry angle.

  8. Intensity modulation with electrons: calculations, measurements and clinical applications.

    PubMed

    Karlsson, M G; Karlsson, M; Zackrisson, B

    1998-05-01

    Intensity modulation of electron beams is one step towards truly conformal therapy. This can be realized with the MM50 racetrack microtron that utilizes a scanning beam technique. By adjusting the scan pattern it is possible to obtain arbitrary fluence distributions. Since the monitor chambers in the treatment head are segmented in both x- and y-directions it is possible to verify the fluence distribution to the patient at any time during the treatment. Intensity modulated electron beams have been measured with film and a plane parallel chamber and compared with calculations. The calculations were based on a pencil beam method. An intensity distribution at the multileaf collimator (MLC) level was calculated by superposition of measured pencil beams over scan patterns. By convolving this distribution with a Gaussian pencil beam, which has propagated from the MLC to the isocentre, a fluence distribution at isocentre level was obtained. The agreement between calculations and measurements was within 2% in dose or 1 mm in distance in the penumbra zones. A standard set of intensity modulated electron beams has been developed. These beams have been implemented in a treatment planning system and are used for manual optimization. A clinical example (prostate) of such an application is presented and compared with a standard irradiation technique.

  9. The optimization of intensity modulated radiotherapy in cases where the planning target volume extends into the build-up region.

    PubMed

    Nguyen, T B; Hoole, A C F; Burnet, N G; Thomas, S J

    2009-04-21

    A common clinical problem in IMRT, especially when treating head and neck cases, is that the clinical target volume (CTV) stops short of the skin surface, whilst the margin for geometric uncertainties may take the planning target volume (PTV) to the skin surface or beyond. In these cases, optimization leads to over-dosing of the skin, unless the planner resorts to procedural tricks to avoid this, such as the use of pretend bolus or reduction of the PTV followed by adding 'flash' after optimization. This paper describes a method of avoiding the need for these tricks by using a multiple-isocentre CTV-based objective function. This enables plans to be produced that will give good coverage of the CTV for all the geometrical uncertainties that would have been covered by the PTV without causing the problem of over-dosing the skin. Eight isocentre shifts, equally distributed on the surface of a sphere with a radius equal to the CTV-PTV margin, are shown to be adequate for the optimization process. The resulting fluence maps are much simpler than those resulting from PTV optimization and will therefore be simpler to deliver. The method also permits better sparing of organs at risk such as the spinal cord.

  10. The optimization of intensity modulated radiotherapy in cases where the planning target volume extends into the build-up region

    NASA Astrophysics Data System (ADS)

    Nguyen, T. B.; Hoole, A. C. F.; Burnet, N. G.; Thomas, S. J.

    2009-04-01

    A common clinical problem in IMRT, especially when treating head and neck cases, is that the clinical target volume (CTV) stops short of the skin surface, whilst the margin for geometric uncertainties may take the planning target volume (PTV) to the skin surface or beyond. In these cases, optimization leads to over-dosing of the skin, unless the planner resorts to procedural tricks to avoid this, such as the use of pretend bolus or reduction of the PTV followed by adding 'flash' after optimization. This paper describes a method of avoiding the need for these tricks by using a multiple-isocentre CTV-based objective function. This enables plans to be produced that will give good coverage of the CTV for all the geometrical uncertainties that would have been covered by the PTV without causing the problem of over-dosing the skin. Eight isocentre shifts, equally distributed on the surface of a sphere with a radius equal to the CTV-PTV margin, are shown to be adequate for the optimization process. The resulting fluence maps are much simpler than those resulting from PTV optimization and will therefore be simpler to deliver. The method also permits better sparing of organs at risk such as the spinal cord.

  11. Effects of bone- and air-tissue inhomogeneities on the dose distributions of the Leksell Gamma Knife calculated with PENELOPE.

    PubMed

    Al-Dweri, Feras M O; Rojas, E Leticia; Lallena, Antonio M

    2005-12-07

    Monte Carlo simulation with PENELOPE (version 2003) is applied to calculate Leksell Gamma Knife dose distributions for heterogeneous phantoms. The usual spherical water phantom is modified with a spherical bone shell simulating the skull and an air-filled cube simulating the frontal or maxillary sinuses. Different simulations of the 201 source configuration of the Gamma Knife have been carried out with a simplified model of the geometry of the source channel of the Gamma Knife recently tested for both single source and multisource configurations. The dose distributions determined for heterogeneous phantoms including the bone- and/or air-tissue interfaces show non-negligible differences with respect to those calculated for a homogeneous one, mainly when the Gamma Knife isocentre approaches the separation surfaces. Our findings confirm an important underdosage (approximately 10%) nearby the air-tissue interface, in accordance with previous results obtained with the PENELOPE code with a procedure different from ours. On the other hand, the presence of the spherical shell simulating the skull produces a few per cent underdosage at the isocentre wherever it is situated.

  12. Resampling: An optimization method for inverse planning in robotic radiosurgery

    SciTech Connect

    Schweikard, Achim; Schlaefer, Alexander; Adler, John R. Jr.

    2006-11-15

    By design, the range of beam directions in conventional radiosurgery are constrained to an isocentric array. However, the recent introduction of robotic radiosurgery dramatically increases the flexibility of targeting, and as a consequence, beams need be neither coplanar nor isocentric. Such a nonisocentric design permits a large number of distinct beam directions to be used in one single treatment. These major technical differences provide an opportunity to improve upon the well-established principles for treatment planning used with GammaKnife or LINAC radiosurgery. With this objective in mind, our group has developed over the past decade an inverse planning tool for robotic radiosurgery. This system first computes a set of beam directions, and then during an optimization step, weights each individual beam. Optimization begins with a feasibility query, the answer to which is derived through linear programming. This approach offers the advantage of completeness and avoids local optima. Final beam selection is based on heuristics. In this report we present and evaluate a new strategy for utilizing the advantages of linear programming to improve beam selection. Starting from an initial solution, a heuristically determined set of beams is added to the optimization problem, while beams with zero weight are removed. This process is repeated to sample a set of beams much larger compared with typical optimization. Experimental results indicate that the planning approach efficiently finds acceptable plans and that resampling can further improve its efficiency.

  13. Traumatic Fracture of Thin Pedicles Secondary to Extradural Meningeal Cyst

    PubMed Central

    Yanni, Daniel S.; Mammis, Antonios; Thaker, Nikhil G.; Goldstein, Ira M.

    2011-01-01

    Spinal dural meningoceles and diverticula are meningeal cysts that have a myriad of clinical presentations and sequelae, secondary to local mass effect. Our objective is to report a technical case report, illustrating a traumatic spinal injury with multiple pedicle fractures, secondary to atrophic lumbar pedicles as well as the diagnostic workup and surgical management of this problem. Posterior lumbar decompression, resection of the meningeal cyst, ligation of the cyst ostium, instrumentation, and fusion were performed with the assistance of intraoperative isocentric fluoroscopy. The cyst's point of communication was successfully located with intraoperative fluoroscopy and the lesion was successfully excised. We suggest that patients with traumatic spinal injuries, having evidence of pre-existing anomalous bony architecture, undergo advanced imaging studies, to rule out intraspinal pathology. The positive clinical and radiographic results support the removal and closure of the pre-existing meningeal cyst at the time of treatment of traumatic spinal injury. Intraoperative isocentric fluoroscopy is a helpful tool in the operative management of these lesions. PMID:22022654

  14. Temporal compartmental dosing effects for robotic prostate stereotactic body radiotherapy

    NASA Astrophysics Data System (ADS)

    Shiao, Stephen L.; Sahgal, Arjun; Hu, Weigang; Jabbari, Siavash; Chuang, Cynthia; Descovich, Martina; Hsu, I.-Chow; Gottschalk, Alexander R.; Roach, Mack, III; Ma, Lijun

    2011-12-01

    The rate of dose accumulation within a given area of a target volume tends to vary significantly for non-isocentric delivery systems such as Cyberknife stereotactic body radiotherapy. In this study, we investigated whether intra-target temporal dose distributions produce significant variations in the biological equivalent dose. For the study, time courses of ten patients were reconstructed and calculation of a biologically equivalent uniform dose (EUD) was performed using a formula derived from the linear quadratic model (α/β = 3 for prostate cancer cells). The calculated EUD values obtained for the actual patient treatments were then compared with theoretical EUD values for delivering the same physical dose distribution except that the whole target being irradiated continuously (e.g. large-field ‘dose-bathing’ type of delivery). For all the case, the EUDs for the actual treatment delivery were found to correlate strongly with the EUDs for the large-field delivery: a linear correlation coefficient of R2 = 0.98 was obtained and the average EUD for the actual Cyberknife delivery was somewhat higher (5.0 ± 4.7%) than that for the large-field delivery. However, no statistical significance was detected between the two types of delivery (p = 0.21). We concluded that non-isocentric small-field Cyberknife delivery produced consistent biological dosing that tracked well with the constant-dose-rate, large-field-type delivery for prostate stereotactic body radiotherapy.

  15. An Injector Test Facility for the LCLS

    SciTech Connect

    Colby, E.,; /SLAC

    2007-03-14

    SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

  16. Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.; Safronova, M. S.; Porsev, S. G.; Pruttivarasin, T.; Hohensee, M. A.; Häffner, H.

    2016-05-01

    A number of theories aiming at unifying gravity with other fundamental interactions, including field theory, suggest the violation of Lorentz symmetry. Whereas the energy scale of such strongly Lorentz-symmetry-violating physics is much higher than that attainable at present by particle accelerators, Lorentz violation may nevertheless be detectable via precision measurements at low energies. Here, we carry out a systematic theoretical investigation to identify which atom shows the greatest promise for detecting a Lorentz symmetry violation in the electron-photon sector. We found that the ytterbium ion (Yb+) is an ideal system with high sensitivity, as well as excellent experimental controllability. By applying quantum-information-inspired technology to Yb+, we expect tests of local Lorentz invariance (LLI) violating physics in the electron-photon sector to reach levels of 10-23--five orders of magnitude more sensitive than the current best bounds.

  17. Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Pellegrini, Camilla; Flick, Johannes; Tokatly, Ilya V.; Appel, Heiko; Rubio, Angel

    2015-08-01

    We propose an orbital exchange-correlation functional for applying time-dependent density functional theory to many-electron systems coupled to cavity photons. The time nonlocal equation for the electron-photon optimized effective potential (OEP) is derived. In the static limit our OEP energy functional reduces to the Lamb shift of the ground state energy. We test the new approximation in the Rabi model. It is shown that the OEP (i) reproduces quantitatively the exact ground-state energy from the weak to the deep strong coupling regime and (ii) accurately captures the dynamics entering the ultrastrong coupling regime. The present formalism opens the path to a first-principles description of correlated electron-photon systems, bridging the gap between electronic structure methods and quantum optics for real material applications.

  18. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  19. Interpretation of the radioactive background observed in the OSO-7 gamma-ray monitor

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Dunphy, P.; Forest, D. J.; Chupp, E. L.

    1975-01-01

    Application of a spallation activation calculation to the OSO-7 gamma-ray monitor background shows that major line features and about 30% of the continuum can be understood as activation of the central detector crystal by trapped protons. Weaker line features arise from activation of materials unshielded by the anticoincidence cup, while the remaining continuum and annihilation line would seem to come largely from electron-photon cascades originating in the spacecraft.

  20. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  1. Electromagnetic Radiation in the Atmosphere Generated by Excess Negative Charge in a Nuclear-Electromagnetic Cascade

    NASA Astrophysics Data System (ADS)

    Malyshevsky, V. S.; Fomin, G. V.

    2017-01-01

    On the basis of the analytical model "PARMA" (PHITS-based Analytical Radiation Model in the Atmosphere), developed to model particle fluxes of secondary cosmic radiation in the Earth's atmosphere, we have calculated the characteristics of radio waves emitted by excess negative charge in an electromagnetic cascade. The results may be of use in an analysis of experimental data on radio emission of electron-photon showers in the atmosphere.

  2. Study of photonuclear muon interactions at Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Dadykin, V. L.; Novoseltsev, Y. F.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    The method of pion-muon-electron decays recording was used to distinguish between purely electron-photon and hadronic cascades, induced by high energy muons underground. At energy approx. 1 Tev a ratio of the number of hadronic to electromagnetic cascades was found equal 0.11 + or - .03 in agreement with expectation. But, at an energy approx. 4 Tev a sharp increase of this ratio was indicated though not statistically sound (0.52 + or - .13).

  3. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  4. Coincidence measurements of electron-impact coherence parameters for e-He scattering in the full range of scattering angles

    SciTech Connect

    Klosowski, Lukasz; Piwinski, Mariusz; Dziczek, Dariusz; Pleskacz, Katarzyna; Chwirot, Stanislaw

    2009-12-15

    Electron impact coherence parameters for inelastic e-He scattering have been measured for the excitation to the 2 {sup 1}P{sub 1} state at collision energy of 100 eV. The experiment was conducted using angular correlation electron-photon coincidence technique with a magnetic angle changer allowing measurements in full range of scattering angles. The results are compared with other experimental data and theoretical predictions available for this collisional system.

  5. Automated Monte Carlo biasing for photon-generated electrons near surfaces.

    SciTech Connect

    Franke, Brian Claude; Crawford, Martin James; Kensek, Ronald Patrick

    2009-09-01

    This report describes efforts to automate the biasing of coupled electron-photon Monte Carlo particle transport calculations. The approach was based on weight-windows biasing. Weight-window settings were determined using adjoint-flux Monte Carlo calculations. A variety of algorithms were investigated for adaptivity of the Monte Carlo tallies. Tree data structures were used to investigate spatial partitioning. Functional-expansion tallies were used to investigate higher-order spatial representations.

  6. Nonlinear Material Response to Very Rapid Energy Deposition

    DTIC Science & Technology

    1990-03-23

    including optical windows, geophysical solids, polymers , composites, etc.) to intense impulsive loading is central to many Air Force pro- grams and...picture of dielectric breakdown at dc to optical frequencies has dramatically changed in the last five years due to the work of Fischetti, DiMaria, Cartier ...and co-workers at IBM and our group at Washington State University. Cartier et al.6 were able to measure the electron-photon scattering rates in

  7. Dynamic dosimetry and edema detection in prostate brachytherapy: a complete system

    NASA Astrophysics Data System (ADS)

    Jain, A.; Deguet, A.; Iordachita, I.; Chintalapani, G.; Blevins, J.; Le, Y.; Armour, E.; Burdette, C.; Song, D.; Fichtinger, G.

    2008-03-01

    Purpose: Brachytherapy (radioactive seed insertion) has emerged as one of the most effective treatment options for patients with prostate cancer, with the added benefit of a convenient outpatient procedure. The main limitation in contemporary brachytherapy is faulty seed placement, predominantly due to the presence of intra-operative edema (tissue expansion). Though currently not available, the capability to intra-operatively monitor the seed distribution, can make a significant improvement in cancer control. We present such a system here. Methods: Intra-operative measurement of edema in prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical non-isocentric C-arm, and exported to a commercial brachytherapy delivery system. Technical obstacles for 3D reconstruction on a non-isocentric C-arm include pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. Results: In precision-machined hard phantoms with 40-100 seeds and soft tissue phantoms with 45-87 seeds, we correctly reconstructed the seed implant shape with an average 3D precision of 0.35 mm and 0.24 mm, respectively. In a DoD Phase-1 clinical trial on 6 patients with 48-82 planned seeds, we achieved intra-operative monitoring of seed distribution and dosimetry, correcting for dose inhomogeneities by inserting an average of 4.17 (1-9) additional seeds. Additionally, in each patient, the system automatically detected intra-operative seed migration induced due to edema (mean 3.84 mm, STD 2.13 mm, Max 16.19 mm). Conclusions: The proposed system is the first of a kind that makes intra-operative detection of edema (and subsequent re-optimization) possible on any typical non-isocentric C-arm, at negligible additional cost to the existing clinical installation. It achieves a significantly more homogeneous seed distribution, and has the potential to

  8. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  9. Activation processes in a medical linear accelerator and spatial distribution of activation products.

    PubMed

    Fischer, Helmut W; Tabot, Ben E; Poppe, Björn

    2006-12-21

    Activation products have been identified by in situ gamma spectroscopy at the isocentre of a medical linear accelerator shortly after termination of a high energy photon beam irradiation with 15 x 15 cm field size. Spectra have been recorded either with an open or with a closed collimator. Whilst some activation products disappear from the spectrum with closed collimator or exhibit reduced count rates, others remain with identical intensity. The former isotopes are neutron-deficient and mostly decay by positron emission or electron capture; the latter have neutron excess and decay by beta(-) emission. This new finding is consistent with the assumption that photons in the primary beam produce activation products by (gamma, n) reactions in the treatment head and subsequently the neutrons created in these processes undergo (n, gamma) reactions creating activation products in a much larger area. These findings are expected to be generally applicable to all medical high energy linear accelerators.

  10. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia.

    PubMed

    To, Curtis S; Kobetic, Rudi; Bulea, Thomas C; Audu, Musa L; Schnellenberger, John R; Pinault, Gilles; Triolo, Ronald J

    2014-01-01

    The objectives of this study were to test whether a hybrid neuroprosthesis (HNP) with an exoskeletal variable-constraint hip mechanism (VCHM) combined with a functional neuromuscular stimulation (FNS) controller can maintain upright posture with less upper-limb support and improve gait speed as compared with walking with either an isocentric reciprocating gait orthosis (IRGO) or FNS only. The results show that walking with the HNP significantly reduced forward lean in FNS-only walking and the maximum upper-limb forces by 42% and 19% as compared with the IRGO and FNS-only gait, respectively. Walking speed increased significantly with VCHM as compared with 1:1 reciprocal coupling and by 15% when using the sensor-based FNS controller as compared with HNP with fixed baseline stimulation without the controller active.

  11. Three-dimensional Intraoperative Imaging Modalities in Orthopaedic Surgery: A Narrative Review.

    PubMed

    Qureshi, Sheeraz; Lu, Young; McAnany, Steven; Baird, Evan

    2014-12-01

    Intraoperative imaging and navigation systems have revolutionized orthopaedic surgery for the spine, joints, and orthopaedic trauma. Imaging modalities such as the isocentric C-arm, O-arm imaging, and intraoperative MRI or navigation systems allow the visualization of surgical instruments and implants relative to a three-dimensional CT image or MRI. Studies show that these technologies lower the rates of implant misplacement and inadequate fracture reduction, thereby improving surgical outcomes and reducing reoperation rates. An additional benefit is reduced radiation exposure compared with that for conventional fluoroscopy. Concerns surrounding adoption of these technologies include cost and increased operating times, but improvements in design and protocol may improve the integration of these imaging modalities into the operating room.

  12. The direct measurement using an imaging plate for coincidence of radiation centre and laser position in external radiation therapy.

    PubMed

    Terunuma, Toshiyuki; Sakae, Takeji; Nohtomi, Akihiro; Tsunashima, Yoshikazu

    2003-02-21

    A new method of quality assurance has been studied to measure coincidence of the radiation centre and a patient-setup laser position on a transverse plane to the beam at the isocentre. This measurement is achieved by using an imaging plate (IP). When radiation is applied to an IP, the energy is stored as trapped electrons. The number of electrons is decreased by local laser exposure. As a result, the radiation field produced by external beam irradiation is recorded as 'positive' information and the position of the patient-setup laser is recorded as 'negative' on an IP. The advantages of this method are the direct measurement, short time and high resolution. These are required for daily and monthly quality checks. We confirmed the advantage of this method by an experiment using a proton beam.

  13. Two new DOSXYZnrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, TomoTherapy and CyberKnife

    NASA Astrophysics Data System (ADS)

    Lobo, Julio; Antoniu Popescu, I.

    2010-08-01

    We present two new Monte Carlo sources for the DOSXYZnrc code, which can be used to compute dose distributions due to continuously variable beam configurations. These sources support a continuously rotating gantry and collimator, dynamic multileaf collimator (MLC) motion, variable monitor unit (MU) rate, couch rotation and translation in any direction, arbitrary isocentre motion with respect to the patient and variable source-to-axis distance (SAD). These features make them applicable to Monte Carlo simulations for RapidArc™, Elekta VMAT, TomoTherapy™ and CyberKnife™. Unique to these sources is the synchronization between the motion in the DOSXYZnrc geometry and the motion within the linac head, represented by a shared library (either a BEAMnrc accelerator with dynamic component modules, or an external library). The simulations are achieved in single runs, with no intermediate phase space files.

  14. The relative biological effectiveness of out-of-field dose

    NASA Astrophysics Data System (ADS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions.

  15. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose.

  16. Pencil beam scanning dosimetry for large animal irradiation.

    PubMed

    Lin, Liyong; Solberg, Timothy D; Carabe, Alexandro; Mcdonough, James E; Diffenderfer, Eric; Sanzari, Jenine K; Kennedy, Ann R; Cengel, Keith

    2014-09-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event. These events consist primarily of low-energy protons that produce a highly inhomogeneous depth-dose distribution. Here we describe a novel technique that uses pencil beam scanning at extended source-to-surface distances and range shifter (RS) to provide robust but easily modifiable delivery of simulated solar particle event radiation to large animals. Thorough characterization of spot profiles as a function of energy, distance and RS position is critical to accurate treatment planning. At 105 MeV, the spot sigma is 234 mm at 4800 mm from the isocentre when the RS is installed at the nozzle. With the energy increased to 220 MeV, the spot sigma is 66 mm. At a distance of 1200 mm from the isocentre, the Gaussian sigma is 68 mm and 23 mm at 105 MeV and 220 MeV, respectively, when the RS is located on the nozzle. At lower energies, the spot sigma exhibits large differences as a function of distance and RS position. Scan areas of 1400 mm (superior-inferior) by 940 mm (anterior-posterior) and 580 mm by 320 mm are achieved at the extended distances of 4800 mm and 1200 mm, respectively, with dose inhomogeneity <2%. To treat large animals with a more sophisticated dose distribution, spot size can be reduced by placing the RS closer than 70 mm to the surface of the animals, producing spot sigmas below 6 mm.

  17. Pencil beam scanning dosimetry for large animal irradiation

    PubMed Central

    Lin, Liyong; Solberg, Timothy D.; Carabe, Alexandro; Mcdonough, James E.; Diffenderfer, Eric; Sanzari, Jenine K.; Kennedy, Ann R.; Cengel, Keith

    2014-01-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event. These events consist primarily of low-energy protons that produce a highly inhomogeneous depth–dose distribution. Here we describe a novel technique that uses pencil beam scanning at extended source-to-surface distances and range shifter (RS) to provide robust but easily modifiable delivery of simulated solar particle event radiation to large animals. Thorough characterization of spot profiles as a function of energy, distance and RS position is critical to accurate treatment planning. At 105 MeV, the spot sigma is 234 mm at 4800 mm from the isocentre when the RS is installed at the nozzle. With the energy increased to 220 MeV, the spot sigma is 66 mm. At a distance of 1200 mm from the isocentre, the Gaussian sigma is 68 mm and 23 mm at 105 MeV and 220 MeV, respectively, when the RS is located on the nozzle. At lower energies, the spot sigma exhibits large differences as a function of distance and RS position. Scan areas of 1400 mm (superior–inferior) by 940 mm (anterior–posterior) and 580 mm by 320 mm are achieved at the extended distances of 4800 mm and 1200 mm, respectively, with dose inhomogeneity <2%. To treat large animals with a more sophisticated dose distribution, spot size can be reduced by placing the RS closer than 70 mm to the surface of the animals, producing spot sigmas below 6 mm. PMID:24855043

  18. SU-E-T-432: A Rapid and Comprehensive Procedure for Daily Proton QA

    SciTech Connect

    Zhao, T; Sun, B; Grantham, K; Knutson, N; Santanam, L; Goddu, S; Klein, E

    2014-06-01

    Purpose: The objective is to develop a rapid and comprehensive daily QA procedure implemented at the S. Lee Kling Proton Therapy Center at Barnes-Jewish Hospital. Methods: A scribed phantom with imbedded fiducials is used for checking lasers accuracy followed by couch isocentricity and for X-ray imaging congruence with isocenter. A Daily QA3 device (Sun Nuclear, FL) was used to check output, range and profiles. Five chambers in the central region possess various build-ups. After converting the thickness of the inherent build-ups into water equivalent thickness (WET) for proton, range of any beam can be checked with additional build-up on the Daily QA3 device. In our procedure, 3 beams from 3 bands (large, small and deep) with nominal range of 20 cm are checked daily. 17cm plastic water with WET of 16.92cm are used as additional build-up so that four chambers sit on the SOBP plateau at various depths and one sit on the distal fall off. Reading from the five chambers are fitted to an error function that has been parameterized to match the SOBP with the same nominal range. Shifting of the error function to maximize the correlation between measurements and the error function is deemed as the range shift from the nominal value. Results: We have found couch isocentricity maintained over 180 degrees. Imaging system exhibits accuracy in regard to imaging and mechanical isocenters. Ranges are within 1mm accuracy from measurements in water tank, and sensitive to change of sub-millimeter. Data acquired since the start of operation show outputs, profiles and range stay within 1% or 1mm from baselines. The whole procedure takes about 40 minutes. Conclusion: Taking advantage of the design of Daily QA3 device turns the device originally designed for photon and electron into a comprehensive and rapid tool for proton daily QA.

  19. Involved field radiation for Hodgkin's lymphoma: The actual dose to breasts in close proximity

    SciTech Connect

    Dabaja, Bouthaina; Wang Zhonglo; Stovall, Marilyn; Baker, Jamie S.; Smith, Susan A.; Khan, Meena; Ballas, Leslie; Salehpour, Mohammad R.

    2012-01-01

    To decrease the risk of late toxicities in Hodgkin's lymphoma (HL) patients treated with radiation therapy (RT) (HL), involved field radiation therapy (IFRT) has largely replaced the extended fields. To determine the out-of-field dose delivered from a typical IFRT to surrounding critical structures, we measured the dose at various points in an anthropomorphic phantom. The phantom is divided into 1-inch-thick slices with the ability to insert TLDs at 3-cm intervals grid spacing. Two treatment fields were designed, and a total of 45 TLDs were placed (equally spaced) at the margin of the each of the 2 radiation fields. After performing a computed tomography simulation, 2 treatment plans targeting the mediastinum, a typical treatment field in patients with early stage HL, were generated. A total dose of 3060 cGy was delivered to the gross tumor volume for each field consecutively. The highest measured dose detected at 1 cm from the field edge in the planning target volume was 496 cGy, equivalent to 16% of the isocentric dose. The dose dropped significantly with increasing distance from the field edge. It ranged from 1.1-3.9% of the isocentric dose at a distance of 3.2-4 cm to <1.6% at a distance of >6 cm. Although the computer treatment planning system (CTPS) frequently underestimated the dose delivered, the difference in dose between measured and generated by CTPS was <2.5% in 90 positions measured. The collateral dose of radiation to breasts from IFRT is minimal. The out-of-field dose, although mildly underestimated by CTPS, becomes insignificant at >3 cm from the field edge of the radiation field.

  20. SU-E-T-632: A Dosimetric Comparison of the 3D-CRT Planning of Chest Wall in Post-Mastectomy Breast Cancer Patients, with and Without Breast Board Setup

    SciTech Connect

    Muzaffar, Ambreen; Masood, Asif; Ullah, Haseeb; Mehmood, Kashif; Qasim, Uzma; Afridi, M. Ali; Khan, Salim; Hameed, Abdul

    2014-06-15

    Purpose: Breast boards are used in breast radiation which increases normal lung and heart doses, when supraclavicular field is included. Therefore, in this study through dose volume histogram (DVHs), lung and heart doses comparison was done between two different setups i.e. with and without breast board, for the treatment of left chest wall and supraclavicular fossa in postmastectomy left breast cancer. Methods: In this study, CT-Simulation scans of ten breast cancer patients were done with and without breast board, at Shifa International Hospitals Islamabad, to investigate the differences between the two different setups of the irradiation of left chest wall in terms of lung and heart doses. For immobilization, support under the neck, shoulders and arms was used. Precise PLAN 2.15 treatment planning system (TPS) was used for 3D-CRT planning. The total prescribed dose for both the plans was 5000 cGy/25 fractions. The chest wall was treated with a pair of tangential photon fields and the upper supraclavicular nodal regions were treated with an anterior photon field. A mono-isocentric technique was used to match the tangential fields with the anterior field at the isocentre. The dose volume histogram was used to compare the doses of heart and ipsilateral lung. Results: Both the plans of each patient were generated and compared. DVH results showed that for the same PTV dose coverage, plans without breast board resulted in a reduction of lung and heart doses compared with the plans with breast board. There was significant reductions in V20, V<25 and mean doses for lung and V<9 and mean doses for heart. Conclusion: In comparison of both the plans, setup without breast board significantly reduced the dose-volume of the ipsilateral lung and heart in left chest wall patients. Waived registration request has been submitted.

  1. The influence of new medial linkage orthosis on walking and independence in spinal cord injury patients: a pilot study

    PubMed Central

    Bani, Monireh Ahmadi; Arazpour, Mokhtar; Farahmand, Farzam; Mousavi, Mohammad Ebrahim; Samadian, Mohammad; Kashani, Reza Vahab; Hutchins, Stephen William

    2016-01-01

    In an effort to overcome the disadvantages of reciprocating gait orthoses (RGOs) and medial linkage orthoses (MLOs), a new design of MLO was developed. Therefore the aim of this study was comparison effect of a new reciprocating MLO and traditional isocentric RGO on gait parameters and functional independence (orthosis donning and doffing time) in spinal cord injury (SCI) subjects to provide more evidence of its efficacy. Four people with motor incomplete SCI participated in this study. Each participant was fitted with an MLO and isocentric reciprocating gait orthosis (IRGO) to enable a comparison of walking speed, cadence and endurance to be performed. There were no statistically significant differences demonstrated in temporal–spatial parameters between the orthotic walking conditions in this study, but walking with the MLO improved the stride length and speed of walking by 28.57 and 40.9% compared with walking with an IRGO as a control condition. Hip flexion occurred predominantly during single-support phases, with negligible motion during double-support phases. The first and second Subjects had hip kinematic pattern more near normal when they walked with medial linkage reciprocal gait orthosis (MLRGO) in comparison with IRGO. There was significant difference between donning and doffing in two conditions (P=0.046) but there was not significant difference between two conditions in standing and sitting although these two conditions improved by new MLO. The new MLO provided a quicker and more independent gait compared with IRGO, in addition the new MLO made it easier for subjects to get from sitting to standing and from standing to sitting. PMID:28053735

  2. SU-E-T-501: Initial Orthovoltage Beam Profile Analysis of a Small Brass MLC

    SciTech Connect

    Loughery, B; Snyder, M

    2015-06-15

    Purpose To create brass leaves for an orthovoltage MLC and take initial beam profile measurements. Methods The low-energy MLC was designed in previous work. Brass was chosen for its self-lubrication and low cost. Stock brass rectangles (30cm × 1.0cm × 0.5cm) were ordered with pre-cut gear rack along the topmost long edges. Leaf designs were translated into G-code, then cut with a Tormach CNC-1100 mill. Intense bowing was observed in the beam direction, which required straightening via an in-house jig. Straightened leaves were placed into MLC assembly and mounted to a 320 kVp orthovoltage tube. EDR2 film was irradiated in four situations: MLC open so one edge was isocentric, and MLC open more than isocentric, completely closed MLC, and an open field shot with the MLC removed. The first two scans tested penumbra for our rectangular edges due to unfocused design. The final two scans tested transmission and interleaf leakage. All four experiments were set to 120 kVp and 10 mA for two minutes. Results Transmission and interleaf leakage were found to be zero. Interleaf leakage is faintly visible on film, but undetected by our film scanner despite high spatial resolution. Penumbra at isocenter was found to be 0.72mm, which matched the penumbras of true field edges. Penumbra off-isocenter was 1.1mm. Mechanically, leaves are moving smoothly once straightened. Conclusion Beam profiles through our brass MLC are acceptable. Leaves attenuate and move as designed. Looking forward, we intend to animate our MLC to deliver more complicated treatment plans.

  3. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories

    NASA Astrophysics Data System (ADS)

    Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan

    2015-07-01

    Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans

  4. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  5. New HOM coupler design for high current SRF cavity

    SciTech Connect

    Xu, W.; Ben-Zvi, I.; Belomestnykh, S.; Hahn, H.; Johnson, E.

    2011-03-28

    Damping higher order modes (HOMs) significantly to avoid beam instability is a challenge for the high current Energy Recovery Linac-based eRHIC at BNL. To avoid the overheating effect and high tuning sensitivity, current, a new band-stop HOM coupler is being designed at BNL. The new HOM coupler has a bandwidth of tens of MHz to reject the fundamental mode, which will avoid overheating due to fundamental frequency shifting because of cooling down. In addition, the S21 parameter of the band-pass filter is nearly flat from first higher order mode to 5 times the fundamental frequency. The simulation results showed that the new couplers effectively damp HOMs for the eRHIC cavity with enlarged beam tube diameter and 2 120{sup o} HOM couplers at each side of cavity. This paper presents the design of HOM coupler, HOM damping capacity for eRHIC cavity and prototype test results.

  6. Ultrafast Science Opportunities with Electron Microscopy

    SciTech Connect

    Durr, Hermann

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  7. Single shot transverse emittance measurement from OTR screens in a drift transport section

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Delerue, N.; Bartolini, R.

    2011-07-01

    Single shot transverse emittance measurement is essential to assess the beam quality and performance of new generation light sources such as linac based X-ray Free Electron Lasers (FELs) or laser plasma wakefield accelerators (LPWA). To this end, we have developed a single shot transverse emittance measurement using at least 3 screens inserted in the beam at the same time, measuring the beam size at different positions in a drift space in one single shot. In this paper, we firstly present the theoretical aspects to perform the measurement. We secondly show experimental results obtained at Diamond for a 3 GeV electron beam in the transfer line from the Booster to the Storage Ring, using this thin OTR screens method. Finally, we discuss the results showing the strength of the measurement in comparison with more standard and established emittance measurement, like the quadrupole scan method.

  8. Compact x-ray lasers in the laboratory

    SciTech Connect

    Barletta, W.A.

    1988-10-03

    Compact x-ray lasers in the laboratory can be produced with ultrahigh gradient rf linacs based on recent advances in linac technology by an SLAC-LLNL-LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft x rays in the range of 2--10 nm by passage through short period, high field strength wigglers. Alternatively, the beam can pump a low density dielectric to produce x rays via recombination. Such linear light sources can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 15 refs., 7 figs., 3 tabs.

  9. Linear accelerator radiosurgery for arteriovenous malformations: Updated literature review.

    PubMed

    Yahya, S; Heyes, G; Nightingale, P; Lamin, S; Chavda, S; Geh, I; Spooner, D; Cruickshank, G; Sanghera, P

    2017-04-01

    Arteriovenous malformations (AVMs) are the leading causing of intra-cerebral haemorrhage. Stereotactic radiosurgery (SRS) is an established treatment for arteriovenous malformations (AVM) and commonly delivered using Gamma Knife within dedicated radiosurgery units. Linear accelerator (LINAC) SRS is increasingly available however debate remains over whether it offers an equivalent outcome. The aim of this project is to evaluate the outcomes using LINAC SRS for AVMs used within a UK neurosciences unit and review the literature to aid decision making across various SRS platforms. Results have shown comparability across platforms and strongly supports that an adapted LINAC based SRS facility within a dynamic regional neuro-oncology department delivers similar outcomes (in terms of obliteration and toxicity) to any other dedicated radio-surgical platform. Locally available facilities can facilitate discussion between options however throughput will inevitably be lower than centrally based dedicated national radiosurgery units.

  10. Observation of pulsed x-ray trains produced by laser-electron Compton scatterings

    SciTech Connect

    Sakaue, Kazuyuki; Washio, Masakazu; Araki, Sakae; Fukuda, Masafumi; Higashi, Yasuo; Honda, Yosuke; Omori, Tsunehiko; Taniguchi, Takashi; Terunuma, Nobuhiro; Urakawa, Junji; Sasao, Noboru

    2009-12-15

    X-ray generation based on laser-electron Compton scattering is one attractive method to achieve a compact laboratory-sized high-brightness x-ray source. We have designed, built, and tested such a source; it combines a 50 MeV multibunch electron linac with a mode-locked 1064 nm laser stored and amplified in a Fabry-Perot optical cavity. We directly observed trains of pulsed x rays using a microchannel plate detector; the resultant yield was found to be 1.2x10{sup 5} Hz in good agreement with prediction. We believe that the result has demonstrated good feasibility of linac-based compact x-ray sources via laser-electron Compton scatterings.

