Sample records for linalool linalyl acetate

  1. Assessment of dietary exposure to flavouring substances via consumption of flavoured teas. Part II: transfer rates of linalool and linalyl esters into Earl Grey tea infusions.

    PubMed

    Orth, Anne-Marie; Poplacean, Iulia; Fastowski, Oxana; Engel, Karl-Heinz

    2014-01-01

    The assessment of dietary exposure via the consumption of flavoured foods is a key element of the safety evaluation of flavouring substances. Linalyl acetate and linalool are the major flavouring substances in Earl Grey teas; the objective of this study was to determine their transfer rates from the tea leaves into the tea beverage upon preparation of a hot water infusion. Spiking experiments revealed a transfer rate of 66% for linalool. In contrast, the transfer rate for linalyl acetate was only 1.9%; in turn, the hydrolysis product linalool (17.0%) and a spectrum (19.9%) of degradation and rearrangement products (monoterpene alcohols, esters and hydrocarbons) were present in the tea beverage. The transfer rates were shown to be proportional to the length of the infusion. The impact of the hot water treatment on the enantiomeric compositions of linalyl acetate and linalool was determined, and structure-dependent experiments were performed by variation of the acyl and the alcohol moiety of the monoterpene ester. Comparative dietary exposure assessments demonstrated the need to take correction factors based on the experimentally determined transfer rates into account. Based on tea consumption data from the UK National Diet and Nutrition Survey (2000/2001), the exposure to linalyl acetate ranges from 0.2 mg day(-1) (average) to 1.8 mg day(-1) (high). The corresponding values for linalool are 4.2 mg day(-1) (average) and 46.6 mg day(-1) (high). The exposure of linalool via consumption of the tea beverage is approximately 26 times higher than that of linalyl acetate, although in the flavoured tea leaves the median content of linalyl acetate is approximately 1.8 times higher than that of linalool.

  2. Structure-odor relationships of linalool, linalyl acetate and their corresponding oxygenated derivatives

    NASA Astrophysics Data System (ADS)

    Elsharif, Shaimaa; Banerjee, Ashutosh; Buettner, Andrea

    2015-10-01

    Linalool 1 is an odorant that is commonly perceived as having a pleasant odor, but is also known to elicit physiological effects such as inducing calmness and enhancing sleep. However, no comprehensive studies are at hand to show which structural features are responsible for these prominent effects. Therefore, a total of six oxygenated derivatives were synthesized from both 1 and linalyl acetate 2, and were tested for their odor qualities and relative odor thresholds (OTs) in air. Linalool was found to be the most potent odorant among the investigated compounds, with an average OT of 3.2 ng/L, while the 8-hydroxylinalool derivative was the least odorous compound with an OT of 160 ng/L; 8-carboxylinalool was found to be odorless. The odorant 8-oxolinalyl acetate, which has very similar odor properties to linalool, was the most potent odorant besides linalool, exhibiting an OT of 5.9 ng/L. By comparison, 8-carboxylinalyl acetate had a similar OT (6.1 ng/L) as its corresponding 8-oxo derivative but exhibited divergent odor properties (fatty, greasy, musty). Overall, oxygenation on carbon 8 had a substantial effect on the aroma profiles of structural derivatives of linalool and linalyl acetate.

  3. Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oil from Spain: determination of aromatic profile by gas chromatography-mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities.

    PubMed

    Carrasco, Alejandro; Martinez-Gutierrez, Ramiro; Tomas, Virginia; Tudela, Jose

    2016-01-01

    Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oils (EOs), from Abrial, Super and Grosso cultivars, cultivated and extracted in the South East of Spain, were analysed by using GC/MS to determine their composition, in both relative (peak area) and absolute (using standard curves) concentrations. Linalool (34-47%), linalyl acetate (17-34%), camphor (4-9%) and eucalyptol (3-7%) were determined as the main molecules. This characterisation was completed with the enantioselective gas chromatography, where ( - )-linalool, (+)-camphor and ( - )-linalyl acetate were determined as the main components. Antioxidant activity was evaluated positively by several methods: activity against free radicals, chelating and reducing power, probably due to linalool and linalyl acetate. Mild inhibitory activity on lipoxygenase was observed supporting potential anti-inflammatory activity, mainly due to linalool and camphor. These properties support the potential use of L. × intermedia essential oils as natural cosmetic and natural pharmaceutical ingredient to fight several skin diseases.

  4. High quality bergamot oil from Greece: Chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector.

    PubMed

    Melliou, Eleni; Eleni, Melliou; Michaelakis, Antonios; Antonios, Michaelakis; Koliopoulos, George; George, Koliopoulos; Skaltsounis, Alexios-Leandros; Alexios-Leandros, Skaltsounis; Magiatis, Prokopios; Prokopios, Magiatis

    2009-02-18

    Tauhe essential oils contained in the rind of the fruit and the leaves of bergamot from Greece (Citrus aurantium subsp. bergamia) were studied. The bergamot trees in question were cultivated on Kefalonia Island. The plant material (leaves and fruits in different stages of maturity) was collected between December and March for a two year period. The rind of the fruit was separated manually and the essential oil was obtained either by cold pressing or by hydrodistillation. The maximum yield calculated on a wet weight of fresh rinds basis was 1.8%. The essential oils were first analyzed by GC-MS with a DB-5 column and then with a beta-Dex enantiomeric column. The main constituent of the cold pressed essential oil of the rind was (-)-linalyl acetate with optical purity >99.9%. Other important constituents were (-)-linalool, (+)-limonene and gamma-terpinene. The best value of linalool/linalyl acetate ratio was 0.38 and the maximum sum of linalool+linalyl acetate was found to be 55.8%. The larvacidal activities of the obtained essential oils and the compounds (+/-)-linalyl acetate, (+/-)-linalool and (-)-linalool were evaluated against larvae of the mosquito species Culex pipiens (Diptera: Culicidae), the West Nile virus vector, under laboratory conditions. The cold pressed essential oil showed an LC(50) value of 58 mg/L, while the LC(50) value of the corresponding essential oil obtained by hydrostillation was 106 mg/L. The essential oil of the leaves presented similar larvicidal toxicity with the cold pressed oil of the rind (LC(50)=68 mg/L).

  5. [Main Components of Xinjiang Lavender Essential Oil Determined by Partial Least Squares and Near Infrared Spectroscopy].

    PubMed

    Liao, Xiang; Wang, Qing; Fu, Ji-hong; Tang, Jun

    2015-09-01

    This work was undertaken to establish a quantitative analysis model which can rapid determinate the content of linalool, linalyl acetate of Xinjiang lavender essential oil. Totally 165 lavender essential oil samples were measured by using near infrared absorption spectrum (NIR), after analyzing the near infrared spectral absorption peaks of all samples, lavender essential oil have abundant chemical information and the interference of random noise may be relatively low on the spectral intervals of 7100~4500 cm(-1). Thus, the PLS models was constructed by using this interval for further analysis. 8 abnormal samples were eliminated. Through the clustering method, 157 lavender essential oil samples were divided into 105 calibration set samples and 52 validation set samples. Gas chromatography mass spectrometry (GC-MS) was used as a tool to determine the content of linalool and linalyl acetate in lavender essential oil. Then the matrix was established with the GC-MS raw data of two compounds in combination with the original NIR data. In order to optimize the model, different pretreatment methods were used to preprocess the raw NIR spectral to contrast the spectral filtering effect, after analysizing the quantitative model results of linalool and linalyl acetate, the root mean square error prediction (RMSEP) of orthogonal signal transformation (OSC) was 0.226, 0.558, spectrally, it was the optimum pretreatment method. In addition, forward interval partial least squares (FiPLS) method was used to exclude the wavelength points which has nothing to do with determination composition or present nonlinear correlation, finally 8 spectral intervals totally 160 wavelength points were obtained as the dataset. Combining the data sets which have optimized by OSC-FiPLS with partial least squares (PLS) to establish a rapid quantitative analysis model for determining the content of linalool and linalyl acetate in Xinjiang lavender essential oil, numbers of hidden variables of two components were 8 in the model. The performance of the model was evaluated according to root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP). In the model, RESECV of linalool and linalyl acetate were 0.170 and 0.416, respectively; RM-SEP were 0.188 and 0.364. The results indicated that raw data was pretreated by OSC and FiPLS, the NIR-PLS quantitative analysis model with good robustness, high measurement precision; it could quickly determine the content of linalool and linalyl acetate in lavender essential oil. In addition, the model has a favorable prediction ability. The study also provide a new effective method which could rapid quantitative analysis the major components of Xinjiang lavender essential oil.

  6. Intraplantar injection of bergamot essential oil induces peripheral antinociception mediated by opioid mechanism.

    PubMed

    Sakurada, Tsukasa; Mizoguchi, Hirokazu; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu

    2011-01-01

    This study investigated the effect of bergamot essential oil (BEO) containing linalool and linalyl acetate as major volatile components in the capsaicin test. The intraplantar injection of capsaicin (1.6 μg) produced a short-lived licking/biting response toward the injected paw. The nociceptive behavioral response evoked by capsaicin was inhibited dose-dependently by intraplantar injection of BEO. Both linalool and linalyl acetate, injected into the hindpaw, showed a significant reduction of nociceptive response, which was much more potent than BEO. Intraperitoneal (i.p.) and intraplantar pretreatment with naloxone hydrochloride, an opioid receptor antagonist, significantly reversed BEO- and linalool-induced antinociception. Pretreatment with naloxone methiodide, a peripherally acting μ-opioid receptor preferring antagonist, resulted in a significant antagonizing effect on antinociception induced by BEO and linalool. Antinociception induced by i.p. or intrathecal morphine was enhanced by the combined injection of BEO or linalool. The enhanced effect of combination of BEO or linalool with morphine was antagonized by pretreatment with naloxone hydrochloride. Our results provide evidence for the involvement of peripheral opioids, in the antinociception induced by BEO and linalool. Combined administration of BEO or linalool acting at the peripheral site, and morphine may be a promising approach in the treatment of clinical pain. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. A method for reducing environmental pollution by using essential oils in rodent pest management program.

    PubMed

    Jokić, Goran; Blažić, Tanja; Đurović-Pejčev, Rada; Đorđević, Tijana; Đedović, Suzana; Vukša, Marina

    2017-08-01

    Strong-smelling plant extracts, such as essential oils, have a variety of feeding effects on mammals. Considering current concerns over long-term health issues and environmental effects of chemicals, plant-based products with repellent or antifungal activities may represent good solutions for improvement of rodent pest control programs. The present study was therefore focused on examining the effects of bergamot, lavender, and thyme essential oils as additional bait components on daily intakes of cereal-based baits by wild house mice. Lavender essential oil, containing linalool and linalyl acetate as main components, and thyme essential oil with a prevailing thymol component had no effects on house mice diet. Bergamot essential oil, whose main components were linalool, limonene, and linalyl acetate, showed a repellent effect on house mouse diet.

  8. In Vitro and In Vivo Efficacy Studies of Lavender angustifolia Essential Oil and Its Active Constituents on the Proliferation of Human Prostate Cancer.

    PubMed

    Zhao, Yunqi; Chen, Ran; Wang, Yun; Qing, Chen; Wang, Wei; Yang, Yixin

    2017-06-01

    Lavandula angustifolia is the most widely cultivated Lavandula species. The extraction of its flower and leaves has been used as herbal medicine. In this study, the in vitro antitumor activities were tested on human prostate cancer PC-3 and DU145 cell lines. Flow cytometry technology was applied to study apoptosis induction and cell cycle arrest. The PC-3 cell line was used to establish subcutaneous xenograft tumors in nude mice. Paraffin sections from xenograft tumor specimens were used in the TUNEL (terminal deocynucleotide transferase dUTP nick end labeling) assay and an immunohistochemistry assay to detect cell proliferation markers Ki67 and PCNA. Lavender essential oil, linalool, and linalyl acetate showed stronger inhibitory effect on PC-3 cells than on DU145 cells. The apoptotic cell populations observed in PC-3 cells treated with lavender essential oil, linalool, and linalyl acetate were 74.76%, 67.11%, and 56.14%, respectively. The PC-3 cells were mainly arrested in the G 2 /M phase. In the xenograft model with PC-3 cell transplantation, essential oil and linalool significantly suppressed tumor growth. The immunosignals of Ki67 and PCNA in the essential oil, linalool, and linalyl acetate treatment groups were significantly lower than that of the control group in xenograft tumor sections. The TUNEL assay indicated that each of the 3 phytochemicals significantly induced apoptosis compared to the control group. This study provides novel insight and evidence on the antiproliferative effect of L angustifolia essential oil and its major constituents on human prostate cancer. The antitumor effect was associated with cell proliferation inhibition and apoptosis induction in xenograft tumors.

  9. In Vitro and In Vivo Efficacy Studies of Lavender angustifolia Essential Oil and Its Active Constituents on the Proliferation of Human Prostate Cancer

    PubMed Central

    Zhao, Yunqi; Chen, Ran; Wang, Yun; Qing, Chen; Wang, Wei; Yang, Yixin

    2016-01-01

    Lavandula angustifolia is the most widely cultivated Lavandula species. The extraction of its flower and leaves has been used as herbal medicine. In this study, the in vitro antitumor activities were tested on human prostate cancer PC-3 and DU145 cell lines. Flow cytometry technology was applied to study apoptosis induction and cell cycle arrest. The PC-3 cell line was used to establish subcutaneous xenograft tumors in nude mice. Paraffin sections from xenograft tumor specimens were used in the TUNEL (terminal deocynucleotide transferase dUTP nick end labeling) assay and an immunohistochemistry assay to detect cell proliferation markers Ki67 and PCNA. Lavender essential oil, linalool, and linalyl acetate showed stronger inhibitory effect on PC-3 cells than on DU145 cells. The apoptotic cell populations observed in PC-3 cells treated with lavender essential oil, linalool, and linalyl acetate were 74.76%, 67.11%, and 56.14%, respectively. The PC-3 cells were mainly arrested in the G2/M phase. In the xenograft model with PC-3 cell transplantation, essential oil and linalool significantly suppressed tumor growth. The immunosignals of Ki67 and PCNA in the essential oil, linalool, and linalyl acetate treatment groups were significantly lower than that of the control group in xenograft tumor sections. The TUNEL assay indicated that each of the 3 phytochemicals significantly induced apoptosis compared to the control group. This study provides novel insight and evidence on the antiproliferative effect of L angustifolia essential oil and its major constituents on human prostate cancer. The antitumor effect was associated with cell proliferation inhibition and apoptosis induction in xenograft tumors. PMID:27151584

  10. Antimicrobial activity of blended essential oil preparation.

    PubMed

    Tadtong, Sarin; Suppawat, Supatcha; Tintawee, Anchalee; Saramas, Phanida; Jareonvong, Suchada; Hongratanaworakit, Tapanee

    2012-10-01

    Antimicrobial activities of two blended essential oil preparations comprising lavender oil, petigrain oil, clary sage oil, ylang ylang oil and jasmine oil were evaluated against various pathogenic microorganisms. Both preparations showed antimicrobial activity in the agar disc diffusion assay against the Gram-positive bacteria, Staphylococcus aureus ATCC6538 and S. epidermidis isolated strain, the fungus, Candida albicans ATCC10231, and the Gram-negative bacterium, Escherichia coli ATCC25922, but showed no activity against Pseudomonas aeruginosa ATCC9027. The minimum inhibitory concentration (MIC) of these preparations was evaluated. By the broth microdilution assay, preparation 1, comprising lavender oil, clary sage oil, and ylang ylang oil (volume ratio 3:4:3), exhibited stronger antimicrobial activity than preparation 2, which was composed of petigrain oil, clary sage oil, and jasmine oil (volume ratio 3:4:3). Moreover, the sum of the fractional inhibitory concentrations (Sigma fic) of preparation 1 expressed a synergistic antimicrobial effect against the tested microorganisms (Sigma fic

  11. Intraplantar injection of bergamot essential oil into the mouse hindpaw: effects on capsaicin-induced nociceptive behaviors.

    PubMed

    Sakurada, Tsukasa; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu

    2009-01-01

    Despite the increasing use of aromatherapy oils, there have not been many studies exploring the biological activities of bergamot (Citrus bergamia, Risso) essential oil (BEO). Recently, we have investigated the effects of BEO injected into the plantar surface of the hindpaw in the capsaicin test in mice. The intraplantar injection of capsaicin produced an intense and short-lived licking/biting response toward the injected hindpaw. The capsaicin-induced nociceptive response was reduced significantly by intraplantar injection of BEO. The essential oils of Clary Sage (Salvia sclarea), Thyme ct. linalool (linalool chemotype of Thymus vulgaris), Lavender Reydovan (Lavandula hybrida reydovan), and True Lavender (Lavandula angustifolia), had similar antinociceptive effects on the capsaicin-induced nociceptive response, while Orange Sweet (Citrus sinensis) essential oil was without effect. In contrast to a small number of pharmacological studies of BEO, there is ample evidence regarding isolated components of BEO which are also found in other essential oils. The most abundant compounds found in the volatile fraction are the monoterpene hydrocarbons, such as limonene, gamma-terpinene, beta-pinene, and oxygenated derivatives, linalool and linalyl acetate. Of these monoterpenes, the pharmacological activities of linalool have been examined. Following intraperitoneal (i.p.) administration in mice, linalool produces antinociceptive and antihyperalgesic effects in different animal models in addition to anti-inflammatory properties. Linalool also possesses anticonvulsant activity in experimental models of epilepsy. We address the importance of linalool or linalyl acetate in BEO-or the other essential oil-induced antinociception.

  12. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.

    PubMed

    Russo, Rossella; Ciociaro, Antonella; Berliocchi, Laura; Cassiano, Maria Gilda Valentina; Rombolà, Laura; Ragusa, Salvatore; Bagetta, Giacinto; Blandini, Fabio; Corasaniti, Maria Tiziana

    2013-09-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a widely used plant extract showing anxiolytic, analgesic and neuroprotective effects in rodents; also, BEO activates multiple death pathways in cancer cells. Despite detailed knowledge of its chemical composition, the constituent/s responsible for these pharmacological activities remain largely unknown. Aim of the present study was to identify the components of BEO implicated in cell death. To this end, limonene, linalyl acetate, linalool, γ-terpinene, β-pinene and bergapten were individually tested in human SH-SY5Y neuroblastoma cultures at concentrations comparable with those found in cytotoxic dilutions of BEO. None of the tested compounds elicited cell death. However, significant cytotoxicity was observed when cells were cotreated with limonene and linalyl acetate whereas no other associations were effective. Only cotreatment, but not the single exposure to limonene and linalyl acetate, replicated distinctive morphological and biochemical changes induced by BEO, including caspase-3 activation, PARP cleavage, DNA fragmentation, cell shrinkage, cytoskeletal alterations, together with necrotic and apoptotic cell death. Collectively, our findings suggest a major role for a combined action of these monoterpenes in cancer cell death induced by BEO. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities.

    PubMed

    Carrasco, Alejandro; Martinez-Gutierrez, Ramiro; Tomas, Virginia; Tudela, Jose

    2016-01-01

    Compositions of true lavender (Lavandula angustifolia) and spike lavender (Lavandula latifolia) essential oils, cultivated and extracted in the Southeast of Spain, were determined by gas chromatography coupled with mass spectrometry detection, obtaining both relative (peak area) and absolute (using standard curves) concentrations. Linalool (37-54 %), linalyl acetate (21-36 %) and (E)-β-caryophyllene (1-3 %) were the most abundant components for L. angustifolia. Linalool (35-51 %), eucalyptol (26-32 %), camphor (10-18 %), α-pinene (1-2 %), α-terpineol (1-2 %) and α-bisabolene (1-2 %) were the most abundant components for L. latifolia. The characterization was completed with enantioselective gas chromatography, in which the determined main molecules were (-)-linalool, (-)-linalyl acetate and (+)-camphor. (S)-(-)-camphene, (R)-(+)-limonene, (1R, 9S)-(-)-(E)-β-caryophyllene and (1R, 4R, 6R, 10S)-(-)-caryophyllene oxide were found in this study as the predominant enantiomers in Spanish L. angustifolia. The characterised essential oils were tested for their antioxidant activity against free radicals ABTS, DPPH, ORAC, chelating, and reducing power. Inhibitory activity on lipoxygenase was observed indicating a possible anti-inflammatory activity, mainly due to linalool, camphor, p-cymene and limonene. These results can be the starting point for a future study of the potential use of L. angustifolia and L. latifolia essential oils as natural cosmetic and natural pharmaceutical ingredients for several skin diseases. Georg Thieme Verlag KG Stuttgart · New York.

  14. Essential oil diversity of European Origanum vulgare L. (Lamiaceae).

    PubMed

    Lukas, Brigitte; Schmiderer, Corinna; Novak, Johannes

    2015-11-01

    This investigation focused on the qualitative and quantitative composition of essential oil compounds of European Origanum vulgare. Extracts of 502 individual O. vulgare plants from 17 countries and 51 populations were analyzed via GC. Extracts of 49 plants of 5 populations of Israeli Origanum syriacum and 30 plants from 3 populations of Turkish Origanum onites were included to exemplify essential oil characteristics of 'high-quality' oregano. The content of essential oil compounds of European O. vulgare ranged between 0.03% and 4.6%. The monoterpenes were primarily made up of sabinene, myrcene, p-cymene, 1,8-cineole, β-ocimene, γ-terpinene, sabinene hydrate, linalool, α-terpineol, carvacrol methyl ether, linalyl acetate, thymol and carvacrol. Among the sesquiterpenes β-caryophyllene, germacrene D, germacrene D-4-ol, spathulenol, caryophyllene oxide and oplopanone were often present in higher amounts. According to the proportions of cymyl-compounds, sabinyl-compounds and the acyclic linalool/linalyl acetate three different main monoterpene chemotypes were defined. The cymyl- and the acyclic pathway were usually active in plants from the Mediterranean climate whereas an active sabinyl-pathway was a characteristic of plants from the Continental climate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Chemical and biological diversity of Bergamot (Citrus bergamia) in relation to environmental factors.

    PubMed

    Statti, Giancarlo A; Conforti, Filomena; Sacchetti, Gianni; Muzzoli, Mariavittoria; Agrimonti, Caterina; Menichini, Francesco

    2004-03-01

    Oil of bergamot is receiving renewed popularity in aromatherapy. The biovariability of Citrus bergamia grown wild in Calabria (Italy) was investigated as far as chemical markers (linalool, linalyl acetate and bergapten) content and antioxidant and antifungal activities of the methanolic extracts. The average content in the markers presents slight variations with the altitude and more evident changes with the latitude of the areas of plant collection.

  17. Peripherally injected linalool and bergamot essential oil attenuate mechanical allodynia via inhibiting spinal ERK phosphorylation.

    PubMed

    Kuwahata, Hikari; Komatsu, Takaaki; Katsuyama, Soh; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu; Sakurada, Tsukasa; Takahama, Kazuo

    2013-02-01

    Bergamot essential oil (BEO) is one of the most common essential oil containing linalool and linalyl acetate as major volatile components. This study investigated the effect of intraplantar (i.pl.) bergamot essential oil (BEO) or linalool on neuropathic hypersensitivity induced by partial sciatic nerve ligation (PSNL) in mice. The i.pl. injection of BEO or linalool into the ipsilateral hindpaw to PSNL reduced PSNL-induced mechanical allodynia in a dose-dependent manner. Peripheral (i.pl.) injection of BEO or linalool into the contralateral hindpaw did not yield anti-allodynic effects, suggesting a local anti-mechanical allodynic effect of BEO or linalool in PSNL mice. Anti-mechanical hypersensitivity of morphine was enhanced by the combined injection of BEO or linalool at an ineffective dose when injected alone. We also examined the possible involvement of spinal extracellular signal-regulated protein kinase (ERK) in BEO or linalool-induced anti-mechanical allodynia. In western blotting analysis, i.pl. injection of BEO or linalool resulted in a significant blockade of spinal ERK activation induced by PSNL. These results suggest that i.pl. injection of BEO or linalool may reduce PSNL-induced mechanical allodynia followed by decreasing spinal ERK activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities

    PubMed Central

    Carrasco, Alejandro; Martinez-Gutierrez, Ramiro; Tomas, Virginia; Tudela, Jose

    2018-01-01

    The compositions of essential oils (EOs) from Spanish marjoram (Thymus mastichina L.) grown in several bioclimatic zones of Murcia (SE Spain) were studied to determine their absolute and relative concentrations using gas chromatography-mass spectrometry. 1,8-Cineole and linalool were the main components, followed by α-pinene, β-pinene and α-terpineol. (–)-Linalool, (+)-α-terpineol and (+)-α-pinene were the most abundant enantiomers. When the antioxidant capacities of T. mastichina EOs and their compounds were measured by five methods, EOs and linalool, linalyl acetate, α-terpinene and γ-terpinene, among others, showed antioxidant activities. All four T. mastichina EOs inhibited both lipoxygenase and acetylcholinesterase activities, and they might be useful for further research into inflammatory and Alzheimer diseases. Bornyl acetate and limonene showed the highest lipoxygenase inhibition and 1,8-cineole was the best acetylcholinesterase inhibitor. Moreover, these EOs inhibited the growth of Escherichia coli, Staphylococcus aureus and Candida albicans due to the contribution of their individual compounds. The results underline the potential use of these EOs in manufactured products, such as foodstuff, cosmetics and pharmaceuticals. PMID:29304179

  19. Volatile constituents of Trichothecium roseum.

    PubMed

    Vanhaelen, M; Vanhaelen-Fastre, R; Geeraerts, J

    1978-06-01

    In the course of investigation of Trichothecium roseum (Fungi Imperfecti) for its attractancy against Tyrophagus putrescentiae (cheese mite), the twenty following volatile compounds produced at a very low concentration by the microfungus were identified by gc, gc/ms, gc/c.i.ms and tlc: 3-methyl-1-butanol, 3-octanone, 1-octen-3-one, 3-octanol, octa-1,5-dien-3 one, 1-octen-3-ol, 6-methyl-5-hepten-2-ol, octa-1,5-dien-3 ol, furfural, linalool, linalyl acetate, terpineol (alpha and beta) citronellyl acetate, nerol, citronellol, phenylacetaldehyde, benzyl alcohol geranyl acetate, 1-phenyl ethanol and nerolidol. Octa-1,5-dien-3-ol and octa-1,5-dien-3-one have not been previously isolated from fungi; octa-1,5-dien-3-ol is the most potent attractant amount the volatile compounds detected by gc.

  20. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study.

    PubMed

    Blaskó, Ágnes; Gazdag, Zoltán; Gróf, Pál; Máté, Gábor; Sárosi, Szilvia; Krisch, Judit; Vágvölgyi, Csaba; Makszin, Lilla; Pesti, Miklós

    2017-02-01

    The effects of clary sage (Salvia sclarea L.) oil (CS-oil), and its two main components, linalool (Lol) and linalyl acetate (LA), on cells of the eukaryotic human pathogen yeast Candida albicans were studied. Dynamic and thermodynamic properties of the plasma membrane were investigated by electron paramagnetic resonance (EPR) spectroscopy, with 5-doxylstearic acid (5-SASL) and 16-SASL as spin labels. The monitoring of the head group regions with 5-SASL revealed break-point frequency decrease in a temperature dependent manner of the plasma membrane between 9.55 and 13.15 °C in untreated, in CS-oil-, Lol- and LA-treated membranes. The results suggest a significant increase in fluidity of the treated plasma membranes close to the head groups. Comparison of the results observed with the two spin labels demonstrated that CS-oil and LA induced an increased level of fluidization at both depths of the plasma membrane. Whereas Lol treatment induced a less (1 %) ordered bilayer organization in the superficial regions and an increased (10 %) order of the membrane leaflet in deeper layers. Acute toxicity tests and EPR results indicated that both the apoptotic and the effects exerted on the plasma membrane fluidity depended on the composition and chemical structure of the examined materials. In comparison with the control, treatment with CS-oil, Lol or LA induced 13.0, 12.3 and 26.4 % loss respectively, of the metabolites absorbing at 260 nm, as a biological consequence of the plasma membrane fluidizing effects. Our results confirmed that clary sage oil causes plasma membrane perturbations which leads to cell apoptosis process.

  1. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations

    PubMed Central

    Satyal, Prabodh; Murray, Brittney L.; McFeeters, Robert L.; Setzer, William N.

    2016-01-01

    Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography–mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%). A cluster analysis based on the compositions of these essential oils as well as 81 additional T. vulgaris essential oils reported in the literature revealed 20 different chemotypes. This work represents the first chiral analysis of T. vulgaris monoterpenoids and a comprehensive description of the different chemotypes of T. vulgaris. PMID:28231164

  2. Cardiovascular effects of linalyl acetate in acute nicotine exposure.

    PubMed

    Kim, Ju Ri; Kang, Purum; Lee, Hui Su; Kim, Ka Young; Seol, Geun Hee

    2017-04-24

    Smoking is a risk factor for cardiovascular diseases as well as pulmonary dysfunction. In particular, adolescent smoking has been reported to have a higher latent risk for cardiovascular disease. Despite the risk to and vulnerability of adolescents to smoking, the mechanisms underlying the effects of acute nicotine exposure on adolescents remain unknown. This study therefore evaluated the mechanism underlying the effects of linalyl acetate on cardiovascular changes in adolescent rats with acute nicotine exposure. Parameters analyzed included heart rate (HR), systolic blood pressure, lactate dehydrogenase (LDH) activity, vascular contractility, and nitric oxide levels. Compared with nicotine alone, those treated with nicotine plus 10 mg/kg (p = 0.036) and 100 mg/kg (p = 0.023) linalyl acetate showed significant reductions in HR. Moreover, the addition of 1 mg/kg (p = 0.011), 10 mg/kg (p = 0.010), and 100 mg/kg (p = 0.011) linalyl acetate to nicotine resulted in significantly lower LDH activity. Nicotine also showed a slight relaxation effect, followed by a sustained recontraction phase, whereas nicotine plus linalyl acetate or nifedipine showed a constant relaxation effect on contraction of mouse aorta (p < 0.001). Furthermore, nicotine-induced increases in nitrite levels were decreased by treatment with linalyl acetate (p < 0.001). Taken together, our findings suggest that linalyl acetate treatment resulted in recovery of cell damage and cardiovascular changes caused by acute nicotine-induced cardiovascular disruption. Our evaluation of the influence of acute nicotine provides potential insights into the effects of environmental tobacco smoke and suggests linalyl acetate as an available mitigating agent.

  3. Chemical composition and biological activities of the essential oil of Skimmia laureola leaves.

    PubMed

    Barkatullah; Ibrar, Muhammad; Muhammad, Naveed; De Feo, Vincenzo

    2015-03-16

    The composition of the essential oil from leaves of Skimmia laureola was determined by GC and GC-MS. Twenty-eight components were identified, accounting for 93.9% of the total oil. The oil is mainly composed of monoterpenes (93.5%), of which monoterpene hydrocarbons and oxygenated monoterpenes represent 11.0% and 82.5%, respectively. Sesquiterpenes constitute only 0.3% of the total oil. Linalyl acetate is the main component (50.5%), with linalool (13.1%), geranyl acetate (8.5%) and cis-p-menth-2-en-1-ol (6.2%) as other principal constituents. The essential oil showed a significant antispasmodic activity, in a dose range of 0.03-10 mg/mL. The essential oil also possesses antibacterial and antifungal activities against some pathogenic strains. The phytotoxic and cytotoxic activities were also assessed.

  4. RIFM fragrance ingredient safety assessment, linalyl benzoate, CAS Registry Number 126-64-7.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dkant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic. Data from the suitable read across analog linalyl phenylacetate (CAS # 7143-69-3) show that this material does not have skin sensitization potential. The repeated dose toxicity endpoint was completed using linalyl cinnamate (CAS # 78-37-5) as a suitable read across analog, which provided a MOE > 100. The developmental and reproductive toxicity endpoint was completed using linalool (CAS # 78-70-6), dehydrolinalool (CAS # 29171-20-8), benzoic acid (CAS # 65-85-0) and sodium benzoate (CAS # 532-32-1) as suitable read across analogs, which provided a MOE > 100. The local respiratory toxicity endpoint was completed using linalool (CAS # 78-70-6) and benzoic acid (CAS # 65-85-0) as suitable read across analogs, which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework along with data from the suitable read across analog linalyl cinnamate (CAS # 78-375). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Physical and psychologic effects of aromatherapy inhalation on pregnant women: a randomized controlled trial.

    PubMed

    Igarashi, Toshiko

    2013-10-01

    Stress reduction care is important for pregnant women to decrease obstetric complications and children's health problems after birth. The aim of this study is to clarify the physical and psychologic effects of inhalation aromatherapy on pregnant women. Essential oils with high linalool and linalyl acetate content that may be used during pregnancy were selected and among these, and the one preferred by the participant was used. This was a prospective, randomized, controlled trial. This trial was performed at a gynecology outpatient department in a hospital in Kyoto, Japan. The study included pregnant women in week 28 of a single pregnancy with a normal course. Participants were randomly assigned into an aromatherapy group and a control group. They were seated in the resting, seated position for 10 minutes. During the latter 5 minutes of each 10-minute session, aromatherapy inhalation was performed for the aromatherapy group. Before and after the intervention, the Profile of Mood States (POMS) was measured. During the trial, the heart-rate fluctuations were measured for the autonomic nervous system regulation. A total of 13 pregnant women participated in the trial. Seven (7) participants were assigned to the aromatherapy group and 6 participants to the control group. The results of the POMS were such that based on an intragroup comparison, significant differences were observed in the Tension-Anxiety score (p<0.05) and the Anger-Hostility score (p<0.05), and the respective improvements observed were due to aromatherapy. The results of the autonomic nervous system regulation were such that based on an intragroup comparison within the aromatherapy group, the parasympathetic nerve activity increased significantly (p<0.05). Aromatherapy inhalation using essential oils containing linalyl acetate and linalool was found to be effective for the POMS and parasympathetic nerve activity, based on an intragroup comparison. However, based on a comparison between the groups, no substantial difference was observed; hence, further study is necessary in the future.

  6. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model.

    PubMed

    Soković, Marina; Glamočlija, Jasmina; Marin, Petar D; Brkić, Dejan; van Griensven, Leo J L D

    2010-10-27

    The chemical composition and antibacterial activity of essential oils from 10 commonly consumed herbs: Citrus aurantium, C. limon, Lavandula angustifolia, Matricaria chamomilla, Mentha piperita, M. spicata, Ocimum basilicum, Origanum vulgare, Thymus vulgaris and Salvia officinalis have been determined. The antibacterial activity of these oils and their main components; i.e. camphor, carvacrol, 1,8-cineole, linalool, linalyl acetate, limonene, menthol, a-pinene, b-pinene, and thymol were assayed against the human pathogenic bacteria Bacillus subtilis, Enterobacter cloacae, Escherichia coli O157:H7, Micrococcus flavus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enteritidis, S. epidermidis, S. typhimurium, and Staphylococcus aureus. The highest and broadest activity was shown by O. vulgare oil. Carvacrol had the highest antibacterial activity among the tested components.

  7. Selective removal of monoterpenes from bergamot oil by inclusion in deoxycholic acid.

    PubMed

    Fantin, Giancarlo; Fogagnolo, Marco; Maietti, Silvia; Rossetti, Stefano

    2010-05-12

    A new approach for removing monoterpenes (MTs) from bergamot oil by selective inclusion in deoxycholic acid (DCA) is proposed. The inclusion process is very efficient, the included fraction being composed mainly of limonene (71.7%) and gamma-terpinene (19.8%). On the other hand, the deterpenated bergamot oil fraction showed for the linalool and linalyl acetate derivatives significant increases from 16.6 and 21.4% to 18.3 and 42.2%, respectively. The major advantages of this methodology are its simplicity, the mild conditions employed, and the quantitative recovery of both host (DCA) and guest (monoterpenes) compounds. Differential scanning calorimetry (DSC), thermal gravimetry (TG), powder X-ray diffractometry (XRPD), infrared spectroscopy (IR), and proton magnetic resonance ((1)H NMR) analysis were used to investigate and characterize the inclusion compounds.

  8. Biosynthesis and therapeutic properties of Lavandula essential oil constituents.

    PubMed

    Woronuk, Grant; Demissie, Zerihun; Rheault, Mark; Mahmoud, Soheil

    2011-01-01

    Lavenders and their essential oils have been used in alternative medicine for several centuries. The volatile compounds that comprise lavender essential oils, including linalool and linalyl acetate, have demonstrative therapeutic properties, and the relative abundance of these metabolites is greatly influenced by the genetics and environment of the developing plants. With the rapid progress of molecular biology and the genomic sciences, our understanding of essential oil biosynthesis has greatly improved over the past few decades. At the same time, there is a recent surge of interest in the use of natural remedies, including lavender essential oils, in alternative medicine and aromatherapy. This article provides a review of recent developments related to the biosynthesis and medicinal properties of lavender essential oils. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Lavandula angustifolia Mill. Oil and Its Active Constituent Linalyl Acetate Alleviate Pain and Urinary Residual Sense after Colorectal Cancer Surgery: A Randomised Controlled Trial

    PubMed Central

    Yu, So Hyun

    2017-01-01

    Pain and urinary symptoms following colorectal cancer (CRC) surgery are frequent and carry a poor recovery. This study tested the effects of inhalation of Lavandula angustifolia Mill. (lavender) oil or linalyl acetate on pain relief and lower urinary tract symptoms (LUTS) following the removal of indwelling urinary catheters from patients after CRC surgery. This randomised control study recruited 66 subjects with indwelling urinary catheters after undergoing CRC surgery who later underwent catheter removal. Patients inhaled 1% lavender, 1% linalyl acetate, or vehicle (control group) for 20 minutes. Systolic and diastolic blood pressure (BP), heart rate, LUTS, and visual analog scales of pain magnitude and quality of life (QoL) regarding urinary symptoms were measured before and after inhalation. Systolic BP, diastolic BP, heart rate, LUTS, and QoL satisfaction with urinary symptoms were similar in the three groups. Significant differences in pain magnitude and urinary residual sense of indwelling catheters were observed among the three groups, with inhalation of linalyl acetate being significantly more effective than inhalation of lavender or vehicle. Inhalation of linalyl acetate is an effective nursing intervention to relieve pain and urinary residual sense of indwelling urinary catheters following their removal from patients who underwent CRC surgery. PMID:28154606

  10. Physical and Psychologic Effects of Aromatherapy Inhalation on Pregnant Women: A Randomized Controlled Trial

    PubMed Central

    2013-01-01

    Abstract Objectives Stress reduction care is important for pregnant women to decrease obstetric complications and children's health problems after birth. The aim of this study is to clarify the physical and psychologic effects of inhalation aromatherapy on pregnant women. Essential oils with high linalool and linalyl acetate content that may be used during pregnancy were selected and among these, and the one preferred by the participant was used. Design This was a prospective, randomized, controlled trial. Settings/location This trial was performed at a gynecology outpatient department in a hospital in Kyoto, Japan. Participants The study included pregnant women in week 28 of a single pregnancy with a normal course. Interventions Participants were randomly assigned into an aromatherapy group and a control group. They were seated in the resting, seated position for 10 minutes. During the latter 5 minutes of each 10-minute session, aromatherapy inhalation was performed for the aromatherapy group. Outcome measures Before and after the intervention, the Profile of Mood States (POMS) was measured. During the trial, the heart-rate fluctuations were measured for the autonomic nervous system regulation. Results A total of 13 pregnant women participated in the trial. Seven (7) participants were assigned to the aromatherapy group and 6 participants to the control group. The results of the POMS were such that based on an intragroup comparison, significant differences were observed in the Tension-Anxiety score (p<0.05) and the Anger-Hostility score (p<0.05), and the respective improvements observed were due to aromatherapy. The results of the autonomic nervous system regulation were such that based on an intragroup comparison within the aromatherapy group, the parasympathetic nerve activity increased significantly (p<0.05). Conclusions Aromatherapy inhalation using essential oils containing linalyl acetate and linalool was found to be effective for the POMS and parasympathetic nerve activity, based on an intragroup comparison. However, based on a comparison between the groups, no substantial difference was observed; hence, further study is necessary in the future. PMID:23410527

  11. Antimicrobial activity of five essential oils from lamiaceae against multidrug-resistant Staphylococcus aureus.

    PubMed

    Kot, Barbara; Wierzchowska, Kamila; Piechota, Małgorzata; Czerniewicz, Paweł; Chrzanowski, Grzegorz

    2018-06-11

    Analysis of Lamiaceae essential oils (EOs) by GC-FID-MS revealed the presence as the major constituents of linalool (16.8%), linalyl acetate (15.7%) in Lavandula angustifolia, menthol (29.0%), menthone (22.7%), menthyl acetate (19.2%) in Mentha x piperita, terpinen-4-ol (27.1%), (E)-sabinene hydrate (12.1%), γ-terpinene (10.0%) in Origanum majorana, α-thujone (19.5%), camphor (19.0%), viridiflorol (13.5%) in Salvia officinalis, thymol (61.9%), p-cymene (10.0%), γ-terpinene (10.0%) in Thymus vulgaris. Based on the MIC and MBC values (0.09-0.78 mg/mL) and ratio MBC/MIC showed that EO from T. vulgaris (TO) had the strong inhibitory and bactericidal effect against multidrug-resistant Staphylococcus aureus. The bacterial cells were total killed by TO at 2MIC concentration after 6 h. The higher concentrations of other EOs were needed to achieve bactericidal effects. The strong bactericidal effect of TO against these bacteria indicates the possibility of topical use of TO but it requires research under clinical conditions.

  12. Potential application of aromatic plant extracts to prevent cheese blowing.

    PubMed

    Librán, C M; Moro, A; Zalacain, A; Molina, A; Carmona, M; Berruga, M I

    2013-07-01

    This study aimed to inhibit the growth of Escherichia coli and Clostridium tyrobutyricum, common bacteria responsible for early and late cheese blowing defects respectively, by using novel aqueous extracts obtained by dynamic solid-liquid extraction and essential oils obtained by solvent free microwave extraction from 12 aromatic plants. In terms of antibacterial activity, a total of 13 extracts inhibited one of the two bacteria, and only two essential oils, Lavandula angustifolia Mill. and Lavandula hybrida, inhibited both. Four aqueous extracts were capable of inhibiting C. tyrobutyricum, but none were effective against E. coli. After extracts' chemical composition identification, relationship between the identified compounds and their antibacterial activity were performed by partial least square regression models revealing that compounds such as 1,8 cineole, linalool, linalyl acetate, β-phellandrene or verbene (present in essential oils), pinocarvone, pinocamphone or coumaric acid derivate (in aqueous extracts) were compounds highly correlated to the antibacterial activity.

  13. Change in Caco-2 cells following treatment with various lavender essential oils.

    PubMed

    Donadu, M G; Usai, D; Mazzarello, V; Molicotti, P; Cannas, S; Bellardi, M G; Zanetti, S

    2017-09-01

    Lavender is an aromatic evergreen shrub diffused in the Mediterranean basin appreciated since antiquity. The genus Lavandula is part of Lamiaceae family and includes more than 20 species, among which true lavender (L. vera D.C. or L. angustifolia Miller.) and spike lavender (L. latifolia Medikus); there are also numerous hybrids known as lavandins (L. hybrida Rev.). L. vera, spike lavender and several hybrids are the most intensely used breeding species for the production of essential oils. Lavender and lavandin essential oils have been applied in food, pharmaceutical and other agro industries as biological products. In their chemical composition, terpenes linalool and linalyl acetate along with terpenoids such as 1,8-cineole are mostly responsible for biological and therapeutic activities. This study evaluates cytotoxic activity of essential oils derived from four lavender species on human epithelial colorectal adenocarcinoma cells. Analysis of pre- and post-treatment cell morphology has been performed using scanning electron microscope.

  14. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique

    PubMed Central

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-01-01

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples. PMID:28231089

  15. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique.

    PubMed

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-02-08

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis , Lavandula angustifolia and Mentha asiatica . Aroma components of the S. officinalis , L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography-mass spectrometry (GC-MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis , Lavandula angustifolia and Mentha asiatica , respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis , Lavandula angustifolia and Mentha asiatica , respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples.

  16. Pressurized fluid extraction of essential oil from Lavandula hybrida using a modified supercritical fluid extractor and a central composite design for optimization.

    PubMed

    Kamali, Hossein; Jalilvand, Mohammad Reza; Aminimoghadamfarouj, Noushin

    2012-06-01

    Essential oil components were extracted from lavandin (Lavandula hybrida) flowers using pressurized fluid extraction. A central composite design was used to optimize the effective extraction variables. The chemical composition of extracted samples was analyzed by a gas chromatograph-flame ionization detector column. For achieving 100% extraction yield, the temperature, pressure, extraction time, and the solvent flow rate were adjusted at 90.6°C, 63 bar, 30.4 min, and 0.2 mL/min, respectively. The results showed that pressurized fluid extraction is a practical technique for separation of constituents such as 1,8-cineole (8.1%), linalool (34.1%), linalyl acetate (30.5%), and camphor (7.3%) from lavandin to be applied in the food, fragrance, pharmaceutical, and natural biocides industries. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rational Basis for the Use of Bergamot Essential Oil in Complementary Medicine to Treat Chronic Pain.

    PubMed

    Rombolà, L; Amantea, D; Russo, R; Adornetto, A; Berliocchi, L; Tridico, L; Corasaniti, M T; Sakurada, S; Sakurada, T; Bagetta, G; Morrone, L A

    2016-01-01

    In complementary medicine, aromatherapy uses essential oils to improve agitation and aggression observed in dementia, mood, depression, anxiety and chronic pain. Preclinical research studies have reported that the essential oil obtained from bergamot (BEO) fruit (Citrus bergamia, Risso) modifies normal and pathological synaptic plasticity implicated, for instance, in nociceptive and neuropathic pain. Interestingly, recent results indicated that BEO modulates sensitive perception of pain in different models of nociceptive, inflammatory and neuropathic pain modulating endogenous systems. Thus, local administration of BEO inhibited the nociceptive behavioral effect induced by intraplantar injection of capsaicin or formalin in mice. Similar effects were observed with linalool and linalyl acetate, major volatile components of the phytocomplex, Pharmacological studies showed that the latter effects are reversed by local or systemic pretreatment with the opioid antagonist naloxone hydrochloride alike with naloxone methiodide, high affinity peripheral μ-opioid receptor antagonist. These results and the synergistic effect observed following systemic or intrathecal injection of an inactive dose of morphine with BEO or linalool indicated an activation of peripheral opioid system. Recently, in neuropathic pain models systemic or local administration of BEO or linalool induced antiallodynic effects. In particular, in partial sciatic nerve ligation (PSNL) model, intraplantar injection of the phytocomplex or linalool in the ipsilateral hindpaw, but not in the contralateral, reduced PSNL-induced extracellularsignal- regulated kinase (ERK) activation and mechanical allodynia. In neuropathic pain high doses of morphine are needed to reduce pain. Interestingly, combination of inactive doses of BEO or linalool with a low dose of morphine induced antiallodynic effects in mice. Peripheral cannabinoid and opioid systems appear to be involved in the antinociception produced by intraplantar injection of β -caryophyllene, present in different essential oils including BEO. The data gathered so far indicate that the essential oil of bergamot is endowed with antinociceptive and antiallodynic effects and contribute to form the rational basis for rigorous testing of its efficacy in complementary medicine.

  18. Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature.

    PubMed

    Djenane, Djamel; Aïder, Mohammed; Yangüela, Javier; Idir, Lamia; Gómez, Diego; Roncalés, Pedro

    2012-12-01

    The essential oils (EOs) of Lavandula angustifolia L. and Mentha piperita L. were analyzed by gas chromatography mass spectrometry (GC/MS). The major constituents were linalool (22.35%), linalyl acetate (21.80%), trans-ocimene (6.16%) and 4-terpineol (5.19%) for L. angustifolia and menthol (33.28%), menthone (22.03%), and menthyl acetate (6.40%) for M. piperita. In vitro antibacterial activity of both EOs against Escherichia coli O157:H7 and Staphylococcus aureus CECT 4459 showed high inhibition against S. aureus. The lowest minimal inhibitory concentrations (MIC) were obtained with L. angustifolia (0.25 μL/mL) against S. aureus; M. piperita exhibited a MIC of 0.50 μL/mL against both microorganisms. Both EOs caused a significant decrease of bacterial growth in minced beef (p<0.05) stored at 9±1 °C. Minced beef treated with EOs showed the lowest TBARS values (lipid oxidation). Moreover, the results showed that the addition of EOs significantly extended fresh meat odor even at abuse temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Chemical Composition and Biological Activity of Essential Oils from Wild Growing Aromatic Plant Species of Skimmia laureola and Juniperus macropoda from Western Himalaya.

    PubMed

    Stappen, Iris; Tabanca, Nurhayat; Ali, Abbas; Wedge, David E; Wanner, Jürgen; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar K; Schmidt, Erich; Jirovetz, Leopold

    2015-06-01

    The Himalayan region is very rich in a great variety of medicinal plants. In this investigation the essential oils of two selected species are described for their antimicrobial and larvicidal as well as biting deterrent activities. Additionally, the odors are characterized. Analyzed by simultaneous GC-MS and GC-FID, the essential oils' chemical compositions are given. The main components of Skimmia laureola oil were linalool and linalyl acetate whereas sabinene was found as the main compound for Juniperus macropoda essential oil. Antibacterial testing by agar dilution assay revealed highest activity of S. laureola oil against all tested bacteria, followed by J. macropoda oil. Antifungal activity was evaluated against the strawberry anthracnose causing plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Juniperus macropoda essential oil indicated higher antifungal activity against all three pathogens than S. laureola oil. Both essential oils showed biting deterrent activity above solvent control but low larvicidal activity.

  20. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase.

    PubMed

    Orhan, Ilkay; Kartal, Murat; Kan, Yüksel; Sener, Bilge

    2008-01-01

    We have tested acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of nineteen essential oils obtained from cultivated plants, namely one from Anethum graveolens L. (organic fertilizer), two from Foeniculum vulgare Mill. collected at fully-mature and flowering stages (organic fertilizer), two from Melissa officinalis L. (cultivated using organic and chemical fertilizers), two from Mentha piperita L. and M. spicata L. (organic fertilizer), two from Lavandula officinalis Chaix ex Villars (cultivated using organic and chemical fertilizers), two from Ocimum basilicum L. (green and purple-leaf varieties cultivated using only organic fertilizer), four from Origanum onites L., O. vulgare L., O. munitiflorum Hausskn., and O. majorana L. (cultivated using organic fertilizer), two from Salvia sclarea L. (organic and chemical fertilizers), one from S. officinalis L. (organic fertilizer), and one from Satureja cuneifolia Ten. (organic fertilizer) by a spectrophotometric method of Ellman using ELISA microplate-reader at 1 mg/ml concentration. In addition, a number of single components widely encountered in most of the essential oils [gamma-terpinene, 4-allyl anisole, (-)-carvone, dihydrocarvone, (-)-phencone, cuminyl alcohol, cumol, 4-isopropyl benzaldehyde, trans-anethole, camphene, iso-borneol, (-)-borneol, L-bornyl acetate, 2-decanol, 2-heptanol, methyl-heptanol, farnesol, nerol, iso-pulegol, 1,8-cineole, citral, citronellal, citronellol, geraniol, linalool, alpha-pinene, beta-pinene, piperitone, iso-menthone, menthofurane, linalyl oxide, linalyl ester, geranyl ester, carvacrol, thymol, menthol, vanilline, and eugenol] was also screened for the same activity in the same manner. Almost all of the essential oils showed a very high inhibitory activity (over 80%) against both enzymes, whereas the single components were not as active as the essential oils.

  1. The Effect of Citrus Essential Oils and Their Constituents on Growth of Xanthomonas citri subsp. citri.

    PubMed

    Mirzaei-Najafgholi, Hossein; Tarighi, Saeed; Golmohammadi, Morteza; Taheri, Parissa

    2017-04-14

    Citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri ( Xcc ), is the most devastating of the citrus diseases worldwide. During our study, we found that Essential oils (EOs) of some citrus cultivars are effective on Xcc . Therefore, it prompted us to determine the plant metabolites responsible for the antibacterial properties. We obtained EOs from some locally cultivated citrus by using a Clevenger apparatus and their major constituents were identified by gas chromatography/mass spectrometry (GC-MS). The effect of Citrus aurantium , C. aurantifolia , Fortunella sp. EOs and their major constituents were evaluated against Xcc -KVXCC1 using a disk diffusion assay. Minimal inhibitory and bactericidal concentration of the EOs and their constituents were determined using the broth microdilution method. C. aurantium , C. aurantifolia Eos, and their major constituents including citral, linalool, citronellal, geraniol, α-terpineol, and linalyl acetate indicated antibacterial effects against Xcc . The C. aurantifolia EO and citral showed the highest antibacterial activity among the tested EOs and constituents with inhibition zones of 15 ± 0.33 mm and 16.67 ± 0.88 mm, respectively. Synergistic effects of the constituents were observed between α-terpineol-citral, citral-citronellal, citral-geraniol, and citronellal-geraniol by using a microdilution checkerboard assay. Transmission electron microscopy revealed that exposure of Xcc cells to citral caused cell wall damage and altered cytoplasmic density. We introduced C. aurantifolia and C. aurantium EOs, and their constituents citral, α-terpineol, citronellal, geraniol, and linalool as possible control agents for CBC.

  2. Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula × intermedia var. Super, and Santolina chamaecyparissus.

    PubMed

    Ortiz de Elguea-Culebras, Gonzalo; Sánchez-Vioque, Raúl; Berruga, María Isabel; Herraiz-Peñalver, David; González-Coloma, Azucena; Andrés, María Fé; Santana-Méridas, Omar

    2018-01-01

    This work presents the biocidal (insecticidal, ixodicidal, nematicidal, and phytotoxic) effects and chemical compositions of three essential oils obtained from the industrial steam distillation (IEOs) of hyssop (Hyssopus officinalis L.), lavandin (Lavandula × intermedia or L. × hybrida var. Super), and cotton lavender (Santolina chamaecyparissus L.). Their chemical composition analyzed by gas chromatography coupled to mass spectrometry showed 1,8-cineole (53%) and β-pinene (16%) as the major components of H. officinalis, linalyl acetate (38%) and linalool (29%) of L. × intermedia; and 1,8-cineole (10%) and 8-methylene-3-oxatricyclo[5.2.0.0 2,4 ]nonane (8%) in S. chamaecyparissus. The biocidal tests showed that L. × intermedia IEO was the most active against the insect Spodoptera littoralis and toxic to the tick Hyalomma lusitanicum, IEO of H. officinalis was strongly active against S. littoralis, and finally, S. chamaecyparissus IEO was a strong antifeedant against the aphid Rhopalosiphum padi, toxic to H. lusitanicum and with moderate effects against Leptinotarsa decemlineata, S. littoralis, and Lolium perenne. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  3. The influence of essential oils on human vigilance.

    PubMed

    Heuberger, Eva; Ilmberger, Josef

    2010-09-01

    Olfactory stimuli are used in aromatherapy to enhance mood, well-being and work efficiency. Nevertheless, the impact of fragrances on cognitive performance in humans is not well understood. The present investigation aimed to evaluate the effects of 1,8-cineol, jasmine absolute ether, linalyl acetate and peppermint essential oil on human vigilance performance. The odorants were administered by means of inhalation and, except for peppermint essential oil, were tested at 2 different dosages. Performance in a standard visual vigilance task was measured in terms of speed and accuracy and subjective ratings of the odorants were assessed in terms of pleasantness, intensity, arousal and stress. We hypothesized that 1,8-cineol, jasmine absolute ether and peppermint essential oil would improve vigilance performance, whereas linalyl acetate would impair such performance. Comparison of the performances of the seven independent experimental groups with that of a control group did not show any of the expected effects. In contrast, inhalation of linalyl acetate decreased reaction times. Within-group analyses, however, revealed significant interactions between subjective ratings of the odorants and task performance. The results of the present investigation emphasize the high impact of subjective factors on the modulation of attentional functions by olfactory stimuli in humans.

  4. Variability of chemical composition and antioxidant activity of essential oils between Myrtus communis var. Leucocarpa DC and var. Melanocarpa DC.

    PubMed

    Petretto, Giacomo Luigi; Maldini, Mariateresa; Addis, Roberta; Chessa, Mario; Foddai, Marzia; Rourke, Jonathan P; Pintore, Giorgio

    2016-04-15

    Essential oils (EOs) from several individuals of Myrtus communis L. (M. communis) growing in different habitats in Sardinia have been studied. The analyses were focused on four groups of samples, namely cultivated and wild M. communis var. melanocarpa DC, characterized by red/purple berries, and cultivated and wild M. communis var. leucocarpa DC, characterized by white berries. Qualitative and quantitative analyses demonstrated different EO fingerprints among the studied samples: cultivated and wild leucocarpa variety differs mainly from the melanocarpa variety by a high amount of myrtenyl acetate (>200 mg/mL and 0.4 mg/mL in leucocarpa and melanocarpa varieties respectively). Conversely, the wild group is characterized by a higher amount, compared with the cultivated species, of linalool (about 110 mg/mL and 20 mg/mL respectively), linalyl acetate (about 24 mg/mL and about 6 mg/mL respectively) whereas EOs of the cultivated plants were rich in pinocarveol-cis compared with wild plants (about 2 mg/mL and about 0.5 mg/mL respectively). Principal component analysis applied to the chromatographic data confirm a differentiation and classification of EOs from the four groups of M. communis plants. Finally, antioxidant activity of the studied EOs shows differences between the various categories of samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Essential oil of lavender in anxiety disorders: Ready for prime time?

    PubMed Central

    2017-01-01

    Anxiety disorders are some of the most common psychiatric disorders, with potentially debilitating consequences on individual function. Existing pharmacotherapies for anxiety disorders are limited by delay to therapeutic effect, dependence, tolerance, withdrawal, and abuse potential. Therefore, safe and evidence-based complementary or alternative therapies may be important allies in the care of patients with anxiety disorders. Essential oils are lipophilic and concentrated botanical extracts that exhibit many properties of drugs, although they are not Food and Drug Administration approved and have limitations characteristic of herbal preparations. Lavender essential oil has an extensive anecdotal history of anxiolytic benefit that has recently been supported by clinical efficacy studies. The 2 primary terpenoid constituents of lavender essential oil, linalool and linalyl acetate, may produce an anxiolytic effect in combination via inhibition of voltage-gated calcium channels, reduction of 5HT1A receptor activity, and increased parasympathetic tone. The objectives of this article are to provide a brief overview of lavender oil in aromatherapy, explore variability in the constituents of lavender oil, summarize its pharmacology and safety profile, as well as describe its body of research that has been conducted for anxiety.

  6. [Research on improving memory impairment of blue lavender volatile oil].

    PubMed

    Zhu, Li-Yun; Gao, Yong-Sheng; Song, Lin-Zhen; Li, Su-Fang; Qian, Jun-Qing

    2017-12-01

    In order to study the potential application value of lavender volatile oil (LVO), the chemical composition of the volatile oil of lavender was analyzed by GC-MS, and the mouse model of Alzheimer's disease (AD) was established. Additionally, the antioxidant enzymes activity of T-SOD, GSH-PX, CAT and MDA content were studied. Experimental results showed that 55 kinds of chemical constituents including terpene, terpene alcohol and ester compounds from LVO were identified, and the content of linalool and linalyl acetate was the highest, accounting for 49.71% of the total volatile oil. The ability of mouse platform memory was improved significantly. The levels of GSH-PX, CAT and T-SOD of mouse brain tissue in the treatment group were significantly higher than those in the model group (P<0.05). The level of MDA reached the maximum value in the model group, while there was no notable difference between the levels of MDA in the drug group and the normal group. The result indicated the significant oxidative activity of LVO, the possibility of induced oxidative stress reduction in neurons, and the reversal effect of memory acquired disorder. Copyright© by the Chinese Pharmaceutical Association.

  7. Hierarchical cluster analysis and chemical characterisation of Myrtus communis L. essential oil from Yemen region and its antimicrobial, antioxidant and anti-colorectal adenocarcinoma properties.

    PubMed

    Anwar, Sirajudheen; Crouch, Rebecca A; Awadh Ali, Nasser A; Al-Fatimi, Mohamed A; Setzer, William N; Wessjohann, Ludger

    2017-09-01

    The hydrodistilled essential oil obtained from the dried leaves of Myrtus communis, collected in Yemen, was analysed by GC-MS. Forty-one compounds were identified, representing 96.3% of the total oil. The major constituents of essential oil were oxygenated monoterpenoids (87.1%), linalool (29.1%), 1,8-cineole (18.4%), α-terpineol (10.8%), geraniol (7.3%) and linalyl acetate (7.4%). The essential oil was assessed for its antimicrobial activity using a disc diffusion assay and resulted in moderate to potent antibacterial and antifungal activities targeting mainly Bacillus subtilis, Staphylococcus aureus and Candida albicans. The oil moderately reduced the diphenylpicrylhydrazyl radical (IC 50  = 4.2 μL/mL or 4.1 mg/mL). In vitro cytotoxicity evaluation against HT29 (human colonic adenocarcinoma cells) showed that the essential oil exhibited a moderate antitumor effect with IC 50 of 110 ± 4 μg/mL. Hierarchical cluster analysis of M. communis has been carried out based on the chemical compositions of 99 samples reported in the literature, including Yemeni sample.

  8. Bifunctional ultrasound assisted extraction and determination of Elettaria cardamomum Maton essential oil.

    PubMed

    Sereshti, Hassan; Rohanifar, Ahmad; Bakhtiari, Sadjad; Samadi, Soheila

    2012-05-18

    A new hyphenated extraction method composed of ultrasound assisted extraction (UAE)-optimized ultrasound assisted emulsification microextraction (USAEME) was developed for the extraction and preconcentration of the essential oil of Elettaria cardamomum Maton. The essential oil was analyzed by gas chromatography-mass spectrometry (GC-MS) and optimization was performed using gas chromatography-flame ionization detection (GC-FID). Ultrasound played two different roles in the extraction of the essential oil. First, as a source of sufficient energy to break the oil-containing glands in order to release the oil, and second as an emulsifier to disperse the organic phase within water. The effective parameters (factors) of USAEME including volume of extraction solvent (C(2)H(4)Cl(2)), extraction temperature and ultrasonic time were optimized by using a central composite design (CCD). The optimal conditions were 120 μL for extraction solvent volume, 32.5 °C for temperature and 10.5 min for ultrasonic time. The linear dynamic ranges (LDRs) were 0.01-50 mg L(-1) with the determination coefficients in the range of 0.9990-0.9999. The limits of detection (LODs) and the relative standard deviations (RSDs) were 0.001-0.007 mg L(-1) and 3.6-6.3%, respectively. The enrichment factors were 93-98. The main components of the extracted essential oil were α-terpenyl acetate (46.0%), 1,8-cineole (27.7%), linalool (5.3%), α-terpineol (4.0%), linalyl acetate (3.5%). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Suppression of linalool acetate production in Lavandula x intermedia.

    PubMed

    Desautels, Amy; Biswas, Kamal; Lane, Alexander; Boeckelmann, Astrid; Mahmoud, Soheil S

    2009-11-01

    Linalool acetate, one of the major constituent of several essential oils, is heat-labile and decomposes upon exposure to the high injector temperature during gas chromatography. Here we report the development of an improved method for detection of this compound by gas chromatography mass spectrometry (GCMS) using cold on-column injection of the sample. By using this sensitive method, it has been demonstrated that a lavandin (L. x intermedia) mutant accumulates trace quantities of linalool acetate and camphor and higher amounts of cineole and borneol compared to its parent. This plant, which very likely carries a point mutation in one or more of the genes involved in essential oil production, provides a unique tool for investigating regulation of essential oil biogenesis in plants.

  10. Biomethanization of citrus waste: Effect of waste characteristics and of storage on treatability and evaluation of limonene degradation.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Pastore, Carlo; Di Iaconi, Claudio

    2018-06-01

    This study proposes the evaluation of the suitability of mesophilic anaerobic digestion as a simple technology for the treatment of the citrus waste produced by small-medium agro-industrial enterprises involved in the transformation of Citrus fruits. Two different stocks of citrus peel waste were used (i.e., fresh and stored citrus peel waste), to evaluate the influence of waste composition (variability in the type of processed Citrus fruits) and of storage (potentially necessary to operate the anaerobic digester continuously over the whole year due to the seasonality of the production) on anaerobic degradation treatability. A thorough characterization of the two waste types has been performed, showing that the fresh one has a higher solid and organic content, and that, in spite of the similar values of oil fraction amounts, the two stocks are significantly different in the composition of essential oils (43% of limonene and 34% of linalyl acetate in the fresh citrus waste and 20% of limonene and 74% of linalyl acetate in the stored citrus waste). Contrarily to what observed in previous studies, anaerobic digestion was successful and no reactor acidification occurred. No inhibition by limonene and linalyl acetate even at the maximum applied organic load value (i.e., 2.72 gCOD waste /gVS inoculum ) was observed in the treatment of the stored waste, with limonene and linalyl acetate concentrations of 104 mg/l and 385 mg/l, respectively. On the contrary, some inhibition was detected with fresh citrus peel waste when the organic load increased from 2.21 to 2.88 gCOD waste /gVS inoculum , ascribable to limonene at initial concentration higher than 150 mg/l. A good conversion into methane was observed with fresh peel waste, up to 0.33  [Formula: see text] at the highest organic load, very close to the maximum theoretical value of 0.35 [Formula: see text] , while a lower efficiency was achieved with stored peel waste, with a reduction down to 0.24  [Formula: see text] at the highest organic load. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens.

