Numerical bias in bounded and unbounded number line tasks.
Cohen, Dale J; Blanc-Goldhammer, Daryn
2011-04-01
The number line task is often used to assess children's and adults' underlying representations of integers. Traditional bounded number line tasks, however, have limitations that can lead to misinterpretation. Here we present a new task, an unbounded number line task, that overcomes these limitations. In Experiment 1, we show that adults use a biased proportion estimation strategy to complete the traditional bounded number line task. In Experiment 2, we show that adults use a dead-reckoning integer estimation strategy in our unbounded number line task. Participants revealed a positively accelerating numerical bias in both tasks, but showed scalar variance only in the unbounded number line task. We conclude that the unbounded number line task is a more pure measure of integer representation than the bounded number line task, and using these results, we present a preliminary description of adults' underlying representation of integers.
Thompson, Clarissa A; Morris, Bradley J; Sidney, Pooja G
2017-01-01
Do children spontaneously represent spatial-numeric features of a task, even when it does not include printed numbers (Mix et al., 2016)? Sixty first grade students completed a novel spatial estimation task by seeking and finding pages in a 100-page book without printed page numbers. Children were shown pages 1 through 6 and 100, and then were asked, "Can you find page X?" Children's precision of estimates on the page finder task and a 0-100 number line estimation task was calculated with the Percent Absolute Error (PAE) formula (Siegler and Booth, 2004), in which lower PAE indicated more precise estimates. Children's numerical knowledge was further assessed with: (1) numeral identification (e.g., What number is this: 57?), (2) magnitude comparison (e.g., Which is larger: 54 or 57?), and (3) counting on (e.g., Start counting from 84 and count up 5 more). Children's accuracy on these tasks was correlated with their number line PAE. Children's number line estimation PAE predicted their page finder PAE, even after controlling for age and accuracy on the other numerical tasks. Children's estimates on the page finder and number line tasks appear to tap a general magnitude representation. However, the page finder task did not correlate with numeral identification and counting-on performance, likely because these tasks do not measure children's magnitude knowledge. Our results suggest that the novel page finder task is a useful measure of children's magnitude knowledge, and that books have similar spatial-numeric affordances as number lines and numeric board games.
Thompson, Clarissa A.; Morris, Bradley J.; Sidney, Pooja G.
2017-01-01
Do children spontaneously represent spatial-numeric features of a task, even when it does not include printed numbers (Mix et al., 2016)? Sixty first grade students completed a novel spatial estimation task by seeking and finding pages in a 100-page book without printed page numbers. Children were shown pages 1 through 6 and 100, and then were asked, “Can you find page X?” Children’s precision of estimates on the page finder task and a 0-100 number line estimation task was calculated with the Percent Absolute Error (PAE) formula (Siegler and Booth, 2004), in which lower PAE indicated more precise estimates. Children’s numerical knowledge was further assessed with: (1) numeral identification (e.g., What number is this: 57?), (2) magnitude comparison (e.g., Which is larger: 54 or 57?), and (3) counting on (e.g., Start counting from 84 and count up 5 more). Children’s accuracy on these tasks was correlated with their number line PAE. Children’s number line estimation PAE predicted their page finder PAE, even after controlling for age and accuracy on the other numerical tasks. Children’s estimates on the page finder and number line tasks appear to tap a general magnitude representation. However, the page finder task did not correlate with numeral identification and counting-on performance, likely because these tasks do not measure children’s magnitude knowledge. Our results suggest that the novel page finder task is a useful measure of children’s magnitude knowledge, and that books have similar spatial-numeric affordances as number lines and numeric board games. PMID:29312084
Unbounding the mental number line—new evidence on children's spatial representation of numbers
Link, Tanja; Huber, Stefan; Nuerk, Hans-Christoph; Moeller, Korbinian
2014-01-01
Number line estimation (i.e., indicating the position of a given number on a physical line) is a standard assessment of children's spatial representation of number magnitude. Importantly, there is an ongoing debate on the question in how far the bounded task version with start and endpoint given (e.g., 0 and 100) might induce specific estimation strategies and thus may not allow for unbiased inferences on the underlying representation. Recently, a new unbounded version of the task was suggested with only the start point and a unit fixed (e.g., the distance from 0 to 1). In adults this task provided a less biased index of the spatial representation of number magnitude. Yet, so far there are no children data available for the unbounded number line estimation task. Therefore, we conducted a cross-sectional study on primary school children performing both, the bounded and the unbounded version of the task. We observed clear evidence for systematic strategic influences (i.e., the consideration of reference points) in the bounded number line estimation task for children older than grade two whereas there were no such indications for the unbounded version for any one of the age groups. In summary, the current data corroborate the unbounded number line estimation task to be a valuable tool for assessing children's spatial representation of number magnitude in a systematic and unbiased manner. Yet, similar results for the bounded and the unbounded version of the task for first- and second-graders may indicate that both versions of the task might assess the same underlying representation for relatively younger children—at least in number ranges familiar to the children assessed. This is of particular importance for inferences about the nature and development of children's magnitude representation. PMID:24478734
The added value of eye-tracking in diagnosing dyscalculia: a case study
van Viersen, Sietske; Slot, Esther M.; Kroesbergen, Evelyn H.; van't Noordende, Jaccoline E.; Leseman, Paul P. M.
2013-01-01
The present study compared eye movements and performance of a 9-year-old girl with Developmental Dyscalculia (DD) on a series of number line tasks to those of a group of typically developing (TD) children (n = 10), in order to answer the question whether eye-tracking data from number line estimation tasks can be a useful tool to discriminate between TD children and children with a number processing deficit. Quantitative results indicated that the child with dyscalculia performed worse on all symbolic number line tasks compared to the control group, indicated by a low linear fit (R2) and a low accuracy measured by mean percent absolute error. In contrast to the control group, her magnitude representations seemed to be better represented by a logarithmic than a linear fit. Furthermore, qualitative analyses on the data of the child with dyscalculia revealed more unidentifiable fixation patterns in the processing of multi-digit numbers and more dysfunctional estimation strategy use in one third of the estimation trials as opposed to ~10% in the control group. In line with her dyscalculia diagnosis, these results confirm the difficulties with spatially representing and manipulating numerosities on a number line, resulting in inflexible and inadequate estimation or processing strategies. It can be concluded from this case study that eye-tracking data can be used to discern different number processing and estimation strategies in TD children and children with a number processing deficit. Hence, eye-tracking data in combination with number line estimation tasks might be a valuable and promising addition to current diagnostic measures. PMID:24098294
The added value of eye-tracking in diagnosing dyscalculia: a case study.
van Viersen, Sietske; Slot, Esther M; Kroesbergen, Evelyn H; Van't Noordende, Jaccoline E; Leseman, Paul P M
2013-01-01
The present study compared eye movements and performance of a 9-year-old girl with Developmental Dyscalculia (DD) on a series of number line tasks to those of a group of typically developing (TD) children (n = 10), in order to answer the question whether eye-tracking data from number line estimation tasks can be a useful tool to discriminate between TD children and children with a number processing deficit. Quantitative results indicated that the child with dyscalculia performed worse on all symbolic number line tasks compared to the control group, indicated by a low linear fit (R (2)) and a low accuracy measured by mean percent absolute error. In contrast to the control group, her magnitude representations seemed to be better represented by a logarithmic than a linear fit. Furthermore, qualitative analyses on the data of the child with dyscalculia revealed more unidentifiable fixation patterns in the processing of multi-digit numbers and more dysfunctional estimation strategy use in one third of the estimation trials as opposed to ~10% in the control group. In line with her dyscalculia diagnosis, these results confirm the difficulties with spatially representing and manipulating numerosities on a number line, resulting in inflexible and inadequate estimation or processing strategies. It can be concluded from this case study that eye-tracking data can be used to discern different number processing and estimation strategies in TD children and children with a number processing deficit. Hence, eye-tracking data in combination with number line estimation tasks might be a valuable and promising addition to current diagnostic measures.
Children's mathematical performance: five cognitive tasks across five grades.
Moore, Alex M; Ashcraft, Mark H
2015-07-01
Children in elementary school, along with college adults, were tested on a battery of basic mathematical tasks, including digit naming, number comparison, dot enumeration, and simple addition or subtraction. Beyond cataloguing performance to these standard tasks in Grades 1 to 5, we also examined relationships among the tasks, including previously reported results on a number line estimation task. Accuracy and latency improved across grades for all tasks, and classic interaction patterns were found, for example, a speed-up of subitizing and counting, increasingly shallow slopes in number comparison, and progressive speeding of responses especially to larger addition and subtraction problems. Surprisingly, digit naming was faster than subitizing at all ages, arguing against a pre-attentive processing explanation for subitizing. Estimation accuracy and speed were strong predictors of children's addition and subtraction performance. Children who gave exponential responses on the number line estimation task were slower at counting in the dot enumeration task and had longer latencies on addition and subtraction problems. The results provided further support for the importance of estimation as an indicator of children's current and future mathematical expertise. Copyright © 2015 Elsevier Inc. All rights reserved.
How number line estimation skills relate to neural activations in single digit subtraction problems
Berteletti, I.; Man, G.; Booth, J.R.
2014-01-01
The Number Line (NL) task requires judging the relative numerical magnitude of a number and estimating its value spatially on a continuous line. Children's skill on this task has been shown to correlate with and predict future mathematical competence. Neurofunctionally, this task has been shown to rely on brain regions involved in numerical processing. However, there is no direct evidence that performance on the NL task is related to brain areas recruited during arithmetical processing and that these areas are domain-specific to numerical processing. In this study, we test whether 8- to 14-year-old's behavioral performance on the NL task is related to fMRI activation during small and large single-digit subtraction problems. Domain-specific areas for numerical processing were independently localized through a numerosity judgment task. Results show a direct relation between NL estimation performance and the amount of the activation in key areas for arithmetical processing. Better NL estimators showed a larger problem size effect than poorer NL estimators in numerical magnitude (i.e., intraparietal sulcus) and visuospatial areas (i.e., posterior superior parietal lobules), marked by less activation for small problems. In addition, the direction of the activation with problem size within the IPS was associated to differences in accuracies for small subtraction problems. This study is the first to show that performance in the NL task, i.e. estimating the spatial position of a number on an interval, correlates with brain activity observed during single-digit subtraction problem in regions thought to be involved numerical magnitude and spatial processes. PMID:25497398
Montefinese, Maria; Semenza, Carlo
2018-05-17
It is widely accepted that different number-related tasks, including solving simple addition and subtraction, may induce attentional shifts on the so-called mental number line, which represents larger numbers on the right and smaller numbers on the left. Recently, it has been shown that different number-related tasks also employ spatial attention shifts along with general cognitive processes. Here we investigated for the first time whether number line estimation and complex mental arithmetic recruit a common mechanism in healthy adults. Participants' performance in two-digit mental additions and subtractions using visual stimuli was compared with their performance in a mental bisection task using auditory numerical intervals. Results showed significant correlations between participants' performance in number line bisection and that in two-digit mental arithmetic operations, especially in additions, providing a first proof of a shared cognitive mechanism (or multiple shared cognitive mechanisms) between auditory number bisection and complex mental calculation.
ERIC Educational Resources Information Center
Ebersbach, Mirjam; Luwel, Koen; Verschaffel, Lieven
2015-01-01
Children's estimation skills on a bounded and unbounded number line task were assessed in the light of their familiarity with numbers. Kindergartners, first graders, and second graders (N = 120) estimated the position of numbers on a 1--100 number line, marked with either two reference points (i.e., 1 and 10: unbounded condition) or three…
A general number-to-space mapping deficit in developmental dyscalculia.
Huber, S; Sury, D; Moeller, K; Rubinsten, O; Nuerk, H-C
2015-01-01
Previous research on developmental dyscalculia (DD) suggested that deficits in the number line estimation task are related to a failure to represent number magnitude linearly. This conclusion was derived from the observation of logarithmically shaped estimation patterns. However, recent research questioned this idea of an isomorphic relationship between estimation patterns and number magnitude representation. In the present study, we evaluated an alternative hypothesis: impairments in the number line estimation task are due to a general deficit in mapping numbers onto space. Adults with DD and a matched control group had to learn linear and non-linear layouts of the number line via feedback. Afterwards, we assessed their performance how well they learnt the new number-space mappings. We found irrespective of the layouts worse performance of adults with DD. Additionally, in case of the linear layout, we observed that their performance did not differ from controls near reference points, but that differences between groups increased as the distance to reference point increased. We conclude that worse performance of adults with DD in the number line task might be due a deficit in mapping numbers onto space which can be partly overcome relying on reference points. Copyright © 2015 Elsevier Ltd. All rights reserved.
Association between basic numerical abilities and mathematics achievement.
Sasanguie, Delphine; De Smedt, Bert; Defever, Emmy; Reynvoet, Bert
2012-06-01
Various measures have been used to investigate number processing in children, including a number comparison or a number line estimation task. The present study aimed to examine whether and to which extent these different measures of number representation are related to performance on a curriculum-based standardized mathematics achievement test in kindergarteners, first, second, and sixth graders. Children completed a number comparison task and a number line estimation task with a balanced set of symbolic (Arabic digits) and non-symbolic (dot patterns) stimuli. Associations with mathematics achievement were observed for the symbolic measures. Although the association with number line estimation was consistent over grades, the association with number comparison was much stronger in kindergarten compared to the other grades. The current data indicate that a good knowledge of the numerical meaning of Arabic digits is important for children's mathematical development and that particularly the access to the numerical meaning of symbolic digits rather than the representation of number per se is important. © 2011 The British Psychological Society.
Real-time state estimation in a flight simulator using fNIRS.
Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic
2015-01-01
Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot's instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot's mental state matched significantly better than chance with the pilot's real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development.
ERIC Educational Resources Information Center
Sasanguie, Delphine; Gobel, Silke M.; Moll, Kristina; Smets, Karolien; Reynvoet, Bert
2013-01-01
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted…
ERIC Educational Resources Information Center
Piatt, Carley; Coret, Marian; Choi, Michael; Volden, Joanne; Bisanz, Jeffrey
2016-01-01
Tablet computers (tablets) are positioned to be powerful, innovative, effective, and motivating research and assessment tools. We addressed two questions critical for evaluating the appropriateness of using tablets to study number-line estimation, a skill associated with math achievement and argued to be central to numerical cognition. First, is…
Children's Early Mental Number Line: Logarithmic or Decomposed Linear?
ERIC Educational Resources Information Center
Moeller, Korbinean; Pixner, Silvia; Kaufmann, Liane; Nuerk, Hans-Christoph
2009-01-01
Recently, the nature of children's mental number line has received much investigation. In the number line task, children are required to mark a presented number on a physical number line with fixed endpoints. Typically, it was observed that the estimations of younger/inexperienced children were accounted for best by a logarithmic function, whereas…
Real-Time State Estimation in a Flight Simulator Using fNIRS
Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic
2015-01-01
Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot’s instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot’s mental state matched significantly better than chance with the pilot’s real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development. PMID:25816347
Sasanguie, Delphine; Göbel, Silke M; Moll, Kristina; Smets, Karolien; Reynvoet, Bert
2013-03-01
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well childrencompared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities. Copyright © 2012 Elsevier Inc. All rights reserved.
The impact of cognitive load on reward evaluation.
Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M
2015-11-19
The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Calibrating the mental number line.
Izard, Véronique; Dehaene, Stanislas
2008-03-01
Human adults are thought to possess two dissociable systems to represent numbers: an approximate quantity system akin to a mental number line, and a verbal system capable of representing numbers exactly. Here, we study the interface between these two systems using an estimation task. Observers were asked to estimate the approximate numerosity of dot arrays. We show that, in the absence of calibration, estimates are largely inaccurate: responses increase monotonically with numerosity, but underestimate the actual numerosity. However, insertion of a few inducer trials, in which participants are explicitly (and sometimes misleadingly) told that a given display contains 30 dots, is sufficient to calibrate their estimates on the whole range of stimuli. Based on these empirical results, we develop a model of the mapping between the numerical symbols and the representations of numerosity on the number line.
Number Line Estimation in Children with Developmental Dyscalculia
ERIC Educational Resources Information Center
Sella, Francesco; Berteletti, Ilaria; Martina, Brazzolotto; Lucangeli, Daniela; Zorzi, Marco
2013-01-01
In the number to position task, several studies have shown that typically developing children shift from a biased (logarithmic) to an accurate (linear) mapping of symbolic digits onto a spatial position on a line. The initial pattern of overestimation of small numbers and the underestimation of larger numbers is compensated by means of age and…
A design program for the estimation and abatement of soil losses from highway slopes.
DOT National Transportation Integrated Search
1974-01-01
A manual was prepared for use in estimating soil losses and designing adequate abatement structures along the ditch lines of roadways. These tasks were to be accomplished by a computer program intended to be used on the IBM Model 370 computer. The ma...
A Unified Framework for Bounded and Unbounded Numerical Estimation
ERIC Educational Resources Information Center
Kim, Dan; Opfer, John E.
2017-01-01
Representations of numerical value have been assessed by using bounded (e.g., 0-1,000) and unbounded (e.g., 0-?) number-line tasks, with considerable debate regarding whether 1 or both tasks elicit unique cognitive strategies (e.g., addition or subtraction) and require unique cognitive models. To test this, we examined how well a mixed log-linear…
Liu, Y; Wickens, C D
1994-11-01
The evaluation of mental workload is becoming increasingly important in system design and analysis. The present study examined the structure and assessment of mental workload in performing decision and monitoring tasks by focusing on two mental workload measurements: subjective assessment and time estimation. The task required the assignment of a series of incoming customers to the shortest of three parallel service lines displayed on a computer monitor. The subject was either in charge of the customer assignment (manual mode) or was monitoring an automated system performing the same task (automatic mode). In both cases, the subjects were required to detect the non-optimal assignments that they or the computer had made. Time pressure was manipulated by the experimenter to create fast and slow conditions. The results revealed a multi-dimensional structure of mental workload and a multi-step process of subjective workload assessment. The results also indicated that subjective workload was more influenced by the subject's participatory mode than by the factor of task speed. The time estimation intervals produced while performing the decision and monitoring tasks had significantly greater length and larger variability than those produced while either performing no other tasks or performing a well practised customer assignment task. This result seemed to indicate that time estimation was sensitive to the presence of perceptual/cognitive demands, but not to response related activities to which behavioural automaticity has developed.
ERIC Educational Resources Information Center
Reid, Erin E.; Baroody, Arthur J.; Purpura, David J.
2015-01-01
Previously, researchers have relied on asking young children to plot a given number on a 0-to-10 number line to assess their mental representation of numbers 1 to 9. However, such a ("conventional") number-to-position (N-P) task may underestimate the accuracy of young children's magnitude estimates and misrepresent the nature of their…
On-line estimation of suspended solids in biological reactors of WWTPs using a Kalman observer.
Beltrán, S; Irizar, I; Monclús, H; Rodríguez-Roda, I; Ayesa, E
2009-01-01
The total amount of solids in Wastewater Treatment Plants (WWTPs) and their distribution among the different elements and lines play a crucial role in the stability, performance and operational costs of the process. However, an accurate prediction of the evolution of solids concentration in the different elements of a WWTP is not a straightforward task. This paper presents the design, development and validation of a generic Kalman observer for the on-line estimation of solids concentration in the tank reactors of WWTPs. The proposed observer is based on the fact that the information about the evolution of the total amount of solids in the plant can be supplied by the available on-line Suspended Solids (SS) analysers, while their distribution can be simultaneously estimated from the hydraulic pattern of the plant. The proposed observer has been applied to the on-line estimation of SS in the reactors of a pilot-scale Membrane Bio-Reactor (MBR). The results obtained have shown that the experimental information supplied by a sole on-line SS analyser located in the first reactor of the pilot plant, in combination with updated information about internal flow rates data, has been able to give a reasonable estimation of the evolution of the SS concentration in all the tanks.
Benwell, Christopher S Y; Harvey, Monika; Gardner, Stephanie; Thut, Gregor
2013-03-01
Systematic biases in spatial attention are a common finding. In the general population, a systematic leftward bias is typically observed (pseudoneglect), possibly as a consequence of right hemisphere dominance for visuospatial attention. However, this leftward bias can cross-over to a systematic rightward bias with changes in stimulus and state factors (such as line length and arousal). The processes governing these changes are still unknown. Here we tested models of spatial attention as to their ability to account for these effects. To this end, we experimentally manipulated both stimulus and state factors, while healthy participants performed a computerized version of a landmark task. State was manipulated by time-on-task (>1 h) leading to increased fatigue and a reliable left- to rightward shift in spatial bias. Stimulus was manipulated by presenting either long or short lines which was associated with a shift of subjective midpoint from a reliable leftward bias for long to a more rightward bias for short lines. Importantly, we found time-on-task and line length effects to be additive suggesting a common denominator for line bisection across all conditions, which is in disagreement with models that assume that bisection decisions in long and short lines are governed by distinct processes (Magnitude estimation vs Global/local distinction). Our findings emphasize the dynamic rather than static nature of spatial biases in midline judgement. They are best captured by theories of spatial attention positing that spatial bias is flexibly modulated, and subject to inter-hemispheric balance which can change over time or conditions to accommodate task demands or reflect fatigue. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Girit, Dilek; Akyuz, Didem
2016-01-01
Studies reveal that students as well as teachers have difficulties in understanding and learning of decimals. The purpose of this study is to investigate students' as well as pre-service teachers' solution strategies when solving a question that involves an estimation task for the value of a decimal number on the number line. We also examined the…
Tracking Objects with Networked Scattered Directional Sensors
NASA Astrophysics Data System (ADS)
Plarre, Kurt; Kumar, P. R.
2007-12-01
We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.
Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers
Thompson, Clarissa A.; Opfer, John E.
2016-01-01
Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy. PMID:26834688
Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers.
Thompson, Clarissa A; Opfer, John E
2016-01-01
Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.
Area Estimation of Deep-Sea Surfaces from Oblique Still Images
Souto, Miguel; Afonso, Andreia; Calado, António; Madureira, Pedro; Campos, Aldino
2015-01-01
Estimating the area of seabed surfaces from pictures or videos is an important problem in seafloor surveys. This task is complex to achieve with moving platforms such as submersibles, towed or remotely operated vehicles (ROV), where the recording camera is typically not static and provides an oblique view of the seafloor. A new method for obtaining seabed surface area estimates is presented here, using the classical set up of two laser devices fixed to the ROV frame projecting two parallel lines over the seabed. By combining lengths measured directly from the image containing the laser lines, the area of seabed surfaces is estimated, as well as the camera’s distance to the seabed, pan and tilt angles. The only parameters required are the distance between the parallel laser lines and the camera’s horizontal and vertical angles of view. The method was validated with a controlled in situ experiment using a deep-sea ROV, yielding an area estimate error of 1.5%. Further applications and generalizations of the method are discussed, with emphasis on deep-sea applications. PMID:26177287
NASA Technical Reports Server (NTRS)
Vanlunteren, A.
1977-01-01
A previously described parameter estimation program was applied to a number of control tasks, each involving a human operator model consisting of more than one describing function. One of these experiments is treated in more detail. It consisted of a two dimensional tracking task with identical controlled elements. The tracking errors were presented on one display as two vertically moving horizontal lines. Each loop had its own manipulator. The two forcing functions were mutually independent and consisted each of 9 sine waves. A human operator model was chosen consisting of 4 describing functions, thus taking into account possible linear cross couplings. From the Fourier coefficients of the relevant signals the model parameters were estimated after alignment, averaging over a number of runs and decoupling. The results show that for the elements in the main loops the crossover model applies. A weak linear cross coupling existed with the same dynamics as the elements in the main loops but with a negative sign.
Measuring the effect of multiple eye fixations on memory for visual attributes.
Palmer, J; Ames, C T
1992-09-01
Because of limited peripheral vision, many visual tasks depend on multiple eye fixations. Good performance in such tasks demonstrates that some memory must survive from one fixation to the next. One factor that must influence performance is the degree to which multiple eye fixations interfere with the critical memories. In the present study, the amount of interference was measured by comparing visual discriminations based on multiple fixations to visual discriminations based on a single fixation. The procedure resembled partial report, but used a discrimination measure. In the prototype study, two lines were presented, followed by a single line and a cue. The cue pointed toward one of the positions of the first two lines. Observers were required to judge if the single line in the second display was longer or shorter than the cued line of the first display. These judgments were used to estimate a length threshold. The critical manipulation was to instruct observers either to maintain fixation between the lines of the first display or to fixate each line in sequence. The results showed an advantage for multiple fixations despite the intervening eye movements. In fact, thresholds for the multiple-fixation condition were nearly as good as those in a control condition where the lines were foveally viewed without eye movements. Thus, eye movements had little or no interfering effect in this task. Additional studies generalized the procedure and the stimuli. In conclusion, information about a variety of size and shape attributes was remembered with essentially no interference across eye fixations.
Allocating time to future tasks: the effect of task segmentation on planning fallacy bias.
Forsyth, Darryl K; Burt, Christopher D B
2008-06-01
The scheduling component of the time management process was used as a "paradigm" to investigate the allocation of time to future tasks. In three experiments, we compared task time allocation for a single task with the summed time allocations given for each subtask that made up the single task. In all three, we found that allocated time for a single task was significantly smaller than the summed time allocated to the individual subtasks. We refer to this as the segmentation effect. In Experiment 3, we asked participants to give estimates by placing a mark on a time line, and found that giving time allocations in the form of rounded close approximations probably does not account for the segmentation effect. We discuss the results in relation to the basic processes used to allocate time to future tasks and the means by which planning fallacy bias might be reduced.
White, Sonia L J; Szűcs, Dénes
2012-01-04
The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.
2012-01-01
Background The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice. PMID:22217191
Manipulating flexible parts using a teleoperated system with time delay: An experiment
NASA Technical Reports Server (NTRS)
Kotoku, T.; Takamune, K.; Tanie, K.; Komoriya, K.; Matsuhira, N.; Asakura, M.; Bamba, H.
1994-01-01
This paper reports experiments involving the handling of flexible parts (e.g. wires) when using a teleoperated system with time delay. The task is principally a peg-in-hole task involving the wrapping of a wire around two posts on the task-board. It is difficult to estimate the effects of the flexible parts; therefore, on-line teleoperation is indispensable for this class of unpredictable task. We first propose a teleoperation system based on the predictive image display, then describe an experimental teleoperation testbed with a four second transmission time delay. Finally, we report on wire handling operations that were performed to evaluate the performance of this system. Those experiments will contribute to future advanced experiments for the MITI ETS-7 mission.
Interfering with free recall of words: Detrimental effects of phonological competition.
Fernandes, Myra A; Wammes, Jeffrey D; Priselac, Sandra; Moscovitch, Morris
2016-09-01
We examined the effect of different distracting tasks, performed concurrently during memory retrieval, on recall of a list of words. By manipulating the type of material and processing (semantic, orthographic, and phonological) required in the distracting task, and comparing the magnitude of memory interference produced, we aimed to infer the kind of representation upon which retrieval of words depends. In Experiment 1, identifying odd digits concurrently during free recall disrupted memory, relative to a full attention condition, when the numbers were presented orthographically (e.g. nineteen), but not numerically (e.g. 19). In Experiment 2, a distracting task that required phonological-based decisions to either word or picture material produced large, but equivalent effects on recall of words. In Experiment 3, phonological-based decisions to pictures in a distracting task disrupted recall more than when the same pictures required semantically-based size estimations. In Experiment 4, a distracting task that required syllable decisions to line drawings interfered significantly with recall, while an equally difficult semantically-based color-decision task about the same line drawings, did not. Together, these experiments demonstrate that the degree of memory interference experienced during recall of words depends primarily on whether the distracting task competes for phonological representations or processes, and less on competition for semantic or orthographic or material-specific representations or processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Children Can Accurately Monitor and Control Their Number-Line Estimation Performance
ERIC Educational Resources Information Center
Wall, Jenna L.; Thompson, Clarissa A.; Dunlosky, John; Merriman, William E.
2016-01-01
Accurate monitoring and control are essential for effective self-regulated learning. These metacognitive abilities may be particularly important for developing math skills, such as when children are deciding whether a math task is difficult or whether they made a mistake on a particular item. The present experiments investigate children's ability…
Optimizing estimation of hemispheric dominance for language using magnetic source imaging
Passaro, Antony D.; Rezaie, Roozbeh; Moser, Dana C.; Li, Zhimin; Dias, Nadeeka; Papanicolaou, Andrew C.
2011-01-01
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N=12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10–18 Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10–18 Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing. PMID:21890118
Liu, Yingyi
2017-09-08
Prior studies on fraction magnitude understanding focused mainly on students with relatively sufficient formal instruction on fractions whose fraction magnitude understanding is relatively mature. This study fills a research gap by investigating fraction magnitude understanding in the early stages of fraction instruction. It extends previous findings to children with limited and primary formal fraction instruction. Thirty-five fourth graders with limited fraction instruction and forty fourth graders with primary fraction instruction were recruited from a Chinese primary school. Children's fraction magnitude understanding was assessed with a fraction number line estimation task. Approximate number system (ANS) acuity was assessed with a dot discrimination task. Whole number knowledge was assessed with a whole number line estimation task. General reading and mathematics achievements were collected concurrently and 1 year later. In children with limited fraction instruction, fraction representation was linear and fraction magnitude understanding was concurrently related to both ANS and whole number knowledge. In children with primary fraction instruction, fraction magnitude understanding appeared to (marginally) significantly predict general mathematics achievement 1 year later. Fraction magnitude understanding emerged early during formal instruction of fractions. ANS and whole number knowledge were related to fraction magnitude understanding when children first began to learn about fractions in school. The predictive value of fraction magnitude understanding is likely constrained by its sophistication level. © 2017 The British Psychological Society.
Challenges of working with FIADB17 data: the SOLE experience
Michael Spinney; Paul Van Deusen
2007-01-01
The Southern On Line Estimator (SOLE) is an Internet-based Forest Inventory and Analysis (FIA) data analysis tool. SOLE is based on data downloaded from the publicly available FIA database (FIADB) and summarized by plot condition. The tasks of downloading, processing, and summarizing FIADB data require specialized expertise in inventory theory and data manipulation....
Mutaf Yıldız, Belde; Sasanguie, Delphine; De Smedt, Bert; Reynvoet, Bert
2018-01-01
Home numeracy has been shown to play an important role in children's mathematical performance. However, findings are inconsistent as to which home numeracy activities are related to which mathematical skills. The present study disentangled between various mathematical abilities that were previously masked by the use of composite scores of mathematical achievement. Our aim was to shed light on the specific associations between home numeracy and various mathematical abilities. The relationships between kindergartners' home numeracy activities, their basic number processing and calculation skills were investigated. Participants were 128 kindergartners ( M age = 5.43 years, SD = 0.29, range: 4.88-6.02 years) and their parents. The children completed non-symbolic and symbolic comparison tasks, non-symbolic and symbolic number line estimation tasks, mapping tasks (enumeration and connecting), and two calculation tasks. Their parents completed a home numeracy questionnaire. Results indicated small but significant associations between formal home numeracy activities that involved more explicit teaching efforts (i.e., identifying numerals, counting) and children's enumeration skills. There was no correlation between formal home numeracy activities and non-symbolic number processing. Informal home numeracy activities that involved more implicit teaching attempts , such as "playing games" and "using numbers in daily life," were (weakly) correlated with calculation and symbolic number line estimation, respectively. The present findings suggest that disentangling between various basic number processing and calculation skills in children might unravel specific relations with both formal and informal home numeracy activities. This might explain earlier reported contradictory findings on the association between home numeracy and mathematical abilities.
Mutaf Yıldız, Belde; Sasanguie, Delphine; De Smedt, Bert; Reynvoet, Bert
2018-01-01
Home numeracy has been shown to play an important role in children’s mathematical performance. However, findings are inconsistent as to which home numeracy activities are related to which mathematical skills. The present study disentangled between various mathematical abilities that were previously masked by the use of composite scores of mathematical achievement. Our aim was to shed light on the specific associations between home numeracy and various mathematical abilities. The relationships between kindergartners’ home numeracy activities, their basic number processing and calculation skills were investigated. Participants were 128 kindergartners (Mage = 5.43 years, SD = 0.29, range: 4.88–6.02 years) and their parents. The children completed non-symbolic and symbolic comparison tasks, non-symbolic and symbolic number line estimation tasks, mapping tasks (enumeration and connecting), and two calculation tasks. Their parents completed a home numeracy questionnaire. Results indicated small but significant associations between formal home numeracy activities that involved more explicit teaching efforts (i.e., identifying numerals, counting) and children’s enumeration skills. There was no correlation between formal home numeracy activities and non-symbolic number processing. Informal home numeracy activities that involved more implicit teaching attempts, such as “playing games” and “using numbers in daily life,” were (weakly) correlated with calculation and symbolic number line estimation, respectively. The present findings suggest that disentangling between various basic number processing and calculation skills in children might unravel specific relations with both formal and informal home numeracy activities. This might explain earlier reported contradictory findings on the association between home numeracy and mathematical abilities. PMID:29623055
Träff, Ulf
2013-10-01
This study examined the relative contributions of general cognitive abilities and number abilities to word problem solving, calculation, and arithmetic fact retrieval in a sample of 134 children aged 10 to 13 years. The following tasks were administered: listening span, visual matrix span, verbal fluency, color naming, Raven's Progressive Matrices, enumeration, number line estimation, and digit comparison. Hierarchical multiple regressions demonstrated that number abilities provided an independent contribution to fact retrieval and word problem solving. General cognitive abilities contributed to problem solving and calculation. All three number tasks accounted for a similar amount of variance in fact retrieval, whereas only the number line estimation task contributed unique variance in word problem solving. Verbal fluency and Raven's matrices accounted for an equal amount of variance in problem solving and calculation. The current findings demonstrate, in accordance with Fuchs and colleagues' developmental model of mathematical learning (Developmental Psychology, 2010, Vol. 46, pp. 1731-1746), that both number abilities and general cognitive abilities underlie 10- to 13-year-olds' proficiency in problem solving, whereas only number abilities underlie arithmetic fact retrieval. Thus, the amount and type of cognitive contribution to arithmetic proficiency varies between the different aspects of arithmetic. Furthermore, how closely linked a specific aspect of arithmetic is to the whole number representation systems is not the only factor determining the amount and type of cognitive contribution in 10- to 13-year-olds. In addition, the mathematical complexity of the task appears to influence the amount and type of cognitive support. Copyright © 2013 Elsevier Inc. All rights reserved.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2015-05-01
To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimizing estimation of hemispheric dominance for language using magnetic source imaging.