  11. The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN

    SciTech Connect

    Delruelle, N.; Leclercq, Y.; Pirotte, O.; Ramos, D.; Tibaron, P.; Vandoni, G.; Williams, L.

    2014-01-29

    The major upgrade of the energy and intensity of the existing ISOLDE and REX-ISOLDE radioactive ion beam facilities at CERN requires the replacement of most of the existing ISOLDE post-acceleration equipment by a superconducting linac based on quarter-wave resonators housed together with superconducting solenoids in a series of four high-β and two low-β cryo-modules. As well as providing optimum conditions for physics, the cryo-modules need to function under stringent vacuum and cryogenic conditions. We present the detail design and expected cryogenic performance of the high- β cryo-module together with the cryogenic supply and distribution system destined to service the complete superconducting linac.

  12. Pulsed Photofission Delayed Gamma Ray Detection for Nuclear Material Identification

    SciTech Connect

    John Kavouras; Xianfei Wen; Daren R. Norman; Dante R. Nakazawa; Haori Yang

    2012-11-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. High-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. After photofission reactions, delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the fission signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. Isotopic composition measurement methods based on delayed gamma ray spectroscopy will be the primary focus of this work.

  13. T-REX Design Considerations for Detection of Concealed 238U

    SciTech Connect

    Pruet, J; McNabb, D P

    2006-02-07

    Here they outline considerations that might inform choices for the design of a laser/linac-based light source used to detect {sup 238}U via excitation of the resonance at 680.11 keV in this isotope. They assume that the principal concern is speed of interrogation and not, e.g., how much radiological dose is imparted during a scan. It is found that if the photon detectors used in the system have an energy resolution better than or comparable to that of the interrogation beam, then to a first approximation the light source should be designed to have the highest possible specific fluence (photons per unit energy per unit time). there is also a weak dependence of scan time on the number of photons emitted per pulse of the light source. A simple formula describing the tradeoff between specific fluence and number of photons per pulse is presented.

  14. Beam dynamics in super-conducting linear accelerator: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Senichev, Yu.; Bogdanov, A.; Maier, R.; Vasyukhin, N.

    2006-03-01

    The linac based on SC cavities has special features. Due to specific requirements the SC cavity is desirable to have a constant geometry of the accelerating cells with limited family number of cavities. All cavities are divided into modules, and each module is housed into one cryostat. First of all, such geometry of cavity leads to a non-synchronism. Secondly, the inter-cryostat drift space parametrically perturbs the longitudinal motion. In this article, we study the non-linear resonant effects due to the inter-cryostat drift space, using the separatrix formalism for a super-conducting linear accelerator [Yu. Senichev, A. Bogdanov, R. Maier, Phys. Rev. ST AB 6 (2003) 124001]. Methods to avoid or to compensate the resonant effect are also presented. We consider 3D beam dynamics together with space charge effects. The final lattice meets to all physical requirements.

  15. Ultrafast X-ray Science at the Sub-Picosecond Pulse Source

    SciTech Connect

    Gaffney, Kelly J.; /SLAC, SSRL

    2005-09-30

    The ultrafast, high brightness x-ray free electron laser (XFEL) sources of the future have the potential to revolutionize the study of time dependent phenomena in the natural sciences. These linear accelerator (linac) sources will generate femtosecond (fs) x-ray pulses with peak flux comparable to conventional lasers, and far exceeding all other x-ray sources. The Stanford Linear Accelerator Center (SLAC) has pioneered the development of linac science and technology for decades, and since 2000 SLAC and the Stanford Synchrotron Radiation Laboratory (SSRL) have focused on the development of linac based ultrafast electron and x-ray sources. This development effort has led to the creation of a new x-ray source, called the Sub-Picosecond Pulse Source (SPPS), which became operational in 2003 [1]. The SPPS represents the first step toward the world's first hard x-ray free electron laser (XFEL), the Linac Coherent Light Source (LCLS), due to begin operation at SLAC in 2009. The SPPS relies on the same linac-based acceleration and electron bunch compression schemes that will be used at the LCLS to generate ultrashort, ultrahigh peak brightness electron bunches [2]. This involves creating an energy chirp on the electron bunch during acceleration and subsequent compression of the bunch in a series of energy-dispersive magnetic chicanes to create 80 fs electron pulses. The SPPS has provided an excellent opportunity to demonstrate the viability of these electron bunch compression schemes and to pursue goals relevant to the utilization and validation of XFEL light sources.

  16. WE-B-19A-01: SRT II: Uncertainties in SRT

    SciTech Connect

    Dieterich, S; Schlesinger, D; Geneser, S

    2014-06-15

    SRS delivery has undergone major technical changes in the last decade, transitioning from predominantly frame-based treatment delivery to imageguided, frameless SRS. It is important for medical physicists working in SRS to understand the magnitude and sources of uncertainty involved in delivering SRS treatments for a multitude of technologies (Gamma Knife, CyberKnife, linac-based SRS and protons). Sources of SRS planning and delivery uncertainty include dose calculation, dose fusion, and intra- and inter-fraction motion. Dose calculations for small fields are particularly difficult because of the lack of electronic equilibrium and greater effect of inhomogeneities within and near the PTV. Going frameless introduces greater setup uncertainties that allows for potentially increased intra- and interfraction motion, The increased use of multiple imaging modalities to determine the tumor volume, necessitates (deformable) image and contour fusion, and the resulting uncertainties introduced in the image registration process further contribute to overall treatment planning uncertainties. Each of these uncertainties must be quantified and their impact on treatment delivery accuracy understood. If necessary, the uncertainties may then be accounted for during treatment planning either through techniques to make the uncertainty explicit, or by the appropriate addition of PTV margins. Further complicating matters, the statistics of 1-5 fraction SRS treatments differ from traditional margin recipes relying on Poisson statistics. In this session, we will discuss uncertainties introduced during each step of the SRS treatment planning and delivery process and present margin recipes to appropriately account for such uncertainties. Learning Objectives: To understand the major contributors to the total delivery uncertainty in SRS for Gamma Knife, CyberKnife, and linac-based SRS. Learn the various uncertainties introduced by image fusion, deformable image registration, and contouring

  17. Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems

    NASA Astrophysics Data System (ADS)

    Popović, Miloš A.; Wade, Mark T.; Orcutt, Jason S.; Shainline, Jeffrey M.; Sun, Chen; Georgas, Michael; Moss, Benjamin; Kumar, Rajesh; Alloatti, Luca; Pavanello, Fabio; Chen, Yu-Hsin; Nammari, Kareem; Notaros, Jelena; Atabaki, Amir; Leu, Jonathan; Stojanović, Vladimir; Ram, Rajeev J.

    2015-02-01

    We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a "More-than- Moore" technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology.

  18. Devices and systems-on-chip for photonic communication links in a microprocessor

    NASA Astrophysics Data System (ADS)

    Wade, Mark T.

    For the first time, high-performance photonic devices and electronic-photonic systems-on-chip are monolithically integrated in an advanced CMOS microelectronics fabrication process. This includes a silicon optical resonator termed the "spoked-ring" cavity that meets the constraints of thin-SOI microelectronics CMOS processes and enables energy efficient modulators and thermally tunable filters. For low-loss fiber-to-chip optical coupling, a phased-array antenna concept is demonstrated, and the 45 nm CMOS microelectronics process is shown to support a near ideal implementation of the device using the crystalline silicon and polysilicon material layers that comprise the active region and gate, respectively, of the native MOSFET transistors. The active devices and vertical grating couplers are implemented in large-scale electronic-photonic systems-on-chip to demonstrate a wavelength stabilized, microring-based chip-to-chip communications link and an 11-channel wavelength division multiplexed (WDM) transmitter. The link is shown to be robust against thermal environmental variations which is critical for operation in realistic systems. The chip-to-chip link is then used to demonstrate a CPU-to-memory communication link, the first demonstration of its kind. The first microprocessor with photonic I/O is demonstrated as part of this work, with substantial implications for computer architecture. Advanced photonic device technology demonstrations, including photonic crystals, a quantum-correlated photon-pair source, an active photonic device platform in a 32 nm SOI node, and a 180 nm bulk silicon process, are presented to show the wide range of applications that monolithic integration could support in the future of photonics. These results taken together show that monolithic integration directly into CMOS microelectronics processes does allow high performance photonics, and is a viable approach to build large-scale electronic-photonic systems with a realistic path to

  19. Ultrafast and nanoscale diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lau, Y. Y.

    2016-10-01

    Charge carrier transport across interfaces of dissimilar materials (including vacuum) is the essence of all electronic devices. Ultrafast charge transport across a nanometre length scale is of fundamental importance in the miniaturization of vacuum and plasma electronics. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, achieving superior performance. This paper reviews recent modelling efforts on quantum tunnelling, ultrafast electron emission and transport, and electrical contact resistance. Unsolved problems and challenges in these areas are addressed.

  20. Project objectives and progress at the Research Laboratory of Electronics

    SciTech Connect

    Allen, J.

    1983-01-01

    Molecule microscopy, semiconductor surface studies, atomic resonance and scattering, reaction dynamics at semiconductor surfaces, X-ray diffuse scattering, phase transitions in chemisorbed systems, optics and quantum electronics, photonics, optical spectroscopy of disordered materials and X-ray scattering from surfaces, infrared nonlinear optics, quantum optics and electronics, microwave and millimeter wave techniques, microwave and quantum magnetics, radio astronomy, electromagnetic wave theory and remote sensing, electronic properties of amorphous silicon dioxide, photon correlation spectroscopy and applications, submicron structures fabrication, plasma dynamics, optical propagation and communication, digital signal processing, speech communication, linguistics, cognitive information processing, custom integrated circuits, communications biophysics, and physiology, are discussed.

  1. Experimental Search for a Heavy Electron

    DOE R&D Accomplishments Database

    Boley, C. D.; Elias, J. E.; Friedman, J. I.; Hartmann, G. C.; Kendall, H. W.; Kirk, P.N.; Sogard, M. R.; Van Speybroeck, L. P.; de Pagter, J. K.

    1967-09-01

    A search for a heavy electron of the type considered by Low and Blackmon has been made by studying the inelastic scattering of 5 BeV electrons from hydrogen. The search was made over a range of values of the mass of the heavy electron from 100 t0 1300 MeV. No evidence for such a particle was observed. Upper limits on the production cross sections were determined and employed to deducelimits on the values of the electron-photon-heavy electron coupling constant in Low and Blackmon=s theory.

  2. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application.

    PubMed

    Su, Guoxiong; Hadjiev, Viktor G; Loya, Phillip E; Zhang, Jing; Lei, Sidong; Maharjan, Surendra; Dong, Pei; M Ajayan, Pulickel; Lou, Jun; Peng, Haibing

    2015-01-14

    Layered two-dimensional (2D) semiconductors, such as MoS(2) and SnS(2), have been receiving intensive attention due to their technological importance for the next-generation electronic/photonic applications. We report a novel approach to the controlled synthesis of thin crystal arrays of SnS(2) at predefined locations on chip by chemical vapor deposition with seed engineering and have demonstrated their application as fast photodetectors with photocurrent response time ∼ 5 μs. This opens a pathway for the large-scale production of layered 2D semiconductor devices, important for applications in integrated nanoelectronic/photonic systems.

  3. η n Scattering Length from the γ d to pη n Reaction at Eγ ˜ 0.9 GeV

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takatsugu; Fujioka, Hiroyuki; Honda, Yuki; Hotta, Tomoaki; Inoue, Yosuke; Itahashi, Kenta; Kanda, Hiroki; Kawai, Hideyuki; Maeda, Kazushige; Miyabe, Manabu; Miyata, Seiya; Matsumura, Yuji; Muramatsu, Norihito; Ohnishi, Hiroaki; Ozawa, Kyoichiro; Sasagawa, Mizuki; Shimizu, Hajime; Shiraishi, Ken'ichiro; Tabata, Makoto; Tokiyasu, Atsushi O.; Tsuchikawa, Yusuke

    We plan to conduct a new experiment for the γ d to pη n reaction using the FOREST detector at the Research Center for Electron Photon Science, Tohoku University, Japan. The main objective is to determine the low-energy η -neutron scattering parameters. The photon beam with energies around 930 MeV can give the recoilless condition of η mesons by detecting the protons at 0°. The effects of the the η -neutron final-state interaction must be enhanced due to the small relative momentum between an η meson and a residual neutron. In this contribution, the planned FOREST experiment is presented.

  4. STAR Upgrade Plan for the Coming Decade

    NASA Astrophysics Data System (ADS)

    Huang, Huan Zhong

    2013-05-01

    The STAR Collaboration will complete the Heavy Flavor Tracker (HFT) and the Muon Telescope Detector (MTD) upgrades by 2014. STAR has also embarked on an upgrade plan to extend the capabilities for measuring jets, electron/photon and leading particles in the forward rapidity region in the coming decade. Planned detector upgrades include tracking detectors for charged particles, electro-magnetic and hadronic calorimeters and particle identification detector in the forward direction. We will present physics motivations, status of detector R&D and design considerations for the forward measurements focusing on p + p/p + A and polarized p + p collisions.

  5. Fabrication and design of metal nano-accordion structures using atomic layer deposition and interference lithography.

    PubMed

    Min, J-H; Bagal, A; Mundy, J Z; Oldham, C J; Wu, B-I; Parsons, G N; Chang, C-H

    2016-03-07

    Metal nanostructures have attractive electrical and thermal properties as well as structural stability, and are important for applications in flexible conductors. In this study, we have developed a method to fabricate and control novel complex platinum nanostructures with accordion-like profile using atomic layer deposition on lithographically patterned polymer templates. The template removal process results in unique structural transformation of the nanostructure profile, which has been studied and modeled. Using different template duty cycles and aspect ratios, we have demonstrated a wide variety of cross-sectional profiles from wavy geometry to pipe array patterns. These complex thin metal nanostructures can find applications in flexible/stretchable electronics, photonics and nanofluidics.

  6. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  7. Experiment Pamir-3. Coplanar emission of high energy gamma-quanta at interaction of hadrons with nuclei of air atoms at energies above 10 to the 7th power GeV

    NASA Technical Reports Server (NTRS)

    Asatiani, T. L.; Genina, L. E.; Zatsepin, G. T.

    1985-01-01

    A systematic analysis of large gamma families, detected in X-ray emulsion chambers, cases of multicore halos have been observed, and among them five events in which the halo is divided into three of four separate cores with their alignment observed in the target diagram (coplanarity of axes of corresponding electron photon cascades). The halo alignment (tendency to the straight line) leads to the aximuthal asymmetry (thrust). The analysis of lateral and momentum distributions of particles in these families shows that they also have thrust that correlates with the direction of the halo core alignment.

  8. Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.

    PubMed

    Carmele, Alexander; Kabuss, Julia; Schulze, Franz; Reitzenstein, Stephan; Knorr, Andreas

    2013-01-04

    We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity quantum electrodynamics, we treat the quantum correlation of external and internal light modes dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed feedback. Our theoretical approach proposes a way to experimentally feedback control quantum correlations in the single photon limit.

  9. Nanowire formation is preceded by nanotube growth in templated electrodeposition of cobalt hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Dryden, Daniel M.; Vidu, Ruxandra; Stroeve, Pieter

    2016-11-01

    Cobalt fluted nanowires, novel nanostructures with a diameter of 200 nm consisting of a solid nanowire base and a thin, nanotubular flute shape, were grown in track-etched polycarbonate membranes via templated electrodeposition. The structures were characterized electrochemically via cyclic voltammetry, chronoamperometry, and charge stripping, and structurally via scanning electron microscopy, transmission electron microscopy, and focused ion beam cross-sectioning. Electrochemical and structural analysis reveals details of their deposition kinetics, structure, and morphology, and indicate possible mechanisms for their formation and control. These unique structures provide inspiration for an array of possible applications in electronics, photonics, and other fields.

  10. Testing technology

    SciTech Connect

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  11. Study of intersubband transitions in GaN-ZnGeN2 coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Han, Lu; Lieberman, Colin; Zhao, Hongping

    2017-03-01

    In this work, we design and analyze a closely lattice-matched wide bandgap GaN-ZnGeN2 coupled quantum well (QW) structure targeting for near-infrared (IR) (λ ≤ 3 um) intersubband transition for quantum cascade laser applications. The coupled quantum well structure comprised two GaN wells separated by a thin ZnGeN2 barrier layer. The QW active region is surrounded by thick ZnGeN2 layers as barriers. The computations of the electron-phonon and electron-photon scattering rates are carried out by employing the Fermi's golden rule for transitions. The calculation takes into consideration the conservation of energy and momentum in scattering processes. The coupled QW structure is optimized through tuning the confined subband energy levels in the conduction band to achieve (1) electron-LO phonon resonant scattering when the energy separation between the first and second conduction subband levels matches the phonon energy of GaN (92 meV); and (2) dominant electron-photon transition in near-IR between the third and second conduction subband levels.

  12. Benchmark study of TRIPOLI-4 through experiment and MCNP codes

    SciTech Connect

    Michel, M.; Coulon, R.; Normand, S.; Huot, N.; Petit, O.

    2011-07-01

    Reliability on simulation results is essential in nuclear physics. Although MCNP5 and MCNPX are the world widely used 3D Monte Carlo radiation transport codes, alternative Monte Carlo simulation tools exist to simulate neutral and charged particles' interactions with matter. Therefore, benchmark are required in order to validate these simulation codes. For instance, TRIPOLI-4.7, developed at the French Alternative Energies and Atomic Energy Commission for neutron and photon transport, now also provides the user with a full feature electron-photon electromagnetic shower. Whereas the reliability of TRIPOLI-4.7 for neutron and photon transport has been validated yet, the new development regarding electron-photon matter interaction needs additional validation benchmarks. We will thus demonstrate how accurately TRIPOLI-4's 'deposited spectrum' tally can simulate gamma spectrometry problems, compared to MCNP's 'F8' tally. The experimental setup is based on an HPGe detector measuring the decay spectrum of an {sup 152}Eu source. These results are then compared with those given by MCNPX 2.6d and TRIPOLI-4 codes. This paper deals with both the experimental aspect and simulation. We will demonstrate that TRIPOLI-4 is a potential alternative to both MCNPX and MCNP5 for gamma-electron interaction simulation. (authors)

  13. Correlated Light-Matter Interactions in Cavity QED

    NASA Astrophysics Data System (ADS)

    Flick, Johannes; Pellegrini, Camilla; Ruggenthaler, Michael; Appel, Heiko; Tokatly, Ilya; Rubio, Angel

    2015-03-01

    In the last decade, time-dependent density functional theory (TDDFT) has been successfully applied to a large variety of problems, such as calculations of absorption spectra, excitation energies, or dynamics in strong laser fields. Recently, we have generalized TDDFT to also describe electron-photon systems (QED-TDDFT). Here, matter and light are treated on an equal quantized footing. In this work, we present the first numerical calculations in the framework of QED-TDDFT. We show exact solutions for fully quantized prototype systems consisting of atoms or molecules placed in optical high-Q cavities and coupled to quantized electromagnetic modes. We focus on the electron-photon exchange-correlation (xc) contribution by calculating exact Kohn-Sham potentials using fixed-point inversions and present the performance of the first approximated xc-potential based on an optimized effective potential (OEP) approach. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, and Fritz-Haber-Institut der MPG, Berlin

  14. Quantum state transfer between valley and photon qubits

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Jay; Peng, Han-Ying; Na, Neil; Wu, Yu-Shu

    2017-02-01

    The electron-photon interaction in two-dimensional materials obeys the rule of "electron valley-photon polarization" correspondence. At the quantum level, such correspondence can be utilized to entangle valleys and polarizations and attain the transfer of quantum states (or information) between valley and photon qubits. Our paper presents a theoretical study of the interaction between the two types of qubits and the resultant quantum state transfer. A generic setup is introduced, which involves optical cavities enhancing the electron-photon interaction as well as facilitating both the entanglement and unentanglement between valleys and polarizations required by the transfer. The quantum system considered consists of electrons, optically excited trions, and cavity photons, with photons moving in and out of the system. A wave equation based analysis is performed, and analytical expressions are derived for the two important figures of merits that characterize the transfer, namely, yield and fidelity, allowing for the investigation of their dependences on various qubit and cavity parameters. A numerical study of the yield and fidelity has also been carried out. Overall, this paper shows promising characteristics in the valley-photon state transfer, with the conclusion that the valley-polarization correspondence can be exploited to achieve the transfer with good yield and high fidelity.

  15. Gauge-invariant dynamical quantities of QED with decomposed gauge potentials

    SciTech Connect

    Zhou Baohua; Huang Yongchang

    2011-09-15

    We discover an inner structure of the QED system; i.e., by decomposing the gauge potential into two orthogonal components, we obtain a new expansion of the Lagrangian for the electron-photon system, from which, we realize the orthogonal decomposition of the canonical momentum conjugate to the gauge potential with the canonical momentum's two components conjugate to the gauge potential's two components, respectively. Using the new expansion of Lagrangian and by the general method of field theory, we naturally derive the gauge invariant separation of the angular momentum of the electron-photon system from Noether theorem, which is the rational one and has the simplest form in mathematics, compared with the other four versions of the angular momentum separation available in literature. We show that it is only the longitudinal component of the gauge potential that is contained in the orbital angular momentum of the electron, as Chen et al. have said. A similar gauge invariant separation of the momentum is given. The decomposed canonical Hamiltonian is derived, from which we construct the gauge invariant energy operator of the electron moving in the external field generated by a proton [Phys. Rev. A 82, 012107 (2010)], where we show that the form of the kinetic energy containing the longitudinal part of the gauge potential is due to the intrinsic requirement of the gauge invariance. Our method provides a new perspective to look on the nucleon spin crisis and indicates that this problem can be solved strictly and systematically.

  16. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  17. Thermal entanglement between π-electrons in silicene and photons; occurrence of phase transitions

    NASA Astrophysics Data System (ADS)

    Rastgoo, S.; Golshan, M. M.

    2017-03-01

    In this article, the thermal entanglement between π-electronic states in a monolayer silicene sheet and a single mode quantized electromagnetic field is investigated. We assume that the system is in thermal equilibrium with the environment at a temperature T, so that the whole system is described by the Boltzmann distribution. Using the states of total Hamiltonian, the thermal density matrix and, consequently, its partially transposed one is computed, giving rise to the determination of negativity. Our analytical calculations, along with representative figures, show that the system is separable at zero temperature, exhibits a maximum, at a specific temperature, and asymptotically vanishes. Along these lines we also report the effects of electron-photon coupling, as well as the silicene buckling, on the entanglement. Specifically, we demonstrate that the maximal value of entanglement is larger for stronger electron-photon coupling, while it decreases for larger buckling effect. Moreover, we show that the gap in the total energy spectrum remains intact for any value of the buckling parameter. There is, however, one state whose energy changes sign, at a specific buckling, indicating a change of phase.

  18. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    SciTech Connect

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  19. Quantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling.

    PubMed

    Keeling, Vance; Hossain, Sabbir; Jin, Hosang; Algan, Ozer; Ahmad, Salahuddin; Ali, Imad

    2016-05-08

    The purpose of this study is to evaluate patient setup accuracy and quantify indi-vidual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the Brainlab 6D ExacTrac system using the positioning shifts of 35 patients having cranial lesions. All these patients are immobilized with rigid head-and-neck masks, simu-lated with Brainlab localizer and planned with iPlan treatment planning system. Stereoscopic X-ray images (XC) are acquired and registered to corresponding digitally reconstructed radiographs using bony-anatomy matching to calculate 6D translational and rotational shifts. When the shifts are within tolerance (0.7 mm and 1°), treatment is initiated. Otherwise corrections are applied and additional X-rays (XV) are acquired to verify that patient position is within tolerance. The uncertain-ties from the mask, localizer, IR -frame, X-ray imaging, MV, and kV isocentricity are quantified individually. Mask uncertainty (translational: lateral, longitudinal, vertical; rotational: pitch, roll, yaw) is the largest and varies with patients in the range (-2.07-3.71 mm, -5.82-5.62 mm, -5.84-3.61 mm; -2.10-2.40°, -2.23-2.60°, and -2.7-3.00°) obtained from mean of XC shifts for each patient. Setup uncer-tainty in IR positioning (0.88, 2.12, 1.40 mm, and 0.64°, 0.83°, 0.96°) is extracted from standard deviation of XC. Systematic uncertainties of the frame (0.18, 0.25, -1.27mm, -0.32°, 0.18°, and 0.47°) and localizer (-0.03, -0.01, 0.03mm, and -0.03°, 0.00°, -0.01°) are extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine are (0.27, 0.24, 0.34 mm) and kV imager (0.15, -0.4, 0.21 mm). A statisti-cal model is developed to

  20. Quantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling.

    PubMed

    Keeling, Vance; Hossain, Sabbir; Jin, Hosang; Algan, Ozer; Ahmad, Salahuddin; Ali, Imad

    2016-05-01

    The purpose of this study is to evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the Brainlab 6D ExacTrac system using the positioning shifts of 35 patients having cranial lesions. All these patients are immobilized with rigid head-and-neck masks, simulated with Brainlab localizer and planned with iPlan treatment planning system. Stereoscopic X-ray images (XC) are acquired and registered to corresponding digitally reconstructed radiographs using bony-anatomy matching to calculate 6D translational and rotational shifts. When the shifts are within tolerance (0.7 mm and 1°), treatment is initiated. Otherwise corrections are applied and additional X-rays (XV) are acquired to verify that patient position is within tolerance. The uncertainties from the mask, localizer, IR -frame, X-ray imaging, MV, and kV isocentricity are quantified individually. Mask uncertainty (translational: lateral, longitudinal, vertical; rotational: pitch, roll, yaw) is the largest and varies with patients in the range (-2.07-3.71mm,-5.82-5.62mm,-5.84-3.61mm;-2.10-2.40∘,-2.23-2.60∘,and-2.7-3.00∘) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88, 2.12, 1.40 mm, and 0.64°, 0.83°, 0.96°) is extracted from standard deviation of XC. Systematic uncertainties of the frame (0.18, 0.25, -1.27mm, -0.32∘, 0.18°, and 0.47°) and localizer (-0.03, -0.01, 0.03 mm, and -0.03∘, 0.00°, -0.01∘) are extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine are (0.27, 0.24, 0.34 mm) and kV imager (0.15, -0.4, 0.21 mm). A statistical model is developed to evaluate

  1. SU-E-J-213: Imaging and Treatment Isocenter Verification of a Gantry Mounted Proton Therapy System

    SciTech Connect

    Price, S; Goddu, S; Rankine, L; Klein, E

    2014-06-01

    Purpose: The Mevion proton therapy machine is the first to feature a gantry mounted sychro-cyclotron. In addition, the system utilizes a 6D motion couch and kV imaging for precise proton therapy. To quantify coincidence between these systems, isocentricity tests were performed based on kV imaging alignment using radiochromic film. Methods: The 100 ton gantry and 6D robotic couch can rotate 190° around isocenter to provide necessary beam angles for treatment. The kV sources and detector panels are deployed as needed to acquire orthogonal portals. Gantry and couch mechanical isocenter were tested using star-shots and radiochromic-film (RCF). Using kV imaging, the star-shot phantom was aligned to an embedded fiducial and the isocenter was marked on RCF with a pinprick. The couch and gantry stars were performed by irradiating films at every 45° and 30°, respectively. A proton beam with a range and modulation-width of 18 cm was used. A Winston-Lutz test was also performed at the same gantry and couch rotations using a custom jig holding RCF and a tungsten ball placed at isocenter. A 2 cm diameter circular aperture was used for the irradiation. Results: The couch star-shot indicated a minimum tangent circle of 0.6 mm, with a 0.9 mm offset from the manually marked isocenter. The gantry star-shot showed a 0.6 mm minimum tangent circle with a 0.5 mm offset from the pinprick. The Winston Lutz test performed for gantry rotation showed a maximum deviation from center of 0.5 mm. Conclusion: Based on star-shots and Winston-Lutz tests, the proton gantry and 6D couch isocentricity are within 1 mm. In this study, we have shown that the methods commonly utilized for Linac characterization can be applied to proton therapy. This revolutionary proton therapy system possesses excellent agreement between the mechanical and radiation isocenter, providing highly precise treatment.

  2. Portal dosimetry for VMAT using integrated images obtained during treatment

    SciTech Connect

    Bedford, James L. Hanson, Ian M.; Hansen, Vibeke Nordmark

    2014-02-15

    Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantom thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and

  3. SU-E-T-539: Maximum Energy of Helium and Carbon Ions Clinically Needed for Spine, Lung, Prostate and Pancreas Cancer

    SciTech Connect

    Pompos, A; Choy, H; Jia, X; Jiang, S; Timmerman, R

    2015-06-15

    Purpose: Maximum available kinetic energy of accelerated heavy ions is a critical parameter to consider during the establishment of a heavy ion therapy center. It dictates the maximum range in tissue and determines the size and cost of ion gantry. We have started planning our heavy ion therapy center and we report on the needed ion range. Methods: We analyzed 50 of random SBRT-spine, SBRT- lung, prostate and pancreatic cancer patients from our photon clinic. In the isocentric axial CT cut we recorded the maximum water equivalent depth (WED4Field) of PTV’s most distal edge in four cardinal directions and also in a beam direction that required the largest penetration, WEDGantry. These depths were then used to calculate the percentage of our patients we would be able to treat as a function of available maximum carbon and helium beam energy. Based on the Anterior-Posterior WED for lung patients and the maximum available ion energy we estimated the largest possible non-coplanar beam entry angle φ (deviation from vertical) in the isocentric vertical sagittal plane. Results: We found that if 430MeV/u C-12, equivalently 220MeV/u He-4, beams are available, more than 96% (98%) of all patients can be treated without any gantry restrictions (in cardinals angles only) respectively. If the energy is reduced to 400MeV/u C-12, equivalently 205MeV/u He-4, the above fractions reduce to 80% (87%) for prostate and 88% (97%) for other sites. This 7% energy decrease translates to almost 5% gantry size and cost decrease for both ions. These energy limits in combination with the WED in the AP direction for lung patients resulted in average non-coplanar angles of φ430MeV/u = 68°±8° and φ400MeV/u = 65°±10° if nozzle clearance permits them. Conclusion: We found that the two worldwide most common maximum carbon beam energies will treat above 80% of all our patients.

  4. SU-E-T-80: Comparison of Fluence-Based RapidArc QAs Using EPID and MapCHECK 2

    SciTech Connect

    Jin, H; Jesseph, F; Ahmad, S

    2014-06-01

    Purpose: To compare the Varian aS-1000 EPID imager to the isocentrically mounted MapCHECK 2 diode array for RapidArc QAs as a function of photon beam energy. Methods: A Varian TrueBeam STx with an aS-1000 digital imaging panel was used to acquire RapidArc QA images for 13 patient plans; each plan QA was performed at 6, 8, 10 and 15MV energies. The Portal Dose Image Prediction algorithm in the Varian Eclipse treatment planning system (TPS) was used to create the comparison image for the EPID acquisition. A Sun Nuclear MapCHECK 2 diode array on an isocentric mounting fixture with 5 cm water-equivalent buildup was also used for the RapidArc QAs. A composite dose plane was taken from the Eclipse TPS for comparison to the MapCHECK 2 measurements. A gamma test was implemented in the Sun Nuclear Patient software with 10% threshold and absolute comparison for both QA methods. The two-tailed paired t-test was employed to analyze the statistical significance between two methods at the 95% confidence level. Results: The average gamma passing rates were greater than 95% at 3%/3mm using both methods for all four energies. The average passing rates were within 2.5% and 1.1% of each other when analyzed at 2%/2mm and 3%/3mm conditions, respectively. The EPID passing rates were somewhat better than the MapCHECK 2 when analyzed at 1%/1mm condition; this difference decreased with increasing energy (9.1% at 6MV to 2.7% at 15MV). The differences were not statistically significant for all criteria and energies (p-value ã 0.05). Conclusion: EPID-based RapidArc QA results are comparable to MapCHECK 2 when using 3%/3mm criteria at all four energies. EPID-based QA shows potential for being the superior device under strict gamma criteria.

  5. SU-E-J-139: One Institution’s Experience with Surface Imaging in Proton Therapy

    SciTech Connect

    Zhao, L; Singh, H; Zheng, Y

    2015-06-15

    Purpose: X-ray system is commonly used for IGRT in proton therapy, however image acquisition not only increases treatment time but also adds imaging dose. We studied a 3D surface camera system (AlignRT) performance for proton therapy. Methods: System accuracy was evaluated with rigid phantom under two different camera location configurations. For initial clinical applications, post mastectomy chest wall and partial breast treatments were studied. X-ray alignment was used as our ground truth. Our studies included: 1) comparison of daily patient setup shifts between X-ray alignment and SI calculation; 2) interfractional breast surface position variation when aligning to bony landmark on X-ray; 3) absolute positioning using planning CT DICOM data; 4) shifts for multi-isocenter treatment plan; 5) couch isocentric rotation accuracy. Results: Camera locations affected the system performance. After camera relocation, the accuracy of the system for the rigid phantom was within 1 mm (fixed couch), and 1.5 mm (isocentric rotation). For intrafractional patient positioning, X-ray and AlignRT shifts were highly correlated (r=0.99), with the largest difference (mean ± SD) in the longitudinal direction (2.14 ± 1.02 mm). For interfractional breast surface variation and absolute positioning, there were still larger disagreements between the two modalities due to different focus on anatomical landmarks, and 95% of the data lie within 5mm with some outliers at 7 mm–9 mm. For multi-isocenter shifts, the difference was 1 ± 0.56 mm over an 11 cm shift in longitudinal direction. For couch rotation study, the differences was 1.36 ± 1.0 mm in vertical direction, 3.04 ± 2.11 mm in longitudinal direction, and 2.10 ± 1.66 mm in lateral direction, with all rotation differences < 1.5 degree. Conclusion: Surface imaging is promising for intrafractional treatment application in proton therapy to reduce X-ray frequency. However the interfractional discrepancy between the X-ray and SI

  6. Locoregional Treatment for Breast Carcinoma After Hodgkin's Lymphoma: The Breast Conservation Option

    SciTech Connect

    Haberer, Sophie; Belin, Lisa; Le Scodan, Romuald; Kirova, Youlia M.; Savignoni, Alexia; Stevens, Denise; Moisson, Patricia; Decaudin, Didier; Pierga, Jean-Yves; Reyal, Fabien; Campana, Francois; Fourquet, Alain; Bollet, Marc A.

    2012-02-01

    Purpose: To report clinical and pathologic characteristics and outcome of breast cancer (BC) after irradiation for Hodgkin's lymphoma (HL) in women treated at the Institut Curie, with a special focus on the breast-conserving option. Methods and Materials: Medical records of 72 women who developed either ductal carcinoma in situ or Stage I-III invasive carcinoma of the breast after HL between 1978 and 2009 were retrospectively reviewed. Results: Median age at HL diagnosis was 23 years (range, 14-53 years). Median total dose received by the mediastinum was 40 Gy, mostly by a mantle-field technique. Breast cancers occurred after a median interval of 21 years (range, 5-40 years). Ductal invasive carcinoma and ductal carcinoma in situ represented, respectively, 51 cases (71%) and 14 cases (19%). Invasive BCs consisted of 47 cT0-2 tumors (82%), 5 cN1-3 tumors (9%), and 20 Grade 3 tumors (35%). Locoregional treatment for BCs consisted of mastectomy with (3) or without (36) radiotherapy in 39 patients and lumpectomy with (30) or without (2) adjuvant radiotherapy in 32 patients. The isocentric lateral decubitus radiation technique was used in 17 patients after breast-conserving surgery (57%). With a median follow-up of 7 years, 5-year overall survival rate and locoregional control rate were, respectively, 74.5% (95% confidence interval [CI], 64-88%) and 82% (95% CI, 72-93%) for invasive carcinoma and 100% (95% CI, 100 -100%) and 92% (95% CI, 79-100%) for in situ carcinoma. In patients with invasive tumors, the 5-year distant disease-free survival rate was 79% (95% CI, 69-91%), and 13 patients died of progressive BC. Contralateral BC was diagnosed in 10 patients (14%). Conclusions: Breast-conserving treatment can be an option for BCs that occur after HL, despite prior thoracic irradiation. It should consist of lumpectomy and adjuvant breast radiotherapy with use of adequate techniques, such as the lateral decubitus isocentric position, to protect the underlying heart and

  7. Radiological aspects of gamma knife radiosurgery for arteriovenous malformations and other non-tumoural disorders of the brain.