    PubMed

    Ozogul, Yesim; Kuley, Esmeray; Ucar, Yilmaz; Ozogul, Fatih

    2015-01-01

    The antimicrobial activity of twelve essential oil (pine oil, eucalyptus, thyme, sage tea, lavender, orange, laurel, lemon, myrtle, lemon, rosemary and juniper) was tested by a disc diffusion method against food borne pathogens (Escherichia coli, Salmonella paratyphi A, Klebsiella pneumoniae, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Campylobacter jejuni, Enterococcus faecalis, Staphylococcus aureus). The major components in essential oils were monoterpenes hydrocarbons, α-pinene, limonene; monoterpene phenol, carvacrol and oxygenated monoterpenes, camphor, 1,8-cineole, eucalyptol, linalool and linalyl acetate. Although the antimicrobial effect of essential oils varied depending on the chemical composition of the essential oils and specific microorganism tested, majority of the oils exhibited antibacterial activity against one or more strains. The essential oil with the lowest inhibition zones was juniper with the values varied from 1.5 to 6 mm. However, the components of essential oil of thyme and pine oil are highly active against food borne pathogen, generating the largest inhibition zones for both gram negative and positive bacteria (5.25-28.25 mm vs. 12.5-30 mm inhibition zones). These results indicate the possible use of the essential oils on food system as antimicrobial agents against food-borne pathogen. The article also offers some promising patents on applications of essential oils on food industry as antimicrobial agent.

  12. Application of Heavy Metal Rich Tannery Sludge on Sustainable Growth, Yield and Metal Accumulation by Clarysage (Salvia sclarea L.).

    PubMed

    Chand, Sukhmal; Yaseen, M; Rajkumari; Patra, D D

    2015-01-01

    A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012-2013. Six doses (0, 20, 40, 60, 80, 100 tha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha(-1)of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha(-1). Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha(-1)sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.

  13. Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology.

    PubMed

    Lesage-Meessen, Laurence; Bou, Marine; Sigoillot, Jean-Claude; Faulds, Craig B; Lomascolo, Anne

    2015-04-01

    The Lavandula genus, which includes lavender (Lavandula angustifolia) and lavandin (L. angustifolia × Lavandula latifolia), is cultivated worldwide for its essential oils, which find applications in perfumes, cosmetics, food processing and, more recently, in aromatherapy products. The chemical composition of lavender and lavandin essential oils, usually produced by steam distillation from the flowering stems, is characterized by the presence of terpenes (e.g. linalool and linalyl acetate) and terpenoids (e.g. 1,8-cineole), which are mainly responsible for their characteristic flavour and their biological and therapeutic properties. Lavender and lavandin distilled straws, the by-products of oil extraction, were traditionally used for soil replenishment or converted to a fuel source. They are mineral- and carbon-rich plant residues and, therefore, a cheap, readily available source of valuable substances of industrial interest, especially aroma and antioxidants (e.g. terpenoids, lactones and phenolic compounds including coumarin, herniarin, α-bisabolol, rosmarinic and chlorogenic acids). Accordingly, recent studies have emphasized the possible uses of lavender and lavandin straws in fermentative or enzymatic processes involving various microorganisms, especially filamentous fungi, for the production of antimicrobials, antioxidants and other bioproducts with pharmaceutical and cosmetic activities, opening up new challenging perspectives in white biotechnology applications.

  14. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate.

    PubMed

    Numanoğlu, Ulya; Sen, Tangül; Tarimci, Nilüfer; Kartal, Murat; Koo, Otilia M Y; Onyüksel, Hayat

    2007-10-19

    The aim of this study was to increase the stability and water solubility of fragrance materials, to provide controlled release of these compounds, and to convert these substances from liquid to powder form by preparing their inclusion complexes with cyclodextrins (CDs). For this purpose, linalool and benzyl acetate were chosen as the fragrance materials. The use of beta-cyclodextrin (beta CD) and 2-hydroxypropyl-beta-cyclodextrin (2-HP beta CD) for increasing the solubility of these 2 fragrance materials was studied. Linalool and benzyl acetate gave a B-type diagram with beta CD, whereas they gave an A(L)-type diagram with 2-HP beta CD. Therefore, complexes of fragrance materials with 2-HP beta CD at 1:1 and 1:2 molar ratios (guest:host) were prepared. The formation of inclusion complexes was confirmed using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and circular dichroism spectroscopy. The results of the solubility studies showed that preparing the inclusion complex with 2-HP beta CD at a 1:1 molar ratio increased the solubility of linalool 5.9-fold and that of benzyl acetate 4.2-fold, whereas the complexes at a 1:2 molar ratio increased the solubility 6.4- and 4.5-fold for linalool and benzyl acetate, respectively. The stability and in vitro release studies were performed on the gel formulations prepared using uncomplexed fragrance materials or inclusion complexes of fragrance materials at a 1:1 molar ratio. It was observed that the volatility of both fragrance materials was decreased by preparing the inclusion complexes with 2-HP beta CD. Also, in vitro release data indicated that controlled release of fragrances could be possible if inclusion complexes were prepared.

  15. Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties.

    PubMed

    Duman, Ahmet D; Telci, Isa; Dayisoylu, Kenan S; Digrak, Metin; Demirtas, Ibrahim; Alma, Mehmet H

    2010-06-01

    Essential oils from Ocimum basilicum L. and Coriandrum sativum L. varieties originating from Turkey were investigated for their antimicrobial properties. The antimicrobial effects of the oil varieties were evaluated by the disc diffusion and minimum inhibitory concentration (MIC) methods against eight bacteria and three fungi. The compositions of the essential oils were analyzed and identified by GC and GC-MS. O. basilicum, C. sativum var. macrocarpum and var. microcarpum oils revealed the presence of linalool (54.4%), eugenol (9.6%), methyl eugenol (7.6%); linalool (78.8%), gamma-terpinene (6.0%), nerol acetate (3.5%); and linalool (90.6%), and nerol acetate (3.3%) as the major components, respectively. The oils exhibited antibacterial activity ranging from 1.25 to 10 microL disc(-1) against the test organisms with inhibition zones of 9.5-39.0 mm and minimal inhibitory concentrations values in the range 0.5- > or =1 microL/L. Linalool, eugenol, and methyl eugenol at 1.25 microL disc(-1) had antimicrobial effects on all microorganisms, giving inhibition zones ranging from 7 to 19 mm.

  16. Identification of repellent and insecticidal constituents of the essential oil of Artemisia rupestris L. aerial parts against Liposcelis bostrychophila Badonnel.

    PubMed

    Liu, Xin Chao; Li, Yin Ping; Li, He Qin; Deng, Zhi Wei; Zhou, Ligang; Liu, Zhi Long; Du, Shu Shan

    2013-09-03

    The aim of this research was to determine the chemical composition and insecticidal and repellent activity of the essential oil of Artemisia rupestris L. aerial parts against the booklice Liposcelis bostrychophila Badonnel and isolation of insecticidal and repellent constituents from the essential oil. The essential oil of A. rupestris was obtained by hydrodistillation and analyzed by GC-MS. A total of 30 components of the essential oil of A. rupestris was identified and the principal compounds in the essential oil were α-terpinyl acetate (37.18%), spathulenol (10.65%), α-terpineol (10.09%), and linalool (7.56%), followed by 4-terpineol (3.92%) and patchoulol (3.05%). Based on bioactivity-guided fractionation, the four active constituents were isolated from the essential oil and identified as α-terpineol, α-terpinyl acetate, 4-terpineol and linalool. The essential oil of A. rupestris exhibited contact toxicity against L. bostrychophila with LD₅₀ value of 414.48 µg/cm². α-Terpinyl acetate (LD₅₀ = 92.59 µg/cm²) exhibited stronger contact toxicity against booklice than α-terpineol (LD₅₀ = 140.30 µg/cm²), 4-terpineol (LD₅₀ = 211.35 µg/cm²), and linalool (LD5₅₀ = 393.16 µg/cm²). The essential oil of A. rupestris (LC₅₀ = 6.67 mg/L air) also possessed fumigant toxicity against L. bostrychophila while the four constituents, 4-terpineol, α-terpineol, α-terpinyl acetate and linalool had LC₅₀ values of 0.34, 1.12, 1.26 and 1.96 mg/L air, respectively. α-Terpinol and α-terpinyl acetate showed strong repellency against L. bostrychophila, while linalool and 4-terpinol exhibited weak repellency. The results indicate that the essential oil of A. rupestris aerial parts and its constituent compounds have potential for development into natural insecticides or fumigants as well as repellents for control of insects in stored grains.

  17. Efficacy of Nanoencapsulated Thymus eriocalyx and Thymus kotschyanus Essential Oils by a Mesoporous Material MCM-41 Against Tetranychus urticae (Acari: Tetranychidae).

    PubMed

    Ebadollahi, Asgar; Sendi, Jalal Jalali; Aliakbar, Alireza

    2017-12-05

    Inspite of well-established potentiality of plant essential oils as biopesticides, their environmentally low persistence is considered as a hindering obstacle for its commercialization. In the present study, chemical composition and toxicity of essential oils isolated from leaves of Thymus eriocalyx and Thymus kotschyanus were evaluated against two-spotted spider mite, Tetranychus urticae. The chemicals present in the crude oil were found to be thymol (28.83%), oleic acid (11.51%), palmitic acid (8.60%), borneol (5.72%), ρ-cymene (3.60%), and 1,8-cineole (3.57%) in the essential oil of T. eriocalyx, and camphene (35.59%), linalyl acetate (20.47%), linalool (14.75%), α-terpineol (13.87%), and geranyl acetate (3.07%) in the essential oil of T. kotschyanus. The essential oils had strong fumigant toxicity on the adult females of Te. urticae and their fumigation persistence was prolonged until 6 and 5 d, respectively, for T. eriocalyx and T. kotschyanus. Loading of essential oils in MCM-41 increased their stability and persistence was extended up to 20 and 18 d for T. eriocalyx and T. kotschyanus. Further, mite mortality increased from 80 to 203 mites by T. eriocalyx and from 58 to 186 mites by T. kotschyanus nanoencapsulated essential oils. Based on these results, nanoencapsulation of T. eriocalyx and T. kotschyanus essential oils in MCM-41 may be a useful method for their application in the management of Te. urticae. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions.

    PubMed

    Yang, Ying; Zhao, Chengying; Tian, Guifang; Lu, Chang; Zhao, Shaojie; Bao, Yuming; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-09-06

    Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e., mandarin, sweet orange, and bergamot oils) emulsions were systematically investigated for the first time. The results demonstrated the significant impact of temperature on aroma profile and physical properties. The abundance of d-limonene was found to be the main factor determining the aroma of the three citrus-oil emulsions at different preheating and storage temperatures, while β-linalool and linalyl acetate were important for the aroma of bergamot oil emulsion. Preheating temperature showed a profound impact on the aroma of citrus-oil emulsions, and the aroma of different citrus oil emulsions showed different sensitivity to preheating temperature. Storage temperature was also able to alter the properties of citrus oil emulsions. The higher was the storage temperature, the more alteration of aroma and more instability of the emulsions there was, which could be attributed to the alteration of the oil components and the properties of emulsions. Among all three emulsions, bergamot-oil emulsion was the most stable and exhibited the most potent ability to preserve the aroma against high temperature. Our results would facilitate the application of citrus-oil emulsions in functional foods and beverages.

  19. Monitoring the emission of volatile organic compounds from flowers of Jasminum sambac using solid-phase micro-extraction fibers and gas chromatography with mass spectrometry detection.

    PubMed

    Pragadheesh, Vppalayam Shanmugam; Yadav, Anju; Chanotiya, Chandan Singh; Rout, Prasanta Kumar; Uniyal, Girish Chandra

    2011-09-01

    Solid-phase micro-extraction (SPME) was studied as a solvent free alternative method for the extraction and characterization of volatile compounds in intact and plucked flowers of Jasminum sambac at different day time intervals using gas chromatography (GC-FID) and gas chromatography-quadrupole mass spectrometry. The analytes identified included alcohols, esters, phenolic compounds, and terpenoids. The main constituents identified in the flower aroma using different fibers were cis-3-hexenyl acetate, (E)-beta-ocimene, linalool, benzyl acetate, and (E,E)-alpha-farnesene. The benzyl acetate proportion decreased from morning to afternoon and then increased in evening collections. PDMS fiber showed a high proportion of (E,E)-alpha-farnesene in jasmine floral aroma. Among other constituents identified, cis-3-hexenyl acetate, linalool, and benzyl acetate were major aroma contributors in plucked and living flowers extracts using PDMS/DVB, Carboxen/PDMS, and DVB/Carboxen/PDMS fibers. PDMS/DVB recorded the highest emission for benzyl acetate while the (E)-beta-ocimene proportion was highest in DVB/Carboxen/PDMS when compared with the rest. The highest linalool content, with increasing proportion from morning to noon, was found using mixed coating fibers. Almost negligible volatile adsorption was recorded for the polyacrylate fiber for intact flower aroma, whereas it was most effective for benzyl acetate, followed by indole under plucked conditions. Moreover, the highest amounts extracted, evaluated from the sum of peak areas, were achieved using Carboxen/PDMS, and DVB/Carboxen/PDMS. Introduction of a rapid, and solvent free SPME method for the analysis of multicomponent volatiles can be successfully employed to monitor the extraction and characterization of flower aroma constituents.

  20. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractionalmore » emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.« less

  1. Chemical Composition, an Antioxidant, Cytotoxic and Microbiological Activity of the Essential Oil from the Leaves of Aeollanthus suaveolens Mart. ex Spreng.

    PubMed

    Martins, Rosany Lopes; Simões, Ranggel Carvalho; Rabelo, Érica de Menezes; Farias, Ana Luzia Ferreira; Rodrigues, Alex Bruno Lobato; Ramos, Ryan da Silva; Fernandes, João Batista; Santos, Lourivaldo da Silva; de Almeida, Sheylla Susan Moreira da Silva

    2016-01-01

    Aeollanthus suaveolens species popularly known as catinga de mulata belongs to the Lamiaceae family. In the Amazon region, it is used in folk medicine for the treatment of gastritis, convulsions of epileptic origin, stomach pain and diarrhea in the form of tea and juice. Essential oils have analgesic, anti-inflammatory, and antimicrobial activity. This study evaluated the chemical composition of the A. suaveolens essential oil, and its cytotoxic, antimicrobial and antioxidant activity on Artemia salina Leach. The plant species was collected in Fazendinha district in the city of Macapa-AP. The essential oil obtained from the process was performed by hydrodistillation and identification of components by gas chromatography coupled with mass spectrometer. The antioxidant activity was evaluated by the kidnapping method of 2,2- diphenyl -1-picrilhidrazil radical, while the cytotoxic activity was assessed using saline A. and the microbiological activity was carried out by microdilution method with Escherichia coli, Salmonella sp. and Staphylococcus aureus bacteria. In a chromatographic analysis, the major constituents found in the essential oil of A. suaveolens were (E) -β-farnesene (37.615%), Linalool (33.375%), α-Santalene (3.255%) and linalyl acetate (3.222%). The results showed that the Escherichia coli and Salmonella sp. bacteria were more susceptible to MIC 50 mg.mL-1 when compared with the Staphylococcus aureus bacterium MIC 100 mg.mL-1. With respect to MBC concentration of 100 mg.mL-1 it was sufficient to inhibit the growth of E. coli. The essential oil did not show antioxidant activity, however, has a high cytotoxic activity against the A. salina, LC50 8.90 μg.mL-1.

  2. Pain relief assessment by aromatic essential oil massage on outpatients with primary dysmenorrhea: a randomized, double-blind clinical trial.

    PubMed

    Ou, Ming-Chiu; Hsu, Tsung-Fu; Lai, Andrew C; Lin, Yu-Ting; Lin, Chia-Ching

    2012-05-01

    This study assessed the effectiveness of blended essential oils on menstrual cramps for outpatients with primary dysmenorrhea and explored the analgesic ingredients in the essential oils. A randomized, double-blind clinical trial was conducted. Forty-eight outpatients were diagnosed with primary dysmenorrhea by a gynecologist and had 10-point numeric rating scales that were more than 5. The patients were randomly assigned to an essential oil group (n = 24) and a synthetic fragrance group (n = 24). Essential oils blended with lavender (Lavandula officinalis), clary sage (Salvia sclarea) and marjoram (Origanum majorana) in a 2:1:1 ratio was diluted in unscented cream at 3% concentration for the essential oil group. All outpatients used the cream daily to massage their lower abdomen from the end of the last menstruation continuing to the beginning of the next menstruation. Both the numeric rating scale and the verbal rating scale significantly decreased (P < 0.001) after one menstrual cycle intervention in the two groups. The duration of pain was significantly reduced from 2.4 to 1.8 days after aromatherapy intervention in the essential oil group. Aromatic oil massage provided relief for outpatients with primary dysmenorrhea and reduced the duration of menstrual pain in the essential oil group. The blended essential oils contain four key analgesic components that amount to as much as 79.29%; these analgesic constitutes are linalyl acetate, linalool, eucalyptol, and β-caryophyllene. This study suggests that this blended formula can serve as a reference for alternative and complementary medicine on primary dysmenorrhea. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  3. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants.

    PubMed

    Patt, J M; Sétamou, M

    2010-04-01

    Diaphorina citri Kuwayama (Hemiptera: Psyllidae) carries Candidatus liberibacter spp., the putative causal agents of Huanglongbing. D. citri reproduces and develops only on the flushing shoots of its rutaceous host plants. Here we examined whether D. citri is attracted to host plant odors and a mixture of synthetic terpenes. Tests conducted in a vertically oriented Y-tube olfactometer showed that both males and females preferentially entered the Y-tube arm containing the odor from the young shoots of Murraya paniculata (L.) Jack and Citrus limon L. Burm. f. cultivar Eureka. Only males exhibited a preference for the odor of C. sinensis L., whereas the odor of C. x paradisi MacFadyen cultivar Rio Red was not attractive to both sexes. The volatiles emitted by young shoots of grapefruit cultivar Rio Red, Meyer lemon (Citrus x limon L. Burm.f.), and M. paniculata were analyzed by gas chromatograph-mass spectrometry. The samples were comprised of monoterpenes, monoterpene esters, and sesquiterpenes. The number of compounds present varied from 2 to 17, whereas the total amount of sample collected over 6 h ranged from 5.6 to 119.8 ng. The quantitatively dominant constituents were (E)-beta-ocimene, linalool, linalyl acetate, and beta-caryophyllene. The attractiveness of a mixture of synthetic terpenes, modeled on the volatiles collected from M. paniculata, was evaluated in screened cages in a no-choice test. At three observation intervals, significantly more individuals were trapped on white targets scented with the mixture than on unscented targets. These results indicate the feasibility of developing D. citri attractants patterned on actual host plant volatiles.

  4. Chemical Composition, an Antioxidant, Cytotoxic and Microbiological Activity of the Essential Oil from the Leaves of Aeollanthus suaveolens Mart. ex Spreng

    PubMed Central

    Martins, Rosany Lopes; Simões, Ranggel Carvalho; Rabelo, Érica de Menezes; Farias, Ana Luzia Ferreira; Rodrigues, Alex Bruno Lobato; Ramos, Ryan da Silva; Fernandes, João Batista; Santos, Lourivaldo da Silva

    2016-01-01

    Aeollanthus suaveolens species popularly known as catinga de mulata belongs to the Lamiaceae family. In the Amazon region, it is used in folk medicine for the treatment of gastritis, convulsions of epileptic origin, stomach pain and diarrhea in the form of tea and juice. Essential oils have analgesic, anti-inflammatory, and antimicrobial activity. This study evaluated the chemical composition of the A. suaveolens essential oil, and its cytotoxic, antimicrobial and antioxidant activity on Artemia salina Leach. The plant species was collected in Fazendinha district in the city of Macapa-AP. The essential oil obtained from the process was performed by hydrodistillation and identification of components by gas chromatography coupled with mass spectrometer. The antioxidant activity was evaluated by the kidnapping method of 2,2- diphenyl -1-picrilhidrazil radical, while the cytotoxic activity was assessed using saline A. and the microbiological activity was carried out by microdilution method with Escherichia coli, Salmonella sp. and Staphylococcus aureus bacteria. In a chromatographic analysis, the major constituents found in the essential oil of A. suaveolens were (E) -β-farnesene (37.615%), Linalool (33.375%), α-Santalene (3.255%) and linalyl acetate (3.222%). The results showed that the Escherichia coli and Salmonella sp. bacteria were more susceptible to MIC 50 mg.mL-1 when compared with the Staphylococcus aureus bacterium MIC 100 mg.mL-1. With respect to MBC concentration of 100 mg.mL-1 it was sufficient to inhibit the growth of E. coli. The essential oil did not show antioxidant activity, however, has a high cytotoxic activity against the A. salina, LC50 8.90 μg.mL-1. PMID:27907002

  5. Relationship Between Soil and Essential Oil Profiles in Salvia desoleana Populations: Preliminary Results.

    PubMed

    Rapposelli, Emma; Melito, Sara; Barmina, Giovanni Gabriele; Foddai, Marzia; Azara, Emanuela; Scarpa, Grazia Maria

    2015-09-01

    Salvia desoleana is a herbaceous perennial shrub endemic of Sardinia (Italy). The leaves are a source of essential oil, used in pharmaceutical and cosmetic industries. The therapeutic function of this species has been associated to the presence of essential oils rich in α/β-pinene, p-cimene, linalool, linalyl acetate and 1,8-cineole. Today.the industrial request of Salvia essential oils is increasing and most of the biomass is exploited from the natural populations which are under severe risk of genetic erosion. In order to improve the essential oil production, the study of the environmental parameters that influence composition, quality and quantity of the essential oils, turns out to be necessary. Soil physical and chemical structure represents one of the determinant factors in secondary metabolites production, and could also be involved in volatiles fraction composition in the same species. The main aim of this research was to explore the relationship between essential oil profiles and soil characteristics in S. desoleana populations. GC/MS analysis performed on the essential oil extracts identified 22 principal compounds, which were extremely variable among the five S. desoleana populations studied. The analysis of the essential oils revealed different compositions in the terpenes fractions: 68.2% of monoterpenes, 27.3% of sesquiterpenes and 4.5% of diterpenes. Analysis of chemical and physical soil parameters at the collection sites revealed that silt and sand contents were correlated with α-pinene and sclareol fractions and the total K20 was significantly correlated to several compounds belonging to the three terpene fractions identified. These results will provide guidelines for the in site conservation and for the improvement of the commercial value of the species.

  6. RIFM fragrance ingredient safety assessment, linalyl cinnamate, CAS Registry Number 78-37-5.

    PubMed

    Api, A M; Belsito, D; Bhatia, S; Bruze, M; Calow, P; Dagli, M L; Dekant, W; Fryer, A D; Kromidas, L; La Cava, S; Lalko, J F; Lapczynski, A; Liebler, D C; Penning, T M; Politano, V T; Ritacco, G; Salvito, D; Schultz, T W; Shen, J; Sipes, I G; Wall, B; Wilcox, D K

    2016-11-01

    The use of this material under current conditions is supported by existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental and reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, as well as environmental safety. Data show that this material is not genotoxic nor does it have skin sensitization potential. The reproductive and local respiratory toxicity endpoints were completed using the TTC (Threshold of Toxicological Concern) for a Cramer Class I material (0.03 and 1.4 mg/day, respectively). The developmental toxicity endpoint was completed using linalool (CAS # 78-70-6), dehydrolinalool (CAS # 29171-20-8) and cinnamic acid (CAS # 621-82-9) as suitable read across analogs, which provided a MOE > 100. The repeated dose toxicity endpoint was completed using data on the target material which provided a MOE > 100. The phototoxicity/photoallergenicity endpoint was completed based on suitable UV spectra. The environmental endpoint was completed as described in the RIFM Framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae.

    PubMed

    Chang, Chiou Ling; Cho, Il Kyu; Li, Qing X

    2009-02-01

    Basil oil and its three major active constituents (trans-anethole, estragole, and linalool) obtained from basil (Oscimum basilicum L.) were tested on three tephritid fruit fly species [Ceratitis capitata (Wiedemann), Bactrocera dorsalis (Hendel), and Bactrocera cucurbitae (Coquillett)] for insecticidal activity. All test chemicals acted fast and showed a steep dose-response relationship. The lethal times for 90% mortality/knockdown (LT90) of the three fly species to 10% of the test chemicals were between 8 and 38 min. The toxic action of basil oil in C. capitata occurred significantly faster than in B. cucurbitae but slightly faster than in B. dorsalis. Estragole acted faster in B. dorsalis than in C. capitata and B. cucurbitae. Linalool action was faster in B. dorsalis and C. capitata than in B. cucurbitae. trans-Anethole action was similar to all three species. Methyl eugenol acted faster in C. capitata and B. cucurbitae than in B. dorsalis. When linalool was mixed with cuelure (attractant to B. cucurbitae male), its potency to the three fly species decreased as the concentration of cuelure increased. This was due to linalool hydrolysis catalyzed by acetic acid from cuelure degradation, which was confirmed by chemical analysis. When methyl eugenol (B. dorsalis male attractant) was mixed with basil oil, trans-anethole, estragole, or linalool, it did not affect the toxicity of basil oil and linalool to B. dorsalis, but it did significantly decrease the toxicity of trans-anethole and estragole. Structural similarity between methyl eugenol and trans-anethole and estragole suggests that methyl eugenol might act at a site similar to that of trans-anethole and estragole and serve as an antagonist if an action site exists. Methyl eugenol also may play a physiological role on the toxicity reduction.

  8. Female-biased attraction of Oriental fruit fly, bactrocera dorsalis (Hendel), to a blend of host fruit volatiles from Terminalia catappa L.

    PubMed

    Siderhurst, Matthew S; Jang, Eric B

    2006-11-01

    Coupled gas chromatography-electroantennogram detection (GC-EAD) analysis of volatiles from tropical almond fruit, Terminalia catappa L., revealed 22 compounds that were detected by antennae of oriental fruit fly females, Bactrocera dorsalis (Hendel). Both solid-phase microextraction (SPME) and Porapak Q were used for sampling odors in fruit headspace, with SPME collections producing larger EAD responses from a greater number of compounds. Geranyl acetate and methyl eugenol elicited the largest EAD responses. A synthetic blend containing SPME collected, EAD stimulatory compounds showed female-biased attraction in laboratory wind tunnel bioassays, but heavily male-biased trap captures in a larger olfactometer arena. A nine-component subset of compounds eliciting relatively small EAD responses (EAD minor) and consisting of equal parts ethanol, ethyl acetate, ethyl hexanoate, hexyl acetate, linalyl acetate, ethyl nonanate, nonyl acetate, ethyl cinnamate, and (E)-beta-farnesene, attracted mainly females. This EAD minor blend was as attractive to females and much less attractive to males when compared to torula yeast in field cage experiments using glass McPhail traps. Similar results were obtained with outdoor rotating olfactometer tests in which the EAD minor blend was almost completely inactive for males.

  9. Essential oils: in vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition.

    PubMed

    Andrade, Milene Aparecida; Azevedo, Clênia Dos Santos; Motta, Flávia Nader; Santos, Maria Lucília Dos; Silva, Camila Lasse; Santana, Jaime Martins de; Bastos, Izabela M D

    2016-11-08

    The current chemotherapy for cutaneous leishmaniosis (CL) has a series of drug limitations such as toxic side effects, long duration, high costs and drug resistance, which requires the development of new drugs or effective alternatives to the CL treatment. Essential oils (EOs) are complex mixtures of secondary metabolites from various plants. It has been shown that several EOs, or their constituents, have inhibitory activity against protozoa. Thus, this study aims to evaluate the biological activity of different essential oils (EOs) on Leishmania (L.) amazonensis promastigotes forms, as well as their cytotoxicity on mammalian cells and chemical composition. Sixteen EOs were evaluated by mean of IC 50 /24 h and cytotoxicity against L6 cells (CC 50 /24 h) using Resazurin assay. Only those EOs that presented better results for IC 50 /24 h were submitted to GC-MS analysis to determine their chemical constitution. The EO from Cinnamodendron dinisii, Matricaria chamomilla, Myroxylon peruiferum, Salvia sclarea, Bulnesia sarmientoi, Ferula galbaniflua, Siparuna guianensis and Melissa officinalis were the most active against L. amazonensis with IC50/24 h ranging from 54.05 to 162.25 μg/mL. Analysis of EOs by GC-MS showed mainly the presence of β-farnesene (52.73 %) and bisabolol oxide (12.09 %) for M. chamomilla; α-copaene (13.41 %), safrole (8.35 %) and δ-cadinene (7.08 %) for M. peruiferum; linalool (28.80 %) and linalyl acetate (60.08 %) for S. sclarea; guaiol (48.29 %) and 2-undecanone (19.49 %) for B. sarmientoi; ethyl phthalate (13.09 %) and methyl-8-pimaren-18-oate (41.82 %) for F. galbaniflua; and neral (37.18 %) and citral (5.02 %) for M. officinalis. The EO from F. galbaniflua showed to be effective against L. amazonensis promastigotes forms and presented low cytotoxic activity against L6 cells. Thus, it represents a strong candidate for future studies aiming its molecular activity on these pathogenic parasites.

  10. Key volatile aroma compounds of three black velvet tamarind (Dialium) fruit species.

    PubMed

    Lasekan, Ola; See, Ng Siew

    2015-02-01

    Nineteen odour-active compounds were quantified in three black velvet tamarind fruit species. Calculation of the odour activity values (OAVs) of the odorants showed that differences in odour profiles of the tamarinds were mainly caused by linalool, limonene, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, nonanal, and (Z)-3-hexenal. On the basis of their high OAVs, cis-linalool oxide (furanoid), geranyl acetone, and cinnamyl acetate were identified as other potent odorants in the three tamarinds. Sensory studies revealed very distinct aroma profiles, which are characteristic of these types of fruits. While the Dialiumguineense elicited floral, flowery, caramel-like notes, the other two species were dominated by leaf-like, caramel, and green notes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Profiling study of the major and minor components of kaffir lime oil (Citrus hystrix DC.) in the fractional distillation process.

    PubMed

    Warsito, Warsito; Palungan, Maimunah Hindun; Utomo, Edy Priyo

    2017-01-01

    Essential oil is consisting of complex component. It is divided into major and minor component. Therefore, this study aims to examine the distribution of major and minor components on Kaffir lime oil by using fractional distillation. Fractional distillation and distributional analysis of components within fractions have been performed on kaffir lime oil ( Citrus hystrix DC .). Fractional distillation was performed by using PiloDist 104-VTU, column length of 2 m (number of plate 120), the system pressure was set on 5 and 10 mBar, while the reflux ratio varied on 10/10, 20/10 and 60/10, and the chemical composition analysis was done by using GC-MS. Chemical composition of the distillated lime oil consisted of mix-twigs and leaves that composed of 20 compounds, with five main components β-citronellal (46.40%), L-linalool (13.11%), β-citronellol (11.03%), citronelyl acetate (6.76%) and sabinen (5.91%). The optimum conditions for fractional distillation were obtained at 5 mBar pressure with reflux ratio of 10/10. Components of β -citronellal and L-linalool were distributed in the fraction-1 to fraction 9, hydrocarbon monoterpenes components were distributed only on the fraction-1 to fraction 4, while the oxygenated monoterpenes components dominated the fraction-5 to fraction-9. The highest level of β-citronellal was 84.86% (fraction-7), L-linalool 20.13% (fraction-5), sabinen 19.83% (fraction-1), and the component level of 4-terpeneol, β-citronellol and sitronelyl acetate respectively 7.16%; 12.27%; 5.22% (fraction-9).

  12. Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.

    PubMed

    Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas

    2016-06-01

    Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds.

  13. Profiling study of the major and minor components of kaffir lime oil (Citrus hystrix DC.) in the fractional distillation process

    PubMed Central

    Warsito, Warsito; Palungan, Maimunah Hindun; Utomo, Edy Priyo

    2017-01-01

    Introduction Essential oil is consisting of complex component. It is divided into major and minor component. Therefore, this study aims to examine the distribution of major and minor components on Kaffir lime oil by using fractional distillation. Fractional distillation and distributional analysis of components within fractions have been performed on kaffir lime oil (Citrus hystrix DC.). Methods Fractional distillation was performed by using PiloDist 104-VTU, column length of 2 m (number of plate 120), the system pressure was set on 5 and 10 mBar, while the reflux ratio varied on 10/10, 20/10 and 60/10, and the chemical composition analysis was done by using GC-MS. Chemical composition of the distillated lime oil consisted of mix-twigs and leaves that composed of 20 compounds, with five main components β-citronellal (46.40%), L-linalool (13.11%), β-citronellol (11.03%), citronelyl acetate (6.76%) and sabinen (5.91%). Results The optimum conditions for fractional distillation were obtained at 5 mBar pressure with reflux ratio of 10/10. Components of β -citronellal and L-linalool were distributed in the fraction-1 to fraction 9, hydrocarbon monoterpenes components were distributed only on the fraction-1 to fraction 4, while the oxygenated monoterpenes components dominated the fraction-5 to fraction-9. Conclusion The highest level of β-citronellal was 84.86% (fraction-7), L-linalool 20.13% (fraction-5), sabinen 19.83% (fraction-1), and the component level of 4-terpeneol, β-citronellol and sitronelyl acetate respectively 7.16%; 12.27%; 5.22% (fraction-9). PMID:29187951

  14. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose (Rosa rugosa Thunb.).

    PubMed

    Feng, Liguo; Chen, Chen; Li, Tinglin; Wang, Meng; Tao, Jun; Zhao, Daqiu; Sheng, Lixia

    2014-02-01

    Rosa rugosa is an important ornamental and economical plant. In this paper, four genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), alcohol acyltransferase (AAT) and linalool synthase (LIS) involved in the monoterpene biosynthesis pathways were isolated from R. rugosa 'Tangzi', and the expression patterns of these genes in different flower development stages and different parts of floral organs were determined by real-time quantitative fluorescence PCR. Furthermore, a comprehensive analysis was carried out into the relationship between expression of four monoterpene synthesis genes and accumulation of main volatile monoterpenes and their acetic acid ester derivatives. The results showed that the genes RrDXS, RrDXR and RrLIS showed consistent expressions during the development process for R. rugosa flower from budding to withering stage, the overall expression levels of gene RrDXS and RrLIS were obviously lower as compared with those of gene RrDXR and RrAAT. Although the gene RrDXS, RrDXR, RrAAT and RrLIS were expressed in all parts of R. rugosa floral organs, the expression levels varied significantly. The variations in the constituent and content of volatile monoterpenes including citronellol, geraniol, nerol, linalool, citronellyl acetate, geranyl acetate and neryl acetate at different development stages and parts of floral organs were significantly different. On this basis, we concluded that the gene RrDXR and RrAAT might play a key role in the biosynthesis of volatile monoterpenes in R. rugosa flowers, and the two genes are important candidate genes for the regulation of secondary metabolism for rose aromatic components. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Differential response of terpenes and anthraquinones derivatives in Rumex dentatus and Lavandula officinalis to harsh winters across north-western Himalaya.

    PubMed

    Jan, Sumira; Kamili, Azra N; Parray, Javid A; Bedi, Yashbir S

    2016-01-01

    Herbs adapted to diverse climates exhibit distinct variability to fluctuating temperatures and demonstrate various metabolic and physiological adaptations to harsh environments. In this research, Rumex dentatus L. and Lavandula officinalis L. were collected before snowfall in September-November to evaluate variability in major phytoconstituents to diverse seasonal regime. LC-MS was used for simultaneous determination of eight anthraquinone derivatives in R. dentatus, i.e. emodin, physcion, chrysophanol, physcion glucoside, endocrocin, emodin glucoside, chrysophanol glucoside and chromone derivatives and monoterpenes in L. officinalis i.e. (Z)-β-ocimene, (E)-β-ocimene, terpene alcohol, terpin-4-ol, acetate ester-linalyl acetate and bicyclic sesquiterpene (E)-caryophyllene. The correlation analysis confirmed significant variation in anthraquinone glucoside and terpene content within Rumex and Lavender, respectively, and altitude was established as the determinant factor in secondary metabolism of both herbs. The study concludes the propagation of herbs in bioclimatic belts which favour accumulation of major constituents and validate their greater pharmacological activity.

  16. Supercritical CO2 Extraction of Lavandula angustifolia Mill. Flowers: Optimisation of Oxygenated Monoterpenes, Coumarin and Herniarin Content.

    PubMed

    Jerković, Igor; Molnar, Maja; Vidović, Senka; Vladić, Jelena; Jokić, Stela

    2017-11-01

    Lavandula angustifolia is good source of oxygenated monoterpenes containing coumarins as well, which are all soluble in supercritical CO 2 (SC-CO 2 ). The study objective is to investigate SC-CO 2 extraction parameters on: the total yield; GC-MS profile of the extracts; relative content of oxygenated monoterpenes; the amount of coumarin and herniarin; and to determine optimal SC-CO 2 extraction conditions by response surface methodology (RSM). SC-CO 2 extraction was performed under different pressure, temperature and CO 2 flow rate determined by Box-Behnken design (BBD). The sample mass and the extraction time were kept constant. The chemical profiles and relative content of oxygenated monoterpenes (as coumarin equivalents, CE) were determined by GC-MS. Coumarin and herniarin concentrations were dosed by HPLC. SC-CO 2 extracts contained linalool (57.4-217.9 mg CE/100 g), camphor (10.6-154.4 mg CE/100 g), borneol (6.2-99.9 mg CE/100 g), 1,8-cineole (5.0-70.4 mg CE/100 g), linalyl acetate (86.1-267.9 mg CE/100 g), coumarin (0.95-18.16 mg/100 g), and herniarin (0.95-13.63 mg/100 g). The interaction between the pressure and CO 2 flow rate as well as between the temperature and CO 2 flow rate showed statistically significant influence on the extraction yield. Applying BBD, the optimum extraction conditions for higher monoterpenes and lower coumarin content were at 10 MPa, 41°C and CO 2 flow rate 2.3 kg/h, and at 30 MPa, 50°C and CO 2 flow rate 3 kg/h for higher monoterpenes and coumarin content. SC-CO 2 extraction is a viable technique for obtaining lavender extracts with desirable flavour components. The second-order model based on BBD predicts the results for SC-CO 2 extraction quite satisfactorily. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.).

    PubMed

    Piesik, Dariusz; Pańka, Dariusz; Delaney, Kevin J; Skoczek, Agata; Lamparski, Robert; Weaver, David K

    2011-06-15

    Herbivory, mechanical injury or pathogen infestation to vegetative tissues can induce volatile organic compounds (VOCs) production, which can provide defensive functions to injured and uninjured plants. In our studies with 'McNeal' wheat, 'Otana' oat, and 'Harrington' barley, plants that were mechanically injured, attacked by either of two Oulema spp. (melanopus or cyanella) beetles, or infected by one of the three Fusarium spp. (graminearum, avenaceum, or culmorum), had significant VOC induction compared to undamaged plants. Mechanical injury to the main stem or one leaf caused the induction of one green leaf volatile (GLV) - (Z)-3-hexenol, and three terpenes (β-linalool, β-caryophyllene, and α-pinene) with all three grasses; wheat and barley also showed β-linalool oxide induction. The blend of induced VOCs after Fusarium spp. infestation or Oulema spp. herbivory was dominated by GLVs ((Z)-3-hexenal, (E)-2-hexenal, (E)-2-hexenol, (Z)-3-hexenyl acetate, and 1-hexenyl acetate) and β-linalool and β-caryophyllene; beetle herbivory also induced (E)-β-farnesene. Different ratios of individual VOCs were induced between the two Oulema spp. for each cereal grass and different ratios across the three cereals for each beetle species. Also, different ratios of individual VOCs were induced between the three Fusarium spp. for each cereal grass and different ratios across the three cereals for each fungal pathogen species. Our results are preliminary since we could not simultaneously measure VOC induction from controls with each of the ten different injury treatments for each of the three cereals. However, the comparison of mechanical injury, insect herbivory, and fungal infection has not been previously examined with VOC responses from three different plant species within the same family. Also, our work suggests large qualitative and quantitative overlap of VOC induction from plants of all three cereals having beetle herbivory injury when compared to infection injury from necrotrophic fungal pathogens. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells.

    PubMed

    Russo, Rossella; Cassiano, Maria Gilda Valentina; Ciociaro, Antonella; Adornetto, Annagrazia; Varano, Giuseppe Pasquale; Chiappini, Carlotta; Berliocchi, Laura; Tassorelli, Cristina; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2014-01-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a well characterized, widely used plant extract. BEO exerts anxiolytic, analgesic and neuroprotective activities in rodents through mechanisms that are only partly known and need to be further investigated. To gain more insight into the biological effects of this essential oil, we tested the ability of BEO (0.005-0.03%) to modulate autophagic pathways in human SH-SY5Y neuroblastoma cells. BEO-treated cells show increased LC3II levels and appearance of dot-like formations of endogenous LC3 protein that colocalize with the lysosome marker LAMP-1. Autophagic flux assay using bafilomycin A1 and degradation of the specific autophagy substrate p62 confirmed that the observed increase of LC3II levels in BEO-exposed cells is due to autophagy induction rather than to a decreased autophagosomal turnover. Induction of autophagy is an early and not cell-line specific response to BEO. Beside basal autophagy, BEO also enhanced autophagy triggered by serum starvation and rapamycin indicating that the underlying mechanism is mTOR independent. Accordingly, BEO did not affect the phosphorylation of ULK1 (Ser757) and p70(S6K) (Thr389), two downstream targets of mTOR. Furthermore, induction of autophagy by BEO is beclin-1 independent, occurs in a concentration-dependent manner and is unrelated to the ability of BEO to induce cell death. In order to identify the active constituents responsible for these effects, the two most abundant monoterpenes found in the essential oil, d-limonene (125-750 µM) and linalyl acetate (62.5-375 µM), were individually tested at concentrations comparable to those found in 0.005-0.03% BEO. The same features of stimulated autophagy elicited by BEO were reproduced by D-limonene, which rapidly increases LC3II and reduces p62 levels in a concentration-dependent manner. Linalyl acetate was ineffective in replicating BEO effects; however, it greatly enhanced LC3 lipidation triggered by D-limonene.

  19. Role of D-Limonene in Autophagy Induced by Bergamot Essential Oil in SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Russo, Rossella; Cassiano, Maria Gilda Valentina; Ciociaro, Antonella; Adornetto, Annagrazia; Varano, Giuseppe Pasquale; Chiappini, Carlotta; Berliocchi, Laura; Tassorelli, Cristina; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2014-01-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a well characterized, widely used plant extract. BEO exerts anxiolytic, analgesic and neuroprotective activities in rodents through mechanisms that are only partly known and need to be further investigated. To gain more insight into the biological effects of this essential oil, we tested the ability of BEO (0.005–0.03%) to modulate autophagic pathways in human SH-SY5Y neuroblastoma cells. BEO-treated cells show increased LC3II levels and appearance of dot-like formations of endogenous LC3 protein that colocalize with the lysosome marker LAMP-1. Autophagic flux assay using bafilomycin A1 and degradation of the specific autophagy substrate p62 confirmed that the observed increase of LC3II levels in BEO-exposed cells is due to autophagy induction rather than to a decreased autophagosomal turnover. Induction of autophagy is an early and not cell-line specific response to BEO. Beside basal autophagy, BEO also enhanced autophagy triggered by serum starvation and rapamycin indicating that the underlying mechanism is mTOR independent. Accordingly, BEO did not affect the phosphorylation of ULK1 (Ser757) and p70S6K (Thr389), two downstream targets of mTOR. Furthermore, induction of autophagy by BEO is beclin-1 independent, occurs in a concentration-dependent manner and is unrelated to the ability of BEO to induce cell death. In order to identify the active constituents responsible for these effects, the two most abundant monoterpenes found in the essential oil, d-limonene (125–750 µM) and linalyl acetate (62.5–375 µM), were individually tested at concentrations comparable to those found in 0.005–0.03% BEO. The same features of stimulated autophagy elicited by BEO were reproduced by d-limonene, which rapidly increases LC3II and reduces p62 levels in a concentration-dependent manner. Linalyl acetate was ineffective in replicating BEO effects; however, it greatly enhanced LC3 lipidation triggered by d-limonene. PMID:25419658

  20. Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum.

    PubMed

    Abdullah; Asghar, Ali; Butt, Masood Sadiq; Shahid, Muhammad; Huang, Qingrong

    2017-07-01

    Spices are well known for their taste and flavor imparting properties. Green cardamom ( Elletaria cardamomum ), a herb spice belongs to family Zingiberaceae . In current study, GC-MS analysis of green cardamom essential oil (CEO) resulted in identification of twenty-six compounds with α -terpinyl acetate (38.4%), 1,8-cineole (28.71%), linalool acetate (8.42%), sabinene (5.21%), and linalool (3.97%) as major bioactive components. Present study also described the antimicrobial properties like zone of inhibition, minimum inhibitory concentration against microbial strains with special emphasis on quorum sensing inhibition. Disk diffusion assay showed that C. albicans and S. mutans were the most sensitive microorganisms followed by S. aureus , L. monocytogenes , B. cereus and S. typhimurium sensor strains, respectively. Whilst P. aeruginosa was found most resistant strain as CEO did not inhibited its growth. The minimum inhibitory concentration (MIC) values of CEO against tested strains were 10 ± 0.00 mg/mL against S. typhimurium , S. aureus and 5 ± 0.00 mg/mL against S. mutans , C. albicans strains, respectively. Regarding quorum sensing inhibition the tested concentrations 0.625 and 0.313 mg/mL of CEO inhibited violacein production with very little effect on growth of C. violaceum . Conclusively, study proved that quorum sensing inhibition values of CEO were much lower compared to MIC revealed values. Hence, cardamom bioactive constituents can effectively be used to develop novel antimicrobial drugs against conventional antibiotics.

  1. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity.

    PubMed

    Aytac, Zeynep; Yildiz, Zehra Irem; Kayaci-Senirmak, Fatma; Tekinay, Turgay; Uyar, Tamer

    2017-09-15

    The volatility and limited water solubility of linalool is a critical issue to be solved. Here, we demonstrated the electrospinning of polymer-free nanofibrous webs of cyclodextrin/linalool-inclusion complex (CD/linalool-IC-NFs). Three types of modified cyclodextrin (HPβCD, MβCD, and HPγCD) were used to electrospin CD/linalool-IC-NFs. Free-standing CD/linalool-IC-NFs facilitate maximum loading of linalool up to 12% (w/w). A significant amount of linalool (45-89%) was preserved in CD/linalool-IC-NFs, due to enhancement in the thermal stability of linalool by cyclodextrin inclusion complexation. Remarkably, CD/linalool-IC-NFs have shown fast-dissolving characteristics in which these nanofibrous webs dissolved in water within two seconds. Furthermore, linalool release from CD/linalool-IC-NFs inhibited growth of model Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria to a great extent. Briefly, characteristics of liquid linalool have been preserved in a solid nanofiber form and designed CD/linalool-IC-NFs confer high loading capacity, enhanced shelf life and strong antibacterial activity of linalool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Aromatherapy Improves Work Performance Through Balancing the Autonomic Nervous System.

    PubMed

    Huang, Lin; Capdevila, Lluis

    2017-03-01

    This study analyzed the efficacy of aromatherapy in improving work performance and reducing workplace stress. The initial sample comprised 42 administrative university workers (M age  = 42.21 years, standard deviation = 7.12; 10 male). All sessions were performed in a university computer classroom. The participants were randomly assigned into an aromatherapy group (AG) and a control group (CG), and they were invited to participate in a specific session only once. They were seated in front of a computer. During the intervention period, some oil diffusers were switched on and were in operation throughout the session with petitgrain essential oil for AG sessions and a neutral oil (almond) for CG sessions. At the same time, participants completed a computer task on a specific Web site typing on their keyboard until they had finished it. The single times were different for all participants and were recorded on the Web site as "performance time." Before and after the intervention, participants completed anxiety and mood state questionnaires (the Stait-Trait Anxiety Inventory [STAI] and the Profile of Mood States [POMS]). Heart-rate variability (HRV) was measured before (PRE), during (20-25 min), and after (POS) the intervention to analyze autonomic nervous system regulation. The AG performed the Web site task 2.28 min faster than the CG (p = 0.05). The two groups showed differences in the following HRV parameters: low frequency (p = 0.05), high frequency (p = 0.02), standard deviation of all RR intervals (p = 0.05), and root mean square of differences (p = 0.02). All participants in all groups showed a decrease from PRE to POST for STAI (p < 0.001), Tension-POMS (p < 0.001), and Vigour-POMS (p = 0.01) scales. Aromatherapy (inhaling petitgrain essential oil) can improve performance in the workplace. These results could be explained by an autonomic balance on the sympathetic/parasympathetic system through a combined action of the petitgrain main components (linalyl acetate, linalool, and myrcene). The final effect could be an improvement of the mental and emotional condition by a combination of reducing the stress level and increasing the arousal level of the participants in terms of attentiveness and alertness.

  3. Temperature Dependence of Positron Annihilation in beta-Cyclodextrin and beta-Cyclodextrin Complexes

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Hsu Hadley, F. H., Jr.; Trinh, T.

    1996-11-01

    The effects of temperature on positron annihilation in beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate, benzyl acetate, ethyl salicylate, geraniol, linalool and nerol were studied. Samples were prepared by slurry, air-dried and freeze-dried methods. Lifetime spectra were measured as a function of temperature for each sample. Comparison of the annihilation rate and intensity of the longer-lived component showed that positronium formation was affected by guest molecules, preparation methods and temperature variations. Results can be used to explain beta-cyclodextrin complex formation with different guest molecules.

  4. CYP76C1 (Cytochrome P450)-Mediated Linalool Metabolism and the Formation of Volatile and Soluble Linalool Oxides in Arabidopsis Flowers: A Strategy for Defense against Floral Antagonists[OPEN

    PubMed Central

    Lesot, Agnès; Ginglinger, Jean-François; Beran, Franziska; Schneider, Bernd; Leiss, Kirsten; Werck-Reichhart, Danièle

    2015-01-01

    The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests. PMID:26475865

  5. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: effects on poultry.

    PubMed

    Beier, Ross C; Byrd, J Allen; Kubena, Leon F; Hume, Michael E; McReynolds, Jackson L; Anderson, Robin C; Nisbet, David J

    2014-02-01

    Linalool is a natural plant-product used in perfumes, cosmetics, and flavoring agents. Linalool has proven antimicrobial and insect-repellent properties, which indicate it might be useful for control of enteropathogens or insect pests in poultry production. However, there are no published reports that linalool may be safely administered to or tolerated by chickens. Linalool was added to the diets of day-of-hatch chicks, and they were fed linalool-supplemented diets for 3 wk. We studied the effects of linalool on serum chemistry, gross pathology, feed conversion, and relative liver weights. Linalool had a dramatic negative dose-dependent effect on feed conversion at concentrations in the feed exceeding 2% linalool, but not on gross pathology. Liver weights were significantly increased in the 5% linalool-treated birds. There was a statistical effect on blood glucose, but this parameter remained below the cut-offs for elevated serum glucose, and the result is likely of no biological significance. Linalool caused serum aspartate aminotransferase (AST) levels to increase, but it did not increase serum gamma-glutamyl transferase levels. The linalool effect on AST was dose-dependent, but in linalool doses between 0.1 and 2% of the feed, AST was not elevated beyond normal parameters. Linalool at 2% or less may be safely added to chicken feed. We suggest future studies to evaluate the addition of linalool to the litter, where it may be used as an antimicrobial or an insect repellent or to produce a calming effect.

  6. Distillation time effect on lavender essential oil yield and composition.

    PubMed

    Zheljazkov, Valtcho D; Cantrell, Charles L; Astatkie, Tess; Jeliazkova, Ekaterina

    2013-01-01

    Lavender (Lavandula angustifolia Mill.) is one of the most widely grown essential oil crops in the world. Commercial extraction of lavender oil is done using steam distillation. The objective of this study was to evaluate the effect of the length of the distillation time (DT) on lavender essential oil yield and composition when extracted from dried flowers. Therefore, the following distillation times (DT) were tested in this experiment: 1.5 min, 3 min, 3.75 min, 7.5 min, 15 min, 30 min, 60 min, 90 min, 120 min, 150 min, 180 min, and 240 min. The essential oil yield (range 0.5-6.8%) reached a maximum at 60 min DT. The concentrations of cineole (range 6.4-35%) and fenchol (range 1.7-2.9%) were highest at the 1.5 min DT and decreased with increasing length of the DT. The concentration of camphor (range 6.6-9.2%) reached a maximum at 7.5-15 min DT, while the concentration of linalool acetate (range 15-38%) reached a maximum at 30 min DT. Results suggest that lavender essential oil yield may not increase after 60 min DT. The change in essential oil yield, and the concentrations of cineole, fenchol and linalool acetate as DT changes were modeled very well by the asymptotic nonlinear regression model. DT may be used to modify the chemical profile of lavender oil and to obtain oils with differential chemical profiles from the same lavender flowers. DT must be taken into consideration when citing or comparing reports on lavender essential oil yield and composition.

  7. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi.

    PubMed

    Zheljazkov, Valtcho D; Callahan, Amber; Cantrell, Charles L

    2008-01-09

    A field experiment was conducted to assess yield, oil content, and composition of 38 genotypes of sweet basil ( Ocimum basilicum L.). Overall, biomass yields were high and comparable to those reported in the literature. However, basil genotypes differed significantly with respect to oil content and composition. Oil content of the tested accessions varied from 0.07% to 1.92% in dry herbage. On the basis of the oil composition, basil accessions were divided into seven groups: (1) high-linalool chemotype [19-73% (-)-linalool], (2) linalool-eugenol chemotype [six chemotypes with 28-66% (-)-linalool and 5-29% eugenol], (3) methyl chavicol chemotype [six accessions with 20-72% methyl chavicol and no (-)-linalool], (4) methyl chavicol-linalool chemotype [six accessions with 8-29% methyl chavicol and 8-53% (-)-linalool], (5) methyl eugenol-linalool chemotype [two accessions with 37% and 91% methyl eugenol and 60% and 15% (-)-linalool], (6) methyl cinnamate-linalool chemotype [one accession with 9.7% methyl cinnamate and 31% (-)-linalool], and (7) bergamotene chemotype [one accession with bergamotene as major constituent, 5% eucalyptol, and <1% (-)-linalool]. Our results demonstrated that basil could be a viable essential oil crop in Mississippi. The availability of various chemotypes offers the opportunity for production of basil to meet the market requirements of specific basil oils or individual compounds such as (-)-linalool, eugenol, methyl chavicol, methyl cinnamate, or methyl eugenol.

  8. Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide.

    PubMed

    Souto-Maior, Flávia Negromonte; Fonsêca, Diogo Vilar da; Salgado, Paula Regina Rodrigues; Monte, Lucas de Oliveira; de Sousa, Damião Pergentino; de Almeida, Reinaldo Nóbrega

    2017-12-01

    Linalool oxide (OXL) (a monoterpene) is found in the essential oils of certain aromatic plants, or it is derived from linalool. The motivation for this work is the lack of psychopharmacological studies on this substance. To evaluate OXL's acute toxicity, along with its anticonvulsant and antinociceptive activities in male Swiss mice. OXL (50, 100 and 150 mg/kg, i.p.) was investigated for acute toxicity and in the Rota-rod test. Antinociceptive activity was evaluated by the acetic acid-induced writhing test, and by formalin testing. Anticonvulsant effects were demonstrated by testing for pentylenetetrazol (PTZ)-induced seizures and by Maximum Electroshock headset (MES) test. OXL was administered to the animals intraperitoneally 30 min before for pharmacological tests. OXL showed an LD 50 of ∼721 (681-765) mg/kg. In the Rota-rod test, it was observed that OXL caused no damage to the animal's motor coordination. OXL significantly reduced (p < .001) the number of writhings. OXL also significantly decreased (p < .05, p < .01 or p < .001) paw-licking time in the two phases of the formalin test. OXL significantly reduced (p < .01 or p < .001) the duration of tonic seizures in the MES test, and at the dose 150 mg/kg, significantly increased (p < .01) the latency to first seizure in the PTZ test. The tested doses of OXL were safe, with no motor impairment, and show clear antinociceptive and anticonvulsant potential. Future investigations with this monoterpene may lead to the development of a new molecule with even higher potency and selectivity.

  9. [Profile-effect on quality control of Houttuynia cordata injection].

    PubMed

    Lu, Hong-mei; Liang, Yi-zeng; Qian, Pin

    2005-12-01

    To find corresponding relationship between the fingerprint of Houttuynia cordata injections from different factories and their effects. Houttuynia cordata injections from six different factories were determined by gas chromatography (GC) and gas chromatography-mass spectra (GC-MS), and GC fingerprints were classified by hierarchical clustering. The anti-inflammatory activity of Houttuynia cordata injections was characterized through the rat pleurisy model induced by carrageenin and the mice ear edema model by dimethylbenzene. The anti-inflammatory effect of the injections from the first class factories on the two model was significant, while those from the second class not. GC-MS analysis result indicated that main effect compounds in Houttuynia cordata injections are methyl n-nonyl ketone, decanoylacetaldehyde, lauryl aldehyde, capryl aldehyde, beta-pinene, beta-linalool, 1-nonanol, 4-terpineol, alpha-terpineol, bornyl acetate, n-decanoic acid and acetic acid, geraniol ester etc. There is corresponding relationship between the fingerprint of Houttuynia cordata injections and effect to a certain extent.

  10. The effect of linalool on second-stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida.

    PubMed

    Būda, Vincas; Cepulytė-Rakauskienė, Rasa

    2011-09-01

    Linalool is either a toxic compound to a few species of plant parasitic nematodes or attractive to entomopathogenic nematodes. This compound is produced and emitted by several host plants of Globodera rostochiensis and G. pallida, the potato cyst nematodes (PCN). With the aim to reveal the effect of linalool on PCN, laboratory assays were carried out. Survival of PCN second-stage juveniles (J2s) in water + linalool control did not differ; thus, proving linalool to be nontoxic to PCN. Behavioral assays carried out in Petri dishes revealed attractiveness in the form of positive response of J2s of both PCN species towards linalool. Based on these behavioral assays, sensitivity to linalool of G. rostochiensis J2s was higher compared with that of G. pallida J2s. Linalool is the first compound of plant origin to elicit positive response in both PCN species.

  11. Identification of a Plastid-Localized Bifunctional Nerolidol/Linalool Synthase in Relation to Linalool Biosynthesis in Young Grape Berries

    PubMed Central

    Zhu, Bao-Qing; Cai, Jian; Wang, Zhi-Qun; Xu, Xiao-Qing; Duan, Chang-Qing; Pan, Qiu-Hong

    2014-01-01

    Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS) synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars (“Riesling”, “Cabernet Sauvignon”, “Gewurztraminer”) with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes. PMID:25470020

  12. Effect of plantar subcutaneous administration of bergamot essential oil and linalool on formalin-induced nociceptive behavior in mice.

    PubMed

    Katsuyama, Soh; Otowa, Akira; Kamio, Satomi; Sato, Kazuma; Yagi, Tomomi; Kishikawa, Yukinaga; Komatsu, Takaaki; Bagetta, Giacinto; Sakurada, Tsukasa; Nakamura, Hitoshi

    2015-01-01

    This study investigated the effect of bergamot essential oil (BEO) or linalool, a major volatile component of BEO, on the nociceptive response to formalin. Plantar subcutaneous injection of BEO or linalool into the ipsilateral hindpaw reduced both the first and late phases of the formalin-induced licking and biting responses in mice. Plantar subcutaneous injection of BEO or linalool into the contralateral hindpaw did not yield an antinociceptive effect, suggesting that the antinociceptive effect of BEO or linalool in the formalin test occurred peripherally. Intraperitoneal and plantar subcutaneous injection pretreatment with naloxone hydrochloride, an opioid receptor antagonist, significantly attenuated both BEO- and linalool-induced antinociception. Pretreatment with naloxone methiodide, a peripherally acting opioid receptor antagonists, also significantly antagonized the antinociceptive effects of BEO and linalool. Our results provide evidence for the involvement of peripheral opioids in antinociception induced by BEO and linalool. These results suggest that activation of peripheral opioid receptors may play an important role in reducing formalin-induced nociception.

  13. Contact Allergy to Hydroperoxides of Linalool and D-Limonene in a US Population.

    PubMed

    Nath, Neel Som; Liu, Beiyu; Green, Cynthia; Atwater, Amber Reck

    Linalool and D-limonene are common fragrance ingredients that readily oxidize on exposure to air. The resulting hydroperoxides of linalool and D-limonene have been shown to have high frequencies of positive patch test reactions in several European and international studies. The aim of the study was to investigate the prevalence of contact allergy to the hydroperoxides of linalool and D-limonene in a US population. In this retrospective study, 103 patients with suspected fragrance allergy were patch tested to linalool 10% petrolatum (pet), hydroperoxides of linalool 1% pet, D-limonene 10% pet, and/or the hydroperoxides of D-limonene 0.3% pet between July 9, 2014, and October 25, 2016. In this study, the frequency of positive patch test reactions to the hydroperoxides of linalool is 20% (19/96), and the frequency of positive reactions to the hydroperoxides of D-limonene is 8% (7/90). These high frequencies suggest that patch testing to the hydroperoxides of linalool and limonene should be performed in all patients with suspected fragrance allergy.

  14. Chemical Diversity in Basil (Ocimum sp.) Germplasm

    PubMed Central

    da Costa, Andréa Santos; Arrigoni-Blank, Maria de Fátima; de Carvalho Filho, José Luiz Sandes; de Santana, Aléa Dayane Dantas; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald

    2015-01-01

    The present study aimed to chemically characterize 31 accessions and seven cultivars of basil. The percentage composition of the essential oils of the accessions and cultivars was based on the 14 most abundant constituents: 1,8-cineole, linalool, methyl chavicol, neral, nerol, geraniol, geranial, methyl cinnamate, β-bourbonene, methyl eugenol, α-trans-bergamotene, germacrene-D, epi-α-cadinol, and δ-cadinene. The genetic materials were classified into eight clusters according to the chemical composition of the essential oils: Cluster 1—mostly linalool and 1,8-cineole; Cluster 2—mostly linalool, geraniol, and α-trans-bergamotene; Cluster 3—mostly linalool, methyl chavicol, methyl cinnamate, and β-bourbonene; Cluster 4—mostly linalool, methyl chavicol, epi-α-cadinol, and α-trans-bergamotene; Cluster 5—mainly linalool, methyl eugenol, α-trans-bergamotene, and epi-α-cadinol; Cluster 6—mainly linalool, geraniol, and epi-α-cadinol; Cluster 7—mostly linalool and methyl chavicol; Cluster 8—mainly geranial and neral. PMID:25629084

  15. Metabolic products of linalool and modulation of GABAA receptors

    NASA Astrophysics Data System (ADS)

    Milanos, Sinem; Elsharif, Shaimaa A.; Janzen, Dieter; Buettner, Andrea; Villmann, Carmen

    2017-06-01

    Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory a1b2 GABAA receptors in various expression systems. However, in plants or humans, i.e. following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at a1b2g2 GABAA receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC5-10 together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself.

  16. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    PubMed

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter excessive exposures to these pollutants owing to cleaning product emissions. Mitigation options include screening of product ingredients and increased ventilation during and after cleaning. Certain practices, such as the use of some products in dilute solution vs. full-strength and the prompt removal of cleaning supplies from occupied spaces, can reduce emissions and exposures to 2-butoxyethanol and other volatile constituents. Also, it may be prudent to limit use of products containing ozone-reactive constituents when indoor ozone concentrations are elevated either because of high ambient ozone levels or because of the indoor use of ozone-generating equipment.

  17. Unraveling the Rat Intestine, Spleen and Liver Genome-Wide Transcriptome after the Oral Administration of Lavender Oil by a Two-Color Dye-Swap DNA Microarray Approach

    PubMed Central

    Kubo, Hiroko; Shibato, Junko; Saito, Tomomi; Ogawa, Tetsuo; Rakwal, Randeep; Shioda, Seiji

    2015-01-01

    The use of lavender oil (LO) – a commonly, used oil in aromatherapy, with well-defined volatile components linalool and linalyl acetate – in non-traditional medicine is increasing globally. To understand and demonstrate the potential positive effects of LO on the body, we have established an animal model in this current study, investigating the orally administered LO effects genome wide in the rat small intestine, spleen, and liver. The rats were administered LO at 5 mg/kg (usual therapeutic dose in humans) followed by the screening of differentially expressed genes in the tissues, using a 4×44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a dye-swap approach, a novelty of this study. Fourteen days after LO treatment and compared with a control group (sham), a total of 156 and 154 up (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, 174 and 66 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, and 222 and 322 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes showed differential expression at the mRNA level in the small intestine, spleen and liver, respectively. The reverse transcription-polymerase chain reaction (RT-PCR) validation of highly up- and down-regulated genes confirmed the regulation of the Papd4, Lrp1b, Alb, Cyr61, Cyp2c, and Cxcl1 genes by LO as examples in these tissues. Using bioinformatics, including Ingenuity Pathway Analysis (IPA), differentially expressed genes were functionally categorized by their Gene Ontology (GO) and biological function and network analysis, revealing their diverse functions and potential roles in LO-mediated effects in rat. Further IPA analysis in particular unraveled the presence of novel genes, such as Papd4, Or8k5, Gprc5b, Taar5, Trpc6, Pld2 and Onecut3 (up-regulated top molecules) and Tnf, Slc45a4, Slc25a23 and Samt4 (down-regulated top molecules), to be influenced by LO treatment in the small intestine, spleen and liver, respectively. These results are the first such inventory of genes that are affected by lavender essential oil (LO) in an animal model, forming the basis for further in-depth bioinformatics and functional analyses and investigation. PMID:26161641

  18. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes.