Passaro, Antony D; Rezaie, Roozbeh; Moser, Dana C; Li, Zhimin; Dias, Nadeeka; Papanicolaou, Andrew C
2011-10-06
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N=12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10-18Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10-18Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing. Published by Elsevier B.V.
Objects of attention, objects of perception.
Avrahami, J
1999-11-01
Four experiments were conducted, to explore the notion of objects in perception. Taking as a starting point the effects of display content on rapid attention transfer and manipulating curvature, closure, and processing time, a link between objects of attention and objects of perception is proposed. In Experiment 1, a number of parallel, equally spaced, straight lines facilitated attention transfer along the lines, relative to transfer across the lines. In Experiment 2, with curved, closed-contour shapes, no "same-object" facilitation was observed. However, when a longer time interval was provided, in Experiment 3, a same-object advantage started to emerge. In Experiment 4, using the same curved shapes but in a non-speeded distance estimation task, a strong effect of objects was observed. It is argued that attention transfer is facilitated by line tracing but that line tracing is encouraged by objects.
Wilson, Glenn F; Russell, Christopher A
The functional state of the human operator is critical to optimal system performance. Degraded states of operator functioning can lead to errors and overall suboptimal system performance. Accurate assessment of operator functional state is crucial to the successful implementation of an adaptive aiding system. One method of determining operators' functional state is by monitoring their physiology. In the present study, artificial neural networks using physiological signals were used to continuously monitor, in real time, the functional state of 7 participants while they performed the Multi-Attribute Task Battery with two levels of task difficulty. Six channels of brain electrical activity and eye, heart and respiration measures were evaluated on line. The accuracy of the classifier was determined to test its utility as an on-line measure of operator state. The mean classification accuracies were 85%, 82%, and 86% for the baseline, low task difficulty, and high task difficulty conditions, respectively. The high levels of accuracy suggest that these procedures can be used to provide accurate estimates of operator functional state that can be used to provide adaptive aiding. The relative contribution of each of the 43 psychophysiological features was also determined. Actual or potential applications of this research include test and evaluation and adaptive aiding implementation.
ERIC Educational Resources Information Center
Piri, Faramarz; Barati, Hossein; Ketabi, Saeed
2012-01-01
Previous studies on the effect of planning on language production have revealed that planning does have a positive effect on language performance in terms of fluency, complexity, and accuracy. The present study was an attempt to investigate the effects of pre-task, on-line, and both pre-task and on-line planning on fluency, accuracy, and…
Software Product Lines: Report of the 2010 US Army Software Product Line Workshop
2010-06-01
requirements and statement of work ( SOW ) tasks can be in- cluded in the request for proposal (RFP) and the contract. 2.2.1 Basic Product Line Acquisition... SOW tasks in Figure 1. Two additional tasks (at the third tier level) ac- count for sustaining the production capability over the life cycle and...Acquisition Strategy RFP and SOW Initial Product Line Scope Product Line Business Case Capability Description Document Teaming Product Line
ERIC Educational Resources Information Center
Yuan, Fangyuan; Ellis, Rod
2003-01-01
Investigated the effects of both pre-task and on-line planning on second language (L2) oral production. Results show that pre-task planning enhances grammatical complexity while on-line planning positively influences accuracy and grammatical complexity. Pre-task planners also produced more fluent and lexically varied language than the on-line…
The influence of number line estimation precision and numeracy on risky financial decision making.
Park, Inkyung; Cho, Soohyun
2018-01-10
This study examined whether different aspects of mathematical proficiency influence one's ability to make adaptive financial decisions. "Numeracy" refers to the ability to process numerical and probabilistic information and is commonly reported as an important factor which contributes to financial decision-making ability. The precision of mental number representation (MNR), measured with the number line estimation (NLE) task has been reported to be another critical factor. This study aimed to examine the contribution of these mathematical proficiencies while controlling for the influence of fluid intelligence, math anxiety and personality factors. In our decision-making task, participants chose between two options offering probabilistic monetary gain or loss. Sensitivity to expected value was measured as an index for the ability to discriminate between optimal versus suboptimal options. Partial correlation and hierarchical regression analyses revealed that NLE precision better explained EV sensitivity compared to numeracy, after controlling for all covariates. These results suggest that individuals with more precise MNR are capable of making more rational financial decisions. We also propose that the measurement of "numeracy," which is commonly used interchangeably with general mathematical proficiency, should include more diverse aspects of mathematical cognition including basic understanding of number magnitude. © 2018 International Union of Psychological Science.
Timing of saccadic eye movements during visual search for multiple targets
Wu, Chia-Chien; Kowler, Eileen
2013-01-01
Visual search requires sequences of saccades. Many studies have focused on spatial aspects of saccadic decisions, while relatively few (e.g., Hooge & Erkelens, 1999) consider timing. We studied saccadic timing during search for targets (thin circles containing tilted lines) located among nontargets (thicker circles). Tasks required either (a) estimating the mean tilt of the lines, or (b) looking at targets without a concurrent psychophysical task. The visual similarity of targets and nontargets affected both the probability of hitting a target and the saccade rate in both tasks. Saccadic timing also depended on immediate conditions, specifically, (a) the type of currently fixated location (dwell time was longer on targets than nontargets), (b) the type of goal (dwell time was shorter prior to saccades that hit targets), and (c) the ordinal position of the saccade in the sequence. The results show that timing decisions take into account the difficulty of finding targets, as well as the cost of delays. Timing strategies may be a compromise between the attempt to find and locate targets, or other suitable landing locations, using eccentric vision (at the cost of increased dwell times) versus a strategy of exploring less selectively at a rapid rate. PMID:24049045
Developmental and individual differences in pure numerical estimation.
Booth, Julie L; Siegler, Robert S
2006-01-01
The authors examined developmental and individual differences in pure numerical estimation, the type of estimation that depends solely on knowledge of numbers. Children between kindergarten and 4th grade were asked to solve 4 types of numerical estimation problems: computational, numerosity, measurement, and number line. In Experiment 1, kindergartners and 1st, 2nd, and 3rd graders were presented problems involving the numbers 0-100; in Experiment 2, 2nd and 4th graders were presented problems involving the numbers 0-1,000. Parallel developmental trends, involving increasing reliance on linear representations of numbers and decreasing reliance on logarithmic ones, emerged across different types of estimation. Consistent individual differences across tasks were also apparent, and all types of estimation skill were positively related to math achievement test scores. Implications for understanding of mathematics learning in general are discussed. Copyright 2006 APA, all rights reserved.
Training specificity and transfer in time and distance estimation.
Healy, Alice F; Tack, Lindsay Anderson; Schneider, Vivian I; Barshi, Immanuel
2015-07-01
Learning is often specific to the conditions of training, making it important to identify which aspects of the testing environment are crucial to be matched in the training environment. In the present study, we examined training specificity in time and distance estimation tasks that differed only in the focus of processing (FOP). External spatial cues were provided for the distance estimation task and for the time estimation task in one condition, but not in another. The presence of a concurrent alphabet secondary task was manipulated during training and testing in all estimation conditions in Experiment 1. For distance as well as for time estimation in both conditions, training of the primary estimation task was found to be specific to the presence of the secondary task. In Experiments 2 and 3, we examined transfer between one estimation task and another, with no secondary task in either case. When all conditions were equal aside from the FOP instructions, including the presence of external spatial cues, Experiment 2 showed "transfer" between tasks, suggesting that training might not be specific to the FOP. When the external spatial cues were removed from the time estimation task, Experiment 3 showed no transfer between time and distance estimations, suggesting that external task cues influenced the procedures used in the estimation tasks.
Guariglia, Paola; Matano, Alessandro; Piccardi, Laura
2014-01-01
In the present study we analysed the bisecting behaviour of 287 chronic right brain-damaged patients by taking into account the presence and severity of extrapersonal and/or personal neglect diagnosed with the hemineglect battery. We also analysed right brain-damaged patients who had (or did not have) neglect according to their line bisection performance. Our results showed that performance of the line bisection task correlates with performance of cancellation tasks, reading and perceptual tasks, but not with the presence of personal neglect. Personal neglect seems to be unrelated to line bisection behaviour. Indeed, patients affected by extrapersonal and personal neglect do not show more severe neglect in line bisection than patients with only extrapersonal neglect. Furthermore, we observed that 20.56% of the patients were considered affected or not by neglect on the line bisection task compared with the other spatial tasks of the hemineglect battery. We conclude that using a battery with multiple tests is the only way to guarantee a reliable diagnosis and effectively plan for rehabilitative training. PMID:24937472
Subjective time in near and far representational space.
Zäch, Peter; Brugger, Peter
2008-03-01
We set out to measure healthy subjects' estimates of temporal duration during the imagination of left and right sides of an object located in either near or far representational space. Duration estimates during the observation of small-scale scenes are shorter than those during the observation of the same scenes presented in a larger scale. It is not known whether a similar space-time relationship also exists for objects merely imagined and whether subjective time varies with a forced focus on either the left or the right side of a mental image. Eyes closed, 40 healthy, right-handed subjects (20 women) had to imagine a standard Swiss railway clock either at a distance of 30 cm or 6 m. They were required to focus on the imagined movement of the second hand and provide estimates of elapsed durations of 15 and 30 seconds. Separate estimates for the left and right side of the clockface were obtained. The magnitude of implicit line bisection error was assessed in a separate task. Irrespective of side of the clockface, duration estimates were shorter for the clockface imagined in far space than for the one imagined immediately in front of the inner eye. For men, but not women, duration judgments (left relative to right side of the clockface) correlated with relative lengths of left and right line segments in the bisection task. Subjective time seems to run faster during the inspection of a small-size compared with a larger-size mental image. This finding underlines the equivalence of the laws that guide both exploration and representation of space. Together with the observed correlation between spatial and temporal measures of lateral asymmetries, the result also illustrates the conceptual similarities in the processing of space and time. The normative data presented here may be useful for clinical applications of the paradigm in patients with hemispatial neglect or a distorted perception of time.
Varieties of quantity estimation in children.
Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco
2015-06-01
In the number-to-position task, with increasing age and numerical expertise, children's pattern of estimates shifts from a biased (nonlinear) to a formal (linear) mapping. This widely replicated finding concerns symbolic numbers, whereas less is known about other types of quantity estimation. In Experiment 1, Preschool, Grade 1, and Grade 3 children were asked to map continuous quantities, discrete nonsymbolic quantities (numerosities), and symbolic (Arabic) numbers onto a visual line. Numerical quantity was matched for the symbolic and discrete nonsymbolic conditions, whereas cumulative surface area was matched for the continuous and discrete quantity conditions. Crucially, in the discrete condition children's estimation could rely either on the cumulative area or numerosity. All children showed a linear mapping for continuous quantities, whereas a developmental shift from a logarithmic to a linear mapping was observed for both nonsymbolic and symbolic numerical quantities. Analyses on individual estimates suggested the presence of two distinct strategies in estimating discrete nonsymbolic quantities: one based on numerosity and the other based on spatial extent. In Experiment 2, a non-spatial continuous quantity (shades of gray) and new discrete nonsymbolic conditions were added to the set used in Experiment 1. Results confirmed the linear patterns for the continuous tasks, as well as the presence of a subset of children relying on numerosity for the discrete nonsymbolic numerosity conditions despite the availability of continuous visual cues. Overall, our findings demonstrate that estimation of numerical and non-numerical quantities is based on different processing strategies and follow different developmental trajectories. (c) 2015 APA, all rights reserved).
A task-related and resting state realistic fMRI simulator for fMRI data validation
NASA Astrophysics Data System (ADS)
Hill, Jason E.; Liu, Xiangyu; Nutter, Brian; Mitra, Sunanda
2017-02-01
After more than 25 years of published functional magnetic resonance imaging (fMRI) studies, careful scrutiny reveals that most of the reported results lack fully decisive validation. The complex nature of fMRI data generation and acquisition results in unavoidable uncertainties in the true estimation and interpretation of both task-related activation maps and resting state functional connectivity networks, despite the use of various statistical data analysis methodologies. The goal of developing the proposed STANCE (Spontaneous and Task-related Activation of Neuronally Correlated Events) simulator is to generate realistic task-related and/or resting-state 4D blood oxygenation level dependent (BOLD) signals, given the experimental paradigm and scan protocol, by using digital phantoms of twenty normal brains available from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/). The proposed simulator will include estimated system and modelled physiological noise as well as motion to serve as a reference to measured brain activities. In its current form, STANCE is a MATLAB toolbox with command line functions serving as an open-source add-on to SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The STANCE simulator has been designed in a modular framework so that the hemodynamic response (HR) and various noise models can be iteratively improved to include evolving knowledge about such models.
Weber (slope) analyses of timing variability in tapping and drawing tasks.
Spencer, Rebecca M C; Zelaznik, Howard N
2003-12-01
Timing variability in continuous drawing tasks has not been found to be correlated with timing variability in repetitive finger tapping in recent studies (S. D. Robertson et al., 1999; H. N. Zelaznik, R. M. C. Spencer, & R. B. Ivry, 2002). Furthermore, the central component of timing variability, as measured by the slope of the timing variance versus the square of the timed interval, differed for tapping and drawing tasks. On the basis of those results, the authors posited that timing in tapping is explicit and as such uses a central representation of the interval to be timed, whereas timing in drawing tasks is implicit, that is, the temporal component is an emergent property of the trajectory produced. The authors examined that hypothesis in the present study by determining the linear relationship between timing variance and squared duration for tapping, circle-drawing, and line-drawing tasks. Participants (N = 50) performed 1 of 5 tasks: finger tapping, line drawing in the x dimension, line drawing in the y dimension, continuous circle drawing timed in the x dimension, or continuous circle drawing timed in the y dimension. The slopes differed significantly between finger tapping, line drawing, and circle drawing, suggesting separable sources of timing variability. The slopes of the 2 circle-drawing tasks did not differ from one another, nor did the slopes of the 2 line-drawing tasks differ significantly, suggesting a shared timing process within those tasks. Those results are evidence of a high degree of specificity in timing processes.
Nelson, Richard E; Angelovic, Aaron W; Nelson, Scott D; Gleed, Jeremy R; Drews, Frank A
2015-05-01
Adherence engineering applies human factors principles to examine non-adherence within a specific task and to guide the development of materials or equipment to increase protocol adherence and reduce human error. Central line maintenance (CLM) for intensive care unit (ICU) patients is a task through which error or non-adherence to protocols can cause central line-associated bloodstream infections (CLABSIs). We conducted an economic analysis of an adherence engineering CLM kit designed to improve the CLM task and reduce the risk of CLABSI. We constructed a Markov model to compare the cost-effectiveness of the CLM kit, which contains each of the 27 items necessary for performing the CLM procedure, compared with the standard care procedure for CLM, in which each item for dressing maintenance is gathered separately. We estimated the model using the cost of CLABSI overall ($45,685) as well as the excess LOS (6.9 excess ICU days, 3.5 excess general ward days). Assuming the CLM kit reduces the risk of CLABSI by 100% and 50%, this strategy was less costly (cost savings between $306 and $860) and more effective (between 0.05 and 0.13 more quality-adjusted life-years) compared with not using the pre-packaged kit. We identified threshold values for the effectiveness of the kit in reducing CLABSI for which the kit strategy was no longer less costly. An adherence engineering-based intervention to streamline the CLM process can improve patient outcomes and lower costs. Patient safety can be improved by adopting new approaches that are based on human factors principles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLARER,PAUL R.; BINDER,ALAN B.; LENARD,ROGER X.
A preliminary set of requirements for a robotic rover mission to the lunar polar region are described and assessed. Tasks to be performed by the rover include core drill sample acquisition, mineral and volatile soil content assay, and significant wide area traversals. Assessment of the postulated requirements is performed using first order estimates of energy, power, and communications throughput issues. Two potential rover system configurations are considered, a smaller rover envisioned as part of a group of multiple rovers, and a larger single rover envisioned along more traditional planetary surface rover concept lines.
Spatial displacement of numbers on a vertical number line in spatial neglect.
Mihulowicz, Urszula; Klein, Elise; Nuerk, Hans-Christoph; Willmes, Klaus; Karnath, Hans-Otto
2015-01-01
Previous studies that investigated the association of numbers and space in humans came to contradictory conclusions about the spatial character of the mental number magnitude representation and about how it may be influenced by unilateral spatial neglect. The present study aimed to disentangle the debated influence of perceptual vs. representational aspects via explicit mapping of numbers onto space by applying the number line estimation paradigm with vertical orientation of stimulus lines. Thirty-five acute right-brain damaged stroke patients (6 with neglect) were asked to place two-digit numbers on vertically oriented lines with 0 marked at the bottom and 100 at the top. In contrast to the expected, nearly linear mapping in the control patient group, patients with spatial neglect overestimated the position of numbers in the lower middle range. The results corroborate spatial characteristics of the number magnitude representation. In neglect patients, this representation seems to be biased towards the ipsilesional side, independent of the physical orientation of the task stimuli.
Behavioral, Modeling, and Electrophysiological Evidence for Supramodality in Human Metacognition.
Faivre, Nathan; Filevich, Elisa; Solovey, Guillermo; Kühn, Simone; Blanke, Olaf
2018-01-10
Human metacognition, or the capacity to introspect on one's own mental states, has been mostly characterized through confidence reports in visual tasks. A pressing question is to what extent results from visual studies generalize to other domains. Answering this question allows determining whether metacognition operates through shared, supramodal mechanisms or through idiosyncratic, modality-specific mechanisms. Here, we report three new lines of evidence for decisional and postdecisional mechanisms arguing for the supramodality of metacognition. First, metacognitive efficiency correlated among auditory, tactile, visual, and audiovisual tasks. Second, confidence in an audiovisual task was best modeled using supramodal formats based on integrated representations of auditory and visual signals. Third, confidence in correct responses involved similar electrophysiological markers for visual and audiovisual tasks that are associated with motor preparation preceding the perceptual judgment. We conclude that the supramodality of metacognition relies on supramodal confidence estimates and decisional signals that are shared across sensory modalities. SIGNIFICANCE STATEMENT Metacognitive monitoring is the capacity to access, report, and regulate one's own mental states. In perception, this allows rating our confidence in what we have seen, heard, or touched. Although metacognitive monitoring can operate on different cognitive domains, we ignore whether it involves a single supramodal mechanism common to multiple cognitive domains or modality-specific mechanisms idiosyncratic to each domain. Here, we bring evidence in favor of the supramodality hypothesis by showing that participants with high metacognitive performance in one modality are likely to perform well in other modalities. Based on computational modeling and electrophysiology, we propose that supramodality can be explained by the existence of supramodal confidence estimates and by the influence of decisional cues on confidence estimates. Copyright © 2018 the authors 0270-6474/18/380263-15$15.00/0.
System Identification for Nonlinear Control Using Neural Networks
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Linse, Dennis J.
1990-01-01
An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.
Autonomous reinforcement learning with experience replay.
Wawrzyński, Paweł; Tanwani, Ajay Kumar
2013-05-01
This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor-critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Image of a line is not shrunk but neglected. Absence of crossover in unilateral spatial neglect.
Ishiai, Sumio; Koyama, Yasumasa; Nakano, Naomi; Seki, Keiko; Nishida, Yoichiro; Hayashi, Kazuko
2004-01-01
Patients with left unilateral spatial neglect following right hemisphere lesions usually err rightward when bisecting a horizontal line. For very short lines (e.g. 25 mm), however, leftward errors or seemingly 'right' neglect is often observed. To explain this paradox of crossover in the direction of errors, rather complicated models have been introduced as to the distribution of attention. Neglect may be hypothesized to occur in representational process of a line or estimation of the midpoint on the formed image, or both. We devised a line image task using a computer display with a touch panel and approached the representational image of a line to be bisected. Three patients with typical left neglect were presented with a line and forced to see its whole extent with cueing to the left endpoint. After disappearance of the line, they pointed to the right endpoint, the left endpoint, or the subjective midpoint according to their representational image. The line image between the reproduced right and left endpoints was appropriately formed for the 200 mm lines. However, the images for the shorter 25 and 100 mm lines were longer than the physical lengths with overextension to the left side. These results proved the context effect that short lines may be perceived longer when they are presented in combination with longer lines. One of our patients had an extensive lesion that involved the frontal, temporal, and parietal lobes, and the other two had a lesion restricted to the posterior right hemisphere. The image for a fully perceived line may be represented far enough into left space even when left neglect occurs after a lesion that involves the right parietal lobe. The patients with neglect placed the subjective midpoint rightward from the centre of the stimulus line for the 100 and 200 mm lines and leftward for the 25 mm lines. This crossover of bisection errors disappeared when the displacement of the subjective midpoint was measured from the centre of the representational line image. Left neglect may occur consistently in estimation of the subjective midpoint on the representational image, which may be explained by a simple rightward bias of attentional distribution.
Reasoning in psychosis: risky but not necessarily hasty.
Moritz, Steffen; Scheu, Florian; Andreou, Christina; Pfueller, Ute; Weisbrod, Matthias; Roesch-Ely, Daniela
2016-01-01
A liberal acceptance (LA) threshold for hypotheses has been put forward to explain the well-replicated "jumping to conclusions" (JTC) bias in psychosis, particularly in patients with paranoid symptoms. According to this account, schizophrenia patients rest their decisions on lower subjective probability estimates. The initial formulation of the LA account also predicts an absence of the JTC bias under high task ambiguity (i.e., if more than one response option surpasses the subjective acceptance threshold). Schizophrenia patients (n = 62) with current or former delusions and healthy controls (n = 30) were compared on six scenarios of a variant of the beads task paradigm. Decision-making was assessed under low and high task ambiguity. Along with decision judgments (optional), participants were required to provide probability estimates for each option in order to determine decision thresholds (i.e., the probability the individual deems sufficient for a decision). In line with the LA account, schizophrenia patients showed a lowered decision threshold compared to controls (82% vs. 93%) which predicted both more errors and less draws to decisions. Group differences on thresholds were comparable across conditions. At the same time, patients did not show hasty decision-making, reflecting overall lowered probability estimates in patients. Results confirm core predictions derived from the LA account. Our results may (partly) explain why hasty decision-making is sometimes aggravated and sometimes abolished in psychosis. The proneness to make risky decisions may contribute to the pathogenesis of psychosis. A revised LA account is put forward.
How do we watch images? A case of change detection and quality estimation
NASA Astrophysics Data System (ADS)
Radun, Jenni; Leisti, Tuomas; Virtanen, Toni; Nyman, Göte
2012-01-01
The most common tasks in subjective image estimation are change detection (a detection task) and image quality estimation (a preference task). We examined how the task influences the gaze behavior when comparing detection and preference tasks. The eye movements of 16 naïve observers were recorded with 8 observers in both tasks. The setting was a flicker paradigm, where the observers see a non-manipulated image, a manipulated version of the image and again the non-manipulated image and estimate the difference they perceived in them. The material was photographic material with different image distortions and contents. To examine the spatial distribution of fixations, we defined the regions of interest using a memory task and calculated information entropy to estimate how concentrated the fixations were on the image plane. The quality task was faster and needed fewer fixations and the first eight fixations were more concentrated on certain image areas than the change detection task. The bottom-up influences of the image also caused more variation to the gaze behavior in the quality estimation task than in the change detection task The results show that the quality estimation is faster and the regions of interest are emphasized more on certain images compared with the change detection task that is a scan task where the whole image is always thoroughly examined. In conclusion, in subjective image estimation studies it is important to think about the task.
Svendsen, S; Mathiassen, S; Bonde, J
2005-01-01
Aims: To explore the precision of task based estimates of upper arm elevation in three occupational groups, compared to direct measurements of job exposure. Methods: Male machinists (n = 26), car mechanics (n = 23), and house painters (n = 23) were studied. Whole day recordings of upper arm elevation were obtained for four consecutive working days, and associated task information was collected in diaries. For each individual, task based estimates of job exposure were calculated by weighting task exposures from a collective database by task proportions according to the diaries. These estimates were validated against directly measured job exposures using linear regression. The performance of the task based approach was expressed through the gain in precision of occupational group mean exposures that could be obtained by adding subjects with task based estimates to a group of subjects with measured job exposures in a "validation" design. Results: In all three occupations, tasks differed in mean exposure, and task proportions varied between individuals. Task based estimation proved inefficient, with squared correlation coefficients only occasionally exceeding 0.2 for the relation between task based and measured job exposures. Consequently, it was not possible to substantially improve the precision of an estimated group mean by including subjects whose job exposures were based on task information. Conclusions: Task based estimates of mechanical job exposure can be very imprecise, and only marginally better than estimates based on occupation. It is recommended that investigators in ergonomic epidemiology consider the prospects of task based exposure assessment carefully before placing resources at obtaining task information. Strategies disregarding tasks may be preferable in many cases. PMID:15613604
Early Numerical Competence and Number Line Task Performance in Kindergarteners
ERIC Educational Resources Information Center
Fanari, Rachele; Meloni, Carla; Massidda, Davide
2017-01-01
This work aims to evaluate the relationship between early numerical competence in kindergarteners and their numerical representations as measured by the number line task (NLT). Thirty-four 5-year-old children participated in the study. Children's early performance on symbolic and non-symbolic numerical tasks was considered to determine which was a…
ERIC Educational Resources Information Center
Zufferey, Sandrine; Mak, Willem; Degand, Liesbeth; Sanders, Ted
2015-01-01
Discourse connectives are important indicators of textual coherence, and mastering them is an essential part of acquiring a language. In this article, we compare advanced learners' sensitivity to the meaning conveyed by connectives in an off-line grammaticality judgment task and an on-line reading experiment using eye-tracking. We also assess the…
Thermal sensitivity and cardiovascular reactivity to stress in healthy males.
Conde-Guzón, Pablo Antonio; Bartolomé-Albistegui, María Teresa; Quirós, Pilar; Cabestrero, Raúl
2011-11-01
This paper examines the association of cardiovascular reactivity with thermal thresholds (detection and unpleasantness). Heart period (HP), systolic (SBP) and diastolic (DBP) blood pressure of 42 health young males were recorded during a cardiovascular reactivity task (a videogame based upon Sidman's avoidance paradigm). Thermal sensitivity, assessing detection and unpleasantness thresholds with radiant heat in the forearm was also estimated for participants. Participants with differential scores in the cardiovascular variables from base line to task > or = P65 were considered as reactors and those how have differential scores < or = P35 were considered as non-reactors. Significant differences were observed between groups in the unpleasantness thresholds in blood pressure (BP) but not in HP. Reactors exhibited significant higher unpleasantness thresholds than non-reactors. No significant differences were obtained in detection thresholds between groups.
Effect of ethanol on psychomotor performance and on risk taking behaviour.
Farquhar, K; Lambert, K; Drummond, G B; Tiplady, B; Wright, P
2002-12-01
Ethanol may increase the willingness to take risks, but this issue remains controversial. We used a risk-taking paradigm in which volunteers answered a series of general knowledge questions with numerical answers and were asked to judge the length of a line that would just fit into a given gap. A maximum score was given for an exactly correct answer. For answers that were less than the correct value, the score was reduced gradually to zero, while answers even slightly over the correct value were penalized considerably. Total points were rewarded by cash payments, so volunteers were taking real risks when making their responses. Performance was assessed in a two-period, double-blind crossover study, comparing ethanol (0.7 g/kg) with placebo in 20 female volunteers aged 19-20 years. Tests were carried out before and at 45 min after dosing. Mean (SD) ethanol blood alcohol concentrations were 65 (10.5) mg/100 ml. Ethanol impaired the skill/ability measure of the length estimation test (SD of difference between length of line and gap), which increased from 5.9 to 6.6 (p < 0.05), indicating a reduced accuracy of estimation. The risk measures in both tasks were not significantly affected. The skill/ability measure in the general knowledge task was not significantly affected. Other performance tests showed that ethanol produced the expected impairment of both speed and accuracy. These results suggest that risk-taking is not increased by ethanol at doses approaching the UK legal limit for driving.
NASA Astrophysics Data System (ADS)
Wunderlich, Adam; Goossens, Bart
2014-03-01
The majority of the literature on task-based image quality assessment has focused on lesion detection tasks, using the receiver operating characteristic (ROC) curve, or related variants, to measure performance. However, since many clinical image evaluation tasks involve both detection and estimation (e.g., estimation of kidney stone composition, estimation of tumor size), there is a growing interest in performance evaluation for joint detection and estimation tasks. To evaluate observer performance on such tasks, Clarkson introduced the estimation ROC (EROC) curve, and the area under the EROC curve as a summary figure of merit. In the present work, we propose nonparametric estimators for practical EROC analysis from experimental data, including estimators for the area under the EROC curve and its variance. The estimators are illustrated with a practical example comparing MRI images reconstructed from different k-space sampling trajectories.
Manouilidou, Christina; Dolenc, Barbara; Marvin, Tatjana; Pirtošek, Zvezdan
2016-01-01
Mild cognitive impairment (MCI) affects the cognitive performance of elderly adults. However, the level of severity is not high enough to be diagnosed with dementia. Previous research reports subtle language impairments in individuals with MCI specifically in domains related to lexical meaning. The present study used both off-line (grammaticality judgment) and on-line (lexical decision) tasks to examine aspects of lexical processing and how they are affected by MCI. 21 healthy older adults and 23 individuals with MCI saw complex pseudo-words that violated various principles of word formation in Slovenian and decided if each letter string was an actual word of their language. The pseudo-words ranged in their degree of violability. A task effect was found, with MCI performance to be similar to that of healthy controls in the off-line task but different in the on-line task. Overall, the MCI group responded slower than the elderly controls. No significant differences were observed in the off-line task, while the on-line task revealed a main effect of Violation type, a main effect of Group and a significant Violation × Group interaction reflecting a difficulty for the MCI group to process pseudo-words in real time. That is, while individuals with MCI seem to preserve morphological rule knowledge, they experience additional difficulties while processing complex pseudo-words. This was attributed to an executive dysfunction associated with MCI that delays the recognition of ungrammatical formations.
NASA Technical Reports Server (NTRS)
Rosch, E.
1975-01-01
The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.
Fast and Accurate Learning When Making Discrete Numerical Estimates.
Sanborn, Adam N; Beierholm, Ulrik R
2016-04-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates.
Fast and Accurate Learning When Making Discrete Numerical Estimates
Sanborn, Adam N.; Beierholm, Ulrik R.
2016-01-01
Many everyday estimation tasks have an inherently discrete nature, whether the task is counting objects (e.g., a number of paint buckets) or estimating discretized continuous variables (e.g., the number of paint buckets needed to paint a room). While Bayesian inference is often used for modeling estimates made along continuous scales, discrete numerical estimates have not received as much attention, despite their common everyday occurrence. Using two tasks, a numerosity task and an area estimation task, we invoke Bayesian decision theory to characterize how people learn discrete numerical distributions and make numerical estimates. Across three experiments with novel stimulus distributions we found that participants fell between two common decision functions for converting their uncertain representation into a response: drawing a sample from their posterior distribution and taking the maximum of their posterior distribution. While this was consistent with the decision function found in previous work using continuous estimation tasks, surprisingly the prior distributions learned by participants in our experiments were much more adaptive: When making continuous estimates, participants have required thousands of trials to learn bimodal priors, but in our tasks participants learned discrete bimodal and even discrete quadrimodal priors within a few hundred trials. This makes discrete numerical estimation tasks good testbeds for investigating how people learn and make estimates. PMID:27070155
ERIC Educational Resources Information Center
Xi, Xiaoming
2010-01-01
Motivated by cognitive theories of graph comprehension, this study systematically manipulated characteristics of a line graph description task in a speaking test in ways to mitigate the influence of graph familiarity, a potential source of construct-irrelevant variance. It extends Xi (2005), which found that the differences in holistic scores on…
Use of Internal Consistency Coefficients for Estimating Reliability of Experimental Tasks Scores
Green, Samuel B.; Yang, Yanyun; Alt, Mary; Brinkley, Shara; Gray, Shelley; Hogan, Tiffany; Cowan, Nelson
2017-01-01
Reliabilities of scores for experimental tasks are likely to differ from one study to another to the extent that the task stimuli change, the number of trials varies, the type of individuals taking the task changes, the administration conditions are altered, or the focal task variable differs. Given reliabilities vary as a function of the design of these tasks and the characteristics of the individuals taking them, making inferences about the reliability of scores in an ongoing study based on reliability estimates from prior studies is precarious. Thus, it would be advantageous to estimate reliability based on data from the ongoing study. We argue that internal consistency estimates of reliability are underutilized for experimental task data and in many applications could provide this information using a single administration of a task. We discuss different methods for computing internal consistency estimates with a generalized coefficient alpha and the conditions under which these estimates are accurate. We illustrate use of these coefficients using data for three different tasks. PMID:26546100
Normative data for distal line bisection and baking tray task.