    PubMed

    Guo, W Y

    1993-01-01

    The aims of the thesis were to investigate stereotaxic procedures in radiosurgery for cerebral arteriovenous malformations (AVMs) and radiation effects of single session high-dose irradiation delivered by gamma knife on the human brain. Investigation of gamma knife radiosurgery in 1,464 patients constitutes the data base of this thesis. High quality stereotaxic angiography is the gold standard targeting imaging in radiosurgery for cerebral AVMs, particularly for small AVMs or residual AVMs after other treatments. For medium and large size AVMs, stereotaxic MR techniques can improve targeting precision and decrease irradiation volume as compared to stereotaxic angiography in selected cases provided that proper pulse sequences are used. Combined treatments, where embolization precedes radiosurgery, can improve amenability of the treatment for large AVMs. This is on condition that the partially embolized nidi are well delineated and the volume of the residual nidi has been decreased to a level where an optimum irradiation can be safely prescribed. Radiologically, adverse radiation effects (ARE) of gamma knife radiosurgery for cerebral AVMs are observed in 16% (131/816) of the patients. The ARE are observed as a focal low attenuation on CT or as a focal high signal on MR image without enhancement in 47% (61/131), and as a peripheral or homogeneous enhancing lesion in 48% (63/131). MR imaging is more sensitive than CT in detecting the ARE. 91% of the ARE are observed within 18 months after radiosurgery and 89% are seen to regress within 18 months. Clinically, symptomatic ARE are only observed in 6% (51/816) and only in half of them, i.e. 3%, are the symptoms permanent. The risk of ARE in radiosurgery for venous angiomas is higher as compared to AVMs. Other mechanisms have probably been employed. In gamma capsulotomy, the necrotic lesions and reaction volumes created by using multiple isocentres of 4 mm collimators are less predictable as compared to that by single

  8. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    SciTech Connect

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK

    2014-06-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.

  9. Dosimetry and mechanical accuracy of the first rotating gamma system installed in North America.

    PubMed

    Kubo, Hideo D; Araki, Fujio

    2002-11-01

    The purpose of this paper is to present the dosimetry and mechanical accuracy of the first rotating gamma system (RGS) installed in North America for stereotactic radiosurgery. The data were obtained during the installation, acceptance test procedure, and commissioning of the unit. The RGS unit installed at UC Davis Cancer Center (RGSu) has modifications on the source and collimator bodies from the earlier version of the Chinese RGS (RGSc). The differences between these two RGSs are presented. The absolute dose at the focal point was measured in a 16-cm-diam acrylic phantom using a small volume chamber, which was calibrated at the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW-ADCL). The dose in acrylic was then converted to a dose in water. A collimator output factor from each of the four different collimator sizes ranging from 4, 8, 14, and 18 mm was measured with (1) a smaller volume chamber and (2) approximately 3.0 mm x 3.0 mm x 1.0 mm TLD chips in the same acrylic phantom. The Gafchromic films were used for the dose profile, collimator output factor, and mechanical/radiation field isocentricity measurements. The TLD chips were processed in-house whereas Gafchromic films were processed both at the UW-ADCL and in-house. The timer error, timer accuracy, and timer linearity were also determined. The dose profiles were found to be similar between RGSc and RGSu. The 4 mm collimator output factor of the RGSu was approximately 0.6, similar to that from RGSc, in comparison to 0.8 in the report for a Leksell Model U Gamma-Knife. The mechanical/radiation field isocentricity for RGSc and RGSu is found to be similar and is within 0.3 mm in both X and Y directions. In the Z direction, the beam center of the RGSu is shifted toward the sources by 0.75 mm from the mechanical isocenter whereas no data are available for RGSc. Little dosimetric difference is found between RGSu and RGSc. It is reported that RGSc has the same dosimetric and mechanical

  10. SU-E-T-648: Quality Assurance Using the RADPOS System for 4D Radiotherapy with CyberKnife

    SciTech Connect

    Marants, R; Vandervoort, E; Cygler, J E

    2015-06-15

    Purpose: The CyberKnife robotic radiosurgery system uses Synchrony respiratory motion compensation, which requires independent performance verification. In this work, the RADPOS 4D dosimetry system’s motion measurements are compared with internal fiducial position measurements. In addition, RADPOS measurements are compared with Synchrony’s predictive correlation model, which is based on internal fiducial and external LED marker position measurements. Methods: A treatment plan was created for a lung insert containing fiducials, RADPOS detector, and Solid Water tumor phantom. Two Quasar Respiratory Motion Phantoms (Q1 and Q2) and two RADPOS detectors (R1 and R2) were used: Q1 simulated lung motion with a lung insert moving in the superior/inferior direction, while Q2 simulated chest motion with a chest platform moving in the anterior/posterior direction. Before treatment, R1 was secured inside of the tumor phantom within Q1, while LED markers and R2 were positioned on the chest platform of Q2. Two treatment delivery cases were studied: isocentric plan (I) and non-isocentric patient plan (P). Four motion cases were studied: no motion (0), sinusoidal and in-phase (1), sinusoidal and out-of-phase (2), patient waveform and out-of-phase (3). A coordinate alignment algorithm was implemented, allowing RADPOS and model position data to be compared within the fiducial coordinate system. Results: The standard deviation of the differences between RADPOS and fiducial position measurements was below 0.6 mm for all experimental cases. The standard deviation of the differences between RADPOS and model position data was 1.0, 1.5, and 1.6 mm along the primary direction of motion for case I1, I2, and P3, respectively. Conclusion: Our work demonstrates that RADPOS is a useful tool for independent quality assurance of CyberKnife treatment with Synchrony respiratory compensation. RADPOS and fiducial position measurement closely match, and RADPOS confirms the effectiveness of Cyber

  11. SU-E-T-229: Craniospinal Radiotherapy Planning with VMAT, Two First Years Experience

    SciTech Connect

    Lliso, F; Carmona, V; Gimeno, J; Candela-Juan, C; Bautista, J; Richart, J; Perez-Calatayud, J

    2015-06-15

    Purpose: To describe how we moved to VMAT in the craniospinal radiotherapy planning process, the actual procedure details, and the results for the patients treated. Methods: Twelve patients underwent craniospinal irradiation with the new procedure, based on the paper by Lee et al. (IJROBP 82, 2012), with some additional modifications. Patients were treated in supine position in Varian Clinac iX linacs with 6 MV RapidArc; prescription doses ranged from 23.4 to 40 Gy (13 to 20 fractions); depending on the PTV length, 2 or 3 isocenters were used, all coordinates being equal except the longitudinal one, setting a few centimeter-long overlapping region; 2 arcs (RA) sharing isocentre for the cranial region, RA1 encompassing cranium and superior spinal region, and RA2 intended to improve conformity, only for cranium; for spine, 1 or 2 isocenters were employed; optimization was performed with Eclipse (V 13.0) using AAA algorithm, establishing sets of optimization parameters to give high conformity while sparing OAR. In pediatric patients, homogeneous irradiation of the vertebrae was also required.Conformity (CI) and heterogeneity (HI) indices (same as Lee et al.), and mean and maximum doses for OAR were calculated. Several pre-treatment verification methods were used: Octavius4D (PTW) for each isocentre, point dose at the junction region, Portal Dosimetry (when possible), and independent MU verification software (Diamond, PTW). Results: CI median value was 1.02 (0.99–1.07) and HI, 1.07 (1.06–1.09); a great reduction was observed for CI and OAR mean doses with respect to Lee et al. data; median maximum eye lens dose was 7.3 Gy (4.0–12.0); mean LungV20Gy was 1.9%; in children, vertebrae were homogeneously irradiated (D95%=20.8 Gy, Dmean= 23.2 Gy).All pre-treatment verifications were found within our action levels except for Portal Dosimetry. Conclusion: A RapidArc planning process for craniospinal axis irradiation has been implemented with significant advantages on

  12. Helical Tomotherapy-Based STAT RT: Dosimetric Evaluation for Clinical Implementation of a Rapid Radiation Palliation Program

    SciTech Connect

    McIntosh, Alyson; Dunlap, Neal; Sheng, Ke; Geezey, Constance; Turner, Benton; Blackhall, Leslie; Weiss, Geoffrey; Lappinen, Eric; Larner, James M.; Read, Paul W.

    2010-01-01

    Helical tomotherapy-based STAT radiation therapy (RT) uses an efficient software algorithm for rapid intensity-modulated treatment planning, enabling conformal radiation treatment plans to be generated on megavoltage computed tomography (MVCT) scans for CT simulation, treatment planning, and treatment delivery in one session. We compared helical tomotherapy-based STAT RT dosimetry with standard linac-based 3D conformal plans and standard helical tomotherapy-based intensity-modulated radiation therapy (IMRT) dosimetry for palliative treatments of whole brain, a central obstructive lung mass, multilevel spine disease, and a hip metastasis. Specifically, we compared the conformality, homogeneity, and dose with regional organs at risk (OARs) for each plan as an initial step in the clinical implementation of a STAT RT rapid radiation palliation program. Hypothetical planning target volumes (PTVs) were contoured on an anthropomorphic phantom in the lung, spine, brain, and hip. Treatment plans were created using three planning techniques: 3D conformal on Pinnacle{sup 3}, helical tomotherapy, and helical tomotherapy-based STAT RT. Plan homogeneity, conformality, and dose to OARs were analyzed and compared. STAT RT and tomotherapy improved conformality indices for spine and lung plans (CI spine = 1.21, 1.17; CI lung = 1.20, 1.07, respectively) in comparison with standard palliative anteroposterior/posteroanterior (AP/PA) treatment plans (CI spine = 7.01, CI lung = 7.30), with better sparing of heart, esophagus, and spinal cord. For palliative whole-brain radiotherapy, STAT RT and tomotherapy reduced maximum and mean doses to the orbits and lens (maximum/mean lens dose: STAT RT = 2.94/2.65 Gy, tomotherapy = 3.13/2.80 Gy, Lateral opposed fields = 7.02/3.65 Gy), with an increased dose to the scalp (mean scalp dose: STAT RT = 16.19 Gy, tomotherapy = 15.61 Gy, lateral opposed fields = 14.01 Gy). For bony metastatic hip lesions, conformality with both tomotherapy techniques (CI

  13. Dosimetric Study of Automatic Brain Metastases Planning in Comparison with Conventional Multi-Isocenter Dynamic Conformal Arc Therapy and Gamma Knife Radiosurgery for Multiple Brain Metastases

    PubMed Central

    Kaneda, Naoki; Hagiwara, Masahiro; Ishiguchi, Tuneo

    2016-01-01

    Objective The efficacy of stereotactic radiosurgery (SRS) using Gamma Knife (GK) (Elekta, Tokyo) is well known. Recently, Automatic Brain Metastases Planning (ABMP) Element (BrainLAB, Tokyo) for a LINAC-based radiation system was commercially released. It covers multiple off-isocenter targets simultaneously inside a multi-leaf collimator field and enables SRS / stereotactic radiotherapy (SRT) with a single group of LINAC-based dynamic conformal multi-arcs (DCA) for multiple brain metastases. In this study, dose planning of ABMP (ABMP-single isocenter DCA (ABMP-SIDCA)) for SRS of small multiple brain metastases was evaluated in comparison with those of conventional multi-isocenter DCA (MIDCA-SRS) (iPlan, BrainLAB, Tokyo) and GK-SRS (GKRS). Methods Simulation planning was performed with ABMP-SIDCA and GKRS in the two cases of multiple small brain metastases (nine tumors in both), which had been originally treated with iPlan-MIDCA. First, a dosimetric comparison was done between ABMP-SIDCA and iPlan-MIDCA in the same setting of planning target volume (PTV) margin and D95 (dose covering 95% of PTV volume). Second, dosimetry of GKRS with a margin dose of 20 Gy was compared with that of ABMP-SIDCA in the setting of PTV margin of 0, 1 mm, and 2 mm, and D95=100% dose (20 Gy). Results First, the maximum dose of PTV and minimum dose of gross tumor volume (GTV) were significantly greater in ABMP-SIDCA than in iPlan-MIDCA. Conformity index (CI, 1/Paddick’s CI) and gradient index (GI, V (half of prescription dose) / V (prescription dose)) in ABMP-SIDCA were comparable with those of iPlan-MIDCA. Second, PIV (prescription isodose volume) of GKRS was consistent with that of 1 mm margin - ABMP-SIDCA plan in Case 1 and that of no-margin ABMP-SIDCA plan in Case 2. Considering the dose gradient, the mean of V (half of prescription dose) of ABMP-SIDCA was not broad, comparable to GKRS, in either Case 1 or 2. Conclusions The conformity and dose gradient with ABMP-SIDCA were as good

  14. Electron and nuclear dynamics in many-electron atoms, molecules and chlorophyll-protein complexes: a review.

    PubMed

    Shuvalov, Vladimir A

    2007-06-01

    It has been shown [V.A. Shuvalov, Quantum dynamics of electrons in many-electron atoms of biologically important compounds, Biochemistry (Mosc.) 68 (2003) 1333-1354; V.A. Shuvalov, Quantum dynamics of electrons in atoms of biologically important molecules, Uspekhi biologicheskoi khimii, (Pushchino) 44 (2004) 79-108] that the orbit angular momentum L of each electron in many-electron atoms is L=mVr=nPlanck's and similar to L for one-electron atom suggested by N. Bohr. It has been found that for an atom with N electrons the total electron energy equation E=-(Z(eff))(2)e(4)m/(2n(2)Planck's(2)N) is more appropriate for energy calculation than standard quantum mechanical expressions. It means that the value of L of each electron is independent of the presence of other electrons in an atom and correlates well to the properties of virtual photons emitted by the nucleus and creating a trap for electrons. The energies for elements of the 1st up to the 5th rows and their ions (total amount 240) of Mendeleev' Periodical table were calculated consistent with the experimental data (deviations in average were 5 x 10(-3)). The obtained equations can be used for electron dynamics calculations in molecules. For H(2) and H(2)(+) the interference of electron-photon orbits between the atoms determines the distances between the nuclei which are in agreement with the experimental values. The formation of resonance electron-photon orbit in molecules with the conjugated bonds, including chlorophyll-like molecules, appears to form a resonance trap for an electron with E values close to experimental data. Two mechanisms were suggested for non-barrier primary charge separation in reaction centers (RCs) of photosynthetic bacteria and green plants by using the idea of electron-photon orbit interference between the two molecules. Both mechanisms are connected to formation of the exciplexes of chlorophyll-like molecules. The first one includes some nuclear motion before exciplex formation, the

  15. Analytical description of dose profile behaviour in Gamma Knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Fenner, J.; Gwilliam, M.; Mehrem, R.; Bird, A.; Walton, L.

    2008-04-01

    Stereotactic Gamma Knife radiosurgery utilizes ionizing beams from 60Co sources and relies on a combination of collimator sizes, weighting, etc to generate a high-dose region that is conformal with a designated target volume. Dose computation is typically performed by computer, but in this paper, single collimator dose profile behaviour is modelled analytically and then extended to accommodate multiple collimators of different weights with co-located isocentres. The dose profile from a single helmet is derived from a top-hat beam profile approximation and an idealized symmetric distribution of sources is used to represent the 201 sources within a collimating helmet. The results from the analysis are validated by an independent numerical model and also compared with those obtained by other groups using numerical and experimental methods. With respect to multiple collimators, the relationship between the size (full width half maximum) of the irradiated volume and relative collimator weighting is also examined using the simple analytical model. The simplicity of the mathematics clarifies the relationship between beam profile, dose profile and multiple collimator behaviour, and provides data that compare favourably with published literature.

  16. Dosimetrical evaluation of Leksell Gamma Knife 4C radiosurgery unit

    NASA Astrophysics Data System (ADS)

    Sajeev, Thomas; Mustafa, Mohamed M.; Supe, Sanjay S.

    2011-01-01

    A number of experiments was performed using standard protocols, in order to evaluate the dosimetric accuracy of Leksell Gamma Knife 4C unit. Verification of the beam alignment has been performed for all collimators using solid plastic head phantom and Gafchromic™ type MD-55 films. The study showed a good agreement of Leksell Gammaplan calculated dose profiles with experimentally determined profiles in all three axes. Isocentric accuracy is verified using a specially machined cylindrical aluminium film holder tool made with very narrow geometric tolerances aligned between trunnions of 4 mm collimator. Considering all uncertainties in all three dimensions, the estimated accuracy of the unit was 0.1 mm. Dose rate at the centre point of the unit has been determined according to the IAEA, TRS-398 protocol, using Unidose-E (PTW-Freiburg, Germany) with a 0.125 cc ion chamber, over a period of 6 years. The study showed that the Leksell Gamma Knife 4C unit is excellent radiosurgical equipment with high accuracy and precision, which makes it possible to deliver larger doses of radiation, within the limits defined by national and international guidelines, applicable for stereotactic radiosurgery procedures.

  17. Influence of the electron energy and number of beams on the absorbed dose distributions in radiotherapy of deep seated targets.

    PubMed

    Garnica-Garza, H M

    2014-12-01

    With the advent of compact laser-based electron accelerators, there has been some renewed interest on the use of such charged particles for radiotherapy purposes. Traditionally, electrons have been used for the treatment of fairly superficial lesions located at depths of no more than 4cm inside the patient, but lately it has been proposed that by using very high energy electrons, i.e. those with an energy in the order of 200-250MeV it should be possible to safely reach deeper targets. In this paper, we used a realistic patient model coupled with detailed Monte Carlo simulations of the electron transport in such a patient model to examine the characteristics of the resultant absorbed dose distributions as a function of both the electron beam energy as well as the number of beams for a particular type of treatment, namely, a prostate radiotherapy treatment. Each treatment is modeled as consisting of nine, five or three beam ports isocentrically distributed around the patient. An optimization algorithm is then applied to obtain the beam weights in each treatment plan. It is shown that for this particularly challenging case, both excellent target coverage and critical structure sparing can be obtained for energies in the order of 150MeV and for as few as three treatment ports, while significantly reducing the total energy absorbed by the patient with respect to a conventional megavoltage x-ray treatment.

  18. Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment

    PubMed Central

    Bedford, James L.; Fast, Martin F.; Nill, Simeon; McDonald, Fiona M.A.; Ahmed, Merina; Hansen, Vibeke N.; Oelfke, Uwe

    2015-01-01

    Background and purpose The latency of a multileaf collimator (MLC) tracking system used to overcome respiratory motion causes misalignment of the treatment beam with respect to the gross tumour volume, which may result in reduced target coverage. This study investigates the magnitude of this effect. Material and methods Simulated superior–inferior breathing motion was used to construct histograms of isocentre offset with respect to the gross tumour volume (GTV) for a variety of tracking latencies. Dose distributions for conformal volumetric modulated arc therapy (VMAT) arcs were then calculated at a range of offsets and summed according to these displacement histograms. The results were verified by delivering the plans to a Delta4 phantom on a motion platform. Results In the absence of an internal target margin, a tracking latency of 150 ms reduces the GTV D95% by approximately 2%. With a margin of 2 mm, the same drop in dose occurs for a tracking latency of 450 ms. Lung V13Gy is unaffected by a range of latencies. These results are supported by the phantom measurements. Conclusions Assuming that internal motion can be modelled by a rigid translation of the patient, MLC tracking of conformal VMAT can be effectively accomplished in the absence of an internal target margin for substantial breathing motion (4 s period and 20 mm peak–peak amplitude) so long as the system latency is less than 150 ms. PMID:26277856

  19. Monte Carlo optimization of total body irradiation in a phantom and patient geometry

    NASA Astrophysics Data System (ADS)

    Chakarova, R.; Müntzing, K.; Krantz, M.; Hedin, E.; Hertzman, S.

    2013-04-01

    The objective of this work is to apply a Monte Carlo (MC) accelerator model, validated by experimental data at isocentre distances, to a large-field total body irradiation (TBI) technique and to develop a strategy for individual patient treatment on the basis of MC dose distributions. Calculations are carried out using BEAMnrc/DOSXYZnrc code packages for a 15 MV Varian accelerator. Acceptable agreement is obtained between MC data and measurements in a large water phantom behind a spoiler at source-skin distances (SSD) = 460 cm as well as in a CIRS® thorax phantom. Dose distributions in patients are studied when simulating bilateral beam delivery at a distance of 480 cm to the patient central sagittal plane. A procedure for individual improvement of the dose uniformity is suggested including the design of compensators in a conventional treatment planning system (TPS) and a subsequent update of the dose distribution. It is demonstrated that the dose uniformity for the simple TBI technique can be considerably improved. The optimization strategy developed is straightforward and suitable for clinics where the TPS available is deficient to calculate 3D dose distributions at extended SSD.

  20. Impact of patient rotational errors on target and critical structure dose in IMRT: A 3D simulation study

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Xing, A.; Vial, P.; Scotti, A.; Stirton, R.; Goozee, G.; Holloway, Lois

    2013-06-01

    The impact of 3D rotational errors in patient positioning on dose delivered target volumes and critical structures in IMRT was studied. Patient rotational errors ranging from -30 to +30 was introduced to IMRT treatment plans of pelvis, head and neck and brain treatment sites and the impact of rotational error on DVH metrics was assessed. The magnitude of impact of rotational error on the error in dose delivered to the target volume and critical structures depends on the location of the structures from plan isocentre. In studied plans, a maximum percentage difference of up to -9.8(1s=13.4) % in D95 to PTV was observed for head and neck treatments. Similarly, in Brain treatments a maximum difference of up to 24.0(1s=33.0) % in maximum dose of Optic chiasm was observed. The results suggest that failure to correct patient's rotational error results in under-dosage to target volumes and over-dosage to the critical structures in some specific treatment scenarios.

  1. Characterization of electron contamination in megavoltage photon beams

    SciTech Connect

    Medina, Antonio Lopez; Teijeiro, Antonio; Garcia, Juan; Esperon, Jorge; Terron, J. Antonio; Ruiz, Diego P.; Carrion, Maria C.

    2005-05-01

    The purpose of the present study is to characterize electron contamination in photon beams in different clinical situations. Variations with field size, beam modifier (tray, shaping block) and source-surface distance (SSD) were studied. Percentage depth dose measurements with and without a purging magnet and replacing the air by helium were performed to identify the two electron sources that are clearly differentiated: air and treatment head. Previous analytical methods were used to fit the measured data, exploring the validity of these models. Electrons generated in the treatment head are more energetic and more important for larger field sizes, shorter SSD, and greater depths. This difference is much more noticeable for the 18 MV beam than for the 6 MV beam. If a tray is used as beam modifier, electron contamination increases, but the energy of these electrons is similar to that of electrons coming from the treatment head. Electron contamination could be fitted to a modified exponential curve. For machine modeling in a treatment planning system, setting SSD at 90 cm for input data could reduce errors for most isocentric treatments, because they will be delivered for SSD ranging from 80 to 100 cm. For very small field sizes, air-generated electrons must be considered independently, because of their different energetic spectrum and dosimetric influence.

  2. A method for online verification of adapted fields using an independent dose monitor

    SciTech Connect

    Chang Jina; Norrlinger, Bernhard D.; Heaton, Robert K.; Jaffray, David A.; Cho, Young-Bin; Islam, Mohammad K.; Mahon, Robert

    2013-07-15

    Purpose: Clinical implementation of online adaptive radiotherapy requires generation of modified fields and a method of dosimetric verification in a short time. We present a method of treatment field modification to account for patient setup error, and an online method of verification using an independent monitoring system.Methods: The fields are modified by translating each multileaf collimator (MLC) defined aperture in the direction of the patient setup error, and magnifying to account for distance variation to the marked isocentre. A modified version of a previously reported online beam monitoring system, the integral quality monitoring (IQM) system, was investigated for validation of adapted fields. The system consists of a large area ion-chamber with a spatial gradient in electrode separation to provide a spatially sensitive signal for each beam segment, mounted below the MLC, and a calculation algorithm to predict the signal. IMRT plans of ten prostate patients have been modified in response to six randomly chosen setup errors in three orthogonal directions.Results: A total of approximately 49 beams for the modified fields were verified by the IQM system, of which 97% of measured IQM signal agree with the predicted value to within 2%.Conclusions: The modified IQM system was found to be suitable for online verification of adapted treatment fields.

  3. Evaluation of the peripheral dose to uterus in breast carcinoma radiotherapy.

    PubMed

    Martín Rincón, C; Jerez Sainz, I; Modolell Farré, I; España López, M L; López Franco, P; Muñiz, J L; Romero, A M; Rodríguez, R

    2002-01-01

    The absorbed dose outside of the direct fields of radiotherapy treatment (or peripheral dose, PD) is responsible for radiation exposure of the fetus in pregnant women. Because the radiological protection of the unborn child is of particular concern in the early period of the pregnancy, the aim of this study is to estimate the PD in order to assess the absorbed dose in the uterus in a pregnant patient irradiated for breast carcinoma therapy. The treatment was simulated on an Alderson-Rando anthropomorphic phantom, and the radiation dose to the fetus was measured using an ionisation chamber and thermoluminescence dosemeters. Two similar treatments plans with and without wedges were delivered, using a 6 MV photon beam with two isocentric opposite tangential fields with a total dose of 50 Gy, in accordance with common established procedures. Average field parameters for more than 300 patients were studied. Measurements showed the fetal dose to be slightly lower than 50 mGy, a level at which the risk to the fetus is uncertain, although several authors consider this value as the dose threshold for deterministic effects. The planning system (PS) underestimated PD values and no significant influence was found with the use of wedge filters.

  4. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film

    SciTech Connect

    Teke, T; Milette, MP; Huang, V; Thomas, SD

    2014-08-15

    The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.

  5. An ion-optical design study of a carbon-ion rotating gantry with a superconducting final bending magnet

    NASA Astrophysics Data System (ADS)

    Bokor, J.; Pavlovič, M.

    2016-03-01

    Ion-optical designs of an isocentric ion gantry with a compact curved superconducting final bending magnet are presented. The gantry is designed for transporting carbon-therapy beams with nominal kinetic energy of 400 MeV/u, which corresponds to the penetration range of C6+ beam in water of about 28 cm. In contrast to other existing designs, we present a "hybrid" beam transport system containing a single superconducting element - the last bending magnet. All other elements are based on conventional warm technology. Ion-optical properties of such a hybrid system are investigated in case of transporting non-symmetric (i.e. different emittance patterns in the horizontal and vertical plane) beams. Different conditions for transporting the non-symmetric beams are analyzed aiming at finding the optimal, i.e. the most compact, gantry version. The final gantry layout is presented including a 2D parallel scanning. The ion-optical and scanning properties of the final gantry design are described, discussed and illustrated by computer simulations performed by WinAGILE.

  6. Characterization of electron contamination in megavoltage photon beams.

    PubMed

    Lopez Medina, Antonio; Teijeiro, Antonio; Garcia, Juan; Esperon, Jorge; Terron, J Antonio; Ruiz, Diego P; Carrion, Maria C

    2005-05-01

    The purpose of the present study is to characterize electron contamination in photon beams in different clinical situations. Variations with field size, beam modifier (tray, shaping block) and source-surface distance (SSD) were studied. Percentage depth dose measurements with and without a purging magnet and replacing the air by helium were performed to identify the two electron sources that are clearly differentiated: air and treatment head. Previous analytical methods were used to fit the measured data, exploring the validity of these models. Electrons generated in the treatment head are more energetic and more important for larger field sizes, shorter SSD, and greater depths. This difference is much more noticeable for the 18 MV beam than for the 6 MV beam. If a tray is used as beam modifier, electron contamination increases, but the energy of these electrons is similar to that of electrons coming from the treatment head. Electron contamination could be fitted to a modified exponential curve. For machine modeling in a treatment planning system, setting SSD at 90 cm for input data could reduce errors for most isocentric treatments, because they will be delivered for SSD ranging from 80 to 100 cm. For very small field sizes, air-generated electrons must be considered independently, because of their different energetic spectrum and dosimetric influence.

  7. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    NASA Astrophysics Data System (ADS)

    Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro

    2014-02-01

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.

  8. Design and evaluation of a grid reciprocation scheme for use in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Patel, Tushita; Sporkin, Helen; Peppard, Heather; Williams, Mark B.

    2016-03-01

    This work describes a methodology for efficient removal of scatter radiation during digital breast tomosynthesis (DBT). The goal of this approach is to enable grid image obscuration without a large increase in radiation dose by minimizing misalignment of the grid focal point (GFP) and x-ray focal spot (XFS) during grid reciprocation. Hardware for the motion scheme was built and tested on the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis (MBT) on a single gantry. The DMT scanner uses fully isocentric rotation of tube and x-ray detector for maintaining a fixed tube-detector alignment during DBT imaging. A cellular focused copper prototype grid with 80 cm focal length, 3.85 mm height, 0.1 mm thick lamellae, and 1.1 mm hole pitch was tested. Primary transmission of the grid at 28 kV tube voltage was on average 74% with the grid stationary and aligned for maximum transmission. It fell to 72% during grid reciprocation by the proposed method. Residual grid line artifacts (GLAs) in projection views and reconstructed DBT images are characterized and methods for reducing the visibility of GLAs in the reconstructed volume through projection image flat-field correction and spatial frequency-based filtering of the DBT slices are described and evaluated. The software correction methods reduce the visibility of these artifacts in the reconstructed volume, making them imperceptible both in the reconstructed DBT images and their Fourier transforms.

  9. Routine operation of the University of Washington fast neutron therapy facility and plans for improvements

    SciTech Connect

    Risler, R.; Emery, R.; Laramore, G. E.

    1999-06-10

    The fast neutron therapy facility in Seattle is based on a cyclotron, which produces a 50.5 MeV proton beam. Neutrons are produced in a beryllium target installed in an isocentric gantry equipped with a multi-leaf collimator. The system has been in routine operation for 14 years and over 1800 patients have been treated. Downtime has been minimal, over the past 10 years less than 1.5% of the scheduled daily treatment sessions could not be delivered for equipment related reasons. Fast neutron therapy has been shown to be highly effective for the treatment of salivary gland tumors, sarcomas of bone and soft tissues and for certain prostate cancers. In addition there are situations such as non-small cell lung cancer, where results are promising, but success is limited by normal tissue complications. A relatively small selective increase in the tumor dose might lead to a significant clinical improvement in these situations. The use of a boron neutron capture (BNC) boost, utilizing the moderated slow neutrons naturally present in the tissue during fast neutron therapy, may be beneficial for such patients. Experimental work to adapt the facility for such a modified treatment modality is presently ongoing.

  10. Routine operation of the University of Washington fast neutron therapy facility and plans for improvements

    NASA Astrophysics Data System (ADS)

    Risler, R.; Emery, R.; Laramore, G. E.

    1999-06-01

    The fast neutron therapy facility in Seattle is based on a cyclotron, which produces a 50.5 MeV proton beam. Neutrons are produced in a beryllium target installed in an isocentric gantry equipped with a multi-leaf collimator. The system has been in routine operation for 14 years and over 1800 patients have been treated. Downtime has been minimal, over the past 10 years less than 1.5% of the scheduled daily treatment sessions could not be delivered for equipment related reasons. Fast neutron therapy has been shown to be highly effective for the treatment of salivary gland tumors, sarcomas of bone and soft tissues and for certain prostate cancers. In addition there are situations such as non-small cell lung cancer, where results are promising, but success is limited by normal tissue complications. A relatively small selective increase in the tumor dose might lead to a significant clinical improvement in these situations. The use of a boron neutron capture (BNC) boost, utilizing the moderated slow neutrons naturally present in the tissue during fast neutron therapy, may be beneficial for such patients. Experimental work to adapt the facility for such a modified treatment modality is presently ongoing.

  11. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    SciTech Connect

    Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro

    2014-02-12

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.

  12. Treatment planning and delivery of involved field radiotherapy in advanced Hodgkin's disease: results from a questionnaire-based audit for the UK Stanford V regimen vs ABVD clinical trial quality assurance programme (ISRCTN 64141244).

    PubMed

    Diez, P; Hoskin, P J; Aird, E G A

    2007-10-01

    This questionnaire forms the basis of the quality assurance (QA) programme for the UK randomized Phase III study of the Stanford V regimen versus ABVD for treatment of advanced Hodgkin's disease to assess differences between participating centres in treatment planning and delivery of involved-field radiotherapy for Hodgkin's lymphoma The questionnaire, which was circulated amongst 42 participating centres, consisted of seven sections: target volume definition and dose prescription; critical structures; patient positioning and irradiation techniques; planning; dose calculation; verification; and future developments The results are based on 25 responses. One-third plan using CT alone, one-third use solely the simulator and the rest individualize, depending on disease site. Eleven centres determine a dose distribution for each patient. Technique depends on disease site and whether CT or simulator planning is employed. Most departments apply isocentric techniques and use immobilization and customized shielding. In vivo dosimetry is performed in 7 centres and treatment verification occurs in 24 hospitals. In conclusion, the planning and delivery of treatment for lymphoma patients varies across the country. Conventional planning is still widespread but most centres are moving to CT-based planning and virtual simulation with extended use of immobilization, customized shielding and compensation.

  13. The efficiency of orthotic interventions on energy consumption in paraplegic patients: a literature review.

    PubMed

    Arazpour, M; Samadian, M; Bahramizadeh, M; Joghtaei, M; Maleki, M; Ahmadi Bani, M; Hutchins, S W

    2015-01-20

    Study design:This is a systematic literature review.Objectives:Different types of orthoses have been developed to enable and facilitate ambulation in individuals with paraplegia. However, their effect on energy consumption while ambulating is not clear. The objective of this review was to compare the energy expenditure required to walk with these devices.Methods:Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method, and based on selected keywords and their composition according to the Population Intervention Comparison Outcome (PICO) method, a search was performed in Science Direct, Google Scholar, Scopus, Web of Knowledge and PubMed databases. The searches were restricted to papers published in the English language and were conducted during February 2014; the last access to the database was on 25 February 2014. A total of 24 articles were chosen for final evaluation.Results:Hybrid orthoses reduce energy consumption compared with mechanical orthoses when used for walking by paraplegic patients. The isocentric reciprocating gait orthosis has been shown to be more effective than other reciprocating orthoses in reducing energy consumption. Energy consumption when walking with powered orthoses (PO) and hybrid orthoses was also reduced compared with when walking with conventional orthoses.Conclusions:The hybrid orthoses and PO could be effective alternatives in rehabilitation for spinal cord injury patients to help improve the energy consumption.Spinal Cord advance online publication, 20 January 2015; doi:10.1038/sc.2014.227.

  14. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  15. Do All Patients of Breast Carcinoma Need 3-Dimensional CT-Based Planning? A Dosimetric Study Comparing Different Breast Sizes

    SciTech Connect

    Munshi, Anusheel Pai, Rajeshri H.; Phurailatpam, Reena; Budrukkar, Ashwini; Jalali, Rakesh; Sarin, Rajiv; Deshpande, D.D.; Shrivastava, Shyam K.; Dinshaw, Ketayun A.

    2009-07-01

    Evaluation of dose distribution in a single plane (i.e., 2-dimensional [2D] planning) is simple and less resource-intensive than CT-based 3-dimensional radiotherapy (3DCRT) planning or intensity modulated radiotherapy (IMRT). The aim of the study was to determine if 2D planning could be an appropriate treatment in a subgroup of breast cancer patients based on their breast size. Twenty consecutive patients who underwent breast conservation were planned for radiotherapy. The patients were grouped in 3 different categories based on their respective chest wall separation (CWS) and the thickness of breast, as 'small,' 'medium,' and 'large.' Two more contours were taken at locations 5 cm superior and 5 cm inferior to the isocenter plane. Maximum dose recorded at specified points was compared in superior/inferior slices as compared to the central slice. The mean difference for small breast size was 1.93 (standard deviation [SD] = 1.08). For medium breas size, the mean difference was 2.98 (SD = 2.40). For the large breasts, the mean difference was 4.28 (SD = 2.69). Based on our dosimetric study, breast planning only on the single isocentric contour is an appropriate technique for patients with small breasts. However, for large- and medium-size breasts, CT-based planning and 3D planning have a definite role. These results can be especially useful for rationalizing treatment in busy oncology centers.