    PubMed

    Bråred Christensson, Johanna; Karlberg, Ann-Therese; Andersen, Klaus E; Bruze, Magnus; Johansen, Jeanne D; Garcia-Bravo, Begoña; Giménez Arnau, Ana; Goh, Chee-Leok; Nixon, Rosemary; White, Ian R

    2016-05-01

    Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. To investigate concomitant reactions between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark, Singapore, Spain, Sweden, and the United Kingdom. A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients reacting to oxidized R-limonene, 46% reacted to oxidized linalool, whereas 35% of the 200 patients reacting to oxidized linalool also reacted to oxidized R-limonene. The majority of the patients (75%) reacted to only one of the oxidation mixtures, thus supporting the specificity of the reactions. The concomitant reactions to the two fragrance allergens suggest multiple sensitizations, which most likely reflect the exposure to the different fragrance materials in various types of consumer products. This is in accordance with what is generally seen for patch test reactions to fragrance materials. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Pomegranate juice adulteration by addition of grape or peach juices.

    PubMed

    Nuncio-Jáuregui, Nallely; Calín-Sánchez, Ángel; Hernández, Francisca; Carbonell-Barrachina, Ángel A

    2014-03-15

    Pomegranate juice has gained a high reputation for its health properties and consequently is now a highly demanded product. However, owing to the limited production and high price of fresh pomegranates, adulteration of pomegranate juice seems to be happening. Hence it is imperative to establish criteria for detecting adulteration. Addition of grape juice significantly increased the contents of Ca, Mg and Fe and especially tartaric acid and proline and simultaneously decreased the content of K. Addition of peach juice up to 10% (v/v) only resulted in a significant increase in sucrose content. Regarding the volatile composition, adulteration of pomegranate juice with grape juice resulted in significant increases in acetic acid, isoamyl butyrate and especially 1-hexanol and linalool, while adulteration with peach juice resulted in significant increases in butyl acetate, isobutyl butyrate, benzyl acetate and especially isoamyl butyrate. The control protocols used in this study can serve as a basis for identification of pomegranate juice adulteration. It is important to highlight that it is necessary to simultaneously analyze and have results from several parameters to conclude that a particular pomegranate juice has been adulterated by mixing with another fruit juice. © 2013 Society of Chemical Industry.

  20. Investigation of the anxiolytic effects of linalool, a lavender extract, in the male Sprague-Dawley rat.

    PubMed

    Cline, Michael; Taylor, John E; Flores, Jesus; Bracken, Samuel; McCall, Suzanne; Ceremuga, Thomas E

    2008-02-01

    The purpose of our study was to investigate the anxiolytic effects of linalool and its potential interaction with the GABAA receptor in Sprague-Dawley rats. Lavender has been used traditionally as an herbal remedy in the treatment of many medical conditions, including anxiety. Linalool is a major component of the essential oil of lavender. Forty-four rats were divided into 4 groups: control, linalool, midazolam (positive control), and flumazenil and linalool. The behavioral and the neurohormonal/physiological components of anxiety were evaluated. The behavioral component was examined by using the elevated plus maze (open arm time/total time) and the neurohormonal/physiological component by measuring serum catecholamine and corticosterone levels. Data analysis was performed using a 2-tailed Multivariate Analysis of Variance and Sheffe post-hoc test. Our data suggest that linalool does not produce anxiolysis by modulation of the GABAA receptor; however, linalool may modulate motor movements and locomotion.

  1. S-(+)- and R-(-)-linalool: a comparison of the in vitro anti-Aeromonas hydrophila activity and anesthetic properties in fish.

    PubMed

    Silva, Lenise L; Balconi, Luana S; Gressler, Letícia T; Garlet, Quelen I; Sutili, Fernando J; Vargas, Agueda P C; Baldisserotto, Bernardo; Morel, Ademir F; Heinzmann, Berta M

    2017-01-01

    Linalool is the main compound of many essential oils and occurs in two isomeric forms: S-(+)- and R-(-)-linalool. This study aimed to determine if linalool isomers have different antimicrobial and anesthetic properties in fish. For this purpose, these compounds were previously isolated from Lippia alba (Mill.)N. E. Brown and Ocimum americanum L. essential oils. Antimicrobial effects were evaluated through the microdilution test against Aeromonas hydrophila, an important fish disease etiologic agent. Induction time until sedation, anesthesia and recovery time were determined in silver catfish (Rhamdia quelen) through bath exposure (60, 180, 300 or 500 μL L-1). The results showed different biological properties for the isomers being S-(+)-linalool the only active against A. hydrophila at 3.2 mg mL-1. The sedation was induced without differences between the compounds, however R-(-)-linalool promoted faster anesthesia. There were no differences regarding the recovery time of the animals exposed to the linalool isomers. Although both S-(+)- and R-(-)-linalool can be used for sedative purposes, their use in A. hydrophila infection is inadvisable due to the high effective concentration. Considering anesthesia as the main objective, the R-(-)-linalool demonstrated clear advantages at lower concentration.

  2. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula).

    PubMed

    Adal, Ayelign M; Sarker, Lukman S; Malli, Radesh P N; Liang, Ping; Mahmoud, Soheil S

    2018-06-09

    Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.

  3. Linalool Ameliorates Memory Loss and Behavioral Impairment Induced by REM-Sleep Deprivation through the Serotonergic Pathway.

    PubMed

    Lee, Bo Kyung; Jung, An Na; Jung, Yi-Sook

    2018-07-01

    Rapid eye movement (REM) sleep has an essential role in the process of learning and memory in the hippocampus. It has been reported that linalool, a major component of Lavandula angustifolia , has antioxidant, anti-inflammatory, and neuroprotective effects, along with other effects. However, the effect of linalool on the cognitive impairment and behavioral alterations that are induced by REM-sleep deprivation has not yet been elucidated. Several studies have reported that REM-sleep deprivation-induced memory deficits provide a well-known model of behavioral alterations. In the present study, we examined whether linalool elicited an anti-stress effect, reversing the behavioral alterations observed following REM-sleep deprivation in mice. Furthermore, we investigated the underlying mechanism of the effect of linalool. Spatial memory and learning memory were assessed through Y maze and passive avoidance tests, respectively, and the forced swimming test was used to evaluate anti-stress activity. The mechanisms through which linalool improves memory loss and behavioral alterations in sleep-deprived mice appeared to be through an increase in the serotonin levels. Linalool significantly ameliorated the spatial and learning memory deficits, and stress activity observed in sleep-deprived animals. Moreover, linalool led to serotonin release, and cortisol level reduction. Our findings suggest that linalool has beneficial effects on the memory loss and behavioral alterations induced by REM-sleep deprivation through the regulation of serotonin levels.

  4. Ectopic accumulation of linalool confers resistance to Xanthomonas citri subsp. citri in transgenic sweet orange plants.

    PubMed

    Shimada, Takehiko; Endo, Tomoko; Rodríguez, Ana; Fujii, Hiroshi; Goto, Shingo; Matsuura, Takakazu; Hojo, Yuko; Ikeda, Yoko; Mori, Izumi C; Fujikawa, Takashi; Peña, Leandro; Omura, Mitsuo

    2017-05-01

    In order to clarify whether high linalool content in citrus leaves alone induces strong field resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), and to assess whether this trait can be transferred to a citrus type highly sensitive to the bacterium, transgenic 'Hamlin' sweet orange (Citrus sinensis L. Osbeck) plants over-expressing a linalool synthase gene (CuSTS3-1) were generated. Transgenic lines (LIL) with the highest linalool content showed strong resistance to citrus canker when spray inoculated with the bacterium. In LIL plants inoculated by wounding (multiple-needle inoculation), the linalool level was correlated with the repression of the bacterial titer and up-regulation of defense-related genes. The exogenous application of salicylic acid, methyl jasmonate or linalool triggered responses similar to those constitutively induced in LIL plants. The linalool content in Ponkan mandarin leaves was significantly higher than that of leaves from six other representative citrus genotypes with different susceptibilities to Xcc. We propose that linalool-mediated resistance might be unique to citrus tissues accumulating large amounts of volatile organic compounds in oil cells. Linalool might act not only as a direct antibacterial agent, but also as a signal molecule involved in triggering a non-host resistance response against Xcc. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Bioactivity of essential oils in phytopathogenic and post-harvest fungi control.

    PubMed

    Santamarina, M P; Ibáñez, M D; Marqués, M; Roselló, J; Giménez, S; Blázquez, M A

    2017-11-01

    Commercial thyme and lavender essential oils were analysed by GC/MS. Sixty-six compounds accounting for 98.6-99.6% of total essential oil were identified. Thymol (52.14 ± 0.21%), followed by p-cymene (32.24 ± 0.16%), carvacrol (3.71 ± 0.01%) and γ-terpinene (3.34 ± 0.02%), were the main compounds in thyme essential oil, while large amounts of oxygenated monoterpenes linalool acetate (37.07 ± 0.24%) and linalool (30.16 ± 0.06%) were found in lavender one. In vitro antifungal activity of the essential oils was evaluated at 200 and 300 μg/mL against 10 phytopathogenic and post-harvest fungi, which significantly affect agriculture. Micelial growth inhibition was calculated for each tested fungus and dose. Thyme essential oil showed satisfactory results with 90-100% growth inhibition in almost all the assayed fungi at 300 μg/mL, while lavender essential oil showed no noteworthy inhibition data at either dose, and its growth was even enhanced. Thyme essential oil represents a natural alternative to control harvest and post-harvest fungi, and to extend the shelf-life of agriculture products.

  6. Volatile fingerprint of Brazilian defective coffee seeds: corroboration of potential marker compounds and identification of new low quality indicators.

    PubMed

    Toci, Aline T; Farah, Adriana

    2014-06-15

    In the present work, the volatile profiles of green and roasted Brazilian defective coffee seeds and their controls were characterised, totalling 159 compounds. Overall, defective seeds showed higher number and concentration of volatile compounds compared to those of control seeds, especially pyrazines, pyrroles and phenols. Corroborating our previous results, butyrolactone and hexanoic acid, previously considered as potential defective seeds' markers, were observed only in raw and roasted defective seeds, respectively, and not in control seeds. New compounds were suggested as potential defective seeds' markers: hexanoic acid (for raw and roasted defective seeds in general), butyrolactone (for raw defective seeds in general), and 3-ethyl-2-methyl-1,3-hexadiene (for raw black seeds); β-linalool and 2-butyl-3,5-dimethylpyrazine (for roasted defective seeds in general), and 2-pentylfuran (for roasted black seeds). Additional compounds suggested as low quality indicators were 2,3,5,6-tetramethylpyrazine,2,3-butanediol and 4-ethylguaiacol, β-linalool, 2-,3-dimethylbutyl butanoate, 2-phenylethyl acetate, 2,3-butanedione, hexanedioic acid, guaiacol, 2,3-dihydro-2-methyl-1H-benzopyrrol, 3-methylpiperidine, 2-pentylpiperidine, 3-octen-2-one, 2-octenal, 2-pentylfuran and 2-butyl-3-methylpyrazine. Copyright © 2014. Published by Elsevier Ltd.

  7. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice.

    PubMed

    Taniguchi, Shiduku; Hosokawa-Shinonaga, Yumi; Tamaoki, Daisuke; Yamada, Shoko; Akimitsu, Kazuya; Gomi, Kenji

    2014-02-01

    Jasmonic acid (JA) is involved in the regulation of host immunity in plants. Recently, we demonstrated that JA signalling has an important role in resistance to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Here, we report that many volatile compounds accumulate in response to exogenous application of JA, including the monoterpene linalool. Expression of linalool synthase was up-regulated by JA. Vapour treatment with linalool induced resistance to Xoo, and transgenic rice plants overexpressing linalool synthase were more resistance to Xoo, presumably due to the up-regulation of defence-related genes in the absence of any treatment. JA-induced accumulation of linalool was regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involving the JA signalling pathway at the transcriptional level, suggesting that linalool plays an important role in JA-induced resistance to Xoo in rice. © 2013 John Wiley & Sons Ltd.

  8. Linalool from Lippia alba: study of the reproducibility of the essential oil profile and the enantiomeric purity.

    PubMed

    Siani, Antonio C; Tappin, Marcelo R R; Ramos, Mônica F S; Mazzei, José L; Ramos, Maria Conceição K V; De Aquino Neto, Francisco R; Frighetto, Nélson

    2002-06-05

    A new chemotype of the aromatic Verbenaceae species Lippia alba Mill. N. E. Br. from southeastern Brazil has recently been shown to have a high content of linalool in the leaf essential oil. Vegetative propagation of this chemotype was conducted at six different locations in Brazil, and the variation of the content and the optical purity of linalool in the oils were verified. Yields (0.6-0.9%, hydrodistillation), chemical composition, linalool content, and optical purity of the oils from all the plants were compared, using GC-FID, GC-MS, chiral chromatography, and retention index calculation. No plant exceeded the matrix in linalool content (46.5 to 90.7%), and the chemical profile of the oils was the same for all the samples. Purification of linalool to a content close to 100% was effected by vacuum distillation of the crude oil. Chiral analysis showed exclusively the presence of S-linalool in all the crude oils and in the distilled samples.

  9. Gain and Loss of Fruit Flavor Compounds Produced by Wild and Cultivated Strawberry Species

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Verstappen, Francel W.A.; Bertea, Cinzia M.; Sevenier, Robert; Sun, Zhongkui; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2004-01-01

    The blends of flavor compounds produced by fruits serve as biological perfumes used to attract living creatures, including humans. They include hundreds of metabolites and vary in their characteristic fruit flavor composition. The molecular mechanisms by which fruit flavor and aroma compounds are gained and lost during evolution and domestication are largely unknown. Here, we report on processes that may have been responsible for the evolution of diversity in strawberry (Fragaria spp) fruit flavor components. Whereas the terpenoid profile of cultivated strawberry species is dominated by the monoterpene linalool and the sesquiterpene nerolidol, fruit of wild strawberry species emit mainly olefinic monoterpenes and myrtenyl acetate, which are not found in the cultivated species. We used cDNA microarray analysis to identify the F. ananassa Nerolidol Synthase1 (FaNES1) gene in cultivated strawberry and showed that the recombinant FaNES1 enzyme produced in Escherichia coli cells is capable of generating both linalool and nerolidol when supplied with geranyl diphosphate (GPP) or farnesyl diphosphate (FPP), respectively. Characterization of additional genes that are very similar to FaNES1 from both the wild and cultivated strawberry species (FaNES2 and F. vesca NES1) showed that only FaNES1 is exclusively present and highly expressed in the fruit of cultivated (octaploid) varieties. It encodes a protein truncated at its N terminus. Green fluorescent protein localization experiments suggest that a change in subcellular localization led to the FaNES1 enzyme encountering both GPP and FPP, allowing it to produce linalool and nerolidol. Conversely, an insertional mutation affected the expression of a terpene synthase gene that differs from that in the cultivated species (termed F. ananassa Pinene Synthase). It encodes an enzyme capable of catalyzing the biosynthesis of the typical wild species monoterpenes, such as α-pinene and β-myrcene, and caused the loss of these compounds in the cultivated strawberries. The loss of α-pinene also further influenced the fruit flavor profile because it was no longer available as a substrate for the production of the downstream compounds myrtenol and myrtenyl acetate. This phenomenon was demonstrated by cloning and characterizing a cytochrome P450 gene (Pinene Hydroxylase) that encodes the enzyme catalyzing the C10 hydroxylation of α-pinene to myrtenol. The findings shed light on the molecular evolutionary mechanisms resulting in different flavor profiles that are eventually selected for in domesticated species. PMID:15522848

  10. Chemical composition, plant genetic differences, and antifungal activity of the essential oil of Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym.

    PubMed

    Angioni, Alberto; Barra, Andrea; Arlorio, Marco; Coisson, Jean Daniel; Russo, Maria T; Pirisi, Filippo M; Satta, Maurizio; Cabras, Paolo

    2003-02-12

    The chemical composition of the essential oil of the Sardinian dwarf curry plant [Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym] was studied. Genetic analysis suggested the presence of two chemotypes; morphological and chemical differences confirmed the presence of two chemotypes (A and B). The maximum yields were 0.18 and 0.04% (v/w) for flowering tops and stems, respectively. The concentrations of nerol and its esters (acetate and propionate), limonene, and linalool reach their highest values during the flowering stage both in flowers and in stems. Besides the essential oil, type B showed an interesting antifungal activity.

  11. S-(+)-Linalool from Lippia alba: sedative and anesthetic for silver catfish (Rhamdia quelen).

    PubMed

    Heldwein, Clarissa G; Silva, Lenise de L; Gai, Eduarda Z; Roman, Cassiela; Parodi, Thaylise V; Bürger, Marilise E; Baldisserotto, Bernardo; Flores, Érico M de M; Heinzmann, Berta M

    2014-11-01

    The present study describes the isolation of linalool from the essential oil of Lippia alba (Mill.) N. E. Brown, and its anesthetic effect in silver catfish (Rhamdia quelen) in comparison with essential oil. The potentiation of depressant effects of linalool with a benzodiazepine (BDZ) and the involvement of GABAergic system in its antagonism by flumazenil were also evaluated. Prospective experimental study. Juvenile silver catfish unknown sex weighing mean 9.24 ± 2.83 g (n = 6 for each experimental group per experiment). Column chromatography was used for the isolation of S-(+)-linalool. Fish (n = 6 for each concentration) were transferred to aquaria with linalool (30, 60, and 180 μL L(-1)) or EO of L. alba (50, 100, and 300 μL L(-1)) to determine the induction time for anesthesia. After induction, the animals were transferred to anesthetic-free aquaria to assess their recovery time. To observe the potentiation, fish were exposed to linalool (30, 60, and 180 μL L(-1)) in the presence or absence of BDZ (diazepam 150 μm). In another experiment, fish exposed to linalool (30 and 180 μL L(-1) or BDZ were transferred to an anesthetic-free aquaria containing flumazenil (5 μm) or water to assess recovery time. Linalool had a similar sedation profile to the essential oil at a proportional concentration in silver catfish. However, the anesthesia profile was different. Potentiation of linalool effect occurred only when tested at low concentration. Fish exposed to BDZ showed faster anesthesia recovery in water with flumazenil, but the same did not occur with linalool. The use of linalool as a sedative and anesthetic for silver catfish was effective at 30 and 180 μL L(-1), respectively. The mechanism of action seems not to involve the benzodiazepine site of the GABAergic system. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  12. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells

    PubMed Central

    Govindasamy, Kanimozhi; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugam, Mohana; Thangaiyan, Radhiga; Robert, Beaulah Mary; Ponniresan, Veeramani kandan; Rathinaraj, Pierson

    2017-01-01

    Ultraviolet-B radiation (285–320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages. PMID:28467450

  13. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda).

    PubMed

    Mei, Xin; Liu, Xiaoyu; Zhou, Ying; Wang, Xiaoqin; Zeng, Lanting; Fu, Xiumin; Li, Jianlong; Tang, Jinchi; Dong, Fang; Yang, Ziyin

    2017-12-15

    Famous oolong tea (Oriental Beauty), which is manufactured by tea leaves (Camellia sinensis) infected with tea green leafhoppers, contains characteristic volatile monoterpenes derived from linalool. This study aimed to determine the formation mechanism of linalool in tea exposed to tea green leafhopper attack. The tea green leafhopper responsible for inducing the production of characteristic volatiles was identified as Empoasca (Matsumurasca) onukii Matsuda. E. (M.) onukii attack significantly induced the emission of linalool from tea leaves (p<0.05) as a result of the up-regulation of the linalool synthases (CsLIS1 and CsLIS2) (p<0.05). Continuous mechanical damage significantly enhanced CsLIS1 and CsLIS2 expression levels and linalool emission (p<0.05). Therefore, continuous wounding was a key factor causing the formation and emission of linalool from tea leaves exposed to E. (M.) onukii attack. This information should prove helpful for the future use of stress responses of plant secondary metabolism to improve quality components of agricultural products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Scent from Jasminum grandiflorum flowers: Investigation of the change in linalool enantiomers at various developmental stages using chemical and molecular methods.

    PubMed

    Pragadheesh, V S; Chanotiya, Chandan S; Rastogi, Shubhra; Shasany, Ajit K

    2017-08-01

    Jasminum species are among the most preferred fresh cut flowers in India since ancient times. The plant produces small and fragrant flowers, which are of great demand in the preparation of fragrant garlands and also in perfume industries. Floral volatile of Jasminum grandiflorum L. (Family: Oleaceae) was extracted using solid-phase microextraction and analyzed in enantioselective gas chromatography. Chemical classes of identified volatiles revealed the presence of terpenoids, phenylpropanoids, and fatty acid derivatives. Marker constituent of flower volatiles, linalool was selected for analytical characterization on ethyl- and acetyl-β-cyclodextrin stationary phase. (R)-(-)-Linalool was found as major enantiomer in volatiles of floral buds whereas (S)-(+)-linalool predominated in the volatiles of matured flowers. Simultaneously, a quantitative real-time PCR was performed to find the gene expression of linalool synthase to investigate the mechanism of enantiomeric inversion. The emission pattern of (R)-(-)-linalool at different flower developmental stages was well correlated (P = 0.01) with the gene expression of the cloned linalool synthase from J. grandiflorum. We observed that the successive change in (R)- to (S)-linalool ratio from bud to mature flower was mainly due to the enantio- specific transformation and temporal decline of (R)-linalool producing gene in J. grandiflorum. This enantiomeric change also leads to the difference in flower aroma. Furthermore, this is probably the reason behind consumer's acceptance for jasmine buds rather than bloomed flowers in cut flower segments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. More lessons from linalool: insights gained from a ubiquitous floral volatile.

    PubMed

    Raguso, Robert A

    2016-08-01

    Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a common floral volatile with two distinct enantiomers and related metabolites involved in the full spectrum of plant-pollinator interactions. Recent studies reveal a complex interplay between pollinator attraction and plant defense mediated by linalool and its derivatives, from the smallest (Arabidopsis, Mitella) to the largest (Datura) flowers studied. Accordingly, fig wasps, fungus gnats and moths of all sizes show remarkable electrophysiological, neural and behavioral sensitivity to different enantiomers and quantitative ratios of linalool in floral bouquets. The diverse functions of linalool, ranging from toxin to long distance pollinator attractant are discussed in the broader context of floral volatile ecology and evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Chemical Composition and Antimicrobial Activities of the Essential Oil From Salvia mirzayanii Leaves.

    PubMed

    Zomorodian, Kamiar; Moein, Mahmoodreza; Pakshir, Keyvan; Karami, Forough; Sabahi, Zahra

    2017-10-01

    Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography-mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC 95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC 50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases.

  18. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations.

    PubMed

    Chen, Dai; Liu, Shao-Quan

    2016-04-01

    This work examined for the first time the impact of malolactic fermentation (MLF) on the chemical constituents of lychee wine. Oenococcus oeni Viniflora Oenos (MLF inducer) and Saccharomyces cerevisiae MERIT.ferm were co-inoculated into lychee juice to induce simultaneous alcoholic fermentation (AF) and MLF. MLF did not affect sugar utilisation and ethanol production statistically (8.54% v/v for MLF and 9.27% v/v for AF). However, MLF resulted in dramatic degradation of malic and citric acids with concomitant increases of lactic acid, ethyl lactate and pH. The final concentrations of acetic and succinic acids between AF and MLF wines had no significant difference. The MLF wine contained significantly higher amounts of amino acids than the AF wine. More importantly, MLF significantly elevated the levels of potent aroma-active compounds including isoamyl acetate, linalool, geraniol and cis-rose oxide (to levels above or near respective detection thresholds), suggesting that MLF is an effective way of retaining the original lychee flavour. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Chemical Composition and Antimicrobial Activities of the Essential Oil From Salvia mirzayanii Leaves

    PubMed Central

    Zomorodian, Kamiar; Moein, Mahmoodreza; Pakshir, Keyvan; Karami, Forough; Sabahi, Zahra

    2017-01-01

    Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography–mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases. PMID:28689440

  20. Activity antifungal of the essential oils; aqueous and ethanol extracts from Citrus aurantium L.

    PubMed

    Metoui, N; Gargouri, S; Amri, I; Fezzani, T; Jamoussi, B; Hamrouni, L

    2015-01-01

    Our study is about the essential oil of Citrus aurantium L. in Tunisia and its plant extract. The yield of this essential oil is 0, 56% but the yield of the extract of plant was 17.1% for the aqueous extract ant 18.3% for the ethanolic extract. The analysis of chemical composition by using GC and GC/MS showed the essential oil of C. aurantium L. species to be rich in monoterpenes such as α-terpineol, lianolyl acetate, linalool and limonene. The antifungal activity of this oil showed us an inhibition of the germination of mushrooms, in the same way we could note that the biologic activities are generally assigned to the chemotypes high content in oxygenated monoterpene.

  1. Cedrus deodara: In vitro antileishmanial efficacy & immumomodulatory activity.

    PubMed

    Narayan, Shyam; Thakur, Chandreshwar Prasad; Bahadur, Shiv; Thakur, Meenakshi; Pandey, Shashi Nath; Thakur, Ajit Kumar; Mitra, Dipendra K; Mukherjee, Pulok K

    2017-12-01

    The existing antileishmanial drugs for complete cure of visceral leishmaniasis (kala-azar) are limited. The available drugs are either toxic or less effective leading to disease relapse or conversion to post-kala-azar dermal leishmaniasis. Several herbal extracts have been shown to have antileishmanial activity, but a herbal drug may not always be safe. In the present study, the extract of Cedrus deodara leaves has been standardized and tested for immunomodulatory antileishmanial activities. The extracts of C. deodara leaves with different solvents such as benzene, chloroform, ethyl acetate and methanol were made by soxhlation process. Solvents were removed under reduced pressure and temperature using rotary evaporator. The antileishmanial bioassay test was performed with in vitro maintained parasites. Immunomodulatory activity of different extracts was tested by flow cytometry. Standardization of the effective fraction was performed with Linalool as a marker compound through reverse-phase high-performance liquid chromatography. The extract with the use of benzene solvent showed strong antileishmanial activities within a dose 25-200 μg/ml culture with non-significant haemolytic activities and significant immunomodulant activities against the host cells. Linalool was found to be 1.29 per cent in the effective extract of C. deodara. The antileishmanial activity of C. deodara, as assessed by bioassay testing on. parasites and immunomodulatory effect of benzene extract of leaves on host cells indicated that it might be a potential new safe therapeutic target to cure the visceral leishmaniasis.

  2. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: Effects on poultry

    USDA-ARS?s Scientific Manuscript database

    Linalool is a natural plant product used in perfumes, cosmetics, and flavoring agents. Linalool has proven antimicrobial and insect repellant properties which indicate it might be useful for control of enteropathogens or insect pests in poultry production. However, there are no published reports t...

  3. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus

    PubMed Central

    Djenane, Djamel

    2015-01-01

    Stored fish are frequently contaminated by foodborne pathogens. Lipid oxidation and microbial growth during storage are also important factors in the shelf-life of fresh fish. In order to ensure the safety of fish items, there is a need for control measures which are effective through natural inhibitory antimicrobials. It is also necessary to determine the efficacy of these products for fish protection against oxidative damage, to avoid deleterious changes and loss of commercial and nutritional value. Some synthetic chemicals used as preservatives have been reported to cause harmful effects to the environment and the consumers. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three citrus peel essential oils (EOs): orange (Citrus sinensis L.), lemon (Citrus limonum L.) and bergamot (Citrus aurantium L.) from Algeria. Yields for EOs were between 0.50% and 0.70%. The chemical composition of these EOs was determined by gas chromatography coupled with mass spectrometry (GC/MS). The results showed that the studied oils are made up mainly of limonene (77.37%) for orange essential oil (EO); linalyl acetate (37.28%), linalool (23.36%), for bergamot EO; and finally limonene (51.39%), β-pinene (17.04%) and γ-terpinene (13.46%) for lemon EO. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus (S. aureus) using the agar diffusion technique. Results revealed that lemon EO had more antibacterial effects than that from other EOs. Minimal inhibitory concentrations (MICs) showed a range of 0.25–0.40 μL/mL. Lemon and bergamot citrus peel EOs were added at 1 × MIC and 4 × MIC values to Sardina pilchardus (S. pilchardus) experimentally inoculated with S. aureus at a level of 3.5 log10 CFU/g and stored at 8 ± 1 °C. The results obtained revealed that the 4 × MIC value of bergamot reduced completely the growth of S. aureus from day 2 until the end of storage. The presence of EOs significantly extended lipid stability. Samples treated with bergamot EO displayed greater antioxidant activity than lemon EO. In fact, the oxidation rate is inversely proportional to the concentration of EO. At 1 × MIC and 4 × MIC values of bergamot EO, the levels of malonaldehyde compared to the control samples were 1.66 and 1.28 mg malonaldehyde/kg at the end of storage, corresponding to inhibition percentages of 42.76% and 55.87%, respectively. These results suggest the possibility that citrus EOs could be used as a way of combating the growth of common causes of food poisoning and used as potent natural preservatives to contribute to the reduction of lipid oxidation in sardines. PMID:28231199

  4. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus.

    PubMed

    Djenane, Djamel

    2015-06-05

    Stored fish are frequently contaminated by foodborne pathogens. Lipid oxidation and microbial growth during storage are also important factors in the shelf-life of fresh fish. In order to ensure the safety of fish items, there is a need for control measures which are effective through natural inhibitory antimicrobials. It is also necessary to determine the efficacy of these products for fish protection against oxidative damage, to avoid deleterious changes and loss of commercial and nutritional value. Some synthetic chemicals used as preservatives have been reported to cause harmful effects to the environment and the consumers. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three citrus peel essential oils (EOs): orange ( Citrus sinensis L.), lemon ( Citrus limonum L.) and bergamot ( Citrus aurantium L.) from Algeria. Yields for EOs were between 0.50% and 0.70%. The chemical composition of these EOs was determined by gas chromatography coupled with mass spectrometry (GC/MS). The results showed that the studied oils are made up mainly of limonene (77.37%) for orange essential oil (EO); linalyl acetate (37.28%), linalool (23.36%), for bergamot EO; and finally limonene (51.39%), β-pinene (17.04%) and γ-terpinene (13.46%) for lemon EO. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus ( S . aureus ) using the agar diffusion technique. Results revealed that lemon EO had more antibacterial effects than that from other EOs. Minimal inhibitory concentrations (MICs) showed a range of 0.25-0.40 μL/mL. Lemon and bergamot citrus peel EOs were added at 1 × MIC and 4 × MIC values to Sardina pilchardus ( S . pilchardus ) experimentally inoculated with S. aureus at a level of 3.5 log 10 CFU/g and stored at 8 ± 1 °C. The results obtained revealed that the 4 × MIC value of bergamot reduced completely the growth of S. aureus from day 2 until the end of storage. The presence of EOs significantly extended lipid stability. Samples treated with bergamot EO displayed greater antioxidant activity than lemon EO. In fact, the oxidation rate is inversely proportional to the concentration of EO. At 1 × MIC and 4 × MIC values of bergamot EO, the levels of malonaldehyde compared to the control samples were 1.66 and 1.28 mg malonaldehyde/kg at the end of storage, corresponding to inhibition percentages of 42.76% and 55.87%, respectively. These results suggest the possibility that citrus EOs could be used as a way of combating the growth of common causes of food poisoning and used as potent natural preservatives to contribute to the reduction of lipid oxidation in sardines.

  5. Mechanisms of resistance to linalool in Salmonella Senftenberg and their role in survival on basil.

    PubMed

    Kalily, Emmanuel; Hollander, Amit; Korin, Ben; Cymerman, Itamar; Yaron, Sima

    2016-11-01

    Fresh produce contaminated with human pathogens raises vital and ecological questions about bacterial survival strategies. Such occurrence was basil harboring Salmonella enterica serovar Senftenberg that caused an outbreak in 2007. This host was unanticipated due to its production of antibacterial substances, including linalool. We show that linalool perforates bacterial membranes, resulting in increased permeability and leakage of vital molecules. It also inhibits cell motility and causes bacterial aggregation. Linalool-resistance was investigated by identification and characterization of S. Senftenberg mutants that perform altered resistance. Resistance mechanisms include selective permeability, regulated efflux/influx and chemotaxis-controlled motility. Moreover, survival of S. Senftenberg on basil leaves was substantially affected by McpL, a putative chemotaxis-related receptor, and RfaG, a component of the lipopolysaccharide production pathway, both have a role in resistance to linalool. Results reveal that adaptation to linalool occurs in nature by concurrent mechanisms. This adaption raises concerns about pathogens adaptation to new hosts including antimicrobial-compound-producing plants. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Controlled release of linalool using nanofibrous membranes of poly(lactic acid) obtained by electrospinning and solution blow spinning: A comparative study

    USDA-ARS?s Scientific Manuscript database

    The controlled-release of natural plant oils such as linalool is of interest in therapeutics, cosmetics, and antimicrobial and larvicidal products. The present study reports the release characteristics of linalool encapsulated at three concentrations (10, 15 and 20 wt.%) in poly(lactic acid) nanofib...

  7. Allergy to oxidized limonene and linalool is frequent in the U.K.

    PubMed

    Audrain, H; Kenward, C; Lovell, C R; Green, C; Ormerod, A D; Sansom, J; Chowdhury, M M U; Cooper, S M; Johnston, G A; Wilkinson, M; King, C; Stone, N; Horne, H L; Holden, C R; Wakelin, S; Buckley, D A

    2014-08-01

    The oxidized forms of the fragrance terpenes limonene and linalool are known to cause allergic contact dermatitis. Significant rates of contact allergy to these fragrances have been reported in European studies and in a recent worldwide study. Patch testing to oxidized terpenes is not routinely carried out either in the U.K. or in other centres internationally. To investigate the prevalence of contact allergy to oxidized limonene and linalool in the U.K. Between 1 August 2011 and 31 December 2012, 4731 consecutive patients in 13 U.K. dermatology departments were tested for hydroperoxides of limonene 0·3% pet., hydroperoxides of linalool 1·0% pet., stabilized limonene 10·0% pet. and stabilized linalool 10·0% pet. Doubtful (?+) and equivocal (±) reactions were grouped together as irritant reactions. Two hundred and thirty-seven patients (5·0%) had a positive patch test reaction to hydroperoxides of limonene 0·3% pet. and 281 (5·9%) to hydroperoxides of linalool 1·0% pet. Irritant reactions to one or both oxidized terpenes were found in 242 patients (7·3%). Eleven patients (0·2%) had a positive patch test reaction to the stabilized terpenes alone. This large, multicentre U.K. audit shows a significant rate of allergy to the hydroperoxides of limonene and linalool plus a high rate of irritant reactions. Testing to the oxidized forms alone captures the majority (97·0%; 411 of 422) of positive reactions; testing to nonoxidized terpenes appears to be less useful. We recommend that the hydroperoxides of limonene and linalool be added to an extended baseline patch test series. © 2014 British Association of Dermatologists.

  8. Experimental hut evaluation of linalool spatial repellent agar gel against Anopheles gambiae sensu stricto mosquitoes in a semi-field system in Bagamoyo, Tanzania.

    PubMed

    Tambwe, Mgeni Mohamed; Mbeyela, Edgar Mtaki; Massinda, Brian Migamyo; Moore, Sarah Jane; Maia, Marta Ferreira

    2014-12-05

    Malaria vector control is in need of new tools to face its current challenges such as the spread of pyrethroid-resistance and the increase of outdoor feeding mosquitoes. New strategies such as spatial repellents need to be evaluated as supplemental tools to existing control measures such as insecticide treated bed nets and indoor residual spraying. Linalool is a naturally occurring terpene alcohol commonly found in flowers and spices with reportedly repellent properties. Four experimental huts fitted with exit traps and enclosed inside a large screened semi-field system were used for the evaluation. The tested spatial repellent product consisted of an agar gel emanator containing 73% linalool. Two rounds of experiments using a Latin square design were conducted to evaluate the efficacy of the linalool emanators compared to no treatment (negative control) and a transfluthrin coil (positive) against lab-reared disease free Anopheles gambiae s.s.. The emanators were hung inside experimental huts where two volunteers were sleeping unprotected. The outcome measures were repellency, % feeding inhibition, %mortality and post 24 h % mortality. Unlike the mosquito coil, the linalool emanators did not show any feeding inhibition, repellency or induced mortality compared to the negative control. On the other hand mosquitoes kept for 24 h post exposure were 3 times more likely to die after being exposed to two 73% linalool emanators than the negative control. Our results indicate that linalool agar gel emanators are not adequate as a spatial repellent against Anopheles gambiae s.s.. However adding linalool to known repellent formulations could be advantageous, not only because of its pleasant scent but also because of the delayed mortality effect it has on mosquitoes.

  9. Beta-cyclodextrin enhanced gastroprotective effect of (-)-linalool, a monoterpene present in rosewood essential oil, in gastric lesion models.

    PubMed

    da Silva, Francilene Vieira; de Barros Fernandes, Hélio; Oliveira, Irisdalva Sousa; Viana, Ana Flávia Seraine Custódio; da Costa, Douglas Soares; Lopes, Miriam Teresa Paz; de Lira, Kamila Lopes; Quintans-Júnior, Lucindo José; de Sousa, Adriano Antunes; de Cássia Meneses Oliveira, Rita

    2016-11-01

    (-)-Linalool is a monoterpene constituent of many essential oils. This particular monoterpene has both anti-inflammatory and antimicrobial activity. Moreover, this compound has been shown to be antinociceptive. However, the poor chemical stability and short half-life prevents the clinical application of (-)-linalool and many other essential oils. Important to the topic of this study, β-cyclodextrin (β-CD) has been used to increase the solubility, stability, and pharmacological effects of numerous lipophilic compounds in vivo. In this study, the gastroprotective activities of (-)-linalool (LIN) and linalool incorporated into inclusion complex containing β-cyclodextrin (LIN-βCD) were evaluated using models of acute and chronic gastric ulcers in rodents. LIN and LIN-βCD showed strong gastroprotective activity (p < 0.001). The LIN-βCD complex revealed that the gastroprotective effect was significantly improved compared with LIN uncomplexed, suggesting that this improvement is related to increased solubility and stability. Taking together the potentiation of the antioxidant profile of this monoterpene, our results suggest that β-CD may represent an important tool for improved gastroprotective activity of (-)-linalool and other water-insoluble compounds.

  10. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice

    PubMed Central

    Maria, Sabogal-Guáqueta Angélica; Edison, Osorio; Patricia, Cardona-Gómez Gloria

    2015-01-01

    Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disorder. Several types of treatments have been tested to block or delay the onset of the disease, but none have been completely successful. Diet, lifestyle and natural products are currently the main scientific focuses. Here, we evaluate the effects of oral administration of the monoterpene linalool (25 mg / kg), every 48 hours for 3 months, on aged (21–24 months old) mice with a triple transgenic model of AD (3xTg-AD) mice. Linalool-treated 3xTg-AD mice showed improved learning and spatial memory and greater risk assessment behavior during the elevated plus maze. Hippocampi and amygdalae from linalool-treated 3xTg-AD mice exhibited a significant reduction in extracellular β-amyloidosis, tauopathy, astrogliosis and microgliosis as well as a significant reduction in the levels of the pro-inflammatory markers p38 MAPK, NOS2, COX2 and IL-1β. Together, our findings suggest that linalool reverses the histopathological hallmarks of AD and restores cognitive and emotional functions via an anti-inflammatory effect. Thus, linalool may be an AD prevention candidate for preclinical studies. PMID:26549854

  11. Application of HS-SPME and GC-MS to characterization of volatile compounds emitted from Osmanthus flowers.

    PubMed

    Deng, Chunhui; Song, Guoxin; Hu, Yaoming

    2004-12-01

    Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for characterization of volatile compounds emitted from two varieties Osmanthus flowers of O. fragrans var. latifolius and O. fragrans var. thunbergii. The SPME parameters were studied, the optimum conditions of a 65 microm carbowax/divinylbenzene (CW/DVB), extraction temperature of 22 degrees C and extraction time of 10 min were obtained and applied to extraction of the volatile emissions. Fourteen compounds released from both varieties of Osmanthus flowers were separated and identified by GC-MS, which mainly included alpha-linalool, beta-linalool, trans-linalool oxide, cis-linalool oxide, alpha-lonone, beta-lonone, capraldehyde and decalactone. By comparing their peak areas, we found that the sums of the fourteen compounds from the two Osmanthus flowers were very close, while the relative contents of individual volatile compounds in the two emissions were very different. The relative content of alpha-linalool and beta-linalool in O. fragrans var. latifolius were 39.46% and 0.51%, while in O. fragrans var. thunbergii were 9.53% and 27.71%. Due to their different relative contents, the two varieties of flower have different fragrances.

  12. Adaptation of Salmonella enterica Serovar Senftenberg to Linalool and Its Association with Antibiotic Resistance and Environmental Persistence.

    PubMed

    Kalily, Emmanuel; Hollander, Amit; Korin, Ben; Cymerman, Itamar; Yaron, Sima

    2017-05-15

    A clinical isolate of Salmonella enterica serovar Senftenberg, isolated from an outbreak linked to the herb Ocimum basilicum L. (basil), has been shown to be resistant to basil oil and to the terpene alcohol linalool. To better understand how human pathogens might develop resistance to linalool and to investigate the association of this resistance with resistance to different antimicrobial agents, selective pressure was applied to the wild-type strain by sequential exposure to increasing concentrations of linalool. The results demonstrated that S Senftenberg adapted to linalool with a MIC increment of at least 8-fold, which also resulted in better resistance to basil oil and better survival on harvested basil leaves. Adaptation to linalool was shown to confer cross protection against the antibiotics trimethoprim, sulfamethoxazole, piperacillin, chloramphenicol, and tetracycline, increasing their MICs by 2- to 32-fold. The improved resistance was shown to correlate with multiple phenotypes that included changes in membrane fatty acid composition, induced efflux, reduced influx, controlled motility, and the ability to form larger aggregates in the presence of linalool. The adaptation to linalool obtained in vitro did not affect survival on the basil phyllosphere in planta and even diminished survival in soil, suggesting that development of extreme resistance to linalool may be accompanied by a loss of fitness. Altogether, this report notes the concern regarding the ability of human pathogens to develop resistance to commercial essential oils, a resistance that is also associated with cross-resistance to antibiotics and may endanger public health. IMPORTANCE Greater consumer awareness and concern regarding synthetic chemical additives have led producers to control microbial spoilage and hazards by the use of natural preservatives, such as plant essential oils with antimicrobial activity. This report establishes, however, that these compounds may provoke the emergence of resistant human pathogens. Herein, we demonstrate the acquisition of resistance to basil oil by Salmonella Senftenberg. Exposure to linalool, a component of basil oil, resulted in adaptation to the basil oil mixture, as well as cross protection against several antibiotics and better survival on harvested basil leaves. Collectively, this work highlights the hazard to public health while using plant essential oils without sufficient knowledge about their influence on pathogens at subinhibitory concentrations. Copyright © 2017 American Society for Microbiology.

  13. Adaptation of Salmonella enterica Serovar Senftenberg to Linalool and Its Association with Antibiotic Resistance and Environmental Persistence

    PubMed Central

    Kalily, Emmanuel; Korin, Ben; Cymerman, Itamar

    2017-01-01

    ABSTRACT A clinical isolate of Salmonella enterica serovar Senftenberg, isolated from an outbreak linked to the herb Ocimum basilicum L. (basil), has been shown to be resistant to basil oil and to the terpene alcohol linalool. To better understand how human pathogens might develop resistance to linalool and to investigate the association of this resistance with resistance to different antimicrobial agents, selective pressure was applied to the wild-type strain by sequential exposure to increasing concentrations of linalool. The results demonstrated that S. Senftenberg adapted to linalool with a MIC increment of at least 8-fold, which also resulted in better resistance to basil oil and better survival on harvested basil leaves. Adaptation to linalool was shown to confer cross protection against the antibiotics trimethoprim, sulfamethoxazole, piperacillin, chloramphenicol, and tetracycline, increasing their MICs by 2- to 32-fold. The improved resistance was shown to correlate with multiple phenotypes that included changes in membrane fatty acid composition, induced efflux, reduced influx, controlled motility, and the ability to form larger aggregates in the presence of linalool. The adaptation to linalool obtained in vitro did not affect survival on the basil phyllosphere in planta and even diminished survival in soil, suggesting that development of extreme resistance to linalool may be accompanied by a loss of fitness. Altogether, this report notes the concern regarding the ability of human pathogens to develop resistance to commercial essential oils, a resistance that is also associated with cross-resistance to antibiotics and may endanger public health. IMPORTANCE Greater consumer awareness and concern regarding synthetic chemical additives have led producers to control microbial spoilage and hazards by the use of natural preservatives, such as plant essential oils with antimicrobial activity. This report establishes, however, that these compounds may provoke the emergence of resistant human pathogens. Herein, we demonstrate the acquisition of resistance to basil oil by Salmonella Senftenberg. Exposure to linalool, a component of basil oil, resulted in adaptation to the basil oil mixture, as well as cross protection against several antibiotics and better survival on harvested basil leaves. Collectively, this work highlights the hazard to public health while using plant essential oils without sufficient knowledge about their influence on pathogens at subinhibitory concentrations. PMID:28258149

  14. Essential Oils of Myrtaceae Species Growing Wild in Tunisia: Chemical Variability and Antifungal Activity Against Biscogniauxia mediterranea, the Causative Agent of Charcoal Canker.

    PubMed

    Yangui, Islem; Zouaoui Boutiti, Meriem; Boussaid, Mohamed; Messaoud, Chokri

    2017-07-01

    The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC-FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 - 96.83% of the total oil according to species, were identified. The main compounds were 1,8-cineole, α-pinene, p-cymene, γ-gurjunene, α-aromadendrene, and β-phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 - 98.91% of the total oil were identified. α-Pinene, 1,8-cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC 50  = 3.83 mg/ml) and M. communis oil from Zaghouan (IC 50  = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p-cymene, carvacrol, cuminaldehyde, and linalool. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Olfactory response of Anastrepha striata (Diptera: Tephritidae) to guava and sweet orange volatiles.

    PubMed

    Diaz-Santiz, Edvin; Rojas, Julio C; Cruz-López, Leopoldo; Hernández, Emilio; Malo, Edi A

    2016-10-01

    The behavioral responses of virgin and mated female Anastrepha striata Schiner (Diptera: Tephritidae) to guava (Psidium guajava L.) or sweet orange (Citrus sinensis L.) were evaluated separately using multilure traps in two-choice tests in field cages. The results showed that flies were more attracted to guava and sweet orange volatiles than to control (unbaited trap). The physiological state (virgin or mated) of females did not affect their attraction to the fruit volatiles. Combined analysis of gas chromatography coupled with electroantennography (GC-EAD) of volatile extracts of both fruits showed that 1 and 6 compounds from orange and guava, respectively elicited repeatable antennal responses from mated females. The EAD active compounds in guava volatile extracts were identified by gas chromatography-mass spectrometry (GC-MS) as ethyl butyrate, (Z)-3-hexenol, hexanol, ethyl hexanoate, hexyl acetate, and ethyl octanoate. Linalool was identified as the only antennal active compound in sweet orange extracts. In field cage tests, there were no significant differences between the number of mated flies captured by the traps baited with guava extracts and the number caught by traps baited with the 6-component blend that was formulated according to the relative proportions in the guava extracts. Similar results occurred when synthetic linalool was evaluated against orange extracts. From a practical point of view, the compounds identified in this study could be used for monitoring A. striata populations. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  16. Cedrus deodara: In vitro antileishmanial efficacy & immumomodulatory activity

    PubMed Central

    Narayan, Shyam; Thakur, Chandreshwar Prasad; Bahadur, Shiv; Thakur, Meenakshi; Pandey, Shashi Nath; Thakur, Ajit Kumar; Mitra, Dipendra K.; Mukherjee, Pulok K.

    2017-01-01

    Background & objectives: The existing antileishmanial drugs for complete cure of visceral leishmaniasis (kala-azar) are limited. The available drugs are either toxic or less effective leading to disease relapse or conversion to post-kala-azar dermal leishmaniasis. Several herbal extracts have been shown to have antileishmanial activity, but a herbal drug may not always be safe. In the present study, the extract of Cedrus deodara leaves has been standardized and tested for immunomodulatory antileishmanial activities. Methods: The extracts of C. deodara leaves with different solvents such as benzene, chloroform, ethyl acetate and methanol were made by soxhlation process. Solvents were removed under reduced pressure and temperature using rotary evaporator. The antileishmanial bioassay test was performed with in vitro maintained parasites. Immunomodulatory activity of different extracts was tested by flow cytometry. Standardization of the effective fraction was performed with Linalool as a marker compound through reverse-phase high-performance liquid chromatography. Results: The extract with the use of benzene solvent showed strong antileishmanial activities within a dose 25-200 μg/ml culture with non-significant haemolytic activities and significant immunomodulant activities against the host cells. Linalool was found to be 1.29 per cent in the effective extract of C. deodara. Interpretation & conclusions: The antileishmanial activity of C. deodara, as assessed by bioassay testing on Leishmania donovani parasites and immunomodulatory effect of benzene extract of leaves on host cells indicated that it might be a potential new safe therapeutic target to cure the visceral leishmaniasis. PMID:29664038

  17. In vitro anti-herpes simplex virus-2 activity of Salvia desoleana Atzei & V. Picci essential oil

    PubMed Central

    Sanna, Cinzia; Cagliero, Cecilia; Ballero, Mauro; Civra, Andrea; Donalisio, Manuela; Bicchi, Carlo; Lembo, David

    2017-01-01

    Salvia desoleana Atzei & V. Picci is an indigenous species in Sardinia island used in folk medicine to treat menstrual, digestive and central nervous system diseases. Nowadays, it is widely cultivated for the pleasant smell of its essential oil (EO), whose antimicrobial and antifungal activities have already been screened. This study evaluated the in vitro anti-Herpes Simplex Virus-2 (HSV-2) activity of S. desoleana EO, fractions and main components: linalyl acetate, alpha terpinyl acetate, and germacrene D. Phytochemical composition of S. desoleana EO was studied by GC-FID/MS analysis and the active fraction(s) and/or compounds in S. desoleana EO were identified with a bioassay-guided fractionation procedure through in vitro assays on cell viability and HSV-2 and RSV inhibition. S. desoleana EO inhibits both acyclovir sensitive and acyclovir resistant HSV-2 strains with EC50 values of 23.72 μg/ml for the former and 28.57 μg/ml for the latter. Moreover, a significant suppression of HSV-2 replication was observed with an EC50 value of 33.01 μg/ml (95% CI: 26.26 to 41.49) when the EO was added post-infection. Among the fractions resulting from flash column chromatography on silica gel, the one containing 54% of germacrene D showed a similar spectrum of activity of S. desoleana EO with a stronger suppression in post-infection stage. These results indicated that S. desoleana EO can be of interest to develop new and alternative anti-HSV-2 products active also against acyclovir-resistant HSV-2 strains. PMID:28207861

  18. Development of formulations to improve the controlled-release of linalool to be applied as an insecticide.

    PubMed

    Lopez, M D; Maudhuit, A; Pascual-Villalobos, M J; Poncelet, D

    2012-02-08

    In recent studies, insecticide activity of a monoterpene, linalool, has been demonstrated, finding, however, limitations in application because of its rapid volatilization. Potential effectiveness of microcapsules and effects of various types of matrices on its stability as controlled-release systems for the slow volatilization of linalool to be applied as insecticide were evaluated. To study controlled-release, linalool was entrapped into microcapsules, inclusion complexes, and beads, obtained by different methods, inverse gelation (IG1, IG2, IG3, IG4, and IG5), oil-emulsion-entrapment (OEE), interfacial coacervation (INCO), and chemical precipitation (Cyc5 and Cyc10). The encapsulation yield turned out to be different for each formulation, reaching the maximum retention for IG1 and OEE. In controlled-release, OEE followed by INCO presented a long time necessary for releasing as a result of the presence of glycerol or chitosan. These results pointed out remarkable differences in the release behavior of linalool depending on matrix composition and the method of encapsulation.

  19. Detection of potentially skin sensitizing hydroperoxides of linalool in fragranced products.

    PubMed

    Kern, Susanne; Dkhil, Hafida; Hendarsa, Prisca; Ellis, Graham; Natsch, Andreas

    2014-10-01

    On prolonged exposure to air, linalool can form sensitizing hydroperoxides. Positive hydroperoxide patch tests in dermatitis patients have frequently been reported, but their relevance has not been established. Owing to a lack of analytical methods and data, it is unclear from which sources the public might be exposed to sufficient quantities of hydroperoxides for induction of sensitization to occur. To address this knowledge gap, we developed analytical methods and performed stability studies for fine fragrances and deodorants/antiperspirants. In parallel, products recalled from consumers were analysed to investigate exposure to products used in everyday life. Liquid chromatography-mass spectrometry with high mass resolution was found to be optimal for the selective and sensitive detection of the organic hydroperoxide in the complex product matrix. Linalool hydroperoxide was detected in natural linalool, but the amount was not elevated by storage in a perfume formulation exposed to air. No indication of hydroperoxide formation in fine fragrances was found in stability studies. Aged fine fragrances recalled from consumers contained a geometric mean linalool concentration of 1,888 μg/g and, corrected for matrix effects, linalool hydroperoxide at a concentration of around 14 μg/g. In antiperspirants, we detected no oxidation products. In conclusion, very low levels of linalool hydroperoxide in fragranced products may originate from raw materials, but we found no evidence for oxidation during storage of products. The levels detected are orders of magnitude below the levels inducing sensitization in experimental animals, and these results therefore do not substantiate a causal link between potential hydroperoxide formation in cosmetics and positive results of patch tests.

  20. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti.

    PubMed

    Fujiwara, Gislene M; Annies, Vinícius; de Oliveira, Camila F; Lara, Ricardo A; Gabriel, Maria M; Betim, Fernando C M; Nadal, Jéssica M; Farago, Paulo V; Dias, Josiane F G; Miguel, Obdulio G; Miguel, Marilis D; Marques, Francisco A; Zanin, Sandra M W

    2017-05-01

    The frequent use of synthetic pesticides to control Aedes aegypti population can lead to environmental and/or human contamination and the emergence of resistant insects. Linalool and methyl cinnamate are presented as an alternative to the synthetic pesticides, since they can exhibit larvicidal, repellent and/or insecticidal activity and are considered safe for use. The aim of this study was to evaluate the larvicidal activity of methyl cinnamate, linalool and methyl cinnamate/linalool in combination (MC-L) (1:4 ratio, respectively) against Aedes aegypti. The in vitro preliminary toxicity through brine shrimp lethality assay and hemolytic activity, and the phytotoxic potential were also investigated to assess the safety of their use as larvicide. Methyl cinnamate showed significant larvicidal activity when compared to linalool (LC 50 values of 35.4µg/mL and 275.2µg/mL, respectively) and to MC-L (LC 50 138.0µg/mL). Larvae morphological changes subjected to the specified treatments were observed, as the flooding of tracheal system and midgut damage, hindering the larval development and survival. Preliminary in vitro toxicity through brine shrimp showed the high bioactivity of the substances (methyl cinnamate LC 50 35.5µg/mL; linalool LC 50 96.1µg/mL) and the mixture (MC-L LC 50 57.7µg/mL). The results showed that, despite the higher larvicidal activity of methyl cinnamate, the use of MC-L as a larvicide seems to be more appropriate due to its significant larvicidal activity and low toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Recommendation to test limonene hydroperoxides 0·3% and linalool hydroperoxides 1·0% in the British baseline patch test series.

    PubMed

    Wlodek, C; Penfold, C M; Bourke, J F; Chowdhury, M M U; Cooper, S M; Ghaffar, S; Green, C; Holden, C R; Johnston, G A; Mughal, A A; Reckling, C; Sabroe, R A; Stone, N M; Thompson, D; Wilkinson, S M; Buckley, D A

    2017-12-01

    There is a significant rate of sensitization worldwide to the oxidized fragrance terpenes limonene and linalool. Patch testing to oxidized terpenes is not routinely carried out; the ideal patch test concentration is unknown. To determine the best test concentrations for limonene and linalool hydroperoxides, added to the British baseline patch test series, to optimize detection of true allergy and to minimize irritant reactions. During 2013-2014, 4563 consecutive patients in 12 U.K. centres were tested to hydroperoxides of limonene in petrolatum (pet.) 0·3%, 0·2% and 0·1%, and hydroperoxides of linalool 1·0%, 0·5% and 0·25% pet. Irritant reactions were recorded separately from doubtful reactions. Concomitant reactions to other fragrance markers and clinical relevance were documented. Limonene hydroperoxide 0·3% gave positive reactions in 241 (5·3%) patients, irritant reactions in 93 (2·0%) and doubtful reactions in 110 (2·4%). Linalool hydroperoxide 1·0% gave positive reactions in 352 (7·7%), irritant reactions in 178 (3·9%) and doubtful reactions in 132 (2·9%). A total of 119 patients with crescendo reactions to 0·3% limonene would have been missed if only tested with 0·1% and 131 patients with crescendo reactions to 1·0% linalool would have been missed if only tested with 0·25%. In almost two-thirds of patients with positive patch tests to limonene and linalool the reaction was clinically relevant. The majority of patients did not react to any fragrance marker in the baseline series. We recommend that limonene hydroperoxides be tested at 0·3% and linalool hydroperoxides at 1·0% in the British baseline patch test series. © 2017 British Association of Dermatologists.

  2. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents.

    PubMed

    Bonesi, Marco; Menichini, Federica; Tundis, Rosa; Loizzo, Monica R; Conforti, Filomena; Passalacqua, Nicodemo G; Statti, Giancarlo A; Menichini, Francesco

    2010-10-01

    This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer's disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC(50) values of 51.1 and 80.6 microg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC(50) value of 94.4 microg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, beta-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC(50) values of 78.6 and 107.6 microg/mL, respectively. beta-Phellandrene was selective against AChE (IC(50) value of 120.2 microg/mL).

  3. Bergamot essential oil differentially modulates intracellular Ca2+ levels in vascular endothelial and smooth muscle cells: a new finding seen with fura-2.

    PubMed

    You, Ji H; Kang, Purum; Min, Sun Seek; Seol, Geun Hee

    2013-04-01

    In this study, we compared the effect of the essential oil of Citrus bergamia Risso [bergamot, bergamot essential oil (BEO)] on the intracellular Ca levels in vascular endothelial (EA) and mouse vascular smooth muscle (MOVAS) cells, using the fura-2 fluorescence technique. BEO caused an initial transient increase in intracellular Ca concentration ([Ca]i) in EA cells, followed by a decrease, whereas it induced a sustained increase in [Ca]i in MOVAS cells. Linalyl acetate (LA) as a major component of BEO-induced [Ca]i mobilization was similar to BEO in EA cells. The increase of [Ca]i by LA was higher in EA cells than in MOVAS cells. [Ca]i rise induced by extracellular Ca application was significantly blocked by BEO or LA in EA cells but not in MOVAS cells, suggesting that BEO and LA block Ca influx in EA cells. The present results suggest that BEO and LA differentially modulate intracellular Ca levels in vascular endothelial and smooth muscle cells. In addition, blockade of Ca influx by BEO and LA in EA cells may explain the protective effects of BEO on endothelial dysfunction associated with cardiovascular disease.

  4. Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in Zanthoxyli Fructus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Naoko; Takagi, Akiyoshi; Kitazawa, Hidenori

    2005-12-01

    Citrus (rutaceous) herbs are often used in traditional medicine and Japanese cuisine and can be taken concomitantly with conventional medicine. In this study, the effect of various citrus-herb extracts on P-glycoprotein (P-gp)-mediated transport was examined in vitro to investigate a possible interaction with P-gp substrates. Component monoterpenoids of the essential oil in Zanthoxyli Fructus was screened to find novel P-gp inhibitors. LLC-GA5-COL150 cells transfected with human MDR1 cDNA encoding P-gp were used. Cellular accumulation of [{sup 3}H]digoxin was measured in the presence or absence of P-gp inhibitors or test samples. Aurantii Fructus, Evodiae Fructus, Aurantii Fructus Immaturus, Aurantii Nobilis Pericarpium,more » Phellodendri Cortex, and Zanthoxyli Fructus were extracted with hot water (decocted) and then fractionated with ethyl acetate. The cell to medium ratio of [{sup 3}H]digoxin accumulation increased significantly in the presence of the decoction of Evodiae Fructus, Aurantii Nobilis Pericarpium, and Zanthoxyli Fructus, and the ethyl acetate fraction of all citrus herbs used. The ethyl acetate fraction of Zanthoxyli Fructus exhibited the strongest inhibition of P-gp among tested samples with an IC{sub 5} value of 166 {mu}g/mL. Then its component monoterpenoids, geraniol, geranyl acetate (R)-(+)-limonene, (R)-(+)-linalool, citronellal (R)-(+)-citronellal, DL-citronellol (S)-(-)-{beta}-citronellol, and cineole, were screened. (R)-(+)-citronellal and (S)-(-)-{beta}-citronellol inhibited P-gp with IC{sub 5} values of 167 {mu}M and 504 {mu}M, respectively. These findings suggest that Zanthoxyli Fructus may interact with P-gp substrates and that some monoterpenoids with the relatively lower molecular weight of about 150 such as (R)-(+)-citronellal can be potent inhibitors of P-gp.« less

  5. Aroma profiles and preferences of Jasminum sambac L. flowers grown in Thailand.

    PubMed

    Kanlayavattanakul, Mayuree; Kitsiripaisarn, Sarun; Lourith, Nattaya

    2013-01-01

    Comparison of volatile constituents and odor preference of Jasminum sambac cultivated in Thailand was performed by enfleurage and solvent extractions. Enfleurage bases consisting of spermaceti wax, olive, sunflower, and rice bran oils were prepared. The defleurage flower was daily replaced with fresh jasmine for a period of 12 days. The absolute de pomades and extraits of each base were subjected to gas chromatography mass spectrometry (GC/MS) analysis, comparing with the concrete and absolute values obtained from maceration of jasmine in n-hexane for 24 h. Linalool, benzyl acetate, and α-farnesene were found as the main volatile compounds in the jasmine extracts. Spermaceti wax and olive oil gave the best quality base, exhibiting the most preferred resemblance of jasmine odor with the least difference from fresh jasmine, as evaluated by 103 Thai volunteers.

  6. Effect of Subcritical Fluid Extraction on the High Quality of Headspace Oil from Jasminum sambac (L.) Aiton.

    PubMed

    Ye, Qiuping; Jin, Xinyi; Wei, Shiqin; Zheng, Gongyu; Li, Xinlei

    2016-05-01

    Subcritical fluid extraction (SFE), as a novel method, was applied to investigate the yield, quality, and sensory evaluation of headspace oil from Jasminum sambac (L.) Aiton in comparison with petroleum ether extraction (PEE). The results indicated that the yield of the headspace oil using SFE was significantly higher (P < 0.05) than when using PEE. SFE contributed to obtaining alcohols and ethers, prevented the thermal reaction of terpenes, and reduced α-caryophyllene and β-caryophyllene in the headspace oil. The contents of linalool (21.90%) and benzyl acetate (16.31%) were higher via SFE than PEE. In addition, the sensory evaluation of SFE was superior to PEE, indicating a fresh, jasmine-like odor and green-yellow color. Thus, SFE is an improved method for obtaining natural headspace oil from jasmine flowers.

  7. A selected ion flow tube study of the reactions of H3O+, NO+ and O2+ with some oxygenated biogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Amelynck, C.; Schoon, N.; Kuppens, T.; Bultinck, P.; Arijs, E.

    2005-12-01

    The rate constants and product ion distributions of the reactions of H3O+, NO+ and O2+ with 2-methyl-3-buten-2-ol, cis-3-hexen-1-ol, cis-3-hexenyl acetate, 1,8-cineole, 6-methyl-5-hepten-2-one, camphor and linalool have been determined at 150 Pa and 297 K using a selected ion flow tube (SIFT). All reactions were found to proceed at a rate close to the collision rate, calculated with the Su and Chesnavich model, using the polarizability and electric dipole moment of the compounds derived from B3LYP/aug-cc-pVDZ quantum chemical calculations. Additionally the product ion distributions of the reactions of these three ions with the terpenoid alcohols nerol and geraniol have been obtained.

  8. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    PubMed Central

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  9. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    PubMed

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): evaluation of acetylcholinesterase and GABAergic activity

    PubMed Central

    Bianchini, A.E.; Garlet, Q.I.; da Cunha, J.A.; Bandeira, G.; Brusque, I.C.M.; Salbego, J.; Heinzmann, B.M.; Baldisserotto, B.

    2017-01-01

    This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50–100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish. PMID:29069225

  11. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): evaluation of acetylcholinesterase and GABAergic activity.

    PubMed

    Bianchini, A E; Garlet, Q I; da Cunha, J A; Bandeira, G; Brusque, I C M; Salbego, J; Heinzmann, B M; Baldisserotto, B

    2017-10-19

    This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50-100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish.

  12. [Gas chromatography for analysis of essential oils. Characteristics of essential oil of Dracocephalum species and the influence of extraction method on its composition].