Facchin, Alessio; Beschin, Nicoletta; Pisano, Alessia; Reverberi, Cristina
2016-09-01
Line bisection is one of the tests used to diagnose unilateral spatial neglect (USN). Despite its wide application, no procedure or norms were available for the distal variant when the task was performed at distance with a laser pointer. Furthermore, the baking tray task was an ecological test aimed at diagnosing USN in a more natural context. The aim of this study was to collect normative values for these two tests in an Italian population. We recruited a sample of 191 healthy subjects with ages ranging from 20 to 89 years. They performed line bisection with a laser pointer on three different line lengths (1, 1.5, and 2 m) at a distance of 3 m. After this task, the subjects performed the baking tray task and a second repetition of line bisection to test the reliability of measurement. Multiple regression analysis revealed no significant effects of demographic variables on the performance of both tests. Normative cut-off values for the two tests were developed using non-parametric tolerance intervals. The results formed the basis for clinical use of these two tools for assessing lateralized performance of patients with brain injury and for diagnosing USN.
Visuospatial biases in preschool children: Evidence from line bisection in three-dimensional space.
Patro, Katarzyna; Nuerk, Hans-Christoph; Brugger, Peter
2018-04-09
Spatial attention in adults is characterized by systematic asymmetries across all three spatial dimensions. These asymmetries are evident when participants bisect horizontal, vertical, or radial lines and misplace their midpoints to the left, the top, or far from the body, respectively. However, bisection errors are rarely examined during early childhood. In this study, we examined the development of spatial-attentional asymmetries in three-dimensional (3D) space by asking preschool children (aged 3-6 years) to bisect horizontal, vertical, and radial lines. Children erred to the left with horizontal lines and to the top with vertical lines, consistent with the pattern reported in adults. These biases got stronger with age and were absent in the youngest preschoolers. However, by controlling for a possible failure in hitting the line, we observed an additional unpredicted pattern: Children's pointing systematically deviated away from the line to an empty space on its left side (for vertical and radial lines) or above it (for horizontal lines). Notably, this task-irrelevant deviation was pronounced in children as young as 3 or 4 years. We conclude that asymmetries in spatial-attentional functions should be measured not only in task-relevant dimensions but also in task-irrelevant dimensions because the latter may reveal biases in very young children not typically observed in task-relevant measures. Copyright © 2018 Elsevier Inc. All rights reserved.
The role of physical content in piagetian spatial tasks: Sex differences in spatial knowledge?
NASA Astrophysics Data System (ADS)
Golbeck, Susan L.
Sex-related differences on Piagetian horizontality (water level) and verticality (plumb line) tasks were examined in 64 college students. It was hypothesized that females' difficulties on these Euclidean spatial problems are due not to differences in underlying spatial competence, but rather to differences in knowledge of task specific information about the physical properties of water levels and plumb lines. This was tested by presenting subjects with the standard water level and plumb line problems and also modified problems not requiring knowledge of physical principles (i.e., drawing straight up and down or straight across lines inside tipped rectangles). While males were expected to outperform females on the standard tasks, no sex differences were expected on the modified tasks. Results of an ANOVA on scores for horizontality and verticality each showed main effects for sex and task version but failed to reveal the hypothesized interaction. However, performance on the Euclidean spatial tasks was also considered in terms of overall success versus failure. While males were more successful than females in the standard format, males and females were equally successful in the modified, nonphysical, format. Hence, college aged males and females generally do not differ in spatial competence although they may be differentially influenced by task content. Findings are discussed in terms of their implications for theory and practice. It is emphasized that science educators must be especially aware of such task influences for females so that performance deficits are not mistaken for competence deficits.
Zelaznik, Howard N; Forney, Laura A
2016-08-01
Proponents of the action-specific account of perception and action posit that participants perceive their environment relative to their capabilities. For example, softball players who batted well judge the ball as being larger compared to players who did not hit as well. In the present study, we examined this issue in the context of a well-known speed-accuracy movement task that can be examined in the laboratory, repetitive Fitts aiming. In the Fitts task, a performer moved as quickly and as accurately as possible between two targets, D units of distance apart (between 2.5 and 20.0 cm) and of W width (1.0 cm or less). In the Fitts task, we posited that individuals do not have access to performance quality. Thus, we asked whether individual differences in Fitts task performance was related to perception of target width. If Fitts task performance is related to perception of target width, then the action-specific effect on perception does not require explicit knowledge of performance and, furthermore, these effects reside during on-line visual control of the task. We show that only when subjects were provided with a performance score was there a relation between Fitts task performance and target width judgment error. We interpret this result to mean that action-specific effects do not occur during perceptual processing of the task, but action-specific effects are the result of postperformance evaluation processes.
Subjective Estimation of Task Time and Task Difficulty of Simple Movement Tasks.
Chan, Alan H S; Hoffmann, Errol R
2017-01-01
It has been demonstrated in previous work that the same neural structures are used for both imagined and real movements. To provide a strong test of the similarity of imagined and actual movement times, 4 simple movement tasks were used to determine the relationship between estimated task time and actual movement time. The tasks were single-component visually controlled movements, 2-component visually controlled, low index of difficulty (ID) moves and pin-to-hole transfer movements. For each task there was good correspondence between the mean estimated times and actual movement times. In all cases, the same factors determined the actual and estimated movement times: the amplitudes of movement and the IDs of the component movements, however the contribution of each of these variables differed for the imagined and real tasks. Generally, the standard deviations of the estimated times were linearly related to the estimated time values. Overall, the data provide strong evidence for the same neural structures being used for both imagined and actual movements.
ERIC Educational Resources Information Center
Rifkin, Kenneth I.; And Others
The purpose of the simulated maintenance task environment is to provide a means for training and job performance testing of the flight line weapon control systems mechanic/technician for the F-111A aircraft. It provides practice in flight line equipment checkout, troubleshooting, and removal and replacement of line replaceable units in the…
Examining Student Conceptions of Covariation: A Focus on the Line of Best Fit
ERIC Educational Resources Information Center
Casey, Stephanie A.
2015-01-01
The purpose of this research study was to learn about students' conceptions concerning the line of best fit just prior to their introduction to the topic. Task-based interviews were conducted with thirty-three students, focused on five tasks that asked them to place the line of best fit on a scatterplot and explain their reasoning throughout the…
Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors
NASA Technical Reports Server (NTRS)
McWhorter, Bruce B.; Ewing, Mark E.; McCool, Alex (Technical Monitor)
2001-01-01
Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation.
Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers.
Figueiredo, A S T; Resende, J T V; Faria, M V; Da-Silva, P R; Fagundes, B S; Morales, R G F
2016-05-13
Heterosis is a highly relevant phenomenon in plant breeding. This condition is usually established in hybrids derived from crosses of highly divergent parents. The success of a breeder in obtaining heterosis is directly related to the correct identification of genetically contrasting parents. Currently, the diallel cross is the most commonly used methodology to detect contrasting parents; however, it is a time- and cost-consuming procedure. Therefore, new tools capable of performing this task quickly and accurately are required. Thus, the purpose of this study was to estimate the genetic divergence in industrial tomato lines, based on agronomic traits, and to compare with estimates obtained using inter-simple sequence repeat (ISSR) molecular markers. The genetic divergence among 10 industrial tomato lines, based on nine morphological characters and 12 ISSR primers was analyzed. For data analysis, Pearson and Spearman correlation coefficients were calculated between the genetic dissimilarity measures estimated by Mahalanobis distance and Jaccard's coefficient of genetic dissimilarity from the heterosis estimates, combining ability, and means of important traits of industrial tomato. The ISSR markers efficiently detected contrasting parents for hybrid production in tomato. Parent RVTD-08 was indicated as the most divergent, both by molecular and morphological markers, that positively contributed to increased heterosis and by the specific combining ability in the crosses in which it participated. The genetic dissimilarity estimated by ISSR molecular markers aided the identification of the best hybrids of the experiment in terms of total fruit yield, pulp yield, and soluble solids content.
Deducing the Milky Way's Massive Cluster Population
NASA Astrophysics Data System (ADS)
Hanson, M. M.; Popescu, B.; Larsen, S. S.; Ivanov, V. D.
2010-11-01
Recent near-infrared surveys of the galactic plane have been used to identify new massive cluster candidates. Follow up study indicates about half are not true, gravitationally-bound clusters. These false positives are created by high density fields of unassociated stars, often due to a sight-line of reduced extinction. What is not so easy to estimate is the number of false negatives, clusters which exist but are not currently being detected by our surveys. In order to derive critical characteristics of the Milky Way's massive cluster population, such as cluster mass function and cluster lifetimes, one must be able to estimate the characteristics of these false negatives. Our group has taken on the daunting task of attempting such an estimate by first creating the stellar cluster imaging simulation program, MASSCLEAN. I will present our preliminary models and methods for deriving the biases of current searches.
On-Line Allocation Of Robot Resources To Task Plans
NASA Astrophysics Data System (ADS)
Lyons, Damian M.
1989-02-01
In this paper, I present an approach to representing plans that make on-line decisions about resource allocation. An on-line decision is the evaluation of a conditional expression involving sensory information as the plan is being executed. I use a plan representation called 7ZS10'1 1,12that has been especially designed for the domain of robot programming, and in particular, for the problem of on-line decisions. The resource allocation example is based on the robot assembly cell architecture outlined by Venkataraman and Lyons16. I begin by setting forth a definition of on-line decision making and some arguments as to why this form of decision making is important and useful. To set the context for the resource allocation example, I take some care in categorizing the types of on-line decision making and the approaches adopted by other workers so far. In particular, I justify a plan-based approach to the study of on-line decision making. From that, the focus shifts to one type of decision making: on-line allocation of robot resources to task plans. Robot resources are the physical manipulators (grippers, wrists, arms, feeders, etc) that are available to carry out the task. I formulate the assembly cell architecture of Venkataraman and Lyons16 as an R.S plan schema, and show how the on-line allocation specified in that architecture can be implemented. Finally, I show how considering the on-line allocation of logical resources, that is a physical resource plus some model information, can be used as a non-traditional approach to some problems in robot task planning.
NASA Astrophysics Data System (ADS)
Radun, Jenni; Leisti, Tuomas; Virtanen, Toni; Nyman, Göte; Häkkinen, Jukka
2014-11-01
To understand the viewing strategies employed in a quality estimation task, we compared two visual tasks-quality estimation and difference estimation. The estimation was done for a pair of natural images having small global changes in quality. Two groups of observers estimated the same set of images, but with different instructions. One group estimated the difference in quality and the other the difference between image pairs. The results demonstrated the use of different visual strategies in the tasks. The quality estimation was found to include more visual planning during the first fixation than the difference estimation, but afterward needed only a few long fixations on the semantically important areas of the image. The difference estimation used many short fixations. Salient image areas were mainly attended to when these areas were also semantically important. The results support the hypothesis that these tasks' general characteristics (evaluation time, number of fixations, area fixated on) show differences in processing, but also suggest that examining only single fixations when comparing tasks is too narrow a view. When planning a subjective experiment, one must remember that a small change in the instructions might lead to a noticeable change in viewing strategy.
Yushkevich, Paul A.; Avants, Brian B.; Das, Sandhitsu R.; Pluta, John; Altinay, Murat; Craige, Caryne
2009-01-01
Measurement of brain change due to neurodegenerative disease and treatment is one of the fundamental tasks of neuroimaging. Deformation-based morphometry (DBM) has been long recognized as an effective and sensitive tool for estimating the change in the volume of brain regions over time. This paper demonstrates that a straightforward application of DBM to estimate the change in the volume of the hippocampus can result in substantial bias, i.e., an overestimation of the rate of change in hippocampal volume. In ADNI data, this bias is manifested as a non-zero intercept of the regression line fitted to the 6 and 12 month rates of hippocampal atrophy. The bias is further confirmed by applying DBM to repeat scans of subjects acquired on the same day. This bias appears to be the result of asymmetry in the interpolation of baseline and followup images during longitudinal image registration. Correcting this asymmetry leads to bias-free atrophy estimation. PMID:20005963
Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong
2012-01-01
This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.
NASA Software Cost Estimation Model: An Analogy Based Estimation Model
NASA Technical Reports Server (NTRS)
Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James
2015-01-01
The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K- nearest neighbor prediction model performance on the same data set.
No Fatigue Effect on Blink Rate
NASA Technical Reports Server (NTRS)
Kim, W.; Zangemeister, W.; Stark, L.
1984-01-01
Blink rate is reported to vary dependent upon ongoing task performance, perceptual, attentional and cognitive factors, and fatigue. Five levels of task difficulty were operationally defined and task performance as lines read aloud per minute were measured. A single noninvasive infrared TV eyetracker was modified to measure blinking and an on-line computer program identified and counted blinks while the subject performed the tasks. Blink rate decreased by 50% when either task performance increased (fast reading) or visual difficulty increased (blurred text); blink rate increased greatly during rest breaks. There was no change in blink rate during one hour experiments even though subjects complained of severe fatigue.
Task factor usability ratings for different age groups writing Chinese.
Chan, A H S; So, J C Y
2009-11-01
This study evaluated how different task factors affect performance and user subjective preferences for three different age groups of Chinese subjects (6-11, 20-23, 65-70 years) when hand writing Chinese characters. The subjects copied Chinese character sentences with different settings for the task factors of writing plane angle (horizontal 0 degrees , slanted 15 degrees ), writing direction (horizontal, vertical), and line spacing (5 mm, 7 mm and no lines). Writing speed was measured and subjective preferences (effectiveness and satisfaction) were assessed for each of the task factor settings. The result showed that there was a conflict between writing speed and personal preference for the line spacing factor; 5 mm line spacing increased writing speed but it was the least preferred. It was also found that: vertical and horizontal writing directions and a slanted work surface suited school-aged children; a horizontal work surface and horizontal writing direction suited university students; and a horizontal writing direction with either a horizontal or slanted work surface suited the older adults.
Pailian, Hrag; Halberda, Justin
2015-04-01
We investigated the psychometric properties of the one-shot change detection task for estimating visual working memory (VWM) storage capacity-and also introduced and tested an alternative flicker change detection task for estimating these limits. In three experiments, we found that the one-shot whole-display task returns estimates of VWM storage capacity (K) that are unreliable across set sizes-suggesting that the whole-display task is measuring different things at different set sizes. In two additional experiments, we found that the one-shot single-probe variant shows improvements in the reliability and consistency of K estimates. In another additional experiment, we found that a one-shot whole-display-with-click task (requiring target localization) also showed improvements in reliability and consistency. The latter results suggest that the one-shot task can return reliable and consistent estimates of VWM storage capacity (K), and they highlight the possibility that the requirement to localize the changed target is what engenders this enhancement. Through a final series of four experiments, we introduced and tested an alternative flicker change detection method that also requires the observer to localize the changing target and that generates, from response times, an estimate of VWM storage capacity (K). We found that estimates of K from the flicker task correlated with estimates from the traditional one-shot task and also had high reliability and consistency. We highlight the flicker method's ability to estimate executive functions as well as VWM storage capacity, and discuss the potential for measuring multiple abilities with the one-shot and flicker tasks.
Transfer of learned perception of sensorimotor simultaneity.
Pesavento, Michael J; Schlag, John
2006-10-01
Synchronizing a motor response to a predictable sensory stimulus, like a periodic flash or click, relies on feedback (somesthetic, auditory, visual, or other) from the motor response. Practically, this results in a small (<50 ms) asynchrony in which the motor response leads the sensory event. Here we show that the perceived simultaneity in a coincidence-anticipation task (line crossing) is affected by changing the perceived simultaneity in a different task (pacing). In the pace task, human subjects were instructed to press a key in perfect synchrony with a red square flashed every second. In training sessions, feedback was provided by flashing a blue square with each key press, below the red square. There were two types of training pace sessions: one in which the feedback was provided with no delay, the other (adapting), in which the feedback was progressively delayed (up to 100 ms). Subjects' asynchrony was unchanged in the first case, but it was significantly increased in the pace task with delay. In the coincidence-anticipation task, a horizontally moving vertical bar crossed a vertical line in the middle of a screen. Subjects were instructed to press a key exactly when the bar crossed the line. They were given no feedback on their performance. Asynchrony on the line-crossing task was tested after the training pace task with feedback. We found that this asynchrony to be significantly increased even though there never was any feedback on the coincidence-anticipation task itself. Subjects were not aware that their sensorimotor asynchrony had been lengthened (sometimes doubled). We conclude that perception of simultaneity in a sensorimotor task is learned. If this perception is caused by coincidence of signals in the brain, the timing of these signals depends on something-acquired by experience-more adaptable than physiological latencies.
Cognitive timing: neuropsychology and anatomic basis.
Coslett, H Branch; Shenton, Jeff; Dyer, Tamarah; Wiener, Martin
2009-02-13
We report data from 31 subjects with focal hemisphere lesions (15 left hemisphere) as well as 16 normal controls on a battery of tasks assessing the estimation, production and reproduction of time intervals ranging from 2-12 s. Both visual and auditory stimuli were employed for the estimation and production tasks. First, ANOVAs were performed to assess the effect of stimulus modality on estimation and production tasks; a significant effect of stimulus modality was observed for the production but not the estimation task. Second, accuracy was significantly different for the 2 s interval as compared to longer intervals. Subsequent analyses of the data from 4-12 s stimuli demonstrated that patients with brain lesions were more variable than controls on the estimation and reproduction tasks. Additionally, patients with brain lesions but not controls exhibited significant differences in performance on the different tasks; patients with brain lesions under-produced but over-estimated time intervals of 4-12 s but performed relatively well on the reproduction task, a pattern of performance consistent with a "fast clock". There was a significant correlation between impaired performance and lesions of the parietal lobe but there was no effect of laterality of lesion or correlation between lateral frontal lobe lesions and impairment on any task.
Majerus, Steve; Boukebza, Claire
2013-12-01
Although recent studies suggest a strong association between short-term memory (STM) for serial order and lexical development, the precise mechanisms linking the two domains remain to be determined. This study explored the nature of these mechanisms via a microanalysis of performance on serial order STM and novel word learning tasks. In the experiment, 6- and 7-year-old children were administered tasks maximizing STM for either item or serial order information as well as paired-associate learning tasks involving the learning of novel words, visual symbols, or familiar word pair associations. Learning abilities for novel words were specifically predicted by serial order STM abilities. A measure estimating the precision of serial order coding predicted the rate of correct repetitions and the rate of phoneme migration errors during the novel word learning process. In line with recent theoretical accounts, these results suggest that serial order STM supports vocabulary development via ordered and detailed reactivation of the novel phonological sequences that characterize new words. Copyright © 2013 Elsevier Inc. All rights reserved.
Scotland, Jennifer L; McKenzie, Karen; Cossar, Jill; Murray, Aja; Michie, Amanda
2016-01-01
This study aimed to evaluate the emotion recognition abilities of adults (n=23) with an intellectual disability (ID) compared with a control group of children (n=23) without ID matched for estimated cognitive ability. The study examined the impact of: task paradigm, stimulus type and preferred processing style (global/local) on accuracy. We found that, after controlling for estimated cognitive ability, the control group performed significantly better than the individuals with ID. This provides some support for the emotion specificity hypothesis. Having a more local processing style did not significantly mediate the relation between having ID and emotion recognition, but did significantly predict emotion recognition ability after controlling for group. This suggests that processing style is related to emotion recognition independently of having ID. The availability of contextual information improved emotion recognition for people with ID when compared with line drawing stimuli, and identifying a target emotion from a choice of two was relatively easier for individuals with ID, compared with the other task paradigms. The results of the study are considered in the context of current theories of emotion recognition deficits in individuals with ID. Copyright © 2015 Elsevier Ltd. All rights reserved.
2007-10-10
Nose and Throat UTC self -sufficient for a 7-day period, and will support tasks like OR Team Preparation and Patient Assessment. Category Weight Cube...These line items would need to be added to the FFENT AS for the FFENT to be self -sufficient for 7 days, as discussed in the current FFENT CONOPS...additions enable the Ear, Nose and Throat UTC to be self -sufficient for a 7-day period and meet its capabilities as stated in the CONOPS. Discussion
Tele-Autonomous control involving contact. Final Report Thesis; [object localization
NASA Technical Reports Server (NTRS)
Shao, Lejun; Volz, Richard A.; Conway, Lynn; Walker, Michael W.
1990-01-01
Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed.
Task exposures in an office environment: a comparison of methods.
Van Eerd, Dwayne; Hogg-Johnson, Sheilah; Mazumder, Anjali; Cole, Donald; Wells, Richard; Moore, Anne
2009-10-01
Task-related factors such as frequency and duration are associated with musculoskeletal disorders in office settings. The primary objective was to compare various task recording methods as measures of exposure in an office workplace. A total of 41 workers from different jobs were recruited from a large urban newspaper (71% female, mean age 41 years SD 9.6). Questionnaire, task diaries, direct observation and video methods were used to record tasks. A common set of task codes was used across methods. Different estimates of task duration, number of tasks and task transitions arose from the different methods. Self-report methods did not consistently result in longer task duration estimates. Methodological issues could explain some of the differences in estimates seen between methods observed. It was concluded that different task recording methods result in different estimates of exposure likely due to different exposure constructs. This work addresses issues of exposure measurement in office environments. It is of relevance to ergonomists/researchers interested in how to best assess the risk of injury among office workers. The paper discusses the trade-offs between precision, accuracy and burden in the collection of computer task-based exposure measures and different underlying constructs captures in each method.
Mathieu, Julie; Bootsma, Reinoud J; Berthelon, Catherine; Montagne, Gilles
2017-02-01
Using a fixed-base driving simulator we compared the effects of the size and type of traffic vehicles (i.e., normal-sized or double-sized cars or motorcycles) approaching an intersection in two different tasks. In the perceptual judgment task, passively moving participants estimated when a traffic vehicle would reach the intersection for actual arrival times (ATs) of 1, 2, or 3s. In line with earlier findings, ATs were generally underestimated, the more so the longer the actual AT. Results revealed that vehicle size affected judgments in particular for the larger actual ATs (2 and 3s), with double-sized vehicles then being judged as arriving earlier than normal-sized vehicles. Vehicle type, on the other hand, affected judgments at the smaller actual ATs (1 and 2s), with cars then being judged as arriving earlier than motorcycles. In the behavioral task participants actively drove the simulator to cross the intersection by passing through a gap in a train of traffic. Analyses of the speed variations observed during the active intersection-crossing task revealed that the size and type of vehicles in the traffic train did not affect driving behavior in the same way as in the AT judgment task. First, effects were considerably smaller, affecting driving behavior only marginally. Second, effects were opposite to expectations based on AT judgments: driver approach speeds were smaller (rather than larger) when confronted with double-sized vehicles as compared to their normal-sized counterparts and when confronted with cars as compared to motorcycles. Finally, the temporality of the effects was different on the two tasks: vehicle size affected driver approach speed in the final stages of approach rather than early on, while vehicle type affected driver approach speed early on rather than later. Overall, we conclude that the active control of approach to the intersection is not based on successive judgments of traffic vehicle arrival times. These results thereby question the general belief that arrival time estimates are crucial for safe interaction with traffic. Copyright © 2016 Elsevier B.V. All rights reserved.
The Mental Number Line in Dyscalculia: Impaired Number Sense or Access From Symbolic Numbers?
Lafay, Anne; St-Pierre, Marie-Catherine; Macoir, Joël
Numbers may be manipulated and represented mentally over a compressible number line oriented from left to right. According to numerous studies, one of the primary reasons for dyscalculia is related to improper understanding of the mental number line. Children with dyscalculia usually show difficulty when they have to place Arabic numbers on a physical number line. However, it remains unclear whether they have a deficit with the mental number line per se or a deficit with accessing it from nonsymbolic and/or symbolic numbers. Quebec French-speaking 8- to 9-year-old children with (24) and without (37) dyscalculia were assessed with transcoding tasks ( number-to-position and position-to-number) designed to assess the acuity of the mental number line with Arabic and spoken numbers as well as with analogic numerosities. Results showed that children with dyscalculia produced a larger percentage absolute error than children without mathematics difficulties in every task except the number-to-position transcoding task with analogic numerosities. Hence, these results suggested that children with dyscalculia do not have a general deficit of the mental number line but rather a deficit with accessing it from symbolic numbers.
Judgment of Line Orientation Depends on Gender, Education, and Type of Error
ERIC Educational Resources Information Center
Caparelli-Daquer, Egas M.; Oliveira-Souza, Ricardo; Filho, Pedro F. Moreira
2009-01-01
Visuospatial tasks are particularly proficient at eliciting gender differences during neuropsychological performance. Here we tested the hypothesis that gender and education are related to different types of visuospatial errors on a task of line orientation that allowed the independent scoring of correct responses ("hits", or H) and one type of…
Measuring Children's Age Stereotyping Using a Modified Piagetian Conservation Task
ERIC Educational Resources Information Center
Kwong See, Sheree T.; Rasmussen, Carmen; Pertman, S. Quinn
2012-01-01
We examined five-year-old-children's age stereotyping using a modified Piagetian conservation task. Children were asked if two lines of objects were the "same" after one line had been made longer (transformed). A conversational account posits that children's answers reflect assumptions about the asker's motivation for the question (Schwarz, 1996).…
Lippa, Richard A; Collaer, Marcia L; Peters, Michael
2010-08-01
Mental rotation and line angle judgment performance were assessed in more than 90,000 women and 111,000 men from 53 nations. In all nations, men's mean performance exceeded women's on these two visuospatial tasks. Gender equality (as assessed by United Nations indices) and economic development (as assessed by per capita income and life expectancy) were significantly associated, across nations, with larger sex differences, contrary to the predictions of social role theory. For both men and women, across nations, gender equality and economic development were significantly associated with better performance on the two visuospatial tasks. However, these associations were stronger for the mental rotation task than for the line angle judgment task, and they were stronger for men than for women. Results were discussed in terms of evolutionary, social role, and stereotype threat theories of sex differences.
NASA Technical Reports Server (NTRS)
Hart, S. G.
1975-01-01
Variation in the length of time productions and verbal estimates of duration was investigated to determine the influence of concurrent activity on operator time perception. The length of 10-, 20-, and 30-sec intervals produced while performing six different compensatory tracking tasks was significantly longer, 23% on the average, than those produced while performing no other task. Verbal estimates of session duration, taken at the end of each of 27 experimental sessions, reflected a parallel increase in subjective underestimation of the passage of time as the difficulty of the task performed increased. These data suggest that estimates of duration made while performing a manual control task provide stable and sensitive measures of the workload imposed by the primary task, with minimal interference.
Almeida, Renita A; Dickinson, J Edwin; Maybery, Murray T; Badcock, Johanna C; Badcock, David R
2010-12-01
The Embedded Figures Test (EFT) requires detecting a shape within a complex background and individuals with autism or high Autism-spectrum Quotient (AQ) scores are faster and more accurate on this task than controls. This research aimed to uncover the visual processes producing this difference. Previously we developed a search task using radial frequency (RF) patterns with controllable amounts of target/distracter overlap on which high AQ participants showed more efficient search than low AQ observers. The current study extended the design of this search task by adding two lines which traverse the display on random paths sometimes intersecting target/distracters, other times passing between them. As with the EFT, these lines segment and group the display in ways that are task irrelevant. We tested two new groups of observers and found that while RF search was slowed by the addition of segmenting lines for both groups, the high AQ group retained a consistent search advantage (reflected in a shallower gradient for reaction time as a function of set size) over the low AQ group. Further, the high AQ group were significantly faster and more accurate on the EFT compared to the low AQ group. That is, the results from the present RF search task demonstrate that segmentation and grouping created by intersecting lines does not further differentiate the groups and is therefore unlikely to be a critical factor underlying the EFT performance difference. However, once again, we found that superior EFT performance was associated with shallower gradients on the RF search task. Copyright © 2010 Elsevier Ltd. All rights reserved.
On-line data analysis and monitoring for H1 drift chambers
NASA Astrophysics Data System (ADS)
Düllmann, Dirk
1992-05-01
The on-line monitoring, slow control and calibration of the H1 central jet chamber uses a VME multiprocessor system to perform the analysis and a connected Macintosh computer as graphical interface to the operator on shift. Task of this system are: - analysis of event data including on-line track search, - on-line calibration from normal events and testpulse events, - control of the high voltage and monitoring of settings and currents, - monitoring of temperature, pressure and mixture of the chambergas. A program package is described which controls the dataflow between data aquisition, differnt VME CPUs and Macintosh. It allows to run off-line style programs for the different tasks.
Payne, Heather; Gutierrez-Sigut, Eva; Subik, Joanna; Woll, Bencie; MacSweeney, Mairéad
2016-01-01
Studies to date that have used fTCD to examine language lateralisation have predominantly used word or sentence generation tasks. Here we sought to further assess the sensitivity of fTCD to language lateralisation by using a metalinguistic task which does not involve novel speech generation: rhyme judgement in response to written words. Line array judgement was included as a non-linguistic visuospatial task to examine the relative strength of left and right hemisphere lateralisation within the same individuals when output requirements of the tasks are matched. These externally paced tasks allowed us to manipulate the number of stimuli presented to participants and thus assess the influence of pace on the strength of lateralisation. In Experiment 1, 28 right-handed adults participated in rhyme and line array judgement tasks and showed reliable left and right lateralisation at the group level for each task, respectively. In Experiment 2 we increased the pace of the tasks, presenting more stimuli per trial. We measured laterality indices (LIs) from 18 participants who performed both linguistic and non-linguistic judgement tasks during the original ‘slow’ presentation rate (5 judgements per trial) and a fast presentation rate (10 judgements per trial). The increase in pace led to increased strength of lateralisation in both the rhyme and line conditions. Our results demonstrate for the first time that fTCD is sensitive to the left lateralised processes involved in metalinguistic judgements. Our data also suggest that changes in the strength of language lateralisation, as measured by fTCD, are not driven by articulatory demands alone. The current results suggest that at least one aspect of task difficulty, the pace of stimulus presentation, influences the strength of lateralisation during both linguistic and non-linguistic tasks. PMID:25908491
Prism adaptation and neck muscle vibration in healthy individuals: are two methods better than one?
Guinet, M; Michel, C
2013-12-19
Studies involving therapeutic combinations reveal an important benefit in the rehabilitation of neglect patients when compared to single therapies. In light of these observations our present work examines, in healthy individuals, sensorimotor and cognitive after-effects of prism adaptation and neck muscle vibration applied individually or simultaneously. We explored sensorimotor after-effects on visuo-manual open-loop pointing, visual and proprioceptive straight-ahead estimations. We assessed cognitive after-effects on the line bisection task. Fifty-four healthy participants were divided into six groups designated according to the exposure procedure used with each: 'Prism' (P) group; 'Vibration with a sensation of body rotation' (Vb) group; 'Vibration with a move illusion of the LED' (Vl) group; 'Association with a sensation of body rotation' (Ab) group; 'Association with a move illusion of the LED' (Al) group; and 'Control' (C) group. The main findings showed that prism adaptation applied alone or combined with vibration showed significant adaptation in visuo-manual open-loop pointing, visual straight-ahead and proprioceptive straight-ahead. Vibration alone produced significant after-effects on proprioceptive straight-ahead estimation in the Vl group. Furthermore all groups (except C group) showed a rightward neglect-like bias in line bisection following the training procedure. This is the first demonstration of cognitive after-effects following neck muscle vibration in healthy individuals. The simultaneous application of both methods did not produce significant greater after-effects than prism adaptation alone in both sensorimotor and cognitive tasks. These results are discussed in terms of transfer of sensorimotor plasticity to spatial cognition in healthy individuals. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Number sense in the transition from natural to rational numbers.