  16. Radiotherapy of stage IEA primary breast lymphoma: case report.

    PubMed

    Juretić, Antonio; Zivković, Mirko; Samija, Mirko; Bagović, Davorin; Purisić, Anka; Viculin, Tomislav; Bistrović, Matija; Stanec, Mladen; Juzbasić, Stjepan; Lesar, Miro; Tomek, Rudolf

    2002-10-01

    A 47-year-old woman was referred for the treatment to our Hospital because of a palpable nodule in the upper medial quadrant of her right breast. After tumor excision, pathohistological examination showed a follicular center cell lymphoma grade 2, B-cell type (CD20+, bc16+, CD10+, bcl2+). The final diagnosis was stage IEA primary extranodal non-Hodgkin s breast lymphoma. The involved breast was irradiated isocentrically with two opposite 6-megavolt (MeV) photon beams delivered from the linear accelerator (tangential fields) using asymmetric collimator opening. Radiation volume, inclinations of the medial and lateral field, and the part of the underlying chest wall and lung parenchyma were determined during the radiotherapy simulation process. The total irradiation dose was 44 Gy delivered in single daily doses of 2 Grays (Gy). After breast photon irradiation, a boost to the tumor bed was performed by a direct 12 MeV electron beam, with a total dose of 6 Gy delivered over three days. Since primary non-Hodgkin lymphoma of the breast is rather rare, there has been no uniform approach to its treatment. The advantage of applying the asymmetric collimator jaw opening in breast radiotherapy is the instant reduction of the dose at margin fields, resulting in both the protection of neighboring lung parenchyma and the good coverage of planned target volume.

  17. Treatment experience with 15 MeV fast neutrons in the oral cavity and oropharynx

    SciTech Connect

    Herskovic, A.; Cox, E.B.; Fender, F.; Schell, M.; Henshaw, W.; Rogers, C.; Ornitz, R.

    1984-05-15

    All 86 patients with squamous cell carcinoma of the oral cavity and oropharynx treated with fast neutrons at the Mid-Atlantic Neutron Therapy facility at the Naval Research Laboratory (MANTA) from its inception in 1976 until closing in 1979, are reported. Patients generally had advanced disease or have failed or were failing conventional treatment prior to being treated at MANTA. The fixed horizontal beam parameters were suboptimal. Patients were treated by either neutrons alone or various combinations of neutrons and photons. In patients with T3 or T4 primary carcinomas treated with less than 2100 neutron rad, only 37% (3/11) had a complete response at the primary compared to 57% (24/42) treated to a higher dose. However, there was a significant evidence of radiation related complication. The latter was expected in a phase I/II trial of a new modality such as fast neutrons. Isocentric hospital based cyclotrons should offer some hope of improvement in the future.

  18. Development and Clinical Implementation of a Universal Bolus to Maintain Spot Size During Delivery of Base of Skull Pencil Beam Scanning Proton Therapy

    SciTech Connect

    Both, Stefan; Shen, Jiajian; Kirk, Maura; Lin, Liyong; Tang, Shikui; Alonso-Basanta, Michelle; Lustig, Robert; Lin, Haibo; Deville, Curtiland; Hill-Kayser, Christine; Tochner, Zelig; McDonough, James

    2014-09-01

    Purpose: To report on a universal bolus (UB) designed to replace the range shifter (RS); the UB allows the treatment of shallow tumors while keeping the pencil beam scanning (PBS) spot size small. Methods and Materials: Ten patients with brain cancers treated from 2010 to 2011 were planned using the PBS technique with bolus and the RS. In-air spot sizes of the pencil beam were measured and compared for 4 conditions (open field, with RS, and with UB at 2- and 8-cm air gap) in isocentric geometry. The UB was applied in our clinic to treat brain tumors, and the plans with UB were compared with the plans with RS. Results: A UB of 5.5 cm water equivalent thickness was found to meet the needs of the majority of patients. By using the UB, the PBS spot sizes are similar with the open beam (P>.1). The heterogeneity index was found to be approximately 10% lower for the UB plans than for the RS plans. The coverage for plans with UB is more conformal than for plans with RS; the largest increase in sparing is usually for peripheral organs at risk. Conclusions: The integrity of the physical properties of the PBS beam can be maintained using a UB that allows for highly conformal PBS treatment design, even in a simple geometry of the fixed beam line when noncoplanar beams are used.

  19. A small animal image guided irradiation system study using 3D dosimeters

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Admovics, John; Wuu, Cheng-Shie

    2015-01-01

    In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  20. A permanent MRI magnet for magic angle imaging having its field parallel to the poles

    NASA Astrophysics Data System (ADS)

    McGinley, John V. M.; Ristic, Mihailo; Young, Ian R.

    2016-10-01

    A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150 mm DSV to the achievement of a measured uniform field over a 130 mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre.

  1. A permanent MRI magnet for magic angle imaging having its field parallel to the poles.

    PubMed

    McGinley, John V M; Ristic, Mihailo; Young, Ian R

    2016-10-01

    A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150mm DSV to the achievement of a measured uniform field over a 130mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre.

  2. Field size dependent mapping of medical linear accelerator radiation leakage

    NASA Astrophysics Data System (ADS)

    Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  3. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images

    NASA Astrophysics Data System (ADS)

    Marchant, T. E.; Amer, A. M.; Moore, C. J.

    2008-02-01

    A method is presented for extraction of intra and inter fraction motion of seeds/markers within the patient from cone beam CT (CBCT) projection images. The position of the marker is determined on each projection image and fitted to a function describing the projection of a fixed point onto the imaging panel at different gantry angles. The fitted parameters provide the mean marker position with respect to the isocentre. Differences between the theoretical function and the actual projected marker positions are used to estimate the range of intra fraction motion and the principal motion axis in the transverse plane. The method was validated using CBCT projection images of a static marker at known locations and of a marker moving with known amplitude. The mean difference between actual and measured motion range was less than 1 mm in all directions, although errors of up to 5 mm were observed when large amplitude motion was present in an orthogonal direction. In these cases it was possible to calculate the range of motion magnitudes consistent with the observed marker trajectory. The method was shown to be feasible using clinical CBCT projections of a pancreas cancer patient.

  4. Numerical study of remote detection outside the magnet with travelling wave Magnetic Resonance Imaging at 3T

    NASA Astrophysics Data System (ADS)

    López, M.; Vázquez, F.; Solís-Nájera, S.; Rodriguez, A. O.

    2015-01-01

    The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions.

  5. Short communication: assessment of environmental disturbances to the static magnetic field in magnetic resonance installations.

    PubMed

    Schmidt, M A

    2006-05-01

    The static magnetic field of MRI scanners can be affected by environmental factors. Magnetic resonance spectroscopy and functional imaging with single-shot echo-planar imaging (EPI) are particularly vulnerable to the movement of lifts, vehicles, trains and other large metallic masses in the vicinity. This work investigates the sensitivity of two different imaging techniques to assess disturbances of the static magnetic field: (i) phase changes in gradient-echo images of a uniform test object; and (ii) image displacement along the phase encoding direction in single-shot EPI images. For the latter a hexane sample was used, and the separation between CH2 and CH3 signals was taken as a reference. Both techniques were evaluated in a site known to be free of any significant environmental disturbances and validated by inducing a magnetic field disturbance. Both techniques provide valuable information in acceptance tests, allowing MRI users to evaluate and manage the environmental conditions surrounding a scanner. The single-shot EPI technique was found to be highly sensitive, being expected to detect magnetic field fluctuations down to 0.005 parts per million (ppm). The phase images method was found to be less sensitive (0.02 ppm) but is more easily available. The single-shot EPI technique was used in acceptance tests and environmental disturbances to the magnetic field of the order of 0.04 ppm were measured at the isocentre on two separate occasions.

  6. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: Electromechanical design and validation

    SciTech Connect

    Farr, J. B.; Maughan, R. L.; Yudelev, M.; Blosser, E.; Brandon, J.; Horste, T.; Forman, J. D.

    2006-09-15

    The electromechanical properties of a 120-leaf, high-resolution, computer-controlled, fast neutron multileaf collimator (MLC) are presented. The MLC replaces an aging, manually operated multirod collimator. The MLC leaves project 5 mm in the isocentric plane perpendicular to the beam axis. A taper is included on the leaves matching beam divergence along one axis. The 5-mm leaf projection width is chosen to give high-resolution conformality across the entire field. The maximum field size provided is 30x30 cm{sup 2}. To reduce the interleaf transmission a 0.254-mm blocking step is included. End-leaf steps totaling 0.762 mm are also provided allowing opposing leaves to close off within the primary radiation beam. The neutron MLC also includes individual 45 deg. and 60 deg. automated universal tungsten wedges. The automated high-resolution neutron collimation provides an increase in patient throughput capacity, enables a new modality, intensity modulated neutron therapy, and limits occupational radiation exposure by providing remote operation from a shielded console area.

  7. A 3D superposition pencil beam dose calculation algorithm for a 60Co therapy unit and its verification by MC simulation

    NASA Astrophysics Data System (ADS)

    Koncek, O.; Krivonoska, J.

    2014-11-01

    The MCNP Monte Carlo code was used to simulate the collimating system of the 60Co therapy unit to calculate the primary and scattered photon fluences as well as the electron contamination incident to the isocentric plane as the functions of the irradiation field size. Furthermore, a Monte Carlo simulation for the polyenergetic Pencil Beam Kernels (PBKs) generation was performed using the calculated photon and electron spectra. The PBK was analytically fitted to speed up the dose calculation using the convolution technique in the homogeneous media. The quality of the PBK fit was verified by comparing the calculated and simulated 60Co broad beam profiles and depth dose curves in a homogeneous water medium. The inhomogeneity correction coefficients were derived from the PBK simulation of an inhomogeneous slab phantom consisting of various materials. The inhomogeneity calculation model is based on the changes in the PBK radial displacement and on the change of the forward and backward electron scattering. The inhomogeneity correction is derived from the electron density values gained from a complete 3D CT array and considers different electron densities through which the pencil beam is propagated as well as the electron density values located between the interaction point and the point of dose deposition. Important aspects and details of the algorithm implementation are also described in this study.

  8. Clinical implementation of a digital tomosynthesis-based seed reconstruction algorithm for intraoperative postimplant dose evaluation in low dose rate prostate brachytherapy

    SciTech Connect

    Brunet-Benkhoucha, Malik; Verhaegen, Frank; Lassalle, Stephanie; Beliveau-Nadeau, Dominic; Reniers, Brigitte; Donath, David; Taussky, Daniel; Carrier, Jean-Francois

    2009-11-15

    Purpose: The low dose rate brachytherapy procedure would benefit from an intraoperative postimplant dosimetry verification technique to identify possible suboptimal dose coverage and suggest a potential reimplantation. The main objective of this project is to develop an efficient, operator-free, intraoperative seed detection technique using the imaging modalities available in a low dose rate brachytherapy treatment room. Methods: This intraoperative detection allows a complete dosimetry calculation that can be performed right after an I-125 prostate seed implantation, while the patient is still under anesthesia. To accomplish this, a digital tomosynthesis-based algorithm was developed. This automatic filtered reconstruction of the 3D volume requires seven projections acquired over a total angle of 60 deg. with an isocentric imaging system. Results: A phantom study was performed to validate the technique that was used in a retrospective clinical study involving 23 patients. In the patient study, the automatic tomosynthesis-based reconstruction yielded seed detection rates of 96.7% and 2.6% false positives. The seed localization error obtained with a phantom study is 0.4{+-}0.4 mm. The average time needed for reconstruction is below 1 min. The reconstruction algorithm also provides the seed orientation with an uncertainty of 10 deg. {+-}8 deg. The seed detection algorithm presented here is reliable and was efficiently used in the clinic. Conclusions: When combined with an appropriate coregistration technique to identify the organs in the seed coordinate system, this algorithm will offer new possibilities for a next generation of clinical brachytherapy systems.

  9. Geant4 studies of the CNAO facility system for hadrontherapy treatment of uveal melanomas

    NASA Astrophysics Data System (ADS)

    Rimoldi, A.; Piersimoni, P.; Pirola, M.; Riccardi, C.

    2014-06-01

    The Italian National Centre of Hadrontherapy for Cancer Treatment (CNAO -Centro Nazionale di Adroterapia Oncologica) in Pavia, Italy, has started the treatment of selected cancers with the first patients in late 2011. In the coming months at CNAO plans are to activate a new dedicated treatment line for irradiation of uveal melanomas using the available active beam scan. The beam characteristics and the experimental setup should be tuned in order to reach the necessary precision required for such treatments. Collaboration between CNAO foundation, University of Pavia and INFN has started in 2011 to study the feasibility of these specialised treatments by implementing a MC simulation of the transport beam line and comparing the obtained simulation results with measurements at CNAO. The goal is to optimise an eye-dedicated transport beam line and to find the best conditions for ocular melanoma irradiations. This paper describes the Geant4 toolkit simulation of the CNAO setup as well as a modelised human eye with a tumour inside. The Geant4 application could be also used to test possible treatment planning systems. Simulation results illustrate the possibility to adapt the CNAO standard transport beam line by optimising the position of the isocentre and the addition of some passive elements to better shape the beam for this dedicated study.

  10. Radiosurgical third ventriculostomy: Technical note

    PubMed Central

    Gutiérrez-Aceves, Guillermo Axayacalt; Moreno-Jiménez, Sergio; Celis, Miguel Ángel; Hernández-Bojórquez, Mariana

    2012-01-01

    Background: We describe a minimally invasive technique to perform a radiosurgical third ventriculostomy in a patient with mild obstructive hydrocephalus secondary to malignant pathology. Methods: A 42 years old woman with diagnosis of clear cells renal carcinoma and with right nefrectomy performed last year. Cranial Magnetic Resonance Imaging showed two brain metastasis: one right temporal, and other in the pons with Sylvian aqueduct partial obliteration and mild ventricular enlargement. The patient received radiosurgical treatment for brain metastasis; after this procedure a new target was defined on the floor of the third ventricle, in the midpoint between the mamillary bodies and the infundibular recess where we delivered 100 Gy delivered by an isocentric multiple noncoplanar arcs technique, with a 6 MV Novalis® dedicated LINAC. A series of 21 arcs was arranged with a radiation field generated by a 4 mm circular collimator. Results: One week pos-irradiation in the head CT we did not find significant changes in the metastatic lesions; however the VSI diminished 4%, despite of persistent aqueduct obliteration. At three months we perform 3.0 T MRI where we confirmed the presence of the third ventriculostomy (2.63 mm diameter). Conclusion: This report demonstrates, for the first time, the ability of a dedicated LINAC to perform a precise third ventriculostomy without associate morbility in short term. PMID:23226607

  11. Wakefields of a Beam near a Single Plate in a Flat Dechirper

    SciTech Connect

    Bane, Karl; Stupakov, Gennady

    2016-11-29

    At linac-based, X-ray free electron lasers (FELs), there is interest in streaking the beam by inducing the transverse wakes in a flat dechirper, by passing the beam near to one of its two jaws. For LCLS-II - as has already been done for LCLS-I - this way of using the dechirper will e.g. facilitate two-color and fresh slice schemes of running the FEL. With the beam a distance from the near wall of say b ~ 0.25 mm and from the far wall by ≳ 5 mm, the second wall will no longer affect the results. The physics will be quite different from the two plate case: with two plates the impedance has a resonance spike whose frequency depends on the plate separation 2a; in the single plate case this parameter no longer exists. Formulas for the longitudinal, dipole, and quadrupole wakes for a beam off-axis between two dechirper plates, valid for the range of bunch lengths of interest in an X-ray FEL, are given in reference 3. By taking the proper limit, we can obtain the corresponding wakes for a beam close to one dechirper plate and far from the other. This is the task we perform in this note.

  12. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  13. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    SciTech Connect

    Golge, S. Vlahovic, B.; Wojtsekhowski, B.

    2014-06-21

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +} beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  14. Time-resolved pump-probe experiments at the LCLS

    SciTech Connect

    Glownia, James; Cryan, J.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C.L.; Bostedt, C.; Bozek, J.; DiMauro, L.F.; Fang, L.; Frisch, J.; Gessner, O.; Guhr, M.; Hajdu, J.; Hertlein, M.P.; Hoener, M.; Huang, G.; Kornilov, O.; Marangos, J.P.; March, A.M.; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  15. Time-resolved pump-probe experiments at the LCLS.

    PubMed

    Glownia, James M; Cryan, J; Andreasson, J; Belkacem, A; Berrah, N; Blaga, C I; Bostedt, C; Bozek, J; DiMauro, L F; Fang, L; Frisch, J; Gessner, O; Gühr, M; Hajdu, J; Hertlein, M P; Hoener, M; Huang, G; Kornilov, O; Marangos, J P; March, A M; McFarland, B K; Merdji, H; Petrovic, V S; Raman, C; Ray, D; Reis, D A; Trigo, M; White, J L; White, W; Wilcox, R; Young, L; Coffee, R N; Bucksbaum, P H

    2010-08-16

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  16. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    SciTech Connect

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-14

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 10{sup 11} n/cm{sup 2}/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  17. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Golge, S.; Vlahovic, B.; Wojtsekhowski, B.

    2014-06-01

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e+ beam from the converter to the moderator, extraction of the e+ beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e+ from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  18. Positron microprobe at LLNL

    SciTech Connect

    Asoka, P; Howell, R; Stoeffl, W

    1998-11-01

    The electron linac based positron source at Lawrence Livermore National Laboratory (LLNL) provides the world's highest current beam of keV positrons. We are building a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with sub-micron resolution. The widely spaced and intense positron packets from the tungsten moderator at the end of the 100 MeV LLNL linac are captured and trapped in a magnetic bottle. The positrons are then released in 1 ns bunches at a 20 MHz repetition rate. With a three-stage re-moderation we will compress the cm-sized original beam to a 1 micro-meter diameter final spot on the target. The buncher will compress the arrival time of positrons on the target to less than 100 ps. A detector array with up to 60 BaF2 crystals in paired coincidence will measure the annihilation radiation with high efficiency and low background. The energy of the positrons can be varied from less than 1 keV up to 50 keV.

  19. Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials

    NASA Astrophysics Data System (ADS)

    Pujari, P. K.; Sudarshan, K.; Tripathi, R.; Dutta, D.; Maheshwari, P.; Sharma, S. K.; Srivastava, D.; Krause-Rehberg, R.; Butterling, M.; Anwand, W.; Wagner, A.

    2012-01-01

    This paper describes a new methodology for volumetric assay of defects in large engineering materials nondestructively. It utilizes high energy photons produced by nuclear reaction to create positrons in situ whose fate is followed using conventional positron spectroscopic techniques. The photon induced positron annihilation (PIPA) spectroscopy system has been set-up using a Folded Tandem Ion Accelerator (FOTIA). Possibility of using prompt γ-rays produced in nuclear reactions 27Al( 1H,γ) 28Si and 19F( 1H,αγ) 16O has been examined. The reaction 19F( 1H,αγ) 16O is seen to provide higher photon flux (and positron yield) and measurements have been carried out in large samples of metals and polymers. We could establish good sensitivity of the technique as well as reproducibility in a number of measurements. This technique has been used to carry out defect studies in cold worked zircaloy-2 plates. The measured S-parameter, indicative of defect concentration, was seen to correlate well with the measured residual stress using X-ray technique. The results were validated by γ-induced positron annihilation lifetime measurements at ELBE LINAC based GiPS facility.

  20. X-ray Sources by Energy Recovered Linacs and Their Needed R&D

    SciTech Connect

    Benson, Stephen; Douglas, David; Dowell, David; Hernandez-Garcia, Carlos; Kayran, D; Krafft, Geoffrey; Legg, Robert; Moog, E; Obina, T; Rimmer, Robert; Yakimenko, V

    2011-05-01

    In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersburg, Maryland on September 15- 17, 2009. A rst iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of ve to ten years.

  1. On the future of BNL user facilities

    SciTech Connect

    Ben-Zvi, I.

    2010-08-01

    The purpose of this document is to portray the emerging technology of high-power high-brightness electron beams. This new technology will impact several fields of science and it is essential that BNL stay abreast of the development. BNL has a relative advantage and vital interest in pursuing this technology that will impact its two major facilities, the NSLS and RHIC. We have a sensible development path towards this critical future technology, in which BNL will gradually acquire a strong basis of Superconducting Radio Frequency (SRF) technology while executing useful projects. The technology of high-power AND high-brightness (HPHB) electron beams is based of the convergence of two extant, but relatively recent technologies: Photoinjectors and superconducting energy-recovering linacs. The HPHB technology presents special opportunities for the development of future BNL user facilities for High-Energy and Nuclear Science (HE-NP) and Basic Energy Science (BES). In HE-NP this technology makes it possible to build high-energy electron cooling for RHIC in the short range and a unique linac-based electron-ion collider (eRHIC). In BES, we can build short pulse, coherent FIR sources and high flux femtosecond hard x-ray sources based on Compton scattering in the short range and, in the longer range, femtosecond, ultra-high brightness synchrotron light sources and, ultimately, an X-ray Free-Electron Laser (FEL).

  2. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    SciTech Connect

    Ng, C. K.; Bane, K. L.F.

    2015-06-09

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters long in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.

  3. A proposed VUV oscillator-based FEL upgrade at Jefferson Lab

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2011-09-20

    Advances in superconducting linac technology offer the possibility of an upgrade of the Jefferson Lab Free Electron Laser (JLab FEL) facility to an oscillator-based VUV-FEL that would produce 6 x 10{sup 12} coherent 100 eV photons per pulse at multi-MHz repetition rates in the fundamental. At present JLab operates a pair of oscillator-based continuous-wave Free Electron Lasers (FELs) as a linac-based next generation light source in the IR and UV, with sub-picosecond pulses up to 75 MHz. Harmonics upwards of 10 eV are produced and the fully coherent nature of the source results in peak and average brightness values that are several orders of magnitude higher than storage rings. The accelerator uses an energy recovered linac design for efficiency of operation. New style superconducting linac cryomodules with higher gradient, combined with a new injector and beam transport system allow the development of the FEL to higher photon energies.

  4. Tests of photocathodes for high repetition rate x-ray FELs at the APEX facility at LBNL

    NASA Astrophysics Data System (ADS)

    Sannibale, Fernando; Filippetto, Daniele; Qian, Houjun; Papadopoulos, Christos F.; Wells, Russell; Kramasz, Toby; Padmore, Howard; Feng, Jun; Nasiatka, James; Huang, Ruixuan; Zolotorev, Max; Staples, John W.

    2015-05-01

    After the formidable results of X-ray 4th generation light sources based on free electron lasers around the world, a new revolutionary step is undergoing to extend the FEL performance from the present few hundred Hz to MHz-class repetition rates. In such facilities, temporally equi-spaced pulses will allow for a wide range of previously non-accessible experiments. The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), is devoted to test the capability of a novel scheme electron source, the VHF-Gun, to generate the required electron beam brightness at MHz repetition rates. In linac-based FELs, the ultimate performance in terms of brightness is defined at the injector, and in particular, cathodes play a major role in the game. Part of the APEX program consists in testing high quantum efficiency photocathodes capable to operate at the conditions required by such challenging machines. Results and status of these tests at LBNL are presented.

  5. Radiation effects program

    NASA Astrophysics Data System (ADS)

    1985-09-01

    No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.

  6. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  7. Dechirper wakefields for short bunches

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Stupakov, Gennady

    2016-06-01

    In previous work (Bane and Stupakov, 2015 [1]) general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X-ray FELs-like the LCLS-is extremely short, and for short bunches the wakes can be considerably simplified. In this work, we first derive analytical approximations to the short-range wakes. These are generalized wakes, in the sense that their validity is not limited to a small neighborhood of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test particles. The validity of these short-bunch wakes holds not only for the corrugated structure, but rather for any flat structure whose beam-cavity interaction can be described by a surface impedance. We use these wakes to obtain, for a short bunch passing through a dechirper: estimates of the energy loss as function of gap, the transverse kick as a function of beam offset, the slice energy spread increase, and the emittance growth. In the Appendix, a more accurate derivation-than that is found in Bane and Stupakov (2015) [1]-of the arbitrary bunch length wakes is performed; we find full agreement with the earlier results, provided the bunches are short compared to the dechirper gap, which is normally the regime of interest.

  8. Beam tuning

    SciTech Connect

    Pardo, R.C.; Zinkann, G.P.

    1995-08-01

    A program for configuring the linac, based on previously run configurations for any desired beam was used during the past year. This program uses only a small number of empirical tunes to scale resonator fields to properly accelerate a beam with a different charge-to-mass (q/A) ratio from the original tune configuration. The program worked very well for the PII linac section where we can easily match a new beam`s arrival phase and velocity to the tuned value. It was also fairly successful for the Booster and ATLAS sections of the linac, but not as successful as for the PII linac. Most of the problems are associated with setting the beam arrival time correctly for each major linac section. This problem is being addressed with the development of the capacitive pickup beam phase monitor discussed above. During the next year we expect to improve our ability to quickly configure the linac for new beams and reduce the time required for linac tuning. Already the time required for linac tuning as a percentage of research hours has decreased from 22% in FY 1993 to 15% in the first quarter of FY 1995.

  9. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  10. A THz spectrometer combining the free electron laser FLARE with 33 T magnetic fields

    NASA Astrophysics Data System (ADS)

    Ozerov, M.; Bernáth, B.; Kamenskyi, D.; Redlich, B.; van der Meer, A. F. G.; Christianen, P. C. M.; Engelkamp, H.; Maan, J. C.

    2017-02-01

    The free electron laser Free electron Laser for Advanced spectroscopy and high Resolution Experiments (FLARE) at the FELIX Laboratory generates powerful radiation in the frequency range of 0.3-3 THz. This light, in combination with 33 T Bitter magnets at the High Field Magnet Laboratory, provides the unique opportunity to perform THz magneto spectroscopy with light intensities many orders of magnitude higher than provided by conventional sources. The performance of the THz spectrometer is measured via high-field electron spin resonance (ESR) in the paramagnetic benchmark system 2,2-diphenyl-1-picrylhydrazyl (DPPH). The narrow ESR linewidth of DPPH allows us to resolve a fine structure with 3 GHz spacing, demonstrating a considerable coherence of the individual THz micropulses of FLARE. The spectral resolution Δ ν / ν is better than 0.1%, which is an order of magnitude higher than typical values for a rf-linac based free electron laser. The observed coherence of the high power THz micropulses is a prerequisite for resonant control of matter, such as THz electron spin echo spectroscopy.

  11. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    SciTech Connect

    Yi, S; La Count, S; Liu, J; Bai, X; Lu, L

    2015-06-15

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types.

  12. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  13. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  14. The spatial accuracy of two frameless, linear accelerator-based systems for single-isocenter, multitarget cranial radiosurgery.

    PubMed

    Ezzell, Gary A

    2017-03-01

    Single-isocenter, multitarget cranial stereotactic radiosurgery (SRS) is more efficient than using an isocenter for each target, but spatial positioning uncertainties can be magnified at locations away from the isocenter. This study reports on the spatial accuracy of two frameless, linac-based SRS systems for multitarget, single-isocenter SRS as a function of distance from the isocenter. One system uses the ExacTrac platform for image guidance and the other localizes with cone beam computed tomography (CBCT). For each platform, a phantom with 12 target BBs distributed up to 13.8 cm from the isocenter was aligned starting from five different initial offsets and then imaged with the treatment beam at seven different gantry and couch angles. The distribution of the resulting positioning errors demonstrated the value of adding a 1-mm PTV margin for targets up to about 7-8 cm from the isocenter. For distances 10 cm or more, the CBCT-based alignment remained within 1.1 mm while the ExacTrac-based alignment differed by up to 2.2 mm.

  15. Outcome of Elderly Patients with Meningioma after Image-Guided Stereotactic Radiotherapy: A Study of 100 Cases

    PubMed Central

    Budach, Volker; Graaf, Lukas; Gollrad, Johannes; Badakhshi, Harun

    2015-01-01

    Introduction. Incidence of meningioma increases with age. Surgery has been the mainstay treatment. Elderly patients, however, are at risk of severe morbidity. Therefore, we conducted this study to analyze long-term outcomes of linac-based fractionated stereotactic radiotherapy (FSRT) for older adults (aged ≥65 years) with meningioma and determine prognostic factors. Materials and Methods. Between October 1998 and March 2009, 100 patients (≥65, median age, 71 years) were treated with FSRT for meningioma. Two patients were lost to follow-up. Eight patients each had grade I and grade II meningiomas, and five patients had grade III meningiomas. The histology was unknown in 77 cases (grade 0). Results. The median follow-up was 37 months, and 3-year, 5-year, and 10-year progression-free survival (PFS) rates were 93.7%, 91.1%, and 82%. Patients with grade 0/I meningioma showed 3- and 5-year PFS rates of 98.4% and 95.6%. Patients with grade II or III meningiomas showed 3-year PFS rates of 36%. 93.8% of patients showed local tumor control. Multivariate analysis did not indicate any significant prognostic factors. Conclusion. FSRT may play an important role as a noninvasive and safe method in the clinical management of older patients with meningioma. PMID:26101778

  16. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    SciTech Connect

    Cremer, T.; Tatchyn, R.

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  17. Longitudinal Profile Diagnostic Scheme with Subfemtosecond Resolution for High-Brightness Electron Beams

    SciTech Connect

    Andonian, G.; Hemsing, E.; Xiang, D.; Musumeci, P.; Murokh, A.; Tochitsky, S.; Rosenzweig, J.B.; /UCLA

    2012-05-03

    High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond) with exceptional temporal resolution (hundreds of attoseconds) and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution) horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow) angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  18. Commissioning of mini-multi-leaf-collimator (MMLC) for stereotactic radiosurgery and radiotherapy.

    PubMed

    Mardirossian, George; Urie, Marcia; Fitzgerald, Thomas J; Mayr, Nina; Montebello, Joseph; Lo, Yuan-Chynan

    2003-01-01

    Commissioning of a Radionics miniature multi-leaf collimator (MMLC) for stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) is reported. With single isocenter and multi static fields, the MMLC can provide better conformity of dose distributions to the target and/or irregularly shaped target volumes than standard arc (circular) field beams with multiple isocenters. Advantages offered by the MMLC over traditional LINAC based SRS and SRT includes greatly improved dose homogeneity to the target, reduced patient positioning time and reduced treatment time. In this work, the MMLC is attached to a Varian 2300 C/D with Varian 80-leaf multi-leaf collimator. The MMLC has 62 leaves, each measured to a width of 3.53 mm at isocenter, with fields range from 1x1 cm to less than 10 × 12 cm. Beam parameters required by the Radionics treatment planning system (XPlan version 2) for evaluating the dose include tissue maximum ratio (TMR), scatter factors (SF), off-axis ratios (OAR), output factors, penumbra function (P) and transmission factors (TF) are performed in this work. Beam data are acquired with a small stereotactic diode, standard ion chambers and radiographic films. Measured profiles of dose distribution are compared to those calculated by the software and absolute dosimetry is performed.

  19. Lightning control system using high power microwave FEL

    SciTech Connect

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    1995-12-31

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightning control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.

  20. Design study of the bending sections between harmonic cascade FEL stages

    SciTech Connect

    Wan, Weishi; Corlett, John; Fawley, William; Zholents, A.

    2004-06-30

    The present design of LUX (linac based ultra-fast X-ray facility) includes a harmonic cascade FEL chain to generate coherent EUV and soft X-ray radiation. Four cascade stages, each consisting of two undulators acting as a modulator and a radiator, respectively, are envisioned to produce photons of approximate wavelengths 48 nm, 12 nm, 4 nm and 1 nm. Bending sections may be placed between the modulator and the radiator of each stage to adjust and maintain bunching of the electrons, to separate, in space, photons of different wavelengths and to optimize the use of real estate. In this note, the conceptual design of such a bending section, which may be used at all four stages, is presented. Preliminary tracking results show that it is possible to maintain bunch structure of nm length scale in the presence of errors, provided that there is adequate orbit correction and there are 2 families of trim quads and trim skew quads, respectively, in each bending section.

  1. [Is medical linac suitable for high-precision stereotactic irradiation?: investigations in geometrical accuracies of gantry and couch].

    PubMed

    Kunieda, E; Kitamura, M; Kawaguchi, O; Ohira, T; Shigematsu, N; Tonai, T; Ando, Y; Kubo, A; Kawase, T

    1998-02-01

    Linac-based radiosurgery has many advantages over the gamma knife, including low initial cost and no need of source replacement. On the other hand, most of the medical linacs currently in use were not originally designed to be applied for radiosurgery, and, therefore, careful quality assurance programs are required. In the gantry-head of a linac, a small CCD video camera is mounted in a position optically identical to that of the x-ray source. The video signal from the camera was digitalized to be evaluated for geometrical errors. A metal ball fixed to the stereotactic base frame via XYZ-sliding rods was used as a simulated target. Displacements of the target from the isocenter were measured during rotation of the gantry. Displacements in the gantry-rotation plane were satisfactorily small, while those perpendicular to it were maximal at gantry position angles of 0 degree and 180 degrees. This error night be caused by gravitational vending of the heavy gantry head. Although other major errors of the linac were within one millimeter, the center of coach rotation around the isocenter did not coincide with the center of gantry rotation, probably owing to gravitational vending. Special care should be taken when very small collimators are employed.

  2. CONDITIONS FOR CSR MICROBUNCHING GAIN SUPPRESSION

    SciTech Connect

    Tsai, Cheng Ying; Douglas, David R.; Li, Rui; Tennant, Christopher D.; di Mitri, Simone

    2016-05-01

    The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as transport arcs, may result in phase space degradation. On one hand, the CSR can perturb electron transverse motion in dispersive regions along the beamline, causing emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching gain enhancement. For transport arcs, several schemes have been proposed* to suppress the CSR-induced emittance growth. Similarly, several scenarios have been introduced** to suppress CSR-induced microbunching gain, which however mostly aim for linac-based machines. In this paper we try to provide sufficient conditions for suppression of CSR-induced microbunching gain along a transport arc, analogous to*. Several example lattices are presented, with the relevant microbunching analyses carried out by our semi-analytical Vlasov solver***. The simulation results show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. We expect this analysis can shed light on lattice design approach that could suppress the CSR-induced microbunching gain.

  3. High Frequency Linacs for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Braccini, Saverio; Puggioni, Paolo

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: "paint" a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  4. Application of Histogram Analysis in Radiation Therapy (HART) in Intensity Modulation Radiation Therapy (IMRT) Treatments

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-03-01

    A carcinoma is a malignant cancer that emerges from epithelial cells in structures through out the body.It invades the critical organs, could metastasize or spread to lymph nodes.IMRT is an advanced mode of radiation therapy treatment for cancer. It delivers more conformal doses to malignant tumors sparing the critical organs by modulating the intensity of radiation beam.An automated software, HART (S. Jang et al.,2008,Med Phys 35,p.2812) was used for efficient analysis of dose volume histograms (DVH) for multiple targets and critical organs in four IMRT treatment plans for each patient. IMRT data for ten head and neck cancer patients were exported as AAPM/RTOG format files from a commercial treatment planning system at Northwestern Memorial Hospital (NMH).HART extracted DVH statistics were used to evaluate plan indices and to analyze dose tolerance of critical structures at prescription dose (PD) for each patient. Mean plan indices (n=10) were found to be in good agreement with published results for Linac based plans. The least irradiated volume at tolerance dose (TD50) was observed for brainstem and the highest volume for larynx in SIB treatment techniques. Thus HART, an open source platform, has extensive clinical implications in IMRT treatments.

  5. Electron Bunch Shape Measurements Using Electro-optical Spectral Decoding

    NASA Astrophysics Data System (ADS)

    Borysenko, A.; Hiller, N.; Müller, A.-S.; Steffen, B.; Peier, P.; Ivanisenko, Y.; Ischebeck, R.; Schlott, V.

    Longitudinal diagnostics of the electron bunch shapes play a crucial role in the operation of linac-based light sources. Electro-optical techniques allow us to measure the longitudinal electron bunch profiles non-destructively on a shot-by-shot basis. Here we present results from measurements of electron bunches with a length of 200-900 fs rms at the Swiss FEL Injector Test Facility. All the measurements were done using an Yb-doped fibre laser system (with a central wavelength of a 1050 nm) and a GaP crystal. The technique of electro-optical spectral decoding (EOSD) was applied and showed great capabilities to measure bunch shapes down to around 370 fs rms. Measurements were performed for different electron energies to study the expected distortions of the measured bunch profile due to the energy-dependent widening of the electric field, which plays a role for low beam energies below and around 40 MeV. The studies provide valuable input for the design of the EOSD monitors for the compact linear accelerator FLUTE that is currently under commissioning at the Karslruhe Institute of Technology (KIT).