    PubMed

    Lemberkovics, Eva; Kakasy, András Zoltán; Héthelyi, B Eva; Simándi, Béla; Böszörményi, Andrea; Balázs, Andrea; Szoke, Eva

    2007-01-01

    In this work the essential oil composition of some less known Dracocephalum species was studied and compared the effectiveness, selectivity and influence of different extraction methods (hydrodistillation, Soxhlet extraction with organic solvents and supercritical fluid extraction) on essential oils. For investigations in Hungary and Transylvania cultivated plant material was used. The analysis of essential oils was carried out by GC and GC-MS methods. The components were identified by standard addition, retention factors and mass spectra. The percentile evaluation of each volatile constituents was made on basis of GC-FID chromatograms. The accuracy of measurements was characterized by relative standard deviation. In the essential oil of D. renati Emb. (studied firstly by us) 18.3% of limonene was measured and carvone, citrals and linalyl acetate monoterpenes, methyl chavicol and some sesquiterpene (e.g. bicyclovetivenol) determined in lower quantities. We established that more than 50% of essential oil of D. grandiflorum L. was formed by sesquiterpenes (beta-caryophyllene and- oxide, beta-bourbonene, beta-cubebene, aromadendrene) and the essential oil of D. ruyschiana L. contained pinocamphone isomers in more than 60%. The oxygenated acyclic monoterpenes, the characteristic constituents of Moldavian dragonhead were present in some tenth percent only in D. renati oil. We found significant differences in the composition of the SFE extract and traditional essential oil of D. moldavica L. The supercritical fractions collected at the beginning of the extraction process were richer in valuable ester component (geranyl acetate) than the essential oil obtained by hydrodistillation. The fractions collected at the end of supercritical were poor in oxygenated monoterpenes but rich in minor compounds of traditional oil, e.g. palmitic acid.

  13. [Studies on the chemical constituents of the volatiles of Clerodendron bungei].

    PubMed

    Yu, Ai-nong

    2004-02-01

    To analyse chemical constituents of the volatiles of Clerodendron bungei. The volatiles of C. bungei were extracted through steam distillation, and then the constituents were separated by GC and identified by MS. 33 Compounds were identified. The principal chemical constituents of the volatiles of C. bungei are ethanol, acetone, 1-penten-3-ol,2-pentanol, (Z)-2-penten-1-ol, 3-furaldehyde, 3-hexen-1-ol, 4-hexen-1-ol, 1-hexanol, 1-octen-3-ol, 3-octanol, benzenemethanol, linal-ool oxide, trans-Linalool oxide, linalool,2,5-dimethylcyclohexanol, phenylethyl alcohol, etc.

  14. Optimization of headspace solid phase micro-extraction of volatile compounds from papaya fruit assisted by GC-olfactometry.

    PubMed

    da Rocha, Renier Felinto Julião; da Silva Araújo, Ídila Maria; de Freitas, Sílvia Maria; Dos Santos Garruti, Deborah

    2017-11-01

    Optimization of the extraction conditions to investigate the volatile composition of papaya fruit involving headspace solid phase micro-extraction was carried out using multivariate strategies such as factorial design and response surface methodology. The performance of different combinations of time for reaching the equilibrium in the headspace and time for maximum extraction of volatiles was evaluated by GC-olfactometry of the extract (intensity of papaya characteristic aroma), number of peaks and total area in the chromatogram. Thirty-two compounds were identified by GC-MS under the optimized extraction conditions, the majority of which were aldehydes, both in number of compounds and area. Major compounds were δ-octalactone, β-citral, benzaldehyde, heptanal, benzyl isothiocyanate, isoamyl acetate, γ-octalactone, (E)-linalool oxide and benzyl alcohol. Seven aldehydes and two other compounds are reported for the first time in papaya's volatile profile.

  15. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination.

    PubMed

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua

    2017-10-01

    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  16. Quantitation of (R)- and (S)-linalool in beer using solid phase microextraction (SPME) in combination with a stable isotope dilution assay (SIDA).

    PubMed

    Steinhaus, Martin; Fritsch, Helge T; Schieberle, Peter

    2003-11-19

    A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.

  17. Sedative effects of the jasmine tea odor and (R)-(-)-linalool, one of its major odor components, on autonomic nerve activity and mood states.

    PubMed

    Kuroda, Kyoko; Inoue, Naohiko; Ito, Yuriko; Kubota, Kikue; Sugimoto, Akio; Kakuda, Takami; Fushiki, Tohru

    2005-10-01

    We investigated the effects of the odor of jasmine tea on autonomic nerve activity and mood states in a total of 24 healthy volunteers. We used the odor of jasmine tea at the lowest concentration that could be detected by each subject but that did not elicit any psychological effects. R-R intervals and the POMS test were measured before and after inhalation of the odors for 5 min. Both jasmine tea and lavender odors at perceived similar intensity caused significant decreases in heart rate and significant increases in spectral integrated values at high-frequency component in comparison with the control (P < 0.05). In the POMS tests, these odors produced calm and vigorous mood states. We also examined the effects of (R)-(-)-linalool, one of its major odor components, at the same concentration as in the tea, and (S)-(+)-linalool. Only (R)-(-)-linalool elicited a significant decrease in heart rate (P < 0.05) and an increase in high-frequency component in comparison with the controls, and produced calm and vigorous mood states. Thus, the low intensity of jasmine tea odor has sedative effects on both autonomic nerve activity and mood states, and (R)-(-)-linalool, one of its components, can mimic these effects.

  18. Tomato linalool synthase is induced in trichomes by jasmonic acid

    PubMed Central

    van Schie, Chris C. N.; Haring, Michel A.

    2007-01-01

    Tomato (Lycopersicon esculentum) plants emit a blend of volatile organic compounds, which mainly consists of terpenes. Upon herbivory or wounding, the emission of several terpenes increases. We have identified and characterized the first two tomato monoterpene synthases, LeMTS1 and LeMTS2. Although these proteins were highly homologous, recombinant LeMTS1 protein produced (R)-linalool from geranyl diphosphate (GPP) and (E)-nerolidol from farnesyl diphosphate (FPP), while recombinant LeMTS2 produced β-phellandrene, β-myrcene, and sabinene from GPP. In addition, these genes were expressed in different tissues: LeMTS1 was expressed in flowers, young leaves, stems, and petioles, while LeMTS2 was strongest expressed in stems and roots. LeMTS1 expression in leaves was induced by spider mite-infestation, wounding and jasmonic acid (JA)-treatment, while LeMTS2 did not respond to these stimuli. The expression of LeMTS1 in stems and petioles was predominantly detected in trichomes and could be induced by JA. Because JA treatment strongly induced emission of linalool and overexpression of LeMTS1 in tomato resulted in increased production of linalool, we propose that LeMTS1 is a genuine linalool synthase. Our results underline the importance of trichomes in JA-induced terpene emission in tomato. PMID:17440821

  19. Sedative effect of central administration of Coriandrum sativum essential oil and its major component linalool in neonatal chicks.

    PubMed

    Gastón, María Soledad; Cid, Mariana Paula; Vázquez, Ana María; Decarlini, María Florencia; Demmel, Gabriela I; Rossi, Laura I; Aimar, Mario Leandro; Salvatierra, Nancy Alicia

    2016-10-01

    Context Coriandrum sativum L. (Apiaceae) (coriander) is an herb grown throughout the world as a culinary, medicinal or essential crop. In traditional medicine, it is used for the relief of anxiety and insomnia. Systemic hydro-alcoholic and aqueous extract from aerial parts and seeds had anxiolytic and sedative action in rodents, but little is known about its central effect in chicks. Objective To study the effects of intracerebroventricular administration of essential oil from coriander seeds and its major component linalool on locomotor activity and emotionality of neonatal chicks. Materials and methods The chemical composition of coriander essential oil was determined by a gas-chromatographic analysis (> 80% linalool). Behavioural effects of central administration of coriander oil and linalool (both at doses of 0.86, 8.6 and 86 μg/chick) versus saline and a sedative diazepam dose (17.5 μg/chick, standard drug) in an open field test for 10 min were observed. Results Doses of 8.6 and 86 μg from coriander oil and linalool significantly decreased (p < 0.05) squares crossed number, attempted escapes, defecation number and distress calls, and significantly increased (p < 0.05) the sleeping posture on an open field compared with saline and were similar to the diazepam group. Discussion and conclusion The results indicate that intracerebroventricular injection of essential oil from Coriandrum sativum seeds induced a sedative effect at 8.6 and 86 μg doses. This effect may be due to monoterpene linalool, which also induced a similar sedative effect, and, therefore, could be considered as a potential therapeutic agent similar to diazepam.

  20. Green tea flavour determinants and their changes over manufacturing processes.

    PubMed

    Han, Zhuo-Xiao; Rana, Mohammad M; Liu, Guo-Feng; Gao, Ming-Jun; Li, Da-Xiang; Wu, Fu-Guang; Li, Xin-Bao; Wan, Xiao-Chun; Wei, Shu

    2016-12-01

    Flavour determinants in tea infusions and their changes during manufacturing processes were studied using Camellia sinensis cultivars 'Bai-Sang Cha' ('BAS') possessing significant floral scents and 'Fuding-Dabai Cha' ('FUD') with common green tea odour. Metabolite profiling based on odour activity threshold revealed that 'BAS' contained higher levels of the active odorants β-ionone, linalool and its two oxides, geraniol, epoxylinalool, decanal and taste determinant catechins than 'FUD' (p<0.05). Enhanced transcription of some terpenoid and catechin biosynthetic genes in 'BAS' suggested genetically enhanced production of those flavour compounds. Due to manufacturing processes, the levels of linalool and geraniol decreased whereas those of β-ionone, linalool oxides, indole and cis-jasmone increased. Compared with pan-fire treatment, steam treatment reduced the levels of catechins and proportion of geraniol, linalool and its derivatives, consequently, reducing catechin-related astringency and monoterpenol-related floral scent. Our study suggests that flavour determinant targeted modulation could be made through genotype and manufacturing improvements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enantiomeric composition of (3R)-(-)- and (3S)-(+)-linalool in various essential oils of Indian origin by enantioselective capillary gas chromatography-flame ionization and mass spectrometry detection methods.

    PubMed

    Chanotiya, Chandan S; Yadav, Anju

    2009-04-01

    Enantiomeric ratios of linalool have been determined in various authentic essential oils of Indian origin using 10% heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin as a chiral stationary phase. A complete enantiomeric excess (ee) for (3S)-(+)-linalool was characteristic of Lippia alba and Cinnamomum tamala leaf oils while less than 90% excess was noticed in Zanthoxylum armatum leaf, Zingiber roseum root/rhizome and Citrus sinensis leaf oils. On the contrary, an enantiomeric excess of (3R)-(-)-linalool characterizes essential oils of basil (100% for Ocimum basilicum) and bergamot mint (72 to 75% for Mentha citrata). Notably, some essential oils containing both enantiomers in equal ratios or in racemic forms are rose, geranium, lemongrass and Origanum. The enantiomeric composition studies are discussed as indicators of origin authenticity and quality of essential oil of Indian origin.

  2. Herbivore Damage and Prior Egg Deposition on Host Plants Influence the Oviposition of the Generalist Moth Trichoplusia ni (Lepidoptera: Noctuidae).

    PubMed

    Coapio, Guadalupe G; Cruz-López, Leopoldo; Guerenstein, Pablo; Malo, Edi A; Rojas, Julio C

    2016-12-01

    Female insects have the difficult task of locating host plants that maximize the survival and success of their offspring. In this study, the oviposition preferences of the cabbage looper moth, Trichoplusia ni (Hübner), for soybean plants, Glycine max (L.), under various treatments-undamaged, mechanically damaged, damaged by T. ni or Spodoptera frugiperda (Smith) larvae or by Bemisia tabaci (Gennadius) adults, egg-free plants, and plants previously oviposited by conspecific or heterospecific females (S. frugiperda)-were investigated using two-choice tests. Additionally, the volatile compounds emitted by the plants under the different treatments were identified by gas chromatography-mass spectrometry. Our results showed that females showed no preferences for undamaged or mechanically damaged plants. However, they oviposited more often on undamaged plants than on those previously damaged by T. ni, S. frugiperda, or B. tabaci. In contrast, females preferred to oviposit on plants previously oviposited by conspecific and heterospecific females than on egg-free plants. Plants damaged by conspecific or heterospecific larvae emitted methyl salicylate, indole, and octyl butyrate, compounds not released by undamaged or mechanically damaged plants. Whitefly damage induced the release of higher quantities of Z(3)-hexenyl acetate, (R)-(+)-limonene, and (E)-β-ocimene compared to plants damaged by larvae and suppressed the emission of linalool. Egg deposition by conspecific and heterospecific moths induced the emission of (R)-(+)-limonene, octyl butyrate, and geranyl acetone but suppressed the release of linalool. This study showed that a generalist moth species can discriminate between plants of different quality, and suggests that females use volatile compounds as cues during this process. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation.

    PubMed

    Sourmaghi, Mohammad Hossein Salehi; Kiaee, Gita; Golfakhrabadi, Fereshteh; Jamalifar, Hossein; Khanavi, Mahnaz

    2015-04-01

    Coriander (Coriandrum sativum L.), is an annual herb in the Apiaceae family which disperses in Mediterranean and Middle Eastern regions. The Coriander essential oil has been used in food products, perfumes, cosmetics and pharmaceutical industries for its flavor and odor. In Iran, fruits of Coriander used in pickle, curry powders, sausages, cakes, pastries, biscuits and buns. The aim of this study was to investigate microwave radiation effects on quality, quantity and antimicrobial activity of essential oil of Coriander fruits. The essential oils were obtained from the Coriander fruits by hydrodistillation (HD) and Microwave-assisted hydrodistillation (MAHD) then, the oils were analyzed by GC and GC-MS. Antimicrobial activities of essential oils were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans by microdilution method. The results indicated that the HD and MAHD essential oils (EO) were dominated by monoterpenoids such as linalool, geranyl acetate and γ-terpinene. The major compound in both EO was linalool which its amount in HD and MAHD was 63 % and 66 %, respectively. The total amount of monoterpenes hydrocarbons in HD EO differ significantly with the amount in MAHD EO (12.56 % compare to 1.82 %). HD EO showed greater activity against Staphylococcus aureus and Candida albicans than MAHD EO. Moreover, their activities against Ecoli and P. aeruginosa were the same with Minimum Inhibitory Concentration (MIC) 0.781 and 6.25 μL mL(-1), respectively. By using MAHD method, it was superior in terms of saving energy and extraction time, although the oil yield and total composition decrease by using this method.

  4. Enantiomeric distribution of some linalool containing essential oils and their biological activities

    USDA-ARS?s Scientific Manuscript database

    The enantiomeric composition of linalool was determined in 42 essential oils using chiral columns. Essential oils were analyzed by multidimentional gas chromatography-mass spectrometry using a non-chiral and chiral FSC column combination with modified '-cyclodextrine (Lipodex E) as the chiral statio...

  5. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain.

    PubMed

    Pardo, Ester; Rico, Juan; Gil, José Vicente; Orejas, Margarita

    2015-09-16

    Monoterpenes are important contributors to grape and wine aroma. Moreover, certain monoterpenes have been shown to display health benefits with antimicrobial, anti-inflammatory, anticancer or hypotensive properties amongst others. The aim of this study was to construct self-aromatizing wine yeasts to overproduce de novo these plant metabolites in wines. Expression of the Ocimum basilicum (sweet basil) geraniol synthase (GES) gene in a Saccharomyces cerevisiae wine strain substantially changed the terpene profile of wine produced from a non-aromatic grape variety. Under microvinification conditions, and without compromising other fermentative traits, the recombinant yeast excreted geraniol de novo at an amount (~750 μg/L) well exceeding (>10-fold) its threshold for olfactory perception and also exceeding the quantities present in wines obtained from highly aromatic Muscat grapes. Interestingly, geraniol was further metabolized by yeast enzymes to additional monoterpenes and esters: citronellol, linalool, nerol, citronellyl acetate and geranyl acetate, resulting in a total monoterpene concentration (~1,558 μg/L) 230-fold greater than that of the control. We also found that monoterpene profiles of wines derived from mixed fermentations were found to be determined by the composition of the initial yeast inocula suggesting the feasibility of producing 'à la carte' wines having predetermined monoterpene contents. Geraniol synthase-engineered yeasts demonstrate potential in the development of monoterpene enhanced wines.

  6. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes.

    PubMed

    Costa, Danielle Cristina Machado; Vermelho, Alane Beatriz; Almeida, Catia Amancio; de Souza Dias, Edilma Paraguai; Cedrola, Sabrina Martins Lage; Arrigoni-Blank, Maria de Fátima; Blank, Arie Fitzgerald; Alviano, Celuta Sales; Alviano, Daniela Sales

    2014-02-01

    Abstract Lippia alba (Miller) N.E. Brown is an aromatic plant known locally as "Erva-cidreira-do-campo" that has great importance in Brazilian folk medicine. The aim of our study was to evaluate the antidermatophytic potential of linalool-rich essential oil (EO) from L. alba and analyze the ability of this EO to inhibit peptidase and keratinase activities, which are important virulence factors in dermatophytes. The minimum inhibitory concentrations (MICs) of L. alba EO were 39, 156 and 312 µg/mL against Trichophyton rubrum, Epidermophyton floccosum and Microsporum gypseum, respectively. To evaluate the influence of L. alba EO on the proteolytic and keratinolytic activities of these dermatophytes, specific inhibitory assays were performed. The results indicated that linalool-rich EO from L. alba inhibited the activity of proteases and keratinases secreted from dermatophytes, and this inhibition could be a possible mechanism of action against dermatophytes. Due to the effective antidermatophytic activity of L. alba EO, further experiments should be performed to explore the potential of this linalool-rich EO as an alternative antifungal therapy.

  7. Identification of potent odorants in Chinese jasmine green tea scented with flowers of Jasminum sambac.

    PubMed

    Ito, Yuriko; Sugimoto, Akio; Kakuda, Takami; Kubota, Kikue

    2002-08-14

    The odorants in Chinese jasmine green tea scented with jasmine flowers (Jasminum sambac) were separated from the infusion by adsorption to Porapak Q resin. Among the 66 compounds identified by GC and GC/MS, linalool (floral), methyl anthranilate (grape-like), 4-hexanolide (sweet), 4-nonanolide (sweet), (E)-2-hexenyl hexanoate (green), and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (sweet) were extracted as potent odorants by an aroma extract dilution analysis and sensory analysis. The enantiomeric ratios of linalool in jasmine tea and Jasminum sambac were determined by a chiral analysis for the first time in this study: 81.6% ee and 100% ee for the (R)-(-)-configuration, respectively. The jasmine tea flavor could be closely duplicated by a model mixture containing these six compounds on the basis of a sensory analysis. The omission of methyl anthranilate and the replacement of (R)-(-)-linalool by (S)-(+)-linalool led to great changes in the odor of the model. These two compounds were determined to be the key odorants of the jasmine tea flavor.

  8. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour.

    PubMed

    Zeng, Xiangling; Liu, Cai; Zheng, Riru; Cai, Xuan; Luo, Jing; Zou, Jingjing; Wang, Caiyun

    2015-01-01

    Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS) genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2, and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers.

  9. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour

    PubMed Central

    Zeng, Xiangling; Liu, Cai; Zheng, Riru; Cai, Xuan; Luo, Jing; Zou, Jingjing; Wang, Caiyun

    2016-01-01

    Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS) genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2, and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers. PMID:26793212

  10. α-Linalool - a marker compound of forged/synthetic sweet basil (Ocimum basilicum L.) essential oils.

    PubMed

    Radulović, Niko S; Blagojević, Polina D; Miltojević, Ana B

    2013-10-01

    Ocimum basilicum L. (sweet basil) is known to occur as several chemotypes or cultivars that differ in their essential oil composition. The surprising discovery of 3,7-dimethylocta-1,7-dien-3-ol, the rare α isomer of the well-known monoterpene alcohol β-linalool (3,7-dimethylocta-1,6-dien-3-ol), in samples of Serbian basil oil provoked an investigation of the origin of α-linalool in these samples. Three scenarios were considered, namely (a) the existence of a new natural chemotype, (b) an artefactual formation during the isolation procedure and (c) the case of a synthetic/forged oil. Noteworthy amounts (15.1-16.9%) of pure α-linalool were isolated from a commercial sample of basil oil, and detailed spectral analyses (MS, IR, (1) H and (13) C NMR) unequivocally confirmed its identity. The analysis by GC and GC/MS of an additional 20 samples of different O. basilicum oils commercially available on the Serbian market or isolated from plant material cultivated in Serbia resulted in the identification of 149 compounds. The obtained compositional data were compared using multivariate statistical analysis to reveal the possible existence of a new basil chemotype. The results of the chemical and statistical analyses give more pro arguments for the synthetic/forged oil hypothesis and suggest that α-linalool could be used as a marker compound of such O. basilicum oils. © 2013 Society of Chemical Industry.

  11. Bioactive Constituents, Radical Scavenging, and Antibacterial Properties of the Leaves and Stem Essential Oils from Peperomia pellucida (L.) Kunth.

    PubMed

    Okoh, Sunday O; Iweriebor, Benson C; Okoh, Omobola O; Okoh, Anthony I

    2017-10-01

    Peperomia pellucida is an annual herbaceous ethnomedicinal plant used in the treatment of a variety of communicable and noncommunicable diseases in the Amazon region. The study aimed at profiling the bioactive constituents of the leaves and stem essential oils (LEO and SEO) of P. pellucida , their in vitro antibacterial and radical scavenging properties as probable lead constituents in the management of oxidative stress and infectious diseases. Materials and. The EOs were obtained from the leaves and stem P. pellucida using modified Clevenger apparatus and characterized by a high-resolution gas chromatography-mass spectrometry, while the radicals scavenging and antibacterial effects on four oxidants and six reference bacteria strains were examined by spectrophotometric and agar diffusion techniques, respectively. The EOs exhibited strong antibacterial activities against six bacteria ( Escherichia coli [180], Enterobacter cloacae, Mycobacterium smegmatis, Listeria ivanovii , Staphylococcus aureus, Streptococcus uberis , and Vibrio paraheamolyticus ) strains. The SEO antibacterial activities were not significantly different ( P < 0.05) from the LEO against most of the test bacteria with minimum inhibitory concentration ranging between 0.15 and 0.20 mg/mL for both EOs. The two oils were bactericidal at 0.20 mg/mL against S. aureus while the minimum bactericidal concentration (0.15 mg/mL) of LEO against L. ivanovii was lower than of SEO (0.20 mg/mL) after 24 h. The LEO IC 50 value (1.67 mg/mL) revealed more radical scavenging activity than the SEO (2.83 mg/mL) and reference compounds against 2,2-diphenyl-1-picrylhydrazyl radical. The EOs also scavenged three other different radicals (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical, lipid peroxyl radical, and nitric oxide radical) in concentration-dependent manner. Our results suggest that apart from the indigenous uses of the plant extracts, the EO contains strong bioactive compounds with antibacterial and radicals scavenging properties and may be good alternative candidates in the search for novel potent antibiotics in this present era of increasing multidrug-resistant bacterial strains as well as effective antioxidants agents. Established gas chromatography-mass spectrometry technique was applied to quantitatively and qualitatively analyze the volatile constituents in Peperomia pellucida essential oil (EO)The Clinical and Laboratory Standards Institute (2014) guidelines were employed to evaluate the antibacterial effects of the EOsAmong the known prominent bioactive terpenoids, linalool 17.09%, limonene 14.25%, β-caryophyllene 12.52%, and linalyl acetate 10.15% were the main constituents of the EOs in this current studyThe leaf and stem EOs were bactericidal at a concentration below 0.23 mg/mL against three multidrug-resistant bacteria and significantly scavenged known free radicals reported to be associated with contagious and oxidative stress-related disorders. Abbreviations used: GC-MS: Gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, DMSO: Dimethyl sulfoxide, LP • : Lipid peroxide radical, NO • : Nitric oxide radical, LEO: Leaf essential oil, SEO: Stem essential oil, RC: Reference compound, TBARS: Thiobarbituric acid.

  12. Bioactive Constituents, Radical Scavenging, and Antibacterial Properties of the Leaves and Stem Essential Oils from Peperomia pellucida (L.) Kunth

    PubMed Central

    Okoh, Sunday O.; Iweriebor, Benson C.; Okoh, Omobola O.; Okoh, Anthony I.

    2017-01-01

    Background: Peperomia pellucida is an annual herbaceous ethnomedicinal plant used in the treatment of a variety of communicable and noncommunicable diseases in the Amazon region. Objective: The study aimed at profiling the bioactive constituents of the leaves and stem essential oils (LEO and SEO) of P. pellucida, their in vitro antibacterial and radical scavenging properties as probable lead constituents in the management of oxidative stress and infectious diseases. Materials and Methods: The EOs were obtained from the leaves and stem P. pellucida using modified Clevenger apparatus and characterized by a high-resolution gas chromatography-mass spectrometry, while the radicals scavenging and antibacterial effects on four oxidants and six reference bacteria strains were examined by spectrophotometric and agar diffusion techniques, respectively. Results: The EOs exhibited strong antibacterial activities against six bacteria (Escherichia coli [180], Enterobacter cloacae, Mycobacterium smegmatis, Listeria ivanovii, Staphylococcus aureus, Streptococcus uberis, and Vibrio paraheamolyticus) strains. The SEO antibacterial activities were not significantly different (P < 0.05) from the LEO against most of the test bacteria with minimum inhibitory concentration ranging between 0.15 and 0.20 mg/mL for both EOs. The two oils were bactericidal at 0.20 mg/mL against S. aureus while the minimum bactericidal concentration (0.15 mg/mL) of LEO against L. ivanovii was lower than of SEO (0.20 mg/mL) after 24 h. The LEO IC50 value (1.67 mg/mL) revealed more radical scavenging activity than the SEO (2.83 mg/mL) and reference compounds against 2,2-diphenyl-1-picrylhydrazyl radical. The EOs also scavenged three other different radicals (2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical, lipid peroxyl radical, and nitric oxide radical) in concentration-dependent manner. Conclusion: Our results suggest that apart from the indigenous uses of the plant extracts, the EO contains strong bioactive compounds with antibacterial and radicals scavenging properties and may be good alternative candidates in the search for novel potent antibiotics in this present era of increasing multidrug-resistant bacterial strains as well as effective antioxidants agents. SUMMARY Established gas chromatography-mass spectrometry technique was applied to quantitatively and qualitatively analyze the volatile constituents in Peperomia pellucida essential oil (EO)The Clinical and Laboratory Standards Institute (2014) guidelines were employed to evaluate the antibacterial effects of the EOsAmong the known prominent bioactive terpenoids, linalool 17.09%, limonene 14.25%, β-caryophyllene 12.52%, and linalyl acetate 10.15% were the main constituents of the EOs in this current studyThe leaf and stem EOs were bactericidal at a concentration below 0.23 mg/mL against three multidrug-resistant bacteria and significantly scavenged known free radicals reported to be associated with contagious and oxidative stress-related disorders. Abbreviations used: GC-MS: Gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, DMSO: Dimethyl sulfoxide, LP•: Lipid peroxide radical, NO•: Nitric oxide radical, LEO: Leaf essential oil, SEO: Stem essential oil, RC: Reference compound, TBARS: Thiobarbituric acid PMID:29142389

  13. Inter-specific variation in headspace scent volatiles composition of four commercially cultivated jasmine flowers.

    PubMed

    Bera, Paramita; Kotamreddy, Jhansi Narmada Reddy; Samanta, Tanmoy; Maiti, Saborni; Mitra, Adinpunya

    2015-01-01

    Jasmines are commercially grown for their fragrant flowers and essential oil production. The flowers of jasmine emit sweet-smelling fragrance from evening till midnight. This study was designed to study the composition and inter-specific variation of the emitted scent volatiles from flowers of four commercially cultivated Jasminum species namely, Jasminum sambac, Jasminum auriculatum, Jasminum grandiflorum and Jasminum multiflorum. Gas chromatography-mass spectrometry analysis revealed that the scent volatiles composition of these flowers was predominantly enriched with both terpenoid and benzenoid compounds. Linalool and (3E,6E)-α-farnesene were identified as the major monoterpene and sesquiterpene in all the four species, respectively. The most abundant benzenoid detected in all flowers was benzyl acetate. Comparison of volatile profiles indicated a variation in fragrance contents and types emitted from these four jasmine flowers. The outcome of this study shall help in elucidating the enzymes and genes of fragrance biosynthesis in jasmines and in aiming to create flowers with improved scent quality.

  14. Antibacterial and antioxidant activity of Portuguese Lavandula luisieri (Rozeira) Rivas-Martinez and its relation with their chemical composition.

    PubMed

    Pombal, Sofia; Rodrigues, Cleide F; Araújo, João P; Rocha, Pedro M; Rodilla, Jesus M; Diez, David; Granja, Ángela P; Gomes, Arlindo C; Silva, Lúcia A

    2016-01-01

    Lavandula luisieri (Rozeira) Rivas-Martinez is an endemic aromatic Labiatae the Iberian Peninsula, common in semi-arid regions of southern Portugal and southwestern Spain, that produces an active antibacterial essential oil from the leaves and flowers. This work presents the study of the chemical variation in various stages of growth of leaves and flowers of L. luisieri. It has been found that the essential oils are mainly constituted by 1,8-cineol, camphor, linalool and trans-α-necrodil acetate. It was also studied the total phenol content and the antioxidant activity on leaves and flowers. The ethanol extraction from de leaves contents the highest total phenol, important factor for the antioxidant activity of the plant, extract. It has been studied too, the antibacterial activity against Escherichia coli, Salmonella spp . and Staphylococcus aureus . In accordance with the obtained results, the antibacterial activities stand out against Staphylococcus , of the oil of L. luisieri (leaves and flowers).

  15. Monitoring the evolution of volatile compounds using gas chromatography during the stages of production of Moscatel sparkling wine.

    PubMed

    Soares, Rafael Dutra; Welke, Juliane Elisa; Nicolli, Karine Primieri; Zanus, Mauro; Caramão, Elina Bastos; Manfroi, Vitor; Zini, Cláudia Alcaraz

    2015-09-15

    This study reports, for the first time, the main changes that occur with some important aroma compounds of Moscatel sparkling wines during winemaking, measured using headspace solid-phase microextraction, one-dimensional and comprehensive two-dimensional gas chromatography (GC×GC) with mass spectrometry detection (MS). The best conditions of volatile extraction included the use of PDMS/DVB fibre, 2mL of wine, 30% of NaCl, 40°C for 30min. The chromatographic profile of sparkling wines showed decreasing amounts of monoterpenes (limonene, 4-terpineol, terpinolene, citronellol, α-terpineol, linalool, hotrienol, and nerol oxide), increasing amounts of esters (terpenyl esters, ethyl octanoate, ethyl decanoate and hexyl acetate) and alcohols (1-nonanol and 2-phenylethanol). Sixty-nine compounds co-eluted in the first dimension; only six co-eluted in the second dimension. GC×GC/TOFMS allows more detailed study of the volatile profile of sparkling wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Characterisation of Australian Verdelho wines from the Queensland Granite Belt region.

    PubMed

    Sonni, Francesca; Moore, Evan G; Chinnici, Fabio; Riponi, Claudio; Smyth, Heather E

    2016-04-01

    Verdelho is a white-grape-vine, growing well in the Granite Belt region of Queensland. Despite its traditional use in Madeira wine production, there is scant literature on the flavour characteristics of this variety as a dry wine. In this work, for the first time, volatile compounds of Verdelho wines from the Granite Belt have been isolated by solid phase extraction (SPE), and analysed using gas chromatography-mass spectrometry (GC-MS). A corresponding sensory characterisation of this distinctive wine style has also been investigated, using sensory descriptive analysis. Chemical compounds that mostly contribute to the flavour of these wines were related to fruity sweet notes (ethyl esters and acetates), grassy notes (3-hexenol), floral aromas (2-phenylethanol and β-linalool) and cheesy aromas (fatty acids). Sensory analysis confirmed that the Verdelho wines were characterised by fruity aroma attributes, especially "tree-fruit" and "rockmelon", together with "herbaceous", while significant differences in the other attributes were found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris.

    PubMed

    Neiens, Silva D; Steinhaus, Martin

    2018-02-14

    The volatiles isolated from samples of the special flavor hop varieties, Huell Melon and Polaris, and from the aroma hop variety, Hallertau Tradition, by solvent extraction and solvent-assisted flavor evaporation (SAFE) were subjected to a comparative aroma extract dilution analysis (cAEDA), which resulted in 46 odor-active compounds in the flavor dilution (FD) factor range of 16 to 2048. On the basis of high FD factors, myrcene, (3R)-linalool, and 2- and 3-methylbutanoic acid were confirmed as important variety-independent hop odorants. (1R,4S)-Calamenene was identified for the first time as an odor-active compound in hops. Clear differences in the FD factors and their subsequent objectification by stable isotope dilution quantitation suggested that high concentrations of the esters ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, and propyl 2-methylbutanoate cause the characteristic fruity, cantaloupe-like odor note in Huell Melon hops, whereas the fruity and minty odor notes in Polaris are associated with high amounts of 3-methylbutyl acetate and 1,8-cineole.

  18. Repellent activity of essential oils and some of their individual constituents against Tribolium castaneum herbst.

    PubMed

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesús; Stashenko, Elena E

    2011-03-09

    A tool for integrated pest management is the use of essential oils (EOs) and plant extracts. In this study, EOs from Tagetes lucida , Lepechinia betonicifolia , Lippia alba , Cananga odorata , and Rosmarinus officinalis , species grown in Colombia, were analyzed by gas chromatography-mass spectrometry. These oils as well as several of their constituents were tested for repellent activity against Tribolium castaneum , using the area preference method. The main components (>10%) found in EOs were methylchavicol, limonene/α-pinene, carvone/limonene, benzyl acetate/linalool/benzyl benzoate, and α-pinene, for T. lucida, L. betonicifolia, L. alba, C. odorata, and R. officinalis, respectively. All EOs were repellent, followed a dose-response relationship, and had bioactivity similar to or better than that of commercial compound IR3535. EOs from C. odorata and L. alba were the most active. Compounds from EOs, such benzyl benzoate, β-myrcene, and carvone, showed good repellent properties. In short, EOs from plants cultivated in Colombia are sources of repellents against T. castaneum.

  19. Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L.

    PubMed

    Tuttolomondo, Teresa; Dugo, Giacomo; Ruberto, Giuseppe; Leto, Claudio; Napoli, Edoardo M; Cicero, Nicola; Gervasi, Teresa; Virga, Giuseppe; Leone, Raffaele; Licata, Mario; La Bella, Salvatore

    2015-01-01

    In this study the chemical characterisation of 10 Sicilian Rosmarinus officinalis L. biotypes essential oils is reported. The main goal of this work was to analyse the relationship between the essential oils yield and the geographical distribution of the species plants. The essential oils were analysed by GC-FID and GC-MS. Hierarchical cluster analysis and principal component analysis statistical methods were used to cluster biotypes according to the essential oils chemical composition. The essential oil yield ranged from 0.8 to 2.3 (v/w). In total 82 compounds have been identified, these represent 96.7-99.9% of the essential oil. The most represented compounds in the essential oils were 1.8-cineole, linalool, α-terpineol, verbenone, α-pinene, limonene, bornyl acetate and terpinolene. The results show that the essential oil yield of the 10 biotypes is affected by the environmental characteristics of the sampling sites while the chemical composition is linked to the genetic characteristics of different biotypes.

  20. Modeling of combined effects of citral, linalool and beta-pinene used against Saccharomyces cerevisiae in citrus-based beverages subjected to a mild heat treatment.

    PubMed

    Belletti, Nicoletta; Kamdem, Sylvain Sado; Tabanelli, Giulia; Lanciotti, Rosalba; Gardini, Fausto

    2010-01-01

    The aim of this work was to evaluate the antimicrobial activity of three terpenes (citral, linalool and beta-pinene), in combination with a mild heat treatment (55 degrees C, 15 min). The study has been carried out on an orange based soft drink inoculated using a wild strain of Saccharomyces cerevisiae. The results, expressed as growth/no-growth data, were analyzed with the logistic regression. A model comprising only of significant individual parameters (p < or = 0.05) and describing the relationships between terpene concentrations and the probability of having stable beverages was obtained. When citral and beta-pinene were combined, the citral concentration required to achieve a 50% probability of having stable bottles (P=0.5) dropped from 100.9 microL/L in the absence of beta-pinene to 49.3 microL/L in the presence of 20 microL/L of beta-pinene. The mixture of citral and linalool was less effective, in fact, the same probability (P=0.5) was obtained combining 60 microL/L of linalool with 35.1 microL/L of citral. The addition of 20 microL/L of linalool and beta-pinene reinforced citral bioactivity and the concentration of citral needed to reach P=0.5 fell from 100.9 microL/L in the presence of citral alone to 42.0 microL/L. The presence of both linalool and beta-pinene at a concentration of 40 or 60 microL/L in the absence of citral led to a lower spoilage probability (P=0.58 and P=0.93, respectively). It can be concluded that the antimicrobial potential of the three terpenes alone can be strengthened combining appropriate concentrations of each of them. This study confirmed also the potentiating effect of a mild temperature treatment on the antimicrobial efficacy of the molecules. Neither the thermal treatment alone nor the presence of the terpenes at their maximum concentrations (without thermal treatment) were able to guarantee the microbial stability of the beverages. 2009 Elsevier B.V. All rights reserved.

  1. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems.

    PubMed

    Fisher, K; Phillips, C A

    2006-12-01

    To investigate the effectiveness of oils and vapours of lemon (Citrus limon), sweet orange (Citrus sinensis) and bergamot (Citrus bergamia) and their components against a number of common foodborne pathogens. The disc diffusion method was used to screen the oils and vapours against Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Escherichia coli O157 and Campylobacter jejuni. The survival of each species, demonstrated to be susceptible in the in vitro studies, was tested on cabbage leaf for 60 s by direct contact and on chicken skin for 10 min by direct contact and 24 h by vapour. The results indicate that bergamot was the most inhibitory essential oil (EO) and citral and linalool mimicked its effect (P > 0.001). Citral and linalool vapours produced 6 log reductions in L. monocytogenes, Staph. aureus and B. cereus populations on cabbage leaf after 8-10 h exposure but bergamot vapour exposure, while producing a similar reduction in L. monocytogenes and B. cereus populations, had no effect on Staph. aureus. Bergamot was the most effective of the oils tested and linalool the most effective anti-bacterial component. Gram-positive bacteria were more susceptible than Gram-negative bacteria in vitro, although Camp. jejuni and E. coli O157 were inhibited by bergamot and linalool oils and by linalool vapour. All bacteria tested were less susceptible in food systems than in vitro. Of the Gram-positive bacteria tested Staph. aureus was the least susceptible to both the oils and the components tested. Results suggest the possibility that citrus EOs, particularly bergamot, could be used as a way of combating the growth of common causes of food poisoning.

  2. Protective effect of basil (Ocimum basilicum L.) against oxidative DNA damage and mutagenesis.

    PubMed

    Berić, Tanja; Nikolić, Biljana; Stanojević, Jasna; Vuković-Gacić, Branka; Knezević-Vukcević, Jelena

    2008-02-01

    Mutagenic and antimutagenic properties of essential oil (EO) of basil and its major constituent Linalool, reported to possess antioxidative properties, were examined in microbial tests. In Salmonella/microsome and Escherichia. coli WP2 reversion assays both derivatives (0.25-2.0 microl/plate) showed no mutagenic effect. Salmonella. typhimurium TA98, TA100 and TA102 strains displayed similar sensitivity to both basil derivatives as non-permeable E. coli WP2 strains IC185 and IC202 oxyR. Moreover, the toxicity of basil derivatives to WP2 strains did not depend on OxyR function. The reduction of t-BOOH-induced mutagenesis by EO and Linalool (30-60%) was obtained in repair proficient strains of the E. coli K12 assay (Nikolić, B., Stanojević, J., Mitić, D., Vuković-Gacić, B., Knezević-Vukcević, J., Simić, D., 2004. Comparative study of the antimutagenic potential of vitamin E in different E. coli strains. Mutat. Res. 564, 31-38), as well as in E. coli WP2 IC202 strain. EO and Linalool reduced spontaneous mutagenesis in mismatch repair deficient E. coli K12 strains (27-44%). In all tests, antimutagenic effect of basil derivatives was comparable with that obtained with model antioxidant vitamin E. Linalool and vitamin E induced DNA strand breaks in Comet assay on S. cerevisiae 3A cells, but at non-genotoxic concentrations (0.075 and 0.025 microg/ml, respectively) they reduced the number of H(2)O(2)-induced comets (45-70% Linalool and 80-93% vitamin E). Obtained results indicate that antigenotoxic potential of basil derivatives could be attributed to their antioxidative properties.

  3. Neurotoxic Effects of Linalool and β-Pinene on Tribolium castaneum Herbst.

    PubMed

    Pajaro-Castro, Nerlis; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2017-11-24

    Effective, ethical pest control requires the use of chemicals that are highly specific, safe, and ecofriendly. Linalool and β-pinene occur naturally as major constituents of the essential oils of many plant species distributed throughout the world, and thus meet these requirements. These monoterpenes were tested as repellents against Tribolium castaneum , using the area preference method, after four hours of exposure and the effect transcriptional of genes associated with neurotransmission. Changes in gene expression of acetylcholinesterase (Ace1), GABA-gated anion channel splice variant 3a6a (Rdl), GABA-gated ion channel (Grd), glutamate-gated chloride channel (Glucl), and histamine-gated chloride channel 2 (Hiscl2) were assessed and the interaction with proteins important for the insect using in silico methods was also studied. For linalool and β-pinene, the repellent concentration 50 (RC 50 ) values were 0.11 µL/cm² and 0.03 µL/cm², respectively. Both compounds induced overexpression of Hiscl2 gen in adult insects, and β-pinene also promoted the overexpression of Grd and the Ace1 gene. However, β-pinene and linalool had little potential to dock on computer-generated models for GABA-gated ion channel LCCH3, nicotinic acetylcholine receptor subunits alpha1 and alpha2, and putative octopamine/tyramine receptor proteins from T. castaneum as their respective binding affinities were marginal, and therefore the repellent action probably involved mechanisms other than direct interaction with these targets. Results indicated that β-pinene was more potent than linalool in inducing insect repellency, and also had a greater capacity to generate changes in the expression of genes involved in neuronal transmission.

  4. Attraction of New Zealand flower thrips, Thrips obscuratus, to cis-jasmone, a volatile identified from Japanese honeysuckle flowers.

    PubMed

    El-Sayed, A M; Mitchell, V J; McLaren, G F; Manning, L M; Bunn, B; Suckling, D M

    2009-06-01

    This work was undertaken to identify floral compound(s) produced by honeysuckle flowers, Lonicera japonica (Thunberg), that mediate the attraction of New Zealand flower thrips Thrips obscuratus (Crawford). Volatiles were collected during the day and night and analyzed by gas chromatography-mass spectrometry (GC-MS) to determine their emission over these two periods. Nine compounds were identified in the headspace; the main compound was linalool, and the other compounds were germacrene D, E,E-alpha-farnesene, nerolidol, cis-jasmone, cis-3-hexenyl acetate, hexyl acetate, cis-hexenyl tiglate, and indole. There was a quantitative difference between day and night volatiles, with cis-3-hexenyl acetate, hexyl acetate, cis-hexenyl tiglate, and cis-jasmone emitted in higher amounts during the day compared to the night. When the compounds were tested individually in field trapping experiments, only cis-jasmone attracted New Zealand flower thrips in a significant number. In another field trapping experiment, cis-jasmone caught similar numbers of New Zealand flower thrips compared to a floral blend formulated to mimic the ratios of the compounds emitted during the day, while catch with the night-emitted floral blend was not significantly different from the control. Subsequently, two field trapping experiments were conducted to determine the optimal attraction dose for cis-jasmone, a range of 1-100 mg loaded onto a red rubber stopper was tested, and the highest catches were in traps baited with 100 mg loading. A higher range of 100-1000 mg loaded into polyethylene vials was tested, and the highest catch was in traps baited with 500 mg. In another experiment aimed at comparing the attraction efficacy of cis-jasmone with the two other known thrips attractants (ethyl nicotinate and p-anisaldehyde), ethyl nicotinate showed the highest trap catch followed by cis-jasmone. A smaller number of Thrips tabaci (Lindeman) was attracted to traps baited with cis-jasmone. These results suggest that cis-jasmone might act as a kairomone that mediates the attraction of New Zealand flower thrips to the flowers of the Japanese honeysuckle.

  5. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  6. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  7. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System.

    PubMed

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-11-30

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum , linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity.

  8. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-08-01

    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil.

    PubMed

    Liu, Kehai; Chen, Qiulin; Liu, Yanjun; Zhou, Xiaoyan; Wang, Xichang

    2012-11-01

    Product 1 (82.25% valencene), product 2 (73.36% decanal), product 3 (78.12% octanal), and product 4 (90.61% linalool) were isolated from sweet orange oil by combined usage of molecular distillation and column chromatography. The antioxidant activity of sweet orange oil and these products was investigated using 2,2-diphenyl-1-picrylhydrazyl and reducing power assays. In this test, product 1 (82.25% valencene), product 2 (73.36% decanal), and product 4 (90.61% linalool) had antioxidant activity, but lower than sweet orange oil. The antimicrobial activity was investigated in order to evaluate their efficacy against 5 microorganisms. The results showed that sweet orange oil, product 2 (73.36% decanal), product 3 (78.12% octanal), and product 4 (90.61% linalool) had inhibitory and bactericidal effect on the test microorganisms (except Penicillium citrinum). Valencene did not show any inhibitory effect. Saccharomyces cerivisiae was more susceptible, especially to the crude sweet orange oil (minimal inhibitory concentration 6.25 μL/mL). The cytotoxicity was evaluated on Hela cells using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. All test samples showed significant cytotoxicity on the cell lines with IC(50) values much less than 20 μg/mL. © 2012 Institute of Food Technologists®

  10. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System

    PubMed Central

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-01-01

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity. PMID:27916876

  11. Jasmonate-Mediated Induced Volatiles in the American Cranberry, Vaccinium macrocarpon: From Gene Expression to Organismal Interactions

    PubMed Central

    Rodriguez-Saona, Cesar R.; Polashock, James; Malo, Edi A.

    2013-01-01

    Jasmonates, i.e., jasmonic acid (JA) and methyl jasmonate (MeJA), are signaling hormones that regulate a large number of defense responses in plants which in turn affect the plants’ interactions with herbivores and their natural enemies. Here, we investigated the effect of jasmonates on the emission of volatiles in the American cranberry, Vaccinium macrocarpon, at different levels of biological organization from gene expression to organismal interactions. At the molecular level, four genes (BCS, LLS, NER1, and TPS21) responded significantly to gypsy moth larval feeding, MeJA, and mechanical wounding, but to different degrees. The most dramatic changes in expression of BCS and TPS21 (genes in the sesquiterpenoid pathway) were when treated with MeJA. Gypsy moth-damaged and MeJA-treated plants also had significantly elevated expression of LLS and NER1 (genes in the monoterpene and homoterpene biosynthesis pathways, respectively). At the biochemical level, MeJA induced a complex blend of monoterpene and sesquiterpene compounds that differed from gypsy moth and mechanical damage, and followed a diurnal pattern of emission. At the organismal level, numbers of Sparganothis sulfureana moths were lower while numbers of parasitic wasps were higher on sticky traps near MeJA-treated cranberry plants than those near untreated plants. Out of 11 leaf volatiles tested, (Z)-3-hexenyl acetate, linalool, and linalool oxide elicited strong antennal (EAG) responses from S. sulfureana, whereas sesquiterpenes elicited weak EAG responses. In addition, mortality of S. sulfureana larvae increased by about 43% in JA treated cranberry plants as compared with untreated plants, indicating a relationship among adult preference, antennal sensitivity to plant odors, and offspring performance. This study highlights the role of the jasmonate-dependent defensive pathway in the emissions of herbivore-induced volatiles in cranberries and its importance in multi-trophic level interactions. PMID:23641249

  12. Jasmonate-Mediated Induced Volatiles in the American Cranberry, Vaccinium macrocarpon: From Gene Expression to Organismal Interactions.

    PubMed

    Rodriguez-Saona, Cesar R; Polashock, James; Malo, Edi A

    2013-01-01

    Jasmonates, i.e., jasmonic acid (JA) and methyl jasmonate (MeJA), are signaling hormones that regulate a large number of defense responses in plants which in turn affect the plants' interactions with herbivores and their natural enemies. Here, we investigated the effect of jasmonates on the emission of volatiles in the American cranberry, Vaccinium macrocarpon, at different levels of biological organization from gene expression to organismal interactions. At the molecular level, four genes (BCS, LLS, NER1, and TPS21) responded significantly to gypsy moth larval feeding, MeJA, and mechanical wounding, but to different degrees. The most dramatic changes in expression of BCS and TPS21 (genes in the sesquiterpenoid pathway) were when treated with MeJA. Gypsy moth-damaged and MeJA-treated plants also had significantly elevated expression of LLS and NER1 (genes in the monoterpene and homoterpene biosynthesis pathways, respectively). At the biochemical level, MeJA induced a complex blend of monoterpene and sesquiterpene compounds that differed from gypsy moth and mechanical damage, and followed a diurnal pattern of emission. At the organismal level, numbers of Sparganothis sulfureana moths were lower while numbers of parasitic wasps were higher on sticky traps near MeJA-treated cranberry plants than those near untreated plants. Out of 11 leaf volatiles tested, (Z)-3-hexenyl acetate, linalool, and linalool oxide elicited strong antennal (EAG) responses from S. sulfureana, whereas sesquiterpenes elicited weak EAG responses. In addition, mortality of S. sulfureana larvae increased by about 43% in JA treated cranberry plants as compared with untreated plants, indicating a relationship among adult preference, antennal sensitivity to plant odors, and offspring performance. This study highlights the role of the jasmonate-dependent defensive pathway in the emissions of herbivore-induced volatiles in cranberries and its importance in multi-trophic level interactions.

  13. Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities.

    PubMed

    Mamadalieva, Nilufar Zokirjonovna; Sharopov, Farukh; Satyal, Prabodh; Azimova, Shahnoz Sadykovna; Wink, Michael

    2017-05-01

    The chemical composition of the essential oils obtained from aerial parts of Scutellaria immaculata Nevski ex Juz., Scutellaria ramosissima M. Pop. and Scutellaria schachristanica Juz. (Lamiaceae) growing wild in Uzbekistan was analysed by GC and GC-MS. The main constituents of the essential oils from S. immaculata were acetophenone (30.39%), eugenol (20.61%), thymol (10.04%) and linalool (6.92%), whereas constituents of the essential oils fromS. schachristanica were acetophenone (34.74%), linalool (26.98%) and eugenol (20.67%). The S. ramosissima oil is dominated by germacrene D (23.96%), β-caryophyllene (11.09%), linalool (9.63%) and hexadecanoic acid (8.34%). The essential oils of Scutellaria species exhibited weaker antioxidant effects in DPPH, ABTS and FRAP assays. In FRAP assay, only eugenol exhibited a substantial reducing power IC 50  = 2476.92 ± 15.8 (mM Fe(II)/g).

  14. Chemical composition and α-amylase inhibitory activity of the essential oil from Sabina chinensis cv. Kaizuca leaves.

    PubMed

    Gu, Dongyu; Fang, Chen; Yang, Jiao; Li, Minjing; Liu, Hengming; Yang, Yi

    2018-03-01

    Sabina chinensis cv. Kaizuca (SCK) is a variant of S. chinensis L. The essential oil from its leaves exhibited α-amylase inhibitory activity in vitro and the IC 50 value was 187.08 ± 0.56 μg/mL. Nineteen compounds were identified from this essential oil by gas chromatography-mass spectrometry (GC-MS) analysis. The major compounds identified were bornyl acetate (42.6%), elemol (20.5%), β-myrcene (13.7%) and β-linalool (4.0%). In order to study the reason of the α-amylase inhibitory activity of this essential oil, the identified compounds were docked with α-amylase by molecular docking individually. Among these compounds, γ-eudesmol exhibited the lowest binding energy (-6.73 kcal/mol), followed by α-copaen-11-ol (-6.66 kcal/mol), cubedol (-6.39 kcal/mol) and α-acorenol (-6.12 kcal/mol). The results indicated that these compounds were the active ingredients responsible for the α-amylase inhibitory activity of essential oil from SCK.

  15. Investigations on the Aroma of Cocoa Pulp ( Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans.

    PubMed

    Chetschik, Irene; Kneubühl, Markus; Chatelain, Karin; Schlüter, Ansgar; Bernath, Konrad; Hühn, Tilo

    2018-03-14

    The odor-active constituents of cocoa pulp have been analyzed by aroma extract dilution analysis (AEDA) for the first time. Pulps of three different cocoa varieties have been investigated. The variety CCN51 showed low flavor intensities, in terms of flavor dilution (FD) factors, in comparison to varieties FSV41 and UF564, for which floral and fruity notes were detected in higher intensities. To gain first insights on a molecular level of how the cocoa pulp odorants affected the odor quality of cocoa beans during fermentation, quantitative measurements of selected aroma compounds were conducted in pulp and bean at different time points of the fermentation. The results showed significantly higher concentrations of 2-phenylethanol and 3-methylbutyl acetate in pulp than in the bean during the different time steps of the fermentation, whereas the reverse could be observed for the odorants linalool and 2-methoxyphenol. The findings of this study constitute a basis for further investigations on the aroma formation of cocoa during fermentation.

  16. Rosewood oil induces sedation and inhibits compound action potential in rodents.

    PubMed

    de Almeida, Reinaldo Nóbrega; Araújo, Demétrius Antonio Machado; Gonçalves, Juan Carlos Ramos; Montenegro, Fabrícia Costa; de Sousa, Damião Pergentino; Leite, José Roberto; Mattei, Rita; Benedito, Marco Antonio Campana; de Carvalho, José Gilberto Barbosa; Cruz, Jader Santos; Maia, José Guilherme Soares

    2009-07-30

    Aniba rosaeodora is an aromatic plant which has been used in Brazil folk medicine due to its sedative effect. Therefore, the purpose of the present study was to evaluate the sedative effect of linalool-rich rosewood oil in mice. In addition we sought to investigate the linalool-rich oil effects on the isolated nerve using the single sucrose-gap technique. Sedative effect was determined by measuring the potentiation of the pentobarbital-induced sleeping time. The compound action potential amplitude was evaluated as a way to detect changes in excitability of the isolated nerve. The results showed that administration of rosewood oil at the doses of 200 and 300 mg/kg significantly decreased latency and increased the duration of sleeping time. On the other hand, the dose of 100 mg/kg potentiated significantly the pentobarbital action decreasing pentobarbital latency time and increasing pentobarbital sleeping time. In addition, the effect of linalool-rich rosewood oil on the isolated nerve of the rat was also investigated through the single sucrose-gap technique. The amplitude of the action potential decreased almost 100% when it was incubated for 30 min at 100 microg/ml. From this study, it is suggested a sedative effect of linalool-rich rosewood oil that could, at least in part, be explained by the reduction in action potential amplitude that provokes a decrease in neuronal excitability.

  17. α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2.

    PubMed

    Li, Xiao-Jun; Yang, Yan-Jing; Li, Yu-Sang; Zhang, Wei Kevin; Tang, He-Bin

    2016-02-17

    Frankincense oil and water extracts (FOE, FWE) have long been used for external treatment of inflammation and pain. The present study was conducted to identify the active ingredients responsible for the anti-inflammatory and analgesic effects and to determine the underlying mechanisms. The compositions of FOE and FWE were identified and compared by GC-MS. The anti-inflammatory and analgesic activities of the two extracts and their possible active ingredients (α-pinene, linalool, and 1-octanol) were evaluated and compared in a xylene-induced ear edema model and a formalin-inflamed hind paw model. Inflammatory infiltrates and cyclooxygenase-2 (COX-2) expression in hind paw skin were investigated by histological staining. The contents of α-pinene, linalool, and 1-octanol in FOE were much higher than those in FWE. Mice treated with FOE exhibited greater and faster lessening of swelling and pain than mice treated with FWE. The combination of the three components had more potent pharmacological effects on hind paw inflammation and COX-2 overexpression than the three components used alone. These findings suggest that topical application of FOE or its active ingredients (including α-pinene, linalool, and 1-octanol) exhibit significantly anti-inflammatory and analgesic effects through inhibiting nociceptive stimulus-induced inflammatory infiltrates and COX-2 overexpression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata.

    PubMed

    Mant, Jim; Brändli, Christoph; Vereecken, Nicolas J; Schulz, Claudia M; Francke, Wittko; Schiestl, Florian P

    2005-08-01

    Male Colletes cunicularius bees pollinate the orchid, Ophrys exaltata, after being sexually deceived by the orchid's odor-mimicry of the female bee's sex pheromone. We detected biologically active volatiles of C. cunicularius by using gas chromatographic-electroantennographic detection (GC-EAD) with simultaneous flame ionization detection. After identification of the target compounds by coupled gas chromatography mass spectrometry (GC-MS), we performed behavioral tests using synthetic blends of the active components. We detected 22 EAD active compounds in cuticular extracts of C. cunicularius females. Blends of straight chain, odd-numbered alkanes and (Z)-7-alkenes with 21-29 carbon atoms constituted the major biologically active compounds. Alkenes were the key compounds releasing mating behavior, especially those with (Z)-7 unsaturation. Comparison of patterns of bee volatiles with those of O. exaltata subsp. archipelagi revealed that all EAD-active compounds were also found in extracts of orchid labella. Previous studies of the mating behavior in C. cunicularius showed linalool to be an important attractant for patrolling males. We confirmed this with synthetic linalool but found that it rarely elicited copulatory behavior, in accordance with previous studies. A blend of active cuticular compounds with linalool elicited both attraction and copulation behavior in patrolling males. Thus, linalool appears to function as a long-range attractant, whereas cuticular hydrocarbons are necessary for inducing short-range mating behavior.

  19. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice.

    PubMed

    Lee, Shih-Chieh; Wang, Shih-Yun; Li, Chien-Chun; Liu, Cheng-Tzu

    2018-01-01

    Cinnamomum osmophloeum Kanehira is a Taiwan native plant that belongs to genus Cinnamomum and is also known as pseudocinnamomum or indigenous cinnamon. Its leaf is traditionally used by local people in cooking and as folk therapy. We previously demonstrated the chemical composition and anti-inflammatory effect of leaf essential oil of Cinnamomum osmophloeum Kanehira of linalool chemotype in streptozotocin-induced diabetic rats and on endotoxin-injected mice. The aim of the present study is to evaluate whether cinnamaldehyde and linalool the active anti-inflammatory compounds in leaf essential oil of Cinnamomum osmophloeum Kanehira. Before the injection of endotoxin, C57BL/6 mice of the experimental groups were administered cinnamaldehyde (0.45 or 0.9 mg/kg body weight) or linalool (2.6 or 5.2 mg/kg body weight), mice of the positive control group were administered the leaf essential oil (13 mg/kg body weight), and mice of the negative group were administered vehicle (corn oil, 4 mL/kg body weight) by gavage every other day for two weeks. All mice received endotoxin (i.p. 10 mg/mL/kg body weight) the next day after the final administration and were killed 12 h after the injection. Normal control mice were pretreated with vehicle followed by the injection with saline. None of the treatment found to affect body weight or food or water intake of mice before the injection of endotoxin. Cinnamaldehyde and linalool were found significantly reversed endotoxin-induced body weight loss and lymphoid organ enlargement compared with vehicle (P < 0.05). Both compounds also significantly lowered endotoxin-induced levels of peripheral nitrate/nitrite, interleukin (IL)-1β, IL-18, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and High-mobility group box 1 protein (HMGB-1), and levels of nitrate/nitrite, IL-1β, TNF-α, and IFN-γ in spleen and mesenteric lymph nodes (MLNs) (P < 0.05). Endotoxin-induced expression of toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88), myeloid differentiation protein 2 (MD2), Nod-like receptor family, pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), and caspase-1 in spleen and mesenteric lymph nodes (MLNs) were inhibited by all tested doses of cinnamaldehyde and linalool (P < 0.05). Subsequently, the activation of nuclear factor (NF)-κB and the activity of caspase-1 in spleen and MLNs were also suppressed by these two compounds (P < 0.05). In addition, cinnamaldehyde and linalool at the dose equivalent to their corresponding content in the tested dose of the leaf essential oil, which was 0.9 mg/kg and 5.2 mg/kg, respectively, showed similar or slightly less inhibitory activity for most of these inflammatory parameters compared with that of the leaf essential oil. Our data confirmed the potential use of leaf essential oil of Cinnamomum osmophloeum Kanehira as an anti-inflammatory natural product and provide evidence for cinnamaldehyde and linalool as two potent agents for prophylactic use in health problems associated with inflammations that being attributed to over-activated TLR4 and/or NLRP3 signaling pathways. Copyright © 2017. Published by Elsevier B.V.

  20. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C

    PubMed Central

    Villamizar, Luz Helena; Cardoso, Maria das Graças; de Andrade, Juliana; Teixeira, Maria Luisa; Soares, Maurilio José

    2017-01-01

    BACKGROUND Recent studies showed that essential oils from different pepper species (Piper spp.) have promising leishmanicidal and trypanocidal activities. OBJECTIVES In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO) or its main constituents linalool and nerolidol. METHODS PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. FINDINGS PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL) and metacyclic (IC50/24 h: 12.1 μg/mL) trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL). At 4ºC - the temperature of red blood cells (RBCs) storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL) than to gentian violet (IC50/24 h = 24.7 mg/mL). Cytotoxicity assays using Vero cells (37ºC) and RBCs (4ºC) showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL) at 4ºC. MAIN CONCLUSION The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature. PMID:28177047

  1. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C.

    PubMed

    Villamizar, Luz Helena; Cardoso, Maria das Graças; Andrade, Juliana de; Teixeira, Maria Luisa; Soares, Maurilio José

    2017-02-01

    Recent studies showed that essential oils from different pepper species (Piper spp.) have promising leishmanicidal and trypanocidal activities. In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO) or its main constituents linalool and nerolidol. PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL) and metacyclic (IC50/24 h: 12.1 μg/mL) trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL). At 4ºC - the temperature of red blood cells (RBCs) storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL) than to gentian violet (IC50/24 h = 24.7 mg/mL). Cytotoxicity assays using Vero cells (37ºC) and RBCs (4ºC) showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL) at 4ºC. The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature.

  2. Litsea cubeba leaf essential oil from Vietnam: chemical diversity and its impacts on antibacterial activity.

    PubMed

    Nguyen, H V; Meile, J-C; Lebrun, M; Caruso, D; Chu-Ky, S; Sarter, S

    2018-03-01

    The threat of bacterial resistance to antibiotics has created an urgent need to develop new antimicrobials. The aim of this study was to characterize the chemical diversity of Litsea cubeba leaf essential oil (EO) and its impacts on the antibacterial activity against pathogenic bacteria. Essential oils collected from seven provinces in North Vietnam (n = 25) were characterized by their high content in either 1,8-cineole or linalool. Linalool-type EOs were more effective against the eight bacterial strains tested than 1,8-cineole-type. Oil samples, LC19 (50% 1,8-cineole) and BV27 (94% linalool), were selected to investigate their antibacterial mechanisms against Escherichia coli. A strong bactericidal effect was observed after 4 and 2 h of exposure respectively. Microscopic analysis of treated E. coli cultures clearly showed that EOs caused changes in cell morphology, loss of integrity and permeability of the cell membrane, as well as DNA loss. However, the effects of both EOs were distinct. LC19 mostly affected cell membrane, led to a significant cell filamentation rate and altered cell width, whereas BV27 damaged cell membrane integrity leading to cell permeabilization and altered nucleoid morphology with the appearance of spot and visibly altered compaction. This study aimed to characterize the chemical diversity of Litsea cubeba leaf essential oil (EO) and its impacts on its antibacterial activity. Two major chemotypes (1,8-cineole or linalool rich) were identified in North Vietnam and both were bactericidal against several pathogenic bacteria. A distinct inhibitory effect of EO samples on Escherichia coli was observed. 1,8-cineole-rich sample (LC19) affected cell membrane, led to cell filamentation and perturbation of cell width, while the linalool-rich one (BV27) induced damages in the cell membrane and changes in the nucleoid morphology. The study demonstrates the importance of considering chemotype variations in terms of chemical composition as well as the mode of action. © 2017 The Society for Applied Microbiology.

  3. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae).

    PubMed

    Tabari, Mohaddeseh Abouhosseini; Youssefi, Mohammad Reza; Maggi, Filippo; Benelli, Giovanni

    2017-10-15

    The castor bean tick, Ixodes ricinus, is a species of medical and veterinary importance. The use of synthetic acaricides for tick control has led to development of resistance, residues in the environment and animal products, and public health concerns. In this regard, plant essential oils and their main constituents represent an appealing alternative strategy to combat ticks. The phenols thymol and carvacrol and the alcohol linalool are monoterpenoids occurring in essential oils of several aromatic and medicinal plants, such as thyme, oregano, savory, lavender and coriander. Recent studies have shown toxicity of these monoterpenoids against selected mosquito vectors and other arthropod pests. However, information on their bioactivity on I. ricinus is not available. On this basis, here we evaluated the ovicidal, larvicidal and repellency effects of these compounds against I. ricinus. Concentrations of 0.25, 0.5, 1, 2 and 5% were sprayed on the egg masses, then hatching rates were noted. Larvicidal assays were conducted on unengorged larvae, following the larval packet technique. The repellency was determined by measuring the vertical migration behavior of ticks in laboratory conditions. Carvacrol and thymol at all concentrations tested led to a significant hatching decrease, showing an efficacy higher than permethrin, whereas linalool did not cause any significant effect. In the larvae treated with carvacrol and thymol (1, 2 and 5%), mortality rates reached 100% after 24h, showing a larvicidal efficacy higher than permethrin, whereas no effect was seen in the larval groups treated with linalool. Carvacrol and thymol at all concentrations tested showed >90% repellency on I. ricinus. Linalool was scarcely effective (50.24% repellency) only at the concentration of 5%. Overall, based on these results, the phenols carvacrol and thymol can be considered as candidate ingredients for the development of novel acaricidal formulations to control the populations of I. ricinus and the spread of related tick-borne diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others.