Van Hoof, Jo; Verschaffel, Lieven; Van Dooren, Wim
2017-03-01
Rational numbers are of critical importance both in mathematics and in other fields of science. However, they form a stumbling block for learners. One widely known source of the difficulty learners have with rational numbers is the natural number bias, that is the tendency to (inappropriately) apply natural number properties in rational number tasks. Still, it has been shown that a good understanding of natural numbers is highly predictive for mathematics achievement in general, and for performance on rational number tasks in particular. In this study, we further investigated the relation between learners' natural and rational number knowledge, specifically in cases where a natural number bias may lead to errors. Participants were 140 sixth graders from six different primary schools. Participants completed a symbolic and a non-symbolic natural number comparison task, a number line estimation task, and a rational number sense test. Learners' natural number knowledge was found to be a good predictor of their rational number knowledge. However, after first controlling for learners' general mathematics achievement, their natural number knowledge only predicted the subaspect of operations with rational numbers. The results of this study suggest that the relation between learners' natural and rational number knowledge can largely be explained by their relation with learners' general mathematics achievement. © 2016 The British Psychological Society.
Ranyard, R; Charlton, J P; Williamson, J
2001-02-01
Alternative reference prices, either displayed in the environment (external) or recalled from memory (internal) are known to influence consumer judgments and decisions. In one line of previous research, internal reference prices have been defined in terms of general price expectations. However, Thaler (Marketing Science 4 (1985) 199; Journal of Behavioral Decision Making 12 (1999) 183) defined them as fair prices expected from specific types of seller. Using a Beer Pricing Task, he found that seller context had a substantial effect on willingness to pay, and concluded that this was due to specific internal reference prices evoked by specific contexts. In a think aloud study using the same task (N = 48), we found only a marginal effect of seller context. In a second study using the Beer Pricing Task and seven analogous ones (N = 144), general internal reference prices were estimated by asking people what they normally paid for various commodities. Both general internal reference prices and seller context influenced willingness to pay, although the effect of the latter was again rather small. We conclude that general internal reference prices have a greater impact in these scenarios than specific ones, because of the lower cognitive load involved in their storage and retrieval.
Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives.
Alessandro, Cristiano; Delis, Ioannis; Nori, Francesco; Panzeri, Stefano; Berret, Bastien
2013-01-01
In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS) generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space), they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well.
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Pupillary transient responses to within-task cognitive load variation.
Wong, Hoe Kin; Epps, Julien
2016-12-01
Changes in physiological signals due to task evoked cognitive load have been reported extensively. However, pupil size based approaches for estimating cognitive load on a moment-to-moment basis are not as well understood as estimating cognitive load on a task-to-task basis, despite the appeal these approaches have for continuous load estimation. In particular, the pupillary transient response to instantaneous changes in induced load has not been experimentally quantified, and the within-task changes in pupil dilation have not been investigated in a manner that allows their consistency to be quantified with a view to biomedical system design. In this paper, a variation of the digit span task is developed which reliably induces rapid changes of cognitive load to generate task-evoked pupillary responses (TEPRs) associated with large, within-task load changes. Linear modelling and one-way ANOVA reveals that increasing the rate of cognitive loading, while keeping task demands constant, results in a steeper pupillary response. Instantaneous drops in cognitive load are shown to produce statistically significantly different transient pupillary responses relative to sustained load, and when characterised using an exponential decay response, the task-evoked pupillary response time constant is in the order of 1-5 s. Within-task test-retest analysis confirms the reliability of the moment-to-moment measurements. Based on these results, estimates of pupil diameter can be employed with considerably more confidence in moment-to-moment cognitive load estimation systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Task Is Not Enough: Processing Approaches to Task-Based Performance
ERIC Educational Resources Information Center
Skehan, Peter; Xiaoyue, Bei; Qian, Li; Wang, Zhan
2012-01-01
This article reports on three research studies, all of which concern second language task performance. The first focuses on planning, and compares on-line and strategic planning as well as task repetition. The second study examines the role of familiarity on task performance, and compares this with conventional strategic planning. The third study…
Acute ethanol does not always affect delay discounting in rats selected to prefer or avoid ethanol.
Wilhelm, Clare J; Mitchell, Suzanne H
2012-01-01
The purpose of this study was to determine whether animals predisposed to prefer alcohol possess an altered acute response to alcohol on a delay discounting task relative to animals predisposed to avoid alcohol. We used rats selected to prefer or avoid alcohol to assess whether genotype moderates changes in delay discounting induced by acute ethanol exposure. Selectively bred rat lines of Sardinian alcohol-preferring (sP; n = 8) and non-preferring (sNP; n = 8) rats, and alko alcohol (AA, n = 8) and alko non-alcohol (ANA, n = 8) rats were trained in an adjusting amount task to assess delay discounting. There were no significant effects of line on baseline discounting; however, both lines of alcohol-preferring rats exhibit slowed reaction times. Acute ethanol (0, 0.25, 0.5 g/kg) treatment also had no effect on delay discounting in any of the selectively bred rat lines. Our data indicate that in these lines of animals, alcohol preference or avoidance has no impact on delay discounting following acute ethanol exposure. It is possible that other genetic models or lines may be differentially affected by alcohol and exhibit qualitatively and quantitatively different responses in delay discounting tasks.
The effect of concurrent hand movement on estimated time to contact in a prediction motion task.
Zheng, Ran; Maraj, Brian K V
2018-04-27
In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.
Wireless Sensor Network for Electric Transmission Line Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alphenaar, Bruce
Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and costmore » effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8).« less
Perceptual and conceptual information processing in schizophrenia and depression.
Dreben, E K; Fryer, J H; McNair, D M
1995-04-01
Schizophrenic patients (n = 20), depressive patients (n = 20), and normal adults (n = 20) were compared on global vs local analyses of perceptual information using tachistoscopic tasks and on top-down vs bottom-up conceptual processing using card-sort tasks. The schizophrenic group performed more poorly on tasks requiring either global analyses (counting lines when distracting circles were present) or top-down conceptual processing (rule learning) than they did on tasks requiring local analyses (counting heterogeneous lines) or bottom-up processing (attribute identification). The schizophrenic group appeared not to use conceptually guided processing. Normal adults showed the reverse pattern. The depressive group performed similarly to the schizophrenic group on perceptual tasks but closer to the normal group on conceptual tasks, thereby appearing to be less dependent on a particular information-processing strategy. These deficits in organizational strategy may be related to the use of available processing resources as well as the allocation of attention.
Repeating Input-Based Tasks with Young Beginner Learners
ERIC Educational Resources Information Center
Shintani, Natsuko
2012-01-01
The study reported in this article investigated task-repetition with young Japanese children. Fifteen children with no prior knowledge of English completed a communicative listening task that was designed to introduce new vocabulary. The same task was repeated nine times over five weeks. In line with Allwright's (1984) claim that "interaction…
Identify Fractions and Decimals on a Number Line
ERIC Educational Resources Information Center
Shaughnessy, Meghan M.
2011-01-01
Tasks that ask students to label rational number points on a number line are common not only in curricula in the upper elementary school grades but also on state assessments. Such tasks target foundational rational number concepts: A fraction (or a decimal) is more than a shaded part of an area, a part of a pizza, or a representation using…
Neutral Buoyancy Simulator - Fluid line repair kit development
NASA Technical Reports Server (NTRS)
1997-01-01
Marshall's Neutral Buoyancy Simulator (NBS) is used to simulate the gravitational fields and buoyancy effects outer space has on astronauts and their ability to perform tasks in this environment. In this example, a diver performs a temporary fluid line repair task using a repair kit developed by Marshall engineers. The analysis will determine the value of this repair kit and its feasibility.
Estimating endogenous changes in task performance from EEG
Touryan, Jon; Apker, Gregory; Lance, Brent J.; Kerick, Scott E.; Ries, Anthony J.; McDowell, Kaleb
2014-01-01
Brain wave activity is known to correlate with decrements in behavioral performance as individuals enter states of fatigue, boredom, or low alertness.Many BCI technologies are adversely affected by these changes in user state, limiting their application and constraining their use to relatively short temporal epochs where behavioral performance is likely to be stable. Incorporating a passive BCI that detects when the user is performing poorly at a primary task, and adapts accordingly may prove to increase overall user performance. Here, we explore the potential for extending an established method to generate continuous estimates of behavioral performance from ongoing neural activity; evaluating the extended method by applying it to the original task domain, simulated driving; and generalizing the method by applying it to a BCI-relevant perceptual discrimination task. Specifically, we used EEG log power spectra and sequential forward floating selection (SFFS) to estimate endogenous changes in behavior in both a simulated driving task and a perceptual discrimination task. For the driving task the average correlation coefficient between the actual and estimated lane deviation was 0.37 ± 0.22 (μ ± σ). For the perceptual discrimination task we generated estimates of accuracy, reaction time, and button press duration for each participant. The correlation coefficients between the actual and estimated behavior were similar for these three metrics (accuracy = 0.25 ± 0.37, reaction time = 0.33 ± 0.23, button press duration = 0.36 ± 0.30). These findings illustrate the potential for modeling time-on-task decrements in performance from concurrent measures of neural activity. PMID:24994968
Probability Theory Plus Noise: Descriptive Estimation and Inferential Judgment.
Costello, Fintan; Watts, Paul
2018-01-01
We describe a computational model of two central aspects of people's probabilistic reasoning: descriptive probability estimation and inferential probability judgment. This model assumes that people's reasoning follows standard frequentist probability theory, but it is subject to random noise. This random noise has a regressive effect in descriptive probability estimation, moving probability estimates away from normative probabilities and toward the center of the probability scale. This random noise has an anti-regressive effect in inferential judgement, however. These regressive and anti-regressive effects explain various reliable and systematic biases seen in people's descriptive probability estimation and inferential probability judgment. This model predicts that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation and inferential judgement, leading to unbiased responses in those tasks. We test this model by applying it to one such task, described by Gallistel et al. ). Participants' median responses in this task were unbiased, agreeing with normative probability theory over the full range of responses. Our model captures the pattern of unbiased responses in this task, while simultaneously explaining systematic biases away from normatively correct probabilities seen in other tasks. Copyright © 2018 Cognitive Science Society, Inc.
Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance
Yu, Denny; Lowndes, Bethany; Morrow, Missy; Kaufman, Kenton; Bingener, Juliane; Hallbeck, Susan
2015-01-01
Background Laparoscopic tool handles causing wrist flexion and extension more than 15° from neutral are considered “at-risk” for musculoskeletal strain. Therefore this study measured the impact of laparoscopic tool handle angles on wrist postures and task performance. Methods Eight surgeons performed standard and modified Fundamentals of Laparoscopic Surgery (FLS) tasks with laparoscopic tools. Tool A had three adjustable handle angle configurations, i.e., in-line 0° (A0), 30° (A30), and pistol-grip 70° (A70). Tool B was a fixed pistol-grip grasper. Participants performed FLS peg transfer, inverted peg transfer, and inverted circle-cut with each tool and handle angle. Inverted tasks were adapted from standard FLS tasks to simulate advanced tasks observed during abdominal wall surgeries, e.g., ventral hernia. Motion tracking, video-analysis, and modified NASA-TLX workload questionnaires were used to measure postures, performance (e.g., completion time and errors), and workload. Results Task performance did not differ among tools. For FLS peg transfer, self-reported physical workload was lower for B than A70, and mean wrist postures showed significantly higher flexion for in-line than pistol-grip tools (B and A70). For inverted peg transfer, workload was higher for all configurations. However, less time was spent in at-risk wrist postures for in-line (47%) than pistol-grip (93-94%), and most participants preferred Tool A. For inverted circle cut, workload did not vary across configurations, mean wrist posture was 10° closer to neutral for A0 than B, and median time in at-risk wrist postures was significantly less for A0 (43%) than B (87%). Conclusion The best ergonomic wrist positions for FLS (floor) tasks are provided by pistol-grip tools and for tasks on the abdominal wall (ventral surface) by in-line handles. Adjustable handle angle laparoscopic tools can reduce ergonomic risks for musculoskeletal strain and allow versatility for tasks alternating between the floor and ceiling positions in a surgical trainer without impacting performance. PMID:26541720
Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance.
Yu, Denny; Lowndes, Bethany; Morrow, Missy; Kaufman, Kenton; Bingener, Juliane; Hallbeck, Susan
2016-08-01
Laparoscopic tool handles causing wrist flexion and extension more than 15° from neutral are considered "at risk" for musculoskeletal strain. Therefore, this study measured the impact of laparoscopic tool handle angles on wrist postures and task performance. Eight surgeons performed standard and modified Fundamentals of Laparoscopic Surgery (FLS) tasks with laparoscopic tools. Tool A had three adjustable handle angle configurations, i.e., in-line 0° (A0), 30° (A30), and pistol-grip 70° (A70). Tool B was a fixed pistol-grip grasper. Participants performed FLS peg transfer, inverted peg transfer, and inverted circle cut with each tool and handle angle. Inverted tasks were adapted from standard FLS tasks to simulate advanced tasks observed during abdominal wall surgeries, e.g., ventral hernia. Motion tracking, video analysis, and modified NASA-TLX workload questionnaires were used to measure postures, performance (e.g., completion time and errors), and workload. Task performance did not differ between tools. For FLS peg transfer, self-reported physical workload was lower for B than for A70, and mean wrist postures showed significantly higher flexion for in-line than for pistol-grip tools (B and A70). For inverted peg transfer, workload was higher for all configurations. However, less time was spent in at-risk wrist postures for in-line (47 %) than for pistol-grip (93-94 %), and most participants preferred Tool A. For inverted circle cut, workload did not vary across configurations, mean wrist posture was 10° closer to neutral for A0 than B, and median time in at-risk wrist postures was significantly less for A0 (43 %) than for B (87 %). The best ergonomic wrist positions for FLS (floor) tasks are provided by pistol-grip tools and for tasks on the abdominal wall (ventral surface) by in-line handles. Adjustable handle angle laparoscopic tools can reduce ergonomic risks of musculoskeletal strain and allow versatility for tasks alternating between the floor and ceiling positions in a surgical trainer without impacting performance.
Oral contraceptive therapy modulates hemispheric asymmetry in spatial attention.
Cicinelli, Ettore; De Tommaso, Marina; Cianci, Antonio; Colacurci, Nicola; Rella, Leonarda; Loiudice, Luisa; Cicinelli, Maria Vittoria; Livrea, Paolo
2011-12-01
Functional cerebral asymmetries (FCAs) are known to fluctuate across the menstrual cycle. The visual line-bisection task administered to normally cycling women showed different patterns of the interhemispheric interactions during menses and the midluteal cycle phase. However, the contribution of estrogens and progestins hormones to this phenomenon is still unclear. The aim of our study was to show a variation of FCAs in women administered oral contraceptives (OCs) using the visual line-bisection task. Visual line-bisection task with three horizontal lines was administered to 36 healthy women taking a 21-day OC. Twenty-nine patients were right handed. The task was administered during OC intake (day 10) and at the end of the pill-free period. The right-handed women showed a significant leftward bias of veridical center on the first and third lines during OC intake compared with an opposite rightward bias during the pill-free period. The same phenomenon of contralateral deviation was observed in left-handed women on day 10 of OC intake. The results of this study confirm a hormonal modulation on interhemispheric interaction and suggest that OCs may improve the interhemispheric interaction reducing FCAs compared with the low hormone level period. This opens new insights in OC prescription and choice of administration schedule in order to improve cognitive performances. Copyright © 2011 Elsevier Inc. All rights reserved.
Rolfe, Mei Hsin Suzanne; Hamm, Jeff P; Waldie, Karen E
2008-03-01
Two versions of the line bisection task, paper-and-pencil and computerized, were administered to non-medicated children (5-12 years) with and without Attention-Deficit/Hyperactivity Disorder (ADHD). Fifteen children were classified with ADHD-Inattentive type (ADHD-I), 15 were classified with ADHD-Combined or Hyperactive-Impulsive type (ADHD-C), and 15 children served as controls. During the paper-and-pencil task, and irrespective of hand-use, participants with ADHD-C bisected lines with a right bias, whereas participants with ADHD-I showed a leftwards bias. Interestingly, during the computerized version, an opposite pattern of hemineglect was observed with a leftwards bias for participants with ADHD-C and a rightwards bias for participants with ADHD-I. These findings suggest that different task demands are associated with the paper-and-pencil and computerized tasks. The findings also suggest that the two subtypes differ according to their cognitive profile, and possibly differ as to their underlying neural impairment.
A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.
Jiang, J; Hall, T J
2007-07-07
Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s(-1)) that exceed our previous methods.
Prism adaptation magnitude has differential influences on perceptual versus manual responses.
Striemer, Christopher L; Russell, Karyn; Nath, Priya
2016-10-01
Previous research has indicated that rightward prism adaptation can reduce symptoms of spatial neglect following right brain damage. In addition, leftward prism adaptation can create "neglect-like" patterns of performance in healthy adults on tasks that measure attention and spatial biases. Although a great deal of research has focused on which behaviors are influenced by prism adaptation, very few studies have focused directly on how the magnitude of visual shift induced by prisms might be related to the observed aftereffects, or the effects of prisms on measures of attentional and spatial biases. In the current study, we examined these questions by having groups of healthy adult participants complete manual line bisection and landmark tasks prior to and following adaptation to either 8.5° (15 diopter; n = 22) or 17° (30 diopter; n = 25) leftward shifting prisms. Our results demonstrated a significantly larger rightward shift in straight-ahead pointing (a measure of prism aftereffect) following adaptation to 17°, compared to 8.5° leftward shifting prisms. In addition, only 17° leftward shifting prisms resulted in a significant rightward shift in line bisection following adaptation. However, there was a significant change in performance on the landmark task pre- versus post-adaptation in both the 8.5° and 17° leftward shifting prism groups. Interestingly, correlation analyses indicated that changes in straight-ahead pointing pre- versus post-adaptation were positively correlated with changes in performance on the manual line bisection task, but not the landmark task. These data suggest that larger magnitudes of prism adaptation seem to have a greater influence on tasks that require a response with the adapted hand (i.e., line bisection), compared to tasks that only require a perceptual judgment (i.e., the landmark task). In addition, these data provide further evidence that the effects of prisms on manual and perceptual responses are not related to one another.
Augmenting Human Performance in Remotely Piloted Aircraft.
Gruenwald, Christina M; Middendorf, Matthew S; Hoepf, Michael R; Galster, Scott M
2018-02-01
An experiment in a program of research supporting the sense-assess-augment (SAA) framework is described. The objective is to use physiological measures to assess operator cognitive workload in remotely piloted aircraft (RPA) operations, and provide augmentation to assist the operator in times of high workload. In previous experiments, physiological measures were identified that demonstrate sensitivity to changes in workload. The current research solely focuses on the augmentation component of the SAA paradigm. This line of research uses a realistic RPA simulation with varying levels of workload. Recruited from the Midwest region were 12 individuals (6 women) to participate in the experiment. The subjects were trained to perform a surveillance task and a tracking task using RPAs. There was also a secondary task in which subjects were required to answer cognitive probes. A within subjects factorial design was employed with three factors per task. Subjective workload estimates were acquired using the NASA-TLX. Performance data were calculated using a composite scoring algorithm. Augmentation significantly improved performance and reduced workload in both tasks. In the surveillance task, augmentation increased performance from 573.78 to 679.04. Likewise, augmentation increased performance in the tracking task from 749.39 to 791.81. Augmentation was more beneficial in high workload conditions than low workload conditions. The increase in performance and decrease in workload associated with augmentation is an important and anticipated finding. This suggests that augmentation should only be provided when it is truly needed, especially if the augmentation requires additional assets and/or resources.Gruenwald CM, Middendorf MS, Hoepf MR, Galster SM. Augmenting human performance in remotely piloted aircraft. Aerosp Med Hum Perform. 2018; 89(2):115-121.
NASA Astrophysics Data System (ADS)
Liu, Yonghuai; Rodrigues, Marcos A.
2000-03-01
This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.
NASA Astrophysics Data System (ADS)
Chen, Jie; Hu, Jiangnan
2017-06-01
Industry 4.0 and lean production has become the focus of manufacturing. A current issue is to analyse the performance of the assembly line balancing. This study focus on distinguishing the factors influencing the assembly line balancing. The one-way ANOVA method is applied to explore the significant degree of distinguished factors. And regression model is built to find key points. The maximal task time (tmax ), the quantity of tasks (n), and degree of convergence of precedence graph (conv) are critical for the performance of assembly line balancing. The conclusion will do a favor to the lean production in the manufacturing.
Validation of Core Temperature Estimation Algorithm
2016-01-29
plot of observed versus estimated core temperature with the line of identity (dashed) and the least squares regression line (solid) and line equation...estimated PSI with the line of identity (dashed) and the least squares regression line (solid) and line equation in the top left corner. (b) Bland...for comparison. The root mean squared error (RMSE) was also computed, as given by Equation 2.
Latham, Andrew J; Patston, Lucy L M; Tippett, Lynette J
2014-11-01
Twenty-two experienced action video-game players (AVGPs) and 18 non-VGPs were tested on a pen-and-paper line bisection task that was untimed. Typically, right-handers bisect lines 2 % to the left of true centre, a bias thought to reflect the dominance of the right-hemisphere for visuospatial attention. Expertise may affect this bias, with expert musicians showing no bias in line bisection performance. Our results show that experienced-AVGPs also bisect lines with no bias with their right hand and a significantly reduced bias with their left hand compared to non-AVGPs. Bisections by experienced-AVGPs were also more precise than those of non-AVGPs. These findings show the cognitive proficiencies of experienced-AVGPs can generalize beyond computer based tasks, which resemble their training environment.
Research of grasping algorithm based on scara industrial robot
NASA Astrophysics Data System (ADS)
Peng, Tao; Zuo, Ping; Yang, Hai
2018-04-01
As the tobacco industry grows, facing the challenge of the international tobacco giant, efficient logistics service is one of the key factors. How to complete the tobacco sorting task of efficient economy is the goal of tobacco sorting and optimization research. Now the cigarette distribution system uses a single line to carry out the single brand sorting task, this article adopts a single line to realize the cigarette sorting task of different brands. Using scara robot special algorithm for sorting and packaging, the optimization scheme significantly enhances the indicators of smoke sorting system. Saving labor productivity, obviously improve production efficiency.
Phase-change lines, scale breaks, and trend lines using Excel 2013.
Deochand, Neil; Costello, Mack S; Fuqua, R Wayne
2015-01-01
The development of graphing skills for behavior analysts is an ongoing process. Specialized graphing software is often expensive, is not widely disseminated, and may require specific training. Dixon et al. (2009) provided an updated task analysis for graph making in the widely used platform Excel 2007. Vanselow and Bourret (2012) provided online tutorials that outline some alternate methods also using Office 2007. This article serves as an update to those task analyses and includes some alternative and underutilized methods in Excel 2013. To examine the utility of our recommendations, 12 psychology graduate students were presented with the task analyses, and the experimenters evaluated their performance and noted feedback. The task analyses were rated favorably. © Society for the Experimental Analysis of Behavior.
Representational neglect for words as revealed by bisection tasks.
Arduino, Lisa S; Marinelli, Chiara Valeria; Pasotti, Fabrizio; Ferrè, Elisa Raffaella; Bottini, Gabriella
2012-03-01
In the present study, we showed that a representational disorder for words can dissociate from both representational neglect for objects and neglect dyslexia. This study involved 14 brain-damaged patients with left unilateral spatial neglect and a group of normal subjects. Patients were divided into four groups based on presence of left neglect dyslexia and representational neglect for non-verbal material, as evaluated by the Clock Drawing test. The patients were presented with bisection tasks for words and lines. The word bisection tasks (with words of five and seven letters) comprised the following: (1) representational bisection: the experimenter pronounced a word and then asked the patient to name the letter in the middle position; (2) visual bisection: same as (1) with stimuli presented visually; and (3) motor bisection: the patient was asked to cross out the letter in the middle position. The standard line bisection task was presented using lines of different length. Consistent with the literature, long lines were bisected to the right and short lines, rendered comparable in length to the words of the word bisection test, deviated to the left (crossover effect). Both patients and controls showed the same leftward bias on words in the visual and motor bisection conditions. A significant difference emerged between the groups only in the case of the representational bisection task, whereas the group exhibiting neglect dyslexia associated with representational neglect for objects showed a significant rightward bias, while the other three patient groups and the controls showed a leftward bisection bias. Neither the presence of neglect alone nor the presence of visual neglect dyslexia was sufficient to produce a specific disorder in mental imagery. These results demonstrate a specific representational neglect for words independent of both representational neglect and neglect dyslexia. ©2011 The British Psychological Society.
Students' Accuracy of Measurement Estimation: Context, Units, and Logical Thinking
ERIC Educational Resources Information Center
Jones, M. Gail; Gardner, Grant E.; Taylor, Amy R.; Forrester, Jennifer H.; Andre, Thomas
2012-01-01
This study examined students' accuracy of measurement estimation for linear distances, different units of measure, task context, and the relationship between accuracy estimation and logical thinking. Middle school students completed a series of tasks that included estimating the length of various objects in different contexts and completed a test…
Can Dyscalculics Estimate the Results of Arithmetic Problems?
ERIC Educational Resources Information Center
Ganor-Stern, Dana
2017-01-01
The present study is the first to examine the computation estimation skills of dyscalculics versus controls using the estimation comparison task. In this task, participants judged whether an estimated answer to a multidigit multiplication problem was larger or smaller than a given reference number. While dyscalculics were less accurate than…
Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure
NASA Astrophysics Data System (ADS)
Liu, Chun; Li, Zhengning; Zhou, Yuan
2016-06-01
Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.
Agrillo, Christian; Piffer, Laura; Adriano, Andrea
2013-07-01
A significant debate surrounds the nature of the cognitive mechanisms involved in non-symbolic number estimation. Several studies have suggested the existence of the same cognitive system for estimation of time, space, and number, called "a theory of magnitude" (ATOM). In addition, researchers have proposed the theory that non-symbolic number abilities might support our mathematical skills. Despite the large number of studies carried out, no firm conclusions can be drawn on either topic. In the present study, we correlated the performance of adults on non-symbolic magnitude estimations and symbolic numerical tasks. Non-symbolic magnitude abilities were assessed by asking participants to estimate which auditory tone lasted longer (time), which line was longer (space), and which group of dots was more numerous (number). To assess symbolic numerical abilities, participants were required to perform mental calculations and mathematical reasoning. We found a positive correlation between non-symbolic and symbolic numerical abilities. On the other hand, no correlation was found among non-symbolic estimations of time, space, and number. Our study supports the idea that mathematical abilities rely on rudimentary numerical skills that predate verbal language. By contrast, the lack of correlation among non-symbolic estimations of time, space, and number is incompatible with the idea that these magnitudes are entirely processed by the same cognitive system.
Landerl, Karin
2013-01-01
Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a 2-year period from beginning of Grade 2, when children were 7; 6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation) was given five times during the study (beginning and middle of each school year). Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development. PMID:23898310
Response Classification Images in Vernier Acuity
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Beard, B. L.; Ellis, Stephen R. (Technical Monitor)
1997-01-01
Orientation selective and local sign mechanisms have been proposed as the basis for vernier acuity judgments. Linear image features contributing to discrimination can be determined for a two choice task by adding external noise to the images and then averaging the noises separately for the four types of stimulus/response trials. This method is applied to a vernier acuity task with different spatial separations to compare the predictions of the two theories. Three well-practiced observers were presented around 5000 trials of a vernier stimulus consisting of two dark horizontal lines (5 min by 0.3 min) within additive low-contrast white noise. Two spatial separations were tested, abutting and a 10 min horizontal separation. The task was to determine whether the target lines were aligned or vertically offset. The noises were averaged separately for the four stimulus/response trial types (e.g., stimulus = offset, response = aligned). The sum of the two 'not aligned' images was then subtracted from the sum of the 'aligned' images to obtain an overall image. Spatially smoothed images were quantized according to expected variability in the smoothed images to allow estimation of the statistical significance of image features. The response images from the 10 min separation condition are consistent with the local sign theory, having the appearance of two linear operators measuring vertical position with opposite sign. The images from the abutting stimulus have the same appearance with the two operators closer together. The image predicted by an oriented filter model is similar, but has its greatest weight in the abutting region, while the response images fall to nonsignificance there. The response correlation image method, previously demonstrated for letter discrimination, clarifies the features used in vernier acuity.
NASA Astrophysics Data System (ADS)
Yue, Haosong; Chen, Weihai; Wu, Xingming; Wang, Jianhua
2016-03-01
Three-dimensional (3-D) simultaneous localization and mapping (SLAM) is a crucial technique for intelligent robots to navigate autonomously and execute complex tasks. It can also be applied to shape measurement, reverse engineering, and many other scientific or engineering fields. A widespread SLAM algorithm, named KinectFusion, performs well in environments with complex shapes. However, it cannot handle translation uncertainties well in highly structured scenes. This paper improves the KinectFusion algorithm and makes it competent in both structured and unstructured environments. 3-D line features are first extracted according to both color and depth data captured by Kinect sensor. Then the lines in the current data frame are matched with the lines extracted from the entire constructed world model. Finally, we fuse the distance errors of these line-pairs into the standard KinectFusion framework and estimate sensor poses using an iterative closest point-based algorithm. Comparative experiments with the KinectFusion algorithm and one state-of-the-art method in a corridor scene have been done. The experimental results demonstrate that after our improvement, the KinectFusion algorithm can also be applied to structured environments and has higher accuracy. Experiments on two open access datasets further validated our improvements.
Time flies faster under time pressure.
Rattat, Anne-Claire; Matha, Pauline; Cegarra, Julien
2018-04-01
We examined the effects of time pressure on duration estimation in a verbal estimation task and a production task. In both temporal tasks, participants had to solve mazes in two conditions of time pressure (with or without), and with three different target durations (30 s, 60 s, and 90 s). In each trial of the verbal estimation task, participants had to estimate in conventional time units (minutes and seconds) the amount of time that had elapsed since they started to solve the maze. In the production task, they had to press a key while solving the maze when they thought that the trial's duration had reached a target value. Results showed that in both tasks, durations were judged longer with time pressure than without it. However, this temporal overestimation under time pressure did not increase with the length of the target duration. These results are discussed within the framework of scalar expectancy theory. Copyright © 2018 Elsevier B.V. All rights reserved.
The detrimental influence of attention on time-to-contact perception.
Baurès, Robin; Balestra, Marianne; Rosito, Maxime; VanRullen, Rufin
2018-04-23
To which extent is attention necessary to estimate the time-to-contact (TTC) of a moving object, that is, determining when the object will reach a specific point? While numerous studies have aimed at determining the visual cues and gaze strategy that allow this estimation, little is known about if and how attention is involved or required in this process. To answer this question, we carried out an experiment in which the participants estimated the TTC of a moving ball, either alone (single-task condition) or concurrently with a Rapid Serial Visual Presentation task embedded within the ball (dual-task condition). The results showed that participants had a better estimation when attention was driven away from the TTC task. This suggests that drawing attention away from the TTC estimation limits cognitive interference, intrusion of knowledge, or expectations that significantly modify the visually-based TTC estimation, and argues in favor of a limited attention to correctly estimate the TTC.
Language affects symbolic arithmetic in children: the case of number word inversion.
Göbel, Silke M; Moeller, Korbinian; Pixner, Silvia; Kaufmann, Liane; Nuerk, Hans-Christoph
2014-03-01
Specific language influences have been observed in basic numerical tasks such as magnitude comparison, transcoding, and the number line estimation task. However, so far language influences in more complex calculations have not been reported in children. In this translingual study, 7- to 9-year-old German- and Italian-speaking children were tested on a symbolic addition task. Whereas the order of tens and units in Italian number words follows the order of the Arabic notation, the order is inverted in German number words. For both language groups, addition problems were more difficult when a carry operation was needed, that is, when a manipulation within the place-value structure of the Arabic number system was particularly important. Most important, this carry effect was more pronounced in response latencies for children speaking German, a language with inverted verbal mapping of the place-value structure. In addition, independent of language group, the size of the carry effect was significantly related to verbal working memory. The current study indicates that symbolic arithmetic and the carry effect in particular are modulated by language-specific characteristics. Our results underline the fact that the structure of the language of instruction is an important factor in children's mathematical education and needs to be taken into account even for seemingly nonverbal symbolic Arabic tasks. Copyright © 2013 Elsevier Inc. All rights reserved.
Domain-General Contributions to Social Reasoning: Theory of Mind and Deontic Reasoning Re-Explored
ERIC Educational Resources Information Center
McKinnon, Margaret C.; Moscovitch, Morris
2007-01-01
Using older adults and dual-task interference, we examined performance on two social reasoning tasks: theory of mind (ToM) tasks and versions of the deontic selection task involving social contracts and hazardous conditions. In line with performance accounts of social reasoning (Leslie, Friedman, & German, 2004), evidence from both aging and the…
The Effects of Differential Goal Weights on the Performance of a Complex Financial Task.
ERIC Educational Resources Information Center
Edmister, Robert O.; Locke, Edwin A.