  6. Neutron time-of-flight spectroscopy measurement using a waveform digitizer

    NASA Astrophysics Data System (ADS)

    Liu, Long-Xiang; Wang, Hong-Wei; Ma, Yu-Gang; Cao, Xi-Guang; Cai, Xiang-Zhou; Chen, Jin-Gen; Zhang, Gui-Lin; Han, Jian-Long; Zhang, Guo-Qiang; Hu, Ji-Feng; Wang, Xiao-He

    2016-05-01

    The photoneutron source (PNS, phase 1), an electron linear accelerator (linac)-based pulsed neutron facility that uses the time-of-flight (TOF) technique, was constructed for the acquisition of nuclear data from the Thorium Molten Salt Reactor (TMSR) at the Shanghai Institute of Applied Physics (SINAP). The neutron detector signal used for TOF calculation, with information on the pulse arrival time, pulse shape, and pulse height, was recorded by using a waveform digitizer (WFD). By using the pulse height and pulse-shape discrimination (PSD) analysis to identify neutrons and γ-rays, the neutron TOF spectrum was obtained by employing a simple electronic design, and a new WFD-based DAQ system was developed and tested in this commissioning experiment. The DAQ system developed is characterized by a very high efficiency with respect to millisecond neutron TOF spectroscopy. Supported by Strategic Priority Research Program of the Chinese Academy of Science(TMSR) (XDA02010100), National Natural Science Foundation of China(NSFC)(11475245,No.11305239), Shanghai Key Laboratory of Particle Physics and Cosmology (11DZ2260700)

  7. Analysis of High Order Modes in 1.3 GHZ CW SRF Electron Linac for a Light Source

    SciTech Connect

    Sukhanov, A.; Vostrikov, A.; Yakovlev, V.

    2013-01-01

    Design of a Light Source (LS) based on the continuous wave superconducting RF (CW SRF) electron linac is currently underway. This facility will provide soft coherent X-ray radiation for a braod spectrum of basic research applications. Quality of the X-ray laser radiation is affected by the electron beam parameters such as the stability of the transverse beam position and longitudinal and transverse beam emittances. High order modes (HOMs) excited in the SRF structures by a passing beam may deteriorate the beam quality and affect the beam stability. Deposition of HOM energy in the walls of SRF cavities adds to the heat load of he cryogenic system and leads to the increased cost of building and operation of the linac. In this paper we evaluate effects of HOMs in an LS CW SRF linac based on Tesla-type 9-cell 1.3 GHz cavities. We analyze non-coherent losses and resonance excitation of HOMs. We estimate heat load due to the very high frequency HOMs. We study influence of the HOMs on the transverse beam dynamics.

  8. High-intensity positron microprobe at Jefferson Lab

    DOE PAGES

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themore » beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  9. Assessments of Sequential Intensity Modulated Radiation Therapy Boost (SqIB) Treatments Using HART

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    A retrospective study was pursued to evaluate the SqIB treatments performed on ten head and neck cancer patients(n=10).Average prescription doses (PDs) of 39 Gy,15Gy and 17.8Gy were delivered consecutively from larger to smaller planning target volumes(ptvs) in three different treatment plans using 6 MV X-ray photon beams from a Linear accelerator (SLA Linac, Elekta) on BID weak on-weak off schedules. These plans were statistically evaluated on basis of plan indices (PIs),dose response of targets and critical structures, and dose tolerance(DT) of various organs utilizing the DVH analysis automated software known as Histogram Analysis in Radiation Therapy-HART(S.Jang et al., 2008, Med Phys 35, p.2812). Mean SqIB PIs were found consistent with the reported values for varying radio-surgical systems.The 95.5%(n=10)of each ptvs and the gross tumor volume also received 95% (n=10)of PDs in treatments. The average volume of ten organs (N=10) affected by each PDs shrank with decreasing size of ptvs in above plans.A largest volume of Oropharynx (79%,n=10,N=10) irradiated at PD, but the largest volume of Larynx (98%, n=10, N=10) was vulnerable to DT of structure (TD50).Thus, we have demonstrated the efficiency and accuracy of HART in the assessment of Linac based plans in radiation therapy treatments of cancer.

  10. Microbunching Instability due to Bunch Compression

    SciTech Connect

    Huang, Zhirong; Wu, Juhao; Shaftan, Timur; /Brookhaven

    2005-12-13

    Magnetic bunch compressors are designed to increase the peak current while maintaining the transverse and longitudinal emittances in order to drive a short-wavelength free electron laser (FEL). Recently, several linac-based FEL experiments observe self-developing micro-structures in the longitudinal phase space of electron bunches undergoing strong compression [1-3]. In the mean time, computer simulations of coherent synchrotron radiation (CSR) effects in bunch compressors illustrate that a CSR-driven microbunching instability may significantly amplify small longitudinal density and energy modulations and hence degrade the beam quality [4]. Various theoretical models have since been developed to describe this instability [5-8]. It is also pointed out that the microbunching instability may be driven strongly by the longitudinal space charge (LSC) field [9,10] and by the linac wakefield [11] in the accelerator, leading to a very large overall gain of a two-stage compression system such as found in the Linac Coherent Light Source (LCLS) [12]. This paper reviews theory and simulations of microbunching instability due to bunch compression, the proposed method to suppress its effects for short-wavelength FELs, and experimental characterizations of beam modulations in linear accelerators. A related topic of interests is microbunching instability in storage rings, which has been reported in the previous ICFA beam dynamics newsletter No. 35 (http://wwwbd. fnal.gov/icfabd/Newsletter35.pdf).

  11. The Japanese Positron Factory

    NASA Astrophysics Data System (ADS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.

    1999-06-01

    The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.

  12. lightsources.org: An Internet Site for Light SourceCommunication

    SciTech Connect

    Robinson, Art

    2004-10-04

    Research at the world's accelerator- (storage-ring and linac) based light sources is one of the most dynamic and rapidly growing fields of science. It frequently results in direct benefits to society, thereby demonstrating the value of the research with very concrete examples, but this is not widely understood or appreciated outside of the immediate user community. Our growing group of light source communicators from facilities in Europe, Asia, and the Americas, inspired by the Interactions.org Web site created by high-energy (elementary-particle)physics communicators, concluded that a light source community Web site (lightsources.org) would be the best tool for establishing effective collaboration between the communications offices of the world's light sources and to maximize the impact of our efforts. We envision lightsources.org to serve as a one-stop-shopping site for information about all aspects of light sources and the research they make possible. Audiences to be served include science communicators, the press, policymakers, the light source community, the wider scientific community, the science-interested public, and students and educators. Our proposal has been sent to the world's light source facility directors by J. Murray Gibson (APS) and William G. Stirling (ESRF). As a result,light sources.org is now being supported by a growing list of facilities from Europe, North America, and Asia. We hope to launch lightsources.org before the end of 2004.

  13. Calorimetry Triggering in ATLAS

    SciTech Connect

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; /UC, Irvine /AGH-UST, Cracow /Birmingham U. /Barcelona, IFAE /CERN /Birmingham U. /Rutherford /Montreal U. /Santa Maria U., Valparaiso /DESY /DESY, Zeuthen /Geneva U. /City Coll., N.Y. /Barcelona, IFAE /CERN /Birmingham U. /Kirchhoff Inst. Phys. /Birmingham U. /Lisbon, LIFEP /Rio de Janeiro Federal U. /City Coll., N.Y. /Birmingham U. /Copenhagen U. /Copenhagen U. /Brookhaven /Rutherford /Royal Holloway, U. of London /Pennsylvania U. /Montreal U. /SLAC /CERN /Michigan State U. /Chile U., Catolica /City Coll., N.Y. /Oxford U. /La Plata U. /McGill U. /Mainz U., Inst. Phys. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Queen Mary, U. of London /CERN /Rutherford /Rio de Janeiro Federal U. /Birmingham U. /Montreal U. /CERN /Kirchhoff Inst. Phys. /Liverpool U. /Royal Holloway, U. of London /Pennsylvania U. /Kirchhoff Inst. Phys. /Geneva U. /Birmingham U. /NIKHEF, Amsterdam /Rutherford /Royal Holloway, U. of London /Rutherford /Royal Holloway, U. of London /AGH-UST, Cracow /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Birmingham U. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Kirchhoff Inst. Phys. /Michigan State U. /Stockholm U. /Stockholm U. /Birmingham U. /CERN /Montreal U. /Stockholm U. /Arizona U. /Regina U. /Regina U. /Rutherford /NIKHEF, Amsterdam /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /City Coll., N.Y. /University Coll. London /Humboldt U., Berlin /Queen Mary, U. of London /Argonne /LPSC, Grenoble /Arizona U. /Kirchhoff Inst. Phys. /Birmingham U. /Antonio Narino U. /Hamburg U. /DESY /DESY, Zeuthen /Kirchhoff Inst. Phys. /Birmingham U. /Chile U., Catolica /Indiana U. /Manchester U. /Kirchhoff Inst. Phys. /Rutherford /City Coll., N.Y. /Stockholm U. /La Plata U. /Antonio Narino U. /Queen Mary, U. of London /Kirchhoff Inst. Phys. /Antonio Narino U. /Pavia U. /City Coll., N.Y. /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Pennsylvania U. /Barcelona, IFAE /Barcelona, IFAE /Chile U., Catolica /Genoa U. /INFN, Genoa /Rutherford /Barcelona, IFAE /Nevis Labs, Columbia U. /CERN /Antonio Narino U. /McGill U. /Rutherford /Santa Maria U., Valparaiso /Rutherford /Chile U., Catolica /Brookhaven /Oregon U. /Mainz U., Inst. Phys. /Barcelona, IFAE /McGill U. /Antonio Narino U. /Antonio Narino U. /Kirchhoff Inst. Phys. /Sydney U. /Rutherford /McGill U. /McGill U. /Pavia U. /Genoa U. /INFN, Genoa /Kirchhoff Inst. Phys. /Kirchhoff Inst. Phys. /Mainz U., Inst. Phys. /Barcelona, IFAE /SLAC /Stockholm U. /Moscow State U. /Stockholm U. /Birmingham U. /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /Birmingham U. /Geneva U. /Oregon U. /Barcelona, IFAE /University Coll. London /Royal Holloway, U. of London /Birmingham U. /Mainz U., Inst. Phys. /Birmingham U. /Birmingham U. /Oregon U. /La Plata U. /Geneva U. /Chile U., Catolica /McGill U. /Pavia U. /Barcelona, IFAE /Regina U. /Birmingham U. /Birmingham U. /Kirchhoff Inst. Phys. /Oxford U. /CERN /Kirchhoff Inst. Phys. /UC, Irvine /UC, Irvine /Wisconsin U., Madison /Rutherford /Mainz U., Inst. Phys. /CERN /Geneva U. /Copenhagen U. /City Coll., N.Y. /Wisconsin U., Madison /Rio de Janeiro Federal U. /Wisconsin U., Madison /Stockholm U. /University Coll. London

    2011-12-08

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  14. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-02-09

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system.

  15. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  16. The importance of high-precision hadronic calorimetry to physics

    NASA Astrophysics Data System (ADS)

    Hauptman, John

    2016-11-01

    The reconstruction and high-precision measurement of the four-vectors of W and Z decays to quarks, which constitute nearly 70% of their decay branching fractions, are critical to a high efficiency and high quality experiment. Furthermore, it is crucial that the energy resolution, and consequently the resolution on the invariant mass of the two fragmenting quarks, is comparable to the energy-momentum resolution on the other particles of the standard model, in particular, electrons, photons, and muons, at energies around 100 GeV. I show that this “unification of resolutions” on all particles of the standard model is now in sight, and will lead to excellent physics at an electron-positron collider.

  17. Facile strain analysis of largely bending films by a surface-labelled grating method

    PubMed Central

    Akamatsu, Norihisa; Tashiro, Wataru; Saito, Keisuke; Mamiya, Jun-ichi; Kinoshita, Motoi; Ikeda, Tomiki; Takeya, Jun; Fujikawa, Shigenori; Priimagi, Arri; Shishido, Atsushi

    2014-01-01

    Mechanical properties of flexible films, for example surface strain of largely bending films, are key to design of stretchable electronic devices, wearable biointegrated devices, and soft microactuators/robots. However, existing methods are mainly based on strain-gauge measurements that require miniaturized array sensors, lead wires, and complicated calibrations. Here we introduce a facile method, based on surface-labelled gratings, for two-dimensional evaluation of surface strains in largely bending films. With this technique, we demonstrate that soft-matter mechanics can be distinct from the mechanics of hard materials. In particular, liquid-crystalline elastomers may undergo unconventional bending in three dimensions, in which both the inner and outer surfaces of the bending film are compressed. We also show that this method can be applied to amorphous elastomeric films, which highlights the general importance of this new mechanical evaluation tool in designing soft-matter-based electronic/photonic as well as biointegrated materials. PMID:24948462

  18. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts.

    PubMed

    Hutchings, Gregory S; Zhang, Yan; Li, Jian; Yonemoto, Bryan T; Zhou, Xinggui; Zhu, Kake; Jiao, Feng

    2015-04-01

    Oxygen evolution from water poses a significant challenge in solar fuel production because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen evolution reaction (OER). Here, a new strategy was developed to synthesize nonsupported ultrasmall cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.023 per second per cobalt in photocatalytic water oxidation. X-ray absorption results suggested a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen in an octahedral arrangement to form 8 Co4O4 cubanes, which may be responsible for the exceptionally high OER activity.

  19. Spectral Description of Multi-Photon Processes in Quantized Many-Electron Systems Based on a Reduced-Density-Matrix Approach

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2015-05-01

    The frequency-dependent transition rates for multi-photon processes in quantized many-electron systems are evaluated using a reduced-density-matrix approach. A fundamental foundation, based on quantum electrodynamics, is provided for systematic spectral simulations for electromagnetic interactions in quantized many-electron systems, including atomic, molecular, and solid-state systems. A perturbation expansion of the frequency-domain Liouville-space self-energy operator is employed in detailed evaluations of the spectral-line shapes. The self-energy contributions associated with environmental electron-photon and electron-phonon interactions are systematically taken into account. Detailed evaluations have been carried out for the spectral-line widths and shifts in the diagonal-resolvent, lowest order (Born), and short-memory-time (Markov) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  20. Unique properties of graphene quantum dots and their applications in photonic/electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Ho

    2017-03-01

    In recent years, graphene quantum dots (GQDs) have been recognized as an attractive building block for electronic, photonic, and bio-molecular device applications. This paper reports the current status of studies on the novel properties of GQDs and their hybrids with conventional and low-dimensional materials for device applications. In this review, more emphasis is placed on the structural, electronic, and optical properties of GQDs, and device structures based on the combination of GQDs with various semiconducting/insulating materials such as graphene, silicon dioxide, Si quantum dots, silica nanoparticles, organic materials, and so on. Because of GQDs’ unique properties, their hybrid structures are employed in high-efficiency devices, including photodetectors, solar cells, light-emitting diodes, flash memory, and sensors.

  1. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    PubMed

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  2. Compact Photon Source for Polarized Target Experiments

    NASA Astrophysics Data System (ADS)

    Niculescu, Gabriel; Wojtsekhowski, Bogdan

    2017-01-01

    High energy photon beams are one of the tools of choice in nuclear and particle physics. However, most of the current techniques used for producing such beams have substantial drawbacks that limit their usefulness (low intensity, large beam size, mixed electron-photon beams). In this presentation we will outline the design of a Compact Photon Source (CPS) capable of providing narrow ( 1 mm) untagged photon beams of an intensity suitable for carrying out polarized target experiments. Compared with existing technology the CPS will provide a substantial (10-100) increase in the figure-of-merit. While optimized for a Wide Angle Compton Scattering experiment proposed at JLab, the source described here can be used in a variety of photon-induced physics experiments as well as for industrial applications.

  3. Spectrally and Spatially Resolved Smith-Purcell Radiation in Plasmonic Crystals with Short-Range Disorder

    NASA Astrophysics Data System (ADS)

    Kaminer, I.; Kooi, S. E.; Shiloh, R.; Zhen, B.; Shen, Y.; López, J. J.; Remez, R.; Skirlo, S. A.; Yang, Y.; Joannopoulos, J. D.; Arie, A.; Soljačić, M.

    2017-01-01

    Electrons interacting with plasmonic structures can give rise to resonant excitations in localized plasmonic cavities and to collective excitations in periodic structures. We investigate the presence of resonant features and disorder in the conventional Smith-Purcell effect (electrons interacting with periodic structures) and observe the simultaneous excitation of both the plasmonic resonances and the collective excitations. For this purpose, we introduce a new scanning-electron-microscope-based setup that allows us to probe and directly image new features of electron-photon interactions in nanophotonic structures like plasmonic crystals with strong disorder. Our work creates new possibilities for probing nanostructures with free electrons, with potential applications that include tunable sources of short-wavelength radiation and plasmonic-based particle accelerators.

  4. Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence.

    PubMed

    Yeh, Te-Fu; Huang, Wei-Lun; Chung, Chung-Jen; Chiang, I-Ting; Chen, Liang-Che; Chang, Hsin-Yu; Su, Wu-Chou; Cheng, Ching; Chen, Shean-Jen; Teng, Hsisheng

    2016-06-02

    Investigating quantum confinement in graphene under ambient conditions remains a challenge. In this study, we present graphene oxide quantum dots (GOQDs) that show excitation-wavelength-independent photoluminescence. The luminescence color varies from orange-red to blue as the GOQD size is reduced from 8 to 1 nm. The photoluminescence of each GOQD specimen is associated with electron transitions from the antibonding π (π*) to oxygen nonbonding (n-state) orbitals. The observed quantum confinement is ascribed to a size change in the sp(2) domains, which leads to a change in the π*-π gap; the n-state levels remain unaffected by the size change. The electronic properties and mechanisms involved in quantum-confined photoluminescence can serve as the foundation for the application of oxygenated graphene in electronics, photonics, and biology.

  5. Insights derived from hydrodynamic interpretations of atomic-scale interactions

    NASA Astrophysics Data System (ADS)

    Schultz, David

    2014-05-01

    Many of the properties and much of the behavior of gaseous or plasma environments are governed by interactions at the atomic-scale, that is, interactions among electrons, photons, ions, atoms, and molecules. New insight into the fundamental dynamics of these interactions, such as how energy and momentum are transferred, can be gained by considering a hydrodynamic view of the evolution of the electronic probability density. In particular, the creation, evolution, interaction, dissipation, and asymptotic survival of zeroes of the probability density, and the corresponding vortices in the electronic probability current, play significant and often dominant roles in energy and momentum transfer that has not heretofore been well recognized. Recent work to elucidate the role of these phenomena in atomic collisions and photoionization will be described as well as collaboration with the Frankfurt group to experimentally demonstrate the persistence of the predicted zeroes to macroscopic scales in reaction microscope measurements.

  6. High spatial and temporal resolution photon/electron counting detector for synchrotron radiation research

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Lebedev, G. V.; Siegmund, O. H. W.; Vallerga, J. V.; Hull, J. S.; McPhate, J. B.; Jozwiak, C.; Chen, Y.; Guo, J. H.; Shen, Z. X.; Hussain, Z.

    2007-10-01

    This paper reports on the development of a high resolution electron/photon/ion imaging system which detects events with a timing accuracy of <160 ps FWHM and a two-dimensional spatial accuracy of ˜50 μm FWHM. The event counting detector uses microchannel plates for signal amplification and can sustain counting rates exceeding 1.5 MHz for evenly distributed events (0.4 MHz with 10% dead time for randomly distributed events). The detector combined with a time-of-flight angular resolved photoelectron energy analyzer was tested at a synchrotron beamline. The results of these measurements illustrate the unique capabilities of the analytical system, allowing simultaneous imaging of photoelectrons in momentum space and measurement of the energy spectrum, as well as filtering the data in user defined temporal and/or spatial windows.

  7. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon

    NASA Astrophysics Data System (ADS)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Stehlik, J.; Edge, L. F.; Petta, J. R.

    2017-01-01

    We demonstrate a hybrid device architecture where the charge states in a double quantum dot (DQD) formed in a Si/SiGe heterostructure are read out using an on-chip superconducting microwave cavity. A quality factor Q = 5400 is achieved by selectively etching away regions of the quantum well and by reducing photon losses through low-pass filtering of the gate bias lines. Homodyne measurements of the cavity transmission reveal DQD charge stability diagrams and a charge-cavity coupling rate g c / 2 π = 23 MHz. These measurements indicate that electrons trapped in a Si DQD can be effectively coupled to microwave photons, potentially enabling coherent electron-photon interactions in silicon.

  8. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2017-03-21

    In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter-photon problems. We analyze model systems in optical cavities, where the matter-photon interaction is considered from the weak- to the strong-coupling limit and for individual photon modes as well as for the multimode case. We identify fundamental changes in Born-Oppenheimer surfaces, spectroscopic quantities, conical intersections, and efficiency for quantum control. We conclude by applying our recently developed quantum-electrodynamical density-functional theory to spontaneous emission and show how a straightforward approximation accurately describes the correlated electron-photon dynamics. This work paves the way to describe matter-photon interactions from first principles and addresses the emergence of new states of matter in chemistry and material science.

  9. Future nano- and micro-systems using nanobonding technologies

    SciTech Connect

    Howlader, Matiar M. R. E-mail: jamal@mcmaster.ca; Deen, M. Jamal E-mail: jamal@mcmaster.ca

    2014-03-31

    In this paper, some of the recent achievements in surface-activation-based nanobonding technology are described. This bonding technology allows for the combination of electronic, photonic, fluidic and mechanical functionalities into small form-factor systems for emerging applications in health diagnostics and screening, for example. These nanobonding technologies provide void-free, strong, and nanoscale bonding at room temperature or at low temperatures (<200 °C), and they do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to the covalent bonds, and hydrogen and hydroxyl bonds, respectively, which gives rise to excellent bonding properties. Further, these nanobonding technologies are well-suited for the development of low-cost, high-performance miniaturized systems such as biophotonic imaging systems.

  10. Competition of static magnetic and dynamic photon forces in electronic transport through a quantum dot.

    PubMed

    Rauf Abdullah, Nzar; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2016-09-21

    We investigate theoretically the balance of the static magnetic and the dynamical photon forces in the electron transport through a quantum dot in a photon cavity with a single photon mode. The quantum dot system is connected to external leads and the total system is exposed to a static perpendicular magnetic field. We explore the transport characteristics through the system by tuning the ratio, [Formula: see text], between the photon energy, [Formula: see text], and the cyclotron energy, [Formula: see text]. Enhancement in the electron transport with increasing electron-photon coupling is observed when [Formula: see text]. In this case the photon field dominates and stretches the electron charge distribution in the quantum dot, extending it towards the contact area for the leads. Suppression in the electron transport is found when [Formula: see text], as the external magnetic field causes circular confinement of the charge density around the dot.

  11. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    SciTech Connect

    Not Available

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  12. The use of Monte Carlo technique to optimize the dose distribution in total skin irradiation

    NASA Astrophysics Data System (ADS)

    Poli, M. E. R.; Pereira, S. A.; Yoriyaz, H.

    2001-06-01

    Cutaneous T-cell lymphoma (mycosis fungoides) is an indolent disease with a low percentage of cure. Total skin irradiation using an electron beam has become an efficient treatment of mycosis fungoides with curative intention, with success in almost 40% of the patients. In this work, we propose the use of a Monte Carlo technique to simulate the dose distribution in the patients during total skin irradiation treatments. Use was made of MCNP-4B, a well known and established code used to simulate transport of electrons, photons and neutrons through matter, especially in the area of reactor physics, and also finding increasing utility in medical physics. The goal of our work is to simulate different angles between each beam with a fixed treatment distance in order to obtain a uniform dose distribution in the patient.

  13. The Irradiation Effect of a Simultaneous Laser and Electron Dual-beam on Void Formation

    PubMed Central

    Yang, Zhanbing; Watanabe, Seiichi; Kato, Takahiko

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void formation. Our results reveal that during laser-electron sequential irradiation, pre-laser irradiation enhanced void nucleation and subsequent electron irradiation enhanced void growth. However, the laser-electron dual-beam irradiation was analyzed to depress void swelling remarkably because the recombination of SVs and interstitials was enhanced. The results provide insight into the mechanism underlying the dual-beam radiation-induced depression of void swelling in solids. PMID:23383371

  14. Transport properties of quark and gluon plasmas

    SciTech Connect

    Heiselberg, H.

    1993-12-01

    The kinetic properties of relativistic quark-gluon and electron-photon plasmas are described in the weak coupling limit. The troublesome Rutherford divergence at small scattering angles is screened by Debye screening for the longitudinal or electric part of the interactions. The transverse or magnetic part of the interactions is effectively screened by Landau damping of the virtual photons and gluons transferred in the QED and QCD interactions respectively. Including screening a number of transport coefficients for QCD and QED plasmas can be calculated to leading order in the interaction strength, including rates of momentum and thermal relaxation, electrical conductivity, viscosities, flavor and spin diffusion of both high temperature and degenerate plasmas. Damping of quarks and gluons as well as color diffusion in quark-gluon plasmas is, however, shown not to be sufficiently screened and the rates depends on an infrared cut-off of order the ``magnetic mass,`` m{sub mag} {approximately} g{sup 2}T.

  15. Cobalt-60 simulation of LOCA (loss of coolant accident) radiation effects

    SciTech Connect

    Buckalew, W.H.

    1989-07-01

    The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs.

  16. Piezoelectric properties of diphenylalanine microtubes prepared from the solution

    NASA Astrophysics Data System (ADS)

    Vasilev, Semen; Zelenovskiy, Pavel; Vasileva, Daria; Nuraeva, Alla; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2016-06-01

    Biomimetic self-assembling peptides form a variety of structures that can be used for the fabrication of functional devices. We are witnessing the emergence of a new era of bionanotechnology that opens up new possibilities for novel electronic, photonic and energy functionalities based on supramolecular green and lightweight structures. In this work, we study the emergent piezoelectric properties of linear dipeptide diphenylalanine (FF) that can self-assemble in the shape of microtubes. The matrix of piezoelectric coefficients is derived for the first time based on the hexagonal symmetry of FF structures and different configurations of the tubes are tested by the advanced Piezoresponse Force Microscopy (PFM). Strong piezoelectric anisotropy of piezoelectric coefficients is explained by the self-assembled structure of FF peptides. Possible applications of piezoelectric microtubes in functional devices are discussed.

  17. MUSiC - A Generic Search for Deviations from Monte Carlo Predictions in CMS

    NASA Astrophysics Data System (ADS)

    Hof, Carsten

    2009-05-01

    We present a model independent analysis approach, systematically scanning the data for deviations from the Standard Model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. We outline the importance of systematic uncertainties, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving supersymmetry and new heavy gauge bosons have been used as an input to the search algorithm.

  18. MUSiC - A general search for deviations from monte carlo predictions in CMS

    NASA Astrophysics Data System (ADS)

    Biallass, Philipp A.; CMS Collaboration

    2009-06-01

    A model independent analysis approach in CMS is presented, systematically scanning the data for deviations from the Monte Carlo expectation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving Supersymmetry and new heavy gauge bosons are used as an input to the search algorithm.

  19. Nanomaterials for optical data storage

    NASA Astrophysics Data System (ADS)

    Gu, Min; Zhang, Qiming; Lamon, Simone

    2016-12-01

    The growing amount of data that is generated every year creates an urgent need for new and improved data storage methods. Nanomaterials, which have unique mechanical, electronic and optical properties owing to the strong confinement of electrons, photons and phonons at the nanoscale, are enabling the development of disruptive methods for optical data storage with ultra-high capacity, ultra-long lifetime and ultra-low energy consumption. In this Review, we survey recent advancements in nanomaterials technology towards the next generation of optical data storage systems, focusing on metallic nanoparticles, graphene and graphene oxide, semiconductor quantum dots and rare-earth-doped nanocrystals. We conclude by discussing the use of nanomaterials in data storage systems that do not rely on optical mechanisms and by surveying the future prospects for the field.

  20. Transverse shape of the electron

    SciTech Connect

    Hoyer, Paul; Kurki, Samu

    2010-01-01

    We study the charge density, form factors and spin distributions of the electron induced by its |e{gamma}> light-front Fock state in impact parameter space. Only transversally compact Fock states contribute to the leading behavior of the Dirac and Pauli form factors as the momentum transfer tends to infinity. Power suppressed contributions are not compact, and distributions weighted by the transverse size have endpoint contributions. The Fock state conserves the spin of the parent electron locally, but the separate contributions of the electron, photon, and orbital angular momentum depend on longitudinal momentum and impact parameter. The sign of the anomalous magnetic moment of the electron may be understood intuitively from the density distribution, addressing a challenge by Feynman.

  1. Characterization of rare-earth-doped nanophosphors for photodynamic therapy excited by clinical ionizing radiation beams

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Najmr, Stan; Paik, Taejong; Tenuto, Michael E.; Murray, Christopher B.; Finlay, Jarod C.; Friedberg, Joseph S.

    2015-03-01

    We investigated the optical properties of novel terbium (Tb3+)-doped nanophosphors with various host compounds irradiated by clinical electron, photon, and proton beams for their potential as optical probes. The emission spectra of nanophosphors embedded in tissue-mimicking phantoms were collected by an optical fiber connected to a CCD-coupled spectrograph while the samples were irradiated with electron and photon beams generated by a medical linear accelerator and proton beams generated by a clinical cyclotron. We characterized the luminescence of such nanophosphors as a function of the beam energy and observed a dose dependency of the luminescence signal. We demonstrated x-ray luminescence, cathodoluminescence, and ionoluminescence of the nanophosphors in clinical ionizing radiation fields, which indicates their potential as downconverters of high-energy radiation into visible light.

  2. Influence of the vacuum-lunar regolith interface on the generation of radio emission by a cascade shower from an ultrahigh-energy particle

    SciTech Connect

    Filonenko, A. D.

    2012-03-15

    We present the results of our calculation of the radio emission field produced by an electron-photon shower from an ultrahigh-energy particle under the surface of the Moon. We consider two cases of cascade propagation: the first in the lunar regolith-vacuum direction at small angles to the interface; and the second in the opposite direction when the particle generates a cascade almost immediately after it has crossed the vacuum-regolith interface. To calculate the relative energy density of the emission emerged at the surface, we have used the method of decomposing spherical waves into plane ones. The intensity of the refracted waves for high frequencies has been found to depend strongly on the shower inclination angle.

  3. Comparison of experimental pulse-height distributions in germanium detectors with integrated-tiger-series-code predictions

    SciTech Connect

    Beutler, D.E.; Halbleib, J.A. ); Knott, D.P. )

    1989-12-01

    This paper reports pulse-height distributions in two different types of Ge detectors measured for a variety of medium-energy x-ray bremsstrahlung spectra. These measurements have been compared to predictions using the integrated tiger series (ITS) Monte Carlo electron/photon transport code. In general, the authors find excellent agreement between experiments and predictions using no free parameters. These results demonstrate that the ITS codes can predict the combined bremsstrahlung production and energy deposition with good precision (within measurement uncertainties). The one region of disagreement observed occurs for low-energy (<50 keV) photons using low-energy bremsstrahlung spectra. In this case the ITS codes appear to underestimate the produced and/or absorbed radiation by almost an order of magnitude.

  4. A Characterization of the Radiation from a Rod-Pinch

    NASA Astrophysics Data System (ADS)

    Swanekamp, S. B.; Allen, R. J.; Hinshelwood, D. D.; Mosher, D.; Schumer, J. W.; Young, F. C.

    2001-10-01

    The rod pinch diode is being developed as an intense, x-ray source for high-resolution flash radiography. Recent experiments on the Asterix pulsed-power generator at the CEG in France have demonstrated rod-pinch operation with 2-4 MV endpoint voltages and have demonstrated doses of = 5-23 rads-Si at 1 meter with a 1-mm diameter spot size. A series of = simulations with the Integrated Tiger Series (ITS) electron/photon transport code = were performed to characterize the radiation from a rod-pinch. The electron-energy and incident-angle distributions on the tungsten rod = were input to ITS from MAGIC PIC predictions. These simulations give = information about the angular dependence of the radiation from the rod-pinch and the axial extent of the radiation source. The results from these simulations will be compared with radiation measurements from Asterix.

  5. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential

    NASA Astrophysics Data System (ADS)

    Santos, A.; Deen, M. J.; Marsal, L. F.

    2015-01-01

    In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine.

  6. Coupling efficiency of monolithic, waveguide-integrated Si photodetectors

    NASA Astrophysics Data System (ADS)

    Ahn, Donghwan; Hong, Ching-yin; Kimerling, Lionel C.; Michel, Jurgen

    2009-02-01

    A waveguide-integrated photodetector provides a small-footprint, low-capacitance design that overcomes the bandwidth-efficiency trade-off problem of free space optics. High performance silicon devices are critical to the emergence of electronic-photonic integrated circuits on the complementary metal oxide semiconductor platform. We have fabricated vertical p-i-n silicon photodetectors that are monolithically integrated with compact silicon oxynitride channel waveguides. We report over 90% coupling efficiency of 830 nm light from the silicon oxynitride (SiOxNy) channel waveguide to the silicon photodetector. We analyze the dependence of coupling on waveguide index by comparing coupling from low index-contrast waveguides and high index-contrast waveguides.

  7. Multi-function Mach-Zehnder modulator for pulse shaping and generation.

    PubMed

    Gao, Jing; Wu, Hui

    2016-09-19

    We present a multi-function electronic-photonic integrated circuit (EPIC) design which exploits a new operation mode of a Mach-Zehnder modulator (MZM). Different from the conventional design, the two arms of the modulator are driven by time-shifted signals of tunable amplitude. We study its operation in the linear and quadratic regions where the MZM is biased at π/2 and π initial phase difference, respectively. In the linear region, the modulator sums the waveforms of the driving signals in the two arms, which can be used to add pre-emphasis function to the modulator, and hence it obviates an electrical pre-emphasis driver. Furthermore, when operating in the quadratic region, the modulator can produce optical pulses with tunable pulse width at double clock rate. Prototype circuits are designed first using a suit of device, electromagnetic simulators to build compact models, and then importing into a photonic circuit simulator for complete circuit performance evaluation.

  8. Heavy Particle Collision Data for Fusion and Astrophysics

    SciTech Connect

    Schultz, David R.

    2011-05-11

    A wide range of applications, for example, diagnostics and modeling of fusion plasmas, interpretation of astronomical observations and modeling of astrophysical environments, and simulation of material processing plasmas, require large, accurate, and complete collections of data for electron, photon, heavy particle, and surface interactions. Consequently, over several decades, experimental and theoretical efforts have been developed in order to measure or to calculate such data, and to synergistically explore the fundamental physical mechanisms that underlie interactions at the atomic scale. The present report illustrates some of the recent progress in development of techniques and their use in describing heavy particle collisions, in particular, those involving ions interacting with atoms and simple molecules, with specific applications of the resulting data in fusion energy research and astrophysics.

  9. Heavy Particle Collision Data for Fusion and Astrophysics

    SciTech Connect

    Schultz, David Robert

    2011-01-01

    A wide range of applications, for example, diagnostics and modeling of fusion plasmas, interpretation of astronomical observations and modeling of astrophysical environments, and simulation of material processing plasmas, require large, accurate, and complete collections of data for electron, photon, heavy particle, and surface interactions. Consequently, over several decades, experimental and theoretical efforts have been developed in order to measure or to calculate such data, and to synergistically explore the fundamental physical mechanisms that underlie interactions at the atomic scale. The present report illustrates some of the recent progress in development of techniques and their use in describing heavy particle collisions, in particular, those involving ions interacting with atoms and simple molecules, with specific applications of the resulting data in fusion energy research and astrophysics.

  10. Measurement of electrical avalanches and optical radiation near solid insulators in high pressure (up to 0. 3 MPa) nitrogen gas

    SciTech Connect

    Mahajan, S.M. ); Sudarshan, T.S. )

    1991-03-01

    Electron and ion avalanches have been recorded near a variety of insulators (plexiglas, teflon, high-density polyethylene, low-density polyethylene, polypropylene, delrin, polyvinyl chloride, and nylon) in nitrogen gas at pressures of 0.1, 0.2, and 0.3 MPa. With the exception of nylon, suppression of avalanches has been observed in the presence of insulators. In addition to electron and ion avalanches, simultaneous measurement of optical radiation associated with an electron avalanche was successfully carried out. Qualitative explanations have been provided for the suppression of avalanches near most insulators and an anomalous growth of avalanches near nylon insulators. Photoemission from nylon surfaces appears to be responsible for the enhanced growth of avalanches near nylon insulators. More precise measurements of optical radiation are needed to better understand the electron-photon interactions near a solid insulator in a gaseous dielectric medium.

  11. FEL Oscillators

    SciTech Connect

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  12. Performance of the ATLAS Trigger System in 2010

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chislett, R. T.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dieli, M. V.; Dietl, H.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heine, K.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lapin, V. V.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, L.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-01-01

    Proton-proton collisions at sqrt{s}=7 TeV and heavy ion collisions at sqrt{s_{NN}}=2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented.