    PubMed

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2013-09-01

    The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs)

    PubMed Central

    Ganassi, Sonia; Pistillo, Marco O.; Di Domenico, Carmela; De Cristofaro, Antonio; Di Palma, Antonella Marta

    2017-01-01

    The meadow spittlebug, Philaenus spumarius L. (Hemiptera, Aphrophoridae) is a commonly found vector of Xylella fastidiosa Wells et al. (1987) strain subspecies pauca associated with the “Olive Quick Decline Syndrome” in Italy. To contribute to the knowledge of the adult P. spumarius chemoreceptivity, electroantennographic (EAG) responses of both sexes to 50 volatile organic compounds (VOCs) including aliphatic aldehydes, alcohols, esters, and ketones, terpenoids, and aromatics were recorded. Measurable EAG responses were elicited by all compounds tested. In both sexes, octanal, 2-octanol, 2-decanone, (E)-2-hexenyl acetate, and vanillin elicited the strongest antennal amplitude within the chemical groups of aliphatic saturated aldehydes, aliphatic alcohols, aliphatic acetates and aromatics, respectively. Male and female EAG responses to sulcatol, (±)linalool, and sulcatone were higher than those to other terpenoinds. In both sexes, the weakest antennal stimulants were phenethyl alcohol and 2-pentanone. Sexual differences in the EAG amplitude were found only for four of test compounds suggesting a general similarity between males and females in antennal sensitivity. The olfactory system of both sexes proved to be sensitive to changes in stimulus concentration, carbon chain length, and compound structure. Compounds with short carbon chain length (C5—C6) elicited lower EAG amplitudes than compounds with higher carbon chain length (C9—C10) in all classes of aliphatic hydrocarbons with different functional groups. The elucidation of the sensitivity profile of P. spumarius to a variety of VOCs provides a basis for future identification of behaviorally-active compounds useful for developing semiochemical-based control strategies of this pest. PMID:29287108

  6. Modeling with the logistic regression of the growth/no growth interface of Saccharomyces cerevisiae in relation to 2 antimicrobial terpenes (citral and linalool), pH, and a(w).

    PubMed

    Tabanelli, Giulia; Montanari, Chiara; Patrignani, Francesca; Siroli, Lorenzo; Lanciotti, Rosalba; Gardini, Fausto

    2014-03-01

    The antimicrobial effects of 2 terpenes (citral and linalool) on a Saccharomyces cerevisiae strain isolated from spoiled soft drink have been evaluated, alone or in combination, in relation to pH and aw using in vitro assays. The obtained data were fitted with the logit model to find the growth/no growth boundary regions of the 2 terpenes, focusing the attention on the type of interaction exerted by citral and linalool. In particular, the results showed an increase of citral antimicrobial effect in growth media characterized by low aw value, as well as a higher linalool antimicrobial effect in media at low pH. Moreover, the interactive effects of the 2 terpenes were exploited. The results obtained with the model were validated in an independent experiment. The knowledge of the interactions of essential oil molecules with enhanced antimicrobial activity, in relation to some of the most important chemicophysical variables, can have important industrial applications, since these substances are able to assure the desired antimicrobial effect without negatively modifying the product flavor profile. The effects of the main chemicophysical parameters (such as aw and pH) on the antimicrobial activity of bioactive terpenes are necessary for the definition of an industrially applicable preservation strategy based on the use of essential oils as natural antimicrobials aimed to prolong shelf life of food products. © 2014 Institute of Food Technologists®

  7. Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest.

    PubMed

    Li, Fengqi; Li, Wei; Lin, Yong-Jun; Pickett, John A; Birkett, Michael A; Wu, Kongming; Wang, Guirong; Zhou, Jing-Jiang

    2018-01-01

    Volatile terpenoids play a key role in plant defence against herbivory by attracting parasitic wasps. We identified seven terpene synthase genes from lima bean, Phaseolus lunatus L. following treatment with either the elicitor alamethicin or spider mites, Tetranychus cinnabarinus. Four of the genes (Pltps2, Pltps3, Pltps4 and Pltps5) were up-regulated with their derived proteins phylogenetically clustered in the TPS-g subfamily and PlTPS3 positioned at the base of this cluster. Recombinant PlTPS3 was able to convert geranyl diphosphate and farnesyl diphosphate to linalool and (E)-nerolidol, the latter being precursor of the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). Recombinant PlTPS4 showed a different substrate specificity and produced linalool and (E)-nerolidol, as well as (E,E)-geranyllinalool from geranylgeranyl diphosphate. Transgenic rice expressing Pltps3 emitted significantly more (S)-linalool and DMNT than wild-type plants, whereas transgenic rice expressing Pltps4 produced (S)-linalool, DMNT and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). In laboratory bioassays, female Cotesia chilonis, the natural enemy of the striped rice stemborer, Chilo suppressalis, were significantly attracted to the transgenic plants and their volatiles. We further confirmed this with synthetic blends mimicking natural rice volatile composition. Our study demonstrates that the transformation of rice to produce volatile terpenoids has the potential to enhance plant indirect defence through natural enemy recruitment. © 2017 John Wiley & Sons Ltd.

  8. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  9. Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida.

    PubMed

    Ao, Man; Liu, Baofeng; Wang, Li

    2013-01-01

    The flower volatile compounds (FVCs) of two tetraploid Freesia hybrida (pink-yellow and yellow) cultivars and their cut flowers were analysed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Twelve FVCs were identified in the pink-yellow cultivar, with linalool as the major compound; 30 FVCs were identified in the yellow cultivar, with linalool and terpineol as the two major compounds. The FVCs (>1%) of the two cut flower cultivars were very similar to that of the un-cut flowers, and no significant difference was observed.

  10. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    PubMed Central

    Faraone, Nicoletta; Hillier, N. Kirk; Cutler, G. Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  11. Flavor and chiral stability of lemon-flavored hard tea during storage.

    PubMed

    He, Fei; Qian, YanPing L; Qian, Michael C

    2018-01-15

    Flavor stability of hard tea beverage was investigated over eight weeks of storage. The volatile compounds were analyzed using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and two-dimensional GC-MS. Quantitative analysis showed that the concentrations of linalool, citronellol, geranial, neral, geraniol, and nerol decreased dramatically during storage, whereas α-terpineol showed an increasing trend during storage. Heart-cut two-dimensional GC-MS (2D-GC-MS) chirality analysis showed that (R)-(+)-limonene, (R)-(-)-linalool, (S)-(-)-α-terpineol and (S)-(-)-4-terpineol dominated in the fresh hard tea samples, however, the configuration changed during storage for the terpene alcohols. The storage conditions did not change the configuration of limonene. A conversion of (R)-(-)-linalool to (S)-(+) form was observed during storage. Both (S)-α-terpineol and (S)-4-terpineol dominated at beginning of the storage, but (R)-(+)-α-terpineol became dominated after storage, suggested in addition to isomerization from (S)-α-terpineol, other precursors could also generate α-terpineol with (R)-isomer preference. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    PubMed

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  13. Effect of Hinoki and Meniki Essential Oils on Human Autonomic Nervous System Activity and Mood States.

    PubMed

    Chen, Chi-Jung; Kumar, K J Senthil; Chen, Yu-Ting; Tsao, Nai-Wen; Chien, Shih-Chang; Chang, Shang-Tzen; Chu, Fang-Hua; Wang, Sheng-Yang

    2015-07-01

    Meniki (Chamecyparis formosensis) and Hinoki (C. obtusa) are precious conifers with excellent wood properties and distinctive fragrances that make these species popular in Taiwan for construction, interiors and furniture. In the present study, the compositions of essential oils prepared from Meniki and Hinoki were analyzed by gas chromatography-mass spectrometry (GC/MS). Thirty-six compounds were identified from the wood essential oil of Meniki, including Δ-cadinene, γ-cadinene, Δ-cadinol, α-muurolene, calamenene, linalyl acetate and myrtenol; 29 compounds were identified from Hinoki, including α-terpineol, α-pinene, Δ-cadinene, borneol, terpinolene, and limonene. Next, we examined the effect of Meniki and Hinoki essential oils on human autonomic nervous system activity. Sixteen healthy adults received Meniki or Hinoki by inhalation for 5 min, and the physiological and psychological effects were examined. After inhaling Meniki essential oil, participant's systolic blood pressure and heart rate (HR) were decreased, and diastolic blood pressure increased. In addition, sympathetic nervous activity (SNS) was significantly decreased, and parasympathetic activity (PSNS) was significantly increased. On the other hand, after inhaling Hinoki essential oil, systolic blood pressure, heart rate and PSNS were decreased, whereas SNA was increased. Indeed, both Meniki and Hinoki essential oils increased heart rate variability (HRV) in tested adults. Furthermore, in the Profile of Mood States (POMS) test, both Meniki and Hinoki wood essential oils stimulated a pleasant mood status. Our results strongly suggest that Meniki and Hinoki essential oils could be suitable agents for the development of regulators of sympathetic nervous system dysfunctions.

  14. Solid-phase extraction element based on epoxy polymer monolith for determination of polar organic compounds in aqueous media.

    PubMed

    Takahashi, Tadashi; Odagiri, Kayo; Watanabe, Atsushi; Watanabe, Chuichi; Kubo, Takuya; Hosoya, Ken

    2011-10-01

    A solid-phase extraction element based on epoxy polymer monolith was fabricated for sorptive enrichment of polar compounds from liquid and gaseous samples. After ultrasonication of the element in an aqueous solution for a given period of time, the thermal desorption (TD) using a pyrolyzer with gas chromatography/mass spectrometry (GC/MS), in which TD temperature was programmed from 50 to 250 °C for the analytes absorbed in the element, was used to evaluate the element for basic extraction performance using the aqueous standard mixtures consisting of compounds having varied polarities such as hexanol, isoamyl acetate, linalool, furfural and decanoic acid, in concentrations ranging from 10 μg/L to 1 mg/L. Excellent linear relationships were observed for all compounds in the standard mixture, except decanoic acid. In the extraction of beverages such as red wine, the extraction element showed stronger adsorption characteristics for polar compounds such as alcohols and acids than a non-polar polydimethylsiloxane-based element. This feature is derived from the main polymer structure along with hydroxyl and amino groups present in the epoxy-based monolith polymer matrix. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers.

    PubMed

    Daenen, Luk; Sterckx, Femke; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2008-11-01

    The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'.

  16. Changes in growth, hormones levels and essential oil content of Ammi visnaga L. plants treated with some bioregulators

    PubMed Central

    Talaat, Iman M.; Khattab, Hemmat I.; Ahmed, Aisha M.

    2013-01-01

    The effects of foliar application of different concentrations of amino acids (tyrosine and phenylalanine) and phenolic acids (trans-cinnamic acid, benzoic acid and salicylic acid) on growth, pigment content, hormones levels and essential oil content of Ammi visnaga L were carried out during two successive seasons. It is clear that foliar application of either amino acids or phenolics significantly promoted the growth parameters in terms of shoot height, fresh and dry biomass, number of branches and number of umbels per plant. The increment of growth parameter was associated with elevated levels of growth promoters (IAA, GA3, total cytokinins) and low level of ABA. The greatest increase in the previously mentioned parameters was measured in plants exposed to different concentrations of phenols particularly in benzoic acid-treated plants. Such effect was concentration dependent. All treatments led to significant increments in yield seeds and oil content. Moreover, gas liquid chromatographic analysis revealed that the main identified components of essential oil were 2,2-dimethyl butanoic acid, isobutyl isobutyrate, α-isophorone, thymol, fenchyl acetate and linalool. Phenolics and amino acid treatments resulted in qualitative differences in these components of essential oil. PMID:25183946

  17. Increasing antioxidant activity and reducing decay of blueberries by essential oils.

    PubMed

    Wang, Chien Y; Wang, Shiow Y; Chen, Chitsun

    2008-05-28

    Several naturally occurring essential oils including carvacrol, anethole, cinnamaldehyde, cinnamic acid, perillaldehyde, linalool, and p-cymene were evaluated for their effectiveness in reducing decay and increasing antioxidant levels and activities in 'Duke' blueberries ( Vaccinium corymbosum). Carvacrol, anethole, and perillaldehyde showed the capability to promote total anthocyanins and total phenolics and enhance antioxidant activity in fruit tissues expressed as oxygen radical absorbance capacity (ORAC) and hydroxyl radical ( (*)OH) scavenging capacity. All of the essential oils tested in this study were able to inhibit fruit decay development to some degree compared to controls. The most effective compound for mold retardation was p-cymene, followed by linalool, carvacrol, anethole, and perillaldehyde. Cinnamic acid and cinnamaldehyde also suppressed mold growth, but to a lesser extent. Treatment with carvacrol, anethole, or perillaldehyde also significantly increased the levels of fructose, glucose, and citric acid. Individual flavonoids were variably affected by the essential oils. Levels of chlorogenic acid, which was the major phenolic compound in blueberry fruit, were enhanced by all of the essential oils in this study. Increased amounts of quercetin 3-galactoside and quercetin 3-arabinoside were also found in all treated fruit except samples treated with linalool or p-cymene. The major anthocyanin, malvidin 3-galactoside, was enhanced by all essential oils tested except linalool and p-cymene. The levels of other individual anthocyanins including petunidin 3-galactoside, delphinidin 3-galactoside, petunidin 3-glucoside, petunidin 3-arabinoside, delphinidin 3-arabinoside, and cyanidin 3-galactoside were higher in treated fruit compared to controls. Those essential oils that have positive effects on enhancing anthocyanins, phenolic compounds, and antioxidant activity of fruit, but inhibitory effects on microbial growth and decay development, deserve further evaluation.

  18. Noncompetitive Inhibition of 5-HT3 Receptors by Citral, Linalool, and Eucalyptol Revealed by Nonlinear Mixed-Effects Modeling

    PubMed Central

    Jarvis, Gavin E.; Barbosa, Roseli

    2016-01-01

    Citral, eucalyptol, and linalool are widely used as flavorings, fragrances, and cosmetics. Here, we examined their effects on electrophysiological and binding properties of human 5-HT3 receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. Data were analyzed using nonlinear mixed-effects modeling to account for random variance in the peak current response between oocytes. The oils caused an insurmountable inhibition of 5‐HT–evoked currents (citral IC50 = 120 µM; eucalyptol = 258 µM; linalool = 141 µM) and did not compete with fluorescently labeled granisetron, suggesting a noncompetitive mechanism of action. Inhibition was not use‐dependent but required a 30-second preapplication. Compound washout caused a slow (∼180 seconds) but complete recovery. Coapplication of the oils with bilobalide or diltiazem indicated they did not bind at the same locations as these channel blockers. Homology modeling and ligand docking predicted binding to a transmembrane cavity at the interface of adjacent subunits. Liquid chromatography coupled to mass spectrometry showed that an essential oil extracted from Lippia alba contained 75.9% citral. This inhibited expressed 5‐HT3 receptors (IC50 = 45 µg ml−1) and smooth muscle contractions in rat trachea (IC50 = 200 µg ml−1) and guinea pig ileum (IC50 = 20 µg ml−1), providing a possible mechanistic explanation for why this oil has been used to treat gastrointestinal and respiratory ailments. These results demonstrate that citral, eucalyptol, and linalool inhibit 5-HT3 receptors, and their binding to a conserved cavity suggests a valuable target for novel allosteric modulators. PMID:26669427

  19. Noncompetitive Inhibition of 5-HT3 Receptors by Citral, Linalool, and Eucalyptol Revealed by Nonlinear Mixed-Effects Modeling.

    PubMed

    Jarvis, Gavin E; Barbosa, Roseli; Thompson, Andrew J

    2016-03-01

    Citral, eucalyptol, and linalool are widely used as flavorings, fragrances, and cosmetics. Here, we examined their effects on electrophysiological and binding properties of human 5-HT3 receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. Data were analyzed using nonlinear mixed-effects modeling to account for random variance in the peak current response between oocytes. The oils caused an insurmountable inhibition of 5-HT-evoked currents (citral IC50 = 120 µM; eucalyptol = 258 µM; linalool = 141 µM) and did not compete with fluorescently labeled granisetron, suggesting a noncompetitive mechanism of action. Inhibition was not use-dependent but required a 30-second preapplication. Compound washout caused a slow (∼180 seconds) but complete recovery. Coapplication of the oils with bilobalide or diltiazem indicated they did not bind at the same locations as these channel blockers. Homology modeling and ligand docking predicted binding to a transmembrane cavity at the interface of adjacent subunits. Liquid chromatography coupled to mass spectrometry showed that an essential oil extracted from Lippia alba contained 75.9% citral. This inhibited expressed 5-HT3 receptors (IC50 = 45 µg ml(-1)) and smooth muscle contractions in rat trachea (IC50 = 200 µg ml(-1)) and guinea pig ileum (IC50 = 20 µg ml(-1)), providing a possible mechanistic explanation for why this oil has been used to treat gastrointestinal and respiratory ailments. These results demonstrate that citral, eucalyptol, and linalool inhibit 5-HT3 receptors, and their binding to a conserved cavity suggests a valuable target for novel allosteric modulators. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Identification of the chemotypes of Ocimum forskolei and Ocimum basilicum by NMR spectroscopy.

    PubMed

    Fatope, Majekodunmi O; Marwah, Ruchi G; Al Hadhrami, Nabil M; Onifade, Anthony K; Williams, John R

    2008-11-01

    The chemotypes of Ocimum forskolei Benth and Ocimum basilicum L. growing wild in Oman have been established by (13)C-NMR analyses of the vegetative and floral oils of the plants. The chemotypes, estragole for O. forskolei and linalool for O. basilicum, suggested by (13)C-NMR fingerprinting were also confirmed by GC-FID and GC/MS analyses. The oil of O. forskolei demonstrated better activities against bacteria and dermatophytes. The significance of the presence of estragole and linalool in the volatile oils of plants whose fragrances are traditionally inhaled, added to food, or rubbed on the skin are discussed.

  1. trans-2-Tritylcyclohexanol as a chiral auxiliary in permanganate-mediated oxidative cyclization of 2-methylenehept-5-enoates: application to the synthesis of trans-(+)-linalool oxide.

    PubMed

    Al Hazmi, Ali M; Sheikh, Nadeem S; Bataille, Carole J R; Al-Hadedi, Azzam A M; Watkin, Sam V; Luker, Tim J; Camp, Nicholas P; Brown, Richard C D

    2014-10-03

    The permanganate-mediated oxidative cyclization of a series of 2-methylenehept-5-eneoates bearing different chiral auxiliaries was investigated, leading to the discovery of trans-2-tritylcyclohexanol (TTC) as a highly effective chiral controller for the formation of the 2,5-substituted THF diol product with high diastereoselectivity (dr ∼97:3). Chiral resolution of (±)-TTC, prepared in one step from cyclohexene oxide, afforded (-)-(1S,2R)-TTC (er >99:1), which was applied to the synthesis of (+)-trans-(2S,5S)-linalool oxide.

  2. The survival of three strains of Arcobacter butzleri in the presence of lemon, orange and bergamot essential oils and their components in vitro and on food.

    PubMed

    Fisher, K; Rowe, C; Phillips, C A

    2007-05-01

    To test the effect of oils and vapours of lemon, sweet orange and bergamot and their components against three Arcobacter butzleri strains. The disc diffusion method was used to screen the oils and vapours against three strains of A. butzleri. In vitro bergamot was the most inhibitory essential oil (EO) and both citral and linalool were effective. On cabbage leaf, the water isolate was the least susceptible to bergamot EO, citral and linalool (1-2 log reduction), with the chicken isolate being the most susceptible (6-8 log reduction). However, the latter appeared not to be susceptible to vapours over 24 h although type strain and water isolate populations reduced by 8 logs. On chicken skin, the effectiveness of the oils was reduced compared with that on cabbage leaf. Bergamot was the most effective of the oils tested and linalool the most effective component. All strains tested were less susceptible in food systems than in vitro. Arcobacter isolates vary in their response to EO suggesting that the results of type strain studies should be interpreted with caution. Bergamot EO has the potential for the inhibition of this 'emerging' pathogen.

  3. Antigiardial activity of Ocimum basilicum essential oil.

    PubMed

    de Almeida, Igor; Alviano, Daniela Sales; Vieira, Danielle Pereira; Alves, Péricles Barreto; Blank, Arie Fitzgerald; Lopes, Angela Hampshire C S; Alviano, Celuta Sales; Rosa, Maria do Socorro S

    2007-07-01

    In this study, we investigated the effects of Ocimum basilicum essential oil on Giardia lamblia and on the modulation of the interaction of these parasites by peritoneal mouse macrophage. The essential oil (2 mg/ml) and its purified substances demonstrated antigiardial activity. Linalool (300 microg/ml), however, was able to kill 100% parasites after 1 h of incubation, which demonstrates its high antigiardial potential. Pretreatment of peritoneal mouse macrophages with 2 mg/ml essential oil dilution reduced in 79% the association index between these macrophages and G. lamblia, with a concomitant increase by 153% on nitric oxide production by the G. lamblia-ingested macrophages. The protein profiles and proteolitic activity of these parasite trophozoites, previously treated or not with 2 mg/ml essential oil or with the purified fractions, were also determined. After 1 and 2 h of incubation, proteins of lysates and culture supernatants revealed significant differences in bands patterns when compared to controls. Besides, the proteolitic activity, mainly of cysteine proteases, was clearly inhibited by the essential oil (2 mg/ml) and the purified linalool (300 microg/ml). These results suggest that, with G. lamblia, the essential oil from O. basilicum and its purified compounds, specially linalool, have a potent antimicrobial activity.

  4. Sensory and Instrumental Flavor Changes in Green Tea Brewed Multiple Times

    PubMed Central

    Lee, Jeehyun; Chambers, Delores; Chambers, Edgar

    2013-01-01

    Green teas in leaf form are brewed multiple times, a common selling point. However, the flavor changes, both sensory and volatile compounds, of green teas that have been brewed multiple times are unknown. The objectives of this study were to determine how the aroma and flavor of green teas change as they are brewed multiple times, to determine if a relationship exists between green tea flavors and green tea volatile compounds, and to suggest the number of times that green tea leaves can be brewed. The first and second brews of the green tea samples provided similar flavor intensities. The third and fourth brews provided milder flavors and lower bitterness and astringency when measured using descriptive sensory analysis. In the brewed liquor of green tea mostly linalool, nonanal, geraniol, jasmone, and β-ionone volatile compounds were present at low levels (using gas chromatography-mass spectrometry). The geraniol, linalool, and linalool oxide compounds in green tea may contribute to the floral/perfumy flavor. Green teas in leaf form may be brewed up to four times: the first two brews providing stronger flavor, bitterness, and astringency whereas the third and fourth brews will provide milder flavor, bitterness, and astringency. PMID:28239138

  5. Compositions of the volatile oils of Citrus macroptera and C. maxima.

    PubMed

    Rana, Virendra S; Blazquez, Maria A

    2012-10-01

    The essential oils obtained by hydrodistillation from the fresh peels of Citrus macroptera Montr. and C. maxima (Burm.) Merr. were analyzed by GC and GC/MS. The yields of oil ranged from 0.53% in C. macroptera to 0.13% in C. maxima cultivar (white). Forty-seven compounds were identified in the oils with limonene (55.3-80.0%), dodecyl acrylate (2.2-8.0%), geranial (0.4-3.5%), trans-linalool oxide (1.0-2.8%), alpha-terpineol (0.7-2.3%), linalool (0.7-1.5%) and cis-linalool oxide (0.5-1.4%) identified as major compounds. The oil ofC. macroptera contained limonene (55.3%), beta-caryophyllene (4.7%) and geranial (3.5%) as main compounds. Similarly, oils from two C. maxima (pink and white) cultivars were rich in limonene (72.0-80.0%), dodecyl acrylate (8.0-7.2%) and nootkatone (1.6-2.5%). C. maxima (pink and white) cultivars were found to contain higher amount of limonene (72.0 and 80.0%) as compared with C. macroptera (55.3%). The chemical compositions of the oils were found to be similar, but nootkatone (1.6-2.5%) was identified only in C. maxima cultivars.

  6. BIOLOGICAL PROPERTIES AND CHEMICAL COMPOSITION OF JATROPHA NEOPAUCIFLORA PAX

    PubMed Central

    Hernández-Hernández, A. B.; Alarcón-Aguilar, F. J.; Jiménez-Estrada, M.; Hernández-Portilla, L.B.; Flores-Ortiz, C.M.; Rodríguez-Monroy, M.A.; Canales-Martínez, M

    2017-01-01

    Background: Ethnopharmacological relevance. Jatropha neopauciflora (Pax) is an endemic species of the Tehuacan- Cuicatlan Valley, Mexico. This species has long been used as a remedy to alleviate illnesses of bacterial, fungal and viral origin. Aim of the study. Experimentally test the traditional use of Jatropha neopauciflora in Mexican traditional medicine. Materials and methods.: The methanol extract (MeOH1), of Jatropha neopauciflora (Euphorbiaceae) was obtained by maceration. Next, the methanol (MeOH2) and hexane (H) fractions were obtained. The essential oil was obtained by hydro- distillation. The extract, fractions and essential oil were analyzed by GC-MS. The antimicrobial activity was measured by the disc diffusion agar and radial inhibition growth methods. Results: The extract and fractions showed antibacterial activity against eleven strains (five Gram-positive and six Gram- negative) and a bacteriostatic effect in the survival curves for Staphylococcus aureus and Vibrio cholerae. The extract and fractions were also shown to have antifungal activity, particularly against Trichophyton mentagrophytes (CF50 = MeOH1: 1.07 mg/mL, MeOH2: 1.32 mg/mL and H: 1.08 mg/mL). The antioxidant activity of MeOH1 (68.6 μg/mL) was higher than for MeOH2 (108.1 μg/mL). The main compounds of the essential oil were β-pinene, 1,3,8-p-menthatriene, ledene, m- menthane, linalyl acetate and 3-carene. The main compounds of MeOH1 were β-sitosterol, lupeol and pyrogallol; the main compounds of MeOH2 were β-sitosterol, spathulenol, coniferyl alcohol and lupeol; and the main compounds of H were β-sitostenone, γ-sitosterol and stigmasterol. Conclusions: This study indicates that Jatropha neopauciflora is a potential antibacterial and antifungal agent. PMID:28331913

  7. Study on essential oils from the leaves of two Vietnamese plants: Jasminum subtriplinerve C.L. Blume and Vitex quinata (Lour) F.N. Williams.

    PubMed

    Dai, Do N; Thang, Tran D; Ogunwande, Isiaka A; Lawal, Oladipupo A

    2016-01-01

    The essential oil constituents of the leaves of Jasminum subtriplinerve (Oleaceae) and Vitex quinata (Verbanaceae) cultivated in Vietnam were analysed by gas chromatography--flame ionisation detector (GC-FID) and gas chromatography--mass spectrometry (GC-MS) techniques. The main constituents identified in J. subtriplinerve were mainly oxygenated monoterpenes represented by linalool (44.2%), α-terpineol (15.5%), geraniol (19.4%) and cis-linalool oxide (8.8%). The quantitative significant components of V. quinata were terpene hydrocarbons comprising of β-pinene (30.1%), β-caryophyllene (26.9%) and β-elemene (7.4%). The chemical compositions of the essential oils are being reported for the first time.

  8. Dose-Dependent Behavioral Response of the Mosquito Aedes albopictus to Floral Odorous Compounds

    PubMed Central

    Hao, Huiling; Sun, Jingcheng; Dai, Jianqing

    2013-01-01

    The value of using plant volatiles as attractants for trapping and spatial repellents to protect hosts against mosquitoes has been widely recognized. The current study characterized behavioral responses of Aedes albopictus (Skuse) (Diptera: Culicidae) to different concentrations, ranging from 6 to 96%, of several common floral odorous compounds, including linalool, geraniol, citronellal, eugenol, anisaldehyde, and citral, using a wind tunnel olfactometer system. The results indicated that female mosquitoes reacted differently to different concentrations of the tested compounds, and the reactions also were different when those chemicals were tested alone or in the presence of human host odor. When tested alone, anisaldehyde was attractive at all tested concentrations, eugenol was attractive only at concentrations of 48–96%, while citronellal, linalool, citral, and geraniol were attractive at lower concentrations and repellent at higher concentrations. When tested in the presence of a human host, all compounds except for anisaldehyde at all tested concentrations showed host-seeking inhibition to certain degrees. Based on the results, it was concluded that anisaldehyde was effective in attracting Ae. albopictus when used alone but could also remarkably inhibit the host-seeking ability at a concentration of 96%, while citral, geraniol, linalool, citronellal, and eugenol are suitable as spatial repellents. PMID:24779928

  9. Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey.

    PubMed

    Jerković, Igor; Kuś, Piotr M

    2017-11-06

    A volatile profile of ramson (wild garlic, Allium ursinum L.) honey was investigated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) followed by gas chromatography and mass spectrometry (GC-FID/GC-MS) analyses. The headspace was dominated by linalool derivatives: cis - and trans -linalool oxides (25.3%; 9.2%), hotrienol (12.7%), and linalool (5.8%). Besides direct extraction with dichloromethane and pentane/diethyl ether mixture (1:2, v / v ), two solvent sequences (I: pentane → diethyl ether; II: pentane → pentane/diethyl ether (1:2, v / v ) → dichloromethane) were applied. Striking differences were noted among the obtained chemical profiles. The extracts with diethyl ether contained hydroquinone (25.8-36.8%) and 4-hydroxybenzoic acid (11.6-16.6%) as the major compounds, while ( E )-4-(r-1',t-2',c-4'-trihydroxy-2',6',6'-trimethylcyclohexyl)but-3-en-2-one predominated in dichloromethane extracts (18.3-49.1%). Therefore, combination of different solvents was crucial for the comprehensive investigation of volatile organic compounds in this honey type. This particular magastigmane was previously reported only in thymus honey and hydroquinone in vipers bugloss honey, while a combination of the mentioned predominant compounds is unique for A. ursinum honey.

  10. Essential Oil of Aristolochia trilobata: Synthesis, Routes of Exposure, Acute Toxicity, Binary Mixtures and Behavioral Effects on Leaf-Cutting Ants.

    PubMed

    de Oliveira, Bruna Maria S; Melo, Carlisson R; Alves, Péricles B; Santos, Abraão A; Santos, Ane Caroline C; Santana, Alisson da S; Araújo, Ana Paula A; Nascimento, Pedro E S; Blank, Arie F; Bacci, Leandro

    2017-02-25

    Plants of the genus Aristolochia have been frequently reported as important medicinal plants. Despite their high bioactive potential, to date, there are no reports of their effects on leaf-cutting ants. Therefore, the present study aimed to evaluate the insecticidal activity of the essential oil of Aristolochia trilobata and its major components on Atta sexdens and Acromyrmex balzani , two species of leaf-cutting ants. The bioassays were performed regarding routes of exposure, acute toxicity, binary mixtures of the major components and behavioral effects. Twenty-five components were identified in the essential oil of A. trilobata using a gas chromatographic system equipped with a mass spectrometer and a flame ionization detector. The components found in higher proportions were sulcatyl acetate, limonene, p -cymene and linalool. The essential oil of A. trilobata and its individual major components were efficient against A. balzani and A. sexdens workers when applied by fumigation. These components showed fast and efficient insecticidal activity on ants. The components acted synergistically and additively on A. balzani and A. sexdens , respectively, and caused a strong repellency/irritability in the ants. Thus, our results demonstrate the great potential of the essential oil of A. trilobata and its major components for the development of new insecticides.

  11. Volatiles Emitted at Different Flowering Stages of Jasminum sambac and Expression of Genes Related to α-Farnesene Biosynthesis.

    PubMed

    Yu, Ying; Lyu, Shiheng; Chen, Dan; Lin, Yi; Chen, Jianjun; Chen, Guixin; Ye, Naixing

    2017-03-29

    Fresh jasmine flowers have been used to make jasmine teas in China, but there has been no complete information about volatile organic compound emissions in relation to flower developmental stages and no science-based knowledge about which floral stage should be used for the infusion. This study monitored volatile organic compounds emitted from living flowers of Jasminum sambac (L.) Ait. 'Bifoliatum' at five developmental stages and also from excised flowers. Among the compounds identified, α-farnesene, linalool, and benzyl acetate were most abundant. Since α-farnesene is synthesized through the Mevalonate pathway, four genes encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), farnesyl pyrophosphate synthase, and terpene synthase were isolated. Their expression patterns in living flowers at the five stages and in excised flowers coincided with the emission patterns of α-farnesene. Application of lovastatin, a HMGR inhibitor, significantly reduced the expression of the genes and greatly decreased the emission of α-farnesene. The sweet scent was diminished from lovastatin-treated flowers as well. These results indicate that α-farnesene is an important compound emitted from jasmine flowers, and its emission patterns suggest that flowers at the opening stage or flower buds 8 h after excision should be used for the infusion of tea leaves.

  12. An Efficient Extraction Method for Fragrant Volatiles from Jasminum sambac (L.) Ait.

    PubMed

    Ye, Qiuping; Jin, Xinyi; Zhu, Xinliang; Lin, Tongxiang; Hao, Zhilong; Yang, Qian

    2015-01-01

    The sweet smell of aroma of Jasminum sambac (L.) Ait. is releasing while the flowers are blooming. Although components of volatile oil have been extensively studied, there are problematic issues, such as low efficiency of yield, flavour distortion. Here, the subcritical fluid extraction (SFE) was performed to extract fragrant volatiles from activated carbon that had absorbed the aroma of jasmine flowers. This novel method could effectively obtain main aromatic compounds with quality significantly better than solvent extraction (SE). Based on the analysis data with response surface methodology (RSM), we optimized the extraction conditions which consisted of a temperature of 44°C, a solvent-to-material ratio of 3.5:1, and an extraction time of 53 min. Under these conditions, the extraction yield was 4.91%. Furthermore, the key jasmine essence oil components, benzyl acetate and linalool, increase 7 fold and 2 fold respectively which lead to strong typical smell of the jasmine oil. The new method can reduce spicy components which lead to the essential oils smelling sweeter. Thus, the quality of the jasmine essence oil was dramatically improved and yields based on the key component increased dramatically. Our results provide a new effective technique for extracting fragrant volatiles from jasmine flowers.

  13. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus

    PubMed Central

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1–7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC50 values (lethal concentration for 50% mortality) showed that C. maculatus (LC50 = 1.34 μL/L air) was more susceptible than T. confusum (LC50 = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides. PMID:23227365

  14. The Biosynthetic Origin of Irregular Monoterpenes in Lavandula

    PubMed Central

    Demissie, Zerihun A.; Erland, Lauren A. E.; Rheault, Mark R.; Mahmoud, Soheil S.

    2013-01-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s−1, respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering. PMID:23306202

  15. Antifungal and Herbicidal Effects of Fruit Essential Oils of Four Myrtus communis Genotypes.

    PubMed

    Kordali, Saban; Usanmaz, Ayse; Cakir, Ahmet; Komaki, Amanmohammad; Ercisli, Sezai

    2016-01-01

    The chemical composition of the essential oils isolated by hydrodistillation from the fruits of four selected Myrtus communis L. genotypes from Turkey was characterized by GC-FID and GC/MS analyses. 1,8-Cineole (29.20-31.40%), linalool (15.67-19.13%), α-terpineol (8.40-18.43%), α-pinene (6.04-20.71%), and geranyl acetate (3.98-7.54%) were found to be the major constituents of the fruit essential oils of all M. communis genotypes investigated. The oils were characterized by high amounts of oxygenated monoterpenes, representing 73.02-83.83% of the total oil compositions. The results of the fungal growth inhibition assays showed that the oils inhibited the growth of 19 phytopathogenic fungi. However, their antifungal activity was generally lower than that of the commercial pesticide benomyl. The herbicidal effects of the oils on the seed germination and seedling growth of Amaranthus retroflexus L., Chenopodium album L., Cirsium arvense (L.) Scop., Lactuca serriola L., and Rumex crispus L. were also determined. The oils completely or partly inhibited the seed germinations and seedling growths of the plants. The findings of the present study suggest that the M. communis essential oils might have potential to be used as natural herbicides as well as fungicides. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene.

    PubMed

    Kordali, Saban; Cakir, Ahmet; Ozer, Hakan; Cakmakci, Ramazan; Kesdek, Memis; Mete, Ebru

    2008-12-01

    The chemical composition of essential oil isolated by hydrodistillation from the aerial parts of Origanum acutidens was analyzed by GC-MS. Carvacrol (87.0%), p-cymene (2.0%), linalool acetate (1.7%), borneol (1.6%) and beta-caryophyllene (1.3%) were found to be as main constituents. Antifungal, phytotoxic and insecticidal activities of the oil and its aromatic monoterpene constituents, carvacrol, p-cymene and thymol were also determined. The antifungal assays showed that O. acutidens oil, carvacrol and thymol completely inhibited mycelial growth of 17 phytopathogenic fungi and their antifungal effects were higher than commercial fungicide, benomyl. However, p-cymene possessed lower antifungal activity. The oil, carvacrol and thymol completely inhibited the seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus and also showed a potent phytotoxic effect against these plants. However, p-cymene did not show any phytotoxic effect. Furthermore, O. acutidens oil showed 68.3% and 36.7% mortality against Sitophilus granarius and Tribolium confusum adults, respectively. The findings of the present study suggest that antifungal and herbicidal properties of the oil can be attributed to its major component, carvacrol, and these agents have a potential to be used as fungicide, herbicide as well as insecticide.

  17. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus.

    PubMed

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1-7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC(50) values (lethal concentration for 50% mortality) showed that C. maculatus (LC(50) = 1.34 μL/L air) was more susceptible than T. confusum (LC(50) = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides.

  18. GC-MS analyses of the volatiles of Houttuynia cordata Thunb.

    PubMed

    Yang, Zhan-Nan; Luo, Shi-Qiong; Ma, Jing; Wu, Dan; Hong, Liang; Yu, Zheng-Wen

    2016-09-01

    GC-MS is the basis of analysis of plant volatiles. Several protocols employed for the assay have resulted in inconsistent results in the literature. We developed a GC-MS method, which were applied to analyze 25 volatiles (α-pinene, camphene, β-pinene, 2-methyl-2-pentenal, myrcene, (+)-limonene, eucalyptol, trans-2-hexenal, γ-terpinene, cis-3-hexeneyl-acetate, 1-hexanol, α-pinene oxide, cis-3-hexen-1-ol, trans-2-hexen-1-ol, decanal, linalool, acetyl-borneol, β-caryophyllene, 2-undecanone, 4-terpineol, borneol, decanol, eugenol, isophytol and phytol) of Houttuynia cordata Thunb. Linear behaviors for all analytes were observed with a linear regression relationship (r2>0.9991) at the concentrations tested. Recoveries of the 25 analytes were 98.56-103.77% with RSDs <3.0%. Solution extraction (SE), which involved addition of an internal standard, could avoid errors for factors in sample preparation by steam distillation (SD) and solidphase micro extraction (SPME). Less sample material (≍0.05g fresh leaves of H. cordata) could be used to determine the contents of 25 analytes by our proposed method and, after collection, did not affect the normal physiological activity or growth of H. cordata. This method can be used to monitor the metabolic accumulation of H. cordata volatiles.

  19. Identification of Ginger (Zingiber officinale Roscoe) Volatiles and Localization of Aroma-Active Constituents by GC-Olfactometry.

    PubMed

    Pang, Xueli; Cao, Jianmin; Wang, Dabin; Qiu, Jun; Kong, Fanyu

    2017-05-24

    For the characterization of chemical components contributing to the aroma of ginger, which could benefit the development of deep-processed ginger products, volatile extracts were isolated by a combination of direct solvent extraction-solvent-assisted flavor evaporation and static headspace analysis. Aroma-impact components were identified by gas chromatography-olfactometry-mass spectrometry, and the most potent odorants were further screened by aroma extract dilution analysis (AEDA) and static headspace dilution analysis (SHDA). The AEDA results revealed that geranial, eucalyptol, β-linalool, and bornyl acetate were the most potent odorants, exhibiting the highest flavor dilution factor (FD factor) of 2187. SHDA indicated that the predominant headspace odorants were α-pinene and eucalyptol. In addition, odorants exhibiting a high FD factor in SHDA were estimated to be potent aroma contributors in AEDA. The predominant odorants were found to be monoterpenes and sesquiterpenes, as along with their oxygenated derivatives, providing minty, lemon-like, herbal, and woody aromas. On the other hand, three highly volatile compounds detected by SHDA were not detected by AEDA, whereas 34 high-polarity, low-volatility compounds were identified only by AEDA, demonstrating the complementary natures of SHDA and AEDA and the necessity of utilizing both techniques to accurately characterize the aroma of ginger.

  20. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans

    PubMed Central

    2012-01-01

    Background Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic β-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of β-myrcene to (S)-(+)-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid. A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. Results Polar effects were absent in the in-frame deletion mutants C. defragrans Δldi and C. defragrans ΔgeoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. Conclusions In-frame deletion mutants of genes in the anaerobic β-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the β-myrcene degradation pathway. Growth on cyclic monoterpenes independent of the initial enzyme LDI suggests the presence of a second enzyme system activating unsaturated hydrocarbons. PMID:22947208

  1. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p-coumaric acid against food-borne bacteria Bacillus cereus and Salmonella typhimurium.

    PubMed

    Bag, A; Chattopadhyay, R R

    2017-11-01

    The aim of the study was to evaluate possible antibacterial and antibiofilm efficacy of a bacteriocin, nisin with two essential oil components linalool and p-coumaric acid in combination against food-borne bacteria Bacillus cereus and Salmonella typhimurium. Their inhibition effects on planktonic cells and preformed biofilms were evaluated using microbroth dilution and checkerboard titration methods. Nisin/p-coumaric acid combination showed synergistic effects against planktonic cells of both the studied bacteria, whereas nisin/linalool combination showed synergistic activity against B. cereus and additive effect against S. typhimurium. In preformed biofilms, nisin by itself failed to show >50% antibiofilm efficacy against both the studied bacteria, but in combination with linalool and p-coumaric acid, it exerted >50% antibiofilm efficacy. On the basis of fractional inhibitory concentration indices values, nisin/p-coumaric acid combination exhibited synergistic antibiofilm activity, whereas nisin/linalool combination showed additive effects against preformed biofilms of studied bacteria. The results provide evidence that p-coumaric acid due to its synergistic interactions with nisin against planktonic cells and biofilms of both Gram-positive and Gram-negative food-borne bacteria enhanced the antibacterial spectrum of nisin, which subsequently may facilitate their use in the food industry. In the present work, synergistic interactions between a bacteriocin, nisin and essential oil component p-coumaric acid on planktonic cells as well as on biofilms of Gram-positive and Gram-negative food-borne bacteria have been reported. The results of this study provide evidence that nisin/p-coumaric acid combination can be considered as a promising source for development of more potent broad spectrum antimicrobial blend for food preservation, which subsequently may facilitate their use in the food industry. To the best of our knowledge, this is the first report of the antibacterial and antibiofilm efficacy of nisin in combination with essential oil components against food-borne bacteria. © 2017 The Society for Applied Microbiology.

  2. Development and Assessment of Plant-Based Synthetic Odor Baits for Surveillance and Control of Malaria Vectors

    PubMed Central

    Nyasembe, Vincent O.; Tchouassi, David P.; Kirwa, Hillary K.; Foster, Woodbridge A.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn

    2014-01-01

    Background Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. Methodology and Principal Finding Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. Conclusion and Significance The results highlight the potential of plant-based odors and specifically linalool oxide, with or without carbon dioxide, for surveillance and mass trapping of malaria vectors. PMID:24587059

  3. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors.

    PubMed

    Nyasembe, Vincent O; Tchouassi, David P; Kirwa, Hillary K; Foster, Woodbridge A; Teal, Peter E A; Borgemeister, Christian; Torto, Baldwyn

    2014-01-01

    Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. The results highlight the potential of plant-based odors and specifically linalool oxide, with or without carbon dioxide, for surveillance and mass trapping of malaria vectors.

  4. Fragrance ingredient labelling in products on sale in the U.K.

    PubMed

    Buckley, D A

    2007-08-01

    The seventh amendment of the European Union (EU) Cosmetics Directive (March 2005) and the Detergents Regulations of the EU (October 2005) are now legal requirements in Europe. Cosmetic products and detergents must be labelled for 26 individual named fragrances, when present at concentrations of > 10 parts per million (p.p.m.) in leave-on products and > 100 p.p.m. in rinse-off products. To make an assessment of the exposure pattern to fragrance of the U.K. consumer and to determine the frequency with which the constituent fragrances of fragrance mix I (FM I) and fragrance mix II (FM II) are included in products currently sold in the U.K. A study of perfumed cosmetic and household products available on the shelves of U.K. retailers was carried out in January 2006. Products were included if 'parfum' or 'aroma' was listed among the ingredients. Three hundred products were surveyed and any of the 26 listed fragrances named on the label were recorded. The top six most frequently labelled fragrances were linalool (190; 63%), limonene (189; 63%), citronellol (145; 48%), geraniol (126; 42%), butyl phenyl methyl propional (Lilial(trade mark)) (126; 42%) and hexyl cinnamal (125; (42%). One of these, geraniol, is present in FM I and two others, citronellol and hexyl cinnamal, in FM II, thus tested as part of the British Standard patch test series. The frequencies of other constituents of FM I were as follows: eugenol, 80 (27%); hydroxycitronellal, 52 (17%); isoeugenol, 27 (9%); cinnamic alcohol, 25 (8%); amyl cinnamal, 22 (7%); cinnamal, 17 (6%); Evernia prunastri (oak moss absolute), 13 (4%). The other constituents of FM II occurred as follows: coumarin, 90 (30%); hydroxyisohexyl-3-cyclohexene carboxaldehyde (Lyral(trade mark)), 88 (29%); citral, 74 (25%); farnesol, 23 (8%). Linalool (n = 46; 66%) was the most frequently found fragrance in 70 personal care products (soap, shampoo, shower gel). Linalool (n = 47; 80%) and limonene (n = 45; 76%) were the most frequent in 59 products for men (e.g. aftershave). Limonene (n = 29; 51%) predominated in 57 household products (washing-up liquid, detergent). Limonene (n = 43; 98%) and linalool (n = 42; 95%) were the most frequent fragrances in 44 perfumes for women. Alpha-isomethyl ionone (n = 28; 72%) was the most frequent in 39 cosmetics (foundation, lipstick, etc). Citronellol predominated (n = 15; 88%) in 17 deodorants and limonene (n = 9; 64%) was the commonest in 14 dental products (toothpaste and mouthwash). Thirty-four products (11%) contained none of the listed fragrances but were labelled as containing 'parfum' or 'aroma'. There is ongoing consumer exposure to the most frequent sensitizers in FM I: E. prunastri, isoeugenol and the cinnamon fragrances cinnamal and cinnamic alcohol. Hydroxyisohexyl-3-cyclohexene carboxaldehyde (Lyral(trade mark)) is present at significant concentrations in almost one-third of products. Linalool and limonene, fragrance terpenes which are significant allergens in their oxidized state, are the most frequent fragrances encountered by individuals living in the U.K. The current exposure pattern of the U.K. consumer suggests that we should add oxidized limonene and oxidized linalool to the test series for patients suspected to have fragrance allergy.

  5. Chemical Diversity in Lippia alba (Mill.) N. E. Brown Germplasm

    PubMed Central

    Camêlo, Lídia Cristina Alves; Pinheiro, José Baldin; Andrade, Thiago Matos; Alves, Péricles Barreto

    2015-01-01

    The aim of this study was to perform chemical characterization of Lippia alba accessions from the Active Germplasm Bank of the Federal University of Sergipe. A randomized block experimental design with two replications was applied. The analysis of the chemical composition of the essential oils was conducted using a gas chromatograph coupled to a mass spectrometer. The chemical composition of the essential oils allowed the accessions to be allocated to the following six groups: group 1: linalool, 1,8-cineole, and caryophyllene oxide; group 2: linalool, geranial, neral, 1,8-cineol, and caryophyllene oxide; group 3: limonene, carvone, and sabinene; group 4: carvone, limonene, g-muurolene, and myrcene; group 5: neral, geranial, and caryophyllene oxide; and group 6: geranial, neral, o-cymene, limonene, and caryophyllene oxide. PMID:26075292

  6. Evaluation of essential oils in beef cattle manure slurries and applications of select compounds to beef feedlot surfaces to control zoonotic pathogens.

    PubMed

    Wells, J E; Berry, E D; Guerini, M N; Varel, V H

    2015-02-01

    To evaluate natural terpene compounds for antimicrobial activities and determine whether these compounds could be used to control microbial activities and pathogens in production animal facilities. Thymol, geraniol, glydox, linalool, pine oil, plinol and terpineol were tested in laboratory studies for ability to control the production of odorous volatile fatty acid compounds and reduce pathogen levels in manure slurry preparations. Thymol is a terpene phenolic compound and was most effective for reducing fermentation products and pathogen levels (P < 0.05), followed by the extracts linalool, pine oil and terpineol, which are terpene alcohols. Select compounds thymol, linalool and pine oil were further evaluated in two separate studies by applying the agents to feedlot surfaces in cattle pens. Feedlot surface material (FSM; manure and soil) was collected and analysed for fermentation products, levels of coliforms and total Escherichia coli, and the presence of E. coli O157:H7, Campylobacter, Salmonella, Listeria and L. monocytogenes. The reduction in fermentation products but not pathogens was dependent on the moisture present in the FSM. Treatment with 2000 ppm thymol reduced the prevalence of E. coli O157:H7 but not Listeria. In a separate study, treatment with 4000 ppm pine oil reduced E. coli O157:H7, Listeria and Campylobacter (P < 0.05). Linalool was tested at two levels (2000 and 4000 ppm) and did not affect pathogen levels at either concentration. Natural compounds bearing terpenes can control pathogenic bacteria in treated manures and when applied to the feedlot surface in production cattle systems. Pine oil is a cheaper alternative to thymol and may be a useful treatment for controlling pathogens. The control of bacterial pathogens in animal productions systems is an important step in preharvest food safety. Waste products, such as pine oil extract, from the pulp wood industry may have application for treating feedlot pens and manures to reduce the pathogen load. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  7. Environmental and seasonal impacts on the chemical composition of Satureja horvatii Šilić (Lamiaceae) essential oils.

    PubMed

    Lakušić, Branislava; Ristić, Mihailo; Slavkovska, Violeta; Milenković, Marina; Lakušić, Dmitar

    2011-03-01

    The chemical composition of the essential oils of Satureja horvatii Šilić from two natural habitats (Mt. Orjen and Mt. Lovćen in Montenegro) and from cultivated plants (Belgrade, Serbia) were characterized. For the latter, plants from the locus classicus, i.e., Orjenske Lokve (Mt. Orjen), were transferred to Belgrade and, after three years of cultivation, the chemical composition of their essential oils at different phenological stages was analyzed. The essential oils were obtained from the aerial parts of the plants by hydrodistillation and analyzed by GC and GC/MS. The yields and chemical compositions of the S. horvatii oils showed significant differences between the plants collected in the natural habitats and those from cultivation, as well as between the plants at different phenological stages. In the populations from the natural habitats, growing in Mediterranean conditions, the most abundant oil constituents were the phenols thymol (63.7% in the samples from Mt. Orjen) or carvacrol (68.1% in the samples from Mt. Lovćen), while the oils from the cultivated plants (Belgrade), growing in continental conditions, were dominated by linalool (up to 65.8 and 55.9% in average). The basic characteristics of the essential oil from plants at the early phenological stage (before flowering) were high percentages of linalool (37.4%), thymol (27.3%), and carvacrol (12.2%). At the stage of flowering, the percentage of linalool (56.6-57.5%) increased, while those of thymol (15.5-15.8%) and carvacrol (1.4-1.5%) significantly decreased. The essential oil of plants in the full stage of fruiting was characterized by the domination of linalool (58.4 and 65.8%) and lower percentages of thymol (7.6 and 1.3%) and carvacrol (0.7 and 0.1%). In conclusion, the oil composition of S. horvatii was found to depend on the pedoclimatic conditions of the habitat and the phenological stage of the plants. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  8. New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers.

    PubMed

    Al-Massarani, Shaza M; El Gamal, Ali A; Abd El Halim, Mohamed F; Al-Said, Mansour S; Abdel-Kader, Maged S; Basudan, Omer A; Alqasoumi, Saleh I

    2017-01-01

    The total extract of Albizia lebbeck flowers was examined in vivo for its possible hepatoprotective activity in comparison with the standard drug silymarin at two doses. The higher dose expressed promising activity especially in reducing the levels of AST, ALT and bilirubin. Fractionation via liquid-liquid partition and reexamination of the fractions revealed that the n -butanol fraction was the best in improving liver biochemical parameters followed by the n -hexane fraction. However, serum lipid parameters were best improved with CHCl 3 fraction. The promising biological activity results initiated an intensive chromatographic purification of A. lebbeck flowers fractions. Two compounds were identified from natural source for the first time, the acyclic farnesyl sesquiterpene glycoside1-O-[6-O- α -l-arabinopyranosyl- β -d-glucopyranoside]-(2 E ,6 E -)-farnesol ( 6 ) and the squalene derivative 2,3-dihydroxy-2,3-dihydrosqualene ( 9 ), in addition to eight compounds reported here for the first time from the genus Albizia ; two benzyl glycosides, benzyl 1-O- β -d-glucopyranoside ( 1 ) and benzyl 6-O- α -l-arabinopyranosyl β -d-glucopyranoside ( 2 ); three acyclic monoterpene glycosides, linalyl β -d-glucopyranoside ( 3 ) and linalyl 6-O- α -l-arabinopyranosyl- β -d-glucopyranoside ( 4 ); (2 E )-3,7-dimethylocta-2,6-dienoate-6-O- α -l arabinopyranosyl- β -d-glucopyranoside ( 5 ), two oligoglycosides, n -hexyl- α -l arabinopyranosyl-(1 → 6)- β -d-glucopyranoside (creoside) ( 7 ) and n -octyl α -l-arabinopyranosyl-(1 → 6)- β -d-glucopyranoside (rhodiooctanoside) ( 8 ); and ethyl fructofuranoside ( 10 ). The structures of the isolated compounds were elucidated based on extensive examination of their spectroscopic 1D and 2D-NMR, MS, UV, and IR data. It is worth mentioning that, some of the isolated linalol glycoside derivatives were reported as aroma precursors.

  9. Geraniol and Geranial Dehydrogenases Induced in Anaerobic Monoterpene Degradation by Castellaniella defragrans

    PubMed Central

    Lüddeke, Frauke; Wülfing, Annika; Timke, Markus; Germer, Frauke; Weber, Johanna; Dikfidan, Aytac; Rahnfeld, Tobias; Linder, Dietmar; Meyerdierks, Anke

    2012-01-01

    Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (kcat/Km = 2.02 × 106 M−1 s−1), followed by geraniol (kcat/Km = 1.57 × 106 M−1 s−1). Apparent Km values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid. PMID:22286981

  10. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    PubMed

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  11. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans.

    PubMed

    Lüddeke, Frauke; Wülfing, Annika; Timke, Markus; Germer, Frauke; Weber, Johanna; Dikfidan, Aytac; Rahnfeld, Tobias; Linder, Dietmar; Meyerdierks, Anke; Harder, Jens

    2012-04-01

    Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.

  12. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki

    2014-01-01

    Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.

  13. Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica, and Opuntia prolifera growing on Catalina Island, California.

    PubMed

    Wright, Cynthia R; Setzer, William N

    2014-01-01

    The essential oils from the cladodes of Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing wild on Santa Catalina Island, California, were obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). Terpenoids were the dominant class of volatiles in O. littoralis, with the two main components being the furanoid forms of cis-linalool oxide (10.8%) and trans-linalool oxide (8.8%). Fatty acid-derived compounds dominated the essential oil of O. ficus-indica with linoleic acid (22.3%), palmitic acid (12.7%), lauric acid (10.5%) and myristic acid (4.2%) as major fatty acids. O. prolifera oil was composed of 46.6% alkanes and the primary hydrocarbon component was heptadecane (19.2%). Sixteen compounds were common to all the three Opuntia species.

  14. Influence of different extraction methods on the yield and linalool content of the extracts of Eugenia uniflora L.

    PubMed

    Galhiane, Mário S; Rissato, Sandra R; Chierice, Gilberto O; Almeida, Marcos V; Silva, Letícia C

    2006-09-15

    This work has been developed using a sylvestral fruit tree, native to the Brazilian forest, the Eugenia uniflora L., one of the Mirtaceae family. The main goal of the analytical study was focused on extraction methods themselves. The method development pointed to the Clevenger extraction as the best yield in relation to SFE and Soxhlet. The SFE method presented a good yield but showed a big amount of components in the final extract, demonstrating low selectivity. The essential oil extracted was analyzed by GC/FID showing a large range of polarity and boiling point compounds, where linalool, a widely used compound, was identified. Furthermore, an analytical solid phase extraction method was used to clean it up and obtain separated classes of compounds that were fractionated and studied by GC/FID and GC/MS.

  15. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis).

    PubMed

    Green, Sol A; Chen, Xiuyin; Nieuwenhuizen, Niels J; Matich, Adam J; Wang, Mindy Y; Bunn, Barry J; Yauk, Yar-Khing; Atkinson, Ross G

    2012-03-01

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers.

  16. GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities.

    PubMed

    Jiang, Hao; Wang, Jin; Song, Li; Cao, Xianshuang; Yao, Xi; Tang, Feng; Yue, Yongde

    2016-03-28

    Interest in essential oils with pesticidal activity against insects and pests is growing. In this study, essential oils from different parts (leaves, twigs and seeds) of Cinnamomum camphora L. Presl were investigated for their chemical composition, and insecticidal and repellent activities against the cotton aphid. The essential oils, obtained by hydrodistillation, were analyzed by GC×GC-TOFMS. A total of 96 components were identified in the essential oils and the main constituents found in the leaves and twigs were camphor, eucalyptol, linalool and 3,7-dimethyl-1,3,7-octatriene. The major components found in the seeds were eucalyptol (20.90%), methyleugenol (19.98%), linalool (14.66%) and camphor (5.5%). In the contact toxicity assay, the three essential oils of leaves, twigs and seeds exhibited a strong insecticidal activity against cotton aphids with LC50 values of 245.79, 274.99 and 146.78 mg/L (after 48 h of treatment), respectively. In the repellent assay, the highest repellent rate (89.86%) was found in the seed essential oil at the concentration of 20 μL/mL after 24 h of treatment. Linalool was found to be a significant contributor to the insecticidal and repellent activities. The results indicate that the essential oils of C. camphora might have the potential to be developed into a natural insecticide or repellent for controlling cotton aphids.

  17. Safety assessment of Zanthoxylum alatum Roxb. essential oil, its antifungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits.

    PubMed

    Prakash, Bhanu; Singh, Priyanka; Mishra, Prashant Kumar; Dubey, N K

    2012-02-01

    The investigation deals with antifungal, antiaflatoxin and antioxidant efficacy of Zanthoxylum alatum Roxb. essential oil (EO), its two major constituents and their comparison with five commonly used organic acid preservatives. The chemical profile of EO, characterized through GC and GC-MS analysis, revealed linalool (56.10%) and methyl cinnamate (19.73%) as major components. The EO, linalool and methyl cinnamate completely inhibited the growth of a toxigenic strain of A. flavus (LHP-10) as well as aflatoxin B(1) secretion at different concentrations. Methyl cinnamate was found to be more efficacious than EO, linalool and five organic acid preservatives, showing antifungal and antiaflatoxigenic efficacy at a low concentration (0.6 μl/ml) and the nature of its toxicity was fungicidal. However, EO showed strong antioxidant activity with an IC(50) value at 5.6 μl/ml. Moreover, EO was found to have negligible mammalian toxicity as its LD(50) value, determined through oral administration on mice, was calculated to be 6124μl/kg body weight during safety profile assessment. During in vivo investigation on fruit systems, the Zanthoxylum EO, when tested as fumigant, provided 66.27% and 86.33% protection respectively at 1.25 μl/ml and 2.5 μl/ml against fungi infesting Piper nigrum L. fruits demonstrating its practical efficacy as a plant based antimicrobial for post harvest application. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Overproduction of isoprenoids by Saccharomyces cerevisiae in a synthetic grape juice medium in the absence of plant genes.

    PubMed

    Camesasca, L; Minteguiaga, M; Fariña, L; Salzman, V; Aguilar, P S; Gaggero, C; Carrau, F

    2018-06-06

    The objective of this work is to demonstrate if the hexaprenyl pyrophosphate synthetase Coq1p might be involved in monoterpenes synthesis in Saccharomyces cerevisiae, although its currently known function in yeast is to catalyze the first step in ubiquinone biosynthesis. However, in a BY4743 laboratory strain, the presence of an empty plasmid in a chemically defined grape juice medium results in a statistically significant increase of linalool, (E)-nerolidol and (E,E)-farnesol. When COQ1 is overexpressed from a plasmid, the levels of the volatile isoprenoids are further increased. Furthermore, overexpression of COQ1 in the same genetic context but with a mutated farnesyl pyrophosphate synthetase (erg20 mutation K197E), results in statistically significant higher levels of linalool (above 750 μg/L), geraniol, α-terpineol, and the sesquiterpenes, farnesol and nerolidol (total concentration of volatile isoprenoids surpasses 1300 μg/L). We show that the levels of monoterpenes and sesquiterpenes that S. cerevisiae can produce, in the absence of plant genes, depend on the composition of the medium and the genetic context. To the best of our knowledge, this is the highest level of linalool produced by S. cerevisiae up to now. Further research will be needed for understanding how COQ1 and the medium composition might interact to increase flavor complexity of fermented beverages. Copyright © 2018. Published by Elsevier B.V.

  19. Field evaluation of four spatial repellent devices against Arkansas rice-land mosquitoes.

    PubMed

    Dame, David A; Meisch, Max V; Lewis, Carolyn N; Kline, Daniel L; Clark, Gary G

    2014-03-01

    Four commercially available spatial repellent devices were tested in a rice-land habitat near Stuttgart, AR, after semi-field level assessments had been made at the Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, US Department of Agriculture in Gainesville, FL. OFF! Clip-On(metofluthrin), Mosquito Cognito (linalool), No-Pest Strip (dichlorvos), and ThermaCELL (d-cisltrans allethrin) were selected for this study from >20 candidate products. The units based on metofluthrin, linalool, or d-cisltrans allethrin significantly reduced captures of 1 or more of the mosquito species at surrogate human sites (unlit Centers for Disease Control and Prevention traps with CO2 and octenol). Among the mosquito species analyzed statistically (Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae), there were significantly different responses (up to 84% reduction) to individual products, suggesting that combinations of certain spatial repellents might provide significantly greater protection.

  20. The Essential Oil Compositions of Ocimum basilicum from Three Different Regions: Nepal, Tajikistan, and Yemen.

    PubMed

    Sharopov, Farukh S; Satyal, Prabodh; Ali, Nasser A Awadh; Pokharel, Suraj; Zhang, Hanjing; Wink, Michael; Kukaniev, Muhammadsho A; Setzer, William N

    2016-02-01

    The aerial parts of Ocimum basilicum L. were collected from four different geographical locations, Sindhuli and Biratnagar (Nepal), Chormaghzak village (Tajikistan), and Sana'a (Yemen). The essential oils were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. A cluster analysis of 179 essential oil compositions revealed six major chemotypes: Linalool, eugenol, estragole, methyl eugenol, 1,8-cineole, and geraniol. All four of the basil oils in this study were of the linalool-rich variety. Some of the basil oils were screened for bioactivity including antimicrobial, cytotoxicity in human cancer cells, brine shrimp lethality, nematicidal, larvicidal, insecticidal, and antioxidant. The basil oils in this study were not notably antibacterial, cytotoxic, antioxidant, nor nematicidal, but were active in the brine shrimp lethality test, and did show larvicidal and insecticidal activities. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  1. Influence of water stress and storage time on preservation of the fresh volatile profile of three basil genotypes.

    PubMed

    Jordán, María J; Quílez, María; Luna, María C; Bekhradi, Farzaneh; Sotomayor, José A; Sánchez-Gómez, Pedro; Gil, María I

    2017-04-15

    The main goal of the present study was to describe the volatile profile of three different basil genotypes (Genovese and Green and Purple Iranian), and the impact that water stress (75% and 50% field capacity) and storage time (up to 7days) have under mild refrigerated conditions. The chromatographic profile pointed to three different chemotypes: linalool/eugenol, neral/geranial, and estragol, for Genovese, Green, and Purple genotypes, respectively. Water stress depleted the volatile profile of these three landraces, due to a reduction in the absolute concentrations of some of the components related to fresh aroma (linalool, nerol, geraniol and eugenol). The stability of the basil volatile profile during storage varied depending on the water stress that had been applied. Concentration reductions of close to 50% were quantified for most of the components identified in the Purple genotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma

    PubMed Central

    Ilc, Tina; Werck-Reichhart, Danièle; Navrot, Nicolas

    2016-01-01

    Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation, and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives. PMID:27746799

  3. Seasonal variations in the composition of the essential oils of Lavandula angustifolia (Lamiacae).

    PubMed

    Lakusić, Branislava; Lakusić, Dmitar; Ristić, Mihailo; Marcetić, Mirjana; Slavkovska, Violeta

    2014-06-01

    Seasonal variations in the composition of the essential oils obtained from the same individual (of the same genotype) of Lavandula angustifolia cultivated in Belgrade were determined by GC and GC/MS. The main constituents were 1,8-cineole (7.1-48.4%), linalool (0.1-38.7%), bomeol (10.9-27.7%), beta-phellandrene (0.5-21.2%) and camphor (1.5-15.8%). Cluster analysis showed that the 21 samples collected each month during the vegetation cycle were separable into three main clades with different compositions of essential oils. In the shoots with flowers, inflorescences and fruits of clade I, linalool is dominant, in the young leaves before flowering and old leaves of clade II, 1,8-cineole is dominant. In the young and incompletely developed leaves of clade III, beta-phellandrene is dominant. The composition of the essential oils of lavender depended on the plant part and the stage of development.