1987-01-01
Determined whether people could obtain outcomes on a complex task that would be in line with differential goal weights corresponding to different aspects of the task. Bank lending officers were run through lender-simulation exercises. Five performance goals were weighted. Demonstrated effectiveness of goal setting with complex tasks, using group…
Suez Canal Clearance Operation, Task Force 65
1975-05-01
supporting minesweepers, GARDENIA, GIROFLEE, AJONC, and LILAS, and two minehunters CERES and CALLIOPE. TG SIX FIVE POINT ZERO . This Task Group designation...circle search line, buoy line, tether, zero visibility, and no communication with the surface, created a hazardous situation for open circuit scuba...from essentially zero to several hut7Ared thousand in Port Said and Suez City, and to a lesser degree in Ismailia. This occurred without a concomitant
Sheppard, D M; Bradshaw, J L; Mattingley, J B; Lee, P
1999-01-01
Deficits in the maintenance of attention may underlie problems in attention deficit hyperactivity disorder (ADHD). Children with ADHD also show asymmetric attention deficits in traditional lateralisation and visuospatial orienting tasks, suggesting right hemispheric (and left hemispace) attentional disturbance. This study aimed to examine the lateralisation of selective attention in ADHD; specifically, the effect of a moving, random dot background, and stimulant medication in the line bisection task. The performance of children with ADHD, on and off methylphenidate, was examined using a computerised horizontal line bisection task with moving and blank backgrounds. Twenty children with a DSM-IV diagnosis of ADHD participated with 20 controls, individually matched for age, sex, grade at school, and IQ. Twelve of the 20 children with ADHD were on stimulant medication at the time of testing. Horizontal lines of varying length were presented in the centre of a computer screen, with either a blank background, or a moving, random dot field. The random dots moved either leftward or rightward across the screen at either 40 mm/s or 80 mm/s. The children with ADHD off medication bisected lines significantly further to the right compared with controls, who showed a small leftward error. Methylphenidate normalised the performance of the children with ADHD for the task with the moving dots. These results support previous evidence for a right hemispheric hypoarousal theory of attentional dysfunction, and are consistent with the emerging picture of a lateralised dysfunction of frontostriatal circuitry in ADHD.
Zúñiga, Rafael; Valenzuela, Claudio; Concha, Guierdy; Brown, Nelson; Zúñiga, Leandro
2018-03-29
TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA)-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK) inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.
TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines
Zúñiga, Rafael; Valenzuela, Claudio; Concha, Guierdy; Brown, Nelson; Zúñiga, Leandro
2018-01-01
TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA)-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK) inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment. PMID:29596383
Kaewphan, Suwisa; Van Landeghem, Sofie; Ohta, Tomoko; Van de Peer, Yves; Ginter, Filip; Pyysalo, Sampo
2016-01-01
Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers. Availability and implementation: The manually annotated datasets, the cell line dictionary, derived corpora, NERsuite models and the results of the large-scale run on unannotated texts are available under open licenses at http://turkunlp.github.io/Cell-line-recognition/. Contact: sukaew@utu.fi PMID:26428294
Survival of European mouflon (Artiodactyla: Bovidae) in Hawai'i based on tooth cementum lines
Hess, S.C.; Stephens, R.M.; Thompson, T.L.; Danner, R.M.; Kawakami, B.
2011-01-01
Reliable techniques for estimating age of ungulates are necessary to determine population parameters such as age structure and survival. Techniques that rely on dentition, horn, and facial patterns have limited utility for European mouflon sheep (Ovis gmelini musimon), but tooth cementum lines may offer a useful alternative. Cementum lines may not be reliable outside temperate regions, however, because lack of seasonality in diet may affect annulus formation. We evaluated the utility of tooth cementum lines for estimating age of mouflon in Hawai'i in comparison to dentition. Cementum lines were present in mouflon from Mauna Loa, island of Hawai'i, but were less distinct than in North American sheep. The two age-estimation methods provided similar estimates for individuals aged ???3 yr by dentition (the maximum age estimable by dentition), with exact matches in 51% (18/35) of individuals, and an average difference of 0.8 yr (range 04). Estimates of age from cementum lines were higher than those from dentition in 40% (14/35) and lower in 9% (3/35) of individuals. Discrepancies in age estimates between techniques and between paired tooth samples estimated by cementum lines were related to certainty categories assigned by the clarity of cementum lines, reinforcing the importance of collecting a sufficient number of samples to compensate for samples of lower quality, which in our experience, comprised approximately 22% of teeth. Cementum lines appear to provide relatively accurate age estimates for mouflon in Hawai'i, allow estimating age beyond 3 yr, and they offer more precise estimates than tooth eruption patterns. After constructing an age distribution, we estimated annual survival with a log-linear model to be 0.596 (95% CI 0.5540.642) for this heavily controlled population. ?? 2011 by University of Hawai'i Press.
The Nexus between the Above-Average Effect and Cooperative Learning in the Classroom
ERIC Educational Resources Information Center
Breneiser, Jennifer E.; Monetti, David M.; Adams, Katharine S.
2012-01-01
The present study examines the above-average effect (Chambers & Windschitl, 2004; Moore & Small, 2007) in assessments of task performance. Participants completed self-estimates of performance and group estimates of performance, before and after completing a task. Participants completed a task individually and in groups. Groups were…
Concept of Operations for the ESC Product Line Approach.
1996-08-30
production of the application. Product Line Engineering Center ( PLEC ) defines and evolves product line architectures with the SAG. The PLEC is also tasked... PLEC , SAG, and PLAS and offers scenarios for asset and system development. • Section 4 outlines the ESC Product Line transition strategy. • Section...Line or System Needs User Select PLEC ; Assess PL architecture Product Line Architecture Development ments; architecture selection Architecture
Development of Live-working Robot for Power Transmission Lines
NASA Astrophysics Data System (ADS)
Yan, Yu; Liu, Xiaqing; Ren, Chengxian; Li, Jinliang; Li, Hui
2017-07-01
Dream-I, the first reconfigurable live-working robot for power transmission lines successfully developed in China, has the functions of autonomous walking on lines and accurately positioning. This paper firstly described operation task and object of the robot; then designed a general platform, an insulator replacement end and a drainage plate bolt fastening end of the robot, presented a control system of the robot, and performed simulation analysis on operation plan of the robot; and finally completed electrical field withstand voltage tests in a high voltage hall as well as online test and trial on actual lines. Experimental results show that by replacing ends of manipulators, the robot can fulfill operation tasks of live replacement of suspension insulators and live drainage plate bolt fastening.
Common EEG features for behavioral estimation in disparate, real-world tasks.
Touryan, Jon; Lance, Brent J; Kerick, Scott E; Ries, Anthony J; McDowell, Kaleb
2016-02-01
In this study we explored the potential for capturing the behavioral dynamics observed in real-world tasks from concurrent measures of EEG. In doing so, we sought to develop models of behavior that would enable the identification of common cross-participant and cross-task EEG features. To accomplish this we had participants perform both simulated driving and guard duty tasks while we recorded their EEG. For each participant we developed models to estimate their behavioral performance during both tasks. Sequential forward floating selection was used to identify the montage of independent components for each model. Linear regression was then used on the combined power spectra from these independent components to generate a continuous estimate of behavior. Our results show that oscillatory processes, evidenced in EEG, can be used to successfully capture slow fluctuations in behavior in complex, multi-faceted tasks. The average correlation coefficients between the actual and estimated behavior was 0.548 ± 0.117 and 0.701 ± 0.154 for the driving and guard duty tasks respectively. Interestingly, through a simple clustering approach we were able to identify a number of common components, both neural and eye-movement related, across participants and tasks. We used these component clusters to quantify the relative influence of common versus participant-specific features in the models of behavior. These findings illustrate the potential for estimating complex behavioral dynamics from concurrent measures from EEG using a finite library of universal features. Published by Elsevier B.V.
Baijal, Shruti; Nakatani, Chie; van Leeuwen, Cees; Srinivasan, Narayanan
2013-06-07
Human observers show remarkable efficiency in statistical estimation; they are able, for instance, to estimate the mean size of visual objects, even if their number exceeds the capacity limits of focused attention. This ability has been understood as the result of a distinct mode of attention, i.e. distributed attention. Compared to the focused attention mode, working memory representations under distributed attention are proposed to be more compressed, leading to reduced working memory loads. An alternate proposal is that distributed attention uses less structured, feature-level representations. These would fill up working memory (WM) more, even when target set size is low. Using event-related potentials, we compared WM loading in a typical distributed attention task (mean size estimation) to that in a corresponding focused attention task (object recognition), using a measure called contralateral delay activity (CDA). Participants performed both tasks on 2, 4, or 8 different-sized target disks. In the recognition task, CDA amplitude increased with set size; notably, however, in the mean estimation task the CDA amplitude was high regardless of set size. In particular for set-size 2, the amplitude was higher in the mean estimation task than in the recognition task. The result showed that the task involves full WM loading even with a low target set size. This suggests that in the distributed attention mode, representations are not compressed, but rather less structured than under focused attention conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparative evaluation of workload estimation techniques in piloting tasks
NASA Technical Reports Server (NTRS)
Wierwille, W. W.
1983-01-01
Techniques to measure operator workload in a wide range of situations and tasks were examined. The sensitivity and intrusion of a wide variety of workload assessment techniques in simulated piloting tasks were investigated. Four different piloting tasks, psychomotor, perceptual, mediational, and communication aspects of piloting behavior were selected. Techniques to determine relative sensitivity and intrusion were applied. Sensitivity is the relative ability of a workload estimation technique to discriminate statistically significant differences in operator loading. High sensitivity requires discriminable changes in score means as a function of load level and low variation of the scores about the means. Intrusion is an undesirable change in the task for which workload is measured, resulting from the introduction of the workload estimation technique or apparatus.
Product line cost estimation: a standard cost approach.
Cooper, J C; Suver, J D
1988-04-01
Product line managers often must make decisions based on inaccurate cost information. A method is needed to determine costs more accurately. By using a standard costing model, product line managers can better estimate the cost of intermediate and end products, and hence better estimate the costs of the product line.
Determination of Medical Task Times in an Emergency Center Setting
1990-08-01
supraclavicular central venous line, "Wound expl." signifies wound exploration, and "thoracostomy" refers to tube thoracostomy. The task time for chest...bore line is needed for aggressive fluid resuscitation, or whenever monitoring of central venous pressure as a reflection of available blood volume...of newly annexed city territory. Most ALS responses in the central city are made within 4 min of receipt of calls. There were 68,000 EMS transports
Hwang-Gu, Shoou-Lian; Gau, Susan Shur-Fen
2015-01-01
The literature has suggested timing processing as a potential endophenotype for attention deficit/hyperactivity disorder (ADHD); however, whether the subjective internal clock speed presented by verbal estimation and limited attention capacity presented by time reproduction could be endophenotypes for ADHD is still unknown. We assessed 223 youths with DSM-IV ADHD (age range: 10-17 years), 105 unaffected siblings, and 84 typically developing (TD) youths using psychiatric interviews, intelligence tests, verbal estimation and time reproduction tasks (single task and simple and difficult dual tasks) at 5-second, 12-second, and 17-second intervals. We found that youths with ADHD tended to overestimate time in verbal estimation more than their unaffected siblings and TD youths, implying that fast subjective internal clock speed might be a characteristic of ADHD, rather than an endophenotype for ADHD. Youths with ADHD and their unaffected siblings were less precise in time reproduction dual tasks than TD youths. The magnitude of estimated errors in time reproduction was greater in youths with ADHD and their unaffected siblings than in TD youths, with an increased time interval at the 17-second interval and with increased task demands on both simple and difficult dual tasks versus the single task. Increased impaired time reproduction in dual tasks with increased intervals and task demands were shown in youths with ADHD and their unaffected siblings, suggesting that time reproduction deficits explained by limited attention capacity might be a useful endophenotype of ADHD. PMID:25992899
Early Training Estimation System (ETES). Appendix F. User’s Guide
1984-06-01
Related to Early Training Estimation 2-17 2-5 Organizations Interviewed During Task 1 2-17 2-6 Potential Problem Solving Aids 2-24 2-7 Task Deletion...tasks are available, only the training program elements must be estimated. Thus, by adding comparability analysis procedures to SDT data base management...data base manage- ment capabilities of the SDT, and (3) conduct trade-off studies of proposed solutions to identified training problems . 1-17
Friso-van den Bos, Ilona; Kroesbergen, Evelyn H; Van Luit, Johannes E H; Xenidou-Dervou, Iro; Jonkman, Lisa M; Van der Schoot, Menno; Van Lieshout, Ernest C D M
2015-06-01
Children's ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children's placements are distributed on this number line across development. In the current study, different models were applied to children's longitudinal number placement data to get more insight into the development of number line representations in kindergarten and early primary school years. In addition, longitudinal developmental relations between number line placements and mathematical achievement, measured with a national test of mathematics, were investigated using cross-lagged panel modeling. A group of 442 children participated in a 3-year longitudinal study (ages 5-8 years) in which they completed a number-to-position task every 6 months. Individual number line placements were fitted to various models, of which a one-anchor power model provided the best fit for many of the placements at a younger age (5 or 6 years) and a two-anchor power model provided better fit for many of the children at an older age (7 or 8 years). The number of children who made linear placements also grew with age. Cross-lagged panel analyses indicated that the best fit was provided with a model in which number line acuity and mathematics performance were mutually predictive of each other rather than models in which one ability predicted the other in a non-reciprocal way. This indicates that number line acuity should not be seen as a predictor of math but that both skills influence each other during the developmental process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Final report on fiscal year 1992 activities for the environmental monitors line-loss study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenoyer, J.L.
The work performed on this Environmental Monitors Line-Loss Study has been performed under Contract Numbers MLW-SVV-073750 and MFH-SVV-207554. Work on the task was initiated mid-December 1991, and this report documents and summarizes the work performed through January 18, 1993. The sections included in this report summarize the work performed on the Environmental Monitors Line-Loss Study. The sections included in this report are arranged to reflect individual sub-tasks and include: descriptions of measurement systems and procedures used to obtain cascade impactor samples and laser spectrometer measurements from multiple stacks and locations; information on data acquisition, analyses, assessment, and software; discussion ofmore » the analyses and measurement results from the cascade impactor and laser spectrometer systems and software used; discussion on the development of general test methods and procedures for line-loss determinations; an overall summary and specific conclusions that can be made with regard to efforts performed on this task during FY 1992 and FY 1993. Supporting information for these sections is included in this report as appendices.« less
High-resolution EEG techniques for brain-computer interface applications.
Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Astolfi, Laura; De Vico Fallani, Fabrizio; Tocci, Andrea; Bianchi, Luigi; Marciani, Maria Grazia; Gao, Shangkai; Millan, Jose; Babiloni, Fabio
2008-01-15
High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential measurements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of technologies, originally developed to obtain functional images of the brain's electrical activity, in the context of brain-computer interfaces (BCI). Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head structures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification would be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks. HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed source model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L(2)-norm constraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest corresponding to relevant Brodmann areas. Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG data was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed into the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r(2) analysis), to quantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques. The processing procedure was designed in such a way that computations could be split into a setup phase (which includes most of the computational burden) and the actual EEG processing phase, which was limited to a single matrix multiplication. This separation allowed to make the procedure suitable for on-line utilization, and a pilot experiment was performed. Results show that lateralization of electrical activity, which is expected to be contralateral to the imagined movement, is more evident on the estimated CCDs than in the scalp potentials. CCDs produce a pattern of relevant spectral features that is more spatially focused, and has a higher statistical significance (EEG: 0.20+/-0.114 S.D.; CCD: 0.55+/-0.16 S.D.; p=10(-5)). A pilot experiment showed that a trained subject could utilize voluntary modulation of estimated CCDs for accurate (eight targets) on-line control of a cursor. This study showed that it is practically feasible to utilize HREEG techniques for on-line operation of a BCI system; off-line analysis suggests that accuracy of BCI control is enhanced by the proposed method.
Bittner, Thomas; Nadler, Sabine; Schulze, Eija; Fischer-Iglesias, Christiane
2015-10-13
Glycogen Synthase Kinase 3/SHAGGY-like kinases (GSKs) are multifunctional non-receptor ser/thr kinases. Plant GSKs are involved in hormonal signaling networks and are required for growth, development, light as well as stress responses. So far, most studies have been carried out on Arabidopsis or on other eudicotyledon GSKs. Here, we evaluated the role of TaSK1 and TaSK2, two homolog wheat (Triticum aestivum) GSKs, in brassinosteroid signaling. We explored in addition the physiological effects of brassinosteroids on wheat growth and development. A bin2-1 like gain-of-function mutation has been inserted respectively in one of the homoeologous gene copies of TaSK1 (TaSK1-A.2-1) and in one of the homoeologous gene copies of TaSK2 (TaSK2-A.2-1). Arabidopsis plants were transformed with these mutated gene copies. Severe dwarf phenotypes were obtained closely resembling those of Arabidopsis bin2-1 lines and Arabidopsis BR-deficient or BR-signaling mutants. Expression of BR downstream genes, SAUR-AC1, CPD and BAS1 was deregulated in TaSK1.2-1 and TaSK2.2-1 transgenic lines. Severe dwarf lines were partially rescued by Bikinin beforehand shown to inhibit TaSK kinase activity. This rescue was accompanied with changes in BR downstream gene expression levels. Wheat embryos and seedlings were treated with compounds interfering with BR signaling or modifying BR levels to gain insight into the role of brassinosteroids in wheat development. Embryonic axis and scutellum differentiation were impaired, and seedling growth responses were affected when embryos were treated with Epibrassinolides, Propiconazole, and Bikinin. In view of our findings, TaSKs are proposed to be involved in BR signaling and to be orthologous of Arabidopsis Clade II GSK3/SHAGGY-like kinases. Observed effects of Epibrassinolide, Propiconazole and Bikinin treatments on wheat embryos and seedlings indicate a role for BR signaling in embryonic patterning and seedling growth.
Khanum, Saeeda; Hanif, Rubina; Spelke, Elizabeth S; Berteletti, Ilaria; Hyde, Daniel C
2016-01-01
Current theories of numerical cognition posit that uniquely human symbolic number abilities connect to an early developing cognitive system for representing approximate numerical magnitudes, the approximate number system (ANS). In support of this proposal, recent laboratory-based training experiments with U.S. children show enhanced performance on symbolic addition after brief practice comparing or adding arrays of dots without counting: tasks that engage the ANS. Here we explore the nature and generality of this effect through two brief training experiments. In Experiment 1, elementary school children in Pakistan practiced either a non-symbolic numerical addition task or a line-length addition task with no numerical content, and then were tested on symbolic addition. After training, children in the numerical training group completed the symbolic addition test faster than children in the line length training group, suggesting a causal role of brief, non-symbolic numerical training on exact, symbolic addition. These findings replicate and extend the core findings of a recent U.S. laboratory-based study to non-Western children tested in a school setting, attesting to the robustness and generalizability of the observed training effects. Experiment 2 tested whether ANS training would also enhance the consistency of performance on a symbolic number line task. Over several analyses of the data there was some evidence that approximate number training enhanced symbolic number line placements relative to control conditions. Together, the findings suggest that engagement of the ANS through brief training procedures enhances children's immediate attention to number and engagement with symbolic number tasks.
Khanum, Saeeda; Hanif, Rubina; Spelke, Elizabeth S.; Berteletti, Ilaria; Hyde, Daniel C.
2016-01-01
Current theories of numerical cognition posit that uniquely human symbolic number abilities connect to an early developing cognitive system for representing approximate numerical magnitudes, the approximate number system (ANS). In support of this proposal, recent laboratory-based training experiments with U.S. children show enhanced performance on symbolic addition after brief practice comparing or adding arrays of dots without counting: tasks that engage the ANS. Here we explore the nature and generality of this effect through two brief training experiments. In Experiment 1, elementary school children in Pakistan practiced either a non-symbolic numerical addition task or a line-length addition task with no numerical content, and then were tested on symbolic addition. After training, children in the numerical training group completed the symbolic addition test faster than children in the line length training group, suggesting a causal role of brief, non-symbolic numerical training on exact, symbolic addition. These findings replicate and extend the core findings of a recent U.S. laboratory-based study to non-Western children tested in a school setting, attesting to the robustness and generalizability of the observed training effects. Experiment 2 tested whether ANS training would also enhance the consistency of performance on a symbolic number line task. Over several analyses of the data there was some evidence that approximate number training enhanced symbolic number line placements relative to control conditions. Together, the findings suggest that engagement of the ANS through brief training procedures enhances children's immediate attention to number and engagement with symbolic number tasks. PMID:27764117
An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level.
Gharani, Pedram; Suffoletto, Brian; Chung, Tammy; Karimi, Hassan A
2017-12-13
Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.
Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment.
Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
2016-08-30
Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks' execution time can be improved, in particular for some regular jobs.
A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging
NASA Astrophysics Data System (ADS)
Jiang, J.; Hall, T. J.
2007-07-01
Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows® system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s-1) that exceed our previous methods.
NASA Technical Reports Server (NTRS)
Levack, Daniel J. H.
2000-01-01
The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.
Motion Tracker: Camera-Based Monitoring of Bodily Movements Using Motion Silhouettes
Westlund, Jacqueline Kory; D’Mello, Sidney K.; Olney, Andrew M.
2015-01-01
Researchers in the cognitive and affective sciences investigate how thoughts and feelings are reflected in the bodily response systems including peripheral physiology, facial features, and body movements. One specific question along this line of research is how cognition and affect are manifested in the dynamics of general body movements. Progress in this area can be accelerated by inexpensive, non-intrusive, portable, scalable, and easy to calibrate movement tracking systems. Towards this end, this paper presents and validates Motion Tracker, a simple yet effective software program that uses established computer vision techniques to estimate the amount a person moves from a video of the person engaged in a task (available for download from http://jakory.com/motion-tracker/). The system works with any commercially available camera and with existing videos, thereby affording inexpensive, non-intrusive, and potentially portable and scalable estimation of body movement. Strong between-subject correlations were obtained between Motion Tracker’s estimates of movement and body movements recorded from the seat (r =.720) and back (r = .695 for participants with higher back movement) of a chair affixed with pressure-sensors while completing a 32-minute computerized task (Study 1). Within-subject cross-correlations were also strong for both the seat (r =.606) and back (r = .507). In Study 2, between-subject correlations between Motion Tracker’s movement estimates and movements recorded from an accelerometer worn on the wrist were also strong (rs = .801, .679, and .681) while people performed three brief actions (e.g., waving). Finally, in Study 3 the within-subject cross-correlation was high (r = .855) when Motion Tracker’s estimates were correlated with the movement of a person’s head as tracked with a Kinect while the person was seated at a desk (Study 3). Best-practice recommendations, limitations, and planned extensions of the system are discussed. PMID:26086771
Investigation of Ionospheric Spatial Gradients for Gagan Error Correction
NASA Astrophysics Data System (ADS)
Chandra, K. Ravi
In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.
Industrial machine systems risk assessment: a critical review of concepts and methods.
Etherton, John R
2007-02-01
Reducing the risk of work-related death and injury to machine operators and maintenance personnel poses a continuing occupational safety challenge. The risk of injury from machinery in U.S. workplaces is high. Between 1992 and 2001, there were, on average, 520 fatalities per year involving machines and, on average, 3.8 cases per 10,000 workers of nonfatal caught-in-running-machine injuries involving lost workdays. A U.S. task group recently developed a technical reference guideline, ANSI B11 TR3, "A Guide to Estimate, Evaluate, & Reduce Risks Associated with Machine Tools," that is intended to bring machine tool risk assessment practice in the United States up to or above the level now required by the international standard, ISO 14121. The ANSI guideline emphasizes identifying tasks and hazards not previously considered, particularly those associated with maintenance; and it further emphasizes teamwork among line workers, engineers, and safety professionals. The value of this critical review of concepts and methods resides in (1) its linking current risk theory to machine system risk assessment and (2) its exploration of how various risk estimation tools translate into risk-informed decisions on industrial machine system design and use. The review was undertaken to set the stage for a field evaluation study on machine risk assessment among users of the ANSI B11 TR3 method.
Collaer, Marcia L; Hill, Erica M
2006-01-01
Visuospatial performance, assessed with the new, group-administered Judgment of Line Angle and Position test (JLAP-13), varied with sex and mathematical competence in a group of adolescents. The JLAP-13, a low-level perceptual task, was modeled after a neuropsychological task dependent upon functioning of the posterior region of the right hemisphere [Benton et al, 1994 Contributions to Neuropsychological Assessment: A Clinical Manual (New York: Oxford University Press)]. High-school boys (N = 52) performed better than girls (N = 62), with a large effect for sex (d = 1.11). Performance increased with mathematical competence, but the sex difference did not vary significantly across different levels of mathematics coursework. On the basis of earlier work, it was predicted that male, but not female, performance in line judgment would decline with disruptions to task geometry (page frame), and that the sex difference would disappear with disruptions to geometry. These predictions were supported by a number of univariate and sex-specific analyses, although an omnibus repeated-measures analysis did not detect the predicted interaction, most likely owing to limitations in power. Thus, there is partial support for the notion that attentional predispositions or strategies may contribute to visuospatial sex differences, with males more likely than females to attend to, and rely upon, internal or external representations of task geometry. Additional support for this hypothesis may require development of new measures or experimental manipulations with more powerful geometrical disruptions.
Perceived Difficulty of a Motor-Skill Task as a Function of Training.
ERIC Educational Resources Information Center
Bratfisch, Oswald; And Others
A simple device called a "wire labyrinth" was used in an experiment involving learning of a two-hand motor task. The Ss were asked, after completing each of 7 successive trails, to give their estimates of perceived (subjective) difficulty of the task. For this purpose, the psychophysical method of magnitude estimation was used. Time was…
Vinson, David W.; Abney, Drew H.; Dale, Rick; Matlock, Teenie
2014-01-01
Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory. PMID:25071628
Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie
2014-01-01
Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.
Bastian, Mikaël; Sackur, Jérôme
2013-01-01
Research from the last decade has successfully used two kinds of thought reports in order to assess whether the mind is wandering: random thought-probes and spontaneous reports. However, none of these two methods allows any assessment of the subjective state of the participant between two reports. In this paper, we present a step by step elaboration and testing of a continuous index, based on response time variability within Sustained Attention to Response Tasks (N = 106, for a total of 10 conditions). We first show that increased response time variability predicts mind wandering. We then compute a continuous index of response time variability throughout full experiments and show that the temporal position of a probe relative to the nearest local peak of the continuous index is predictive of mind wandering. This suggests that our index carries information about the subjective state of the subject even when he or she is not probed, and opens the way for on-line tracking of mind wandering. Finally we proceed a step further and infer the internal attentional states on the basis of the variability of response times. To this end we use the Hidden Markov Model framework, which allows us to estimate the durations of on-task and off-task episodes. PMID:24046753
Tracy, J I; Faro, S H; Mohamed, F B; Pinsk, M; Pinus, A
2000-03-01
The functional neuroanatomy of time estimation has not been well-documented. This research investigated the fMRI measured brain response to an explicit, prospective time interval production (TIP) task. The study tested for the presence of brain activity reflecting a primary time keeper function, distinct from the brain systems involved either in conscious strategies to monitor time or attentional resource and other cognitive processes to accomplish the task. In the TIP task participants were given a time interval and asked to indicate when it elapsed. Two control tasks (counting forwards, backwards) were administered, in addition to a dual task format of the TIP task. Whole brain images were collected at 1.5 Tesla. Analyses (n = 6) yielded a statistical parametric map (SPM ¿z¿) reflecting time keeping and not strategy (counting, number manipulation) or attention resource utilization. Additional SPM ¿z¿s involving activation associated with the accuracy and magnitude the of time estimation response are presented. Results revealed lateral cerebellar and inferior temporal lobe activation were associated with primary time keeping. Behavioral data provided evidence that the procedures for the explicit time judgements did not occur automatically and utilized controlled processes. Activation sites associated with accuracy, magnitude, and the dual task provided indications of the other structures involved in time estimation that implemented task components related to controlled processing. The data are consistent with prior proposals that the cerebellum is a repository of codes for time processing, but also implicate temporal lobe structures for this type of time estimation task. Copyright 2000 Academic Press.
Pilot task-based assessment of noise levels among firefighters.
Neitzel, Rl; Hong, O; Quinlan, P; Hulea, R
2013-11-01
Over one million American firefighters are routinely exposed to various occupational hazards agents. While efforts have been made to identify and reduce some causes of injuries and illnesses among firefighters, relatively little has been done to evaluate and understand occupational noise exposures in this group. The purpose of this pilot study was to apply a task-based noise exposure assessment methodology to firefighting operations to evaluate potential noise exposure sources, and to use collected task-based noise levels to create noise exposure estimates for evaluation of risk of noise-induced hearing loss by comparison to the 8-hr and 24-hr recommended exposure limits (RELs) for noise of 85 and 80.3 dBA, respectively. Task-based noise exposures (n=100 measurements) were measured in three different fire departments (a rural department in Southeast Michigan and suburban and urban departments in Northern California). These levels were then combined with time-at-task information collected from firefighters to estimate 8-hr noise exposures for the rural and suburban fire departments (n=6 estimates for each department). Data from 24-hr dosimetry measurements and crude self-reported activity categories from the urban fire department (n=4 measurements) were used to create 24-hr exposure estimates to evaluate the bias associated with the task-based estimates. Task-based noise levels were found to range from 82-109 dBA, with the highest levels resulting from use of saws and pneumatic chisels. Some short (e.g., 30 min) sequences of common tasks were found to result in nearly an entire allowable daily exposure. The majority of estimated 8-hr and 24-hr exposures exceeded the relevant recommended exposure limit. Predicted 24-hr exposures showed substantial imprecision in some cases, suggesting the need for increased task specificity. The results indicate potential for overexposure to noise from a variety of firefighting tasks and equipment, and suggest a need for further exposure characterization and additional hearing loss prevention efforts. Firefighters may be at risk of noise-induced hearing loss, which can affect their fitness for duty and ability to respond effectively to emergencies. The results of this study suggest that additional efforts at hearing loss prevention among firefighters are warranted.
Software Development Cost Estimation Executive Summary
NASA Technical Reports Server (NTRS)
Hihn, Jairus M.; Menzies, Tim
2006-01-01
Identify simple fully validated cost models that provide estimation uncertainty with cost estimate. Based on COCOMO variable set. Use machine learning techniques to determine: a) Minimum number of cost drivers required for NASA domain based cost models; b) Minimum number of data records required and c) Estimation Uncertainty. Build a repository of software cost estimation information. Coordinating tool development and data collection with: a) Tasks funded by PA&E Cost Analysis; b) IV&V Effort Estimation Task and c) NASA SEPG activities.
A Role for Memory in Prospective Timing informs Timing in Prospective Memory
Waldum, Emily R; Sahakyan, Lili
2014-01-01
Time-based prospective memory (TBPM) tasks require the estimation of time in passing – known as prospective timing. Prospective timing is said to depend on an attentionally-driven internal clock mechanism, and is thought to be unaffected by memory for interval information (for reviews see, Block, Hancock, & Zakay, 2010; Block & Zakay, 1997). A prospective timing task that required a verbal estimate following the entire interval (Experiment 1) and a TBPM task that required production of a target response during the interval (Experiment 2) were used to test an alternative view that episodic memory does influence prospective timing. In both experiments, participants performed an ongoing lexical decision task of fixed duration while a varying number of songs were played in the background. Experiment 1 results revealed that verbal time estimates became longer the more songs participants remembered from the interval, suggesting that memory for interval information influences prospective time estimates. In Experiment 2, participants who were asked to perform the TBPM task without the aid of an external clock made their target responses earlier as the number of songs increased, indicating that prospective estimates of elapsed time increased as more songs were experienced. For participants who had access to a clock, changes in clock-checking coincided with the occurrence of song boundaries, indicating that participants used both song information and clock information to estimate time. Finally, ongoing task performance and verbal reports in both experiments further substantiate a role for episodic memory in prospective timing. PMID:22984950
Sex differences in memory estimates for pictures and words.
Ionescu, M D
2000-08-01
Memory performance estimates of men and women before and after a recall test were investigated. College students (17 men and 20 women), all juniors, participated in a memory task involving the recall of 80 stimuli (40 pictures and 40 words). Before and after the task they were asked to provide estimates of their pre- and postrecall performance. Although no sex differences were found for total correct recall, recall for pictures, and recall for words, or in the estimates of memory performance before the recall task, there were significant differences after the test: women underestimated their performance on the words and men underestimated their performance on the picture items.
Szmalec, Arnaud; Vandierendonck, André
2007-08-01
The present study proposes a new executive task, the one-back choice reaction time (RT) task, and implements the selective interference paradigm to estimate the executive demands of the processing components involved in this task. Based on the similarities between a one-back choice RT task and the n-back updating task, it was hypothesized that one-back delaying of a choice reaction involves executive control. In three experiments, framed within Baddeley's (1986) working-memory model, a one-back choice RT task, a choice RT task, articulatory suppression, and matrix tapping were performed concurrently with primary tasks involving verbal, visuospatial, and executive processing. The results demonstrate that one-back delaying of a choice reaction interferes with tasks requiring executive control, while the potential interference at the level of the verbal or visuospatial working memory slave systems remains minimal.