  13. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    SciTech Connect

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).

  14. Measuring the charge state of an adatom with noncontact atomic force microscopy.

    PubMed

    Gross, Leo; Mohn, Fabian; Liljeroth, Peter; Repp, Jascha; Giessibl, Franz J; Meyer, Gerhard

    2009-06-12

    Charge states of atoms can be investigated with scanning tunneling microscopy, but this method requires a conducting substrate. We investigated the charge-switching of individual adsorbed gold and silver atoms (adatoms) on ultrathin NaCl films on Cu(111) using a qPlus tuning fork atomic force microscope (AFM) operated at 5 kelvin with oscillation amplitudes in the subangstrom regime. Charging of a gold atom by one electron charge increases the force on the AFM tip by a few piconewtons. Moreover, the local contact potential difference is shifted depending on the sign of the charge and allows the discrimination of positively charged, neutral, and negatively charged atoms. The combination of single-electron charge sensitivity and atomic lateral resolution should foster investigations of molecular electronics, photonics, catalysis, and solar photoconversion.

  15. Study of some superconducting and magnetic materials on high T sub c oxide superconductors

    NASA Technical Reports Server (NTRS)

    Wu, M. K.

    1987-01-01

    On the basis of existing data it appears that the high-temperature superconductivity above 77 K reported here, occurs only in compound systems consisting of a phase other than the K2NiF4 phase. A narrow superconducting transition was obtained with T sub c0 = 98 K and T sub c1 = 94 K in Y-Ba-Cu-O (YBCO). Preliminary results indicate that YBCO is rather different from the layered LaBCO, LaSCO, and LaCCO. While electron-photon interaction cannot be absent from this compound system, nonconventional enhanced superconducting interactions due to interfaces, Resonating Valence Bond (RVB) states, or even a superconducting state beyond the BCS framework, may be required to account for the high T sub c in YBCO. It is believed that study of the possible subtle correlation between magnetism and superconductivity will definitely provide important insight into the superconducting mechanism in YBCO and other oxides.

  16. Linear polarization of the 2p{sup 5}3s{yields}2p{sup 6} lines following the inner-shell photoionization of sodiumlike ions

    SciTech Connect

    Inal, M.K.; Surzhykov, A.; Fritzsche, S.

    2005-10-15

    The inner-shell photoionization of highly charged, many-electron ions and their subsequent radiative decay are studied theoretically within the multiconfiguration Dirac-Fock approach. Special attention is paid to the linear polarization of the characteristic x-ray radiation. Detailed calculations have been carried out, in particular for the 2p{sup 5}3s{yields}2p{sup 6} radiative transitions following ionization of the 2p electron of the sodiumlike iron Fe{sup 15+} and uranium U{sup 81+} ions. For these elements, the inner-shell photoionization was found to induce the (relatively) low linear polarization of the subsequently emitted photons which is strongly affected, moreover, by the higher-order (nondipole) effects in the electron-photon interaction.

  17. Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation

    PubMed Central

    Ding, D.; Kim, T.; Minnich, A. J.

    2016-01-01

    Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. This work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling. PMID:27595609

  18. Silver nanowires--unique templates for functional nanostructures.

    PubMed

    Sun, Yugang

    2010-09-01

    This feature article reviews the synthesis and application of silver nanowires with the focus on a polyol process that is capable of producing high quality silver nanowires with high yield. The as-synthesized silver nanowires can be used as both physical templates for the synthesis of metal/dielectric core/shell nanowires and chemical templates for the synthesis of metal nanotubes as well as semiconductor nanowires. Typical examples including Ag/SiO(2) coaxial nanocables, single- and multiple-walled nanotubes made of Au-Ag alloy, AgCl nanowires and AgCl/Au core/shell nanowires are discussed in detail to illustrate the versatility of nanostructures derived from silver nanowire templates. Novel properties associated with these one-dimensional nanostructures are also briefly discussed to shed the light on their potential applications in electronics, photonics, optoelectronics, catalysis, and medicine.

  19. The FOREST detector for meson photoproduction experiments at ELPH

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Fukasawa, H.; Hashimoto, R.; Ishida, T.; Kaida, S.; Kasagi, J.; Kawano, A.; Kuwasaki, S.; Maeda, K.; Miyahara, F.; Mochizuki, K.; Nakabayashi, T.; Nakamura, A.; Nawa, K.; Ogushi, S.; Okada, Y.; Okamura, K.; Onodera, Y.; Saito, Y.; Sakamoto, Y.; Sato, M.; Shimizu, H.; Sugai, H.; Suzuki, K.; Takahashi, S.; Tsuchikawa, Y.; Yamazaki, H.; Yonemura, H.

    2016-10-01

    An electromagnetic calorimeter complex, FOREST, has been constructed for meson photoproduction experiments at the Research Center for Electron Photon Science, Tohoku University. It consists of three types of calorimeters, which are made of pure cesium-iodide crystals, lead scintillating-fiber modules, and lead glass Cherenkov counters. Each calorimeter is equipped with a plastic scintillator hodoscope to identify charged particles. The design and performance of FOREST are described. The energy responses of test calorimeters have been investigated by using 100-800 MeV positron beams. The energy resolutions of the three calorimeters are found to be approximately 3%, 7%, and 5% for 1-GeV photons, respectively. A cryogenic hydrogen/deuterium target system fitted to the FOREST experiments and a newly developed data acquisition system are also presented.

  20. Scattering of intense laser radiation by a single-electron wave packet

    SciTech Connect

    Corson, John P.; Peatross, Justin; Mueller, Carsten; Hatsagortsyan, Karen Z.

    2011-11-15

    A quantum theoretical description of photoemission by a single laser-driven electron wave packet is presented. Energy-momentum conservation ensures that the partial emissions from individual momentum components of the electron wave packet do not interfere when the driving field is unidirectional. In other words, light scattering by an electron packet is independent of the phases of the pure momentum states comprising the packet; the size of the electron wave packet does not matter. This result holds also in the case of high-intensity multiphoton scattering. Our analysis is first presented in the QED framework. Since QED permits the second-quantized entangled electron-photon final state to be projected onto pure plane-wave states, the Born probability interpretation requires these projections to be first squared and then summed to find an overall probability of a scattering event. The QED treatment indicates how a semiclassical framework can be developed to recover the key features of the correct result.

  1. Scattering of intense laser radiation by a single-electron wave packet

    NASA Astrophysics Data System (ADS)

    Corson, John P.; Peatross, Justin; Müller, Carsten; Hatsagortsyan, Karen Z.

    2011-11-01

    A quantum theoretical description of photoemission by a single laser-driven electron wave packet is presented. Energy-momentum conservation ensures that the partial emissions from individual momentum components of the electron wave packet do not interfere when the driving field is unidirectional. In other words, light scattering by an electron packet is independent of the phases of the pure momentum states comprising the packet; the size of the electron wave packet does not matter. This result holds also in the case of high-intensity multiphoton scattering. Our analysis is first presented in the QED framework. Since QED permits the second-quantized entangled electron-photon final state to be projected onto pure plane-wave states, the Born probability interpretation requires these projections to be first squared and then summed to find an overall probability of a scattering event. The QED treatment indicates how a semiclassical framework can be developed to recover the key features of the correct result.

  2. Color Fluctuations in High Energy Hadronand Photon-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Frankfurt, Leonid; Strikman, Mark

    We explain that coherence of high energy QED and QCD processes implies existence of new kind of phenomena which are beyond a framework based on Regge poles (cuts). New phenomena emerge as the consequence of compositeness of the bound states and the Lorentz slowing down of interaction. We focus on the color fluctuations phenomena predicted earlier for pA collisions within QCD and recent evidence for this phenomenon from pA LHC run, significant modification of nuclear shadowing phenomenon in the diffractive photoproduction of vector mesons observed recently in the ultra peripheral collisions at LHC. We outlined briefly general properties of color fluctuations phenomena and perspectives of future studies of this phenomenon in electron (photon) collisions with nuclei.

  3. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  4. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  5. The effective penetration distance of ultrahigh-energy electrons and photons traversing a cosmic blackbody photon gas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.; Rephaeli, Y.

    1978-01-01

    The effective average energy loss for an energetic (at least about 10 to the 15th power eV) particle traversing the microwave background radiation is evaluated. Electron-photon transformations by Compton scattering and pair production (in photon-photon collisions) are computed, with the energy loss considered to be carried away by the least energetic of the outgoing particles. Considering the most energetic of the outgoing particles as the high-energy particle, the relative probability and mean time for the particle to be a photon or electron (or positron) is evaluated. The effects of synchrotron losses for electrons and positrons are emphasized and compared with Compton losses to determine a critical energy (for given magnetic field) above which synchrotron losses dominate. Magnetic deflections are also treated for the case where the magnetic field is disordered, having a characteristic 'cell' size.

  6. Nano-imaging and nano-spectroscopy of tunable surface phonon polaritons in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Dai, Siyuan; Fei, Zhe; Ma, Qiong; Rodin, Aleksandr; Wagner, Martin; McLeod, Alexander; Liu, Mengkun; Gannett, Will; Regan, William; Thiemens, Mark; Dominguez, Gerardo; Castro Neto, Antonio; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael; Basov, Dimitri

    2014-03-01

    Van der Waals crystals such as graphene, topological insulators, cuprate high-temperature superconductors, and many other layered structures reveal a rich variety of enigmatic electronic, photonic and magnetic properties. We report infrared (IR) nano-imaging of surface phonon polaritons in a prototypical van-der-Waals crystal: hexagonal boron nitride (hBN). In the setting of an antenna-based IR spectroscopic nanoscope, we accomplished launching, detecting, and real space imaging of the polaritonic waves. We were able to alter both the wavelength and the amplitude of such waves by varying the number of crystal layers in our specimens. We demonstrated a new nano-photonics method for mapping the polariton dispersion. The dispersion is shown to be governed by the crystal thickness according to a scaling law that persists down to a few monolayers. Our results point to novel functionalities of van-der-Waals crystals as reconfigurable nano-photonic materials.

  7. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  8. WE-AB-204-11: Development of a Nuclear Medicine Dosimetry Module for the GPU-Based Monte Carlo Code ARCHER

    SciTech Connect

    Liu, T; Lin, H; Xu, X; Stabin, M

    2015-06-15

    Purpose: To develop a nuclear medicine dosimetry module for the GPU-based Monte Carlo code ARCHER. Methods: We have developed a nuclear medicine dosimetry module for the fast Monte Carlo code ARCHER. The coupled electron-photon Monte Carlo transport kernel included in ARCHER is built upon the Dose Planning Method code (DPM). The developed module manages the radioactive decay simulation by consecutively tracking several types of radiation on a per disintegration basis using the statistical sampling method. Optimization techniques such as persistent threads and prefetching are studied and implemented. The developed module is verified against the VIDA code, which is based on Geant4 toolkit and has previously been verified against OLINDA/EXM. A voxelized geometry is used in the preliminary test: a sphere made of ICRP soft tissue is surrounded by a box filled with water. Uniform activity distribution of I-131 is assumed in the sphere. Results: The self-absorption dose factors (mGy/MBqs) of the sphere with varying diameters are calculated by ARCHER and VIDA respectively. ARCHER’s result is in agreement with VIDA’s that are obtained from a previous publication. VIDA takes hours of CPU time to finish the computation, while it takes ARCHER 4.31 seconds for the 12.4-cm uniform activity sphere case. For a fairer CPU-GPU comparison, more effort will be made to eliminate the algorithmic differences. Conclusion: The coupled electron-photon Monte Carlo code ARCHER has been extended to radioactive decay simulation for nuclear medicine dosimetry. The developed code exhibits good performance in our preliminary test. The GPU-based Monte Carlo code is developed with grant support from the National Institute of Biomedical Imaging and Bioengineering through an R01 grant (R01EB015478)

  9. Extremely strong bipolar optical interactions in paired graphene nanoribbons.

    PubMed

    Lu, Wanli; Chen, Huajin; Liu, Shiyang; Zi, Jian; Lin, Zhifang

    2016-03-28

    Graphene is an excellent multi-functional platform for electrons, photons, and phonons due to exceptional electronic, photonic, and thermal properties. When combining its extraordinary mechanical characteristics with optical properties, graphene-based nanostructures can serve as an appealing platform for optomechanical applications at the nanoscale. Here, we demonstrate, using full-wave simulations, the emergence of extremely strong bipolar optical forces, or, optical binding and anti-binding, between a pair of coupled graphene nanoribbons, due to the remarkable confinement and enhancement of optical fields arising from the large effective mode indices. In particular, the binding and anti-binding forces, which are about two orders of magnitude stronger than that in metamaterials and high-Q resonators, can be tailored by selective excitation of either the even or the odd optical modes, achievable by tuning the relative phase of the lightwaves propagating along the two ribbons. Based on the coupled mode theory, we derive analytical formulae for the bipolar optical forces, which agree well with the numerical results. The attractive optical binding force F(y)(b) and the repulsive anti-binding force F(y)(a) exhibit a remarkably different dependence on the gap distance g between the nanoribbons and the Fermi energy E(F), in the forms of F(y)(b) ∝ 1/√(g³E(F)) and F(y)(a) ∝ 1/E(F)(2). With E(F) dynamically tunable by bias voltage, the bipolar forces may provide a flexible handle for active control of the nanoscale optomechanical effects, and also, might be significant for optoelectronic and optothermal applications as well.

  10. The EPQ Code System for Simulating the Thermal Response of Plasma-Facing Components to High-Energy Electron Impact

    SciTech Connect

    Ward, Robert Cameron; Steiner, Don

    2004-06-15

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10 to 300 MeV, and may potentially cause extensive damage to plasma-facing components (PFCs) through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of PFCs to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts that control the operation of an electron-photon Monte Carlo code to calculate the interaction of the runaway electrons with the plasma-facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials; a code to process, scale, transform, and convert the electron Monte Carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and postprocessing of the data. The electron-photon Monte Carlo code used was Electron-Gamma-Shower (EGS), developed and maintained by the National Research Center of Canada. The Quick-Therm-Two-Dimensional-Nonlinear (QTTN) thermal code solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system is validated using a series of analytical solutions and simulations of experiments. The verification of the QTTN thermal code with analytical solutions shows that the code with the Quickest method is better than 99.9% accurate. The benchmarking of the EPQ code system and QTTN versus experiments showed that QTTN's erosion tracking method is accurate within 30% and that EPQ is able to predict the occurrence of melting within the proper time constraints. QTTN and EPQ are verified and validated as able

  11. Treating electron transport in MCNP{sup trademark}

    SciTech Connect

    Hughes, H.G.

    1996-12-31

    The transport of electrons and other charged particles is fundamentally different from that of neutrons and photons. A neutron, in aluminum slowing down from 0.5 MeV to 0.0625 MeV will have about 30 collisions; a photon will have fewer than ten. An electron with the same energy loss will undergo 10{sup 5} individual interactions. This great increase in computational complexity makes a single- collision Monte Carlo approach to electron transport unfeasible for many situations of practical interest. Considerable theoretical work has been done to develop a variety of analytic and semi-analytic multiple-scattering theories for the transport of charged particles. The theories used in the algorithms in MCNP are the Goudsmit-Saunderson theory for angular deflections, the Landau an theory of energy-loss fluctuations, and the Blunck-Leisegang enhancements of the Landau theory. In order to follow an electron through a significant energy loss, it is necessary to break the electron`s path into many steps. These steps are chosen to be long enough to encompass many collisions (so that multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small (for the approximations in the multiple-scattering theories). The energy loss and angular deflection of the electron during each step can then be sampled from probability distributions based on the appropriate multiple- scattering theories. This subsumption of the effects of many individual collisions into single steps that are sampled probabilistically constitutes the ``condensed history`` Monte Carlo method. This method is exemplified in the ETRAN series of electron/photon transport codes. The ETRAN codes are also the basis for the Integrated TIGER Series, a system of general-purpose, application-oriented electron/photon transport codes. The electron physics in MCNP is similar to that of the Integrated TIGER Series.

  12. The Integrated TIGER Series Codes

    SciTech Connect

    Kensek, Ronald P.; Franke, Brian C.; Laub, Thomas W.

    2006-01-15

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and intemal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  13. Automatic feathering of split fields for step-and-shoot intensity modulated radiation therapy.

    PubMed

    Dogan, Nesrin; Leybovich, Leonid B; Sethi, Anil; Emami, Bahman

    2003-05-07

    Due to leaf travel range limitations of the Varian Dynamic Multileaf Collimator (DMLC) system, an IMRT field width exceeding 14.5 cm is split into two or more adjacent abutting sub-fields. The abutting sub-fields are then delivered as separate treatment fields. The accuracy of the delivery is very sensitive to multileaf positioning accuracy. The uncertainties in leaf and carriage positions cause errors in the delivered dose (e.g., hot or cold spots) along the match line of abutting sub-fields. The dose errors are proportional to the penumbra slope at the edge of each sub-field. To alleviate this problem, we developed techniques that feather the split line of IMRT fields. Feathering of the split line was achieved by dividing IMRT fields into several sub-groups with different split line positions. A Varian 21EX accelerator with an 80-leaf DLMC was used for IMRT delivery. Cylindrical targets with varying widths (>14.5 cm) were created to study the split line positions. Seven coplanar 6 MV fields were selected for planning using the NOMOS-CORVUS system. The isocentre of the fields was positioned at the centre of the target volume. Verification was done in a 30 x 30 x 30 cm3 polystyrene phantom using film dosimetry. We investigated two techniques to move the split line from its original position or cause feathering of them: (1) varying the isocentre position along the target width and (2) introduction of a 'pseudo target' outside of the patient (phantom). The position of the 'pseudo target' was determined by analysing the divergence of IMRT fields. For target widths of 14-28 cm, IMRT fields were automatically split into two sub-fields, and the split line was positioned along the centre of the target by CORVUS. Measured dose distributions demonstrated that the dose to the critical structure was 10% higher than planned when the split line crossed through the centre of the target. Both methods of modifying the split line positions resulted in maximum shifts of

  14. SU-E-T-659: Quantitative Evaluation of Patient Setup Accuracy of Stereotactic Radiotherapy with the Frameless 6D-ExacTrac System Using Statistical Modeling

    SciTech Connect

    Keeling, V; Jin, H; Hossain, S; Algan, O; Ahmad, S; Ali, I

    2015-06-15

    Purpose: To evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless-6D-ExacTrac system. Methods: A statistical model was used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the BrainLAB 6D-ExacTrac system using the positioning shifts of 35 patients having cranial lesions (49 total lesions treated in 1, 3, 5 fractions). All these patients were immobilized with rigid head-and-neck masks, simulated with BrainLAB-localizer and planned with iPlan treatment planning system. Infrared imaging (IR) was used initially to setup patients. Then, stereoscopic x-ray images (XC) were acquired and registered to corresponding digitally-reconstructed-radiographs using bony-anatomy matching to calculate 6D-translational and rotational shifts. When the shifts were within tolerance (0.7mm and 1°), treatment was initiated. Otherwise corrections were applied and additional x-rays were acquired (XV) to verify that patient position was within tolerance. Results: The uncertainties from the mask, localizer, IR-frame, x-ray imaging, MV and kV isocentricity were quantified individually. Mask uncertainty (Translational: Lateral, Longitudinal, Vertical; Rotational: Pitch, Roll, Yaw) was the largest and varied with patients in the range (−1.05−1.50mm, −5.06–3.57mm, −5.51−3.49mm; −1.40−2.40°, −1.24−1.74°, and −2.43−1.90°) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88,2.12,1.40mm, and 0.64,0.83,0.96°) was extracted from standard-deviation of XC. Systematic uncertainties of the localizer (−0.03,−0.01,0.03mm, and −0.03,0.00,−0.01°) and frame (0.18,0.25,−1.27mm,−0.32,0.18, and 0.47°) were extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the

  15. SU-E-T-276: Dose Calculation Accuracy with a Standard Beam Model for Extended SSD Treatments

    SciTech Connect

    Kisling, K; Court, L; Kirsner, S; Nelson, C

    2015-06-15

    Purpose: While most photon treatments are delivered near 100cm SSD or less, a subset of patients may benefit from treatment at SSDs greater than 100cm. A proposed rotating chair for upright treatments would enable isocentric treatments at extended SSDs. The purpose of this study was to assess the accuracy of the Pinnacle{sup 3} treatment planning system dose calculation for standard beam geometries delivered at extended SSDs with a beam model commissioned at 100cm SSD. Methods: Dose to a water phantom at 100, 110, and 120cm SSD was calculated with the Pinnacle {sup 3} CC convolve algorithm for 6x beams for 5×5, 10×10, 20×20, and 30×30cm{sup 2} field sizes (defined at the water surface for each SSD). PDDs and profiles (depths of 1.5, 12.5, and 22cm) were compared to measurements in water with an ionization chamber. Point-by-point agreement was analyzed, as well as agreement in field size defined by the 50% isodose. Results: The deviations of the calculated PDDs from measurement, analyzed from depth of maximum dose to 23cm, were all within 1.3% for all beam geometries. In particular, the calculated PDDs at 10cm depth were all within 0.7% of measurement. For profiles, the deviations within the central 80% of the field were within 2.2% for all geometries. The field sizes all agreed within 2mm. Conclusion: The agreement of the PDDs and profiles calculated by Pinnacle3 for extended SSD geometries were within the acceptability criteria defined by Van Dyk (±2% for PDDs and ±3% for profiles). The accuracy of the calculation of more complex beam geometries at extended SSDs will be investigated to further assess the feasibility of using a standard beam model commissioned at 100cm SSD in Pinnacle3 for extended SSD treatments.

  16. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    NASA Astrophysics Data System (ADS)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  17. SU-E-T-464: Implementation and Validation of 4D Acuros XB Dose Calculations

    SciTech Connect

    Thomas, S; Yuen, C; Huang, V; Milette, M; Teke, T

    2015-06-15

    Purpose: In this abstract we implement and validate a 4D VMAT Acuros XB dose calculation using Gafchromic film. Special attention is paid to the physical material assignment in the CT dataset and to reported dose to water and dose to medium. Methods: A QUASAR phantom with a 3 cm sinusoidal tumor motion and 5 second period was scanned using 4D computed tomography. A CT was also obtained of the static QUASAR phantom with the tumor at the central position. A VMAT plan was created on the average CT dataset and was delivered on a Varian TrueBeam linear accelerator. The trajectory log file from this treatment was acquired and used to create 10 VMAT subplans (one for each portion of the breathing cycle). Motion for each subplan was simulated by moving the beam isocentre in the superior/inferior direction in the Treatment Planning System on the static CT scan. The 10 plans were calculated (both dose to medium and dose to water) and summed for 1) the original HU values from the static CT scan and 2) the correct physical material assignment in the CT dataset. To acquire a breathing phase synchronized film measurements the trajectory log was used to create a VMAT delivery plan which includes dynamic couch motion using the Developer Mode. Three different treatment start phases were investigated (mid inhalation, full inhalation and full exhalation). Results: For each scenario the coronal dose distributions were measured using Gafchromic film and compared to the corresponding calculation with Film QA Pro Software using a Gamma test with a 3%/3mm distance to agreement criteria. Good agreement was found between calculation and measurement. No statistically significant difference in agreement was found between calculations to original HU values vs calculations to over-written (material-assigned) HU values. Conclusion: The investigated 4D dose calculation method agrees well with measurement.

  18. SU-E-P-39: Characterization of Dose Impact On Different Beam Fields Size Attenuation for Elekta IGRT Couch

    SciTech Connect

    Zhang, R; Bai, W; Xiaomei, F; Chi, Z; Runxiao, L; Ren, Q; Gao, C

    2015-06-15

    Purpose: Quantification of the dosimetric impact of the Elekta IGRT treatment couch in different beam field sizes. Established the relationship of relative dose versus beam angle at different beam field sizes. Methods: Measurements of couch attenuation were performed at gantry angles from 180° to 120°, using a 0.125cc semiflex ionization chamber, isocentrically placed in the center of a homogeneous cylindric sliced RW3 phantom for 6 photon beams. Measurements were performed at six different field sizes (3×3, 5×5, 7×7,10×10, 12×12 and 15×15 cm2). The phantom were positioned at the center of the couche,100 MU were delivered at every gantry angle. The dose difference to the ion chamber was determined. Results: For oblique fields with 6 MV photons at the same gantry angle the attenuation coefficient value from the lagest to the smallest the order is field size 7 cm2,5 cm2,10 cm2,12 cm2,15 cm2 and 3 cm2. The biggest couch attenuation by up to 4.15% at the gantry angle of 140°for the field size of 7 cm2, while for the field size of 3 cm2 the couch attenuated value only 3.5%. The other field size couch attenuation values are between the couch attenuated value of field size of 7 cm2 and 3 cm2 Conclusion: The recommended treatment couch attenuation measured beam field size is 10×10 or 12×12 cm2. When measured using the beam field size 3×3 cm2 the tested value will be lower, while measuerd using the beam field size 7×7 cm2 the tested value will be higer than the recommended beam field size. This should be noted when modeling the treatment couch in the treatment planning system.

  19. Dosimetric accuracy of a staged radiosurgery treatment

    NASA Astrophysics Data System (ADS)

    Cernica, George; de Boer, Steven F.; Diaz, Aidnag; Fenstermaker, Robert A.; Podgorsak, Matthew B.

    2005-05-01

    For large cerebral arteriovenous malformations (AVMs), the efficacy of radiosurgery is limited since the large doses necessary to produce obliteration may increase the risk of radiation necrosis to unacceptable levels. An alternative is to stage the radiosurgery procedure over multiple stages (usually two), effectively irradiating a smaller volume of the AVM nidus with a therapeutic dose during each session. The difference between coordinate systems defined by sequential stereotactic frame placements can be represented by a translation and a rotation. A unique transformation can be determined based on the coordinates of several fiducial markers fixed to the skull and imaged in each stereotactic coordinate system. Using this transformation matrix, isocentre coordinates from the first stage can be displayed in the coordinate system of subsequent stages allowing computation of a combined dose distribution covering the entire AVM. The accuracy of this approach was tested on an anthropomorphic head phantom and was verified dosimetrically. Subtle defects in the phantom were used as control points, and 2 mm diameter steel balls attached to the surface were used as fiducial markers and reference points. CT images (2 mm thick) were acquired. Using a transformation matrix developed with two frame placements, the predicted locations of control and reference points had an average error of 0.6 mm near the fiducial markers and 1.0 mm near the control points. Dose distributions in a staged treatment approach were accurately calculated using the transformation matrix. This approach is simple, fast and accurate. Errors were small and clinically acceptable for Gamma Knife radiosurgery. Accuracy can be improved by reducing the CT slice thickness.

  20. Impact of 6MV photon beam attenuation by carbon fiber couch and immobilization devices in IMRT planning and dose delivery.

    PubMed

    Munjal, R K; Negi, P S; Babu, A G; Sinha, S N; Anand, A K; Kataria, T

    2006-04-01

    Multiple fields in IMRT and optimization allow conformal dose to the target and reduced dose to the surroundings and the regions of interest. Thus we can escalate the dose to the target to achieve better tumor control with low morbidity. Orientation of multiple beams can be achieved by i) different gantry angles, ii) rotating patient's couch isocentrically. In doing so, one or more beam may pass through different materials like the treatment couch, immobilization cast fixation plate, head and neck rest or any other supportive device. Our observations for 6MV photon beam on PRIMUS-KXE2 with MED-TEC carbon fiber tabletop and 10 × 10 cm(2) field size reveals that the maximum dose attenuation by the couch was of the order of 2.96% from gantry angle 120-160°. Attenuation due to cast fixation base plate of PMMA alone was of the order of 5.8-10.55% at gantry angle between 0 and 90°. Attenuation due to carbon fiber base plate alone was 3.8-7.98%. Attenuation coefficient of carbon fiber and PMMA was evaluated and was of the order of 0.082 cm(-1) and 0.064 cm(-1) respectively. Most of the TPS are configured for direct beam incidence attenuation correction factors only. Whereas when the beam is obliquely incident on the couch, base plate, headrest and any other immobilization device get attenuated more than the direct beam incidence. The correction factors for oblique incidence beam attenuation are not configured in most of the commercially available treatment planning systems. Therefore, such high variations in dose delivery could lead to under-dosage to the target volume for treatments requiring multiple fields in IMRT and 3D-CRT and need to be corrected for monitor unit calculations.

  1. A 4 MV flattening filter-free beam: commissioning and application to conformal therapy and volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Stevens, S. W.; Rosser, K. E.; Bedford, J. L.

    2011-07-01

    Recent studies have indicated that radiotherapy treatments undertaken on a flattening filter-free (FFF) linear accelerator have a number of advantages over treatments undertaken on a conventional linear accelerator. In addition, 4 MV photon beams may give improved isodose coverage for some treatment volumes at air/tissue interfaces, compared to when utilizing the clinical standard of 6 MV photons. In order to investigate these benefits, FFF beams were established on an Elekta Beam Modulator linear accelerator for 4 MV photons. Commissioning beam data were obtained for open and wedged fields. The measured data were then imported into a treatment planning system and a beam model was commissioned. The beam model was optimized to improve dose calculations at shallow, clinically relevant depths. Following verification, the beam model was utilized in a treatment planning study, including volumetric modulated arc therapy, for a selection of lung, breast/chest wall and larynx patients. Increased dose rates of around 800 MU min-1 were recorded for open fields (relative to 320 MU min-1 for filtered open fields) and reduced head scatter was inferred from output factor measurements. Good agreement between planned and delivered dose was observed in verification of treatment plans. The planning study indicated that with a FFF beam, equivalent (and in some cases improved) isodose profiles could be achieved for small lung and larynx treatment volumes relative to 4 MV filtered treatments. Furthermore, FFF treatments with wedges could be replicated using open fields together with an 'effective wedge' technique and isocentre shift. Clinical feasibility of a FFF beam was therefore demonstrated, with beam modelling, treatment planning and verification being successfully accomplished.

  2. Beam commissioning of a superconducting rotating-gantry for carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Fujimoto, T.; Matsuba, S.; Fujita, T.; Sato, S.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saraya, Y.; Tansho, R.; Saotome, N.; Shirai, T.; Noda, K.

    2016-10-01

    A superconducting rotating-gantry for carbon-ion radiotherapy was developed. This isocentric gantry can transport carbon ions having kinetic energies of between E=430 and 48 MeV/u to an isocenter over an angle of ±180°, and is further capable of performing three-dimensional raster-scanning irradiation. Construction of the entire rotating-gantry system was completed by the end of September 2015. Prior to beam commissioning, phase-space distributions of extracted carbon beams from the synchrotron were deduced by using an empirical method. In this method, phase-space distributions at the extraction channel of the synchrotron were modeled with 8 parameters, and the best parameters were determined so as to minimize a difference between the calculated and measured beam profiles by using a simplex method. Based on the phase-space distributions, beam optics through the beam-transport lines as well as the rotating gantry were designed. Since horizontal and vertical beam emittances, as extracted slowly from the synchrotron, generally differ with each other, a horizontal-vertical beam coupling would occur when the gantry rotates. Thus, the size and shape of beam spots at the isocenter should vary depending on the gantry angle. To compensate for the difference in the emittances, we employed a method to utilize multiple Coulomb scattering of the beam particles by a thin scatterer. Having compensated for the emittances and designed beam optics through the rotating gantry, beam commissioning over various combinations of gantry angles and beam energies was performed. By finely tuning the superconducting quadrupoles of the rotating gantry, we could successfully obtain the designed beam quality, which satisfies the requirements of scanning irradiation.

  3. TH-C-12A-05: Dynamic Couch Motion for Improvement of Radiation Therapy Trajectories in DCA and VMAT

    SciTech Connect

    MacDonald, L; Thomas, Christopher

    2014-06-15

    Purpose: To investigate the potential improvement in dosimetric external beam radiation therapy plan quality using an optimized dynamic gantry and couch motion trajectory which minimizes exposure to the organs at risk. Methods: Patient-specific anatomical information of head-and-neck and cranial cancer patients was used to quantify the geometric overlap between target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocentre as a function of gantry and couch angle. QUANTEC dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a Varian Truebeam linac using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm includes weighting factors which can be used to balance the implementation of absolute minimum values of overlap, with the clinical practicality of largescale couch motion and delivery time. Optimized trajectories were calculated for cranial DCA treatments and for head-and-neck VMAT treatments and compared to conventional DCA and VMAT treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicates a decrease in dose to the organs-at-risk between 4.64% and 6.82% (2.39 and 3.52 Gy) of the prescription dose per patient per organ at risk. Conclusion: Using simultaneous couch and gantry motion during radiation therapy to minimize the geometrical overlap in the beams-eye-view target volumes and the organs-at-risk can have an appreciable dose reduction to organs-at-risk.

  4. Assessment of the robustness of volumetric-modulated arc therapy for lung radiotherapy.

    PubMed

    Edmunds, K; Bedford, J

    2013-03-01

    Volumetric-modulated arc therapy (VMAT) is increasingly popular as a treatment method in radiotherapy owing to the speed with which treatments can be delivered. However, there has been little investigation into the effect of increased modulation in lung plans with regard to interfraction organ motion. This is most likely to occur where the planning target volume (PTV) lies within areas of low density. This paper aims to investigate the effect of modulation on the dose distribution using simulated patient movement and to propose a method that is less susceptible to such movement. Simulated interfraction motion is achieved by moving the plan isocentre in steps of 0.5 cm and 1.0 cm in six directions for five clinical VMAT patients. The proposed planning method involves optimisation using a density override of 1 g cm(-3), within the PTV in lung, to reduce segment boosting in the periphery of the PTV. This investigation shows that modulation can result in an increase in the maximum dose of >25%, an increase in PTV near-maximum dose of 17% and a reduction in near-minimum dose by 46%. Unacceptable organ at risk (OAR) doses are also seen. The proposed method reduces modulation, resulting in a maximum dose increase of 10%. Although safeguards are in place to prevent the increased dose to OARs from patient movement, there is nothing to prevent the increased dose as a result of modulation in lung. A simple planning method is proposed to safeguard against this effect. Investigation suggests that, where modulation exists in a plan, this method reduces it and is clinically viable.

  5. Dosimetry and techniques for simultaneous hyperthermia and external beam radiation therapy.

    PubMed

    Straube, W L; Klein, E E; Moros, E G; Low, D A; Myerson, R J

    2001-01-01

    An increased biological effect is realized when hyperthermia and radiation therapy are combined simultaneously. To take advantage of this effect, techniques have been developed that combine existing hyperthermia devices with a linear accelerator. This allows concomitant delivery of either ultrasound or microwave hyperthermia with photon radiation therapy. Two techniques have been used clinically: the orthogonal technique, in which the microwave or ultrasound beam and the radiation beam are orthogonal to one another, and the en face technique, in which the ultrasound or microwave beam and the radiation beam travel into the tumour through the same treatment window. The en face technique has necessitated the development of special attachments so that the hyperthermia device can be mounted to the linear accelerator and so that non-uniform portions of the hyperthermia device can be removed from the radiation beam. For microwave therapy, applicators are mounted onto the linear accelerator using the compensating filter tray holder. For ultrasound, special reflector devices are mounted to a frame that is mounted onto the compensating filter tray holder of the linear accelerator. Because the linear accelerator is an isocentric device, the height of the radiation source is fixed, and this has necessitated specially designed devices so that the ultrasound support system is compatible with the linear accelerator. The treatment setups for both the en face technique and the orthogonal technique require the interaction of both hyperthermia and radiation therapy personnel and equipment. The dosimetry and day-to-day operations for each technique are unique. The simulation for the en face technique is much different from the simulation of a normal radiation treatment and requires the presence of a hyperthermia physicist. Also, for the en face technique, the attenuation of the microwave applicator and the thickness and attenuation of the ultrasound reflector system are taken into

  6. Monte Carlo characterizations mapping of the (γ,n) and (n,γ) photonuclear reactions in the high energy X-ray radiation therapy

    PubMed Central

    Ghiasi, Hosein

    2013-01-01

    Aim The aim of this work was to map the characteristics of (n,γ) and (γ,n) reactions in a high energy photon radiation therapy. Background Photoneutrons produced in the high energy X-Ray radiation therapy may damage patients and staff. It is due to high RBE of the produced neutrons according to their energy and isotropic emission. Characterization of the photoneutrons can help us in appropriate shielding. Materials and methods This study focused on the photoneutron and capture gamma ray phenomena. Characteristics such as dose value, fluence and spectra of both the neutrons and the by produced prompt gamma ray were described. Results and discussion Neutron and prompt gamma spectra in different points showed the neutrons to be thermalized when increasing the distance from the linac. Energy of the neutrons changed from about 0.6 MeV at the isocentre to around 10−08 MeV at the outer door position. Although the neutrons were found as fast neutrons, their spectra showed they were thermal neutrons at the outer door position. Additionally, it was seen that the energy of the gamma rays is higher than the scattered X-ray energy. The energy of gamma rays was seen to be up to 10 MeV while the linac photons had energy lower than 1 MeV. Neutron source strength obtained in this work was in good agreement with the published data, which may be a confirmation of our simulation accuracy. Conclusion The study showed that the Monte Carlo simulation can be applied in the radiotherapy and industrial radiation works as a useful and precise estimator. We also concluded that the dose from the prompt gamma ray at the outer door location is higher than the scattered radiation from the linac and should be considered in the shielding. PMID:24936317

  7. Investigation of uncertainties in image registration of cone beam CT to CT on an image-guided radiotherapy system

    NASA Astrophysics Data System (ADS)

    Sykes, J. R.; Brettle, D. S.; Magee, D. R.; Thwaites, D. I.