  4. Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae).

    PubMed

    Traboulsi, Abdallah F; Taoubi, K; el-Haj, Samih; Bessiere, J M; Rammal, Salma

    2002-05-01

    The insecticidal activities of essential oil extracts from leaves and flowers of aromatic plants against fourth-instar larvae of the mosquito Culex pipiens molestus Forskal were determined. Extracts of Myrtus communis L were found to be the most toxic, followed by those of Origanum syriacum L, Mentha microcorphylla Koch, Pistacia lentiscus L and Lavandula stoechas L with LC50 values of 16, 36, 39, 70 and 89 mg litre-1, respectively. Over 20 major components were identified in extracts from each plant species. Eight pure components (1,8-cineole, menthone, linalool, terpineol, carvacrol, thymol, (1S)-(-)-alpha-pinene and (1R)-(+)-alpha-pinene) were tested against the larvae. Thymol, carvacrol, (1R)-(+)-alpha-pinene and (1S)-(-)-alpha-pinene were the most toxic (LC50 = 36-49 mg litre-1), while menthone, 1,8-cineole, linalool and terpineol (LC50 = 156-194 mg litre-1) were less toxic.

  5. Determination of Key Flavor Components in Methylene Chloride Extracts from Processed Grapefruit Juice.

    PubMed

    Jella; Rouseff; Goodner; Widmer

    1998-01-19

    The relative correlation of 52 aroma and 5 taste components in commercial not-from-concentrate grapefruit juices with flavor panel preference was determined. Methylene chloride extracts of juice were analyzed using GC/MS with a DB-5 column. Nonvolatiles determined included limonin and naringin by HPLC, degrees Brix, total acids, and degrees Brix/acid ratio. Juice samples were classified into low, medium, or high categories, based on average taste panel preference scores (nine-point hedonic scale). Principal component analysis demonstrated that highest quality juices were tightly clustered. Discriminant analysis indicated that 82% of the samples could be identified in the correct preference category using only myrcene, beta-caryophyllene, linalool, nootkatone, and degrees Brix. Nootkatone alone was not strongly associated with preference scores. The most preferred juices were strongly associated with low myrcene, low linalool, and intermediate levels of beta-caryophyllene.

  6. Chemical composition and antimicrobial activity of the essential oil of Mentha mozaffarianii Jamzad growing wild and cultivated in Iran.

    PubMed

    Teymouri, Mehdi; Alizadeh, Ardalan

    2018-06-01

    The aerial parts of wild and cultivated Mentha mozaffarianii Jamzad were collected at full flowering stage from two provinces (Hormozgan and Fars) of Iran. The essential oils were extracted by a Clevenger approach and analysed using GC and GC-MS. The main components in wild plants were piperitenone (33.85%), piperitone (21.18%), linalool (6.89%), pulegone (5.93%), 1, 8.cineole (5.49%), piperitenone oxide (5.17%) and menthone (4.69%) and in cultivated plants, cis-piperitone epoxide (28.89%), linalool (15.36%), piperitone (11.57%), piperitenone oxide (10.14%), piperitenone (8.42%),1,8-cineole (3.60%) were the main constituents in essential oil. The in vitro antimicrobial activity of the essential oil of M. mozaffarianii was studied against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Candida albicans. The results of the bioassays showed that the oil exhibited high antimicrobial activity against all the tested pathogens.

  7. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis)

    PubMed Central

    Green, Sol A.; Chen, Xiuyin; Nieuwenhuizen, Niels J.; Matich, Adam J.; Wang, Mindy Y.; Bunn, Barry J.; Yauk, Yar-Khing; Atkinson, Ross G.

    2012-01-01

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers. PMID:22162874

  8. Preliminary quantification of the permeability, solubility and diffusion coefficients of major aroma compounds present in herbs through various plastic packaging materials.

    PubMed

    Leelaphiwat, Pattarin; Auras, Rafael A; Burgess, Gary J; Harte, Janice B; Chonhenchob, Vanee

    2018-03-01

    Aroma permeation through packaging material is an important factor when designing a package for food products. The masses of aroma compounds permeating through films over time were measured at 25 °C using a quasi-isostatic system. A model was proposed for estimating the permeability coefficients (P) of key aroma compounds present in fresh herbs (i.e. eucalyptol, estragole, linalool and citral) through major plastic films used by the food industry [i.e. low-density polyethylene (LDPE), polypropylene (PP), nylon (Nylon), polyethylene terephthalate (PET), metalised-polyethylene terephthalate (MPET) and poly(lactic acid) (PLA)]. Solubility coefficients (S) were estimated from the amount of aroma compound sorbed in the films. Diffusion coefficients (D) were estimated following from the relation P = D*S. P and D for all four aroma compounds were highest in LDPE, except for eucalyptol, which P was slightly higher in PLA. The solubility coefficients and contact angles were highest in PLA suggesting the highest affinity of PLA to these aroma compounds. The theoretical solubility parameters were correlated with the solubility coefficients for estragole and citral, but not for eucalyptol and linalool. The preliminary P, D and S of eucalyptol, estragole, linalool and citral through LDPE, PP, Nylon, PET, MPET and PLA can be useful in selecting the proper packaging material for preserving these specific aroma compounds in food products and can potentially be used for estimating the shelf life of food products based on aroma loss. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Gas-Phase Structures of Linalool and Coumarin Studied by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, H. V. L.; Stahl, W.; Grabow, J.-U.

    2013-06-01

    The microwave spectra of two natural substances, linalool and coumarin, were recorded in the microwave range from 9 to 16 GHz and 8.5 to 10.5 GHz, respectively.Linalool is an acyclic monoterpene and the main component of lavender oil. It has a structure with many possible conformations. The geometry of the lowest energy conformer has been determined by a combination of microwave spectroscopy and quantum chemical calculations. Surprisingly, a globular rather than a prolate shape was found. This structure is probably stabilized by a π interaction between two double bonds which are arranged in two stacked layers of atoms within the molecule. A-E splittings due to the internal rotation of one methyl group could be resolved and the barrier to internal rotation was determined to be 400.20(64) cm^{-1}. The standard deviation of the fit was close to experimental accuracy. For an identification of the observed conformer not only the rotational constants but also the internal rotation parameters of one of the methyl groups were needed. Coumarin is a widely used flavor in perfumery as sweet woodruff scent. The aromatic structure allows solely for one planar conformer, which was found under molecular beam conditions and compared to other molecules with similar structures. Here, the rotational spectrum could be described by a set of parameters including the rotational constants and the centrifugal distortion constants using a semi-rigid molecule Hamiltonian. Furthermore, the rotational transitions of all nine ^{13}C isotopologues were measured in natural abundance. As a consequence, the microwave structure of coumarin could be almost completely determined.

  10. Independent and interactive effect of plant- and mammalian- based odors on the response of the malaria vector, Anopheles gambiae.

    PubMed

    Jacob, Juliah W; Tchouassi, David P; Lagat, Zipporah O; Mathenge, Evan M; Mweresa, Collins K; Torto, Baldwyn

    2018-04-27

    Several studies have shown that odors of plant and animal origin can be developed into lures for use in surveillance of mosquito vectors of infectious diseases. However, the effect of combining plant- and mammalian-derived odors into an improved lure for monitoring both nectar- and blood-seeking mosquito populations in traps is yet to be explored. Here we used both laboratory dual choice olfactometer and field assays to investigate responses of the malaria vector, Anopheles gambiae, to plant- and mammalian-derived compounds and a combined blend derived from these two odor sources. Using subtractive bioassays in dual choice olfactometer we show that a 3-component terpenoid plant-derived blend comprising (E)-linalool oxide, β-pinene, β-ocimene was more attractive to females of An. gambiae than (E)-linalool oxide only (previously found attractive in field trials) and addition of limonene to this blend antagonized its attractiveness. Likewise, a mammalian-derived lure comprising the aldehydes heptanal, octanal, nonanal and decanal, was more preferred than (E)-linalool oxide. Surprisingly, combining the plant-derived 3-component blend with the mammalian derived 4-component blend attracted fewer females of An. gambiae than the individual blends in laboratory assays. However, this pattern was not replicated in field trials, where we observed a dose-dependent effect on trap catches while combining both blends with significantly improved trap catches at higher doses. The observed dose-dependent attractiveness for An. gambiae has practical implication in the design of vector control strategies involving kairomones from plant- and mammalian-based sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Possible role of plant volatiles in tolerance against huanglongbing in citrus

    PubMed Central

    Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil

    2016-01-01

    abstract Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas. PMID:26829496

  12. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats

    PubMed Central

    2013-01-01

    Background The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Methods Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO). Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. Results The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. Conclusions These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties. PMID:24373672

  13. Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots.

    PubMed

    Nunes, Inês S; Faria, Jorge M S; Figueiredo, A Cristina; Pedro, Luis G; Trindade, Helena; Barroso, José G

    2009-03-01

    The biotransformation capacity of Levisticum officinale W.D.J. Koch hairy root cultures was studied by evaluating the effect of the addition of 25 mg/L menthol or geraniol on morphology, growth, and volatiles production. L. officinale hairy root cultures were maintained for 7 weeks in SH medium, in darkness at 24 degrees C and 80 r.p.m., and the substrates were added 15 days after inoculation. Growth was evaluated by measuring fresh and dry weight and by using the dissimilation method. Volatiles composition was analyzed by GC and GC-MS. Hairy roots morphology and growth were not influenced by substrate addition. No new volatiles were detected after menthol addition and, as was also the case with the control cultures, volatiles of these hairy roots were dominated by (Z)-falcarinol (1-45%), N-octanal (3-8%), palmitic acid (3-10%), and (Z)-ligustilide (2-9%). The addition of geraniol induced the production of six new volatiles: nerol/citronellol/neral (traces-15%), alpha-terpineol (0.2-3%), linalool (0.1-1.2%), and geranyl acetate (traces-2%). The relative amounts of the substrates and some of their biotransformation products decreased during the course of the experiment. Following the addition of beta-glycosidase to the remaining distillation water, analysis of the extracted volatiles showed that lovage hairy roots were able to convert both substrates and their biotransformation products into glycosidic forms. GC:gas chromatography GC-MS:gas chromatography-mass spectrometry SH:Schenk and Hildebrandt (1972) culture medium.

  14. Possible role of plant volatiles in tolerance against huanglongbing in citrus.

    PubMed

    Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil

    2016-01-01

    Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas.

  15. Automated headspace solid-phase dynamic extraction to analyse the volatile fraction of food matrices.

    PubMed

    Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara

    2004-01-23

    High concentration capacity headspace techniques (headspace solid-phase microextraction (HS-SPME) and headspace sorptive extraction (HSSE)) are a bridge between static and dynamic headspace, since they give high concentration factors as does dynamic headspace (D-HS), and are as easy to apply and as reproducible as static headspace (S-HS). In 2000, Chromtech (Idstein, Germany) introduced an inside-needle technique for vapour and liquid sampling, solid-phase dynamic extraction (SPDE), also known as "the magic needle". In SPDE, analytes are concentrated on a 50 microm film of polydimethylsiloxane (PDMS) and activated carbon (10%) coated onto the inside wall of the stainless steel needle (5 cm) of a 2.5 ml gas tight syringe. When SPDE is used for headspace sampling (HS-SPDE), a fixed volume of the headspace of the sample under investigation is sucked up an appropriate number of times with the gas tight syringe and an analyte amount suitable for a reliable GC or GC-MS analysis accumulates in the polymer coating the needle wall. This article describes the preliminary results of both a study on the optimisation of sampling parameters conditioning HS-SPDE recovery, through the analysis of a standard mixture of highly volatile compounds (beta-pinene, isoamyl acetate and linalool) and of the HS-SPDE-GC-MS analyses of aromatic plants and food matrices. This study shows that HS-SPDE is a successful technique for HS-sampling with high concentration capability, good repeatability and intermediate precision, also when it is compared to HS-SPME.

  16. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats.

    PubMed

    Sebai, Hichem; Selmi, Slimen; Rtibi, Kais; Souli, Abdelaziz; Gharbi, Najoua; Sakly, Mohsen

    2013-12-28

    The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC-MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO).Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties.

  17. Binary floral lure attractive to velvetbean caterpillar adults (Lepidoptera: Noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Evaluation of combinations of flower odor compounds in northern Florida, revealed that linalool was synergistic in attractiveness with phenylacetaldehyde (PAA) to the migratory moth velvetbean caterpillar (Anticarsia gemmatalis Hübner). This noctuid was the most common species collected from traps w...

  18. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium.

    PubMed

    Yue, Yuechong; Yu, Rangcai; Fan, Yanping

    2014-10-01

    Hedychium coronarium, a perennial herb belonging to the family Zingiberaceae, is cultivated as a garden plant or cut flower as well as for medicine and aromatic oil. Its flowers emit a fresh and inviting scent, which is mainly because of monoterpenes present in the profile of the floral volatiles. However, fragrance produced as a result of monoterpenes has not been well studied. In the present study, two novel terpene synthase (TPS) genes (HcTPS7 and HcTPS8) were isolated to study the biosynthesis of monoterpenes in H. coronarium. In vitro characterization showed that the recombinant HcTPS7 was capable of generating sabinene as its main product, in addition to nine sub-products from geranyl diphosphate (GPP). Recombinant HcTPS8 almost specifically catalyzed the formation of linalool from GPP, while it converted farnesyl diphosphate (FPP) to α-bergamotene, cis-α-bisabolene, β-farnesene and other ten sesquiterpenes. Subcellular localization experiments revealed that HcTPS7 and HcTPS8 were located in plastids. Real-time PCR analyses showed that HcTPS7 and HcTPS8 genes were highly expressed in petals and sepals, but were almost undetectable in vegetative organs. The changes of their expression levels in petals were positively correlated with the emission patterns of sabinene and linalool, respectively, during flower development. The results indicated that HcTPS7 and HcTPS8 were involved in the biosynthesis of sabinene and linalool in H. coronarium flowers. Results on these two TPSs first characterized from H. coronarium provide new insights into molecular mechanisms of terpene biosynthesis in this species and also lay the basis for biotechnological modification of floral scent profile in Hedychium.

  19. Selected terpenes from leaves of Ocimum basilicum L. induce hemoglobin accumulation in human K562 cells.

    PubMed

    Feriotto, Giordana; Marchetti, Nicola; Costa, Valentina; Torricelli, Piera; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo

    2018-06-01

    Re-expression of fetal hemoglobin (HbF) was proposed as a possible therapeutic strategy for β-haemoglobinopathies. Although several inducers of HbF were tested in clinical trials, only hydroxyurea (HU) received FDA approval. Despite it produced adequate HbF levels only in half of HU-treated SCD patients, and was ineffective at all in β-thalassemia patients, beneficial effects of this approach suggested to continue in this direction identifying further molecules capable of inducing HbF. We tested the potential of essential oil isolated from Ocimum basilicum L. leaves (ObEO) in inducing hemoglobin biosynthesis. Initially, dose-dependent effect and kinetics of hemoglobin accumulation in K562 cells after treatment with ObEO were evaluated. ObEO induced dose-dependent hemoglobin accumulation superior to hydroxyurea and rapamycin and a strongest γ-globin mRNA expression. Terpenes composition of ObEO was studied by GC-MS. Three main constituents, linalool, eugenol and eucalyptol, represented about 75% of total. A blend of these three terpenes fully replicated the ObEO's biological effect, thus indicating that one of them or all together could be the active ingredients. When terpenes were tested individually, eugenol was the only one inducing stable hemoglobin accumulation, while eucalyptol and linalool produced only a small transient response. However, eugenol potential was strongly enhanced in the presence of eucalyptol and linalool, suggesting a synergistic effect on hemoglobin accumulation. By these results, the discovery of a new inducer and the interesting activity of a blend of major terpenes from ObOE on Hb accumulation could have positive fallouts on β-thalassemia and sickle cells anemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The Role of Leaf Volatiles of Ludwigia octovalvis (Jacq.) Raven in the Attraction of Altica cyanea (Weber) (Coleoptera: Chrysomelidae).

    PubMed

    Mitra, Saubhik; Karmakar, Amarnath; Mukherjee, Abhishek; Barik, Anandamay

    2017-07-01

    Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z-Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z-penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.

  1. Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae).

    PubMed

    Tabari, Mohaddeseh Abouhosseini; Youssefi, Mohammad Reza; Esfandiari, Aryan; Benelli, Giovanni

    2017-10-01

    Insect vectors are responsible for spreading devastating parasites and pathogens. A large number of botanicals have been suggested for eco-friendly control programs against mosquito vectors, and some of them are aromatic plants. Pelargonium roseum, a species belonging to the Geraniaceae family, due to its pleasant rose-like odor may represent a suitable candidate as mosquito repellent and/or larvicide. In this research, we evaluated the toxicity of the essential oil from P. roseum and its major constituents against the West Nile and filariasis vector Culex pipiens. The chemical composition of P. roseum essential oil was analyzed by gas chromatography-mass spectroscopy. Major constituents were citronellol (35.9%), geraniol (18.5%), and linalool (5.72%). The bioactivity of P. roseum essential oil and its three major compounds on larvae and egg rafts of Cx. pipiens was evaluated. The essential oil had a significant toxic effect on larvae and egg rafts of Cx. pipiens, with 50% lethal concentration (LC 50 ) values of 5.49 and 0.45μg/mL, respectively. Major constituents, geraniol, citronellol and linalool resulted in LC 50 values of 6.86, 7.64 and 14.87μg/mL on larvae, and 0.8, 0.67 and 1.27μg/mL on egg rafts. Essential oil and two of its constituents, citronellol and geraniol showed moderate knock-down on Cx. pipiens adults. Overall, the present investigation revealed that the major components of P. roseum and specially the whole essential oil could be helpful in developing novel and safe mosquito control tools and also offer an environmentally safe and cheap tool for reducing Cx. pipiens mosquito populations. Copyright © 2017. Published by Elsevier Ltd.

  2. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system.

    PubMed

    Hădărugă, Daniel I; Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T

    2014-01-01

    Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  3. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system

    PubMed Central

    Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T

    2014-01-01

    Summary Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated. PMID:25550747

  4. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp.

  5. 'Fortified' wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.).

    PubMed

    Urcan, Delia Elena; Giacosa, Simone; Torchio, Fabrizio; Río Segade, Susana; Raimondi, Stefano; Bertolino, Marta; Gerbi, Vincenzo; Pop, Nastasia; Rolle, Luca

    2017-03-15

    The impact of postharvest dehydration on the volatile composition of Malvasia moscata grapes and fortified wines produced from them was assessed. The ripeness effect of fresh grapes on volatile compounds of dehydrated grapes was evaluated for the first time in this study. Fresh grape berries were densimetrically sorted, and more represented density classes were selected. Dehydration of riper berries (20.5 °Brix) led to volatile profiles richer in terpenes, particularly linalool and geraniol. The effect of dehydration rate on the volatile composition of dehydrated grapes and fortified wines was also evaluated. Fast dehydration grapes were richer in total free terpenes, and the resulting wines contained greater amounts of volatile compounds. The predominant compounds were free esters, but linalool, rose oxide, citronellol and geraniol can also contribute to wine aroma, particularly for fast dehydration. β-Damascenone can be an active odorant, although its contribution was greater in wines made from slow dehydrated grapes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. HSCCC separation and enantiomeric distribution of key volatile constituents of Piper claussenianum (Miq.) C. DC. (Piperaceae).

    PubMed

    Marques, André M; Fingolo, Catharina E; Kaplan, Maria Auxiliadora C

    2017-11-01

    High Speed Countercurrent Chromatography (HSCCC) technique was used for the preparative isolation of the major leishmanicidal compounds from the essential oils of Piper claussenianum species in Brazil. The essential oils from inflorescences of P. claussenianum were analyzed by GC-FID and GC-MS. The enantiomeric ratio of the major constituents of the P. claussenianum essential oils were determined using a Rt-DEXsm chiral capillary column by GC-FID analysis. It was found an enantiomeric excess of (+)-(E)-nerolidol in the leaves, and (+)-linalool and (+)-(E)-nerolidol in the inflorescences essential oil. The major volatile terpenes alcohols were isolated in preparative scale from inflorescences: linalool (320.0 mg) and nerolidol (95.0 mg) in high purity level. The HSCCC, a support-free liquid-liquid partition chromatographic technique, proved to be an effective and useful method for fast isolation and purification of hydrophobic and similarly structured bioactive components from essential oils of Piper species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lemongrass effects on IL-1beta and IL-6 production by macrophages.

    PubMed

    Sforcin, J M; Amaral, J T; Fernandes, A; Sousa, J P B; Bastos, J K

    2009-01-01

    Cymbopogon citratus has been widely recognised for its ethnobotanical and medicinal usefulness. Its insecticidal, antimicrobial and therapeutic properties have been reported, but little is known about its effect on the immune system. This work aimed to investigate the in vivo effect of a water extract of lemongrass on pro-inflammatory cytokine (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of lemongrass essential oil on cytokine production by macrophages was also analysed in vitro. The chemical composition of the extract and the oil was also investigated. Treatment of mice with water extract of lemongrass inhibited macrophages to produce IL-1beta but induced IL-6 production by these cells. Lemongrass essential oil inhibited the cytokine production in vitro. Linalool oxide and epoxy-linalool oxide were found to be the major components of lemongrass water extract, and neral and geranial were the major compounds of its essential oil. Taken together, these data suggest an anti-inflammatory action of this natural product.

  8. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].

    PubMed

    Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing

    2010-01-01

    With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.

  9. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  10. Raman spectroscopy for the evaluation of the effects of different concentrations of Copper on the chemical composition and biological activity of basil essential oil

    NASA Astrophysics Data System (ADS)

    Nawaz, Haq; Hanif, Muhammad Asif; Ayub, Muhammad Adnan; Ishtiaq, Faiqa; Kanwal, Nazish; Rashid, Nosheen; Saleem, Muhammad; Ahmad, Mushtaq

    2017-10-01

    The present study is performed to evaluate the effect of different concentrations of Cu as fertilizer on the chemical composition of basil essential oil and its biological activity including antioxidant and antifungal activities by employing Raman spectroscopy. Moreover, the effect of Cu is also determined on the vegetative growth and essential oil yield. Both, antifungal and antioxidant activities were found to be maximum with essential oils obtained at 0.04 mg/l concentration of Cu fertilizer. The results of the GC-MS and Raman spectroscopy have revealed that the linalool and estragole are found to be as a major chemical compound in basil essential oil. The Raman spectral changes associated with these biological components lead to the conclusion that estragole seems to have dominating effect in the biological activities of the basil essential oil as compared to linalool although the latter is observed in greater concentration.

  11. The Economic and Environmental Benefits of Product Substitution for Organic Solvents

    DTIC Science & Technology

    1991-05-01

    ALPHA.TERPINEOL LINALOOL MENTHOL O Figure 3.1 - Molecular Structures of Selected Terpenes?3 20 Commercial grades of d-limonene can cause dermatitis due...Permitted GRAS Limited Menthol Permitted GRAS Limited a-Pinene Permitted GRAS Permitted P-Pinene Permitted GRAS Permitted u-Terpinene Permitted GRAS Not

  12. Impact of phase ratio, polydimethylsiloxane volume and size, and sampling temperature and time on headspace sorptive extraction recovery of some volatile compounds in the essential oil field.

    PubMed

    Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara; Sandra, Pat

    2005-04-15

    This study evaluates concentration capability of headspace sorptive extraction (HSSE) and the influence of sampling conditions on HSSE recovery of an analyte. A standard mixture in water of six high-to-medium volatility analytes (isobutyl methyl ketone, 3-hexanol, isoamyl acetate, 1,8-cineole, linalool and carvone) was used to sample the headspace by HSSE with stir bars coated with different polydimethylsiloxane (PDMS) volumes (20, 40, 55 and 110 microL, respectively), headspace vial volumes (8, 21.2, 40, 250 and 1000 mL), sampling temperatures (25, 50 and 75 degrees C) and sampling times (30, 60 and 120 min, and 4, 8 and 16 h). The concentration factors (CFs) of HSSE versus static headspace (S-HS) were also determined. Analytes sampled by the PDMS stir bars were recovered by thermal desorption (TDS) and analysed by capillary GC-MS. This study demonstrates how analyte recovery depends on its physico-chemical characteristics and affinity for PDMS (octanol-water partition coefficients), sampling temperatures (50 degrees C) and times (60 min), the volumes of headspace (40 mL) and of PDMS (in particular, for high volatility analytes). HSSE is also shown to be very effective for trace analysis. The HSSE CFs calculated versus S-HS with a 1000 mL headspace volumes at 25 degrees C during 4 h sampling ranged between 10(3) and 10(4) times for all analytes investigated while the limits of quantitation determined under the same conditions were in the nmol/L range.

  13. Evaluation of essential oils in beef cattle manure slurries and applications of select compounds to beef feedlot surfaces to control zoonotic pathogens

    USDA-ARS?s Scientific Manuscript database

    Aims: To evaluate natural terpene compounds for antimicrobial activities and determine if these compounds could be used to control microbial activities and pathogens in production animal facilities. Methods and Results: Thymol, geraniol, glydox, linalool, pine oil, plinol, and terpineol were teste...

  14. Identification of mosquito repellent odours from Ocimum forskolei.

    PubMed

    Dekker, Teun; Ignell, Rickard; Ghebru, Maedot; Glinwood, Robert; Hopkins, Richard

    2011-09-22

    Native mosquito repellent plants have a good potential for integrated mosquito control in local settings. Ocimum forskolei, Lamiaceae, is used in Eritrea as a spatial mosquito repellent inside houses, either through crushing fresh plants or burning dry plants. We verified whether active repellent compounds could be identified using gas-chromatography coupled electroantennogram recordings (GC-EAD) with headspace extracts of crushed plants. EAD active compounds included (R)-(-)-linalool, (S)-(+)-1-octen-3-ol, trans-caryophyllene, naphthalene, methyl salicylate, (R)-(-)-α-copaene, methyl cinnamate and (E)-ocimene. Of these compounds (R)-(-)-linalool, methyl cinnamate and methyl salicylate reduced landing of female Aedes aegypti on human skin-odor baited tubes. The latter two are novel mosquito repellent compounds. The identification of mosquito repellent compounds contributes to deciphering the mechanisms underlying repulsion, supporting the rational design of novel repellents. The three mosquito repellent compounds identified in this study are structurally dissimilar, which may indicate involvement of different sensory neurons in repulsion. Repulsion may well be enhanced through combining different repellent plants (or their synthetic mimics), and can be a locally sustainable part in mosquito control efforts.

  15. Identification of mosquito repellent odours from Ocimum forskolei

    PubMed Central

    2011-01-01

    Background Native mosquito repellent plants have a good potential for integrated mosquito control in local settings. Ocimum forskolei, Lamiaceae, is used in Eritrea as a spatial mosquito repellent inside houses, either through crushing fresh plants or burning dry plants. We verified whether active repellent compounds could be identified using gas-chromatography coupled electroantennogram recordings (GC-EAD) with headspace extracts of crushed plants. Results EAD active compounds included (R)-(-)-linalool, (S)-(+)-1-octen-3-ol, trans-caryophyllene, naphthalene, methyl salicylate, (R)-(-)-α-copaene, methyl cinnamate and (E)-ocimene. Of these compounds (R)-(-)-linalool, methyl cinnamate and methyl salicylate reduced landing of female Aedes aegypti on human skin-odor baited tubes. The latter two are novel mosquito repellent compounds. Conclusions The identification of mosquito repellent compounds contributes to deciphering the mechanisms underlying repulsion, supporting the rational design of novel repellents. The three mosquito repellent compounds identified in this study are structurally dissimilar, which may indicate involvement of different sensory neurons in repulsion. Repulsion may well be enhanced through combining different repellent plants (or their synthetic mimics), and can be a locally sustainable part in mosquito control efforts. PMID:21936953

  16. Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase.

    PubMed

    Edris, Amr E; Farrag, Eman S

    2003-04-01

    The vapors of peppermint oil and two of its major constituents (menthol and menthone), and sweet basil oil and two of its major constituents (linalool and eugenol), were tested against Sclerotinia sclerotiorum (Lib.), Rhizopus stolonifer (Ehrenb. exFr.) Vuill and Mucor sp. (Fisher) in a closed system. These fungi cause deterioration and heavy decay of peach fruit during marketing, shipping and storage. The essential oils, their major individual aroma constituents and blends of the major individual constituents at different ratios inhibited the growth of the fungi in a dose-dependent manner. Menthol was found to be the individual aroma constituent responsible for the antifungal properties of peppermint essential oil, while menthone alone did not show any effect at all doses. In the case of basil oil, linalool alone showed a moderate antifungal activity while eugenol showed no activity at all. Mixing the two components in a ratio similar to their concentrations in the original oil was found to enhance the antifungal properties of basil oil indicating a synergistic effect.

  17. Anxiolytic and Anticonvulsant Effects on Mice of Flavonoids, Linalool, and α-Tocopherol Presents in the Extract of Leaves of Cissus sicyoides L. (Vitaceae)

    PubMed Central

    de Almeida, Edvaldo Rodrigues; de Oliveira Rafael, Krissia Rayane; Couto, Geraldo Bosco Lindoso; Ishigami, Ana Beatriz Matos

    2009-01-01

    The aim of the present study is to demonstrate the anxiolytic and anticonvulsant effects of a hydroalcoholic extract obtained from the aerial parts of Cissus sicyoides L. (CS) (Vitaceae) on male and female mice using several behavioral assays. Groups of males and females treated via intraperitoneal (IP) with doses of 300, 600, and 1000 mg/kg of the extract showed significant action in the elevated plus-maze (EPM), time spent in the open arms, and number of entries in the open arms. The board-hole test also showed a significant increase in the time spent in head-dipping and in marble-burying test of the number of marbles buried. The same treatment increased the duration of sleeping time induced by sodium pentobarbital and also showed a significant increase in protection against pentylenotetrazole-induced convulsions. These results indicate an anxiolytic and anticonvulsant-like action from C. sicyoides L. extract on mice, probably due to the action of flavonoid(s), Linalool, and α-tocopherol present in the C. sicyoides leaves. PMID:19300520

  18. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp.

    PubMed

    Zhang, Erpeng; Chai, Fengmei; Zhang, Haohao; Li, Shaohua; Liang, Zhenchang; Fan, Peige

    2017-12-15

    Terpenes are important aroma compounds in table Muscat grape and wine, and their content in the berry can be affected by sunlight. The effects of sunlight exclusion on monoterpene profiles and relevant gene expression profiles in the exocarp and mesocarp of table Muscat grape 'Jingxiangyu' at different development stages were thoroughly surveyed by bagging pre-veraison clusters in special opaque boxes. The responses of monoterpenes to sunlight treatments varied in three types, representatively linalool, ocimene and geraniol. Linalool was the most sensitive compound to sunlight, whose biosynthesis was severely inhibited by sunlight exclusion and then was elevated by re-exposure. Ocimene and glycosylated geraniol showed a certain suppressive and stimulative responses to sunlight exclusion respectively. Further transcription analysis revealed that VvPNLinNer1, VvCSbOci, VvGT7 and VvGT14 genes were mainly responsible for monoterpene accumulation and sensitivity to sunlight. VvDXS2 and VvDXR genes were partially related to the differential accumulation of total terpenes under different sunlight treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko

    2009-07-27

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.

  20. [Analysis of the components of floral scent in Glochidion puberum using gas chromatography-mass spectrometry with dynamic headspace adsorption].

    PubMed

    Huang, Daihong; Zhang, Zhenguo; Chen, Guoping; Li, Houhun; Shi, Fuchen

    2015-03-01

    The floral scent plays the important key role in maintaining the obligate pollination mutualism between Glochidion plants and Epicephala moths. In the study, the dynamic headspace adsorption technique was employed to collect the floral scent emitted by Glochidion puberum, gas chromatography coupled with mass spectrometry (GC-MS) was used for the detection and identification of volatile chemical components in headspace samples of flowers from G. puberum. The peak area normalization was used to determine the relative contents of each odour component. The results showed that 45 compounds mainly consisting of monoterpenes and sesquiterpenes were isolated from the floral scent produced by G. puberum. Especially, both linalool (38.06%) and β-elemene (23.84%) were considered as the major scent components of G. puberum. It was speculated that linalool and β-elemene may be the two potential compounds attracting female Epicephala moths. The study provided the basic data for further electroantennographic detection and bioassays to identify the compounds having the actual physiological activity to female Epicephala moths.

  1. Removal of floral microbiota reduces floral terpene emissions

    PubMed Central

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-01-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination. PMID:25335793

  2. Removal of floral microbiota reduces floral terpene emissions

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-10-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

  3. Removal of floral microbiota reduces floral terpene emissions.

    PubMed

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-10-22

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

  4. Fumigant Activity of Sweet Orange Essential Oil Fractions Against Red Imported Fire Ants (Hymenoptera: Formicidae).

    PubMed

    Hu, Wei; Zhang, Ning; Chen, Hongli; Zhong, Balian; Yang, Aixue; Kuang, Fan; Ouyang, Zhigang; Chun, Jiong

    2017-08-01

    Sweet orange oil fractions were prepared by molecular distillation of cold-pressed orange oil from sample A (Citrus sinensis (L.) 'Hamlin' from America) and sample B (Citrus sinensis Osbeck 'Newhall' from China) respectively, and their fumigant activities against medium workers of red imported fire ants (Solenopsis invicta Buren) were investigated. The volatile composition of the orange oil fractions was identified and quantified using GC-MS. Fractions from sample A (A1, A2, and A3) contained 23, 37, and 48 chemical constituents, and fractions from sample B (B1, B2, and B3) contained 18, 29, and 26 chemical constituents, respectively. Monoterpenes were the most abundant components, accounting for 73.56% to 94.86% of total orange oil fractions, among which D-limonene (65.28-80.18%), β-pinene (1.71-5.58%), 3-carene (0.41-4.01%), β-phellandrene (0.58-2.10%), and linalool (0.31-2.20%) were major constituents. Fumigant bioassay indicated that all orange oil fractions exerted good fumigant toxicity against workers of fire ants at 3, 5, 10, and 20 mg/centrifuge tubes, and B1 had the strongest insecticidal potential, followed by A1, B2, A2, B3, and A3. The fractions composed of more high volatile molecules (A1 and B1) showed greater fumigant effects than others. Compounds linalool and D-limonene, which were the constituents of the orange oil, exhibited excellent fumigant toxicity against red imported fire ant workers. Linalool killed red imported fire ant workers completely at 5, 10, and 20 mg/tube after 8 h of treatment, and D-limonene induced >86% mortality at 8 h of exposure. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method.

    PubMed

    Muráriková, Andrea; Ťažký, Anton; Neugebauerová, Jarmila; Planková, Alexandra; Jampílek, Josef; Mučaji, Pavel; Mikuš, Peter

    2017-07-20

    Basil ( Ocimum L.) species are used as medicinal plants due to their essential oils exhibiting specific biological activity. The present work demonstrated that both the variety and season/conditions of cultivation had a significant effect on (i) the produced amount (extraction yield), (ii) qualitative, as well as (iii) quantitative profile of basil essential oil. Among studied basil varieties, a new variety, 'Mánes', was characterized for the first time. Based on our quantitative evaluation of GC-MS profiles, the following chemotypes and average concentrations of a main component were detected in the studied basil varieties: 'Ohře', 'Lettuce Leaf', 'Purple Opaal', 'Dark Green' (linalool, 5.99, 2.49, 2.34, 2.01 mg/mL, respectively), and 'Mammolo Genovese', 'Mánes', 'Red Rubin' (eucalyptol, 1.34, 0.96, 0.76 mg/mL, respectively). At the same time, when considering other compounds identified in GC-MS profiles, all the studied varieties, except from 'Lettuce Leaf', were methyl eugenol-rich with a strong dependence of the eugenol:methyl eugenol ratio on the seasonal changes (mainly solar irradiation, but also temperature and relative humidity). More complex and/or variable (depending on the season and cultivation) chemotypes were observed with 'Lettuce Leaf' (plus estragole, 2.27 mg/mL), 'Dark Green' (plus eucalyptol, 1.36 mg/mL), 'Mammolo Genovese' (plus eugenol, 1.19 mg/mL), 'Red Rubin' (plus linalool and eugenol, 0.46 and 0.56 mg/mL, respectively), and 'Mánes' (plus linalool and eugenol, 0.58 and 0.40 mg/mL, respectively). When considering superior extraction yield (ca. 17 mL·kg -1 , i.e., two to five times higher than other examined varieties) and consistent amounts (yields) of essential oil when comparing inter-seasonal or inter-year data (RSD and inter-year difference in mean yield values ˂2.5%), this new basil variety is very promising for use in the pharmaceutical, food, and cosmetic industries.

  6. Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq.

    PubMed

    Torres-Martínez, Rafael; García-Rodríguez, Yolanda Magdalena; Ríos-Chávez, Patricia; Saavedra-Molina, Alfredo; López-Meza, Joel Edmundo; Ochoa-Zarzosa, Alejandra; Garciglia, Rafael Salgado

    2018-01-01

    The aim of this study was to investigate the in vitro antioxidant activity of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. (Lamiaceae) essential oil, a Mexican medicinal plant known as nurite. Fresh aerial parts of S. macrostema plants cultivated in greenhouse for 3 months were subjected to hydrodistillation in a Clevenger apparatus to obtain essential oil. Volatile compounds were identified by gas chromatography (GC) and GC/mass spectrometry. Antioxidant effectiveness of essential oil and its major terpenes of S. macrostema was examined by three different radical scavenging methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and total antioxidant capacity (TAC). The concentrations tested were 0.001, 0.01, 0.1, and 1 mg/mL. The major volatile compounds were caryophyllene, limonene, linalool, pulegone, menthone, and thymol. S. macrostema essential oil showed the highest free radical scavenging activity with DPPH and ABTS methods (53.10% and 92.12%, respectively) at 1 mg/mL and 98% with TAC method at 0.1 mg/mL. Thymol exerted the highest antioxidant capacity with 0.1 mg/mL, reaching 83.38%, 96.96%, and 98.57% by DPPH, ABTS, and TAC methods. Caryophyllene, limonene, linalool, pulegone, and menthone exhibited an antioxidant capacity <25% with the DPPH and ABTS methods; however, limonene showed a TAC of 85.41% with 0.01 mg/mL. The essential oil of S. macrostema and thymol showed a free radical scavenging activity close to that of the synthetic butylated hydroxytoluene. The major volatile compounds of essential oil of Satureja macrostema were caryophyllene, limonene, linalool, pulegone, menthone and thymolThe essential oil of S. macrostema showed a high free radical scavengingThymol exerted the highest antioxidant capacity by DPPH, ABTS and TAC methods. Abbreviations used: GC: Gas Chromatography; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; TAC: Total antioxidant capacity.

  7. Gas Chromatography-Mass Spectrometry Facility: Recent Improvements and Applications.

    DTIC Science & Technology

    1980-03-01

    such as l- octanol despite continuous heavy use. The dur- ability of the high temperature silanized columns over a long period has not yet been fully... Octanone 4 2-Ethyl-2-hexenal 5 5-Nonanone 6 2-Nonanone 7 Linalool 8 Isopulegol 9 Unknown terpene alcohol 10 Terpinenol-4 11 2 ,6-Dimethylaniline (12 2

  8. Repellency of the Origanum onites L. Essential Oil and Constituents to the Lone Star Tick and Yellow Fever Mosquito

    USDA-ARS?s Scientific Manuscript database

    The oregano, Origanum onites L., essential oil (EO) was tested in laboratory behavioral bioassays for repellent activity against Amblyomma americanum (L.) and Aedes aegypti (L.). The O. onites EO was characterized using GC-FID and GC-MS. Carvacrol (75.70 %), linalool (9.0 %), p-cymene (4.33 %) and t...

  9. Larvicidal and antifeedant activity of some plant-derived compounds to Lymantria dispar L. (Lepidoptera: Limantriidae).

    PubMed

    Kostić, Miroslav; Popović, Zorica; Brkić, Dejan; Milanović, Slobodan; Sivcev, Ivan; Stanković, Sladjan

    2008-11-01

    Ethanol solutions of essential oil of Ocimum basilicum and its main component, linalool (both isomer forms), all in three concentrations, as well as botanical standard Bioneem (0.5%), were tested for their toxicity and antifeedant activity against the second instar gypsy moth larvae in the laboratory bioassay. The essential oil of O. basilicum was subjected to gas chromatography analysis, and totally 37 compounds were detected, of which linalool was predominantly present. All tested solutions showed low to moderate larvicidal effect in both residual toxicity test and in chronic larval mortality bioassay. Chronic mortality tests showed that obtained mortality was a consequence of starving rather than ingestion of treated leaves. However, antifeedant index achieved by application of tested solutions in feeding choice assay was remarkable. Foliar application of all tested compounds deterred feeding by L2 in the same percent as Bioneem. Antifeedant index was relatively high at all tested treatments (85-94%); moreover, the larval desensitization to repelling volatiles has not occurred after five days of observation. Low toxic and high antifeedant properties make these plant-derived compounds suitable for incorporation in integrated pest management programs, especially in urban environments.

  10. Evaluation of three headspace sorptive extraction coatings for the determination of volatile terpenes in honey using gas chromatography-mass spectrometry.

    PubMed

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2015-06-19

    Headspace sorptive extraction (HSSE) was used to preconcentrate seven monoterpenes (eucalyptol, linalool, menthol, geraniol, carvacrol, thymol and eugenol) for separation by gas chromatography and mass spectrometry (GC-MS). Three commercially available coatings for the stir bars, namely Polydimethylsiloxane (PDMS), polyacrilate (PA) and Ethylene glycol-silicone (EG-Silicone), were tested, and the influential parameters both in the adsorption and the thermal desorption steps were optimized. PDMS provided the best sensitivity for linalool, geraniol, menthol and eucalyptol, whereas EG-Silicone was best for extracting the phenolic monoterpenes studied. Considering the average obtained slopes from all compounds, PDMS pointed as the best option, and the analytical characteristics for the HSSE-TD-GC-MS method using this coating were obtained. Quantification of the samples was carried out by matrix-matched calibration using a synthetic honey. Detection limits ranged between 0.007 and 0.032 ng g(-1), depending on the compound. Twelve honey samples of different floral origins were analyzed using the HSSE-GC-MS method, the analytes being detected at concentrations up to 64 ng g(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere.

    PubMed

    Reichle, Christian; Jarau, Stefan; Aguilar, Ingrid; Ayasse, Manfred

    2010-05-01

    The ability to learn food odors inside the nest and to associate them with food sources in the field is of essential importance for the recruitment of nestmates in social bees. We investigated odor learning by workers within the hive and the influence of these odors on their food choice in the field in the stingless bee Scaptotrigona pectoralis. During the experiments, recruited bees had to choose between two feeders, one with an odor that was present inside the nest during the recruitment process, and one with an unknown odor. In all experiments with different odor combinations (linalool/phenylacetaldehyde, geraniol/eugenol) a significant majority of bees visited the feeder with the odor they had experienced in their nest (chi (2)-tests; p < 0.05). By contrast, the bees showed no preference for one of two feeders when they were either baited with the same odor (linalool) or contained no odor. Our results clearly show that naïve workers of S. pectoralis can learn the odor of a food source during the recruitment process from the nest atmosphere and that their subsequent food search in the field is influenced by the learned odor.

  12. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species.

    PubMed

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.

  13. Biotransformations of terpenes by fungi from Amazonian citrus plants.

    PubMed

    Moreno Rueda, Maria Gabriela; Guerrini, Alessandra; Giovannini, Pier Paolo; Medici, Alessandro; Grandini, Alessandro; Sacchetti, Gianni; Pedrini, Paola

    2013-10-01

    The biotransformations of (RS)-linalool (1), (S)-citronellal (2), and sabinene (3) with fungi isolated from the epicarp of fruits of Citrus genus of the Amazonian forest (i.e., C. limon, C. aurantifolia, C. aurantium, and C. paradisiaca) are reported. The more active strains have been characterized, and they belong to the genus Penicillium and Fusarium. Different biotransformation products have been obtained depending on fungi and substrates. (RS)-Linalool (1) afforded the (E)- and (Z)-furanlinalool oxides (7 and 8, resp.; 39 and 37% yield, resp.) with Fusarium sp. (1D2), 6-methylhept-5-en-2-one (4; 49%) with F. fujikuroi, and 1-methyl-1-(4-methypentyl)oxiranemethanol (6; 42%) with F. concentricum. (S)-Citronellal (2) gave (S)-citronellol (12; 36-76%) and (S)-citronellic acid (11; 5-43%) with Fusarium species, while diastereoisomeric p-menthane-3,8-diols 13 and 14 (20 and 50% yield, resp.) were obtained as main products with Penicillium paxilli. Finally, both Fusarium species and P. paxilli biotransformed sabinene (3) to give mainly 4-terpineol (19; 23-56%), and (Z)- and (E)-sabinene hydrates (17 (3-21%) and 18 (11-17%), resp.). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  14. New Approach to Evaluate the Antennal Response of an Adult Predator Insect to Different Volatile Chemical Compounds by using Electroantennogram Technique

    NASA Astrophysics Data System (ADS)

    Shonouda, Mourad L.

    The antennal response of adult syrphid flies to selected plant volatile chemical compounds was investigated in the present study. The main chemical classes and their chemical compounds were aldehydes (nonanal and benzaldehyde), monoterpene-alcohols (linalool and alpha-terpineol), ketones (6-methyl-5-heptene-2-one and 2-undecanone), hydrocarbons (tetradecane) and benzoids (methyl salicylate). Electroantennogram (EAG) records showed that the syrphid antennae were strongly responded to linalool, 6-methyl-5-heptene-2-one and methyl salicylate even at low concentrations, in addition to the high dose concentration of nonanal comparably to the other chemical compounds. The antennae of old syrphid adults were more responsive and elicited higher levels of responses to all compounds rather than young syrphid adults. The antennal sensitivity may differ from one compound to another according to the sex. The difference in responses could be attributed to the sensitivity of olfactory receptors and/or the characterization of binding protein(s). The quality of biocontrol agent could be improved if the chemical interaction between beneficial natural enemies and the surrounding environment is intensively studied and we clearly understand the chemical ecology of each natural enemy.

  15. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.

    PubMed

    Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C

    2009-12-01

    To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P < 0.05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.

  16. Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere

    NASA Astrophysics Data System (ADS)

    Reichle, Christian; Jarau, Stefan; Aguilar, Ingrid; Ayasse, Manfred

    2010-05-01

    The ability to learn food odors inside the nest and to associate them with food sources in the field is of essential importance for the recruitment of nestmates in social bees. We investigated odor learning by workers within the hive and the influence of these odors on their food choice in the field in the stingless bee Scaptotrigona pectoralis. During the experiments, recruited bees had to choose between two feeders, one with an odor that was present inside the nest during the recruitment process, and one with an unknown odor. In all experiments with different odor combinations (linalool/phenylacetaldehyde, geraniol/eugenol) a significant majority of bees visited the feeder with the odor they had experienced in their nest ( χ 2-tests; p < 0.05). By contrast, the bees showed no preference for one of two feeders when they were either baited with the same odor (linalool) or contained no odor. Our results clearly show that naïve workers of S. pectoralis can learn the odor of a food source during the recruitment process from the nest atmosphere and that their subsequent food search in the field is influenced by the learned odor.

  17. Antioxidant and Antimicrobial Properties of the Essential Oil and Extracts of Zanthoxylum alatum Grown in North-Western Himalaya

    PubMed Central

    Tiku, A. K.; Koul, Apurva; Gupta, Sahil; Singh, Gurjinder; Razdan, V. K.

    2013-01-01

    The essential oil obtained from the fresh leaves of Zanthoxylum alatum was analysed by gas chromatography/mass spectrometry (GC/MS). Fourteen components were identified, and linalool (30.58%), 2-decanone (20.85%), β-fenchol (9.43%), 2-tridecanone (8.86%), β-phellandrene (5.99%), Sabinene (4.82%), and α-pinene (4.11%) were the main components. The EO and methanolic extract of Z. alatum exhibited potent antifungal activity against Alternaria alternata, Alternaria brassicae, and Curvularia lunata. The EO also showed significant antibacterial activity against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, and Escherichia coli. Further, antimicrobial constituents of the EO were isolated by bioautography and preparative thin layer chromatography (PTLC) and identified as β-fenchol and linalool using GC/MS analysis. In addition to this, the free radical scavenging activity and antioxidant potential of EO and methanolic extract/fractions of Z. alatum were also investigated using in vitro assays including scavenging ability against DPPH•, reducing power and chelating ability on Fe2+ ions. Our results demonstrate that Z. alatum could be used as a resource of antioxidant and antimicrobial compounds which may find applications in food and pesticide industries. PMID:23781160

  18. Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria.

    PubMed

    Bandeira Junior, G; Sutili, F J; Gressler, L T; Ely, V L; Silveira, B P; Tasca, C; Reghelin, M; Matter, L B; Vargas, A P C; Baldisserotto, B

    2018-05-09

    This study investigated the antibacterial activity of five phytochemicals (carvacrol, citral, eugenol, linalool, and thymol) alone or in combination with florfenicol or oxytetracycline against bacteria isolated from silver catfish (Rhamdia quelen). We also analyzed the potential of these compounds to inhibit biofilm formation and hemolysis caused by the bacteria. Bacteria were tested with antimicrobials to calculate the multiple antibiotic resistance (MAR). The checkerboard assay was used to evaluate a putative synergy between five phytochemicals and antimicrobials against the strains isolated. The biofilm formation inhibition assay was performed with phytochemicals and antimicrobials, and the hemolysis inhibition assay was performed with the phytochemicals. Carvacrol, eugenol and thymol were the most effective phytochemicals. Three combinations (linalool with florfenicol or oxytetracycline against Aeromonas hydrophila and citral with oxytetracycline against Citrobacter freundii) demonstrated synergy in the checkerboard assay. All phytochemicals inhibited biofilm formation and hemolysis activity. The tested phytochemicals showed satisfactory activity against fish pathogenic bacteria. The phytochemicals did not present antagonistic interactions with the antimicrobials, allowing their combined use, which may contribute to a decrease in the use of conventional drugs and their residues in aquatic environment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Evaluation of HS-SPME and ultrasonic solvent extraction for monitoring of plant flavours added by the bees to herbhoneys: traceability biomarkers.

    PubMed

    Kuś, Piotr Marek; Marijanović, Zvonimir; Jerković, Igor

    2015-01-01

    The volatile composition of 21 herbhoneys (HHs) of 7 different botanical origins was characterised for the first time. Ultrasound solvent extraction (USE) and headspace solid-phase microextraction (HS-SPME) followed by GC-FID/MS were successfully applied as complementary methods for monitoring the volatile plant flavours added by the bees. HHs showed significant compositional variability related to the botanical origin and compounds that could serve as traceability biomarkers were identified. The most important compounds with high abundance were (E,extract; H, headspace): caffeine (up to 68.7%, E) and trans-linalool oxide (up to 26.0%, H) in coffee HH, α-terpineol (up to 8.2%, E; 27.1%, H) and bornyl acetate (up to 3.1, E; 11.9%, H) in pine HH, thymol (up to 3.1%, E; 55.4%, H) in thyme HH. Hawthorn HH was characterised by the presence of herniarin (up to 13.4%, E) and lemon HH contained limonene (up to 1.6%, E; 33.2%, H). Other HHs (nettle and aloe) contained lower amounts of volatiles and their profiles were not specific. In all the HHs, methyl syringate was found and it was most abundant in thyme HH (up to 17.4%, E). The volatile fraction of HHs showed some substantial similarities and differences with the composition of herbs from which they derive. It confirms the selective bee-mediated transfer of phytochemicals, including known flavour-active volatiles into the final product, but also biotransformation of several compounds. Additionally, several similarities to the corresponding natural honeys were observed, but in general HHs exhibited less rich volatile profiles.

  20. Polyphenylenesulfide, noxon® an ozone scavenger for the analysis of oxygenated terpenes in air

    NASA Astrophysics Data System (ADS)

    Calogirou, A.; Duane, M.; Kotzias, D.; Lahaniati, M.; Larsen, B. R.

    During sampling, oxygenated terpenes may undergo decomposition through reaction with atmospheric ozone. We have studied their ozonolytic decomposition during preconcentration on Tenax. The saturated. terpenoids 1,8-cineole, bornyl acetate nopinone and pinonaldehyde are practically unaffected by ozone in the range of 8 to 120 ppbv. Compounds which contain one or more C-C double bonds are decomposed in the order: linalool ≈ citronellal ≈ 6-methyl-5-hepten-2-one > citral > 4-acetyl-1-methyl-cyclohexane > 3-(1-methylethenyl)-6-oxo-heptanal > myrtenal ≈ 2-methyl-3-buten-2-ol. The degree of decomposition varies from 0 to 5% for the least reactive to 80 to 90% for the most reactive compounds. A broad range of material was investigated as potential ozone scavengers. By using the polymer noXon (polyphenylenesulfide) all the investigated compounds could be sampled with quantitative recoveries even at high ozone mixing ratios (95-110 ppbv). This ozone scrubber was tested for sampling of terpene oxidation products on Tenax and dinitrophenylhydrazine impregnated C 18-silicagel cartridges. Recoveries from 85 to 110% were obtained for all investigated compounds. The method was used for the analysis of oxidation products of terpenes in ambient air in three campaigns. Attention was focused on nopinone from β-pinene, pinonaldehyde from α-pinene, 3-(1-methylethenyl)-6-oxo-heptanal and 4-acetyl-1-methyl-cyclohexane from limonene, and 5-(1-methylethyl)-bicyclo[3.1.0] hexan-2-one from sabinene. Nopinone was the only product which could be frequently detected in ratios from 0 to 90% of the measured β-pinene concentrations. Pinonaldehyde was encountered only once (30% of α-pinene) while the other products were not found. These data have to be seen as a first attempt to measure terpene oxidation products in the troposphere.

  1. Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq.

    PubMed Central

    Torres-Martínez, Rafael; García-Rodríguez, Yolanda Magdalena; Ríos-Chávez, Patricia; Saavedra-Molina, Alfredo; López-Meza, Joel Edmundo; Ochoa-Zarzosa, Alejandra; Garciglia, Rafael Salgado

    2017-01-01

    Background: The aim of this study was to investigate the in vitro antioxidant activity of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. (Lamiaceae) essential oil, a Mexican medicinal plant known as nurite. Materials and Methods: Fresh aerial parts of S. macrostema plants cultivated in greenhouse for 3 months were subjected to hydrodistillation in a Clevenger apparatus to obtain essential oil. Volatile compounds were identified by gas chromatography (GC) and GC/mass spectrometry. Antioxidant effectiveness of essential oil and its major terpenes of S. macrostema was examined by three different radical scavenging methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and total antioxidant capacity (TAC). The concentrations tested were 0.001, 0.01, 0.1, and 1 mg/mL. Results: The major volatile compounds were caryophyllene, limonene, linalool, pulegone, menthone, and thymol. S. macrostema essential oil showed the highest free radical scavenging activity with DPPH and ABTS methods (53.10% and 92.12%, respectively) at 1 mg/mL and 98% with TAC method at 0.1 mg/mL. Thymol exerted the highest antioxidant capacity with 0.1 mg/mL, reaching 83.38%, 96.96%, and 98.57% by DPPH, ABTS, and TAC methods. Caryophyllene, limonene, linalool, pulegone, and menthone exhibited an antioxidant capacity <25% with the DPPH and ABTS methods; however, limonene showed a TAC of 85.41% with 0.01 mg/mL. Conclusion: The essential oil of S. macrostema and thymol showed a free radical scavenging activity close to that of the synthetic butylated hydroxytoluene. SUMMARY The major volatile compounds of essential oil of Satureja macrostema were caryophyllene, limonene, linalool, pulegone, menthone and thymolThe essential oil of S. macrostema showed a high free radical scavengingThymol exerted the highest antioxidant capacity by DPPH, ABTS and TAC methods. Abbreviations used: GC: Gas Chromatography; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; TAC: Total antioxidant capacity. PMID:29491647

  2. Trace-Level Volatile Quantitation by Direct Analysis in Real Time Mass Spectrometry following Headspace Extraction: Optimization and Validation in Grapes.

    PubMed

    Jastrzembski, Jillian A; Bee, Madeleine Y; Sacks, Gavin L

    2017-10-25

    Ambient ionization mass spectrometric (AI-MS) techniques like direct analysis in real time (DART) offer the potential for rapid quantitative analyses of trace volatiles in food matrices, but performance is generally limited by the lack of preconcentration and extraction steps. The sensitivity and selectivity of AI-MS approaches can be improved through solid-phase microextraction (SPME) with appropriate thin-film geometries, for example, solid-phase mesh-enhanced sorption from headspace (SPMESH). This work improves the SPMESH-DART-MS approach for use in food analyses and validates the approach for trace volatile analysis for two compounds in real samples (grape macerates). SPMESH units prepared with different sorbent coatings were evaluated for their ability to extract a range of odor-active volatiles, with poly(dimethylsiloxane)/divinylbenzene giving the most satisfactory results. In combination with high-resolution mass spectrometry (HRMS), detection limits for SPMESH-DART-MS under 4 ng/L in less than 30 s acquisition times could be achieved for some volatiles [3-isobutyl-2-methoxypyrazine (IBMP) and β-damascenone]. A comparison of SPMESH-DART-MS and SPME-GC-MS quantitation of linalool and IBMP demonstrates excellent agreement between the two methods for real grape samples (r 2 ≥ 0.90), although linalool measurements appeared to also include isobaric interference.

  3. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida.

    PubMed

    Mandras, Narcisa; Nostro, Antonia; Roana, Janira; Scalas, Daniela; Banche, Giuliana; Ghisetti, Valeria; Del Re, Simonetta; Fucale, Giacomo; Cuffini, Anna Maria; Tullio, Vivian

    2016-08-30

    The management of Candida infections faces many problems, such as a limited number of antifungal drugs, toxicity, resistance of Candida to commonly antifungal drugs, relapse of Candida infections, and the high cost of antifungal drugs. Though azole antifungal agents and derivatives continue to dominate as drugs of choice against Candida infections, there are many available data referring to the anticandidal activity of essential oils. Since we have previous observed a good antimicrobial activity of some essential oils against filamentous fungi, the aim of this study was to extend the research to evaluate the activity of the same oils on Candida albicans, C.glabrata and C.tropicalis clinical strains, as well as the effects of related components. Essential oils selection was based both on ethnomedicinal use and on proved antibacterial and/or antifungal activity of some of these oils. Fluconazole and voriconazole were used as reference drugs. The minimum inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of essential oils (thyme red, fennel, clove, pine, sage, lemon balm, and lavender) and their major components were investigated by the broth microdilution method (BM) and the vapour contact assay (VC). Using BM, pine oil showed the best activity against all strains tested, though C.albicans was more susceptible than C.glabrata and C.tropicalis (MIC50-MIC90 = 0.06 %, v/v). On the contrary, sage oil displayed a weak activity (MIC50-MIC90 = 1 %, v/v). Thyme red oil (MIC50-MIC90 ≤ 0.0038 %, v/v for C.albicans and C.tropicalis, and 0.0078- < 0.015 %, v/v for C.glabrata), followed by lemon balm, lavender and sage were the most effective by VC. Carvacrol and thymol showed the highest activity, whereas linalyl acetate showed the lowest activity both by two methods. α-pinene displayed a better activity by BM than VC. Results show a good activity of essential oils, mainly thymus red and pine oils, and their components carvacrol, thymol and α-pinene against Candida spp., including fluconazole/voriconazole resistant strains. These data encourage adequately controlled and randomized clinical investigations. The use in vapour phase could have additional advantages without requiring direct contact, resulting in easy of environmental application such as in hospital, and/or in school.

  4. Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried.

    PubMed

    Ramírez-Rodrigues, M M; Balaban, M O; Marshall, M R; Rouseff, R L

    2011-03-01

    Calyxes from the Roselle plant (Hibiscus sabdariffa L.) were used to prepare cold (22 °C for 4 h) and hot (98 °C for 16 min) infusions/teas from both fresh and dried forms. Aroma volatiles were extracted using static headspace SPME and analyzed using GC-MS and GC-O with 2 different columns (DB-5 and DB-Wax). Totals of 28, 25, 17, and 16 volatiles were identified using GC-MS in the dried hot extract (DHE), dried cold extract (DCE), fresh hot extract (FHE), and fresh cold extract (FCE) samples, respectively. In terms of total GC-MS peak areas DHE ≫ DCE > FHE ≫ FCE. Nonanal, decanal, octanal, and 1-octen-3-ol were among the major volatiles in all 4 beverage types. Thirteen volatiles were common to all 4 teas. Furfural and 5-methyl furfural were detected only in dried hibiscus beverages whereas linalool and 2-ethyl-1-hexanol were detected only in beverages from fresh hibiscus. In terms of aroma active volatiles, 17, 16, 13, and 10 aroma active volatiles were detected for DHE, DCE, FHE, and FCE samples, respectively. The most intense aroma volatiles were 1-octen-3-one and nonanal with a group of 4 aldehydes and 3 ketones common to all samples. Dried samples contained dramatically higher levels of lipid oxidation products such as hexanal, nonanal, and decanal. In fresh hibiscus extracts, linalool (floral, citrus) and octanal (lemon, citrus) were among the highest intensity aroma compounds but linalool was not detected in any of the dried hibiscus extracts. Hibiscus teas/infusions are one of the highest volume specialty botanical products in international commerce. The beverage is consumed for both sensory pleasure and health attributes and is prepared a number of ways throughout the world. Although color and taste attributes have been examined, little information is known about its aroma volatiles and no other study has compared extractions from both fresh and dried as well as extraction temperature differences. This is also, apparently, the first study to identify the aroma active volatiles in hibiscus beverages using GC-olfactometry. Manufacturers and consumers will now have a better understanding of why hibiscus teas prepared in different ways from either fresh or dried forms have a different flavor quality and intensity.

  5. Chemical composition of the essential oil of Feronia elephantum Correa.

    PubMed

    Pande, Chitra; Tewari, Geeta; Singh, Charu; Singh, Shalini; Padalia, R C

    2010-11-01

    The essential oil composition of Feronia elephantum Correa (family: Rutaceae) was examined by capillary gas chromatography (GC) and gas chromatography-mass spectroscopy (GC-MS). The analysis revealed the presence of 24 constituents, of which 18 constituents were identified. Trans-anethole (57.73%) and methyl chavicol (37.48%) were the major compounds, while cis-anethole, p-anisaldehyde, (E)-jasmone, methyl eugenol, β-caryophyllene, linalool and (E)-methyl isoeugenol were also present as the minor constituents.

  6. Biogenic emissions from Pinus halepensis: a typical species of the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Simon, V.; Dumergues, L.; Solignac, G.; Torres, L.

    2005-03-01

    Volatile organic compounds (VOCs) emissions by vegetation present in the Mediterranean area are not well known. They may contribute with anthropogenic VOC emissions to the tropospheric ozone formation that reaches important level in the European Mediterranean region. The present work, carried out as part of the European ESCOMPTE project «fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions», adds a new contribution to the inventory of the main natural hydrocarbons sources likely to participate in the ozone production. The corresponding measurement campaign was conducted in La Barben, a site close to Marseilles (France), with the aim to quantify the terpenic emission pattern and the behaviour of Pinus halepensis, an important Mediterranean species slightly studied. The determination of biogenic emissions from P. halepensis was done by the enclosure of an intact branch in a Teflon cuvette. Main emitted monoterpenes were β trans-ocimene and linalool. The total monoterpenic emission rates thus recorded were found to reach maximum values around 30 μg g dry weight-1 h -1. The normalized emission rates calculated at 30 °C and 1000 μmol m -2 s -1 with Guenther's algorithm was 14.76, 8.65 and 4.05 μg g dry weight-1 h -1, respectively, for the total monoterpenes, β trans-ocimene and linalool.

  7. In vitro antifungal activity of four chemotypes of Lippia alba (Verbenaceae) essential oils against Alternaria solani (Pleosporeaceae) isolates.

    PubMed

    Tomazoni, Elisa Z; Pansera, Márcia R; Pauletti, Gabriel F; Moura, Sidnei; Ribeiro, Rute T S; Schwambach, Joséli

    2016-05-31

    Several volatile natural compounds produced by plant secondary metabolism have been proven to present antimicrobial action, enabling their use in phytopathogen control. They also present low environmental impact when compared to conventional pesticides. Essential oils contain these compounds and can be found in several plant species, such as Lippia alba (Mill.) N.E. Brown (Verbenaceae). Essential oils of four chemotypes of L. alba, characterized by their major compounds, namely camphor, citral, linalool and camphor/1,8-cineole, were tested against the phytopathogen Alternaria solani Sorauer (Pleosporaceae), which causes early blight on tomatoes and is responsible for great economic losses regarding production. Essential oils antifungal action was tested in vitro using potato dextrose agar medium with essential oil concentrations at 0.1, 0.5, 1.0, 1.5 and 2.0 µL mL-1. The chemotype that had the best performance was citral, showing significant inhibition compared to the others, starting at the 0.5 µL mL-1 concentration. The essential oil belonging to the linalool chemotype was efficient starting at the 1.5 µL mL-1 concentration. Conversely, the camphor chemotype did not show any action against the phytopathogen. Moreover, the essential oils had no remarkable effect on tomato germination and growth. In conclusion, these essential oils presented fungicidal action against A. solani.