Zago, Laure; Petit, Laurent; Jobard, Gael; Hay, Julien; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie; Karnath, Hans-Otto; Mellet, Emmanuel
2017-01-08
The objective of this study was to validate a line bisection judgement (LBJ) task for use in investigating the lateralized cerebral bases of spatial attention in a sample of 51 right-handed healthy participants. Using functional magnetic resonance imaging (fMRI), the participants performed a LBJ task that was compared to a visuomotor control task during which the participants made similar saccadic and motoric responses. Cerebral lateralization was determined using a voxel-based functional asymmetry analysis and a hemispheric functional lateralization index (HFLI) computed from fMRI contrast images. Behavioural attentional deviation biases were assessed during the LBJ task and a "paper and pencil" symbol cancellation task (SCT). Individual visuospatial skills were also evaluated. The results showed that both the LBJ and SCT tasks elicited leftward spatial biases in healthy subjects, although the biases were not correlated, which indicated their independence. Neuroimaging results showed that the LBJ task elicited a right hemispheric lateralization, with rightward asymmetries found in a large posterior occipito-parietal area, the posterior calcarine sulcus (V1p) and the temporo-occipital junction (TOJ) and in the inferior frontal gyrus, the anterior insula and the superior medial frontal gyrus. The comparison of the LBJ asymmetry map to the lesion map of neglect patients who suffer line bisection deviation demonstrated maximum overlap in a network that included the middle occipital gyrus (MOG), the TOJ, the anterior insula and the inferior frontal region, likely subtending spatial LBJ bias. Finally, the LBJ task-related cerebral lateralization was specifically correlated with the LBJ spatial bias but not with the SCT bias or with the visuospatial skills of the participants. Taken together, these results demonstrated that the LBJ task is adequate for investigating spatial lateralization in healthy subjects and is suitable for determining the factors underlying the variability of spatial cerebral lateralization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gateau, Thibault; Ayaz, Hasan; Dehais, Frédéric
2018-01-01
There is growing interest for implementing tools to monitor cognitive performance in naturalistic work and everyday life settings. The emerging field of research, known as neuroergonomics, promotes the use of wearable and portable brain monitoring sensors such as functional near infrared spectroscopy (fNIRS) to investigate cortical activity in a variety of human tasks out of the laboratory. The objective of this study was to implement an on-line passive fNIRS-based brain computer interface to discriminate two levels of working memory load during highly ecological aircraft piloting tasks. Twenty eight recruited pilots were equally split into two groups (flight simulator vs. real aircraft). In both cases, identical approaches and experimental stimuli were used (serial memorization task, consisting in repeating series of pre-recorded air traffic control instructions, easy vs. hard). The results show pilots in the real flight condition committed more errors and had higher anterior prefrontal cortex activation than pilots in the simulator, when completing cognitively demanding tasks. Nevertheless, evaluation of single trial working memory load classification showed high accuracy (>76%) across both experimental conditions. The contributions here are two-fold. First, we demonstrate the feasibility of passively monitoring cognitive load in a realistic and complex situation (live piloting of an aircraft). In addition, the differences in performance and brain activity between the two experimental conditions underscore the need for ecologically-valid investigations. PMID:29867411
Gateau, Thibault; Ayaz, Hasan; Dehais, Frédéric
2018-01-01
There is growing interest for implementing tools to monitor cognitive performance in naturalistic work and everyday life settings. The emerging field of research, known as neuroergonomics, promotes the use of wearable and portable brain monitoring sensors such as functional near infrared spectroscopy (fNIRS) to investigate cortical activity in a variety of human tasks out of the laboratory. The objective of this study was to implement an on-line passive fNIRS-based brain computer interface to discriminate two levels of working memory load during highly ecological aircraft piloting tasks. Twenty eight recruited pilots were equally split into two groups (flight simulator vs. real aircraft). In both cases, identical approaches and experimental stimuli were used (serial memorization task, consisting in repeating series of pre-recorded air traffic control instructions, easy vs. hard). The results show pilots in the real flight condition committed more errors and had higher anterior prefrontal cortex activation than pilots in the simulator, when completing cognitively demanding tasks. Nevertheless, evaluation of single trial working memory load classification showed high accuracy (>76%) across both experimental conditions. The contributions here are two-fold. First, we demonstrate the feasibility of passively monitoring cognitive load in a realistic and complex situation (live piloting of an aircraft). In addition, the differences in performance and brain activity between the two experimental conditions underscore the need for ecologically-valid investigations.
Fractions, Number Lines, Third Graders
ERIC Educational Resources Information Center
Cramer, Kathleen; Ahrendt, Sue; Monson, Debra; Wyberg, Terry; Colum, Karen
2017-01-01
The Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) outlines ambitious goals for fraction learning, starting in third grade, that include the use of the number line model. Understanding and constructing fractions on a number line are particularly complex tasks. The current work of the authors centers on ways to successfully…
NASA Technical Reports Server (NTRS)
Damos, D. L.
1984-01-01
Human factors practitioners often are concerned with mental workload in multiple-task situations. Investigations of these situations have demonstrated repeatedly that individuals differ in their subjective estimates of workload. These differences may be attributed in part to individual differences in definitions of workload. However, after allowing for differences in the definition of workload, there are still unexplained individual differences in workload ratings. The relation between individual differences in multiple-task performance, subjective estimates of workload, information processing abilities, and the Type A personality trait were examined.
Heuristics of reasoning and analogy in children's visual perspective taking.
Yaniv, I; Shatz, M
1990-10-01
We propose that children's reasoning about others' visual perspectives is guided by simple heuristics based on a perceiver's line of sight and salient features of the object met by that line. In 3 experiments employing a 2-perceiver analogy task, children aged 3-6 were generally better able to reproduce a perceiver's perspective if a visual cue in the perceiver's line of sight sufficed to distinguish it from alternatives. Children had greater difficulty when the task hinged on attending to configural cues. Availability of distinctive cues affixed on the objects' sides facilitated solution of the symmetrical orientations. These and several other related findings reported in the literature are traced to children's reliance on heuristics of reasoning.
Interactive Spectral Analysis and Computation (ISAAC)
NASA Technical Reports Server (NTRS)
Lytle, D. M.
1992-01-01
Isaac is a task in the NSO external package for IRAF. A descendant of a FORTRAN program written to analyze data from a Fourier transform spectrometer, the current implementation has been generalized sufficiently to make it useful for general spectral analysis and other one dimensional data analysis tasks. The user interface for Isaac is implemented as an interpreted mini-language containing a powerful, programmable vector calculator. Built-in commands provide much of the functionality needed to produce accurate line lists from input spectra. These built-in functions include automated spectral line finding, least squares fitting of Voigt profiles to spectral lines including equality constraints, various filters including an optimal filter construction tool, continuum fitting, and various I/O functions.
ERIC Educational Resources Information Center
Waldie, Karen E.; Hausmann, Markus
2010-01-01
Visual line bisection is a reliable and valid laterality task that is typically used with patients with acquired brain damage to assess right hemisphere functioning. Neurologically normal individuals tend to bisect lines to the left of the objective midline whereas those with right parietal damage bisect lines to the right. In this study children…
Kelly, Debbie M; Cook, Robert G
2003-06-01
Three experiment examined the role of contextual information during line orientation and line position discriminations by pigeons (Columba livia) and humans (Homo sapiens). Experiment 1 tested pigeons' performance with these stimuli in a target localization task using texture displays. Experiments 2 and 3 tested pigeons and humans, respectively, with small and large variations of these stimuli in a same-different task. Humans showed a configural superiority effect when tested with displays constructed from large elements but not when tested with the smaller, more densely packed texture displays. The pigeons, in contrast, exhibited a configural inferiority effect when required to discriminate line orientation, regardless of stimulus size. These contrasting results suggest a species difference in the perceptionand use of features and contextual information in the discrimination of line information.
NASA Astrophysics Data System (ADS)
Pradhan, Moumita; Pradhan, Dinesh; Bandyopadhyay, G.
2010-10-01
Fuzzy System has demonstrated their ability to solve different kinds of problem in various application domains. There is an increasing interest to apply fuzzy concept to improve tasks of any system. Here case study of a thermal power plant is considered. Existing time estimation represents time to complete tasks. Applying fuzzy linear approach it becomes clear that after each confidence level least time is taken to complete tasks. As time schedule is less than less amount of cost is needed. Objective of this paper is to show how one system becomes more efficient in applying Fuzzy Linear approach. In this paper we want to optimize the time estimation to perform all tasks in appropriate time schedules. For the case study, optimistic time (to), pessimistic time (tp), most likely time(tm) is considered as data collected from thermal power plant. These time estimates help to calculate expected time(te) which represents time to complete particular task to considering all happenings. Using project evaluation and review technique (PERT) and critical path method (CPM) concept critical path duration (CPD) of this project is calculated. This tells that the probability of fifty percent of the total tasks can be completed in fifty days. Using critical path duration and standard deviation of the critical path, total completion of project can be completed easily after applying normal distribution. Using trapezoidal rule from four time estimates (to, tm, tp, te), we can calculate defuzzyfied value of time estimates. For range of fuzzy, we consider four confidence interval level say 0.4, 0.6, 0.8,1. From our study, it is seen that time estimates at confidence level between 0.4 and 0.8 gives the better result compared to other confidence levels.
ERIC Educational Resources Information Center
Fonseca, Linda Lafferty
Developed in Illinois, this document contains three components. The first component consists of employability task lists for the business, marketing, and management occupations of first-line supervisors and manager/supervisors; file clerks; traffic, shipping, and receiving clerks; records management analysts; adjustment clerks; and customer…
NASA Technical Reports Server (NTRS)
Looper, M.
1976-01-01
This study investigates the influence of attention loading on the established intersensory effects of passive bodily rotation on choice reaction time (RT) to visual motion. Subjects sat at the center of rotation in an enclosed rotating chamber and observed an oscilloscope on which were, in the center, a tracking display and, 10 deg left of center, a RT line. Three tracking tasks and a no-tracking control condition were presented to all subjects in combination with the RT task, which occurred with and without concurrent cab rotations. Choice RT to line motions was inhibited (probability less than .001) both when there was simultaneous vestibular stimulation and when there was a tracking task; response latencies lengthened progressively with increased similarity between the RT and tracking tasks. However, the attention conditions did not affect the intersensory effect; the significance of this for the nature of the sensory interaction is discussed.
ARES v2: new features and improved performance
NASA Astrophysics Data System (ADS)
Sousa, S. G.; Santos, N. C.; Adibekyan, V.; Delgado-Mena, E.; Israelian, G.
2015-05-01
Aims: We present a new upgraded version of ARES. The new version includes a series of interesting new features such as automatic radial velocity correction, a fully automatic continuum determination, and an estimation of the errors for the equivalent widths. Methods: The automatic correction of the radial velocity is achieved with a simple cross-correlation function, and the automatic continuum determination, as well as the estimation of the errors, relies on a new approach to evaluating the spectral noise at the continuum level. Results: ARES v2 is totally compatible with its predecessor. We show that the fully automatic continuum determination is consistent with the previous methods applied for this task. It also presents a significant improvement on its performance thanks to the implementation of a parallel computation using the OpenMP library. Automatic Routine for line Equivalent widths in stellar Spectra - ARES webpage: http://www.astro.up.pt/~sousasag/ares/Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 075.D-0800(A).
Kappesser, Judith; de C Williams, Amanda C
2008-08-01
Observer underestimation of others' pain was studied using a concept from evolutionary psychology: a cheater detection mechanism from social contract theory, applied to relatives and friends of chronic pain patients. 127 participants estimated characters' pain intensity and fairness of behaviour after reading four vignettes describing characters suffering from pain. Four cues were systematically varied: the character continuing or stopping liked tasks; continuing or stopping disliked tasks; availability of medical evidence; and pain intensity as rated by characters. Results revealed that pain intensity and the two behavioural variables had an effect on pain estimates: high pain self-reports and stopping all tasks led to high pain estimates; pain was estimated to be lowest when characters stopped disliked but continued with liked tasks. This combination was also rated least fair. Results support the use of social contract theory as a theoretical framework to explore pain judgements.
On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.
1992-01-01
We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.
Fazio, Lisa K; Bailey, Drew H; Thompson, Clarissa A; Siegler, Robert S
2014-07-01
We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both magnitude comparison and number line estimation tasks. After controlling for non-mathematical cognitive proficiency, both symbolic and non-symbolic numerical magnitude understandings were uniquely related to mathematics achievement, but the relation was much stronger for symbolic numbers. A meta-analysis of 19 published studies indicated that relations between non-symbolic numerical magnitude knowledge and mathematics achievement are present but tend to be weak, especially beyond 6 years of age. Copyright © 2014 Elsevier Inc. All rights reserved.
2009-02-13
An estimated one third of the world's population is infected with Mycobacterium tuberculosis, and nearly 9 million persons develop disease caused by M. tuberculosis each year. Although tuberculosis (TB) occurs predominantly in resource-limited countries, it also occurs in the United States. During 1985-1992, the United States was confronted with an unprecedented TB resurgence. This resurgence was accompanied by a rise in multidrug-resistant TB (MDR TB), which is defined as TB that is resistant to the two most effective first-line therapeutic drugs, isoniazid and rifampin. In addition, virtually untreatable strains of M. tuberculosis are emerging globally. Extensively drug-resistant (XDR) TB is defined as MDR TB that also is resistant to the most effective second-line therapeutic drugs used commonly to treat MDR TB: fluoroquinolones and at least one of three injectable second-line drugs used to treat TB (amikacin, kanamycin, or capreomycin). XDR TB has been identified in all regions of the world, including the United States. In the United States, the cost of hospitalization for one XDR TB patient is estimated to average $483,000, approximately twice the cost for MDR TB patients. Because of the limited responsiveness of XDR TB to available antibiotics, mortality rates among patients with XDR TB are similar to those of TB patients in the preantibiotic era. In January 1992, CDC convened a Federal TB Task Force to draft an action plan to improve prevention and control of drug-resistant TB in the United States (CDC. National action plan to combat multidrug-resistant tuberculosis. MMWR 1992;41([No. RR-11]). In November 2006, CDC reconvened the Task Force to draft an updated action plan to address the issue of MDR TB and XDR TB. Task Force members were divided into nine response areas and charged with articulating the most pressing problems, identifying barriers to improvement, and recommending specific action steps to improve prevention and control of XDR TB within their respective areas. Although the first priority of the Federal TB Task Force convened in 2006 was to delineate objectives and action steps to address MDR TB and XDR TB domestically, members recognized the necessity for TB experts in the United States to work with the international community to help strengthen TB control efforts globally. TB represents a substantial public health problem in low- and middle-income countries, many of which might benefit from assistance by the United States. In addition, the global TB epidemic directly affects the United States because the majority of all cases of TB and 80% of cases of MDR TB reported in the United States occur among foreign-born persons. For these reasons, the Action Plan also outlines potential steps that U.S. government agencies can take to help solve global XDR TB problems. Unless the fundamental causes of MDR TB and XDR TB are addressed in the United States and internationally, the United States is likely to experience a growing number of cases of MDR TB and XDR TB that will be difficult, if not impossible, to treat or prevent. The recommendations provided in this report include specific action steps and new activities that will require additional funding and a renewed commitment by government and nongovernment organizations involved in domestic and international TB control efforts to be implemented effectively. The Federal TB Task Force will coordinate activities of various federal agencies and partner with state and local health departments, nonprofit and TB advocacy organizations in implementing this plan to control and prevent XDR TB in the United States and to contribute to global efforts in the fight against this emerging public health crisis.
NASA Technical Reports Server (NTRS)
Wierwille, W. W.; Rahimi, M.; Casali, J. G.
1985-01-01
As aircraft and other systems become more automated, a shift is occurring in human operator participation in these systems. This shift is away from manual control and toward activities that tap the higher mental functioning of human operators. Therefore, an experiment was performed in a moving-base flight simulator to assess mediational (cognitive) workload measurement. Specifically, 16 workload estimation techniques were evaluated as to their sensitivity and intrusion in a flight task emphasizing mediational behavior. Task loading, using navigation problems presented on a display, was treated as an independent variable, and workload-measure values were treated as dependent variables. Results indicate that two mediational task measures, two rating scale measures, time estimation, and two eye behavior measures were reliably sensitive to mediational loading. The time estimation measure did, however, intrude on mediational task performance. Several of the remaining measures were completely insensitive to mediational load.
Korman, Maria; Herling, Zohar; Levy, Ishay; Egbarieh, Nebal; Engel-Yeger, Batya; Karni, Avi
2017-04-01
Although a ubiquitous situation, it is not clear how effective is a learning experience when task-irrelevant, sensory noise occurs in the background. Here, young adults were trained on the finger opposition sequence task, in a well-established training and testing protocol affording measures for online as well as off-line learning. During the training session, one group experienced a minor background vibratory stimulation to the trunk by the means of vibrating cushion, while the second group experienced recorded sound vibrations. A control group was trained with no extra sensory stimulation. Sensory stimulation during training had no effect on the online within-session gains, but dampened the expression of the off-line, consolidation phase, gains in the two sensory stimulation groups. These results suggest that background sensory stimulation can selectively modify off-line, procedural memory consolidation processes, despite well-preserved on-line learning. Classical studies have shown that neural plasticity in sensory systems is modulated by motor input. The current results extend this notion and suggest that some types of task-irrelevant sensory stimulation, concurrent with motor training, may constitute a 'gating' factor - modulating the triggering of long-term procedural memory consolidation processes. Thus, vibratory stimulation may be considered as a behavioral counterpart of pharmacological interventions that do not interfere with short term neural plasticity but block long-term plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.
Over-the-Line: An Alternative Striking/Fielding Game for Understanding
ERIC Educational Resources Information Center
Gorecki, Jennifer J.
2004-01-01
Over-the-Line is a striking/fielding game designed from the perspective of the Games for Understanding tactical model to serve as an alternative to traditional kickball, softball, and baseball. Over-the-Line can be modified for developmental appropriateness and tasks can increase in complexity as tactical awareness is attained. This article shares…
Left to Right: Representational Biases for Numbers and the Effect of Visuomotor Adaptation
ERIC Educational Resources Information Center
Loftus, Andrea M.; Nicholls, Michael E. R.; Mattingley, Jason B.; Bradshaw, John L.
2008-01-01
Adaptation to right-shifting prisms improves left neglect for mental number line bisection. This study examined whether adaptation affects the mental number line in normal participants. Thirty-six participants completed a mental number line task before and after adaptation to either: left-shifting prisms, right-shifting prisms or control…
Sneve, Markus H; Magnussen, Svein; Alnæs, Dag; Endestad, Tor; D'Esposito, Mark
2013-11-01
Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166-178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top-down biasing of sensory cortex.
Activity flow over resting-state networks shapes cognitive task activations.
Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H
2016-12-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.
Activity flow over resting-state networks shapes cognitive task activations
Cole, Michael W.; Ito, Takuya; Bassett, Danielle S.; Schultz, Douglas H.
2016-01-01
Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations. PMID:27723746
Mind wandering and retrieval from episodic memory: a pilot event-related potential study.
Riby, Leigh Martin; Smallwood, Jonathan; Gunn, Valerie P
2008-06-01
The present study investigated the effects of mind wandering (task-unrelated thought) on the subcomponents of episodic memory as reflected by event-related potentials (ERPs). Specifically, individual differences in the pattern of ERP episodic 'old/new' effects (left-parietal, right-frontal and central-negativity effects) were examined across groups of participants experiencing either high or low frequencies of task-unrelated thought during encoding. Twenty participants studied lists of words and line drawings in one of two contexts (red versus green coloured boxes). At test, participants discriminated between target (old words or line drawings presented in one colour) and nontargets (old items from the other colour and new items). On completion of the memory task, participants completed the 'thinking' component of the Dundee Stress State Questionnaire to provide a retrospective measure of task-unrelated thought. Behavioural data indicated that irrespective of the presence of task-unrelated thought, participants were able to complete the memory task equally well. However, an analysis of ERPs across High and Low task-unrelated thought groups revealed differences in retrieval strategy. Those individuals with infrequent episodes of task-unrelated thought at study used a 'pure' recollection strategy (left-parietal effect only). Conversely, those participants experiencing frequent episodes of task-unrelated thought were unable to recollect the stimuli with ease, as indexed by a diminished parietal effect. As a consequence, these participants employed additional strategic processes for task completion, as indexed by an elevated amplitude of central negativity effects. These data are consistent with the decoupling hypothesis of mind wandering which suggests impaired recollection when attention becomes directed away from the task.
NASA Technical Reports Server (NTRS)
Payne, David G.; Gunther, Virginia A. L.
1988-01-01
Subjects performed short term memory tasks, involving both spatial and verbal components, and a visual monitoring task involving either analog or digital display formats. These two tasks (memory vs. monitoring) were performed both singly and in conjunction. Contrary to expectations derived from multiple resource theories of attentional processes, there was no evidence that when the two tasks involved the same cognitive codes (i.e., either both spatial or both verbal/linguistics) there was more of a dual task performance decrement than when the two tasks employed different cognitive codes/processes. These results are discussed in terms of their implications for theories of attentional processes and also for research in mental state estimation.
ERIC Educational Resources Information Center
Graf, Edith Aurora
2014-01-01
In "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games," Almond, Kim, Velasquez, and Shute have prepared a thought-provoking piece contrasting the roles of task model variables in a traditional assessment of mathematics word problems to their roles in "Newton's Playground," a game designed…
An Approach to Reduce Skill Loss of the Unrestricted Line Officer in the Venezuelan Navy.
1982-03-01
actual task practice. --Jhole task learning may lead to better retention than part task learning, especially for more complex tasks. Conditions During...Oficiales), and the other is the Chief of Education (CE) (Jefe de Educacion de la Armada). The former is in charge of the...Comandancia Gral de La ’Iarina Avd. Vollmer San Bernardino Caracas, Venezuela 4. Jefatura de Educacion de la Armada 3 Comandancia Gral de La iiarina Avd
MBTA Green Line Tests - Riverside Line, December 1972 : Volume 1. Description.
DOT National Transportation Integrated Search
1973-09-01
The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...
Control of humanoid robot via motion-onset visual evoked potentials
Li, Wei; Li, Mengfan; Zhao, Jing
2015-01-01
This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918
Numerical landmarks are useful--except when they're not.
Siegler, Robert S; Thompson, Clarissa A
2014-04-01
Placing landmarks on number lines, such as marking each tenth on a 0-1 line with a hatch mark and the corresponding decimal, has been recommended as a useful tool for improving children's number sense. Four experiments indicated that some landmarks do have beneficial effects, others have harmful effects, and yet others have no effects on representations of common fractions (N/M). The effects of the landmarks were seen not only on the number line task where they appeared but also on a subsequent magnitude comparison task and on correlations with mathematics achievement tests. Landmarks appeared to exert their effects through the encodings and strategies that they promoted. Theoretical and educational implications are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
The paper presents the Community Line Source (C-LINE) modeling system that estimates toxic air pollutant (air toxics) concentration gradients within 500 meters of busy roadways for community-sized areas on the order of 100 km2. C-LINE accesses publicly available datasets with nat...
Can we improve C IV-based single epoch black hole mass estimations?
NASA Astrophysics Data System (ADS)
Mejía-Restrepo, J. E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.
2018-05-01
In large optical surveys at high redshifts (z > 2), the C IV broad emission line is the most practical alternative to estimate the mass (MBH) of active super-massive black holes (SMBHs). However, mass determinations obtained with this line are known to be highly uncertain. In this work we use the Sloan Digital Sky Survey Data Release 7 and 12 quasar catalogues to statistically test three alternative methods put forward in the literature to improve C IV-based MBH estimations. These methods are constructed from correlations between the ratio of the C IV line-width to the low ionization line-widths (Hα, Hβ and Mg II) and several other properties of rest-frame UV emission lines. Our analysis suggests that these correction methods are of limited applicability, mostly because all of them depend on correlations that are driven by the linewidth of the C IV profile itself and not by an interconnection between the linewidth of the C IV line with the linewidth of the low ionization lines. Our results show that optical C IV-based mass estimates at high redshift cannot be a proper replacement for estimates based on IR spectroscopy of low ionization lines like Hα, Hβ and Mg II.
The relationship between cost estimates reliability and BIM adoption: SEM analysis
NASA Astrophysics Data System (ADS)
Ismail, N. A. A.; Idris, N. H.; Ramli, H.; Rooshdi, R. R. Raja Muhammad; Sahamir, S. R.
2018-02-01
This paper presents the usage of Structural Equation Modelling (SEM) approach in analysing the effects of Building Information Modelling (BIM) technology adoption in improving the reliability of cost estimates. Based on the questionnaire survey results, SEM analysis using SPSS-AMOS application examined the relationships between BIM-improved information and cost estimates reliability factors, leading to BIM technology adoption. Six hypotheses were established prior to SEM analysis employing two types of SEM models, namely the Confirmatory Factor Analysis (CFA) model and full structural model. The SEM models were then validated through the assessment on their uni-dimensionality, validity, reliability, and fitness index, in line with the hypotheses tested. The final SEM model fit measures are: P-value=0.000, RMSEA=0.079<0.08, GFI=0.824, CFI=0.962>0.90, TLI=0.956>0.90, NFI=0.935>0.90 and ChiSq/df=2.259; indicating that the overall index values achieved the required level of model fitness. The model supports all the hypotheses evaluated, confirming that all relationship exists amongst the constructs are positive and significant. Ultimately, the analysis verified that most of the respondents foresee better understanding of project input information through BIM visualization, its reliable database and coordinated data, in developing more reliable cost estimates. They also perceive to accelerate their cost estimating task through BIM adoption.
RF model of the distribution system as a communication channel, phase 2. Volume 2: Task reports
NASA Technical Reports Server (NTRS)
Rustay, R. C.; Gajjar, J. T.; Rankin, R. W.; Wentz, R. C.; Wooding, R.
1982-01-01
Based on the established feasibility of predicting, via a model, the propagation of Power Line Frequency on radial type distribution feeders, verification studies comparing model predictions against measurements were undertaken using more complicated feeder circuits and situations. Detailed accounts of the major tasks are presented. These include: (1) verification of model; (2) extension, implementation, and verification of perturbation theory; (3) parameter sensitivity; (4) transformer modeling; and (5) compensation of power distribution systems for enhancement of power line carrier communication reliability.
Sex Attracts: Investigating Individual Differences in Attentional Bias to Sexual Stimuli
Kagerer, Sabine; Wehrum, Sina; Klucken, Tim; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf
2014-01-01
We investigated the impact of sexual stimuli and the influence of sexual motivation on the performance in a dot-probe task and a line-orientation task in a large sample of males and females. All pictures (neutral, erotic) were rated on the dimensions of valence, arousal, disgust, and sexual arousal. Additionally, questionnaires measuring sexual interest/desire/motivation were employed. The ratings of the sexual stimuli point to a successful picture selection because sexual arousal did not differ between the sexes. The stimuli were equally arousing for men and women. Higher scores in the employed questionnaires measuring sexual interest/desire/motivation led to higher sexual arousal ratings of the sex pictures. Attentional bias towards sex pictures was observed in both experimental tasks. The attentional biases measured by the dot-probe and the line-orientation task were moderately intercorrelated suggesting attentional bias as a possible marker for a sex-attention trait. Finally, only the sexual sensation seeking score correlated with the attentional biases of the two tasks. Future research is needed to increase the predictive power of these indirect measures of sexual interest. PMID:25238545
A log-linear model approach to estimation of population size using the line-transect sampling method
Anderson, D.R.; Burnham, K.P.; Crain, B.R.
1978-01-01
The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.
NASA Technical Reports Server (NTRS)
Casali, J. G.; Wierwille, W. W.
1984-01-01
A flight simulator-based study was conducted to examine fourteen distinct mental workload estimation measures, including opinion, secondary task, physiological, and primary task measures. Both the relative sensitivity of the measures to changes in mental workload and the differential intrusion of the changes on primary task performance were assessed. The flight task was varied in difficulty by manipulation of the presentation rate and complexity of a hazard-perception task that required each of 48 licensed pilots to rely heavily on their perceptual abilities. Three rating scales (Modified Cooper-Harper, Multi-descriptor, and Workload-Compensation-Interference/Technical Effectiveness), two secondary task measures (time estimation and tapping regularity), one physiological measure (respiration frequency), and one primary task measure (danger-condition response time) were reliable indicants of workload changes. Recommendations for applying the workload measures are presented.
Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex.
Häkkinen, Suvi; Rinne, Teemu
2018-06-01
A hierarchical and modular organization is a central hypothesis in the current primate model of auditory cortex (AC) but lacks validation in humans. Here we investigated whether fMRI connectivity at rest and during active tasks is informative of the functional organization of human AC. Identical pitch-varying sounds were presented during a visual discrimination (i.e. no directed auditory attention), pitch discrimination, and two versions of pitch n-back memory tasks. Analysis based on fMRI connectivity at rest revealed a network structure consisting of six modules in supratemporal plane (STP), temporal lobe, and inferior parietal lobule (IPL) in both hemispheres. In line with the primate model, in which higher-order regions have more longer-range connections than primary regions, areas encircling the STP module showed the highest inter-modular connectivity. Multivariate pattern analysis indicated significant connectivity differences between the visual task and rest (driven by the presentation of sounds during the visual task), between auditory and visual tasks, and between pitch discrimination and pitch n-back tasks. Further analyses showed that these differences were particularly due to connectivity modulations between the STP and IPL modules. While the results are generally in line with the primate model, they highlight the important role of human IPL during the processing of both task-irrelevant and task-relevant auditory information. Importantly, the present study shows that fMRI connectivity at rest, during presentation of sounds, and during active listening provides novel information about the functional organization of human AC.
Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm
Hashimoto, Koichi
2017-01-01
Bin picking refers to picking the randomly-piled objects from a bin for industrial production purposes, and robotic bin picking is always used in automated assembly lines. In order to achieve a higher productivity, a fast and robust pose estimation algorithm is necessary to recognize and localize the randomly-piled parts. This paper proposes a pose estimation algorithm for bin picking tasks using point cloud data. A novel descriptor Curve Set Feature (CSF) is proposed to describe a point by the surface fluctuation around this point and is also capable of evaluating poses. The Rotation Match Feature (RMF) is proposed to match CSF efficiently. The matching process combines the idea of the matching in 2D space of origin Point Pair Feature (PPF) algorithm with nearest neighbor search. A voxel-based pose verification method is introduced to evaluate the poses and proved to be more than 30-times faster than the kd-tree-based verification method. Our algorithm is evaluated against a large number of synthetic and real scenes and proven to be robust to noise, able to detect metal parts, more accurately and more than 10-times faster than PPF and Oriented, Unique and Repeatable (OUR)-Clustered Viewpoint Feature Histogram (CVFH). PMID:28771216
The Recruitment of Shifting and Inhibition in On-line Science and Mathematics Tasks.
Vosniadou, Stella; Pnevmatikos, Dimitrios; Makris, Nikos; Lepenioti, Despina; Eikospentaki, Kalliopi; Chountala, Anna; Kyrianakis, Giorgos
2018-06-13
Prior research has investigated the recruitment of inhibition in the use of science/mathematics concepts in tasks that require the rejection of a conflicting, nonscientific initial concept. The present research examines if inhibition is the only EF skill recruited in such tasks and investigates whether shifting is also involved. It also investigates whether inhibition and/or shifting are recruited in tasks in which the use of science/mathematics concepts does not require the rejection of an initial concept, or which require only the use of initial concepts. One hundred and thirty-three third- and fifth-grade children participated in two inhibition and shifting tasks and two science and mathematics conceptual understanding and conceptual change (CU&C) tasks. All the tasks were on-line, and performance was measured in accuracy and RTs. The CU&C tasks involved the use of initial concepts and of science/mathematics concepts which required conceptual changes for their initial formation. Only in one of the tasks the use of the science/mathematics concepts required the concurrent rejection of an initial concept. The results confirmed that in this task inhibition was recruited and also showed that the speed of shifting was a significant predictor of performance. Shifting was a significant predictor of performance in all the tasks, regardless of whether they involved science/mathematics or initial concepts. It is argued that shifting is likely to be recruited in complex tasks that require multiple comparisons of stimuli and the entertainment of different perspectives. Inhibition seems to be a more selective cognitive skill likely to be recruited when the use of science/mathematics concepts requires the rejection of a conflicting initial concept. © 2018 Cognitive Science Society, Inc.
Adeleye, Bernice; Rachal, Corryn
2007-07-01
Dysphagia, or difficulty swallowing, affects an estimated 15 million Americans. Its management may include use of instant food thickener (IFT) to modify beverage consistency to minimize the risk of aspiration and prevent dehydration. However, inconsistencies with the desired viscosity of these thickened liquids occur both within and across product lines for both ready-to-serve commercially packaged prethickened (CPPT) and IFT-thickened beverages. To examine the rheological property differences between CPPT and similar IFT-thickened beverages, and to assess the stability of these products at two temperature ranges using three viscosity measurement techniques. The rheological properties of five CPPT and IFT-thickened beverages at both nectar- and honey-like consistencies were evaluated at 10 degrees C (50 degrees F) and 20 degrees C (68 degrees F) using the line spread, funnel, and viscometry methods. One-way analysis of variance was used for data analysis. When a significant difference was observed, Tukey's test was used to separate the means. Each viscosity measurement technique showed the CPPT nectar- and honey-like consistency beverages were significantly more viscous (P<0.0001) at both temperatures compared with their IFT counterparts. Moreover, CPPT beverages at nectar and honey consistencies were almost always more viscous than the National Dysphagia Diet Task Force-defined standards, whereas the IFT-thickened beverages were more frequently within those standards. A reevaluation of the viscosity of CPPT beverages with reference to the National Dysphagia Diet Task Force set standard ranges needs to be considered. A strong need also exists for development of a standard protocol on product labels that includes the expected rheological properties of CPPT and IFT-thickened beverages. To the clinicians, especially registered dietitians, it is an important clinical consideration to recognize that CPPT products may be thicker than IFT-thickened products and also may be more viscous than the National Dysphagia Diet Task Force-defined standards.