    2009-12-01

    Methods of measuring uncertainties in rigid body image registration of fan beam computed tomography (FBCT) to cone beam CT (CBCT) have been developed for automatic image registration algorithms in a commercial image guidance system (Synergy, Elekta, UK). The relationships between image registration uncertainty and both imaging dose and image resolution have been investigated with an anthropomorphic skull phantom and further measurements performed with patient images of the head. A new metric of target registration error is proposed. The metric calculates the mean distance traversed by a set of equi-spaced points on the surface of a 5 cm sphere, centred at the isocentre when transformed by the residual error of registration. Studies aimed at giving practical guidance on the use of the Synergy automated image registration, including choice of algorithm and use of the Clipbox are reported. The chamfer-matching algorithm was found to be highly robust to the increased noise induced by low-dose acquisitions. This would allow the imaging dose to be reduced from the current clinical norm of 2 mGy to 0.2 mGy without a clinically significant loss of accuracy. A study of the effect of FBCT slice thickness/spacing and CBCT voxel size showed that 2.5 mm and 1 mm, respectively, gave acceptable image registration performance. Registration failures were highly infrequent if the misalignment was typical of normal clinical set-up errors and these were easily identified. The standard deviation of translational registration errors, measured with patient images, was 0.5 mm on the surface of a 5 cm sphere centred on the treatment centre. The chamfer algorithm is suitable for routine clinical use with minimal need for close inspection of image misalignment.

  8. Commissioning an Elekta Versa HD linear accelerator.

    PubMed

    Narayanasamy, Ganesh; Saenz, Daniel; Cruz, Wilbert; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2016-01-08

    The purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta Versa HD linear accelerator (linac) with high-dose-rate flattening filter-free (FFF) photon modes and electron modes. Acceptance and commissioning was performed on the Elekta Versa HD linac with five photon energies (6 MV, 10 MV, 18 MV, 6 MV FFF, 10 MV FFF), four electron energies (6 MeV, 9MeV, 12 MeV, 15 MeV) and 160-leaf (5 mm wide) multileaf collimators (MLCs). Mechanical and dosimetric data were measured and evaluated. The measurements include percent depth doses (PDDs), in-plane and cross-plane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Gantry, collimator, and couch isocentricity measurements were within 1 mm, 0.7 mm, and 0.7 mm diameter, respectively. The PDDs of 6 MV FFF and 10 MV FFF beams show deeper dmax and steeper falloff with depth than the corresponding flattened beams. While flatness values of 6 MV FFF and 10 MV FFF normalized profiles were expectedly higher than the corresponding flattened beams, the symmetry values were almost identical. The cross-plane penumbra values were higher than the in-plane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6%, and 0.6% for 6 MV, 10 MV, and 18 MV photon beams, respectively. The electron PDDs, profiles, and cone factors agree well with the literature. The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system, which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing Versa HD commissioning, thereby improving patient safety.

  9. Dosimetry and field matching for radiotherapy to the breast and superclavicular fossa

    NASA Astrophysics Data System (ADS)

    Winfield, Elizabeth

    Radiotherapy for early breast cancer aims to achieve local disease control and decrease loco-regional recurrence rates. Treatment may be directed to breast or chest wall alone or, include regional lymph nodes. When using tangential fields to treat the breast a separate anterior field directed to the axilla and supraclavicular fossa (SCF) is needed to treat nodal areas. The complex geometry of this region necessitates matching of adjacent radiation fields in three dimensions. The potential exists for zones of overdosage or underdosage along the match line. Cosmetic results may be compromised if treatment fields are not accurately aligned. Techniques for field matching vary between centres in the UK. A study of dosimetry across the match line region using different techniques, as reported in the multi-centre START Trial Quality Assurance (QA) programme, was undertaken. A custom-made anthropomorphic phantom was designed to assess dose distribution in three dimensions using film dosimetry. Methods with varying degrees of complexity were employed to match tangential and SCF beams. Various techniques combined half beam blocking and machine rotations to achieve geometric alignment. Matching of asymmetric beams allowed a single isocentre technique to be used. Where field matching was not undertaken a gap between tangential and SCF fields was employed. Results demonstrated differences between techniques in addition to variations within the same technique between different centres. Geometric alignment techniques produced more homogenous dose distributions in the match region than gap techniques or those techniques not correcting for field divergence. For this multi-centre assessment of match plane techniques film dosimetry used in conjunction with a breast shaped phantom provided relative dose information. This study has highlighted the difficulties of matching treatment fields to achieve homogenous dose distribution through the region of the match plane and the degree of

  10. Development and Validation of a Small Animal Immobilizer and Positioning System for the Study of Delivery of Intracranial and Extracranial Radiotherapy Using the Gamma Knife System.

    PubMed

    Awan, Musaddiq J; Dorth, Jennifer; Mani, Arvind; Kim, Haksoo; Zheng, Yiran; Mislmani, Mazen; Welford, Scott; Yuan, Jiankui; Wessels, Barry W; Lo, Simon S; Letterio, John; Machtay, Mitchell; Sloan, Andrew; Sohn, Jason W

    2017-04-01

    The purpose of this research is to establish a process of irradiating mice using the Gamma Knife as a versatile system for small animal irradiation and to validate accurate intracranial and extracranial dose delivery using this system. A stereotactic immobilization device was developed for small animals for the Gamma Knife head frame allowing for isocentric dose delivery. Intercranial positional reproducibility of a reference point from a primary reference animal was verified on an additional mouse. Extracranial positional reproducibility of the mouse aorta was verified using 3 mice. Accurate dose delivery was validated using film and thermoluminescent dosimeter measurements with a solid water phantom. Gamma Knife plans were developed to irradiate intracranial and extracranial targets. Mice were irradiated validating successful targeted radiation dose delivery. Intramouse positional variability of the right mandible reference point across 10 micro-computed tomography scans was 0.65 ± 0.48 mm. Intermouse positional reproducibility across 2 mice at the same reference point was 0.76 ± 0.46 mm. The accuracy of dose delivery was 0.67 ± 0.29 mm and 1.01 ± 0.43 mm in the coronal and sagittal planes, respectively. The planned dose delivered to a mouse phantom was 2 Gy at the 50% isodose with a measured thermoluminescent dosimeter dose of 2.9 ± 0.3 Gy. The phosphorylated form of member X of histone family H2A (γH2AX) staining of irradiated mouse brain and mouse aorta demonstrated adjacent tissue sparing. In conclusion, our system for preclinical studies of small animal irradiation using the Gamma Knife is able to accurately deliver intracranial and extracranial targeted focal radiation allowing for preclinical experiments studying focal radiation.

  11. Three-Dimensional Rotational Angiography of the Foot in Critical Limb Ischemia: A New Dimension in Revascularization Strategy

    SciTech Connect

    Jens, Sjoerd; Lucatelli, Pierleone; Koelemay, Mark J. W.; Marquering, Henk A. Reekers, Jim A.

    2013-06-15

    Purpose. To evaluate the additional value of three-dimensional rotational angiography (3DRA) of the foot compared with digital subtraction angiography (DSA) in patients with critical limb ischemia (CLI). Technique. For 3DRA, the C-arm was placed in the propeller position with the foot in an isocentric position. The patient's unaffected foot was positioned in a footrest outside the field of view. For correct timing of 3DRA, the delay from contrast injection in the popliteal artery at the level of knee joint to complete pedal arterial enhancement was assessed using DSA. With this delay, 3DRA was started after injection of 15 ml contrast. Imaging of the 3DRA could directly be reconstructed and visualized.Materials and MethodsPatients undergoing 3DRA of the foot were prospectively registered. DSA and 3DRA images were scored separately for arterial patency and presence of collaterals. Treatment strategies were proposed based on DSA with and without the availability of 3DRA. Results. Eleven patients underwent 3DRA of the foot. One 3DRA was not included because the acquisition was focused on the heel instead of the entire foot. Diagnostic quality of 3DRA was good in all ten patients. 3DRA compared with DSA showed additional patent arteries in six patients, patent plantar arch in three patients, and collaterals between the pedal arteries in five patients. Additional information from 3DRA resulted in a change of treatment strategy in six patients. Conclusion, 3DRA of the foot contains valuable additional real-time information to better guide peripheral vascular interventions in patients with CLI and nonhealing tissue lesions.

  12. Design and Development of a Megavoltage CT Scanner for Radiation Therapy.

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tai

    A Varian 4 MeV isocentric therapy accelerator has been modified to perform also as a CT scanner. The goal is to provide low cost computed tomography capability for use in radiotherapy. The system will have three principal uses. These are (i) to provide 2- and 3-dimensional maps of electron density distribution for CT assisted therapy planning, (ii) to aid in patient set up by providing sectional views of the treatment volume and high contrast scout-mode verification images and (iii) to provide a means for periodically checking the patients anatomical conformation against what was used to generate the original therapy plan. The treatment machine was modified by mounting an array of detectors on a frame bolted to the counter weight end of the gantry in such a manner as to define a 'third generation' CT Scanner geometry. The data gathering is controlled by a Z-80 based microcomputer system which transfers the x-ray transmission data to a general purpose PDP 11/34 for processing. There a series of calibration processes and a logarithmic conversion are performed to get projection data. After reordering the projection data to an equivalent parallel beam sinogram format a convolution algorithm is employed to construct the image from the equivalent parallel projection data. Results of phantom studies have shown a spatial resolution of 2.6 mm and an electron density discrimination of less than 1% which are sufficiently good for accurate therapy planning. Results also show that the system is linear to within the precision of our measurement ((DBLTURN).75%) over a wide range of electron densities corresponding to those found in body tissues. Animal and human images are also presented to demonstrate that the system's imaging capability is sufficient to allow the necessary visualization of anatomy.

  13. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy.

    PubMed

    Ding, George X; Duggan, Dennis M; Coffey, Charles W

    2007-03-21

    The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality.

  14. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy

    NASA Astrophysics Data System (ADS)

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2007-03-01

    The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality.

  15. Matching of electron and photon beams with a multi-leaf collimator.

    PubMed

    Karlsson, M; Zackrisson, B

    1993-12-01

    Multi-leaf collimators (MLCs) are offered as an accessory to many accelerators for radiation therapy. However, beam edges generated with these collimators are not as smooth as can be achieved with individually made blocks. The clinical drawbacks and benefits of this ripple were evaluated both for single field treatments and for combined adjacent fields of different beam qualities. In this investigation the MLC-collimated beams of the MM50 racetrack microtron were studied. The distance between the field edge and the 90% isodose was measured at the reference depth for four beam qualities (20 MV photons and 10, 20 and 50 MeV electrons). This distance was found to vary from approximately 6 mm for straight beam edges (i.e., all collimator leaves aligned) to approximately 2 mm from the tip of the leaves for a saw-tooth shaped beam edge. The over- and under-dosage in the joint between combined adjacent fields was found to be typically +/- 10% in small volumes. Improved clinical techniques using adjacent photon and electron fields with the same isocentre and source position (without moving the gantry) have been developed. For treatments of the breast, including the mammary chain, a uniform dose distribution was created with special attention given to the irradiation of the heart and lung outside the target volume. A method for head and neck treatments was optimised to give uniform dose distribution in the joint between the photon and electron fields and a method of treating the mediastinum, including the chest wall in front of the left lung, was analysed with respect to dose uniformity in the tumour and shielding of the lung.

  16. Poster — Thur Eve — 28: Enabling trajectory-based radiotherapy on a TrueBeam accelerator with the Eclipse treatment planning system

    SciTech Connect

    Mullins, J; Asiev, K; DeBlois, F; Morcos, M; Seuntjens, J; Syme, A

    2014-08-15

    The TrueBeam linear accelerator platform has a developer's mode which permits the user dynamic control over many of the machine's mechanical and radiation systems. Using this research tool, synchronous couch and gantry motion can be programmed to simulate isocentric treatment with a shortened SAD, with benefits such as smaller projected MLC leaf widths and an increased dose rate. In this work, water tank measurements were used to commission a virtual linear accelerator with an 85 cm SAD in Eclipse, from which several arc-based radiotherapy treatments were generated, including an inverse optimized VMAT delivery. For each plan, the pertinent treatment delivery information was extracted from control points specified in the Eclipse-exported DICOM files using the pydicom package in Python, allowing construction of an XML control file. The dimensions of the jaws and MLC positions, defined for an 85 cm SAD in Eclipse, were scaled for delivery on a conventional SAD linear accelerator, and translational couch motion was added as a function of gantry angle to simulate delivery at 85 cm SAD. Ionization chamber and Gafchromic film measurements were used to compare the radiation delivery to dose calculations in Eclipse. With the exception of the VMAT delivery, ionization chamber measurements agreed within 3.3% of the Eclipse calculations. For the VMAT delivery, the ionization chamber was located in an inhomogeneous region, but gamma evaluation of the Gafchromic film plane resulted in a 94.5% passing rate using criteria of 3 mm/3%. The results indicate that Eclipse calculation infrastructure can be used.

  17. SU-E-T-424: Feasibility of 3D Printed Radiological Equivalent Customizable Tissue Like Materials

    SciTech Connect

    Johnson, D; Ferreira, C; Ahmad, S

    2015-06-15

    Purpose: To investigate the feasibility of 3D printing CT# specific radiological equivalent tissue like materials. Methods: A desktop 3D printer was utilized to create a series of 3 cm x 3 cm x 2 cm PLA plastic blocks of varying fill densities. The fill pattern was selected to be hexagonal (Figure 1). A series of blocks was filled with paraffin and compared to a series filled with air. The blocks were evaluated with a “GE Lightspeed” 16 slice CT scanner and average CT# of the centers of the materials was determined. The attenuation properties of the subsequent blocks were also evaluated through their isocentric irradiation via “TrueBeam” accelerator under six beam energies. Blocks were placed upon plastic-water slabs of 4 cm in thickness assuring electronic equilibrium and data was collected via Sun Nuclear “Edge” diode detector. Relative changes in dose were compared with those predicted by Varian “Eclipse” TPS. Results: The CT# of 3D printed blocks was found to be a controllable variable. The fill material was able to narrow the range of variability in each sample. The attenuation of the block tracked with the density of the total fill structure. Assigned CT values in the TPS were seen to fall within an expected range predicted by the CT scans of the 3D printed blocks. Conclusion: We have demonstrated that it is possible to 3D print materials of varying tissue equivalencies, and that these materials have radiological properties that are customizable and predictable.

  18. Achieving high-resolution soft-tissue imaging with cone-beam CT: a two-pronged approach for modulation of x-ray fluence and detector gain

    NASA Astrophysics Data System (ADS)

    Graham, S. A.; Siewerdsen, J. H.; Moseley, D. J.; Keller, H.; Shkumat, N. A.; Jaffray, D. A.

    2005-04-01

    Cone-beam computed tomography (CBCT) presents a highly promising and challenging advanced application of flat-panel detectors (FPDs). The great advantage of this adaptable technology is in the potential for sub-mm 3D spatial resolution in combination with soft-tissue detectability. While the former is achieved naturally by CBCT systems incorporating modern FPD designs (e.g., 200 - 400 um pixel pitch), the latter presents a significant challenge due to limitations in FPD dynamic range, large field of view, and elevated levels of x-ray scatter in typical CBCT configurations. We are investigating a two-pronged strategy to maximizing soft-tissue detectability in CBCT: 1) front-end solutions, including novel beam modulation designs (viz., spatially varying compensators) that alleviate detector dynamic range requirements, reduce x-ray scatter, and better distribute imaging dose in a manner suited to soft-tissue visualization throughout the field of view; and 2) back-end solutions, including implementation of an advanced FPD design (Varian PaxScan 4030CB) that features dual-gain and dynamic gain switching that effectively extends detector dynamic range to 18 bits. These strategies are explored quantitatively on CBCT imaging platforms developed in our laboratory, including a dedicated CBCT bench and a mobile isocentric C-arm (Siemens PowerMobil). Pre-clinical evaluation of improved soft-tissue visibility was carried out in phantom and patient imaging with the C-arm device. Incorporation of these strategies begin to reveal the full potential of CBCT for soft-tissue visualization, an essential step in realizing broad utility of this adaptable technology for diagnostic and image-guided procedures.

  19. Implementation of in vivo Dosimetry with Isorad{sup TM} Semiconductor Diodes in Radiotherapy Treatments of the Pelvis

    SciTech Connect

    Rodriguez, Miguel L. Abrego, Eladio; Pineda, Amalia

    2008-04-01

    This report describes the results obtained with the Isorad{sup TM} (Red) semiconductor detectors for implementing an in vivo dosimetry program in patients subject to radiotherapy treatment of the pelvis. Four n-type semiconductor diodes were studied to characterize them for the application. The diode calibration consisted of establishing reading-to-dose conversion factors in reference conditions and a set of correction factors accounting for deviations of the diode response in comparison to that of an ion chamber. Treatments of the pelvis were performed by using an isocentric 'box' technique employing a beam of 18 MV with the shape of the fields defined by a multileaf collimator. The method of Rizzotti-Leunen was used to assess the dose at the isocenter based on measurements of the in vivo dose at the entrance and at the exit of each radiation field. The in vivo dose was evaluated for a population of 80 patients. The diodes exhibit good characteristics for their use in in vivo dosimetry; however, the high attenuation of the beam ({approx}12% at 5.0-cm depth) produced, and some important correction factors, must be taken into account. The correction factors determined, including the source-to-surface factor, were within a range of {+-}4%. The frequency histograms of the relative difference between the expected and measured doses at the entrance, the exit, and the isocenter, have mean values and standard deviations of -0.09% (2.18%), 0.77% (2.73%), and -0.11% (1.76%), respectively. The method implemented has proven to be very useful in the assessment of the in vivo dose in this kind of treatment.

  20. X-ray tube current modulation and patient doses in chest CT.

    PubMed

    He, Wenjun; Huda, Walter; Magill, Dennise; Tavrides, Emily; Yao, Hai

    2011-01-01

    The aim of the study was to investigate how patient effective doses vary as a function of X-ray tube projection angle, as well as the patient long axis, and quantify how X-ray tube current modulation affects patient doses in chest CT examinations. Chest examinations were simulated for a gantry CT scanner geometry with projections acquired for a beam width of 4 cm. PCXMC 2.0.1 was used to calculate patient effective doses at 15° intervals around the patient's isocentre, and at nine locations along the patient long axis. Idealised tube current modulation schemes were modelled as a function of the X-ray tube angle and the patient long axis. Tube current modulations were characterised by the modulation amplitude R, which was allowed to vary between 1.5 and 5. Effective dose maxima occur for anteroposterior projections at the location of the (radiosensitive) breasts. The maximum to minimum ratio of effective doses as a function of the patient long axis was 4.9, and as a function of the X-ray tube angle was 2.1. Doubling the value of R reduces effective doses from longitudinal modulation alone by ∼4% and from angular modulation alone by ∼2%. In chest CT, tube current modulation schemes currently have longitudinal R values of ∼2.2, and angular R values that range between 1.5 and 3.4. Current X-ray tube current modulation schemes are expected to reduce patient effective doses in chest CT examinations by ∼10%, with longitudinal modulation accounting for two-thirds and angular modulation for the remaining one-third.

  1. The angular dependence of a two dimensional monolithic detector array for dosimetry in small radiation fields

    NASA Astrophysics Data System (ADS)

    Stansook, N.; Petasecca, M.; Utitsarn, K.; Newall, M.; Metcalfe, P.; Carolan, M.; Lerch, M.; Rosenfeld, A. B.

    2017-01-01

    The purpose of this study is to investigate the directional dependence of a two dimensional monolithic detector array (M512) under 6 MV photon irradiation and to evaluate the effect of field size on angular dependence. Square fields of sizes: 3x3 cm2 and 10x10 cm2 were measured at the iso-centre of a cylindrical phantom. Beam angles with incidences from 00- 1800 in increments of 150 were used to investigate the central pixel angular response of M512, normalized to the pixel response for normal (0°) beam incidence. The angular response of the detector was compared to the response of EBT3 radiochromic film in the identical geometric orientation. The maximum angular dependence was observed at the angle 90°±15° to be -18.62% and -17.70% for the field sizes 3x3 cm2 and 10x10 cm2, respectively. The angular dependence of M512 showed no significant difference between field sizes of 3x3 cm2 and 10x10 cm2 (p>0.05). The maximum dose difference measured by the central pixel of M512 and EBT3 for all angles are -20% for 3x3 cm2 field size and -18.58% for the 10x10 cm2 field. The diode array’s size and packaging effects the angular response of the detector. The angular correction factor is necessary to apply to increase accuracy in dosimetry for arc treatment delivery.

  2. MO-F-CAMPUS-T-05: Correct Or Not to Correct for Rotational Patient Set-Up Errors in Stereotactic Radiosurgery

    SciTech Connect

    Briscoe, M; Ploquin, N; Voroney, JP

    2015-06-15

    Purpose: To quantify the effect of patient rotation in stereotactic radiation therapy and establish a threshold where rotational patient set-up errors have a significant impact on target coverage. Methods: To simulate rotational patient set-up errors, a Matlab code was created to rotate the patient dose distribution around the treatment isocentre, located centrally in the lesion, while keeping the structure contours in the original locations on the CT and MRI. Rotations of 1°, 3°, and 5° for each of the pitch, roll, and yaw, as well as simultaneous rotations of 1°, 3°, and 5° around all three axes were applied to two types of brain lesions: brain metastasis and acoustic neuroma. In order to analyze multiple tumour shapes, these plans included small spherical (metastasis), elliptical (acoustic neuroma), and large irregular (metastasis) tumour structures. Dose-volume histograms and planning target volumes were compared between the planned patient positions and those with simulated rotational set-up errors. The RTOG conformity index for patient rotation was also investigated. Results: Examining the tumour volumes that received 80% of the prescription dose in the planned and rotated patient positions showed decreases in prescription dose coverage of up to 2.3%. Conformity indices for treatments with simulated rotational errors showed decreases of up to 3% compared to the original plan. For irregular lesions, degradation of 1% of the target coverage can be seen for rotations as low as 3°. Conclusions: This data shows that for elliptical or spherical targets, rotational patient set-up errors less than 3° around any or all axes do not have a significant impact on the dose delivered to the target volume or the conformity index of the plan. However the same rotational errors would have an impact on plans for irregular tumours.

  3. Long-term stability and mechanical characteristics of kV digital imaging system for proton radiotherapy

    SciTech Connect

    Zhu, Mingyao Botticello, Thomas; Lu, Hsiao-Ming; Winey, Brian

    2014-04-15

    Purpose: To quantitatively evaluate the long-term image panel positioning stability and gantry angle dependence for gantry-mounted kV imaging systems. Methods: For patient setup digital imaging systems in isocentric rotating proton beam delivery facilities, physical crosshairs are commonly inserted into the snout to define the kV x-ray beam isocenter. Utilizing an automatic detection algorithm, the authors analyzed the crosshair center positions in 2744 patient setup kV images acquired with the four imagers in two treatment rooms from January 2012 to January 2013. The crosshair position was used as a surrogate for imaging panel position, and its long-term stability at the four cardinal angles and the panel flex dependency on gantry angle was investigated. Results: The standard deviation of the panel position distributions was within 0.32 mm (with the range of variation less than ± 1.4 mm) in both the X-Z plane and Y direction. The mean panel inplane rotations were not more than 0.51° for the four panels at the cardinal angles, with standard deviations ≤0.26°. The panel position variations with gantry rotation due to gravity (flex) were within ±4 mm, and were panel-specific. Conclusions: The authors demonstrated that the kV image panel positions in our proton treatment system were highly reproducible at the cardinal angles over 13 months and also that the panel positions can be correlated to gantry angles. This result indicates that the kV image panel positions are stable over time; the amount of panel sag is predictable during gantry rotation and the physical crosshair for kV imaging may eventually be removed, with the imaging beam isocenter position routinely verified by adequate quality assurance procedures and measurements.

  4. SU-E-T-190: Commissioning An Elekta VersaHD Linear Accelerator

    SciTech Connect

    Narayanasamy, G; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S; Mavroidis, P

    2015-06-15

    Purpose: The purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta VersaHD linear accelerator with high dose rate flattening-filter-free (FFF) photon modes and electron modes. Methods: Acceptance and commissioning was performed on an Elekta VersaHD linac with 5 photon energies (6MV, 10MV, 18MV, 6FFF, 10FFF), 4 electron energies (6MeV, 9MeV, 12MeV, 15MeV) and 160 leaf (5mm wide) multi-leaf collimators (MLCs). Mechanical and dosimetric data was measured and evaluated. The measurements include percent depth doses (PDDs), inplane and crossplane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Results: Gantry, collimator, couch isocentricity measurements were within 1mm, 0.7mm and 0.7mm diameter respectively. The PDDs of 6FFF and 10FFF beams show deeper dmax and steeper fall-off with depth than the corresponding flattened beams. While flatness values of 6FFF and 10FFF normalized profiles were higher than the corresponding flattened beams, the symmetry values were almost identical. The crossplane penumbra values were higher than the inplane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6% and 0.6% for 6MV, 10MV, and 18MV photon beams. The electron PDDs, profiles and cone factors is validated by literature. Conclusion: The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing VersaHD commissioning thus improving patient safety.

  5. SU-E-T-662: Quick and Efficient Daily QA for Compact PBS Proton Therapy Machine

    SciTech Connect

    Patel, B; Syh, J; Ding, X; Syh, J; Song, X; Freund, D; Wu, H

    2015-06-15

    Purpose: As proton therapy machines become widespread the need for a quick simple routine daily QA like that for linear accelerators becomes more important. Willis-Knighton has developed an accurate and efficient daily QA that can be performed in 15 minutes. Methods: A holder for a 2D ionization chamber array (MatriXX PT) was created that is indexed to the couch to allow for quick setup, lasers accuracy with respect to beam isocenter, and couch reproducibility. Image position/reposition was performed to check Isocentricity accuracy by placing BBs on the MatriXX. The couch coordinates are compared to that of commissioning. Laser positions were confirmed with the MatriXX isocenter. After IGRT, three beams were separately delivered according to setup. For the first beam, range shifter was inserted and dose at R90, field size, flatness and symmetry in X and Y direction was measured. R90 was used so any minor changes in the range shifter can be detected. For the open beam, dose at center of SOBP, flatness and symmetry in X and Y direction was measured. Field size was measured in ±X and ±Y direction at FWHM. This is measured so any variation in spot size will be detected. For the third beam additional solid water was added and dose at R50 was measured so that any variation in beam energy will be detected. Basic mechanical and safety checks were also performed. Results: Medical physicists were able to complete the daily QA and reduce the time by half to two-third from initial daily QA procedure. All the values measured were within tolerance of that of the baseline which was established from water tank and initial MatriXX measurements. Conclusion: The change in daily QA procedure resulted in quick and easy setup and was able to measure all the basic functionality of the proton therapy PBS.

  6. The separation of the head and phantom scatter components from a phase space description.

    PubMed

    Sanz, Darío Esteban; Nelli, Flavio Enrico

    2004-09-21

    The formalism based on phantom and collimator scatter factors for high energy photon beams is deduced using a phase space description. The phantom scatter factors (Sp) depend on the field size and shape at the level of the phantom and are generally considered independent of the collimation details used to form the desired field provided the effect of contaminant electrons can be neglected. As demonstrated in this work, this behaviour leads to the applicability of the Clarkson method in irregular fields. However, for a given field formed with a tertiary collimator it is not a priori clear that the variations of extrafocal radiation due to secondary collimator setting do not affect the phantom scatter correction factors. In fact, the extrafocal radiation has a lower mean energy than that of unscattered photons, and this radiation can reach points well outside the radiation field increasing the irradiated phantom volume. Besides, transmission through the blocks contributes to phantom scatter. Therefore, for a given block-defined field, the associated phantom scatter dose, per unit of fluence in air on the central axis, should in principle increase when enlarging the secondary collimator field. To confirm this, isocentric Sp data for 6 MV photons were measured at 10 cm depth in water, reducing with cerrobend blocks several fields formed with the secondary collimators. In particular, when a 30 x 30 cm2 collimator field is reduced with blocks to a 7 x 7 cm2 field, the dose per unit of fluence in air is 1.4% higher than that of the square collimator field equating the given block field. Our calculations indicate that in this case the block transmission accounts for only 0.2% of this increment, showing that the remaining effect is due to extrafocal radiation. As a concluding remark, this work contributes to a better understanding of the classical Clarkson method for irregular fields giving, additionally, a formal interpretation of the commonly used quantities.

  7. Inverse planning in the age of digital LINACs: station parameter optimized radiation therapy (SPORT)

    NASA Astrophysics Data System (ADS)

    Xing, Lei; Li, Ruijiang

    2014-03-01

    The last few years have seen a number of technical and clinical advances which give rise to a need for innovations in dose optimization and delivery strategies. Technically, a new generation of digital linac has become available which offers features such as programmable motion between station parameters and high dose-rate Flattening Filter Free (FFF) beams. Current inverse planning methods are designed for traditional machines and cannot accommodate these features of new generation linacs without compromising either dose conformality and/or delivery efficiency. Furthermore, SBRT is becoming increasingly important, which elevates the need for more efficient delivery, improved dose distribution. Here we will give an overview of our recent work in SPORT designed to harness the digital linacs and highlight the essential components of SPORT. We will summarize the pros and cons of traditional beamlet-based optimization (BBO) and direct aperture optimization (DAO) and introduce a new type of algorithm, compressed sensing (CS)-based inverse planning, that is capable of automatically removing the redundant segments during optimization and providing a plan with high deliverability in the presence of a large number of station control points (potentially non-coplanar, non-isocentric, and even multi-isocenters). We show that CS-approach takes the interplay between planning and delivery into account and allows us to balance the dose optimality and delivery efficiency in a controlled way and, providing a viable framework to address various unmet demands of the new generation linacs. A few specific implementation strategies of SPORT in the forms of fixed-gantry and rotational arc delivery are also presented.

  8. SU-E-J-176: Characterization of Inter-Fraction Breast Variability and the Implications On Delivered Dose

    SciTech Connect

    Sudhoff, M; Lamba, M; Kumar, N; Ward, A; Elson, H

    2015-06-15

    Purpose: To systematically characterize inter-fraction breast variability and determine implications on delivered dose. Methods: Weekly port films were used to characterize breast setup variability. Five evenly spaced representative positions across the contour of each breast were chosen on the electronic port film in reference to graticule, and window and level was set such that the skin surface of the breast was visible. Measurements from the skin surface to treatment field edge were taken on each port film at each position and compared to the planning DRR, quantifying the variability. The systematic measurement technique was repeated for all port films for 20 recently treated breast cancer patients. Measured setup variability for each patient was modeled as a normal distribution. The distribution was randomly sampled from the model and applied as isocentric shifts in the treatment planning computer, representing setup variability for each fraction. Dose was calculated for each shifted fraction and summed to obtain DVHs and BEDs that modeled the dose with daily setup variability. Patients were categorized in to relevant groupings that were chosen to investigate the rigorousness of immobilization types, treatment techniques, and inherent anatomical difficulties. Mean position differences and dosimetric differences were evaluated between planned and delivered doses. Results: The setup variability was found to follow a normal distribution with mean position differences between the DRR and port film between − 8.6–3.5 mm with sigma range of 5.3–9.8 mm. Setup position was not found to be significantly different than zero. The mean seroma or whole breast PTV dosimetric difference, calculated as BED, ranged from a −0.23 to +1.13Gy. Conclusion: A systematic technique to quantify and model setup variability was used to calculate the dose in 20 breast cancer patients including variable setup. No statistically significant PTV or OAR BED differences were found between

  9. Clinical outcome of hypofractionated conventional conformation radiotherapy for patients with single and no more than three metastatic brain tumors, with noninvasive fixation of the skull without whole brain irradiation

    SciTech Connect

    Aoki, Masahiko . E-mail: maoki-rad@umin.ac.jp; Abe, Yoshinao; Hatayama, Yoshiomi; Kondo, Hidehiro; Basaki, Kiyoshi

    2006-02-01

    Purpose: To evaluate the efficacy and toxicity of hypofractionated conventional conformation radiotherapy (HCCRT) with noninvasive fixation of the skull on patients with single or several brain metastases. Methods and Materials: The subjects were 44 patients who had three or fewer brain metastases (26 solitary, 18 multiple). Treatment was conducted on 65 metastases by rotational conformal beam or multiple fixed coplanar beams with a standard linear accelerator. The planning target volume consisted of the tumor and a 1-cm safety margin. The median isocentric dose was 24 Gy (range, 18-30 Gy) in 3-5 fractions. Whole-brain irradiation was not applied as an initial treatment. Results: Actuarial local tumor control rates at 6 months and 1 year were 78.4% and 71.9%, respectively. In-field recurrence was noted in 10 of 65 tumors, and repeat HCCRT was applied in 5 tumors. Actuarial overall survival rates at 1 year, 2 years, and the median survival time were 50.8%, 24.1%, and 5.8 months, respectively. The patients with an active primary cancer and poor performance status had a poorer prognosis than those without those factors. Actuarial freedom from second brain metastases rates at 6 months, 1 year, and 2 years were 86.6%, 69.0%, and 40.9%, respectively. Second brain metastases were observed in 9 of 44 patients. Lung adenocarcinomas had a higher risk of second brain metastasis than others. Treatment-related severe early or late complications were not observed in this series. Conclusions: Hypofractionated conventional conformation radiotherapy achieved sufficient tumor control and survival. The results suggest that HCCRT would be one of the alternatives for patients with either solitary or several brain metastases.

  10. SU-E-T-56: Brain Metastasis Treatment Plans for Contrast-Enhanced Synchrotron Radiation Therapy

    SciTech Connect

    Obeid, L; Adam, J; Tessier, A; Vautrin, M; Benkebil, M; Sihanath, R

    2014-06-01

    Purpose: Iodine-enhanced radiotherapy is an innovative treatment combining the selective accumulation of an iodinated contrast agent in brain tumors with irradiations using monochromatic medium energy x-rays. The aim of this study is to compare dynamic stereotactic arc-therapy and iodineenhanced SSRT. Methods: Five patients bearing brain metastasis received a standard helical 3D-scan without iodine. A second scan was acquired 13 min after an 80 g iodine infusion. Two SSRT treatment plans (with/without iodine) were performed for each patient using a dedicated Monte Carlo (MC) treatment planning system (TPS) based on the ISOgray TPS. Ten coplanar beams (6×6 cm2, shaped with collimator) were simulated. MC statistical error objective was less than 5% in the 50% isodose. The dynamic arc-therapy plan was achieved on the Iplan Brainlab TPS. The treatment plan validation criteria were fixed such that 100% of the prescribed dose is delivered at the beam isocentre and the 70% isodose contains the whole target volume. The comparison elements were the 70% isodose volume, the average and maximum doses delivered to organs at risk (OAR): brainstem, optical nerves, chiasma, eyes, skull bone and healthy brain parenchyma. Results: The stereotactic dynamic arc-therapy remains the best technique in terms of dose conformation. Iodine-enhanced SSRT presents similar performances to dynamic arc-therapy with increased brainstem and brain parenchyma sparing. One disadvantage of SSRT is the high dose to the skull bone. Iodine accumulation in metastasis may increase the dose by 20–30%, allowing a normal tissue sparing effect at constant prescribed dose. Treatment without any iodine enhancement (medium-energy stereotactic radiotherapy) is not relevant with degraded HDVs (brain, parenchyma and skull bone) comparing to stereotactic dynamic arc-therapy. Conclusion: Iodine-enhanced SSRT exhibits a good potential for brain metastasis treatment regarding the dose distribution and OAR criteria.