  8. Compositional variability and antifungal potentials of ocimum basilicum, O. tenuiflorum, O. gratissimum and O. kilimandscharicum essential oils against Rhizoctonia solani and Choanephora cucurbitarum.

    PubMed

    Padalia, Rajendra C; Verma, Ram S; Chauhan, Amit; Goswami, Prakash; Chanotiya, Chandan S; Saroj, Arvind; Samad, Abdul; Khaliq, Abdul

    2014-10-01

    The composition of hydrodistilled essential oils of Ocimum basilicum L. (four chemovariants), O. tenuiflorum L., O. gratissimum L., and O. kilimandscharicum Guerke were analyzed and compared by using capillary gas chromatography (GC/FID) and GC-mass spectrometry (GC/MS). Phenyl propanoids (upto 87.0%) and monoterpenoids (upto 83.3%) were prevalent constituents distributed in the studied Ocimum taxa. The major constituents of the four distinct chemovariants of O. basilicum were methyl chavicol (86.3%), methyl chavicol (61.5%)/linalool (28.6%), citral (65.9%); and linalool (36.1%)/citral (28.8%). Eugenol (66.5% and 78.0%) was the major constituent of O. tenuiflorum and O. gratissimum. Eugenol (34.0%), β-bisabolene (15.4%), (E)-α-bisabolene (10.9%), methyl chavicol (10.2%) and 1,8-cineole (8.2%) were the major constituents of O. kilimandscharicum. In order to explore the potential for industrial use, the extracted essential oils were assessed for their antifungal potential through poison food technique against two phytopathogens, Rhizoctonia solani and Choanephora cucurbitarum, which cause root and wet rot diseases in various crops. O. tenuiflorum, O. gratissimum, and O. kilimandscharicum exhibited complete growth inhibition against R. solani and C. cucurbitarum after 24 and 48 h of treatment. O. basilicum chemotypes showed variable levels of growth inhibition (63.0%-100%) against these two phytopathogens.

  9. Volatiles of Solena amplexicaulis (Lam.) Gandhi Leaves Influencing Attraction of Two Generalist Insect Herbivores.

    PubMed

    Sarkar, Nupur; Karmakar, Amarnath; Barik, Anandamay

    2016-10-01

    Epilachna vigintioctopunctata Fabr. (Coleoptera: Coccinellidae) and Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) are important pests of Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae), commonly known as creeping cucumber. The profiles of volatile organic compounds from undamaged plants, plants after 48 hr continuous feeding of adult females of either E. vigintioctopunctata or A. foveicollis, by adults of both species, and after mechanical damaging were identified and quantified by GC-MS and GC-FID analyses. Thirty two compounds were detected in volatiles of all treatments. In all plants, methyl jasmonate was the major compound. In Y-shaped glass tube olfactometer bioassays under laboratory conditions, both insect species showed a significant preference for complete volatile blends from insect damaged plants, compared to those of undamaged plants. Neither E. vigintioctopunctata nor A. foveicollis showed any preference for volatiles released by heterospecifically damaged plants vs. conspecifically damaged plants or plants attacked by both species. Epilachna vigintioctopunctata and A. foveicollis showed attraction to three different synthetic compounds, linalool oxide, nonanal, and E-2-nonenal in proportions present in volatiles of insect damaged plants. Both species were attracted by a synthetic blend of 1.64 μg linalool oxide + 3.86 μg nonanal + 2.23 μg E-2-nonenal, dissolved in 20 μl methylene chloride. This combination might be used as trapping tools in pest management strategies.

  10. Chemical Composition Variability of Essential Oils of Daucus gracilis Steinh. from Algeria.

    PubMed

    Benyelles, Batoul; Allali, Hocine; Dib, Mohamed El Amine; Djabou, Nassim; Paolini, Julien; Costa, Jean

    2017-06-01

    The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC-FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90 - 99% of the total oil compositions. The main components were linalool (18; 12.5 - 22.6%), 2-methylbutyl 2-methylbutyrate (20; 9.2 - 20.2%), 2-methylbutyl isobutyrate (10; 4.2 - 12.2%), ammimajane (47; 2.6 - 37.1%), (E)-β-ocimene (15; 0.2 - 12.8%) and 3-methylbutyl isovalerate (19; 3.3 - 9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2-methylbutyl 2-methylbutyrate (18.9%), 2-methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3-methylbutyl isovalerate (10.3%), (E)-β-ocimene (8.4%) and isopentyl 2-methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  11. Preparation and structural characterization of corn starch-aroma compound inclusion complexes.

    PubMed

    Zhang, Shu; Zhou, Yibin; Jin, Shanshan; Meng, Xin; Yang, Liping; Wang, Haisong

    2017-01-01

    Six corn starch inclusion complexes were synthesized using small nonpolar or weak polar aroma compounds (heptanolide, carvone and menthone) and small polar aroma compounds (linalool, heptanol and menthol). The objectives of this study were to (a) investigate the ability of corn starch to form inclusion complexes with these aroma compounds and (b) characterize the structure of the corn starch inclusion complexes. The resulting inclusion ratios were 75.6, 36.9, 43.8, 91.9, 67.2 and 54.7% for heptanolide, carvone, menthone, linalool, heptanol and menthol respectively. The inclusion complexes had laminated structures with a certain amount of holes or blocky constructions. Compared with gelatinized corn starch, the transition temperatures, peak temperatures and enthalpies of the inclusion complexes were significantly different. The major peak of CO at 1771 cm -1 and significant peak shifts revealed the formation of inclusion complexes. X-ray diffractometry (XRD) analyses revealed that the crystallinity of corn starch-polar aroma compound inclusion complexes increased. Based on cross-polarization magic angle spinning 13 C nuclear magnetic resonance (CP-MAS 13 C NMR) results, novel peaks and chemical shifts were attributed to the presence of small aroma compounds, thereby confirming the formation of corn starch inclusion complexes. Small nonpolar and polar aroma compounds can be complexed to corn starch. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Essential oils of Citrus aurantifolia, Anthemis nobile and Lavandula officinalis: in vitro anthelmintic activities against Haemonchus contortus.

    PubMed

    Ferreira, Luis Eduardo; Benincasa, Bruno Iglesias; Fachin, Ana Lúcia; Contini, Silvia Helena Taleb; França, Suzelei Castro; Chagas, Ana Carolina Souza; Beleboni, Rene Oliveira

    2018-04-25

    Infections of sheep with gastrointestinal parasites, especially Haemonchus contortus, have caused serious losses in livestock production, particularly after the emergence of resistance to conventional anthelmintics. The search for new anthelmintic agents, especially those of botanical origin, has grown substantially due to the perspective of less contamination of meat and milk, as well as other advantages related to their cost and accessibility in less developed countries. The aim of this study was to evaluate the in vitro anthelmintic activity of essential oils of the plant species Citrus aurantifolia, Anthemis nobile and Lavandula officinalis against the main developmental stages of the parasite H. contortus. Plant species were selected based on substantial ethnopharmacological information. Analysis of the composition of each oil by gas chromatography coupled to mass spectrometry (GC-MS) demonstrated the presence of limonene (56.37%), isobutyl angelate (29.26%) and linalool acetate (35.97%) as the major constituents in C. aurantifolia, A. nobile and L. officinalis, respectively. Different concentrations of each oil were tested in vitro for their capacity to inhibit egg hatching (EHT), larval development (LDT) and adult worm motility (AWMT) using a multidrug-resistant strain of H. contortus (Embrapa 2010). The IC 50 values obtained for the oils of C. aurantifolia, A. nobile and L. officinalis were 0.694, 0.842 and 0.316 mg/ml in the EHT and 0.044, 0.117 and 0.280 mg/ml in the LDT, respectively. The three oils were able to inhibit adult worm motility completely within the first 8-12 h of observation in the AWMT. The present results demonstrate significant anthelmintic activity of the three oils against the different developmental stages of H. contortus. Furthermore, this study is of ethnopharmacological importance by validating the anthelmintic activity of the oils studied. Although new experiments are necessary, these data contribute to the development of pharmaceutical-veterinary products for sheep farming by opening up new therapeutic possibilities against gastrointestinal infections caused by H. contortus.

  13. Enhanced repellency of binary mixtures of Zanthoxylum armatum seed oil, vanillin, and their aerosols to mosquitoes under laboratory and field conditions.

    PubMed

    Kwon, Hyung Wook; Kim, Soon-Il; Chang, Kyu-Sik; Clark, J Marshall; Ahn, Young-Joon

    2011-01-01

    The repellency of Zanthoxylum armatum seed oil (ZA-SO), alone or in combination with vanillin (VA), its six major constituents, and another four major previously known Zanthoxylum piperitum fruit oil constituents, as well as aerosol products containing 5 or 10% ZA-SO and 5% VA, was evaluated against female Aedes aegypti in laboratory and field studies. Results were then compared with those of N,N-diethyl-3-methylbenzamide (DEET) as a standard. Hand in cage laboratory tests showed that 0.2, 0.1, and 0.05 mg/cm2 ZA-SO resulted in > 92% protection through 30-min postexposure and was not significantly different than 0.05 mg/cm2 DEET. Skin treated with linalool and limonene (from Z. armatum) provided > 80% repellency to female Ae. aegypti at 10-min exposure, whereas cuminaldehyde, citronellal, geranyl acetate, and cuminyl alcohol (from Zanthoxylum piperitum) provided > 90% protection during this same time period. Only cuminaldehyde and citronellal provided complete protection comparable to DEET at 10-min postexposure. After that time, repellency of all plant constituents to mosquitoes was considerably decreased (< approximately 65%). An increase in repellency and duration of effectiveness was produced by a binary 1:4 mixture of ZA-SO and VA (0.05:0.2 mg/cm2) that was significantly more effective than 0.05 mg/cm2 DEET through 90 min. In field tests, an aerosol formulation containing 5 or 10% ZA-SO plus 5% VA gave 100% repellency at 60-min postexposure. Although these formulations were equal to the level of protection afforded by 10% DEET, repellency to the binary ZA-SO aerosol formulations at 90 min was significantly less effective than DEET. However, mixtures formulated from ZA-SO and VA merit further study as potential repellents for protection of humans and domestic animals from biting and nuisance caused by mosquitoes.

  14. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman.

    PubMed

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-05-01

    To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases.

  15. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman

    PubMed Central

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-01-01

    Objective To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). Methods The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. Results About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. Conclusions The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases. PMID:23646297

  16. Synergistic interaction of ten essential oils against Haemonchus contortus in vitro.

    PubMed

    Katiki, L M; Barbieri, A M E; Araujo, R C; Veríssimo, C J; Louvandini, H; Ferreira, J F S

    2017-08-30

    Anthelmintic resistance in sheep gastrointestinal nematodes is a worldwide problem. Multi-drug resistant haemonchosis is the most serious impediment for small ruminant systems, and there are no new drug candidates currently under development. Molecules from natural sources have demonstrated anthelmintic activity against parasites. In this work, the monoterpenoids carvacrol, carvone, cineole, linalool, limonene, and thymol and the phenylpropanoids cinnamaldehyde, anethole, vanillin, and eugenol were assessed individually or in mixtures of ten binary, three ternary, and three quaternary combinations using the in vitro egg hatch assay with eggs of a multi-drug resistant strain of Haemonchus contortus. The main objective of this study was to identify the most effective interaction among essential oils with the greatest individual anthelmintic efficacy and to determine the most powerful combinations. The essential oils were ranked by their 50% lethal concentration (LC 50 ) as follows (mg/mL): cinamaldehyde (0.018), anethole (0.070), carvone (0.085), carvacrol (0.11), thymol (0.13), linalool (0.29), vanillin (0.57), eugenol (0.57), cineole (4.74), and limonene (207.5). Quantification of synergism, additive effect, and antagonism were calculated for binary, ternary, and quaternary combinations. The best anthelmintic effect resulting from synergistic activity among 16 different combinations was for cinnamaldehyde:carvacrol (CL 50 0.012mg/mL) and anethole:carvone (CL 50 0.013mg/mL). These results indicate that these binary combinations would be promising to be tested in sheep infected with H. contortus. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Multivariate optimization of a headspace solid-phase microextraction method followed by gas chromatography with mass spectrometry for the determination of terpenes in Nicotiana langsdorffii.

    PubMed

    Ardini, Francisco; Carro, Marina Di; Abelmoschi, Maria Luisa; Grotti, Marco; Magi, Emanuele

    2014-07-01

    A simple and sensitive procedure based on headspace solid-phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α-pinene, limonene, linalool, α-terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α-pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α-terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α-pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10-17% and 9-13%, respectively. Finally, the procedure was applied to in vitro wild-type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75-374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemotaxonomic analysis of the aroma compounds in essential oils of two different Ocimum basilicum L. varieties from Iran.

    PubMed

    Pirmoradi, Mohammad Reza; Moghaddam, Mohammad; Farhadi, Nasrin

    2013-07-01

    Hydrodistilled essential oils of 21 accessions of Ocimum basilicum L. belonging to two different varieties (var. purpurascens and var. dianatnejadii) from Iran were characterized by GC-FID and GC/MS analyses. The oil yield was found to be between 0.6 and 1.1% (v/w). In total, 49 compounds, accounting for 96.6-99.7% of the oil compositions, were identified. Aromatic compounds, represented mainly by methyl chavicol (33.6-49.1%), and oxygenated monoterpenes, represented by linalool (14.4-39.3%), were the main components in all essential oils. Monoterpene hydrocarbons were present in the essential oils of all accessions of the purpurascens variety, whereas they were completely absent in those of the dianatnejadii variety, indicating that monoterpene hydrocarbons might be considered as marker constituents of the purpurascens variety. The chemotaxonomic value of the essential-oil compositions was discussed according to the results of the cluster analysis (CA). The CA showed a clear separation of the O. basilicum var. purpurascens accessions and the O. basilicum var. dianatnejadii accessions, although the data showed no major chemotype variation between the studied varieties. Indeed, the CA revealed only one principal chemotype (methyl chavicol/linalool) for both varieties. In conclusion, GC/MS analyses in combination with CA showed to be a flexible and reliable method for the characterization of the chemical profiles of different varieties of Ocimum basilicum L. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Phytochemical Investigation of Male and Female Hedyosmum scabrum (Ruiz & Pav.) Solms Leaves from Ecuador.

    PubMed

    Herrera, Claudia; Morocho, Vladimir; Vidari, Giovanni; Bicchi, Carlo; Gilardoni, Gianluca

    2018-02-01

    This article reports the chemical composition of the essential oils obtained by hydrodistillation of male and female H. scabrum fresh leaves. The essential oils, HSMO and HSFO, respectively, were analyzed by GC/MS and GC-FID. A total of 93 components were detected, accounting for 94.8% and 95.3% of HSMO and HSFO, respectively. The prevalent constituents of HSMO were pinocarvone (13.1%), d-germacren-4-ol (12.6%), 1,8-cineole (10.8%), α-pinene (6.4%), and β-pinene (4.8%), whereas the major components of HSFO were 1,8-cineole (20.5%), linalool (16.5%), α-pinene (15.0%), β-pinene (6.4%), and sabinene (6.3%). The different enantiomeric distribution of β-pinene, sabinene, limonene, linalool in the two oils, was determined. The non-volatile esters of p-coumaric and ferulic acids with borneol (1 and 4), cis-chrysanthenol (2 and 5), and cis-pinocarveol (3 and 6) were identified in the leaves after basic hydrolysis and analysis of the NMR spectra of the free acids, and GC/MS spectra of the monoterpene alcohols, respectively. Compounds 2, 3, 5, and 6 have been found in nature for the first time. These findings demonstrated that, from a chemical point of view, male and female individuals of H. scabrum collected in Ecuador seem quite differentiated between each other and from samples of the same species growing in Bolivia and in Peru. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  20. Priming of cowpea volatile emissions with defense inducers enhances the plant's attractiveness to parasitoids when attacked by caterpillars.

    PubMed

    Sobhy, Islam S; Bruce, Toby Ja; Turlings, Ted Cj

    2018-04-01

    The manipulation of herbivore-induced volatile organic compounds (HI-VOCs) via the application of the inducers benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) and laminarin (β-1,3-glucan) is known to enhance the attractiveness of caterpillar-damaged cotton and maize plants to parasitoids. To test if this is also the case for legumes, we treated cowpea (Vigna unguiculata var. unguiculata) with these inducers and studied the effects on HI-VOC emissions and the attraction of three generalist endoparasitoids. After the inducers had been applied and the plants subjected to either real or mimicked herbivory by Spodoptera littoralis caterpillars, females of the parasitoids Campoletis sonorensis and Microplitis rufiventris showed a strong preference for BTH-treated plants, whereas Cotesia females were strongly attracted to both BTH- and laminarin-treated plants with real or mimicked herbivory. Treated plants emitted more of certain HI-VOCs, but considerably less indole and linalool and less of several sesquiterpenes. Multivariate data analysis revealed that enhanced wasp attraction after treatment was correlated with high relative concentrations of nonanal, α-pinene, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and with low relative concentrations of indole, (S)-linalool and (E)-β-farnesene. Inducer treatments had no significant effect on leaf consumption by the caterpillars. Our findings confirm that treating cowpea plants with inducers can enhance their attractiveness to biological control agents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Toxicity of Lavandula angustifolia oil constituents and spray formulations to insecticide-susceptible and pyrethroid-resistant Plutella xylostella and its endoparasitoid Cotesia glomerata.

    PubMed

    Yi, Chang Geun; Hieu, Tran Trung; Lee, Si Hyeock; Choi, Byeoung-Ryeol; Kwon, Min; Ahn, Young-Joon

    2016-06-01

    Plutella xylostella is one of the most serious insect pests of cruciferous crops. This study was conducted to determine the toxicity of 21 constituents from Lavandula angustifolia essential oil (LA-EO) and another 16 previously known LA-EO constituents and the toxicity of six experimental spray formulations containing the oil (1-6 g L(-1) sprays) to susceptible KS-PX and pyrethroid-resistant JJ-PX P. xylostella larvae, as well as to its endoparasitoid Cotesia glomerata adults. Linalool and linalool oxide (LC50 = 0.016 mg cm(-3) ) were the most toxic fumigant compounds and were 10.7-fold less toxic than dichlorvos to KS-PX larvae. Either residual or fumigant toxicity of these compounds was almost identical against larvae from either of the two strains. Against C. glomerata, dichlorvos (LC50 = 7 × 10(-6)  mg cm(-3) ) was the most toxic insecticide. LA-EO was ∼1430 times less toxic than dichlorvos. The oil applied as 6 g L(-1) spray and emamectin benzoate 21.5 g L(-1) emulsifiable concentrate provided 100% mortality against larvae from either of the two strains. Reasonable P. xylostella control in greenhouses can be achieved by a spray formulation containing the 6 g L(-1) oil as potential contact-action fumigant. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles.

    PubMed

    Adhikary, P; Mukherjee, A; Barik, A

    2015-04-01

    Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) is an important stored grain pest of Lathyrus sativus L. (Leguminosae), commonly known as khesari, in India, Bangladesh and Ethiopia. Volatiles were collected from four varieties, i.e., Bio L 212 Ratan, Nirmal B-1, WBK-14-7 and WBK-13-1 of uninfested khesari seeds, and subsequently identified and quantified by gas chromatography mass spectrometry and gas chromatography flame ionization detector analyses, respectively. A total of 23 volatiles were identified in the four varieties of khesari seeds. In Bio L 212 Ratan and WBK-13-1 seeds, nonanal was the most abundant followed by farnesyl acetone; whereas farnesyl acetone was predominant followed by nonanal in Nirmal B-1 and WBK-14-7 khesari seeds. The olfactory responses of female C. maculatus toward volatile blends from four varieties of khesari seeds, and individual synthetic compounds and their combinations were examined through Y-shaped glass tube olfactometer bioassays. Callosobruchus maculatus showed significant preference for the whole volatile blends from Bio L 212 Ratan seeds compared to whole volatile blends from other three varieties. The insect exhibited attraction to five individual synthetic compounds, 3-octanone, 3-octanol, linalool oxide, 1-octanol and nonanal. A synthetic blend of 448, 390, 1182, 659 and 8114 ng/20 μl methylene chloride of 3-octanone, 3-octanol, linalool oxide, 1-octanol and nonanal, respectively, was most attractive to C. maculatus, and this combination might be used for insect pest management program such as baited traps.

  3. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    PubMed

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (P<0.001 for each dose of ulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  4. Characterization of Two Distinct Glycosyl Hydrolase Family 78 α-l-Rhamnosidases from Pediococcus acidilactici▿†

    PubMed Central

    Michlmayr, Herbert; Brandes, Walter; Eder, Reinhard; Schümann, Christina; del Hierro, Andrés M.; Kulbe, Klaus D.

    2011-01-01

    α-l-Rhamnosidases play an important role in the hydrolysis of glycosylated aroma compounds (especially terpenes) from wine. Although several authors have demonstrated the enological importance of fungal rhamnosidases, the information on bacterial enzymes in this context is still limited. In order to fill this important gap, two putative rhamnosidase genes (ram and ram2) from Pediococcus acidilactici DSM 20284 were heterologously expressed, and the respective gene products were characterized. In combination with a bacterial β-glucosidase, both enzymes released the monoterpenes linalool and cis-linalool oxide from a muscat wine extract under ideal conditions. Additionally, Ram could release significant amounts of geraniol and citronellol/nerol. Nevertheless, the potential enological value of these enzymes is limited by the strong negative effects of acidity and ethanol on the activities of Ram and Ram2. Therefore, a direct application in winemaking seems unlikely. Although both enzymes are members of the same glycosyl hydrolase family (GH 78), our results clearly suggest the distinct functionalities of Ram and Ram2, probably representing two subclasses within GH 78: Ram could efficiently hydrolyze only the synthetic substrate p-nitrophenyl-α-l-rhamnopyranoside (Vmax = 243 U mg−1). In contrast, Ram2 displayed considerable specificity toward hesperidin (Vmax = 34 U mg−1) and, especially, rutinose (Vmax = 1,200 U mg−1), a disaccharide composed of glucose and rhamnose. Both enzymes were unable to hydrolyze the flavanone glycoside naringin. Interestingly, both enzymes displayed indications of positive substrate cooperativity. This study presents detailed kinetic data on two novel rhamnosidases, which could be relevant for the further study of bacterial glycosidases. PMID:21784921

  5. Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 monoterpene alcohols.

    PubMed

    Moretti, A N; Zerba, E N; Alzogaray, Raúl A

    2013-09-01

    The effect on locomotor activity, the repellency, and the knock-down produced by 10 monoterpene alcohols were evaluated on first-instar nymphs of Rhodnius prolixus and Triatoma infestans, vectors of Chagas disease. A video tracking technique was used to evaluate locomotor activity and repellency by exposure to papers impregnated with monoterpenes. Eugenol on R. prolixus and (S)-cis-verbenol on T. infestans did not modify the locomotor activity. The remaining monoterpenes produced hyperactivity on both species, although the concentration required was at least a 1,000 times higher than that of deltamethrin (positive control). Carvacrol, eugenol, and geraniol resulted as repellent as N,N-diethyl-m-toluamide (positive control) for both species. A similar result was observed for almost every monoterpene on T. infestans. Knock-down effect was evaluated by exposing the nymphs in closed recipients. The order of increasing toxicity on R. prolixus was (KT50 values in min): geraniol (213.7) < alpha-terpineol (164.5) < linalool (124.2) < carvacrol (111.6) < eugenol (89.8) < thymol (78.9), and on T. infestans: alpha-terpineol (289.8) < eugenol (221.3) < carvacrol (164.2) < linalool (154.9) < thymol (96.7). All monoterpenes were less toxic than the positive control, dichlorvos (3.6 min for R. prolixus and 3.9 min for T. infestans). After 7 h of exposure, (-)-carveol, citronellol, and menthol (on both species) and geraniol (on T. infestans) produced < 50% of knock-down. After these results, it is worthwhile to explore more deeply the potential of these compounds as tools for controlling Chagas disease vectors.

  6. Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis obliqua.

    PubMed

    Zhang, Zheng-qun; Sun, Xiao-ling; Xin, Zhao-jun; Luo, Zong-xiu; Gao, Yu; Bian, Lei; Chen, Zong-mao

    2013-10-01

    Volatile organic compounds derived from non-host plants, Ocimum basilicum, Rosmarinus officinalis, Corymbia citriodora, and Ruta graveolens, can be used to mask host plant odors, and are repellent to the tea geometrid, Ectropis obliqua. Volatile compounds were collected by headspace absorption, and the components were identified and quantified by using gas chromatography/mass spectrometry. The responses of antennae of female E. obliqua to the compounds were evaluated with gas chromatography/electroantennography detection. Qualitative and quantitative differences were found among the four odor profiles. Consistent electroantennographic activity was obtained for eight of the volatiles from the four plants: β-myrcene, α-terpinene, γ-terpinene, linalool, cis-verbenol, camphor, α-terpineol, and verbenone. In a Y-tube bioassay, six chemicals, β-myrcene, γ-terpinene, (R)-(-)-linalool, (S)-(-)-cis-verbenol, (R)-(+)-camphor, and (S)-(-)-verbenone, were the main compounds responsible for repelling E. obliqua. An eight-component mixture including all of the bioactive compounds (in a ratio of 13:2:13:8:1:24:6:17) from R. officinalis was significantly more effective at repelling the moths than any single compound or a mixture of equal amounts of the eight compounds. Field results demonstrated that intercropping tea plants with R. officinalis effectively suppressed E. obliqua infestations in a tea plantation. Our findings suggests that odor blends of R. officinalis play a role in disturbing host orientation behavior, and in repelling E. obliqua adults, and that R. officinalis should be considered when developing "push-pull" strategies aimed at optimizing the control of E. obliqua with semiochemicals.

  7. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters.

    PubMed

    Santoyo, S; Cavero, S; Jaime, L; Ibañez, E; Señoráns, F J; Reglero, G

    2006-02-01

    Oregano leaves were extracted using a pilot-scale supercritical fluid extraction plant under a wide range of extraction conditions, with the goal of determining the extraction and fractionation conditions to obtain extracts with optimal antimicrobial activity. In this investigation, the essential oil-rich fractions were selectively precipitated in the second separator, and their chemical composition and antimicrobial activity were investigated. Gas chromatography-mass spectrometry analysis of the various fractions resulted in the identification of 27 compounds of the essential oil. The main components of these fractions were carvacrol, trans-sabinene hydrate, cis-piperitol, borneol, terpinen-4-ol, and linalool. Antimicrobial activity was investigated by the disk diffusion and broth dilution methods against six different microbial species, including two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), a yeast (Candida albicans), and a fungus (Aspergillus niger). All of the supercritical fluid extraction fractions obtained showed antimicrobial activity against all of the microorganisms tested, although the most active fraction was the one obtained in experiment 5 (fraction was obtained with 7% ethanol at 150 bar and 40 degrees C). C. albicans was the most sensitive microorganism to the oregano extracts, whereas the least susceptible was A. niger. Carvacrol, sabinene hydrate, borneol, and linalool standards also showed antimicrobial activity against all of the microorganisms tested, with carvacrol being the most effective. Consequently, it was confirmed that essential oil from experiment 5, with the best antimicrobial activity, also presented the highest quantity of carvacrol.

  8. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals.

    PubMed

    de Lacy Costello, Ben P J; Adamatzky, Andrew I

    2013-09-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a "fungal odor," was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis.

  9. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals

    PubMed Central

    de Lacy Costello, Ben P.J.; Adamatzky, Andrew I.

    2013-01-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a “fungal odor,” was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis. PMID:24265848

  10. Quantification of character-impacting compounds in Ocimum basilicum and 'Pesto alla Genovese' with selected ion flow tube mass spectrometry.

    PubMed

    Amadei, Gianluca; Ross, Brian M

    2012-02-15

    Basil (Ocimum basilicum) is an important flavourant plant which constitutes the major ingredient of the pasta sauce 'Pesto alla Genovese'. The characteristic smell of basil stems mainly from a handful of terpenoids (methyl cinnamate, eucalyptol, linalool and estragole), the concentration of which varies according to basil cultivars. The simple and rapid analysis of the terpenoid constituents of basil would be useful as a means to optimise harvesting times and to act as a quality control process for basil-containing foodstuffs. Classical analytical techniques such as gas chromatography/mass spectrometry (GC/MS) are, however, slow, technically demanding and therefore less suitable for routine analysis. A new chemical ionisation technique which allows real-time quantification of traces gases, Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), was therefore utilised to determine its usefulness for the assay of terpenoid concentrations in basil and pesto sauce headspace. Trace gas analysis was performed using the NO(+) precursor ion which minimised interference from other compounds. Character-impacting compound concentration was measured in basil headspace with good reproducibility and statistically significant differences were observed between cultivars. Quantification of linalool in pesto sauce headspace proved more difficult due to the presence of interfering compounds. This was resolved by careful selection of reaction product ions which allowed us to detect differences between various commercial brands of pesto. We conclude that SIFT-MS may be a valid tool for the fast and reproducible analysis of flavourant terpenoids in basil and basil-derived foodstuffs. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Non-mix fragrances are top sensitizers in consecutive dermatitis patients - a cross-sectional study of the 26 EU-labelled fragrance allergens.

    PubMed

    Bennike, Niels H; Zachariae, Claus; Johansen, Jeanne D

    2017-11-01

    For cosmetics, it is mandatory to label 26 fragrance substances, including all constituents of fragrance mix I (FM I) and fragrance mix II (FM II). Earlier reports have not included oxidized R-limonene [hydroperoxides of R-limonene (Lim-OOH)] and oxidized linalool [hydroperoxides of linalool (Lin-OOH)], and breakdown testing of FM I and FM II has mainly been performed in selected, mix-positive patients. To report the prevalence of sensitization to the 26 fragrances, and to assess concomitant reactivity to FM I and/or FM II. A cross-sectional study on consecutive dermatitis patients patch tested with the 26 fragrances and the European baseline series from 2010 to 2015 at a single university clinic was performed. Of 6004 patients, 940 (15.7%, 95%CI: 14.7-16.6%) were fragrance-sensitized. Regarding the single fragrances, most patients were sensitized to Lin-OOH (3.9%), Evernia furfuracea (3.0%), Lim-OOH (2.5%), and hydroxyisohexyl 3-cyclohexene carboxaldehyde (2.1%). Significantly fewer patients were 'FM I-positive and constituent-positive' than 'FM II-positive and constituent-positive' (32.7% versus 57.0%, p < 0.0001). Additionally, significantly more patients were 'FM II-negative but constituent-positive' than 'FM I-negative but constituent-positive' (12.4% versus 3.2%, p = 0.0008). Non-mix fragrances are the most important single fragrance allergens among consecutive patients. The test concentration of the single FM I constituents should be increased when possible. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  13. Acetate transport and utilization in the rat brain.

    PubMed

    Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-05-01

    Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.

  14. Evaluating acetate metabolism for imaging and targeting in multiple myeloma

    PubMed Central

    Fontana, Francesca; Ge, Xia; Su, Xinming; Hathi, Deep; Xiang, Jingyu; Cenci, Simone; Civitelli, Roberto; Shoghi, Kooresh I.; Akers, Walter J.; D’avignon, Andre

    2016-01-01

    Purpose We hypothesized that in multiple myeloma cells (MMC), high membrane biosynthesis will induce acetate uptake in vitro and in vivo. Here, we studied acetate metabolism and targeting in MMC in vitro and tested the efficacy of 11C-acetate-PET (positron emission tomography) to detect and quantitatively image myeloma treatment response in vivo. Experimental design Acetate fate tracking using 13C-edited-1H NMR (nuclear magnetic resonance) was performed to study in vitro acetate uptake and metabolism in MMC. Effects of pharmacological modulation of acetate transport or acetate incorporation into lipids on MMC cell survival and viability were assessed. Preclinical mouse MM models of subcutaneous and bone tumors were evaluated using 11C-acetate-PET/CT imaging and tissue biodistribution. Results In vitro, NMR showed significant uptake of acetate by MMC, and acetate incorporation into intracellular metabolites and membrane lipids. Inhibition of lipid synthesis and acetate transport was toxic to MMC, while sparing resident bone cells or normal B cells. In vivo, 11C-acetate uptake by PET imaging was significantly enhanced in subcutaneous and bone MMC tumors compared to unaffected bone or muscle tissue. Likewise, 11C-acetate uptake was significantly reduced in MM tumors after treatment. Conclusions Uptake of acetate from the extracellular environment was enhanced in MMC and was critical to cellular viability. 11C-acetate-PET detected the presence of myeloma cells in vivo, including uptake in intramedullary bone disease. 11C-acetate-PET also detected response to therapy in vivo. Our data suggested that acetate metabolism and incorporation into lipids was crucial to MM cell biology and that 11C-acetate-PET is a promising imaging modality for MM. PMID:27486177

  15. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  16. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir.

    PubMed

    Pan, Pan; Hong, Bo; Mbadinga, Serge Maurice; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-09-01

    Acetate is a key intermediate in anaerobic crude oil biodegradation and also a precursor for methanogenesis in petroleum reservoirs. The impact of iron oxides, viz. β-FeOOH (akaganéite) and magnetite (Fe 3 O 4 ), on the methanogenic acetate metabolism in production water of a high-temperature petroleum reservoir was investigated. Methane production was observed in all the treatments amended with acetate. In the microcosms amended with acetate solely about 30% of the acetate utilized was converted to methane, whereas methane production was stimulated in the presence of magnetite (Fe 3 O 4 ) resulting in a 48.34% conversion to methane. Methane production in acetate-amended, β-FeOOH (akaganéite)-supplemented microcosms was much faster and acetate consumption was greatly improved compared to the other conditions in which the stoichiometric expected amounts of methane were not produced. Microbial community analysis showed that Thermacetogenium spp. (known syntrophic acetate oxidizers) and hydrogenotrophic methanogens closely related to Methanothermobacter spp. were enriched in acetate and acetate/magnetite (Fe 3 O 4 ) microcosms suggesting that methanogenic acetate metabolism was through hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers. The acetate/β-FeOOH (akaganéite) microcosms, however, differed by the dominance of archaea closely related to the acetoclastic Methanosaeta thermophila. These observations suggest that supplementation of β-FeOOH (akaganéite) accelerated the production of methane further, driven the alteration of the methanogenic community, and changed the pathway of acetate methanogenesis from hydrogenotrophic methanogenesis fueled by syntrophic acetate oxidizers to acetoclastic.

  17. Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA.

    PubMed

    Zheng, Yu; Wang, Jing; Bai, Xiaolei; Chang, Yangang; Mou, Jun; Song, Jia; Wang, Min

    2018-05-21

    Acetic acid bacteria (AAB) are widely used in acetic acid fermentation due to their remarkable ability to oxidize ethanol and high tolerance against acetic acid. In Acetobacter pasteurianus, nucleotide excision repair protein UvrA was up-regulated 2.1 times by acetic acid when compared with that without acetic acid. To study the effects of UvrA on A. pasteurianus acetic acid tolerance, uvrA knockout strain AC2005-ΔuvrA, uvrA overexpression strain AC2005 (pMV24-uvrA), and the control strain AC2005 (pMV24), were constructed. One percent initial acetic acid was almost lethal to AC2005-ΔuvrA. However, the biomass of the UvrA overexpression strain was higher than that of the control under acetic acid concentrations. After 6% acetic acid shock for 20 and 40 min, the survival ratios of AC2005 (pMV24-uvrA) were 2 and 0.12%, respectively; however, they were 1.5 and 0.06% for the control strain AC2005 (pMV24). UvrA overexpression enhanced the acetification rate by 21.7% when compared with the control. The enzymes involved in ethanol oxidation and acetic acid tolerance were up-regulated during acetic acid fermentation due to the overexpression of UvrA. Therefore, in A. pasteurianus, UvrA could be induced by acetic acid and is related with the acetic acid tolerance by protecting the genome against acetic acid to ensure the protein expression and metabolism.

  18. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.

    PubMed

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K

    2014-09-01

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  19. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  20. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967

  1. Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages

    PubMed Central

    Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong

    2013-01-01

    Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled. PMID:24232454

  2. Reduction of Legionella spp. in Water and in Soil by a Citrus Plant Extract Vapor

    PubMed Central

    Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-01-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1 on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1 reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml−1 reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. PMID:25063652

  3. Engineering d-limonene synthase down-regulation in orange fruit induces resistance against the fungus Phyllosticta citricarpa through enhanced accumulation of monoterpene alcohols and activation of defence.

    PubMed

    Rodríguez, Ana; Kava, Vanessa; Latorre-García, Lorena; da Silva, Geraldo J; G Pereira, Rosana; Glienke, Chirlei; Ferreira-Maba, Lisandra S; Vicent, Antonio; Shimada, Takehiko; Peña, Leandro

    2018-03-24

    Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus-growing areas worldwide. The pathogen may infect the fruit for 20-24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d-Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d-limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d-limonene content, an over-accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up-regulation of different pathogenesis-related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases. © 2018 BSPP and John Wiley & Sons Ltd.

  4. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    PubMed

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  5. Enhancing blood donor skin disinfection using natural oils.

    PubMed

    Alabdullatif, Meshari; Boujezza, Imen; Mekni, Mohamed; Taha, Mariam; Kumaran, Dilini; Yi, Qi-Long; Landoulsi, Ahmed; Ramirez-Arcos, Sandra

    2017-12-01

    Effective donor skin disinfection is essential in preventing bacterial contamination of blood components with skin flora bacteria like Staphylococcus epidermidis. Cell aggregates of S. epidermidis (biofilms) are found on the skin and are resistant to the commonly used donor skin disinfectants chlorhexidine-gluconate and isopropyl alcohol. It has been demonstrated that essential oils synergistically enhance the antibacterial activity of chlorhexidine-gluconate. The objective of this study was to test plant-extracted essential oils in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol for their ability to eliminate S. epidermidis biofilms. The composition of oils extracted from Artemisia herba-alba, Lavandula multifida, Origanum marjoram, Rosmarinus officinalis, and Thymus capitatus was analyzed using gas chromatography-mass spectrometry. A rabbit model was used to assess skin irritation caused by the oils. In addition, the anti-biofilm activity of the oils used alone or in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol was tested against S. epidermidis biofilms. Essential oil concentrations 10%, 20%, and 30% were chosen for anti-biofilm assays, because skin irritation was observed at concentrations greater than 30%. All oils except for O. marjoram had anti-biofilm activity at these three concentrations. L. multifida synergistically enhanced the anti-biofilm activity of chlorhexidine-gluconate and resulted in the highest anti-biofilm activity observed when combined with chlorhexidine-gluconate plus isopropyl alcohol. Gas chromatography-mass spectrometry revealed that the main component contributing to the activity of L. multifida oil was a natural terpene alcohol called linalool. The anti-biofilm activity of chlorhexidine-gluconate plus isopropyl alcohol can be greatly enhanced by L. multifida oil or linalool. Therefore, these components could potentially be used to improve blood donor skin disinfection. © 2017 AABB.

  6. Comparative analysis of flower volatiles from nine citrus at three blooming stages.

    PubMed

    Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong

    2013-11-13

    Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.

  7. Enzymatic production and emission of floral scent volatiles in Jasminum sambac.

    PubMed

    Bera, Paramita; Mukherjee, Chiranjit; Mitra, Adinpunya

    2017-03-01

    Floral scent composed of low molecular weight volatile organic compounds. The sweet fragrance of any evening blooming flower is dominated by benzenoid and terpenoid volatile compounds. Floral scent of Jasminum sambac (Oleaceae) includes three major benzenoid esters - benzylacetate, methylbenzoate, and methylsalicylate and three major terpene compounds viz. (E)-β-ocimene, linalool and α-farnesene. We analyzed concentrations and emission rates of benzenoids and terpenoids during the developmental stages of J. sambac flower. In addition to spatial emission from different floral parts, we studied the time-course mRNA accumulations of phenylalanine ammonia-lyase (PAL) and the two representative genes of terpenoid pathway, namely 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and terpene synthase (TPS). Further, in vitro activities of several enzymes of phenylpropanoid/benzenoid pathway viz., PAL and acetyl-coenzyme A: benzylalcohol acetyltransferase (BEAT), S-adenosyl-l-methionine: benzoic acid carboxyl methyl transferase (BAMT) and S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase (SAMT) were studied. All the above enzyme activities along with the in vitro activities of DXR and TPS were found to follow a certain rhythm as observed in the emission of different benzenoid and terpenoid compounds. Linalool emission peaked after petal opening and coincided with maximal expression of JsTPS gene as evidenced from RT-PCR analyses (semi-quantitative). The maximum transcript accumulation of this gene was observed in flower petals, indicating that the petals of J. sambac flower play an important role as a major contributor of volatile precursors. The transcripts accumulation of JsDXR and JsTPS in different developmental stages and in different floral part showed that emissions of terpenoid volatiles in J. sambac flower are partially regulated at transcription levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Insect-Induced Conifer Defense. White Pine Weevil and Methyl Jasmonate Induce Traumatic Resinosis, de Novo Formed Volatile Emissions, and Accumulation of Terpenoid Synthase and Putative Octadecanoid Pathway Transcripts in Sitka Spruce1[w

    PubMed Central

    Miller, Barbara; Madilao, Lufiani L.; Ralph, Steven; Bohlmann, Jörg

    2005-01-01

    Stem-boring insects and methyl jasmonate (MeJA) are thought to induce similar complex chemical and anatomical defenses in conifers. To compare insect- and MeJA-induced terpenoid responses, we analyzed traumatic oleoresin mixtures, emissions of terpenoid volatiles, and expression of terpenoid synthase (TPS) genes in Sitka spruce (Picea sitchensis) following attack by white pine weevils (Pissodes strobi) or application of MeJA. Both insects and MeJA caused traumatic resin accumulation in stems, with more accumulation induced by the weevils. Weevil-induced terpenoid emission profiles were also more complex than emissions induced by MeJA. Weevil feeding caused a rapid release of a blend of monoterpene olefins, presumably by passive evaporation of resin compounds from stem feeding sites. These compounds were not found in MeJA-induced emissions. Both weevils and MeJA caused delayed, diurnal emissions of (−)-linalool, indicating induced de novo biosynthesis of this compound. TPS transcripts strongly increased in stems upon insect attack or MeJA treatment. Time courses and intensity of induced TPS transcripts were different for monoterpene synthases, sesquiterpene synthases, and diterpene synthases. Increased levels of weevil- and MeJA-induced TPS transcripts accompanied major changes in terpenoid accumulation in stems. Induced TPS expression profiles in needles were less complex than those in stems and matched induced de novo emissions of (−)-linalool. Overall, weevils and MeJA induced similar, but not identical, terpenoid defense responses in Sitka spruce. Findings of insect- and MeJA-induced accumulation of allene oxide synthase-like and allene oxide cyclase-like transcripts are discussed in the context of traumatic resinosis and induced volatile emissions in this gymnosperm system. PMID:15618433

  9. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds.

    PubMed

    Laznik, Z; Trdan, S

    2013-07-01

    Entomopathogenic nematodes (EPNs) respond to a variety of stimuli when foraging. In a laboratory investigation, we tested the chemotactic responses of 8 EPN strains (Steinernema and Heterorhabditis) to three mechanically damaged maize root compounds (linalool, α-caryophyllene and β-caryophyllene). We hypothesized that the EPN directional response to the tested volatile compounds would vary among the species and volatile compound and may be related to foraging strategies. The nematodes with an intermediate foraging strategy (Steinernema feltiae) proved to be less active in their movement toward volatile compounds in a comparison with the ambushers (Steinernema carpocapsae) and cruisers (Steinernema kraussei and Heterorhabditis bacteriophora); β-caryophyllene was found to be the most attractive substance in our experiment. The results of our investigation showed that the cruisers were more attracted to β-caryophyllene than the ambushers and intermediates. The foraging strategy did not affect the movement of the IJs toward the other tested volatile compounds or the control. Our results suggest that the response to different volatile cues is more a strain-specific characteristic than a different host-searching strategy. Only S. carpocapsae strain B49 displayed an attraction to linalool, whereas S. kraussei showed a retarded reaction to β-caryophyllene and α-caryophyllene in our experiment. The EPN strains showed only a weak attraction to α-caryophyllene, suggesting that this volatile compound could not have an important role in the orientation of IJs to the damaged roots of maize plants. These results expand our knowledge of volatile compounds as the cues that may be used by EPNs for finding hosts or other aspects of navigation in the soil. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum.

    PubMed

    Chiang, Lien-Chai; Ng, Lean-Teik; Cheng, Pei-Win; Chiang, Win; Lin, Chun-Ching

    2005-10-01

    1. Ocimum basilicum (OB), also known as sweet basil, is a well known medicinal herb in traditional Chinese medicine preparations. In the present study, extracts and purified components of OB were used to identify possible antiviral activities against DNA viruses (herpes viruses (HSV), adenoviruses (ADV) and hepatitis B virus) and RNA viruses (coxsackievirus B1 (CVB1) and enterovirus 71 (EV71)). 2. The results show that crude aqueous and ethanolic extracts of OB and selected purified components, namely apigenin, linalool and ursolic acid, exhibit a broad spectrum of antiviral activity. Of these compounds, ursolic acid showed the strongest activity against HSV-1 (EC50 = 6.6 mg/L; selectivity index (SI) = 15.2), ADV-8 (EC50 = 4.2 mg/L; SI = 23.8), CVB1 (EC50 = 0.4 mg/L; SI = 251.3) and EV71 (EC50 = 0.5 mg/L; SI = 201), whereas apigenin showed the highest activity against HSV-2 (EC50 = 9.7 mg/L; SI = 6.2), ADV-3 (EC50 = 11.1 mg/L; SI = 5.4), hepatitis B surface antigen (EC50 = 7.1 mg/L; SI = 2.3) and hepatitis B e antigen (EC50 = 12.8 mg/L; SI = 1.3) and linalool showed strongest activity against AVD-II (EC50 = 16.9 mg/L; SI = 10.5). 3. No activity was noted for carvone, cineole, beta-caryophyllene, farnesol, fenchone, geraniol, beta-myrcene and alpha-thujone. 4. The action of ursolic acid against CVB1 and EV71 was found to occur during the infection process and the replication phase. 5. With SI values greater than 200, the potential use of ursolic acid for treating infection with CVB1 and EV71 merits further investigation.

  11. Chemical Composition and Biological Activity of Essential Oils from Different Species of Piper from Panama.

    PubMed

    Santana, Ana I; Vila, Roser; Cañigueral, Salvador; Gupta, Mahabir P

    2016-07-01

    The chemical composition of leaf essential oils from 11 species of Piper from Panama was analyzed by a combination GC-FID and GC-MS procedures. Six of them had sesquiterpene hydrocarbons as major constituents, three were characterized by monoterpene hydrocarbons, one by a diterpene, and one by a phenylpropanoid, dillapiole. The main components identified in each species were: cembratrienol (25.4 %) in Piper augustum; β-pinene (26.6 %) in Piper corrugatum; α-pinene (19.4 %) in Piper curtispicum; trans-β-farnesene (63.7 %) in Piper darienense; p-cymene (43.9 %) in Piper grande; dillapiole (57.7 %) in Piper hispidum; linalool (14.5 %), α-phellandrene (13.8 %), and limonene (12.2 %) in Piper jacquemontianum; β-caryophyllene (45.2 %) in Piper longispicum; linalool (16.5 %), α-phellandrene (11.8 %), limonene (11.4 %), and p-cymene (9.0 %) in Piper multiplinervium; β-selinene (19.0 %), β-elemene (16.1 %), and α-selinene (15.5 %) in Piper reticulatum; and germacrene D (19.7 %) in Piper trigonum. The essential oils of P. hispidum and P. longispicum at a concentration of 250 µg/mL showed larvicidal activity against Aedes aegypti, while the oils from P. curtispicum, P. multiplinervium, P. reticulatum, and P. trigonum were inactive (LC100 ≥ 500 µg/mL). The essential oils of P. grande, P. jacquemontianum, and P. multiplinervium showed no significant antifungal activity (MIC > 250 µg/mL) against several yeasts and filamentous fungal strains. Georg Thieme Verlag KG Stuttgart · New York.

  12. Assessing the permeability of the rat sciatic nerve epineural sheath against compounds with local anesthetic activity: an ex vivo electrophysiological study.

    PubMed

    Kagiava, Alexia; Theophilidis, George

    2013-10-01

    Abstract Studies have shown that the sciatic nerve epineural sheath acts as a barrier and has a delaying effect on the diffusion of local anesthetics into the nerve fibers and endoneurium. The purpose of this work is to assess and to quantify the permeability of the epineural sheath. For this purpose, we isolated the rat sciatic nerve in a three-chamber recording bath that allowed us to monitor the constant in amplitude evoked nerve compound action potential (nCAP) for over 24 h. For nerves exposed to the compounds under investigation, we estimated the IT50 the time required to inhibit the nCAP to 50% of its initial value. For desheathed nerves, the half-vitality time was denoted as IT50(-) and for the ensheath normal nerves as IT50(+). There was no significant difference between the IT50 of desheathed and ensheathed nerves exposed to normal saline. The IT50(-) for nerves exposed to 40 mM lidocaine was 12.1 ± 0.95 s (n=14) and the IT50(+) was 341.4 ± 2.49 s (n=6). The permeability (P) coefficient of the epineural sheath was defined as the ratio IT50(+)/IT50(-). The P coefficient for 40 mM lidocaine and linalool was 28.2 and 3.48, correspondingly, and for 30 mM 2-heptanone was 4.87. This is an indication that the epineural sheath provided a stronger barrier against lidocaine, compared to natural local anesthetics, linalool and 2-heptanone. The methodology presented here is a useful tool for studying epineural sheath permeability to compounds with local anesthetic properties.

  13. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.

    PubMed

    Nørgaard, A W; Kofoed-Sørensen, V; Mandin, C; Ventura, G; Mabilia, R; Perreca, E; Cattaneo, A; Spinazzè, A; Mihucz, V G; Szigeti, T; de Kluizenaar, Y; Cornelissen, H J M; Trantallidi, M; Carrer, P; Sakellaris, I; Bartzis, J; Wolkoff, P

    2014-11-18

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.

  14. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia.

    PubMed

    Lane, Alexander; Boecklemann, Astrid; Woronuk, Grant N; Sarker, Lukman; Mahmoud, Soheil S

    2010-03-01

    We are developing Lavandula angustifolia (lavender) as a model system for investigating molecular regulation of essential oil (a mixture of mono- and sesquiterpenes) production in plants. As an initial step toward building the necessary 'genomics toolbox' for this species, we constructed two cDNA libraries from lavender leaves and flowers, and obtained sequence information for 14,213 high-quality expressed sequence tags (ESTs). Based on homology to sequences present in GenBank, our EST collection contains orthologs for genes involved in the 1-deoxy-D: -xylulose-5-phosphate (DXP) and the mevalonic acid (MVA) pathways of terpenoid biosynthesis, and for known terpene synthases and prenyl transferases. To gain insight into the regulation of terpene metabolism in lavender flowers, we evaluated the transcriptional activity of the genes encoding for 1-deoxy-D: -xylulose-5-phosphate synthase (DXS) and HMG-CoA reductase (HMGR), which represent regulatory steps of the DXP and MVA pathways, respectively, in glandular trichomes (oil glands) by real-time PCR. While HMGR transcripts were barely detectable, DXS was heavily expressed in this tissue, indicating that essential oil constituents are predominantly produced through the DXP pathway in lavender glandular trichomes. As anticipated, the linalool synthase (LinS)-the gene responsible for the production of linalool, a major constituent of lavender essential oil-was also strongly expressed in glands. Surprisingly, the most abundant transcript in floral glandular trichomes corresponded to a sesquiterpene synthase (cadinene synthase, CadS), although sesquiterpenes are minor constituents of lavender essential oils. This result, coupled to the weak activity of the MVA pathway (the main route for sesquiterpene production) in trichomes, indicates that precursor supply may represent a bottleneck in the biosynthesis of sesquiterpenes in lavender flowers.

  15. Reduction of Legionella spp. in water and in soil by a citrus plant extract vapor.

    PubMed

    Laird, Katie; Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-10-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml(-1) on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml(-1) reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml(-1) reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Peter; Eller, Allyson; Guenther, Alex

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modelingmore » of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.« less

  17. Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC).

    PubMed

    Jeon, Jeong Yong; Lee, Misu; Whang, Sang Hyun; Kim, Jung-Whan; Cho, Arthur; Yun, Mijin

    2018-01-19

    Altered energy metabolism is a biochemical fingerprint of cancer cells. Hepatocellular carcinoma (HCC) shows reciprocal [18F]fluorodeoxyglucose (FDG) and [11C]acetate uptake, as revealed by positron emission tomography/computed tomography (PET/CT). Previous studies have focused on the role of FDG uptake in cancer cells. In this study, we evaluated the mechanism and roles of [11C]acetate uptake in human HCCs and cell lines. The expression of monocarboxylate transporters (MCTs) was assessed to determine the transporters of [11C]acetate uptake in HCC cell lines and human HCCs with different [11C]acetate uptake. Using two representative cell lines with widely different [11C]acetate uptake (HepG2 for high uptake and Hep3B for low uptake), changes in [11C]acetate uptake were measured after treatment with an MCT1 inhibitor or MCT1-targeted siRNA. To verify the roles of MCT1 in cells, oxygen consumption rate and the amount of lipid synthesis were measured. HepG2 cells with high [11C]acetate uptake showed higher MCT1 expression than other HCC cell lines with low [11C]acetate uptake. MCT1 expression was elevated in human HCCs with high [11C]acetate uptake compared to those with low [11C]acetate uptake. After blocking MCT1 with AR-C155858 or MCT1 knockdown, [11C]acetate uptake in HepG2 cells was significantly reduced. Additionally, inhibition of MCT1 suppressed mitochondrial oxidative phosphorylation, lipid synthesis, and cellular proliferation in HCC cells with high [11C]acetate uptake. MCT1 may be a new therapeutic target for acetate-dependent HCCs with high [11C]acetate uptake, which can be selected by [11C]acetate PET/CT imaging in clinical practice.

  18. Role of geraniol against lead acetate-mediated hepatic damage and their interaction with liver carboxylesterase activity in rats.

    PubMed

    Ozkaya, Ahmet; Sahin, Zafer; Kuzu, Muslum; Saglam, Yavuz Selim; Ozkaraca, Mustafa; Uckun, Mirac; Yologlu, Ertan; Comakli, Veysel; Demirdag, Ramazan; Yologlu, Semra

    2018-02-01

    In this study, the effect of geraniol (50 mg/kg for 30 d), a natural antioxidant and repellent/antifeedant monoterpene, in a rat model of lead acetate-induced (500 ppm for 30 d) liver damage was evaluated. Hepatic malondialdehyde increased in the lead acetate group. Reduced glutathione unchanged, but glutathione S-transferase, glutathione reductase, as well as carboxylesterase activities decreased in geraniol, lead acetate and geraniol + lead acetate groups. 8-OhDG immunoreactivity, mononuclear cell infiltrations and hepatic lead concentration were lower in the geraniol + lead acetate group than the lead acetate group. Serum aspartate aminotransferase and alanine aminotransferase activities increased in the Pb acetate group. In conclusion, lead acetate causes oxidative and toxic damage in the liver and this effect can reduce with geraniol treatment. However, we first observed that lead acetate, as well as geraniol, can affect liver carboxylesterase activity.

  19. Compounds Derived from the Bhutanese Daisy, Ajania nubigena, Demonstrate Dual Anthelmintic Activity against Schistosoma mansoni and Trichuris muris.

    PubMed

    Wangchuk, Phurpa; Pearson, Mark S; Giacomin, Paul R; Becker, Luke; Sotillo, Javier; Pickering, Darren; Smout, Michael J; Loukas, Alex

    2016-08-01

    Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties. Here we studied four major compounds derived from A. nubigena for their anthelmintic properties against the nematode whipworm Trichuris muris and the platyhelminth blood fluke Schistosoma mansoni using the xWORM assay technique. Of four compounds tested, two compounds-luteolin (3) and (3R,6R)-linalool oxide acetate (1)-showed dual anthelmintic activity against S. mansoni (IC50 range = 5.8-36.9 μg/mL) and T. muris (IC50 range = 9.7-20.4 μg/mL). Using scanning electron microscopy, we determined luteolin as the most efficacious compound against both parasites and additionally was found effective against the schistosomula, the infective stage of S. mansoni (IC50 = 13.3 μg/mL). Luteolin induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. Our in vivo assessment of luteolin (3) against T. muris infection at a single oral dosing of 100 mg/kg, despite being significantly (27.6%) better than the untreated control group, was markedly weaker than mebendazole (93.1%) in reducing the worm burden in mice. Among the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths-T. muris and S. mansoni-and was effective against juvenile schistosomes, the stage that is refractory to the current gold standard drug, praziquantel. Medicinal chemistry optimisation including cytotoxicity analysis, analogue development and structure-activity relationship studies are warranted and could lead to the identification of more potent chemical entities for the control of parasitic helminths of humans and animals.

  20. Synthetic cis-jasmone exposure induces wheat and barley volatiles that repel the pest cereal leaf beetle, Oulema melanopus L.

    PubMed

    Delaney, Kevin J; Wawrzyniak, Maria; Lemańczyk, Grzegorz; Wrzesińska, Danuta; Piesik, Dariusz

    2013-05-01

    The plant semiochemical cis-jasmone primes/induces plant resistance that deters herbivores and attracts natural enemies. We studied the induction of volatile organic compounds (VOCs) in winter wheat and spring barley after exposure of plants to three synthetic cis-jasmone doses (50 μl of 1, 100, and 1 × 10(4) ng μl(-1)) and durations of exposure (1, 3, and 6 h). Cereal leaf beetle, Oulema melanopus, adult behavioral responses were examined in a Y-tube olfactometer to cis-jasmone induced plant VOC bouquets and to two synthetic blends of VOCs (3 green leaf volatiles (GLVs); 4 terpenes + indole). In both cereals, eight VOCs [(Z)-3-hexanal, (Z)-3-hexanol, (Z)-3-hexanyl acetate, (Z)-β-ocimene, linalool, β-caryophyllene, (E)-ß-farnesene, and indole] were induced 100- to 1000-fold after cis-jasmone exposure. The degree of induction in both cereals was usually positively and linearly associated with increasing exposure dose and duration. However, VOC emission rate was only ~2-fold greater from plants exposed to the highest vs. lowest cis-jasmone exposure doses (1 × 10(4) difference) or durations (6-fold difference). Male and female O. melanopus were deterred by both cereal VOC bouquets after plant exposure to the high cis-jasmone dose (1 × 10(4) ng μl(-1)), while females were also deterred after plant exposure to the low dose (1 ng μl(-1)) but attracted to unexposed plant VOC bouquets. Both O. melanopus sexes were repelled by terpene/indole and GLV blends at two concentrations (25 ng · min(-1); 125 ng · min(-1)), but attracted to the lowest dose (1 ng · min(-1)) of a GLV blend. It is possible that the biologically relevant low cis-jasmone dose has ecological activity and potential for inducing field crop VOCs to deter O. melanopus.

  1. Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery

    PubMed Central

    2011-01-01

    Background Fundamental in traditional postpartum recovery in Lao PDR is the use of hotbeds, mother roasting, steam sauna and steam baths. During these treatments medicinal plants play a crucial role, but little has been published about how the treatments are carried out precisely, which species are used, the medicinal properties of these species, and the medicinal efficacy of their chemical constituents. Methods Sixty-five interviews, in 15 rural villages, with women of 4 different ethnic groups were conducted to survey confinement rituals, and postpartum plant use and salience. Essential oils from the main species used were extracted using steam distillation and the main chemical constituents characterized using gas chromatography-mass spectrometry (GC-MS). Results A total of 10 different species were used by three or more of the ethnic groups included in this study. All species were used in steam sauna and bath, but only 3 species were used in hotbed and mother roasting. Essential oils of Amomum villosum, Amomum microcarpum and Blumea balsamifera were found to contain significant amounts of the following terpenes: β-pinene, camphor, bornyl acetate, borneol, linalool, D-limonene, fenchone, terpinen-4-ol and α-terpinene. Conclusions Many of these terpenes have documented antimicrobial and analgesic properties, and some have also synergistic interactions with other terpenes. The mode of application in hotbed and mother roasting differs from the documented mechanisms of action of these terpenes. Plants in these two practices are likely to serve mainly hygienic purposes, by segregating the mother from infection sources such as beds, mats, stools, cloth and towels. Steam sauna medicinal plant use through inhalation of essential oils vapors can possibly have medicinal efficacy, but is unlikely to alleviate the ailments commonly encountered during postpartum convalescence. Steam sauna medicinal plant use through dermal condensation of essential oils, and steam bath cleansing of the perineal area is possibly a pragmatic use of the reported medicinal plants, as terpene constituents have documented antimicrobial, analgesic and anti-inflammatory properties. PMID:22171719

  2. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  3. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may be produced by the...

  4. 21 CFR 184.1185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium acetate. 184.1185 Section 184.1185 Food... Specific Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It...

  5. Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing.

    PubMed

    Wang, Hui-Zhong; Gou, Min; Yi, Yue; Xia, Zi-Yuan; Tang, Yue-Qin

    2018-05-11

    Acetate is a significant intermediate of anaerobic fermentation. There are two pathways for converting acetate to CH 4 and CO 2 : acetoclastic methanogenesis by acetoclastic methanogens, and syntrophic acetate oxidation by acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens. Detailed investigations of syntrophic acetate-oxidizing bacteria (SAOB) should contribute to the elucidation of the microbial mechanisms of methanogenesis. In this study, we investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology. The results indicated that acetoclastic methanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophilic chemostat fed with acetate, operated at a dilution rate of 0.1 d -1 . OTU Ace13(9-17) (KU869530), Ace13(9-4) (KU667241), and Ace13(9-23) (KU667236), assigned to the phyla Firmicutes and Bacteroidetes, were probably potential SAOB in the chemostat, which needs further investigation. Species in the phyla Proteobacteria, Deferribacteres, Acidobacteria, Spirochaetes and Actinobacteria were probably capable of utilizing acetate for their growth. Methanoculleus was likely to be the preferred hydrogenotrophic methanogen for syntrophy with AOB in the chemostat.

  6. Acetate concentrations and oxidation in salt marsh sediments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Acetate concentrations and rates of acetate oxidation and sulfate reduction were measured in S. alterniflora sediments in New Hampshire and Massachusetts. Pore water extracted from cores by squeezing or centrifugation contained in greater than 0.1 mM acetate and, in some instances, greater than 1.0 mM. Pore water sampled nondestructively contained much less acetate, often less than 0.01 mM. Acetate was associated with roots, and concentrations varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of sulfate reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a substantial percentage of sulfate reduction. These results differ markedly from data for unvegetated coastal sediments where acetate levels are low, oxidation rate constants are high, and acetate oxication rates greatly exceed rates of sulfate reduction. The discrepancy between rates of acetate oxidation and sulfate reduction in these marsh soils may be due either to the utilization of substrates other than acetate by sulfate reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria. Care must be taken when interpreting data from salt marsh sediments since the release of material from roots during coring may affect the concentrations of certain compounds as well as influencing results obtained when sediment incubations are employed.

  7. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.

    PubMed

    Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D

    2014-11-27

    Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.

  8. Key Aroma Compounds in Lippia dulcis (Dushi Button).

    PubMed

    Schmitt, Rainer; Cappi, Michael; Pollner, Gwendola; Greger, Veronika

    2018-03-14

    An aroma extract dilution analysis (AEDA) applied on aroma extracts prepared from the edible flower Dushi Button ( Lippia dulcis) resulted in the detection of 34 odor-active compounds. The highest flavor dilution (FD) factors were determined for methyl 2-methylbutanoate, ethyl 2-methylbutanoate, 4-mercapto-4-methyl-2-pentanone, an unknown caramel-like compound, and vanillin. Quantitative measurements performed by application of stable isotope dilution assays (SIDA), followed by a calculation of odor activity values (OAVs), resulted in the revelation of 4-mercapto-4-methyl-2-pentanone, linalool, myrcene, ethyl 2-methylbutanoate, methyl 2-methylbutanoate, and ( Z)-3-hexenal as important contributors to the flavor of Dushi Buttons.

  9. Production of Catalyst-Free Hyperpolarised Ethanol Aqueous Solution via Heterogeneous Hydrogenation with Parahydrogen

    NASA Astrophysics Data System (ADS)

    Salnikov, Oleg G.; Kovtunov, Kirill V.; Koptyug, Igor V.

    2015-09-01

    An experimental approach for the production of catalyst-free hyperpolarised ethanol solution in water via heterogeneous hydrogenation of vinyl acetate with parahydrogen and the subsequent hydrolysis of ethyl acetate was demonstrated. For an efficient hydrogenation, liquid vinyl acetate was transferred to the gas phase by parahydrogen bubbling and almost completely converted to ethyl acetate with Rh/TiO2 catalyst. Subsequent dissolution of ethyl acetate gas in water containing OH- ions led to the formation of catalyst- and organic solvent-free hyperpolarised ethanol and sodium acetate. These results represent the first demonstration of catalyst- and organic solvent-free hyperpolarised ethanol production achieved by heterogeneous hydrogenation of vinyl acetate vapour with parahydrogen and the subsequent ethyl acetate hydrolysis.