Antoine, Sophie; Ranzini, Mariagrazia; Gebuis, Titia; van Dijck, Jean-Philippe; Gevers, Wim
2017-10-01
A largely substantiated view in the domain of working memory is that the maintenance of serial order is achieved by generating associations of each item with an independent representation of its position, so-called position markers. Recent studies reported that the ordinal position of an item in verbal working memory interacts with spatial processing. This suggests that position markers might be spatial in nature. However, these interactions were so far observed in tasks implying a clear binary categorization of space (i.e., with left and right responses or targets). Such binary categorizations leave room for alternative interpretations, such as congruency between non-spatial categorical codes for ordinal position (e.g., begin and end) and spatial categorical codes for response (e.g., left and right). Here we discard this interpretation by providing evidence that this interaction can also be observed in a task that draws upon a continuous processing of space, the line bisection task. Specifically, bisections are modulated by ordinal position in verbal working memory, with lines bisected more towards the right after retrieving items from the end compared to the beginning of the memorized sequence. This supports the idea that position markers are intrinsically spatial in nature.
Rasmussen, Sebastian R; Konge, Lars; Mikkelsen, Peter T; Sørensen, Mads S; Andersen, Steven A W
2016-03-01
Cognitive load (CL) theory suggests that working memory can be overloaded in complex learning tasks such as surgical technical skills training, which can impair learning. Valid and feasible methods for estimating the CL in specific learning contexts are necessary before the efficacy of CL-lowering instructional interventions can be established. This study aims to explore secondary task precision for the estimation of CL in virtual reality (VR) surgical simulation and also investigate the effects of CL-modifying factors such as simulator-integrated tutoring and repeated practice. Twenty-four participants were randomized for visual assistance by a simulator-integrated tutor function during the first 5 of 12 repeated mastoidectomy procedures on a VR temporal bone simulator. Secondary task precision was found to be significantly lower during simulation compared with nonsimulation baseline, p < .001. Contrary to expectations, simulator-integrated tutoring and repeated practice did not have an impact on secondary task precision. This finding suggests that even though considerable changes in CL are reflected in secondary task precision, it lacks sensitivity. In contrast, secondary task reaction time could be more sensitive, but requires substantial postprocessing of data. Therefore, future studies on the effect of CL modifying interventions should weigh the pros and cons of the various secondary task measurements. © The Author(s) 2015.
Roy, Nelson; Mazin, Alqhazo; Awan, Shaheen N
2014-03-01
Distinguishing muscle tension dysphonia (MTD) from adductor spasmodic dysphonia (ADSD) can be difficult. Unlike MTD, ADSD is described as "task-dependent," implying that dysphonia severity varies depending upon the demands of the vocal task, with connected speech thought to be more symptomatic than sustained vowels. This study used an acoustic index of dysphonia severity (i.e., the Cepstral Spectral Index of Dysphonia [CSID]) to: 1) assess the value of "task dependency" to distinguish ADSD from MTD, and to 2) examine associations between the CSID and listener ratings. Case-Control Study. CSID estimates of dysphonia severity for connected speech and sustained vowels of patients with ADSD (n = 36) and MTD (n = 45) were compared. The diagnostic precision of task dependency (as evidenced by differences in CSID-estimated dysphonia severity between connected speech and sustained vowels) was examined. In ADSD, CSID-estimated severity for connected speech (M = 39. 2, SD = 22.0) was significantly worse than for sustained vowels (M = 29.3, SD = 21.9), [P = .020]. Whereas in MTD, no significant difference in CSID-estimated severity was observed between connected speech (M = 55.1, SD = 23.8) and sustained vowels (M = 50.0, SD = 27.4), [P = .177]. CSID evidence of task dependency correctly identified 66.7% of ADSD cases (sensitivity) and 64.4% of MTD cases (specificity). CSID and listener ratings were significantly correlated. Task dependency in ADSD, as revealed by differences in acoustically-derived estimates of dysphonia severity between connected speech and sustained vowel production, is a potentially valuable diagnostic marker. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
A parametric generalization of the Hayne estimator for line transect sampling
Burnham, Kenneth P.
1979-01-01
The Hayne model for line transect sampling is generalized by using an elliptical (rather than circular) flushing model for animal detection. By assuming the ration of major and minor axes lengths is constant for all animals, a model results which allows estimation of population density based directly upon sighting distances and sighting angles. The derived estimator of animal density is a generalization of the Hayne estimator for line transect sampling.
Kanayet, Frank J; Mattarella-Micke, Andrew; Kohler, Peter J; Norcia, Anthony M; McCandliss, Bruce D; McClelland, James L
2018-02-01
Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a "mental number line" and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory-motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (-100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.
"Battleship Numberline": A Digital Game for Improving Estimation Accuracy on Fraction Number Lines
ERIC Educational Resources Information Center
Lomas, Derek; Ching, Dixie; Stampfer, Eliane; Sandoval, Melanie; Koedinger, Ken
2011-01-01
Given the strong relationship between number line estimation accuracy and math achievement, might a computer-based number line game help improve math achievement? In one study by Rittle-Johnson, Siegler and Alibali (2001), a simple digital game called "Catch the Monster" provided practice in estimating the location of decimals on a…
Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment
Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
2016-01-01
Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs. PMID:27589753
Backwards Fading to Speed Task Learning
2013-09-01
estimates.) Table 1 Finalized Task List Task Domain Task Name Knot Tying Hand Cuff Rappel First Aid Fracture Bleed Map Reading* Resection...materials used. Hand Cuff . There are 10 steps in this task. To complete this task, the learner must manipulate a short length of rope (e.g...Design for Experiment 1 – Step Fade Experiment 1 (Step Fade) Task Type: Knot Tying Task Type: First Aid Task Complexity: Low (1) Hand Cuff (10
MBTA Green Line Tests - Riverside Line, December 1972 : Volume 5. Gage Computer Printout.
DOT National Transportation Integrated Search
1973-01-01
The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...
MBTA Green Line Tests - Riverside Line, December 1972 : Volume 4. Westbound Track Profile.
DOT National Transportation Integrated Search
1973-01-01
The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...
MBTA Green Line Tests - Riverside Line, December 1972 : Volume 3. Eastbound Track Profile.
DOT National Transportation Integrated Search
1973-01-01
The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...
A Role-Playing Game for a Software Engineering Lab: Developing a Product Line
ERIC Educational Resources Information Center
Zuppiroli, Sara; Ciancarini, Paolo; Gabbrielli, Maurizio
2012-01-01
Software product line development refers to software engineering practices and techniques for creating families of similar software systems from a basic set of reusable components, called shared assets. Teaching how to deal with software product lines in a university lab course is a challenging task, because there are several practical issues that…
Slope and Line of Best Fit: A Transfer of Knowledge Case Study
ERIC Educational Resources Information Center
Nagle, Courtney; Casey, Stephanie; Moore-Russo, Deborah
2017-01-01
This paper brings together research on slope from mathematics education and research on line of best fit from statistics education by considering what knowledge of slope students transfer to a novel task involving determining the placement of an informal line of best fit. This study focuses on two students who transitioned from placing inaccurate…
Lourenco, Stella F.; Bonny, Justin W.; Fernandez, Edmund P.; Rao, Sonia
2012-01-01
Humans and nonhuman animals share the capacity to estimate, without counting, the number of objects in a set by relying on an approximate number system (ANS). Only humans, however, learn the concepts and operations of symbolic mathematics. Despite vast differences between these two systems of quantification, neural and behavioral findings suggest functional connections. Another line of research suggests that the ANS is part of a larger, more general system of magnitude representation. Reports of cognitive interactions and common neural coding for number and other magnitudes such as spatial extent led us to ask whether, and how, nonnumerical magnitude interfaces with mathematical competence. On two magnitude comparison tasks, college students estimated (without counting or explicit calculation) which of two arrays was greater in number or cumulative area. They also completed a battery of standardized math tests. Individual differences in both number and cumulative area precision (measured by accuracy on the magnitude comparison tasks) correlated with interindividual variability in math competence, particularly advanced arithmetic and geometry, even after accounting for general aspects of intelligence. Moreover, analyses revealed that whereas number precision contributed unique variance to advanced arithmetic, cumulative area precision contributed unique variance to geometry. Taken together, these results provide evidence for shared and unique contributions of nonsymbolic number and cumulative area representations to formally taught mathematics. More broadly, they suggest that uniquely human branches of mathematics interface with an evolutionarily primitive general magnitude system, which includes partially overlapping representations of numerical and nonnumerical magnitude. PMID:23091023
ERIC Educational Resources Information Center
Salas, Carmen C.; Bauermeister, Jose J.; Barkley, Russell A.; Martinez, Jose V.; Cumba, Eduardo; Ramirez, Rafael R.; Reina, Graciela; Matos, Maribel
2005-01-01
This study compared Hispanic children (ages 7 to 11) with combined type (CT, n = 33) and inattentive type (IT, n = 21) attention deficit hyperactivity disorder (ADHD) and a control group (n = 25) on time-estimation and time-reproduction tasks. The ADHD groups showed larger errors in time reproduction but not in time estimation than the control…
Software Cost-Estimation Model
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1985-01-01
Software Cost Estimation Model SOFTCOST provides automated resource and schedule model for software development. Combines several cost models found in open literature into one comprehensive set of algorithms. Compensates for nearly fifty implementation factors relative to size of task, inherited baseline, organizational and system environment and difficulty of task.
Abnormal Sense of Agency in Patients with Schizophrenia: Evidence from Bimanual Coupling Paradigm
Garbarini, Francesca; Mastropasqua, Angela; Sigaudo, Monica; Rabuffetti, Marco; Piedimonte, Alessandro; Pia, Lorenzo; Rocca, Paola
2016-01-01
A fruitful approach to the understanding the human awareness of action is the study of those pathologies in which some aspects of it are altered. Previous evidences showed that patients with schizophrenia tend to attribute someone else’ actions to their own, as internally, rather than externally, generated. Here, we asked whether schizophrenics have an “excessive” sense of agency, while observing others’ movements. We took advantage from the circles-lines task, known to show bimanual interferences. Twenty schizophrenics and 20 age-matched healthy controls were administered: (a) the bimanual version of the task: drawing lines with one hand and circles with the other; and (b) a modified version: drawing lines while observing the examiner drawing circles. In the bimanual version, patients and controls showed a comparable interference effect. In the observation version, schizophrenics, compared to controls, showed a significantly greater interference effect of the examiners’ hand drawing circles on the own hand drawing lines. This effect was significantly correlated to the strength of the positive symptoms (hallucinations and delusions) and to the alteration of the sense of agency, reported during the task. These findings suggest that an altered sense of agency, as shown by schizophrenics, can induce objective consequences on the motor system. PMID:27014005
Shell, Courtney E; Segal, Ava D; Klute, Glenn K; Neptune, Richard R
2017-11-01
Little evidence exists regarding how prosthesis design characteristics affect performance in tasks that challenge mediolateral balance such as turning. This study assesses the influence of prosthetic foot stiffness on amputee walking mechanics and balance control during a continuous turning task. Three-dimensional kinematic and kinetic data were collected from eight unilateral transtibial amputees as they walked overground at self-selected speed clockwise and counterclockwise around a 1-meter circle and along a straight line. Subjects performed the walking tasks wearing three different ankle-foot prostheses that spanned a range of sagittal- and coronal-plane stiffness levels. A decrease in stiffness increased residual ankle dorsiflexion (10-13°), caused smaller adaptations (<5°) in proximal joint angles, decreased residual and increased intact limb body support, increased residual limb propulsion and increased intact limb braking for all tasks. While changes in sagittal-plane joint work due to decreased stiffness were generally consistent across tasks, effects on coronal-plane hip work were task-dependent. When the residual limb was on the inside of the turn and during straight-line walking, coronal-plane hip work increased and coronal-plane peak-to-peak range of whole-body angular momentum decreased with decreased stiffness. Changes in sagittal-plane kinematics and kinetics were similar to those previously observed in straight-line walking. Mediolateral balance improved with decreased stiffness, but adaptations in coronal-plane angles, work and ground reaction force impulses were less systematic than those in sagittal-plane measures. Effects of stiffness varied with the residual limb inside versus outside the turn, which suggests that actively adjusting stiffness to turn direction may be beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.
Therapeutic Inhibitors of LIN28/let-7 Pathway in Ovarian Cancer
2015-09-01
generate loss of function lines (siRNA and the CrispR /Cas9 system). Task 4. Determine oncogenic properties associated with TUTase and LIN28B loss in...of-function cell lines to complement our already generated shRNA lines, we are developing handson experience with CrispR /Cas9 technology to...generate stable cell lines where our genes of interest will be inactivated. The advantage of the CrispR /Cas9 method is that stable lines can be
1989-12-15
Since no bridge crane exists in either the north or south plate areas, parts must be dismounted from one monorail /hoist and transferred to another...when the chemical operations involve more than one tank line. There are 19 tank lines in the shop with one monorail hoist for each pair of tank lines...except for tank line no. 19. The monorail system over line 19 does not connect with the rest of the interconnected serpentine monorail system. Solution
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Jones, Leslie C.; Pope, Alan T.
2003-01-01
Spatial disorientation (SD) is a constant contributing factor to the rate of fatal aviation accidents. SD occurs as a result of perceptual errors that can be attributed in part to the inefficient presentation of synthetic orientation cues via the attitude indicator when external visual conditions are poor. Improvements in the design of the attitude indicator may help to eliminate instrumentation as a factor in the onset of SD. The goal of the present study was to explore several display concepts that may contribute to an improved attitude display. Specifically, the effectiveness of various display sizes, some that are used in current and some that are anticipated in future attitude displays that may incorporate Synthetic Vision Systems (SVS) concepts, was assessed. In addition, a concept known as an extended horizon line or Malcolm Horizon (MH) was applied and evaluated. Paired with the MH, the novel concept of a fixed reference line representing the central horizontal plane of the aircraft was also tested. Subjects performance on an attitude control task and secondary math workload task was measured across the various display sizes and conditions. The results, with regard to display size, confirmed the bigger is better concept, yielding better performance with the larger display sizes. A clear and significant improvement in attitude task performance was found with the addition of the extended horizon line. The extended or MH seemed to equalize attitude performance across display sizes, even for a central or foveal display as small as three inches in width.
Development of a task-level robot programming and simulation system
NASA Technical Reports Server (NTRS)
Liu, H.; Kawamura, K.; Narayanan, S.; Zhang, G.; Franke, H.; Ozkan, M.; Arima, H.; Liu, H.
1987-01-01
An ongoing project in developing a Task-Level Robot Programming and Simulation System (TARPS) is discussed. The objective of this approach is to design a generic TARPS that can be used in a variety of applications. Many robotic applications require off-line programming, and a TARPS is very useful in such applications. Task level programming is object centered in that the user specifies tasks to be performed instead of robot paths. Graphics simulation provides greater flexibility and also avoids costly machine setup and possible damage. A TARPS has three major modules: world model, task planner and task simulator. The system architecture, design issues and some preliminary results are given.
Improved Mirror Source Method in Roomacoustics
NASA Astrophysics Data System (ADS)
Mechel, F. P.
2002-10-01
Most authors in room acoustics qualify the mirror source method (MS-method) as the only exact method to evaluate sound fields in auditoria. But evidently nobody applies it. The reason for this discrepancy is the abundantly high numbers of needed mirror sources which are reported in the literature, although such estimations of needed numbers of mirror sources mostly are used for the justification of more or less heuristic modifications of the MS-method. The present, intentionally tutorial article accentuates the analytical foundations of the MS-method whereby the number of needed mirror sources is reduced already. Further, the task of field evaluation in three-dimensional spaces is reduced to a sequence of tasks in two-dimensional room edges. This not only allows the use of easier geometrical computations in two dimensions, but also the sound field in corner areas can be represented by a single (directional) source sitting on the corner line, so that only this "corner source" must be mirror-reflected in the further process. This procedure gives a drastic reduction of the number of needed equivalent sources. Finally, the traditional MS-method is not applicable in rooms with convex corners (the angle between the corner flanks, measured on the room side, exceeds 180°). In such cases, the MS-method is combined below with the second principle of superposition(PSP). It reduces the scattering task at convex corners to two sub-tasks between one flank and the median plane of the room wedge, i.e., always in concave corner areas where the MS-method can be applied.
Wollesen, Bettina; Mattes, Klaus; Schulz, Sören; Bischoff, Laura L; Seydell, L; Bell, Jeffrey W; von Duvillard, Serge P
2017-01-01
Background: Dual-task (DT) training is a well-accepted modality for fall prevention in older adults. DT training should include task-managing strategies such as task switching or task prioritization to improve gait performance under DT conditions. Methods: We conducted a randomized controlled trial to evaluate a balance and task managing training (BDT group) in gait performance compared to a single task (ST) strength and resistance training and a control group, which received no training. A total of 78 older individuals (72.0 ± 4.9 years) participated in this study. The DT group performed task managing training incorporating balance and coordination tasks while the ST group performed resistance training only. Training consisted of 12 weekly sessions, 60 min each, for 12 weeks. We assessed the effects of ST and BDT training on walking performance under ST and DT conditions in independent living elderly adults. ST and DT walking (visual verbal Stroop task) were measured utilizing a treadmill at self-selected walking speed (mean for all groups: 4.4 ± 1 km h -1 ). Specific gait variables, cognitive performance, and fear of falling were compared between all groups. > Results: Training improved gait performance for step length ( p < 0.001) and gait-line (ST: p < 0.01; DT p < 0.05) in both training groups. The BDT training group showed greater improvements in step length ( p < 0.001) and gait-line ( p < 0.01) during DT walking but did not have changes in cognitive performance. Both interventions reduced fear of falling ( p < 0.05). Conclusion: Implementation of task management strategies into balance and strength training in our population revealed a promising modality to prevent falls in older individuals. Trial registration: German register of clinical trials DRKS00012382.
Segmenting overlapping nano-objects in atomic force microscopy image
NASA Astrophysics Data System (ADS)
Wang, Qian; Han, Yuexing; Li, Qing; Wang, Bing; Konagaya, Akihiko
2018-01-01
Recently, techniques for nanoparticles have rapidly been developed for various fields, such as material science, medical, and biology. In particular, methods of image processing have widely been used to automatically analyze nanoparticles. A technique to automatically segment overlapping nanoparticles with image processing and machine learning is proposed. Here, two tasks are necessary: elimination of image noises and action of the overlapping shapes. For the first task, mean square error and the seed fill algorithm are adopted to remove noises and improve the quality of the original image. For the second task, four steps are needed to segment the overlapping nanoparticles. First, possibility split lines are obtained by connecting the high curvature pixels on the contours. Second, the candidate split lines are classified with a machine learning algorithm. Third, the overlapping regions are detected with the method of density-based spatial clustering of applications with noise (DBSCAN). Finally, the best split lines are selected with a constrained minimum value. We give some experimental examples and compare our technique with two other methods. The results can show the effectiveness of the proposed technique.
Simulation-Based Mastery Learning Improves Central Line Maintenance Skills of ICU Nurses.
Barsuk, Jeffrey H; Cohen, Elaine R; Mikolajczak, Anessa; Seburn, Stephanie; Slade, Maureen; Wayne, Diane B
2015-10-01
This study evaluated the impact of a simulation-based mastery learning (SBML) curriculum on central line maintenance and care among a group of ICU nurses. The intervention included 5 tasks: (a) medication administration, (b) injection cap (needleless connector) changes, (c) tubing changes, (d) blood drawing, and (e) dressing changes. All participants underwent a pretest, engaged in deliberate practice with directed feedback, and completed a posttest. We compared pretest and posttest scores and assessed correlations between demographics, self-confidence, and pretest performance. The number of nurses passing each task at pretest varied from 24 of 49 (49%) for dressing changes to 44 of 49 (90%) for tubing changes. At pretest, scores ranged from a median of 0.0% to 73.1%. At posttest, all scores rose to a median of 100.0%. Total years in nursing and ICU nursing had significant, negative correlations with medication administration pretest performance (r = -0.42, P = .003; r = -0.42, P = .003, respectively). ICU nurses displayed large variability in their ability to perform central line maintenance tasks. After SBML, there was significant improvement, and all nurses reached a predetermined level of competency.
MBTA Green Line Tests - Riverside Line, December 1972 : Volume 2. Track Geometry Data Plots.
DOT National Transportation Integrated Search
1973-09-01
The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...
Heng, Jiamin Gladys; Wu, Chiao-Yi; Archer, Josephine Astrid; Miyakoshi, Makoto; Nakai, Toshiharu; Chen, Shen-Hsing Annabel
2017-10-09
Neuroimaging literature has documented age-related hemispheric asymmetry reduction in frontal regions during task performances. As most studies employed working memory paradigms, it is therefore less clear if this pattern of neural reorganization is constrained by working memory processes or it would also emerge in other cognitive domains which are predominantly lateralized. Using blocked functional magnetic resonance imaging (fMRI), the present study used a homophone judgment task and a line judgment task to investigate age-related differences in functional hemispheric asymmetry in language and visuospatial processing respectively. Young and older adults achieved similar task accuracy although older adults required a significantly longer time. Age-related functional hemispheric asymmetry reduction was found only in dorsal inferior frontal gyrus and was associated with better performance when the homophone condition was contrasted against fixation, and not line condition. Our data thus highlights the importance of considering regional heterogeneity of aging effects together with general age-related cognitive processes.
Spatial and numerical processing in children with high and low visuospatial abilities.
Crollen, Virginie; Noël, Marie-Pascale
2015-04-01
In the literature on numerical cognition, a strong association between numbers and space has been repeatedly demonstrated. However, only a few recent studies have been devoted to examine the consequences of low visuospatial abilities on calculation processing. In this study, we wanted to investigate whether visuospatial weakness may affect pure spatial processing as well as basic numerical reasoning. To do so, the performances of children with high and low visuospatial abilities were directly compared on different spatial tasks (the line bisection and Simon tasks) and numerical tasks (the number bisection, number-to-position, and numerical comparison tasks). Children from the low visuospatial group presented the classic Simon and SNARC (spatial numerical association of response codes) effects but showed larger deviation errors as compared with the high visuospatial group. Our results, therefore, demonstrated that low visuospatial abilities did not change the nature of the mental number line but rather led to a decrease in its accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
Zou, Ying-min; Ni, Ke; Wang, Yang-yu; Yu, En-qing; Lui, Simon S. Y.; Cheung, Eric F. C.; Chan, Raymond C. K.
2017-01-01
Abstract Background: Deficits in reward processing, such as approaching motivation, reward learning and effort-based decision-making, have been observed in patients with schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). However, little is known about the nature of reward-processing deficits in these 3 diagnostic groups. The present study aimed to compare and contrast amotivation in these 3 diagnostic groups using an effort-based decision-making task. Methods: Sixty patients (19 SCZ patients, 18 BD patients and 23 MDD patients) and 27 healthy controls (HC) were recruited for the present study. The Effort Expenditure for Reward Task (EEfRT) was administered to evaluate their effort allocation pattern. This task required participants to choose easy or hard tasks in response to different levels of reward magnitude and reward probability. Results: Results showed that SCZ, BD, and MDD patients chose fewer hard tasks compared to HC. As reward magnitude increased, MDD patients made the least effort to gain reward compared to the other groups. When reward probability was intermediate, MDD patients chose fewer hard tasks than SCZ patients, whereas BD patients and HC chose more hard tasks than MDD and SCZ patients. When the reward probability was high, all 3 groups of patients tried fewer hard tasks than HC. Moreover, SCZ and MDD patients were less likely to choose hard tasks than BD patients and HC in the intermediate estimated value conditions. However, in the highest estimated value condition, there was no group difference in hard task choices between these 3 clinical groups, and they were all less motivated than HC. Conclusion: SCZ, BD, and MDD patients shared common deficits in gaining reward if the reward probability and estimated value were high. SCZ and MDD patients showed less motivation than BD patients in gaining reward when the reward probability and estimated value was intermediate.
Dual Arm Work Package performance estimates and telerobot task network simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Blair, L.M.
1997-02-01
This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collectedmore » to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.« less
Michel, Yvonne Anne; Augestad, Liv Ariane; Rand, Kim
2018-04-01
The 15D is a generic preference-based health-related quality-of-life instrument developed in Finland. Values for the 15D instrument are estimated by combining responses to three distinct valuation tasks. The impact of how these tasks are combined is relatively unexplored. To compare 15D valuation studies conducted in Norway and Finland in terms of scores assigned in the valuation tasks and resulting value algorithms, and to discuss the contributions of each task and the algorithm estimation procedure to observed differences. Norwegian and Finnish scores from the three valuation tasks were compared using independent samples t tests and Lin concordance correlation coefficients. Covariance between tasks was assessed using Pearson product-moment correlations. Norwegian and Finnish value algorithms were compared using concordance correlation coefficients, total ranges, and ranges for individual dimensions. Observed differences were assessed using minimal important difference. Mean scores in the main valuation task were strikingly similar between the two countries, whereas the final value algorithms were less similar. The largest differences between Norway and Finland were observed for depression, vision, and mental function. 15D algorithms are a product of combining scores from three valuation tasks by use of methods involving multiplication. This procedure used to combine scores from the three tasks by multiplication serves to amplify variance from each task. From relatively similar responses in Norway and Finland, diverging value algorithms are created. We propose to simplify the 15D algorithm estimation procedure by using only one of the valuation tasks. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Ramani, Geetha B; Siegler, Robert S
2008-01-01
Theoretical analyses of the development of numerical representations suggest that playing linear number board games should enhance young children's numerical knowledge. Consistent with this prediction, playing such a game for roughly 1 hr increased low-income preschoolers' (mean age = 5.4 years) proficiency on 4 diverse numerical tasks: numerical magnitude comparison, number line estimation, counting, and numeral identification. The gains remained 9 weeks later. Classmates who played an identical game, except for the squares varying in color rather than number, did not improve on any measure. Also as predicted, home experience playing number board games correlated positively with numerical knowledge. Thus, playing number board games with children from low-income backgrounds may increase their numerical knowledge at the outset of school.
Does gravity influence the visual line bisection task?
Drakul, A; Bockisch, C J; Tarnutzer, A A
2016-08-01
The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.
Reasoning and memory: People make varied use of the information available in working memory.
Hardman, Kyle O; Cowan, Nelson
2016-05-01
Working memory (WM) is used for storing information in a highly accessible state so that other mental processes, such as reasoning, can use that information. Some WM tasks require that participants not only store information, but also reason about that information to perform optimally on the task. In this study, we used visual WM tasks that had both storage and reasoning components to determine both how ideally people are able to reason about information in WM and if there is a relationship between information storage and reasoning. We developed novel psychological process models of the tasks that allowed us to estimate for each participant both how much information they had in WM and how efficiently they reasoned about that information. Our estimates of information use showed that participants are not all ideal information users or minimal information users, but rather that there are individual differences in the thoroughness of information use in our WM tasks. However, we found that our participants tended to be more ideal than minimal. One implication of this work is that to accurately estimate the amount of information in WM, it is important to also estimate how efficiently that information is used. This new analysis contributes to the theoretical premise that human rationality may be bounded by the complexity of task demands. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Reasoning and memory: People make varied use of the information available in working memory
Hardman, Kyle O.; Cowan, Nelson
2015-01-01
Working memory (WM) is used for storing information in a highly-accessible state so that other mental processes, such as reasoning, can use that information. Some WM tasks require that participants not only store information, but also reason about that information in order to perform optimally on the task. In this study, we used visual WM tasks that had both storage and reasoning components in order to determine both how ideally people are able to reason about information in WM and if there is a relationship between information storage and reasoning. We developed novel psychological process models of the tasks that allowed us to estimate for each participant both how much information they had in WM and how efficiently they reasoned about that information. Our estimates of information use showed that participants are not all ideal information users or minimal information users, but rather that there are individual differences in the thoroughness of information use in our WM tasks. However, we found that our participants tended to be more ideal than minimal. One implication of this work is that in order to accurately estimate the amount of information in WM, it is important to also estimate how efficiently that information is used. This new analysis contributes to the theoretical premise that human rationality may be bounded by the complexity of task demands. PMID:26569436
Jannati, Ali; McDonald, John J; Di Lollo, Vincent
2015-06-01
The capacity of visual short-term memory (VSTM) is commonly estimated by K scores obtained with a change-detection task. Contrary to common belief, K may be influenced not only by capacity but also by the rate at which stimuli are encoded into VSTM. Experiment 1 showed that, contrary to earlier conclusions, estimates of VSTM capacity obtained with a change-detection task are constrained by temporal limitations. In Experiment 2, we used change-detection and backward-masking tasks to obtain separate within-subject estimates of K and of rate of encoding, respectively. A median split based on rate of encoding revealed significantly higher K estimates for fast encoders. Moreover, a significant correlation was found between K and the estimated rate of encoding. The present findings raise the prospect that the reported relationships between K and such cognitive concepts as fluid intelligence may be mediated not only by VSTM capacity but also by rate of encoding. (c) 2015 APA, all rights reserved).
Mooring line damping estimation for a floating wind turbine.
Qiao, Dongsheng; Ou, Jinping
2014-01-01
The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
Mooring Line Damping Estimation for a Floating Wind Turbine
Qiao, Dongsheng; Ou, Jinping
2014-01-01
The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design. PMID:25243231
Deep space network software cost estimation model
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1981-01-01
A parametric software cost estimation model prepared for Jet PRopulsion Laboratory (JPL) Deep Space Network (DSN) Data System implementation tasks is described. The resource estimation mdel modifies and combines a number of existing models. The model calibrates the task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software life-cycle statistics.
Zooming in and out from the Mental Number Line: Evidence for a Number Range Effect
ERIC Educational Resources Information Center
Pinhas, Michal; Pothos, Emmanuel M.; Tzelgov, Joseph
2013-01-01
The representation of numbers is commonly viewed as an ordered continuum of magnitudes, referred to as the "mental number line." Previous work has repeatedly shown that number representations evoked by a given task can be easily altered, yielding an ongoing discussion about the basic properties of the mental number line and how malleable…
Two-Dimensional Parson's Puzzles: The Concept, Tools, and First Observations
ERIC Educational Resources Information Center
Ihantola, Petri; Karavirta, Ville
2011-01-01
Parson's programming puzzles are a family of code construction assignments where lines of code are given, and the task is to form the solution by sorting and possibly selecting the correct code lines. We introduce a novel family of Parson's puzzles where the lines of code need to be sorted in two dimensions. The vertical dimension is used to order…
From Dot to Line to Plane: Constellating Unconscious Imagery in Art Therapy
ERIC Educational Resources Information Center
Steinhardt, Lenore
2017-01-01
In this article I describe an art-based procedure with a gradual sequence of drawing tasks that guides an art therapy client through graphic stages from point, to line, to plane. The client begins by making random dots, connecting them one to another with an unbroken line that reaches all the dots, perceiving abstract or figurative imagery in the…
DOT National Transportation Integrated Search
1972-07-01
Increasing automation of air traffic control tasks may have the undesirable side effect of increased monotony as a result of the anticipated reduction in task demands. 50 subjects performed a monotonous, but perceptually demanding task, for approxima...
Relating Androgen Receptor Conformation to Function in Prostate Cancer Cells
2005-01-01
line development , but have made progress towards resolving these issues and in development of alternate strategies. Task 1. Development of AR and...conformation. Task 2. Development of LNCaP Cells to Express Human AR mutants. We experienced unexpected difficulties in Task 2. We transfected the TET...Coactivators in AR Transactivation Summary Androgens drive sex differentiation, bone and muscle development , and promote growth of hormone dependent cancers
The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.
West, T; Ng, L; Campbell, A
2014-12-01
The purpose of this study was to examine the effects of ankle bracing on knee kinetics and kinematics during volleyball tasks. Fifteen healthy, elite, female volleyball players performed a series of straight-line and lateral volleyball tasks with no brace and when wearing an ankle brace. A 14-camera Vicon motion analysis system and AMTI force plate were used to capture the kinetic and kinematic data. Knee range of motion, peak knee anterior-posterior and medial-lateral shear forces, and peak ground reaction forces that occurred between initial contact with the force plate and toe off were compared using paired sample t-tests between the braced and non-braced conditions (P < 0.05). The results revealed no significant effect of bracing on knee kinematics or ground reaction forces during any task or on knee kinetics during the straight-line movement volleyball tasks. However, ankle bracing was demonstrated to reduce knee lateral shear forces during all of the lateral movement volleyball tasks. Wearing the Active Ankle T2 brace will not impact knee joint range of motion and may in fact reduce shear loading to the knee joint in volleyball players. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Characterization of fine motor development: dynamic analysis of children's drawing movements.