  11. Conformal Locoregional Breast Irradiation with an Oblique Parasternal Photon Field Technique

    SciTech Connect

    Erven, Katrien; Petillion, Saskia; Weltens, Caroline; Van den Heuvel, Frank; Defraene, Gilles; Van Limbergen, Erik; Van den Bogaert, Walter

    2011-04-01

    We evaluated an isocentric technique for conformal irradiation of the breast, internal mammary, and medial supra-clavicular lymph nodes (IM-MS LN) using the oblique parasternal photon (OPP) technique. For 20 breast cancer patients, the OPP technique was compared with a conventional mixed-beam technique (2D) and a conformal partly wide tangential (PWT) technique, using dose-volume histogram analysis and normal tissue complication probabilities (NTCPs). The 3D techniques resulted in a better target coverage and homogeneity than did the 2D technique. The homogeneity index for the IM-MS PTV increased from 0.57 for 2D to 0.90 for PWT and 0.91 for OPP (both p < 0.001). The OPP technique was able to reduce the volume of heart receiving more than 30 Gy (V{sub 30}), the cardiac NTCP, and the volume of contralateral breast receiving 5 Gy (V{sub 5}) compared with the PWT plans (all p < 0.05). There is no significant difference in mean lung dose or lung NTCP between both 3D techniques. Compared with the PWT technique, the volume of lung receiving more than 20 Gy (V{sub 20}) was increased with the OPP technique, whereas the volume of lung receiving more than 40 Gy (V{sub 40}) was decreased (both p < 0.05). Compared with the PWT technique, the OPP technique can reduce doses to the contralateral breast and heart at the expense of an increased lung V{sub 20}.

  12. Tomotherapy and stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Soisson, Emilie T.

    Currently, at the University of Wisconsin-Madison, a linear accelerator equipped with circular collimators and a floor stand is used for stereotactic radiosurgery (SRS) delivery. In the interest of providing a more efficient delivery option for patients with multiple brain metastases, a Tomotherapy-based radiosurgery program was developed to serve as an intensity modulated compliment to our existing delivery method. The unique advantage of Tomotherapy over other radiotherapy delivery units is the on board megavoltage CT that can be used for both stereotactic localization and treatment planning. As such, a workflow was designed in which the planning image is acquired on the treatment unit itself and, instead using a patient-frame based coordinate system for stereotactic localization, volumetric imaging is used to precisely locate the target at the time of treatment. Localization and delivery accuracy was found to be comparable to conventional approaches and well within stated tolerances. A Tomotherapy-specific treatment planning technique was also developed using the Tomotherapy treatment planning system that reliably produces plans that achieve both conformal target coverage and sufficiently steep dose falloff into surrounding normal brain. Tomotherapy plans have been compared to conventional circular collimator based plans for both the treatment of brain metastases and arteriovenous malformations in terms of both target conformity and dose to normal brain. To determine the effect of plan differences on patient outcome, clinical data was used to predict the resulting risk of treatment induced symptomatic brain necrosis for both conventional and Tomotherapy based plans. Overall, it was determined that plans generated using the described planning technique are acceptable for radiosurgery. In addition, delivery time for complex cases is comparable to or improved over conventional isocentric approaches. Finally, this work explores the impact of future product

  13. Poster — Thur Eve — 08: Rotational errors with on-board cone beam computed tomography

    SciTech Connect

    Ali, E. S. M.; Webb, R.; Nyiri, B.

    2014-08-15

    The focus of this study is on the Elekta XVI on-board cone beam computed tomography (CBCT) system. A rotational mismatch as large as 0.5° is observed between clockwise (CW) and counter-clockwise (CCW) CBCT scans. The error could affect non-isocentric treatments (e.g., lung SBRT and acoustic neuroma), as well as off-axis organs-at-risk. The error is caused by mislabeling of the projections with a lagging gantry angle, which is caused by the finite image acquisition time and delays in the imaging system. A 30 cm diameter cylindrical phantom with 5 mm diameter holes is used for the scanning. CW and CCW scans are acquired for five gantry speeds (360 to 120 deg./min.) on six linacs from three generations (MLCi, MLCi2, and Agility). Additional scans are acquired with different x-ray pulse widths for the same mAs. In the automated CBCT analysis (using ImageJ), the CW/CCW mismatch in a series of line profiles is identified and used to calculate the rotational error. Results are consistent among all linacs and indicate that the error varies linearly with gantry speed. The finite width of the x-ray pulses is a major but predictable contributor to the delay causing the error. For 40 ms pulses, the delay is 34 ± 1 ms. A simple solution applied in our clinic is adjusting the gantry angle offset to make the CCW one-minute scans correct. A more involved approach we are currently investigating includes adjustments of pulse width and mA, resulting in focal spot changes, with potential impact on image quality.

  14. An innovative method to acquire the location of point A for cervical cancer treatment by HDR brachytherapy.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Yeh, Shyh-An; Lee, Tsair-Fwu; Chen, Pang-Yu

    2016-11-08

    Brachytherapy of local cervical cancer is generally accomplished through film-based treatment planning with the prescription directed to point A, which is invisible on images and is located at a high-dose gradient area. Through a standard reconstruction method by digitizing film points, the location error for point A would be 3mm with a condition of 30° curvature tandem, which is 10° away from the gantry rotation axis of a simulator, and has an 8.7 cm interval between the flange and the isocenter. To reduce the location error of the reconstructed point A, this paper proposes a method and demonstrates its accuracy. The Cartesian coordinates of point A were derived by acquiring the locations of the cervical os (tandem flange) and a dummy seed located in the tandem above the flange. To verify this analytical method, ball marks in a commercial "Isocentric Beam Checker" were selected to simulate the two points A, the os, and the dummies. The Checker was placed on the simulator couch with its center ball coincident with the simulator isocenter and its rotation axis perpendicular to the gantry rotation axis. With different combinations of the Checker and couch rotation angles, the orthogonal films were shot and all coor-dinates of the selected points were reconstructed through the treatment planning system and compared with that calculated through the analytical method. The position uncertainty and the deviation prediction of point A were also evaluated. With a good choice of the reference dummy point, the position deviations of point A obtained through this analytical method were found to be generally within 1 mm, with the standard uncertainty less than 0.5 mm. In summary, this new method is a practical and accurate tool for clinical usage to acquire the accurate location of point A for the treatment of cervical cancer patient.

  15. Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning

    NASA Astrophysics Data System (ADS)

    Hsieh, Jiang; Tang, Xiangyang

    2006-10-01

    Reconstruction algorithms for cone-beam CT have been the focus of many studies. Several exact and approximate reconstruction algorithms were proposed for step-and-shoot and helical scanning trajectories to combat cone-beam related artefacts. In this paper, we present a new closed-form cone-beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed in the past to combat errors induced by the gantry tilt, none of the algorithms addresses the scenario in which the cone-beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. We show that the image quality advantages of the rebinned parallel-beam reconstruction are significant, which makes the development of such an algorithm necessary. Because of the rebinning process, the reconstruction algorithm becomes more complex and the amount of iso-centre adjustment depends not only on the projection and tilt angles, but also on the reconstructed pixel location. In this paper, we first demonstrate the advantages of the row-wise fan-to-parallel rebinning and derive a closed-form solution for the reconstruction algorithm for the step-and-shoot and constant-pitch helical scans. The proposed algorithm requires the 'warping' of the reconstruction matrix on a view-by-view basis prior to the backprojection step. We further extend the algorithm to the variable-pitch helical scans in which the patient table travels at non-constant speeds. The algorithm was tested extensively on both the 16- and 64-slice CT scanners. The efficacy of the algorithm is clearly demonstrated by multiple experiments.

  16. An innovative method to acquire the location of point A for cervical cancer treatment by HDR brachytherapy.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Yeh, Shyh-An; Lee, Tsair-Fwu; Chen, Pang-Yu

    2016-11-01

    Brachytherapy of local cervical cancer is generally accomplished through film-based treatment planning with the prescription directed to point A, which is invisible on images and is located at a high-dose gradient area. Through a standard reconstruction method by digitizing film points, the location error for point A would be 3 mm with a condition of 30° curvature tandem, which is 10° away from the gantry rotation axis of a simulator, and has an 8.7 cm interval between the flange and the isocenter. To reduce the location error of the reconstructed point A, this paper proposes a method and demonstrates its accuracy. The Cartesian coordinates of point A were derived by acquiring the locations of the cervical os (tandem flange) and a dummy seed located in the tandem above the flange. To verify this analytical method, ball marks in a commercial "Isocentric Beam Checker" were selected to simulate the two points A, the os, and the dummies. The Checker was placed on the simulator couch with its center ball coincident with the simulator isocenter and its rotation axis perpendicular to the gantry rotation axis. With different combinations of the Checker and couch rotation angles, the orthogonal films were shot and all coordinates of the selected points were reconstructed through the treatment planning system and compared with that calculated through the analytical method. The position uncertainty and the deviation prediction of point A were also evaluated. With a good choice of the reference dummy point, the position deviations of point A obtained through this analytical method were found to be generally within 1 mm, with the standard uncertainty less than 0.5 mm. In summary, this new method is a practical and accurate tool for clinical usage to acquire the accurate location of point A for the treatment of cervical cancer patient. PACS number(s): 87.55.km.

  17. 3-D geometry calibration and markerless electromagnetic tracking with a mobile C-arm

    NASA Astrophysics Data System (ADS)

    Cheryauka, Arvi; Barrett, Johnny; Wang, Zhonghua; Litvin, Andrew; Hamadeh, Ali; Beaudet, Daniel

    2007-03-01

    The design of mobile X-ray C-arm equipment with image tomography and surgical guidance capabilities involves the retrieval of repeatable gantry positioning in three-dimensional space. Geometry misrepresentations can cause degradation of the reconstruction results with the appearance of blurred edges, image artifacts, and even false structures. It may also amplify surgical instrument tracking errors leading to improper implant placement. In our prior publications we have proposed a C-arm 3D positioner calibration method comprising separate intrinsic and extrinsic geometry calibration steps. Following this approach, in the present paper, we extend the intrinsic geometry calibration of C-gantry beyond angular positions in the orbital plane into angular positions on a unit sphere of isocentric rotation. Our method makes deployment of markerless interventional tool guidance with use of high-resolution fluoro images and electromagnetic tracking feasible at any angular position of the tube-detector assembly. Variations of the intrinsic parameters associated with C-arm motion are measured off-line as functions of orbital and lateral angles. The proposed calibration procedure provides better accuracy, and prevents unnecessary workflow steps for surgical navigation applications. With a slight modification, the Misalignment phantom, a tool for intrinsic geometry calibration, is also utilized to obtain an accurate 'image-to-sensor' mapping. We show simulation results, image quality and navigation accuracy estimates, and feasibility data acquired with the prototype system. The experimental results show the potential of high-resolution CT imaging (voxel size below 0.5 mm) and confident navigation in an interventional surgery setting with a mobile C-arm.

  18. Beam-centric algorithm for pretreatment patient position correction in external beam radiation therapy

    SciTech Connect

    Bose, Supratik; Shukla, Himanshu; Maltz, Jonathan

    2010-05-15

    Purpose: In current image guided pretreatment patient position adjustment methods, image registration is used to determine alignment parameters. Since most positioning hardware lacks the full six degrees of freedom (DOF), accuracy is compromised. The authors show that such compromises are often unnecessary when one models the planned treatment beams as part of the adjustment calculation process. The authors present a flexible algorithm for determining optimal realizable adjustments for both step-and-shoot and arc delivery methods. Methods: The beam shape model is based on the polygonal intersection of each beam segment with the plane in pretreatment image volume that passes through machine isocenter perpendicular to the central axis of the beam. Under a virtual six-DOF correction, ideal positions of these polygon vertices are computed. The proposed method determines the couch, gantry, and collimator adjustments that minimize the total mismatch of all vertices over all segments with respect to their ideal positions. Using this geometric error metric as a function of the number of available DOF, the user may select the most desirable correction regime. Results: For a simulated treatment plan consisting of three equally weighted coplanar fixed beams, the authors achieve a 7% residual geometric error (with respect to the ideal correction, considered 0% error) by applying gantry rotation as well as translation and isocentric rotation of the couch. For a clinical head-and-neck intensity modulated radiotherapy plan with seven beams and five segments per beam, the corresponding error is 6%. Correction involving only couch translation (typical clinical practice) leads to a much larger 18% mismatch. Clinically significant consequences of more accurate adjustment are apparent in the dose volume histograms of target and critical structures. Conclusions: The algorithm achieves improvements in delivery accuracy using standard delivery hardware without significantly increasing

  19. SU-E-T-145: Effects of Temporary Tachytherapy Inhibition Magnet On MOSFET Dose Measurements of Cardiovascular Implantable Electronic Devices (CIED) in Radiation Therapy Patients

    SciTech Connect

    P, Joshi; Salomons, G; Kerr, A; Peters, C; Lalonde, M

    2014-06-01

    Purpose: To determine the effects of temporary tachytherapy inhibition magnet on MOSFET dose measurements of cardiovascular implantable electronic devices (CIED) in radiation therapy patients. Methods: Infield and peripheral MOSFET dose measurements with 6MV photon beams were performed to evaluate dose to a CIED in the presence of a doughnut shaped temporary tachytherapy inhibition magnet. Infield measurements were done to quantify the effects of the magnetic field alone and shielding by the magnet. MOSFETs were placed inside a 20×20cm{sup 2} field at a depth of 3cm in the isocentre plane in the presence and absence of the magnet. Peripheral dose measurements were done to determine the impact of the magnet on dose to the CIED in a clinical setting. These measurements were performed at the centre, under the rim and half way between a 10×10cm{sup 2} field edge and the magnet with MOSFETS placed at the surface, 0.5cm and 1cm depths in the presence and absence of the magnet. Results: Infield measurements showed that effects of magnetic field on the MOSFET readings were within the 2% MOSFET dose measurement uncertainty; a 20% attenuation of dose under the magnet rim was observed. Peripheral dose measurements at the centre of the magnet show an 8% increase in surface dose and a 6% decrease in dose at 1cm depth. Dose under the magnet rim was reduced by approximately 68%, 45% and 25% for MOSFET placed at 0.0, 0.5 and 1.0cm bolus depths, respectively. Conclusions: The magnetic field has an insignificant effect on MOSFET dose measurements. Dose to the central region of CIED represented by centre of the magnet doughnut increases at the surface, and decreases at depths due to low energy scattering contributions from the magnet. Dose under the magnet rim, representing CIED edges, decreased significantly due to shielding.

  20. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    SciTech Connect

    Studenski, Matthew T.; Shen, Xinglei; Yu, Yan; Xiao, Ying; Shi, Wenyin; Biswas, Tithi; Werner-Wasik, Maria; Harrison, Amy S.

    2013-04-01

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. For the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.

  1. Low-contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom

    NASA Astrophysics Data System (ADS)

    Zhou, Lili; Oldan, Jorge; Fisher, Paul; Gindi, Gene

    2006-03-01

    Tomosynthesis mammography is a potentially valuable technique for detection of breast cancer. In this simulation study, we investigate the efficacy of three different tomographic reconstruction methods, EM, SART and Backprojection, in the context of an especially difficult mammographic detection task. The task is the detection of a very low-contrast mass embedded in very dense fibro-glandular tissue - a clinically useful task for which tomosynthesis may be well suited. The project uses an anatomically realistic 3D digital breast phantom whose normal anatomic variability limits lesion conspicuity. In order to capture anatomical object variability, we generate an ensemble of phantoms, each of which comprises random instances of various breast structures. We construct medium-sized 3D breast phantoms which model random instances of ductal structures, fibrous connective tissue, Cooper's ligaments and power law structural noise for small scale object variability. Random instances of 7-8 mm irregular masses are generated by a 3D random walk algorithm and placed in very dense fibro-glandular tissue. Several other components of the breast phantom are held fixed, i.e. not randomly generated. These include the fixed breast shape and size, nipple structure, fixed lesion location, and a pectoralis muscle. We collect low-dose data using an isocentric tomosynthetic geometry at 11 angles over 50 degrees and add Poisson noise. The data is reconstructed using the three algorithms. Reconstructed slices through the center of the lesion are presented to human observers in a 2AFC (two-alternative-forced-choice) test that measures detectability by computing AUC (area under the ROC curve). The data collected in each simulation includes two sources of variability, that due to the anatomical variability of the phantom and that due to the Poisson data noise. We found that for this difficult task that the AUC value for EM (0.89) was greater than that for SART (0.83) and Backprojection (0.66).

  2. Impact of dose calculation models on radiotherapy outcomes and quality adjusted life years for lung cancer treatment: do we need to measure radiotherapy outcomes to tune the radiobiological parameters of a normal tissue complication probability model?

    PubMed Central

    Docquière, Nicolas; Bondiau, Pierre-Yves; Balosso, Jacques

    2016-01-01

    Background The equivalent uniform dose (EUD) radiobiological model can be applied for lung cancer treatment plans to estimate the tumor control probability (TCP) and the normal tissue complication probability (NTCP) using different dose calculation models. Then, based on the different calculated doses, the quality adjusted life years (QALY) score can be assessed versus the uncomplicated tumor control probability (UTCP) concept in order to predict the overall outcome of the different treatment plans. Methods Nine lung cancer cases were included in this study. For the each patient, two treatments plans were generated. The doses were calculated respectively from pencil beam model, as pencil beam convolution (PBC) turning on 1D density correction with Modified Batho’s (MB) method, and point kernel model as anisotropic analytical algorithm (AAA) using exactly the same prescribed dose, normalized to 100% at isocentre point inside the target and beam arrangements. The radiotherapy outcomes and QALY were compared. The bootstrap method was used to improve the 95% confidence intervals (95% CI) estimation. Wilcoxon paired test was used to calculate P value. Results Compared to AAA considered as more realistic, the PBCMB overestimated the TCP while underestimating NTCP, P<0.05. Thus the UTCP and the QALY score were also overestimated. Conclusions To correlate measured QALY’s obtained from the follow-up of the patients with calculated QALY from DVH metrics, the more accurate dose calculation models should be first integrated in clinical use. Second, clinically measured outcomes are necessary to tune the parameters of the NTCP model used to link the treatment outcome with the QALY. Only after these two steps, the comparison and the ranking of different radiotherapy plans would be possible, avoiding over/under estimation of QALY and any other clinic-biological estimates. PMID:28149761

  3. [Linear accelerator-based stereotactic radiosurgery for the treatment of trigeminal neuralgia. Nine years' experience in a single institution].

    PubMed

    Serrano-Rubio, A A; Martinez-Manrique, J J; Revuelta-Gutierrez, R; Gomez-Amador, J L; Martinez-Anda, J J; Ponce-Gomez, J A; Moreno-Jimenez, S

    2014-09-16

    INTRODUCTION. Pharmacological treatment is the first therapeutic step towards controlling pain in trigeminal neuralgia, but 25-50% of patients become medication resistant. There are currently several surgical alternatives for treating these patients. AIM. To evaluate the effectiveness and safety of stereotactic radiosurgery for the treatment of patients with trigeminal neuralgia. PATIENTS AND METHODS. A follow-up study was conducted on 30 patients who underwent radiosurgery using a Novalis linear accelerator. Eighty per cent of the dosage was calculated at the isocentre, the entry zone of the root of the trigeminal nerve. The mean follow-up time was 27.5 months (range: 1-65 months). RESULTS. The mean age was 66 years (range: 36-87 years), with a time to progression of 7.1 years (range: 4-27 years). The distribution of the pain was from the right side (63.3%). Of the 30 patients, 27 experienced an improvement (90%) 1.6 months (range: 1 week-4 months) after the treatment; 10 patients (33.3%) scored grade I, and 17 patients (56.6%) obtained a score of grade II. During the follow-up, four patients (14.2%) suffered a relapse; two underwent re-irradiation. Time without recurrence was 62.7 months (range: 54.6-70.8 months). The rate of side effects was 76.7% and only three patients developed facial anaesthesia with loss of the corneal reflex. CONCLUSIONS. The use of the linear accelerator is an effective therapeutic option in the treatment of trigeminal neuralgia, since it provides adequate long-term control of the pain, reduces the use of medication and improves the quality of life.

  4. Ion Beam Therapy in Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Gerhard

    2009-03-01

    At present, seven facilities in Europe treat deep-seated tumors with particle beams, six with proton beams and one with carbon ions. Three of these facilities are in Moscow, St. Petersburg and Dubna, Russia. Other facilities include the TSL Uppsala, Sweden, CPO Orsay, France, and PSI Villigen, Switzerland, all for proton therapy, and GSI, Darmstadt, Germany, which utilizes carbon ions only. But only two of these facilities irradiate with scanned ion beams: the Paul Scherer Institute (PSI), Villigen (protons) and the Gesellschaft für Schwerionenforschung (GSI), Darmstadt. These two facilities are experimental units within physics laboratories and have developed the technique of intensity-modulated beam scanning in order to produce irradiation conforming to a 3-D target. There are three proton centers presently under construction in Munich, Essen and Orsay, and the proton facility at PSI has added a superconducting accelerator connected to an isocentric gantry in order to become independent of the accelerator shared with the physics research program. The excellent clinical results using carbon ions at National Institute of Radiological Science (NIRS) in Chiba and GSI have triggered the construction of four new heavy-ion therapy projects (carbon ions and protons), located in Heidelberg, Pavia, Marburg and Kiel. The projects in Heidelberg and Pavia will begin patient treatment in 2009, and the Marburg and Kiel projects will begin in 2010 and 2011, respectively. These centers use different accelerator designs but have the same kind of treatment planning system and use the same approach for the calculation of the biological effectiveness of the carbon ions as developed at GSI [1]. There are many other planned projects in the works. Do not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style

  5. The University of Texas M.D. Anderson Cancer Center Proton Therapy Facility

    SciTech Connect

    Smith, Alfred; Newhauser, Wayne; Latinkic, Mitchell; Hay, Amy; Cox, James; McMaken, Bruce; Styles, John

    2003-08-26

    The University of Texas M.D. Anderson Cancer Center (MDACC), in partnership with Sanders Morris Harris Inc., a Texas-based investment banking firm, and The Styles Company, a developer and manager of hospitals and healthcare facilities, is building a proton therapy facility near the MDACC main complex at the Texas Medical Center in Houston, Texas USA. The MDACC Proton Therapy Center will be a freestanding, investor-owned radiation oncology center offering state-of-the-art proton beam therapy. The facility will have four treatment rooms: three rooms will have rotating, isocentric gantries and the fourth treatment room will have capabilities for both large and small field (e.g. ocular melanoma) treatments using horizontal beam lines. There will be an additional horizontal beam room dedicated to physics research and development, radiation biology research, and outside users who wish to conduct experiments using proton beams. The first two gantries will each be initially equipped with a passive scattering nozzle while the third gantry will have a magnetically swept pencil beam scanning nozzle. The latter will include enhancements to the treatment control system that will allow for the delivery of proton intensity modulation treatments. The proton accelerator will be a 250 MeV zero-gradient synchrotron with a slow extraction system. The facility is expected to open for patient treatments in the autumn of 2005. It is anticipated that 675 patients will be treated during the first full year of operation, while full capacity, reached in the fifth year of operation, will be approximately 3,400 patients per year. Treatments will be given up to 2-shifts per day and 6 days per week.

  6. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    SciTech Connect

    Stiebel-Kalish, Hadas; Reich, Ehud; Gal, Lior; Rappaport, Zvi Harry; Nissim, Ouzi; Pfeffer, Raphael; Spiegelmann, Roberto

    2012-02-01

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  7. Present Status and Future Developments in Proton Therapy

    SciTech Connect

    Smith, Alfred R.

    2009-07-25

    Within the past few years, interest in proton therapy has significantly increased. This interest has been generated by a number of factors including: 1) the reporting of positive clinical results using proton beams; 2) approval of reimbursement for delivery of proton therapy; 3) the success of hospital-based proton therapy centers; and 4) the availability of modern, integrated proton therapy technology for hospital-based facilities. In the United States, this increased interest has occurred particularly at the level of smaller academic hospitals, community medical centers, and large private practices; however, interest from large academic centers continues to be strong. Particular interest exists regarding smaller and less-expensive proton therapy systems, especially the so-called 'single-room' systems. In this paper, the advantages and disadvantages of 1-room proton therapy systems will be discussed. The emphasis on smaller and cheaper proton therapy facilities has also generated interest in new proton-accelerating technologies such as superconducting cyclotrons and synchrocyclotrons, laser acceleration, and dielectric-wall accelerators. Superconducting magnets are also being developed to decrease the size and weight of isocentric gantries. Another important technical development is spot-beam scanning, which offers the ability to deliver intensity-modulated proton treatments (IMPT). IMPT has the potential to provide dose distributions that are superior to those for photon intensity modulation techniques (IMXT) and to improve clinical outcomes for patients undergoing cancer therapy. At the present time, only two facilities--one in Europe and one in the United States--have the ability to deliver IMPT treatments, however, within the next year or two several additional facilities are expected to achieve this capability.

  8. Cone-beam CT with a flat-panel detector on a mobile C-arm: preclinical investigation in image-guided surgery of the head and neck

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Chan, Y.; Rafferty, M. A.; Moseley, D. J.; Jaffray, D. A.; Irish, J. C.

    2005-04-01

    A promising imaging platform for combined low-dose fluoroscopy and cone-beam CT (CBCT) guidance of interventional procedures has been developed in our laboratory. Based on a mobile isocentric C-arm (Siemens PowerMobil) incorporating a high-performance flat-panel detector (Varian PaxScan 4030CB), the system demonstrates sub-mm 3D spatial resolution and soft-tissue visibility with field of view sufficient for head and body sites. For pre-clinical studies in head neck tumor surgery, we hypothesize that the 3D intraoperative information provided by CBCT permits precise, aggressive techniques with improved avoidance of critical structures. The objectives include: 1) quantify improvement in surgical performance achieved with CBCT guidance compared to open and endoscopic techniques; and 2) investigate specific, challenging surgical tasks under CBCT guidance. Investigations proceed from an idealized phantom model to cadaveric specimens. A novel surgical performance evaluation method based on statistical decision theory is applied to excision and avoidance tasks. Analogous to receiver operating characteristic (ROC) analysis in medical imaging, the method quantifies surgical performance in terms of Lesion-Excised (True-Positve), Lesion-Remaining (False-Negative), Normal-Excised (False-Positive), and Normal-Remaining (True-Negative) fractions. Conservative and aggressive excision and avoidance tasks are executed in 12 cadaveric specimens with and without CBCT guidance, including: dissection through dura, preservation of posterior lamina, ethmoid air cells removal, exposure of peri-orbita, and excision of infiltrated bone in the skull base (clivus). Intraoperative CBCT data was found to dramatically improve surgical performance and confidence in the execution of such tasks. Pre-clinical investigation of this platform in head and neck surgery, as well as spinal, trauma, biopsy, and other nonvascular procedures, is discussed.

  9. Towards a Noninvasive Intracranial Tumor Irradiation Using 3D Optical Imaging and Multimodal Data Registration

    PubMed Central

    Posada, R.; Daul, Ch.; Wolf, D.; Aletti, P.

    2007-01-01

    Conformal radiotherapy (CRT) results in high-precision tumor volume irradiation. In fractioned radiotherapy (FRT), lesions are irradiated in several sessions so that healthy neighbouring tissues are better preserved than when treatment is carried out in one fraction. In the case of intracranial tumors, classical methods of patient positioning in the irradiation machine coordinate system are invasive and only allow for CRT in one irradiation session. This contribution presents a noninvasive positioning method representing a first step towards the combination of CRT and FRT. The 3D data used for the positioning is point clouds spread over the patient's head (CT-data usually acquired during treatment) and points distributed over the patient's face which are acquired with a structured light sensor fixed in the therapy room. The geometrical transformation linking the coordinate systems of the diagnosis device (CT-modality) and the 3D sensor of the therapy room (visible light modality) is obtained by registering the surfaces represented by the two 3D point sets. The geometrical relationship between the coordinate systems of the 3D sensor and the irradiation machine is given by a calibration of the sensor position in the therapy room. The global transformation, computed with the two previous transformations, is sufficient to predict the tumor position in the irradiation machine coordinate system with only the corresponding position in the CT-coordinate system. Results obtained for a phantom show that the mean positioning error of tumors on the treatment machine isocentre is 0.4 mm. Tests performed with human data proved that the registration algorithm is accurate (0.1 mm mean distance between homologous points) and robust even for facial expression changes. PMID:18364992

  10. Nonisocentric Treatment Strategy for Breast Radiation Therapy: A Proof of Concept Study

    SciTech Connect

    Li, Ruijiang Xing, Lei; Horst, Kathleen C.; Bush, Karl

    2014-03-15

    Purpose: To propose a nonisocentric treatment strategy as a special form of station parameter optimized radiation therapy, to improve sparing of critical structures while preserving target coverage in breast radiation therapy. Methods and Materials: To minimize the volume of exposed lung and heart in breast irradiation, we propose a novel nonisocentric treatment scheme by strategically placing nonconverging beams with multiple isocenters. As its name suggests, the central axes of these beams do not intersect at a single isocenter as in conventional breast treatment planning. Rather, the isocenter locations and beam directions are carefully selected, in that each beam is only responsible for a certain subvolume of the target, so as to minimize the volume of irradiated normal tissue. When put together, the beams will provide an adequate coverage of the target and expose only a minimal amount of normal tissue to radiation. We apply the nonisocentric planning technique to 2 previously treated clinical cases (breast and chest wall). Results: The proposed nonisocentric technique substantially improved sparing of the ipsilateral lung. Compared with conventional isocentric plans using 2 tangential beams, the mean lung dose was reduced by 38% and 50% using the proposed technique, and the volume of the ipsilateral lung receiving ≥20 Gy was reduced by a factor of approximately 2 and 3 for the breast and chest wall cases, respectively. The improvement in lung sparing is even greater compared with volumetric modulated arc therapy. Conclusions: A nonisocentric implementation of station parameter optimized radiation therapy has been proposed for breast radiation therapy. The new treatment scheme overcomes the limitations of existing approaches and affords a useful tool for conformal breast radiation therapy, especially in cases with extreme chest wall curvature.

  11. Radiosurgery in the management of brain metastasis: a retrospective single-center study comparing Gamma Knife and LINAC treatment.

    PubMed

    Tuleasca, Constantin; Negretti, Laura; Faouzi, Mohamed; Magaddino, Vera; Gevaert, Thierry; von Elm, Erik; Levivier, Marc

    2017-03-24

    OBJECTIVE The authors present a retrospective analysis of a single-center experience with treatment of brain metastases using Gamma Knife (GK) and linear accelerator (LINAC)-based radiosurgery and compare the results. METHODS From July 2010 to July 2012, 63 patients with brain metastases were treated with radiosurgery. Among them, 28 (with 83 lesions) were treated with a GK unit and 35 (with 47 lesions) with a LINAC. The primary outcome was local progression-free survival (LPFS), evaluated on a per-lesion basis. The secondary outcome was overall survival (OS), evaluated per patient. Statistical analysis included standard tests and Cox regression with shared-frailty models to account for the within-patient correlation. RESULTS The mean follow-up period was 11.7 months (median 7.9 months, range 1.7-32 months) for GK and 18.1 months (median 17 months, range 7.5-28.7 months) for LINAC. The median number of lesions per patient was 2.5 (range 1-9) in the GK group and 1 (range 1-3) in the LINAC group (p < 0.01, 2-sample t-test). There were more radioresistant lesions (e.g., melanoma) and more lesions located in functional areas in the GK group. Additional technical reasons for choosing GK instead of LINAC were limitations of LINAC movements, especially if lesions were located in the lower posterior fossa or multiple lesions were close to highly functional areas (e.g., the brainstem), precluding optimal dosimetry with LINAC. The median marginal dose was 24 Gy with GK and 20 Gy with LINAC (p < 0.01, 2-sample t-test). For GK, the actuarial LPFS rate at 3, 6, 9, 12, and 17 months was 96.96%, 96.96%, 96.96%, 88.1%, and 81.5%, remaining stable until 32 months. For LINAC the rate at 3, 6, 12, 17, 24, and 33 months was 91.5%, 91.5%, 91.5%, 79.9%, 55.5%, and 17.1% (log-rank p = 0.03). In the Cox regression with shared-frailty model, the risk of local progression in the LINAC group was almost twice that of the GK group (HR 1.92, p > 0.05). The mean OS was 16.0 months (95% CI 11

  12. Critical review of high gain x-ray FEL experiments

    SciTech Connect

    Kim, Kwang-Je

    1996-08-01

    There is a renewed interest at the present time to develop x-ray free electron lasers (FELs). The interest is driven by the scientific opportunities with coherent x-rays glimpsed at the third generation light sources. With the recent development in linac technology in producing high-energy, high-brightness electron beams, it is now possible to design intense coherent x-ray source for wavelengths as short as one Angstrom based on the self- amplified spontaneous emission (SASE) principle. Major linac laboratories such as SLAC and DESY are therefore actively pursuing detailed design studies for the x-ray SASE facilities. The x-rays from these facilities will provide a peak brightness more than ten orders of magnitude higher than that of the current synchrotron radiation sources. Short wavelength coherent radiation could also be generated with harmonic generation techniques in linacs or storage rings. However, these schemes are not expected to be effective for 1 {Angstrom} wavelengths. This review will therefore concentrate on the linac based SASE scheme. The critical components of the SASE are: an electron source consisting of an RF photocathode gun with the emittance corrector producing high brightness electron beam; the beam bunching and acceleration; and a long undulator in which the radiation develops from initially incoherent radiation to intense, coherent radiation. We discuss the critical experimental issues in these components highlighting some relevant recent experiments. We also discuss issues related to the SASE experiment which are distinct from the usual free electron lasers. We give a brief survey of the world-wide SASE experiments. We conclude with a summary and outlook.

  13. WE-A-19A-01: SRT I: Comparison of SRT Techniques

    SciTech Connect

    Kim, G; Schlesinger, D; Descovich, M

    2014-06-15

    Within the past several years, the field of radiosurgery has seen numerous technological enhancements, including new dedicated devices for stereotactic delivery, the use of re-locatable frames to facilitate fractionated delivery and the image guided frameless approaches. The goal of this symposium is to compare and contrast competing technologies for cranial SRS/SRT. The symposium will open with a review of the general concept of cranial SRS/SRT procedures as well as describe the key differences from conventional radiotherapy. The speakers will then review each of the delivery technique (Gamma Knife, CyberKnife and Conventional linear accelerator) in turn. The focus of each speaker will be to describe the general workflow of each SRS modality, indications and counterindications for treatment. To compare and contrast different technologies, 2–3 cases examples demonstrating interesting treatment situations and expected outcomes, a sample treatment plan (either live or pre-recorded with live commentary) demonstrating the treatment planning technique, and machine and patient-specific QA required for treatment (if applicable). Additionally, workflows and data describing the use of immobilization devices or tracking/monitoring during SRS/SRT delivery will also be discussed. The session will close with a roundtable discussion of methods to evaluate plan quality, and achievable technical and clinical goals for intracranial SRS. Learning Objectives: Understand the key differences between cranial SRS/SRT and conventional treatments. Review Gamma Knife, CyberKnife and Conventional Linac-based radiosurgery delivery techniques and quality assurance Compare and contrast treatment plans, treatment planning strategy and and quality assurance procedures for each technology. Be able to establish cranial SRS/SRT procedure with optimized quality assurance program for each technology.

  14. Linear Accelerator-Based Radiosurgery Alone for Arteriovenous Malformation: More Than 12 Years of Observation

    SciTech Connect

    Matsuo, Takayuki Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi

    2014-07-01

    Purpose: Although radiosurgery is an accepted treatment method for intracranial arteriovenous malformations (AVMs), its long-term therapeutic effects have not been sufficiently evaluated, and many reports of long-term observations are from gamma-knife facilities. Furthermore, there are few reported results of treatment using only linear accelerator (LINAC)-based radiosurgery (LBRS). Methods and Materials: Over a period of more than 12 years, we followed the long-term results of LBRS treatment performed in 51 AVM patients. Results: The actuarial obliteration rates, after a single radiosurgery session, at 3, 5, 10, and 15 years were 46.9%, 54.0%, 64.4%, and 68.0%, respectively; when subsequent radiosurgeries were included, the rates were 46.9%, 61.3%, 74.2%, and 90.3%, respectively. Obliteration rates were significantly related to target volumes ≥4 cm{sup 3}, marginal doses ≥12