  10. Production of Catalyst-Free Hyperpolarised Ethanol Aqueous Solution via Heterogeneous Hydrogenation with Parahydrogen.

    PubMed

    Salnikov, Oleg G; Kovtunov, Kirill V; Koptyug, Igor V

    2015-09-09

    An experimental approach for the production of catalyst-free hyperpolarised ethanol solution in water via heterogeneous hydrogenation of vinyl acetate with parahydrogen and the subsequent hydrolysis of ethyl acetate was demonstrated. For an efficient hydrogenation, liquid vinyl acetate was transferred to the gas phase by parahydrogen bubbling and almost completely converted to ethyl acetate with Rh/TiO2 catalyst. Subsequent dissolution of ethyl acetate gas in water containing OH(-) ions led to the formation of catalyst- and organic solvent-free hyperpolarised ethanol and sodium acetate. These results represent the first demonstration of catalyst- and organic solvent-free hyperpolarised ethanol production achieved by heterogeneous hydrogenation of vinyl acetate vapour with parahydrogen and the subsequent ethyl acetate hydrolysis.

  11. Acetate Utilization and Butyryl Coenzyme A (CoA):Acetate-CoA Transferase in Butyrate-Producing Bacteria from the Human Large Intestine

    PubMed Central

    Duncan, Sylvia H.; Barcenilla, Adela; Stewart, Colin S.; Pryde, Susan E.; Flint, Harry J.

    2002-01-01

    Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine. PMID:12324374

  12. Ozone decomposition in aqueous acetate solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehested, K.; Holcman, J.; Bjergbakke, E.

    1987-01-01

    The acetate radical ion reacts with ozone with a rate constant of k = (1.5 +/- 0.5) x 10Z dmT mol s . The products from this reaction are CO2, HCHO, and O2 . By subsequent reaction of the peroxy radical with ozone the acetate radical ion is regenerated through the OH radical. A chain decomposition of ozone takes place. It terminates when the acetate radical ion reacts with oxygen forming the unreactive peroxy acetate radical. The chain is rather short as oxygen is developed, as a result of the ozone consumption. The inhibiting effect of acetate on the ozonemore » decay is rationalized by OH scavenging by acetate and successive reaction of the acetate radical ion with oxygen. Some products from the bimolecular disappearance of the peroxy acetate radicals, however, react further with ozone, reducing the effectiveness of the stabilization.« less

  13. The Effect of Cellulose Acetate Concentration from Coconut Nira on Ultrafiltration Membrane Characters

    NASA Astrophysics Data System (ADS)

    Vaulina, E.; Widyaningsih, S.; Kartika, D.; Romdoni, M. P.

    2018-04-01

    Cellulose acetate is one of material in produce ultrafiltration membrane. Many efforts have been done to produce cellulose acetate from natural product to replace commercial one. In this research, ultrafiltration membrane has been produced from coconut flower water (nira). Ultrafiltration membrane is widely used in separation processes. This research aims to determine the characteristics of ultrafiltration membrane at a various concentration of cellulose acetate. The ultrafiltration membrane is conducted by phase inversion method at various concentration of cellulose acetate. The cellulose acetate concentration was 20%, 23% and 25% (w/w) with formamide as additives. The results showed that the greater the concentration of cellulose acetate, the smaller the flux value. The highest flux was a membrane with 20% cellulose acetate concentration with water flux value 55.34 L/(m2. h). But the greater the concentration of cellulose acetate the greater the rejection. The highest rejection value was on a membrane with 25% cellulose acetate concentration of 82.82%. While from the tensile strength test and the pore size analysis, the greater the cellulose acetate concentration the greater the tensile strength and the smaller the pore size

  14. Photoelectron spectroscopy of a series of acetate and propionate esters

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.; Guthmuller, Julien; MacDonald, Michael A.; Zuin, Lucia; Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Lesniewski, Tadeusz; Mason, Nigel J.; Limão-Vieira, Paulo

    2017-10-01

    The electronic state and photoionization spectroscopy of a series of acetate esters: methyl acetate, isopropyl acetate, butyl acetate and pentyl acetate as well as two propionates: methyl propionate and ethyl propionate, have been determined using vacuum-ultraviolet photoelectron spectroscopy. These experimental investigations are complemented by ab initio calculations. The measured first adiabatic and vertical ionization energies were determined as: 10.21 and 10.45 eV for methyl acetate, 9.99 and 10.22 eV for isopropyl acetate, 10.07 and 10.26 eV for butyl acetate, 10.01 and 10.22 eV for pentyl acetate, 10.16 and 10.36 eV for methyl propionate and 9.99 and 10.18 eV for ethyl propionate. For the four smaller esters vibrational transitions were calculated and compared with those identified in the photoelectron spectrum, revealing the most distinctive ones to be a Csbnd O stretch combined with a Cdbnd O stretch. The ionization energies of methyl and ethyl esters as well as for a series of formates and acetates were compared showing a clear dependence of the value of the ionization energy on the size of the molecule with very little influence of its conformation.

  15. Physiological responses of insects to microbial fermentation products: Insights from the interactions between Drosophila and acetic acid.

    PubMed

    Kim, Geonho; Huang, Jia Hsin; McMullen, John G; Newell, Peter D; Douglas, Angela E

    2018-04-01

    Acetic acid is a fermentation product of many microorganisms, including some that inhabit the food and guts of Drosophila. Here, we investigated the effect of dietary acetic acid on oviposition and larval performance of Drosophila. At all concentrations tested (0.34-3.4%), acetic acid promoted egg deposition by mated females in no-choice assays; and females preferred to oviposit on diet with acetic acid relative to acetic acid-free diet. However, acetic acid depressed larval performance, particularly extending the development time of both larvae colonized with the bacterium Acetobacter pomorum and axenic (microbe-free) larvae. The larvae may incur an energetic cost associated with dissipating the high acid load on acetic acid-supplemented diets. This effect was compounded by suppressed population growth of A. pomorum on the 3.4% acetic acid diet, such that the gnotobiotic Drosophila on this diet displayed traits characteristic of axenic Drosophila, specifically reduced developmental rate and elevated lipid content. It is concluded that acetic acid is deleterious to larval Drosophila, and hypothesized that acetic acid may function as a reliable cue for females to oviposit in substrates bearing microbial communities that promote larval nutrition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation.

    PubMed

    Liu, Yu-Fan; Hsieh, Chia-Wen; Chang, Yao-Sheng; Wung, Being-Sun

    2017-08-01

    Acetic acid is a predominant by-product of lignocellulosic biofuel process, which inhibits microbial biocatalysts. Development of bacterial strains that are tolerant to acetic acid is challenging due to poor understanding of the underlying molecular mechanisms. In this study, we generated and characterized two acetic acid-tolerant strains of Zymomonas mobilis using N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-acetate adaptive breeding. Two mutants, ZMA-142 and ZMA-167, were obtained, showing a significant growth rate at a concentration of 244 mM sodium acetate, while the growth of Z. mobilis ATCC 31823 were completely inhibited in presence of 195 mM sodium acetate. Our data showed that acetate-tolerance of ZMA-167 was attributed to a co-transcription of nhaA from ZMO0117, whereas the co-transcription was absent in ATCC 31823 and ZMA-142. Moreover, ZMA-142 and ZMA-167 exhibited a converstion rate (practical ethanol yield to theorical ethanol yield) of 90.16% and 86% at 195 mM acetate-pH 5 stress condition, respectively. We showed that acid adaptation of ZMA-142 and ZMA-167 to 146 mM acetate increased ZMA-142 and ZMA-167 resulted in an increase in ethanol yield by 32.21% and 21.16% under 195 mM acetate-pH 5 stress condition, respectively. The results indicate the acetate-adaptive seed culture of acetate-tolerant strains, ZMA-142 and ZMA-167, could enhance the ethanol production during fermentation.

  17. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation.

    PubMed

    Rowlands, Benjamin D; Klugmann, Matthias; Rae, Caroline D

    2017-03-01

    [ 13 C]Acetate is known to label metabolites preferentially in astrocytes rather than neurons and it has consequently been used as a marker for astrocytic activity. Recent discoveries suggest that control of acetate metabolism and its contributions to the synthesis of metabolites in brain is not as simple as first thought. Here, using a Guinea pig brain cortical tissue slice model metabolizing [1- 13 C]D-glucose and [1,2- 13 C]acetate, we investigated control of acetate metabolism and the degree to which it reflects astrocytic activity. Using a range of [1,2- 13 C]acetate concentrations, we found that acetate is a poor substrate for metabolism and will inhibit metabolism of itself and of glucose at concentrations in excess of 2 mmol/L. By activating astrocytes using potassium depolarization, we found that use of [1,2- 13 C]acetate to synthesize glutamine decreases significantly under these conditions showing that acetate metabolism does not necessarily reflect astrocytic activity. By blocking synthesis of glutamine using methionine sulfoximine, we found that significant amount of [1,2- 13 C]acetate are still incorporated into GABA and its metabolic precursors in neurons, with around 30% of the GABA synthesized from [1,2- 13 C]acetate likely to be made directly in neurons rather than from glutamine supplied by astrocytes. Finally, to test whether activity of the acetate metabolizing enzyme acetyl-CoA synthetase is under acetylation control in the brain, we incubated slices with the AceCS1 deacetylase silent information regulator 1 (SIRT1) activator SRT 1720 and showed consequential increased incorporation of [1,2- 13 C]acetate into metabolites. Taken together, these data show that acetate metabolism is not directly nor exclusively related to astrocytic metabolic activity, that use of acetate is related to enzyme acetylation and that acetate is directly metabolized to a significant degree in GABAergic neurons. Changes in acetate metabolism should be interpreted as modulation of metabolism through changes in cellular energetic status via altered enzyme acetylation levels rather than simply as an adjustment of glial-neuronal metabolic activity. © 2016 International Society for Neurochemistry.

  18. Acetate Dose-Dependently Stimulates Milk Fat Synthesis in Lactating Dairy Cows.

    PubMed

    Urrutia, Natalie L; Harvatine, Kevin J

    2017-05-01

    Background: Acetate is a short-chain fatty acid (FA) that is especially important to cows because it is the major substrate for de novo FA synthesis. However, the effect of acetate supply on mammary lipid synthesis is not clear. Objective: The objective of this experiment was to determine the effect of increasing acetate supply on milk fat synthesis in lactating dairy cows. Methods: Six multiparous lactating Holstein cows were randomly assigned to treatments in a replicated design to investigate the effect of acetate supply on milk fat synthesis. Treatments were 0 (control), 5, 10, and 15 mol acetate/d continuously infused into the rumen for 4 d. Rumen short-chain FAs, plasma hormones and metabolites, milk fat concentration, and milk FA profile were analyzed on day 4 of each treatment. Polynomial contrasts were used to test the linear and quadratic effects of increasing acetate supply. Results: Acetate increased milk fat yield quadratically ( P < 0.01) by 7%, 16%, and 14% and increased milk fat concentration linearly ( P < 0.001) by 6%, 9%, and 11% for 5, 10, and 15 mol acetate/d, respectively, compared with the control treatment. Increased milk fat yield predominantly was due to a linear increase in 16-carbon FAs ( P < 0.001) and a quadratic increase in de novo synthesized FAs (<16-carbon FAs; P < 0.01), indicating that there was stimulation of de novo synthesis pathways. Apparent transfer of acetate to milk fat was 33.4%, 36.2%, and 20.6% for 5, 10, and 15 mol/d, respectively. Acetate infusion linearly increased the relative concentration of rumen acetate ( P < 0.001) before feeding, but not after feeding. Acetate linearly increased plasma ß-hydroxybutyric acid by 29%, 50%, and 78%, respectively, after feeding compared with the control treatment ( P < 0.01). Conclusions: Increasing acetate supply to lactating cows increases milk fat synthesis, suggesting that nutritional strategies that increase ruminal acetate absorption would be expected to increase milk fat by increasing de novo FA synthesis. © 2017 American Society for Nutrition.

  19. Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain.

    PubMed

    Mathew, Raji; Arun, Peethambaran; Madhavarao, Chikkathur N; Moffett, John R; Namboodiri, M A Aryan

    2005-10-01

    Canavan disease (CD) is a fatal genetic neurodegenerative disorder caused by mutations in the gene for aspartoacylase, an enzyme that hydrolyzes N-acetylaspartate (NAA) into L-aspartate and acetate. Because aspartoacylase is localized in oligodendrocytes, and NAA-derived acetate is incorporated into myelin lipids, we hypothesize that an acetate deficiency in oligodendrocytes is responsible for the pathology in CD, and we propose acetate supplementation as a possible therapy. In our preclinical efforts toward this goal, we studied the effectiveness of orally administered glyceryl triacetate (GTA) and calcium acetate for increasing acetate levels in the murine brain. The concentrations of brain acetate and NAA were determined simultaneously after intragastric administration of GTA. We found that the acetate levels in brain were increased in a dose- and time-dependent manner, with a 17-fold increase observed at 1 to 2 h in 20- to 21-day-old mice at a dose of 5.8 g/kg GTA. NAA levels in the brain were not significantly increased under these conditions. Studies using mice at varying stages of development showed that the dose of GTA required to maintain similarly elevated acetate levels in the brain increased with age. Also, GTA was significantly more effective as an acetate source than calcium acetate. Chronic administration of GTA up to 25 days of age did not result in any overt pathology in the mice. Based on these results and the current Food and Drug Administration-approved use of GTA as a food additive, we propose that it is a potential candidate for use in acetate supplementation therapy for CD.

  20. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    PubMed

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  1. Elevated acetate concentrations in the rhizosphere of Spartina alterniflora and potential influences on sulfate reduction

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Tugel, Joyce B.; Giblin, A. E.; Banta, G. T.; Hobbie, J. E.

    1992-01-01

    Acetate is important in anaerobic metabolism of non-vegetated sediments but its role in salt marsh soils was not investigated thoroughly. Acetate concentrations, oxidation (C-14) and SO4(2-) reduction (S-35) were measured in S. alterniflora soils in NH and MA. Pore water from cores contained greater than 0.1 mM acetate and in some instances greater than 1.0 mM. Non-destructive samples contained less than 0.01 mM. Acetate was associated with roots and concentrations were highest during vegetative growth and varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of SO4(2-) reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a significant percentage of SO4(2-) reduction. These results differ markedly from data for non-vegetated coastal sediments where acetate levels are low, oxidation rate constants are high and acetate oxidation rates greatly exceed rates of SO4(2-) reduction. The discrepancy between rates of acetate oxidation and SO4(2-) reduction in marsh soils may be due either to the utilization of substrates other than acetate by SO4(2-) reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria.

  2. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  3. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  4. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  5. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...

  6. Anti-inflammatory effects of alpinone 3-acetate from Alpinia japonica seeds.

    PubMed

    Kakegawa, Tomohito; Miyazaki, Aya; Yasukawa, Ken

    2016-07-01

    We aimed to investigate the bioactive components of Alpinia japonica as anti-inflammatory compounds using searches of the Alpinia genus, and subsequently demonstrated that alpinone 3-acetate markedly inhibits 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation in a mouse model of ear edema. To assess other bioactivities of alpinone 3-acetate, we performed translatome analyses and compared them with those of hydrocortisone. Polysome-associated mRNAs were prepared from alpinone 3-acetate- or hydrocortisone-treated and control cells from 12-O-tetradecanoyiphorbol 13-acetate-induced THP-1-derived macrophages cultured in the presence of Escherichia coli O-111 lipopolysaccharide. Subsequent microarray analysis revealed that alpinone 3-acetate and hydrocortisone upregulated and downregulated the same 155 and 41 genes, respectively. Moreover, direct comparisons of translationally regulated genes indicated 5 and 10 gene probes that were upregulated and downregulated by alpinone 3-acetate and hydrocortisone, respectively. In conclusion, assays of 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation ear edema in mice and polysome profiling of alpinone 3-acetate bioactivities indicated similar medicinal possibilities to those of hydrocortisone.

  7. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  8. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  9. Probing the Methyl Torsional Barriers of the E and Z Isomers of Butadienyl Acetate by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jabri, Atef; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Van, Vinh; Stahl, Wolfgang

    2016-06-01

    The Fourier transform microwave spectra of the E and the Z isomer of butadienyl acetate have been measured in the frequency range from 2 to 26.5 GHz under molecular beam conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with results from quantum chemical calculations. The barrier to internal rotation of the acetyl methyl group was found to be 149.1822(20) cm-1 and 150.2128(48) cm-1 for the E and the Z isomer, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotations, the rho axis method (using the program BELGI-Cs) and combined axis method (using the program XIAM), is also performed. Since several years we study the barriers to internal rotation of the acetyl methyl group in acetates, CH3-COOR. Currently, we assume that all acetates can be divided into three classes. Class I contains α,β saturated acetates, where the torsional barrier is always close to 100 cm-1. Examples are a series of alkyl acetates such as methyl acetate and ethyl acetate. Class II contains α,β-unsaturated acetates where the C=C double bond is located in the COO plane. This is the case of vinyl acetate and butadienyl acetate. Finally, in class III with isopropenyl acetate and phenyl acetate as two representatives, α,β-unsaturated acetates, in which the double bond is not located in the COO plane, are collected. There, we observed a barrier height around 135 cm-1. This observation will be discussed in details. B. Velino, A. Maris, S. Melandri, W. Caminati, J. Mol. Spectrosc. 2009, 256, 228 H. V. L. Nguyen, A. Jabri, V. Van, and W. Stahl, J. Phys. Chem. A, 2014, 118, 12130.

  10. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  11. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering

    PubMed Central

    Chen, Yingying; Stabryla, Lisa

    2016-01-01

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. PMID:26826231

  12. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    PubMed

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications

    PubMed Central

    Ferro, Suellen; Azevedo-Silva, João; Casal, Margarida; Côrte-Real, Manuela; Baltazar, Fatima; Preto, Ana

    2016-01-01

    Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC. PMID:28874966

  14. Inert Reassessment Document for Amyl Acetate

    EPA Pesticide Factsheets

    Both acetates have a number of industrial uses such as solvents for lacquers, paints, and inks. Pharmaceutically, ethyl acetate is a flavoring aid and amyl acetate is used in extraction of penicillin.

  15. Drilling fluid thinner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B.

    1989-06-27

    A drilling fluid additive is described comprising a mixture of: (a) a sulfoalkylated tannin and (b) chromium acetate selected from the group consisting of chromium (III) acetate and chromium (II) acetate, wherein the chromium acetate is present in a weight ratio of the chromium acetate to the sulfoalkylated tannin in the range of from about 1:20 to about 1:1.

  16. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  17. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  18. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu).

    PubMed

    Ando, H; Kurata, A; Kishimoto, N

    2015-04-01

    To evaluate the antimicrobial properties of the main Ginjo-flavour components of sake, volatile isoamyl acetate and isoamyl alcohol. Volatile isoamyl acetate and isoamyl alcohol both inhibited growth of the five yeast and 10 bacterial test strains. The minimum inhibitory dose and minimum bactericidal (fungicidal) dose of isoamyl acetate were higher than those of isoamyl alcohol. Escherichia coli and Acetobacter aceti were markedly sensitive to isoamyl acetate and isoamyl alcohol. In E. coli exposed to isoamyl acetate for 5 h, changes in expression were noted in proteins involved in sugar metabolism (MalE, MglB, TalB and PtsI), tricarboxylic acid cycle (AceA, Pfl and AcnB) and protein synthesis (EF-Tu, EF-G, and GlyS). Expression of acid and alcohol stress-response proteins was altered in E. coli exposed to isoamyl acetate. Esterase activity was detected in E. coli, suggesting that isoamyl acetate was hydrolyzed to acetic acid and isoamyl alcohol. Acetic acid and isoamyl alcohol damaged E. coli cell membranes and inactivated membrane proteins, impairing respiration. Volatile isoamyl acetate and isoamyl alcohol were effective in inactivating various micro-organisms, and antimicrobial mechanism of volatile isoamyl acetate against E. coli was clarified based on proteome analysis. To the best of our knowledge, this is the first report to examine the antimicrobial mechanism of volatile organic compound using proteome analysis combining two-dimensional difference gel electrophoresis with peptide mass fingerprinting. © 2015 The Society for Applied Microbiology.

  19. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization.

    PubMed

    Cheng, Hai-Hsuan; Syu, Jyun-Cyuan; Tien, Shih-Yuan; Whang, Liang-Ming

    2018-08-01

    This study investigated the acetate production from gas mixture of hydrogen (H 2 ) and carbon dioxide (CO 2 ) in the ratio of 7:3 using two acetogens: Acetobacterium woodii and Clostridium ljungdahlii. Batch result shows A. woodii performed two-phase degradation with the presence of glucose that lactate was produced from glucose and was reutilized for the production of butyrate and few acetate, while only acetate was detected when providing gas mixture. C. ljungdahlii produced butyrate and ethanol along with acetate when glucose was introduced, while only ethanol and acetate were found by feeding gas mixture. The acetate-to-ethanol (A/E) ratio can be enhanced by cell immobilization, while GAC immobilization produced only acetate and the production rate reached 0.072 mmol/d under fed-batch operation. Acetate production rate increased from 18 to 28 mmol/L/d with GAC immobilization when gas flowrate increased from 100 to 300 mL/min in anaerobic fluidized membrane bioreactor (AFMBR), and a highest A/E ratio of 30 implies the possible application of acetate recovery from H 2 and CO 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    NASA Astrophysics Data System (ADS)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  1. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  2. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    PubMed

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  3. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  4. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  5. Determination of organic bases in non-aqueous solvents by catalytic thermometric titration.

    PubMed

    Vajgand, V J; Kiss, T A; Gaál, F F; Zsigrai, I J

    1968-07-01

    Catalytic thermometric titrations have been developed for bases (brucine, diethylaniline, potassium acetate and triethylamine) in acetic acid by continuous and discontinuous addition of the standard solution and automatic temperature recording. The determination of weak bases, e.g., antipyrine, unsuccessful in acetic acid by catalytic thermometric titration, has been achieved by using nitromethane or acetic anhydride as solvent. Catalytic thermometric titrations were also performed by coulometric generation of hydrogen ions for the determination of micro amounts of weak bases in a mixture of acetic anhyride and acetic acid.

  6. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    PubMed

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  7. Lubricant-Coolant for Hot Working of Metals,

    DTIC Science & Technology

    includes calcium acetate, sodium acetate, and polyoxyethylated alkylphenol for added effectiveness, and that its composition includes (in wt. percentage...calcium acetate 5, sodium acetate 4, polyoxyethylated alkylphenol 0.1, graphite 5, and water up to 100. (Author)

  8. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation.

    PubMed

    Kanchanarach, Watchara; Theeragool, Gunjana; Inoue, Taketo; Yakushi, Toshiharu; Adachi, Osao; Matsushita, Kazunobu

    2010-01-01

    Acetobacter pasteurianus strains IFO3283, SKU1108, and MSU10 were grown under acetic acid fermentation conditions, and their growth behavior was examined together with their capacity for acetic acid resistance and pellicle formation. In the fermentation process, the cells became aggregated and covered by amorphous materials in the late-log and stationary phases, but dispersed again in the second growth phase (due to overoxidation). The morphological change in the cells was accompanied by changes in sugar contents, which might be related to pellicle polysaccharide formation. To determine the relationship between pellicle formation and acetic acid resistance, a pellicle-forming R strain and a non-forming S strain were isolated, and their fermentation ability and acetic acid diffusion activity were compared. The results suggest that pellicle formation is directly related to acetic acid resistance ability, and thus is important to acetic acid fermentation in these A. pasteurianus strains.

  9. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002

    DOE PAGES

    Therien, Jesse B.; Zadvornyy, Oleg A.; Posewitz, Matthew C.; ...

    2014-10-18

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. We demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC7002.

  10. The Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of acetal food flavouring substances uniquely used in Japan.

    PubMed

    Okamura, Hiroyuki; Abe, Hajime; Hasegawa-Baba, Yasuko; Saito, Kenji; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio

    2015-01-01

    Using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), we performed safety evaluations on five acetal flavouring substances uniquely used in Japan: acetaldehyde 2,3-butanediol acetal, acetoin dimethyl acetal, hexanal dibutyl acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal. As no genotoxicity study data were available in the literature, all five substances had no chemical structural alerts predicting genotoxicity. Using Cramer's classification, acetoin dimethyl acetal and hexanal dibutyl acetal were categorised as class I, and acetaldehyde 2,3-butanediol acetal, hexanal glyceryl acetal and 4-methyl-2-pentanone propyleneglycol acetal as class III. The estimated daily intakes for all five substances were within the range of 1.45-6.53 µg/person/day using the method of maximised survey-derived intake based on the annual production data in Japan from 2001, 2005, 2008 and 2010, and 156-720 µg/person/day using the single-portion exposure technique (SPET), based on the average use levels in standard portion sizes of flavoured foods. The daily intakes of the two class I substances were below the threshold of toxicological concern (TTC) - 1800 μg/person/day. The daily intakes of the three class III substances exceeded the TTC (90 μg/person/day). Two of these, acetaldehyde 2,3-butanediol acetal and hexanal glyceryl acetal, were expected to be metabolised into endogenous products after ingestion. For 4-methyl-2-pentanone propyleneglycol acetal, one of its metabolites was not expected to be metabolised into endogenous products. However, its daily intake level, based on the estimated intake calculated by the SPET method, was about 1/15 000th of the no observed effect level. It was thus concluded that all five substances raised no safety concerns when used for flavouring foods at the currently estimated intake levels. While no information on in vitro and in vivo toxicity for all five substances was available, their metabolites were judged as raising no safety concerns at the current levels of intake.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderliter, Paul M.; Thrall, Karla D.; Corley, Rick A.

    Vinyl acetate has been shown to induce nasal lesions in rodents in inhalation bioassays. A physiologically based pharmacokinetic (PBPK) model for vinyl acetate has been used in human risk assessment, but previous in vivo validation was conducted only in rats. Controlled human exposures to vinyl acetate were conducted to provide validation data for the application of the model in humans. Five volunteers were exposed to 1, 5, and 10 ppm 13 C1 , 13 C2 vinyl acetate via inhalation. A probe inserted into thenasopharyngeal region sampled both 13 C1 , 13 C2 vinyl acetate and the major metabolite 13 C1more » , 13 C2 acetaldehyde during rest and light exercise. Nasopharyngeal air concentrations were analyzed in real time by ion trap mass spectrometry (MS/MS). Experimental concentrations of both vinyl acetate and acetaldehyde were then compared to predicted concentrations calculated from the previously published human model. Model predictions of vinyl acetate nasal extraction compared favorably with measured values of vinyl acetate, as did predictions of nasopharyngeal acetaldehyde when compared to measured acetaldehyde. The results showed that the current PBPK model structure and parameterization are appropriate for vinyl acetate. These analyses were conducted from 1 to 10 ppm vinyl acetate, a range relevant to workplace exposure standards but which would not be expected to saturate vinyl acetate metabolism. Risk assessment based on this model further concluded that 24 h per day exposures up to 1 ppm do not present concern regarding cancer or non-cancer toxicity. Validation of the vinyl acetate human PBPK model provides support for these conclusions.« less

  12. Contribution of acetate to butyrate formation by human faecal bacteria.

    PubMed

    Duncan, Sylvia H; Holtrop, Grietje; Lobley, Gerald E; Calder, A Graham; Stewart, Colin S; Flint, Harry J

    2004-06-01

    Acetate is normally regarded as an endproduct of anaerobic fermentation, but butyrate-producing bacteria found in the human colon can be net utilisers of acetate. The butyrate formed provides a fuel for epithelial cells of the large intestine and influences colonic health. [1-(13)C]Acetate was used to investigate the contribution of exogenous acetate to butyrate formation. Faecalibacterium prausnitzii and Roseburia spp. grown in the presence of 60 mm-acetate and 10 mm-glucose derived 85-90 % butyrate-C from external acetate. This was due to rapid interchange between extracellular acetate and intracellular acetyl-CoA, plus net acetate uptake. In contrast, a Coprococcus-related strain that is a net acetate producer derived only 28 % butyrate-C from external acetate. Different carbohydrate-derived energy sources affected butyrate formation by mixed human faecal bacteria growing in continuous or batch cultures. The ranking order of butyrate production rates was amylopectin > oat xylan > shredded wheat > inulin > pectin (continuous cultures), and inulin > amylopectin > oat xylan > shredded wheat > pectin (batch cultures). The contribution of external acetate to butyrate formation in these experiments ranged from 56 (pectin) to 90 % (xylan) in continuous cultures, and from 72 to 91 % in the batch cultures. This is consistent with a major role for bacteria related to F. prausnitzii and Roseburia spp. in butyrate formation from a range of substrates that are fermented in the large intestine. Variations in the dominant metabolic type of butyrate producer between individuals or with variations in diet are not ruled out, however, and could influence butyrate supply in the large intestine.

  13. Self-adaption of methane-producing communities to pH disturbance at different acetate concentrations by shifting pathways and population interaction.

    PubMed

    Hao, Liping; Lü, Fan; Li, Lei; Wu, Qing; Shao, Liming; He, Pinjing

    2013-07-01

    To investigate the competition among acetate-utilizing microorganisms at different acetate levels, bioconversion processes of 50, 100, 150 and 200 mM acetate in the presence and absence of methanogenic inhibitor CH3F were monitored in thermophilic methanogenic system. The successive response of methane-producing community during the deteriorative and recovery phases caused by pH disturbance was analyzed. High acetate concentration (>50mM) inhibited the activity of acetoclastic methanogenesis (AM). The increasing pH (>7.5) enhanced this inhibition. The syntrophic acetate oxidizing (SAO) bacteria and hydrogenotrophic methanogens including Methanomicrobiales and Methanobacteirales were more tolerant to the stress from high acetate concentration and high pH. Resumption from alkali condition to normal pH stimulated the growth of acetate oxidizing syntrophs. The reaction rate of SAO-HM was lower than that of AM. These results point to the possibility to regenerate the deteriorated anaerobic digesters by addition of acclimatized inocula rich in acetate-oxidizing syntrophs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Spectral editing for in vivo 13C magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiang, Yun; Shen, Jun

    2012-01-01

    In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear 13C- 13C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2- 13C 2]acetate instead of [1- 13C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.

  15. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  16. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  17. Chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits.

    PubMed

    Bi, Shu-Feng; Zhu, Guang-Qi; Wu, Jie; Li, Zhong-Kang; Lv, Yong-Zhan; Fang, Ling

    2016-01-01

    The chemical composition and antioxidant activities of the essential oil from Nandina domestica fruits were studied for the first time. Twenty-two compounds, representing 82.79% of the oil, were identified from the oil. The major compounds were 3-hexen-1-ol (12.9%), linalool (12.3%), 2-methoxy-4-vinylphenol (9.9%), oleic acid (8.0%), furfural (5.8%) and 2,6-di-tert-butyl-4-methylphenol (5.7%). The antioxidant activities of the oil were evaluated using reducing power, metal chelating ability and scavenging capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS) and superoxide anion free radical. The oil exhibited significant antioxidant activities.

  18. Identification of Key Odorants in Withering-Flavored Green Tea by Aroma Extract Dilution Analysis

    NASA Astrophysics Data System (ADS)

    Mizukami, Yuzo; Yamaguchi, Yuichi

    This research aims to identify key odorants in withering-flavored green tea. Application of the aroma extract dilution analysis using the volatile fraction of green tea and withering-flavored green tea revealed 25 and 35 odor-active peaks with the flavor dilution factors of≥4, respectively. 4-mercapto-4-methylpentan-2-one, (E)-2-nonenal, linalool, (E,Z)-2,6-nonadienal and 3-methylnonane-2,4-dione were key odorants in green tea with the flavor dilution factor of≥16. As well as these 5 odorants, 1-octen-3-one, β-damascenone, geraniol, β-ionone, (Z)-methyljasmonate, indole and coumarine contributed to the withering flavor of green tea.

  19. Studies of the Acetate Kinase-Phosphotransacetylase and the Butanediol-Forming Systems in Aerobacter aerogenes

    PubMed Central

    Brown, T. D. K.; Pereira, C. R. S.; Størmer, F. C.

    1972-01-01

    Mutants of Aerobacter aerogenes devoid of acetate kinase and phosphotransacetylase activities were isolated by selection for resistance to fluoroacetate on lactate medium. The mutants were used to study the role of the acetate kinase-phosphotransacetylase system in growth on acetate and glucose. Acetate kinase-negative and phosphotransacetylase-negative mutants were unable to grow on acetate minimal medium. Their growth rates on glucose minimal medium were identical with that of the parent strain under aerobic conditions, but lower growth rates were observed in the mutant strains during anaerobic growth on glucose medium. The mutants were unable to incorporate [2-14C]-acetate rapidly while growing on glycerol. Variations in acetate kinase and phosphotransacetylase levels during growth on glucose were studied. The specific activities of the enzymes increased approximately fivefold during aerobic growth on glucose in batch culture. The enzyme levels were also studied during anaerobic growth on glucose at constant pH (pH 5.8 and 7.0). Smaller increases in specific activities were found under these conditions. The role of acetate in the induction of the diacetyl (acetoin) reductase was investigated using a mutant deficient in both acetate kinase and phosphotransacetylase. The effect of pH on the induction of this enzyme during growth on glucose under anaerobic conditions was tested. The data support the idea that free acetic acid is the inducer for the enzymes of the butanediol-forming pathway in A. aerogenes. PMID:4640502

  20. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    PubMed Central

    Kawazoe, Nozomi; Kimata, Yukio; Izawa, Shingo

    2017-01-01

    Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH. PMID:28702017

  1. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio.

    PubMed

    Suo, Yukai; Ren, Mengmeng; Yang, Xitong; Liao, Zhengping; Fu, Hongxin; Wang, Jufang

    2018-05-01

    Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases separation and purification costs of butyric acid. Hence, enhancing the butyrate/acetate ratio is important for economical butyric acid production. This study indicated that enhancing the acetyl-CoA to butyrate flux by overexpression of both the butyryl-CoA/acetate CoA transferase (cat1) and crotonase (crt) genes in C. tyrobutyricum could significantly reduce acetic acid concentration. Fed-batch fermentation of ATCC 25755/cat1 + crt resulted in increased butyrate/acetate ratio of 15.76 g/g, which was 2.24-fold higher than that of the wild-type strain. Furthermore, in order to simultaneously increase the butyrate/acetate ratio, butyric acid concentration and productivity, the recombinant strain ATCC 25755/ppcc (co-expression of 6-phosphofructokinase (pfkA) gene, pyruvate kinase (pykA) gene, cat1, and crt) was constructed. Consequently, ATCC 25755/ppcc produced more butyric acid (46.8 vs. 35.0 g/L) with a higher productivity (0.83 vs. 0.49 g/L·h) and butyrate/acetate ratio (13.22 vs. 7.22 g/g) as compared with the wild-type strain in batch fermentation using high glucose concentration (120 g/L). This study demonstrates that enhancing the acetyl-CoA to butyrate flux is an effective way to reduce acetic acid production and increase butyrate/acetate ratio.

  2. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    PubMed

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    PubMed

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  4. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    PubMed

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  5. Application of acetate buffer in pH adjustment of sorghum mash and its influence on fuel ethanol fermentation.

    PubMed

    Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai

    2009-01-01

    A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41-47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.

  6. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    PubMed

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  7. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis.

    PubMed

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M; Mora, Diego; Compagno, Concetta

    2016-08-01

    The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge

    PubMed Central

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-01-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with 14C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with 13C6-glucose and 13C3-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with 13C-glucose and 13C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with 14C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high Km for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5–10 m). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta. PMID:21562600

  9. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  10. Sphingolipid biosynthesis upregulation by TOR Complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress

    PubMed Central

    Guerreiro, Joana F.; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-01-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus, understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for S. cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the Target of Rapamycin (TOR) Complex 2 (TORC2). We show here by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of L-serine: palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus, appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks. PMID:27671892

  11. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Clinical Outcomes from Androgen Signaling-directed Therapy after Treatment with Abiraterone Acetate and Prednisone in Patients with Metastatic Castration-resistant Prostate Cancer: Post Hoc Analysis of COU-AA-302.

    PubMed

    Smith, Matthew R; Saad, Fred; Rathkopf, Dana E; Mulders, Peter F A; de Bono, Johann S; Small, Eric J; Shore, Neal D; Fizazi, Karim; Kheoh, Thian; Li, Jinhui; De Porre, Peter; Todd, Mary B; Yu, Margaret K; Ryan, Charles J

    2017-07-01

    In the COU-AA-302 trial, abiraterone acetate plus prednisone significantly increased overall survival for patients with chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC). Limited information exists regarding response to subsequent androgen signaling-directed therapies following abiraterone acetate plus prednisone in patients with mCRPC. We investigated clinical outcomes associated with subsequent abiraterone acetate plus prednisone (55 patients) and enzalutamide (33 patients) in a post hoc analysis of COU-AA-302. Prostate-specific antigen (PSA) response was assessed. Median time to PSA progression was estimated using the Kaplan-Meier method. The PSA response rate (≥50% PSA decline, unconfirmed) was 44% and 67%, respectively. The median time to PSA progression was 3.9 mo (range 2.6-not estimable) for subsequent abiraterone acetate plus prednisone and 2.8 mo (range 1.8-not estimable) for subsequent enzalutamide. The majority of patients (68%) received intervening chemotherapy before subsequent abiraterone acetate plus prednisone or enzalutamide. While acknowledging the limitations of post hoc analyses and high censoring (>75%) in both treatment groups, these results suggest that subsequent therapy with abiraterone acetate plus prednisone or enzalutamide for patients who progressed on abiraterone acetate is associated with limited clinical benefit. This analysis showed limited clinical benefit for subsequent abiraterone acetate plus prednisone or enzalutamide in patients with metastatic castration-resistant prostate cancer following initial treatment with abiraterone acetate plus prednisone. This analysis does not support prioritization of subsequent abiraterone acetate plus prednisone or enzalutamide following initial therapy with abiraterone acetate plus prednisone. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  13. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and....1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and animal tissues. Sodium...

  14. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Yang, S.T.

    1998-11-20

    Acetate was produced from whey lactose in batch and fed-batch fermentations using co-immobilized cells of Clostridium formicoaceticum and Lactococcus lactis. The cells were immobilized in a spirally wound fibrous sheet packed in a 0.45-L column reactor, with liquid circulated through a 5-L stirred-tank fermentor. Industrial-grade nitrogen sources, including corn steep liquor, casein hydrolysate, and yeast hydrolysate, were studied as inexpensive nutrient supplements to whey permeate and acid whey. Supplementation with either 2.5% (v/v) corn steep liquor or 1.5 g/L casein hydrolysate was adequate for the cocultured fermentation. The overall acetic acid yield from lactose was 0.9 g/g, and the productivitymore » was 0.25 g/(L h). Both lactate and acetate at high concentrations inhibited the homoacetic fermentation. To overcome these inhibitions, fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentations were used to keep lactate concentration low and to adapt cells to high-concentration acetate. The final acetate concentration obtained in the fed-batch fermentation was 75 g/L, which was the highest acetate concentration ever produced by C. formicoaceticum. Even at this high acetate concentration, the overall productivity was 0.18 g/(L h) based on the total medium volume and 1.23 g/(L h) based on the fibrous-bed reactor volume. The cells isolated from the fibrous-bed bioreactor at the end of this study were more tolerant to acetic acid than the original culture used to seed the bioreactor, indicating that adaptation and natural selection of acetate-tolerant strains occurred. This cocultured fermentation process could be used to produce a low-cost acetate deicer from whey permeate and acid whey.« less

  15. Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1, Lg-ATF1, and ATF2 Control the Formation of a Broad Range of Volatile Esters

    PubMed Central

    Verstrepen, Kevin J.; Van Laere, Stijn D. M.; Vanderhaegen, Bart M. P.; Derdelinckx, Guy; Dufour, Jean-Pierre; Pretorius, Isak S.; Winderickx, Joris; Thevelein, Johan M.; Delvaux, Freddy R.

    2003-01-01

    Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Δ atf2Δ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes. PMID:12957907

  16. Metabolism of triacetin-derived acetate in dogs.

    PubMed

    Bleiberg, B; Beers, T R; Persson, M; Miles, J M

    1993-12-01

    Triacetin is a water-soluble triglyceride that may have a role as a parenteral nutrient. In the present study triacetin was administered intravenously to mongrel dogs (n = 10) 2 wk after surgical placement of blood-sampling catheters in the aorta and in the portal, hepatic, renal, and femoral veins. [1-14C]Acetate was infused to allow quantification of organ uptake of acetate as well as systemic turnover and oxidation. Systemic acetate turnover accounted for approximately 70% of triacetin-derived acetate, assuming complete hydrolysis of the triglyceride. Approximately 80% of systemic acetate uptake was rapidly oxidized. Significant acetate uptake was demonstrated in all tissues (liver, 559 +/- 68; intestine, 342 +/- 23; hindlimb, 89 +/- 7; and kidney, 330 +/- 37 mumol/min). In conclusion, during intravenous administration in dogs, the majority of infused triacetin undergoes intravascular hydrolysis, and the majority of the resulting acetate is oxidized. Thus, energy in the form of short-chain fatty acids can be delivered to a resting gut via intravenous infusion of a short-chain triglyceride.

  17. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability

    PubMed Central

    Rücker, Nadine; Billig, Sandra; Bücker, René; Jahn, Dieter

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis persists inside granulomas in the human lung. Analysis of the metabolic composition of granulomas from guinea pigs revealed that one of the organic acids accumulating in the course of infection is acetate (B. S. Somashekar, A. G. Amin, C. D. Rithner, J. Troudt, R. Basaraba, A. Izzo, D. C. Crick, and D. Chatterjee, J Proteome Res 10:4186–4195, 2011, doi:http://dx.doi.org/10.1021/pr2003352), which might result either from metabolism of the pathogen or might be provided by the host itself. Our studies characterize a metabolic pathway by which M. tuberculosis generates acetate in the cause of fatty acid catabolism. The acetate formation depends on the enzymatic activities of Pta and AckA. Using actyl coenzyme A (acetyl-CoA) as a substrate, acetyl-phosphate is generated and finally dephosphorylated to acetate, which is secreted into the medium. Knockout mutants lacking either the pta or ackA gene showed significantly reduced acetate production when grown on fatty acids. This effect is even more pronounced when the glyoxylate shunt is blocked, resulting in higher acetate levels released to the medium. The secretion of acetate was followed by an assimilation of the metabolite when other carbon substrates became limiting. Our data indicate that during acetate assimilation, the Pta-AckA pathway acts in concert with another enzymatic reaction, namely, the acetyl-CoA synthetase (Acs) reaction. Thus, acetate metabolism might possess a dual function, mediating an overflow reaction to release excess carbon units and resumption of acetate as a carbon substrate. IMPORTANCE During infection, host-derived lipid components present the major carbon source at the infection site. β-Oxidation of fatty acids results in the formation of acetyl-CoA. In this study, we demonstrate that consumption of fatty acids by Mycobacterium tuberculosis activates an overflow mechanism, causing the pathogen to release excess carbon intermediates as acetate. The Pta-AckA pathway mediating acetate formation proved to be reversible, enabling M. tuberculosis to reutilize the previously secreted acetate as a carbon substrate for metabolism. PMID:26216844

  19. Rediscovering Acetate Metabolism: Its Potential Sources and Utilization for Biobased Transformation into Value-Added Chemicals.

    PubMed

    Lim, Hyun Gyu; Lee, Ji Hoon; Noh, Myung Hyun; Jung, Gyoo Yeol

    2018-04-25

    One of the great advantages of microbial fermentation is the capacity to convert various carbon compounds into value-added chemicals. In this regard, there have been many efforts to engineer microorganisms to facilitate utilization of abundant carbon sources. Recently, the potential of acetate as a feedstock has been discovered; efforts have been made to produce various biochemicals from acetate based on understanding of its metabolism. In this review, we discuss the potential sources of acetate and summarized the recent progress to improve acetate utilization with microorganisms. Furthermore, we also describe representative studies that engineered microorganisms for the production of biochemicals from acetate.

  20. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  1. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  2. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    PubMed

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  3. Measurement and correlation of the solubility of gossypol acetic acid and gossypol acetic acid of optical activity in different solvents

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tang, H.; Liu, X. Y.; Zhai, X.; Yao, X. C.

    2018-01-01

    The equilibrium method was used to measure the solubility of gossypol acetic acid and gossypol acetic acid of optical activity in isopropyl alcohol, ethanol, acetic acid and ethyl acetate at temperature from 288.15 to 315.15. The Empirical equation and the Apelblat equation model were adopted to correlate the experimental data. For gossypol acetic acid, the root-mean-square deviations (RMSD) were observed in the range of 0.023-4.979 and 0.0112-0.614 for the Empirical equation and the Apelblat equation, respectively. For gossypol acetic acid of optical activity, the RMSD were observed in the range of 0.021-2.211 and 0.021-2.243 for the Empirical equation and the Apelblat equation, individually. And the maximum relative average deviation was 7.5%. Both equations offered an accurate mathematical expression of the experimental results. The calculated solubility showed a good relationship with the experimental solubility for most of solvents. This study provided valuable datas not only for optimizing the process of purification of gossypol acetic acid of optical activity in industry but also for further theoretical studies.

  4. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment.

    PubMed

    Scholten, Johannes C M; Bodegom, Peter M; Vogelaar, Jaap; Ittersum, Alexander; Hordijk, Kees; Roelofsen, Wim; Stams, Alfons J M

    2002-12-01

    Acetate is quantitatively the most important substrate for methane production in a freshwater sediment in The Netherlands. In the presence of alternative electron acceptors the conversion of acetate by methanogens was strongly inhibited. By modelling the results, obtained in experiments with and without (13)C-labelled acetate, we could show that the competition for acetate between methanogens and sulfate reducers is the main cause of inhibition of methanogenesis in the sediment. Although nitrate led to a complete inhibition of methanogenesis, acetate-utilising nitrate-reducing bacteria hardly competed with methanogens for the available acetate in the presence of nitrate. Most-probable-number enumerations showed that methanogens (2x10(8) cells cm(-3) sediment) and sulfate reducers (2x10(8) cells cm(-3) sediment) were the dominant acetate-utilising organisms in the sediment, while numbers of acetate-utilising nitrate reducers were very low (5x10(5) cells cm(-3) sediment). However, high numbers of sulfide-oxidising nitrate reducers were detected. Denitrification might result in the formation of toxic products. We speculate that the accumulation of low concentrations of NO (<0.2 mM) may result in an inhibition of methanogenesis.

  5. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  6. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  7. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.6185 - Calcium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is generally...

  10. Revising Estimates of the Methane Production Pathway in Peatland Porewater Using Intramolecular Isotopic Analyses of Acetate

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Arthur, M. A.; Freeman, K. H.

    2007-12-01

    Stable isotopic measurements of methane and carbon dioxide are routinely applied to environmental samples to assess the relative importance of methane production by either aceticlastic or hydrogenotrophic methanogenesis. Such estimates rely upon assumptions about isotopic fractionation during methane production and oxidation. Rigorous isotope-based pathway estimates require knowledge of the carbon isotopic composition of both carbon dioxide and acetate. In practice, technical barriers have limited measurements of the isotopic composition of whole acetate in natural samples. Yet, the estimate of whole acetate isotopic values, even when available, may not represent accurately the composition of the methyl carbon, which is, in fact, the precursor to methane. It is exceedingly rare to find carbon isotopic measurements of acetate-methyl in the literature, and, to our knowledge, the d13C of the acetate-methyl precursor to methane has never before been reported from peatland porewater samples. Extremely 13C-depleted methane, -70 permil VPDB, and 13C-enriched carbon dioxide from acidic northern peat bogs are typically interpreted as signatures of hydrogenotrophic methanogenesis. The hypothesized dominance of methane production from hydrogen in acidic bogs contrasts with the vast majority of freshwater wetlands in which aceticlastic methanogenesis dominates. Using a new technique for the online analysis of the intramolecular carbon isotopic composition of acetate in natural samples, we find the acetate-methyl in peat porewaters can be significantly depleted relative to bulk organic matter. In porewater profiles from both winter and summer, acetate is as much as 15 permil depleted relative to bulk carbon. We hypothesize that acetate- methyl isotopic depletion results from conditions that favor autotrophic acetogenesis and subsequent acetate consumption by aceticlastic methanogens. Porewater depth profiles during winter and summer illustrate depth- dependent increases in the fraction of methane derived from carbon dioxide, with deeper peat dominated by hydrogenotrophic methanogenesis, but shallow peat dominated by aceticlastic methanogens. Significant aceticlastic methane production from autotrophically produced acetate challenges the ability of hydrogen isotopic measurements of methane to represent the pathway of methanogenesis. Supplementing our field observations, intramolecular acetate measurements of incubation experiments confirm that an aceticlastic methanogen can facilitate significant acetate-carboxyl exchange with DIC. This novel technique confirms two caveats associated with whole acetate carbon isotopic data: 1, the carboxyl carbon isotopic composition may not accurately reflect the composition of the parent molecule, and 2, the acetate methyl may be derived from inorganic carbon or the fractionation effect of fermentation in acidic porewaters may be significant.

  11. The Comparative Nucleophilicity of Naphthoxide Derivatives in Reactions with a Fast-Red TR Dye: A Discovery-Oriented Capstone Project for the Second-Year Organic Laboratory

    ERIC Educational Resources Information Center

    Mascarenhas, Cheryl M.

    2008-01-01

    In this experiment, organic chemistry students perform reactions between three naphthyl acetate derivatives and the diazonium salt Fast-Red TR, under basic conditions. The three naphthyl acetate derivatives used in this study are 2-naphthyl acetate (1a), 6-bromo-2-naphthyl acetate (1b) and 1,6-dibromo-2-naphthyl acetate (1c). The two-step, one-pot…

  12. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  13. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  14. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  15. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  16. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondala, Andro; Hernandez, Rafael; French, Todd

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2%more » w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.« less

  17. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  18. Effects of Ethanol and Other Alkanols on Transport of Acetic Acid in Saccharomyces cerevisiae

    PubMed Central

    Casal, Margarida; Cardoso, Helena; Leão, Cecília

    1998-01-01

    In glucose-grown cells of Saccharomyces cerevisiae IGC 4072, acetic acid enters only by simple diffusion of the undissociated acid. In these cells, ethanol and other alkanols enhanced the passive influx of labelled acetic acid. The influx of the acid followed first-order kinetics with a rate constant that increased exponentially with the alcohol concentration, and an exponential enhancement constant for each alkanol was estimated. The intracellular concentration of labelled acetic acid was also enhanced by alkanols, and the effect increased exponentially with alcohol concentration. Acetic acid is transported across the plasma membrane of acetic acid-, lactic acid-, and ethanol-grown cells by acetate-proton symports. We found that in these cells ethanol and butanol inhibited the transport of labelled acetic acid in a noncompetitive way; the maximum transport velocity decreased with alcohol concentration, while the affinity of the system for acetate was not significantly affected by the alcohol. Semilog plots of Vmax versus alcohol concentration yielded straight lines with negative slopes from which estimates of the inhibition constant for each alkanol could be obtained. The intracellular concentration of labelled acid was significantly reduced in the presence of ethanol or butanol, and the effect increased with the alcohol concentration. We postulate that the absence of an operational carrier for acetate in glucose-grown cells of S. cerevisiae, combined with the relatively high permeability of the plasma membrane for the undissociated acid and the inability of the organism to metabolize acetic acid, could be one of the reasons why this species exhibits low tolerance to acidic environments containing ethanol. PMID:9464405

  19. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  20. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is generally...

  4. Moisture-Resistant Adhesives.

    DTIC Science & Technology

    1982-05-01

    34Synthesis of Monomers and Polymers for Evaluation." The 4-nitrobenzoin acetate was prepared by nitrating benzoin in acetic anhydride. Yields of 33...Reference 3). (1) 4-Nitrobenzoin acetate: A suspension of 250 g (1.18 moles) of benzoin in 930 ml of acetic anhydride was cooled to 15*C and 40 ml of

  5. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  6. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars.

    PubMed

    Hattan, Jun-ichiro; Shindo, Kazutoshi; Ito, Tomoko; Shibuya, Yurica; Watanabe, Arisa; Tagaki, Chie; Ohno, Fumina; Sasaki, Tetsuya; Ishii, Jun; Kondo, Akihiko; Misawa, Norihiko

    2016-04-01

    A novel terpene synthase (Tps) gene isolated from Camellia brevistyla was identified as hedycaryol synthase, which was shown to be expressed specifically in flowers. Camellia plants are very popular because they bloom in winter when other plants seldom flower. Many ornamental cultivars of Camellia have been bred mainly in Japan, although the fragrance of their flowers has not been studied extensively. We analyzed floral scents of several Camellia cultivars by gas chromatography-mass spectrometry (GC-MS) and found that Camellia brevistyla produced various sesquiterpenes in addition to monoterpenes, whereas Camellia japonica and its cross-lines produced only monoterpenes, including linalool as the main product. From a flower of C. brevistyla, we isolated one cDNA encoding a terpene synthase (TPS) comprised of 554 amino acids, which was phylogenetically positioned to a sole gene clade. The cDNA, designated CbTps1, was expressed in mevalonate-pathway-engineered Escherichia coli, which carried the Streptomyces mevalonate-pathway gene cluster in addition to the acetoacetate-CoA ligase gene. A terpene product was purified from recombinant E. coli cultured with lithium acetoacetate, and analyzed by (1)H-nulcear magnetic resonance spectroscopy ((1)H-NMR) and GC-MS. It was shown that a sesquiterpene hedycaryol was produced, because (1)H-NMR signals of the purified product were very broad, and elemol, a thermal rearrangement product from hedycaryol, was identified by GC-MS analysis. Spectroscopic data of elemol were also determined. These results indicated that the CbTps1 gene encodes hedycaryol synthase. Expression analysis of CbTps1 showed that it was expressed specifically in flowers, and hedycaryol is likely to be one of the terpenes that attract insects for pollination of C. brevistyla. A linalool synthase gene, which was isolated from a flower of Camellia saluenensis, is also described.

  8. Rapid Monitoring of Pharmacological Volatiles of Night-Flowering Evening-Primrose According to Flower Opening or Closing by Fast Gas Chromatography/Surface Acoustic Wave Sensor (Electronic zNose).

    PubMed

    Oh, Se Yeon

    2018-05-01

    Aroma is important in night-flowering species, as visually they can not be observed well. Thus, the analysis of the volatiles of evening-primrose is of great interest in biological fields and therapy. Furthermore, the analysis of volatiles demands rapid and simple procedure, because volatiles decompose. The aim of this study is to show the rapid monitoring of the volatiles of evening-primrose according to the flowering or closing by fast gas chromatography/surface acoustic wave GC/SAW. Moreover, calibration according to the sensor temperature of the GC/SAW was performed, achieving a high reproducibility and excellent sensitivity. GC/SAW is an effective analytical method that provides on-line measurements without pretreatment of sample. Headspace solid-phase micro-extraction coupled to gas chromatography mass spectrometry (HS-SPME-GC-MS) and dynamic headspace trapping and extraction with GC-MS were employed to confirm the identification of the volatiles of evening-primrose compared to GC/SAW. Linalool was found to be the dominant component, comprising 96.4-25.2% of the total amount, according to the opening or closing. Interestingly, the amount of indole also varied according to the opening or closing (3.0-0.0%) such as linalool. Also, while the sensitivity increased with the reduction in the sensor temperature of the GC/SAW, the reproducibility showed a tendency to decrease. The results showed that flower opening is related to the volatiles emission, which is pharmacological and plant defensive. GC/SAW can be a useful analytical method for the rapid monitoring of volatiles of evening-primrose according to the opening or closing as it provides second unit analysis, as well as simple, and aroma pattern recognition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Sedative-hypnotic and anxiolytic effects and the mechanism of action of aqueous extracts of peanut stems and leaves in mice.

    PubMed

    Deng, Lei; Shi, Ai-Min; Wang, Qiang

    2018-03-24

    Peanut stems and leaves (PSL) have traditionally been used as both a special food and a herbal medicine in Asia. The sedative-hypnotic and anxiolytic effects of PSL have been recorded in classical traditional Chinese literature, and more recently by many other researchers. In a previous study, four sleep-related ingredients (linalool, 5-hydroxy-4',7-dimethoxyflavanone, 2'-O-methylisoliquiritigenin and ferulic acid), among which 5-hydroxy-4',7-dimethoxyflavanone and 2'-O-methylisoliquiritigenin were newly found in Arachis species, were screened by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). In the current study, quantitative examination of the above four ingredients was conducted. Serious fundamental functional studies were done in mice, including locomotor activity, direct sleep tests, pentobarbital-induced sleeping time tests, subthreshold dose of pentobarbital tests and barbital sodium sleep incubation period tests, to determine the material base for the sedative-hypnotic and anxiolytic effects of aqueous extracts of PSL. Furthermore, neurotransmitter levels in three brain regions (cerebrum, cerebellum and brain stem) were determined using UHPLC coupled with triple-quadrupole mass spectrometry (UHPLC/QQQ-MS) in order to elucidate the exact mechanism of action. Aqueous extract of PSL at a dose of 500 mg kg -1 (based on previous experience), along with different concentrations of the above four functional ingredients (189.86 µg kg -1 linalool, 114.75 mg kg -1 5-hydroxy-4',7-dimethoxyflavanone, 32.4mg kg -1 2'-O-methylisoliquiritigenin and 44.44 mg kg -1 ferulic acid), had a sedative-hypnotic effect by affecting neurotransmitter levels in mice. The data demonstrate that these four ingredients are the key functional factors for the sedative-hypnotic and anxiolytic effects of PSL aqueous extracts and that these effects occur via changes in neurotransmitter levels and pathways. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Antispasmodic effects and composition of the essential oils from two South American chemotypes of Lippia alba.

    PubMed

    Blanco, Marcos A; Colareda, Germán A; van Baren, Catalina; Bandoni, Arnaldo L; Ringuelet, Jorge; Consolini, Alicia E

    2013-10-07

    Lippia alba (Mill.) N. E. Brown (Verbenaceae) is an aromatic species used in Central and South America as eupeptic for indigestion. In Argentina, it is used by the "criollos" from the Chaco province. There are several chemotypes which differ in the chemical composition of the essential oils. Nowadays, it is experimentally cultivated in some countries of the region, including Argentina. To compare the chemical composition and pharmacology of the essential oils from two chemotypes: "citral" (CEO) and "linalool" (LEO), in isolated rat duodenum and ileum. Contractile concentration-response curves (CRC) of acetylcholine (ACh) and calcium in 40mM K(+)-medium (Ca(2+)-CRC) were done in isolated intestine portions, in the absence and presence of CEO or LEO at different concentrations. Likewise verapamil, CEO and LEO induced a non-competitive inhibition of the ACh-CRC, with IC50 of 7.0±0.3mg CEO/mL and 37.2±4.2mg LEO/mL. l-NAME, a NO-synthase blocker, increased the IC50 of CEO to 26.1±8.7mg CEO/mL. Likewise verapamil, CEO and LEO non-competitively inhibited the Ca(2+)-CRC, with IC50 of 6.3±1.7mg CEO/mL, 7.0±2.5mg LEO/mL and 0.24±0.04mg verapamil/mL (pIC50: 6.28). CEO was proved to possess limonene, neral, geranial and (-)-carvone as the major components, while LEO was rich in linalool. Results suggest that CEO has five times more potency than LEO to inhibit muscarinic contractions. The essential oils of both chemotypes interfered with the Ca(2+)-influx, but with an IC50 about 28 times higher than that of verapamil. Moreover, CEO partially stimulated the NO production. These results show the medicinal usefulness of both Lippia alba chemotypes, thus validating its traditional use, potency and mechanism of action. © 2013 Published by Elsevier Ireland Ltd.

  11. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway.

    PubMed

    Hsiao, Yu-Yun; Tsai, Wen-Chieh; Kuoh, Chang-Sheng; Huang, Tian-Hsiang; Wang, Hei-Chia; Wu, Tian-Shung; Leu, Yann-Lii; Chen, Wen-Huei; Chen, Hong-Hwa

    2006-07-13

    Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives. This systems biology program combined chemical analysis, genomics and bioinformatics to elucidate the scent biosynthesis pathway and identify the relevant genes. It integrates the forward and reverse genetic approaches to knowledge discovery by which researchers can study non-model plants.

  12. Antibacterial activity of Litsea cubeba (Lauraceae, May Chang) and its effects on the biological response of common carp Cyprinus carpio challenged with Aeromonas hydrophila.

    PubMed

    Nguyen, H V; Caruso, D; Lebrun, M; Nguyen, N T; Trinh, T T; Meile, J-C; Chu-Ky, S; Sarter, S

    2016-08-01

    The aims of this study were to characterize the antibacterial activity and the chemotype of Litsea cubeba leaf essential oil (EO) harvested in North Vietnam and to investigate the biological effects induced by the leaf powder on growth, nonspecific immunity and survival of common carp (Cyprinus carpio) challenged with Aeromonas hydrophila. The EO showed the prevalence of linalool (95%, n = 5). It was bactericidal against the majority of tested strains, with minimum inhibitory concentrations ranging from 0·72 to 2·89 mg ml(-1) (Aer. hydrophila, Edwarsiella tarda, Vibrio furnissii, Vibrio parahaemolyticus, Streptococcus garvieae, Escherichia coli, Salmonella Typhimurium). The fish was fed with 0 (control), 2, 4 and 8% leaf powder supplementation diets for 21 days. Nonspecific immunity parameters (lysozyme, haemolytic and bactericidal activities of plasma) were assessed 21 days after feeding period and before the experimental infection. Weight gain, specific growth rate and feed conversion ratio were improved by supplementation of L. cubeba in a dose-related manner, and a significant difference appeared at the highest dose (8%) when compared to the control. The increase in plasma lysozyme was significant for all the treated groups. Haemolysis activity was higher for the groups fed with 4 and 8% plant powder. Antibacterial activity increased significantly for the 8% dose only. Litsea cubeba leaf powder increased nonspecific immunity of carps in dose-related manner. After infection with Aer. hydrophila, survivals of fish fed with 4 and 8% L. cubeba doses were significantly higher than those fed with 2% dose and the control. A range of 4-8% L. cubeba leaf powder supplementation diet (from specific linalool-rich chemotype) can be used in aquaculture to reduce antibiotic burden and impacts of diseases caused by Aer. hydrophila. © 2016 The Society for Applied Microbiology.

  13. Detection of CIN by naked eye visualization after application of acetic acid.

    PubMed

    Londhe, M; George, S S; Seshadri, L

    1997-06-01

    A prospective study was undertaken to determine the sensitivity and specificity of acetic application to the cervix followed by naked eye visualization as a screening test for detection of cervical intraepithelial neoplasia. Three hundred and seventy two sexually active woman in the reproductive age group were studied. All the women underwent Papanicolaou test, acetic acid test and colposcopy. One hundred and seventy five woman were acetic acid test negative, 197 women were acetic acid test positive. The sensitivity of acetic acid test was 72.4%, specificity 54% and false negative rate 15.2%, as compared to papanicolaou test which had a sensitivity of 13.2%, specificity of 96.3% and false negative rate of 24.4%. The advantage of the acetic acid test lies in its easy technique, low cost and high sensitivity which are important factors for determining the efficacy of any screening programme in developing countries.

  14. 21 CFR 524.1484i - Neomycin sulfate, hydrocortisone acetate, sterile ointment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate, hydrocortisone acetate, sterile... NEW ANIMAL DRUGS § 524.1484i Neomycin sulfate, hydrocortisone acetate, sterile ointment. (a..., and 5 milligrams of hydrocortisone acetate in each gram of ointment.1 (b) Sponsor. No. 000009 in § 510...

  15. 21 CFR 524.1484d - Neomycin sulfate, hydrocortisone acetate, tetracaine hydrochloride ear ointment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate, hydrocortisone acetate... OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484d Neomycin sulfate, hydrocortisone acetate... sulfate, equivalent to 3.5 milligrams of neomycin base, 5 milligrams of hydrocortisone acetate, and 5...

  16. 21 CFR 524.1484i - Neomycin sulfate, hydrocortisone acetate, sterile ointment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate, hydrocortisone acetate, sterile... NEW ANIMAL DRUGS § 524.1484i Neomycin sulfate, hydrocortisone acetate, sterile ointment. (a..., and 5 milligrams of hydrocortisone acetate in each gram of ointment.1 (b) Sponsor. No. 000009 in § 510...

  17. 21 CFR 524.1484d - Neomycin sulfate, hydrocortisone acetate, tetracaine hydrochloride ear ointment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate, hydrocortisone acetate... OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484d Neomycin sulfate, hydrocortisone acetate... sulfate, equivalent to 3.5 milligrams of neomycin base, 5 milligrams of hydrocortisone acetate, and 5...

  18. 21 CFR 524.1204 - Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hydrocortisone acetate. 524.1204 Section 524.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1204 Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate... activity as the calcium salt, and 10.0 milligrams of hydrocortisone acetate. (b) Sponsor. See No. 000856 in...

  19. 21 CFR 524.1204 - Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hydrocortisone acetate. 524.1204 Section 524.1204 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1204 Kanamycin sulfate, calcium amphomycin, and hydrocortisone acetate... activity as the calcium salt, and 10.0 milligrams of hydrocortisone acetate. (b) Sponsor. See No. 000856 in...

  20. 21 CFR 524.1484d - Neomycin sulfate, hydrocortisone acetate, tetracaine hydrochloride ear ointment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate, hydrocortisone acetate... OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484d Neomycin sulfate, hydrocortisone acetate... sulfate, equivalent to 3.5 milligrams of neomycin base, 5 milligrams of hydrocortisone acetate, and 5...

Top