Lin, Qiushi; Luo, Jianfei; Wu, Zhongcheng; Shen, Fei; Sun, Zengwu
2015-04-01
In this study, we investigated children's fine motor development by analyzing drawing trajectories, kinematics and kinetics. Straight lines drawing task and circles drawing task were performed by using a force sensitive tablet. Forty right-handed and Chinese mother-tongue students aged 6-12, attending classes from grade 1 to 5, were engaged in the experiment. Three spatial parameters, namely cumulative trace length, vector length of straight line and vertical diameter of circle were determined. Drawing duration, mean drawing velocity, and number of peaks in stroke velocity profile (NPV) were derived as kinematic parameters. Besides mean normal force, two kinetic indices were proposed: normalized force angle regulation (NFR) and variation of fine motor control (VFC) for circles drawing task. The maturation and automation of fine motor ability were reflected by increased drawing velocity, reduced drawing duration, NPV and NFR, with decreased VFC in circles drawing task. Grade and task main effects as well as significant correlations between age and parameters suggest that factors such as schooling, age and task should be considered in the assessment of fine motor skills. Compared with kinematic parameters, findings of NFR and VFC revealed that kinetics is another important perspective in the analysis of fine motor movement. Copyright © 2014 Elsevier B.V. All rights reserved.
Visual search in a forced-choice paradigm
NASA Technical Reports Server (NTRS)
Holmgren, J. E.
1974-01-01
The processing of visual information was investigated in the context of two visual search tasks. The first was a forced-choice task in which one of two alternative letters appeared in a visual display of from one to five letters. The second task included trials on which neither of the two alternatives was present in the display. Search rates were estimated from the slopes of best linear fits to response latencies plotted as a function of the number of items in the visual display. These rates were found to be much slower than those estimated in yes-no search tasks. This result was interpreted as indicating that the processes underlying visual search in yes-no and forced-choice tasks are not the same.
A control-theory model for human decision-making
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.
1971-01-01
A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.
Sasin, Edyta; Nieuwenstein, Mark
2016-12-01
Previous studies have shown that information held in working memory (WM) actively or as a residue of previous processing can lead to attentional capture by corresponding stimuli in the environment. Here, we compared attentional capture by goal-driven and residual WM activation and examined how these effects are affected by dual-task interference. In two experiments, participants performed an animacy judgment task for a word that they did or did not have to remember for a later recognition test. The word was followed in half of the trials by an arithmetic task that served to disrupt the WM activation of the previously processed word. Subsequently, WM-driven capture was assessed by having participants perform a single-target rapid serial visual presentation task in which a line drawing corresponding to the word was presented shortly before a target. The results showed that the line drawing captured attention irrespective of the presence of the arithmetic task when the word had to be remembered. In comparison, the animacy judgment alone resulted in capture only when the arithmetic task was absent, and this effect was equally strong as the capture effect caused by a to-be-remembered word. Taken together, these findings show that although residual and goal-driven WM activation may be equally potent in guiding attentional selection, these two forms of WM activation differ in that residual activation is overwritten by an attention-demanding task, whereas goal-driven WM activation can lead to the reinstatement of a stimulus after performing such a task.
Relative Pose Estimation Using Image Feature Triplets
NASA Astrophysics Data System (ADS)
Chuang, T. Y.; Rottensteiner, F.; Heipke, C.
2015-03-01
A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.
The composite complex span: French validation of a short working memory task.
Gonthier, Corentin; Thomassin, Noémylle; Roulin, Jean-Luc
2016-03-01
Most studies in individual differences in the field of working memory research use complex span tasks to measure working memory capacity. Various complex span tasks based on different materials have been developed, and these tasks have proven both reliable and valid; several complex span tasks are often combined to provide a domain-general estimate of working memory capacity with even better psychometric properties. The present work sought to address two issues. Firstly, having participants perform several full-length complex span tasks in succession makes for a long and tedious procedure. Secondly, few complex span tasks have been translated and validated in French. We constructed a French working memory task labeled the Composite Complex Span (CCS). The CCS includes shortened versions of three classic complex span tasks: the reading span, symmetry span, and operation span. We assessed the psychometric properties of the CCS, including test-retest reliability and convergent validity, with Raven's Advanced Progressive Matrices and with an alpha span task; the CCS demonstrated satisfying qualities in a sample of 1,093 participants. This work provides evidence that shorter versions of classic complex span tasks can yield valid working memory estimates. The materials and normative data for the CCS are also included.
A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Minezaki, Takeo; Matsushita, Kyoko
2015-04-01
We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.
Near and far space neglect: task sensitivity and anatomical substrates.
Aimola, Lina; Schindler, Igor; Simone, Anna Maria; Venneri, Annalena
2012-05-01
Most group studies which have investigated neglect for near and far space have found an increased severity of symptoms in far space compared to near space. However, the majority of these studies used relatively small samples and based their findings almost exclusively on line bisection performance. The aim of the present study was, therefore, to explore the occurrence of neglect for near and far space in a larger group of unselected right brain damaged patients and to evaluate whether neglect specific to near and far space is a task-related deficit or generalises across distance irrespective of task. In addition, a lesion overlap analysis was carried out to identify critical lesion sites associated with distance specific neglect deficits. Thirty-eight right hemisphere damaged patients carried out a line bisection and a cancellation task by using a pen in near space (40 cm) and a laser pointer in far space (320 cm). The results showed that both the number of left-sided omissions and rightward bisection errors were significantly increased in near compared to far space. Distance specific dissociations, albeit less common, were more frequently observed for cancellation than line bisection. These results suggest that space representation in neglect is more severely impaired in near than in far space. In addition, distance related dissociations in neglect may depend on task demands. Although the anatomical findings were broadly consistent with a dorsal and ventral stream dichotomy for near and far space processing, they also suggest the involvement of intermediate structures in distance related neglect phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Duffy, James B.
1992-01-01
The report describes the work breakdown structure (WBS) and its associated WBS dictionary for task area 1 of contract NAS8-39207, advanced transportation system studies (ATSS). This WBS format is consistent with the preliminary design level of detail employed by both task area 1 and task area 4 in the ATSS study and is intended to provide an estimating structure for parametric cost estimates.
Braverman, Ami; Berger, Andrea; Meiran, Nachshon
2014-07-01
According to "hierarchical" multi-step theories, response selection is preceded by a decision regarding which task rule should be executed. Other theories assume a "flat" single-step architecture in which task information and stimulus information are simultaneously considered. Using task switching, the authors independently manipulated two kinds of conflict: task conflict (with information that potentially triggers the relevant or the competing task rule/identity) and response conflict (with information that potentially triggers the relevant or the competing response code/motor response). Event related potentials indicated that the task conflict effect began before the response conflict effect and carried on in parallel with it. These results are more in line with the hierarchical view. Copyright © 2014 Elsevier Inc. All rights reserved.
Visual and skill effects on soccer passing performance, kinematics, and outcome estimations
Basevitch, Itay; Tenenbaum, Gershon; Land, William M.; Ward, Paul
2015-01-01
The role of visual information and action representations in executing a motor task was examined from a mental representations approach. High-skill (n = 20) and low-skill (n = 20) soccer players performed a passing task to two targets at distances of 9.14 and 18.29 m, under three visual conditions: normal, occluded, and distorted vision (i.e., +4.0 corrective lenses, a visual acuity of approximately 6/75) without knowledge of results. Following each pass, participants estimated the relative horizontal distance from the target as the ball crossed the target plane. Kinematic data during each pass were also recorded for the shorter distance. Results revealed that performance on the motor task decreased as a function of visual information and task complexity (i.e., distance from target) regardless of skill level. High-skill players performed significantly better than low-skill players on both the actual passing and estimation tasks, at each target distance and visual condition. In addition, kinematic data indicated that high-skill participants were more consistent and had different kinematic movement patterns than low-skill participants. Findings contribute to the understanding of the underlying mechanisms required for successful performance in a self-paced, discrete and closed motor task. PMID:25784886
Can a virtual reality assessment of fine motor skill predict successful central line insertion?
Mohamadipanah, Hossein; Parthiban, Chembian; Nathwani, Jay; Rutherford, Drew; DiMarco, Shannon; Pugh, Carla
2016-10-01
Due to the increased use of peripherally inserted central catheter lines, central lines are not performed as frequently. The aim of this study is to evaluate whether a virtual reality (VR)-based assessment of fine motor skills can be used as a valid and objective assessment of central line skills. Surgical residents (N = 43) from 7 general surgery programs performed a subclavian central line in a simulated setting. Then, they participated in a force discrimination task in a VR environment. Hand movements from the subclavian central line simulation were tracked by electromagnetic sensors. Gross movements as monitored by the electromagnetic sensors were compared with the fine motor metrics calculated from the force discrimination tasks in the VR environment. Long periods of inactivity (idle time) during needle insertion and lack of smooth movements, as detected by the electromagnetic sensors, showed a significant correlation with poor force discrimination in the VR environment. Also, long periods of needle insertion time correlated to the poor performance in force discrimination in the VR environment. This study shows that force discrimination in a defined VR environment correlates to needle insertion time, idle time, and hand smoothness when performing subclavian central line placement. Fine motor force discrimination may serve as a valid and objective assessment of the skills required for successful needle insertion when placing central lines. Copyright © 2016 Elsevier Inc. All rights reserved.
Bouck, Emily C; Satsangi, Rajiv; Bartlett, Whitney
2016-01-01
Price comparison is an important and complex skill, but it lacks sufficient research attention in terms of educating secondary students with intellectual disability and/or autism spectrum disorder. This alternating treatment design study compared the use of a paper-based number line and audio prompts delivered via an audio recorder to support three secondary students with intellectual disability to independently and accuracy compare the price of three separate grocery items. The study consisted of 22 sessions, spread across baseline, intervention, best treatment, and two different generalization phases. Data were collected on the percent of task analysis steps completed independently, the type of prompts needed, students' accuracy selecting the lowest priced item, and task completion time. With both intervention conditions, students were able to independently complete the task analysis steps as well as accurately select the lowest priced item and decrease their task completion time. For two of the students, the audio recorder condition resulted in the greatest independence and for one the number line. For only one student was the condition with the greatest independence also the condition for the highest rate of accuracy. The results suggest both tools can support students with price comparison. Yet, audio recorders offer students and teachers an age-appropriate and setting-appropriate option. Copyright © 2016 Elsevier Ltd. All rights reserved.
Memory, reasoning, and categorization: parallels and common mechanisms
Hayes, Brett K.; Heit, Evan; Rotello, Caren M.
2014-01-01
Traditionally, memory, reasoning, and categorization have been treated as separate components of human cognition. We challenge this distinction, arguing that there is broad scope for crossover between the methods and theories developed for each task. The links between memory and reasoning are illustrated in a review of two lines of research. The first takes theoretical ideas (two-process accounts) and methodological tools (signal detection analysis, receiver operating characteristic curves) from memory research and applies them to important issues in reasoning research: relations between induction and deduction, and the belief bias effect. The second line of research introduces a task in which subjects make either memory or reasoning judgments for the same set of stimuli. Other than broader generalization for reasoning than memory, the results were similar for the two tasks, across a variety of experimental stimuli and manipulations. It was possible to simultaneously explain performance on both tasks within a single cognitive architecture, based on exemplar-based comparisons of similarity. The final sections explore evidence for empirical and processing links between inductive reasoning and categorization and between categorization and recognition. An important implication is that progress in all three of these fields will be expedited by further investigation of the many commonalities between these tasks. PMID:24987380
Goyette, Sharon Ramos; McCoy, John G; Kennedy, Ashley; Sullivan, Meghan
2012-02-28
It has been well-established that men outperform women on some spatial tasks. The tools commonly used to demonstrate this difference (e.g. The Mental Rotations Task) typically involve problems and solutions that are presented in a context devoid of referents. The study presented here assessed whether the addition of referents (or "landmarks") would attenuate the well-established sex difference on the judgment of line orientation task (JLOT). Three versions of the JLOT were presented in a within design. The first iteration contained the original JLOT (JLOT 1). JLOT 2 contained three "landmarks" or referents and JLOT 3 contained only one landmark. The sex difference on JLOT 1 was completely negated by the addition of three landmarks on JLOT 2 or the addition of one landmark on JLOT3. In addition, salivary testosterone was measured. In men, gains in performance on the JLOT due to the addition of landmarks were positively correlated with testosterone levels. This suggests that men with the highest testosterone levels benefited the most from the addition of landmarks. These data help to highlight different strategies used by men and women to solve spatial tasks. Copyright © 2011 Elsevier Inc. All rights reserved.
Memory, reasoning, and categorization: parallels and common mechanisms.
Hayes, Brett K; Heit, Evan; Rotello, Caren M
2014-01-01
Traditionally, memory, reasoning, and categorization have been treated as separate components of human cognition. We challenge this distinction, arguing that there is broad scope for crossover between the methods and theories developed for each task. The links between memory and reasoning are illustrated in a review of two lines of research. The first takes theoretical ideas (two-process accounts) and methodological tools (signal detection analysis, receiver operating characteristic curves) from memory research and applies them to important issues in reasoning research: relations between induction and deduction, and the belief bias effect. The second line of research introduces a task in which subjects make either memory or reasoning judgments for the same set of stimuli. Other than broader generalization for reasoning than memory, the results were similar for the two tasks, across a variety of experimental stimuli and manipulations. It was possible to simultaneously explain performance on both tasks within a single cognitive architecture, based on exemplar-based comparisons of similarity. The final sections explore evidence for empirical and processing links between inductive reasoning and categorization and between categorization and recognition. An important implication is that progress in all three of these fields will be expedited by further investigation of the many commonalities between these tasks.
Real-time design with peer tasks
NASA Technical Reports Server (NTRS)
Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.
1995-01-01
We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.
International Space Station ECLSS Technical Task Agreement Summary Report
NASA Technical Reports Server (NTRS)
Minton-Summers, S.; Ray, C. D.
1996-01-01
A summary of work accomplished under Technical Task Agreement by the Marshall Space Flight Center (MSFC) documents activities regarding the Environmental Control and Life Support Systems (ECLSS) of the International Space Station (ISS) program. These MSFC activities were in-line to the designing, the development, the testing, and the flight of ECLSS equipment. MSFC's unique capabilities for performing integrated system testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs are the basis for the Technical Task Agreement activities. Tasks were completed in the Water Recovery Systems, Air Revitalization Systems, and microbiology areas. The results of each task is described in this summary report.
NASA Astrophysics Data System (ADS)
Tsuno, S.; Korenaga, M.; Okamoto, K.; Chimoto, K.; Yamanaka, H.; Yamada, N.; Matsushima, T.
2017-12-01
To evaluate local site effects in the Kumamoto Plain, we installed 15 temporary seismic stations along the north-south survey line, after the 2016 Kumamoto earthquake foreshock (Mj 6.4). In this report, to investigate earthquake ground motions observed along the north-south survey line, we estimated site amplification factors from weak ground motion data and estimated S-wave velocity structures by array microtremor observations at temporary seismic stations. We installed 15 temporary seismic stations at an interval of 300m to 2.5km along the north-south survey line. We estimated site amplification factors, with a station at Mt. Kinbo as a reference. Site amplification factors at the middle part and the southern part along the survey line, located in the alluvial lowland, were dominated in the frequency of 1-2Hz. On the other hand, site amplification factors at the northern part along the survey line were dominated in the frequency of 2-5Hz. It suggests that the ground profiles near the surface are complicate along this north-south survey line in the Kumamoto Plain. Therefore, we performed array microtremor observations at the temporary seismic stations, to estimate S-wave velocity structures along the north-south survey line. We obtained phase velocities of Rayleigh waves by the SPAC method and estimated S-wave velocity structures by applying the Genetic Algorism to those phase velocity. The low velocity layer with a thickness of around 15m was deposited on the surface at sites located in the alluvial lowland. Finally, we compared the distribution of PGAs observed along the north-south survey line to AVs30 estimated by S-wave velocity structures. As a result, PGAs along the survey line were strongly concerned by AVs30. We concluded that earthquake ground motions in the frequency of more than 1Hz observed in this north-south survey line were excited by the low velocity layer near the surface.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Ventilation System Surveillance Requirements To Operate for 10 Hours per Month,'' Using the Consolidated Line... currently require operating the ventilation system for at least 10 continuous hours with the heaters... Technical Specifications (TSs) Task Force (TSTF) Traveler TSTF-522, Revision 0, ``Revise Ventilation System...
Common Developmental Tasks in Forming Reconstituted Families.
ERIC Educational Resources Information Center
Kleinman, Judith
1979-01-01
Developmental tasks common to the formation of a reconstituted family are described, particularly the continued mourning of the old family; the formation of a solid marital relationship despite the difficulties presented by past failures and the presence of children; and the formation of sibling alliances across family lines. (Author)
Time estimation as a secondary task to measure workload: Summary of research
NASA Technical Reports Server (NTRS)
Hart, S. G.; Mcpherson, D.; Loomis, L. L.
1978-01-01
Actively produced intervals of time were found to increase in length and variability, whereas retrospectively produced intervals decreased in length although they also increased in variability with the addition of a variety of flight-related tasks. If pilots counted aloud while making a production, however, the impact of concurrent activity was minimized, at least for the moderately demanding primary tasks that were selected. The effects of feedback on estimation accuracy and consistency were greatly enhanced if a counting or tapping production technique was used. This compares with the minimal effect that feedback had when no overt timekeeping technique was used. Actively made verbal estimates of sessions filled with different activities performed during the interval were increased. Retrospectively made verbal estimates, however, increased in length as the amount and complexity of activities performed during the interval were increased.
Martinez, Victor; Bünger, Lutz; Hill, William G
2000-01-01
Data were analysed from a divergent selection experiment for an indicator of body composition in the mouse, the ratio of gonadal fat pad to body weight (GFPR). Lines were selected for 20 generations for fat (F), lean (L) or were unselected (C), with three replicates of each. Selection was within full-sib families, 16 families per replicate for the first seven generations, eight subsequently. At generation 20, GFPR in the F lines was twice and in the L lines half that of C. A log transformation removed both asymmetry of response and heterogeneity of variance among lines, and so was used throughout. Estimates of genetic variance and heritability (approximately 50%) obtained using REML with an animal model were very similar, whether estimated from the first few generations of selection, or from all 20 generations, or from late generations having fitted pedigree. The estimates were also similar when estimated from selected or control lines. Estimates from REML also agreed with estimates of realised heritability. The results all accord with expectations under the infinitesimal model, despite the four-fold changes in mean. Relaxed selection lines, derived from generation 20, showed little regression in fatness after 40 generations without selection. PMID:14736404
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2012-01-01
In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231
Optimal estimation of suspended-sediment concentrations in streams
Holtschlag, D.J.
2001-01-01
Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52.7 to 107%, and from 39.5 to 93.0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged from 48.8 to 158%, and from 50.6 to 176%, respectively. The standard errors of simple and multiple regression estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly or shorter intervals is needed.
Numerosity but Not Texture-Density Discrimination Correlates with Math Ability in Children
ERIC Educational Resources Information Center
Anobile, Giovanni; Castaldi, Elisa; Turi, Marco; Tinelli, Francesca; Burr, David C.
2016-01-01
Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively…
Hurst, Michelle; Monahan, K Leigh; Heller, Elizabeth; Cordes, Sara
2014-11-01
When placing numbers along a number line with endpoints 0 and 1000, children generally space numbers logarithmically until around the age of 7, when they shift to a predominantly linear pattern of responding. This developmental shift of responding on the number placement task has been argued to be indicative of a shift in the format of the underlying representation of number (Siegler & Opfer, ). In the current study, we provide evidence from both child and adult participants to suggest that performance on the number placement task may not reflect the structure of the mental number line, but instead is a function of the fluency (i.e. ease) with which the individual can work with the values in the sequence. In Experiment 1, adult participants respond logarithmically when placing numbers on a line with less familiar anchors (1639 to 2897), despite linear responding on control tasks with standard anchors involving a similar range (0 to 1287) and a similar numerical magnitude (2000 to 3000). In Experiment 2, we show a similar developmental shift in childhood from logarithmic to linear responding for a non-numerical sequence with no inherent magnitude (the alphabet). In conclusion, we argue that the developmental trend towards linear behavior on the number line task is a product of successful strategy use and mental fluency with the values of the sequence, resulting from familiarity with endpoints and increased knowledge about general ordering principles of the sequence.A video abstract of this article can be viewed at:http://www.youtube.com/watch?v=zg5Q2LIFk3M. © 2014 John Wiley & Sons Ltd.
SAR target recognition and posture estimation using spatial pyramid pooling within CNN
NASA Astrophysics Data System (ADS)
Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin
2018-01-01
Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.
Accurately estimating PSF with straight lines detected by Hough transform
NASA Astrophysics Data System (ADS)
Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong
2018-04-01
This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.
Evaluation of DCS III Transmission Alternatives, Phase II, Task 1.
1981-08-31
Agency Defense Communications Engineering Center Reston, Virginia 22090 Contract No. DCA 100-79-C--0044 ,D ii 2 01982 ONG SPACI IAE K ROONOO IIACH...Transmission Media Alternatives Task 2. Development of Evolving DCS Transmission System Al ternatives Task 3. Identification of Technology and Regulatory...For existing tree growth, add 15 m. For smaller vegetation, add 3 m. 11. Determine the antenna tower heights to insure line-of-sight clearance above the
Cognitive task analysis: harmonizing tasks to human capacities.
Neerincx, M A; Griffioen, E
1996-04-01
This paper presents the development of a cognitive task analysis that assesses the task load of jobs and provides indicators for the redesign of jobs. General principles of human task performance were selected and, subsequently, integrated into current task modelling techniques. The resulting cognitive task analysis centres around four aspects of task load: the number of actions in a period, the ratio between knowledge- and rule-based actions, lengthy uninterrupted actions, and momentary overloading. The method consists of three stages: (1) construction of a hierarchical task model, (2) a time-line analysis and task load assessment, and (3), if necessary, adjustment of the task model. An application of the cognitive task analysis in railway traffic control showed its benefits over the 'old' task load analysis of the Netherlands Railways. It provided a provisional standard for traffic control jobs, conveyed two load risks -- momentary overloading and underloading -- and resulted in proposals to satisfy the standard and to diminish the two load risk.
Armeson, Kent E.; Hill, Elizabeth G.; Bonilha, Heather Shaw; Martin-Harris, Bonnie
2017-01-01
Purpose The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. Method This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived Modified Barium Swallow Impairment Profile (MBSImP™©; Martin-Harris et al., 2008) Overall Impression (OI; worst) scores using generalized estimating equations. The range of probabilities across swallowing tasks was calculated to discern which swallowing task(s) yielded the worst performance. Results Large-volume, thin-liquid swallowing tasks had the highest probabilities of yielding the OI scores for oral containment and airway protection. The cookie swallowing task was most likely to yield OI scores for oral clearance. Several swallowing tasks had nearly equal probabilities (≤ .20) of yielding the OI score. Conclusions The MBSS must represent impairment while requiring boluses that challenge the swallowing system. No single swallowing task had a sufficiently high probability to yield the identification of the worst score for each physiological component. Omission of swallowing tasks will likely fail to capture the most severe impairment for physiological components critical for safe and efficient swallowing. Results provide further support for standardized, well-tested protocols during MBSS. PMID:28614846
Hazelwood, R Jordan; Armeson, Kent E; Hill, Elizabeth G; Bonilha, Heather Shaw; Martin-Harris, Bonnie
2017-07-12
The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived Modified Barium Swallow Impairment Profile (MBSImP™©; Martin-Harris et al., 2008) Overall Impression (OI; worst) scores using generalized estimating equations. The range of probabilities across swallowing tasks was calculated to discern which swallowing task(s) yielded the worst performance. Large-volume, thin-liquid swallowing tasks had the highest probabilities of yielding the OI scores for oral containment and airway protection. The cookie swallowing task was most likely to yield OI scores for oral clearance. Several swallowing tasks had nearly equal probabilities (≤ .20) of yielding the OI score. The MBSS must represent impairment while requiring boluses that challenge the swallowing system. No single swallowing task had a sufficiently high probability to yield the identification of the worst score for each physiological component. Omission of swallowing tasks will likely fail to capture the most severe impairment for physiological components critical for safe and efficient swallowing. Results provide further support for standardized, well-tested protocols during MBSS.
High-performance object tracking and fixation with an online neural estimator.
Kumarawadu, Sisil; Watanabe, Keigo; Lee, Tsu-Tian
2007-02-01
Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes.
Number Sense and Mathematics: Which, When and How?
2017-01-01
Individual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts. In this study, 4,984 16-year-old students were assessed on estimation ability, one aspect of number sense. Estimation was measured using 2 different tasks: number line and dot-comparison. Using cognitive and achievement data previously collected from these students at ages 7, 9, 10, 12, and 14, the study explored for which of the measures and when in development these links are observed, and how strong these links are and how much these links are moderated by other cognitive abilities. The 2 number sense measures correlated modestly with each other (r = .22), but moderately with mathematics at age 16. Both measures were also associated with earlier mathematics; but this association was uneven across development and was moderated by other cognitive abilities. PMID:28758784
Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions
NASA Technical Reports Server (NTRS)
Tolson, Robert H.; Prince, Jill L. H.
2011-01-01
Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.
NASA Technical Reports Server (NTRS)
Levak, Daniel
1993-01-01
The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.
Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.
2015-01-01
Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798
Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.
Saiki, Jun; Miyatsuji, Hirofumi
2009-03-23
Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.
Hanford Environmental Dose Reconstruction Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, S.D.; Finch, S.M.
1992-10-01
The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.
El Haj, Mohamad; Moroni, Christine; Samson, Séverine; Fasotti, Luciano; Allain, Philippe
2013-10-01
Unlike prospective time perception paradigms, in which participants are aware that they have to estimate forthcoming time, little is known about retrospective time perception in normal aging and Alzheimer's disease (AD). Our paper addresses this shortcoming by comparing prospective and retrospective time estimation in younger adults, older adults, and AD patients. In four prospective tasks (lasting 30s, 60s, 90s, or 120s) participants were asked to read a series of numbers and to provide a verbal estimation of the reading time. In four other retrospective tasks, they were not informed about time judgment until they were asked to provide a verbal estimation of four elapsed time intervals (lasting 30s, 60s, 90s, or 120s). AD participants gave shorter verbal time estimations than older adults and younger participants did, suggesting that time is perceived to pass quickly in these patients. For all participants, the duration of the retrospective tasks was underestimated as compared to the prospective tasks and both estimations were shorter than the real time interval. Prospective time estimation was further correlated with mental time travel, as measured with the Remember/Know paradigm. Mental time travel was even higher correlated with retrospective time estimation. Our findings shed light on the relationship between time perception and the ability to mentally project oneself into time, two skills contributing to human memory functioning. Finally, time perception deficits, as observed in AD patients, can be interpreted in terms of dramatic changes occurring in frontal lobes and hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.
Evaluation of potential benefits of wider and brighter edge line pavement markings.
DOT National Transportation Integrated Search
2010-07-01
This report documents the findings of a two-year study that investigated the potential benefits of wider : edge line pavement markings. There were four general tasks discussed in the report: 1) review of literature, : 2) survey of the state of the pr...
78 FR 34154 - Reports, Forms, and Record Keeping Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
..., mechanical, or other technological collection techniques or other forms of information technology, e.g... would be compared. The survey would be conducted primarily on-line, with the on-line technology serving... data applicable to these tasks, they do not tell the entire story. Attitudes, perceptions, knowledge...
Community-LINE Source Model (C-LINE) to estimate roadway emissions
C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V
2017-03-01
A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.
2018-04-01
The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.
NASA Technical Reports Server (NTRS)
Spencer, M. M.; Wolf, J. M.; Schall, M. A.
1974-01-01
A system of computer programs were developed which performs geometric rectification and line-by-line mapping of airborne multispectral scanner data to ground coordinates and estimates ground area. The system requires aircraft attitude and positional information furnished by ancillary aircraft equipment, as well as ground control points. The geometric correction and mapping procedure locates the scan lines, or the pixels on each line, in terms of map grid coordinates. The area estimation procedure gives ground area for each pixel or for a predesignated parcel specified in map grid coordinates. The results of exercising the system with simulated data showed the uncorrected video and corrected imagery and produced area estimates accurate to better than 99.7%.
Adaptive kernel function using line transect sampling
NASA Astrophysics Data System (ADS)
Albadareen, Baker; Ismail, Noriszura
2018-04-01
The estimation of f(0) is crucial in the line transect method which is used for estimating population abundance in wildlife survey's. The classical kernel estimator of f(0) has a high negative bias. Our study proposes an adaptation in the kernel function which is shown to be more efficient than the usual kernel estimator. A simulation study is adopted to compare the performance of the proposed estimators with the classical kernel estimators.
A chain-retrieval model for voluntary task switching.
Vandierendonck, André; Demanet, Jelle; Liefooghe, Baptist; Verbruggen, Frederick
2012-09-01
To account for the findings obtained in voluntary task switching, this article describes and tests the chain-retrieval model. This model postulates that voluntary task selection involves retrieval of task information from long-term memory, which is then used to guide task selection and task execution. The model assumes that the retrieved information consists of acquired sequences (or chains) of tasks, that selection may be biased towards chains containing more task repetitions and that bottom-up triggered repetitions may overrule the intended task. To test this model, four experiments are reported. In Studies 1 and 2, sequences of task choices and the corresponding transition sequences (task repetitions or switches) were analyzed with the help of dependency statistics. The free parameters of the chain-retrieval model were estimated on the observed task sequences and these estimates were used to predict autocorrelations of tasks and transitions. In Studies 3 and 4, sequences of hand choices and their transitions were analyzed similarly. In all studies, the chain-retrieval model yielded better fits and predictions than statistical models of event choice. In applications to voluntary task switching (Studies 1 and 2), all three parameters of the model were needed to account for the data. When no task switching was required (Studies 3 and 4), the chain-retrieval model could account for the data with one or two parameters clamped to a neutral value. Implications for our understanding of voluntary task selection and broader theoretical implications are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
The Effects of Study Tasks in a Computer-Based Chemistry Learning Environment
NASA Astrophysics Data System (ADS)
Urhahne, Detlef; Nick, Sabine; Poepping, Anna Christin; Schulz, Sarah Jayne
2013-12-01
The present study examines the effects of different study tasks on the acquisition of knowledge about acids and bases in a computer-based learning environment. Three different task formats were selected to create three treatment conditions: learning with gap-fill and matching tasks, learning with multiple-choice tasks, and learning only from text and figures without any additional tasks. Participants were 196 ninth-grade students who learned with a self-developed multimedia program in a pretest-posttest control group design. Research results reveal that gap-fill and matching tasks were most effective in promoting knowledge acquisition, followed by multiple-choice tasks, and no tasks at all. The findings are in line with previous research on this topic. The effects can possibly be explained by the generation-recognition model, which predicts that gap-fill and matching tasks trigger more encompassing learning processes than multiple-choice tasks. It is concluded that instructional designers should incorporate more challenging study tasks for enhancing the effectiveness of computer-based learning environments.
Exploring the repetition bias in voluntary task switching.
Mittelstädt, Victor; Dignath, David; Schmidt-Ott, Magdalena; Kiesel, Andrea
2018-01-01
In the voluntary task-switching paradigm, participants are required to randomly select tasks. We reasoned that the consistent finding of a repetition bias (i.e., participants repeat tasks more often than expected by chance) reflects reasonable adaptive task selection behavior to balance the goal of random task selection with the goals to minimize the time and effort for task performance. We conducted two experiments in which participants were provided with variable amount of preview for the non-chosen task stimuli (i.e., potential switch stimuli). We assumed that switch stimuli would initiate some pre-processing resulting in improved performance in switch trials. Results showed that reduced switch costs due to extra-preview in advance of each trial were accompanied by more task switches. This finding is in line with the characteristics of rational adaptive behavior. However, participants were not biased to switch tasks more often than chance despite large switch benefits. We suggest that participants might avoid effortful additional control processes that modulate the effects of preview on task performance and task choice.
Estimation of duration and mental workload at differing times of day by males and females
NASA Technical Reports Server (NTRS)
Hancock, P. A.; Rodenburg, G. J.; Mathews, W. D.; Vercruyssen, M.
1988-01-01
Two experiments are reported which investigated whether male and female operator duration estimation and subjective workload followed conventional circadian fluctuation. In the first experiment, twenty-four subjects performed a filled time-estimation task in a constant blacked-out, noise-reduced environment at 0800, 1200, 1600, and 2000 h. In the second experiment, twelve subjects performed an unfilled time estimation task in similar conditions at 0900, 1400, and 1900 h. At the termination of all experimental sessions, participants completed the NASA TLX workload assessment questionnaire as a measure of perceived mental workload. Results indicated that while physiological response followed an expected pattern, estimations of duration and subjective perception of workload showed no significant effects for time-of-day. In each of the experiments, however, there were significant differences in durational estimates and mental workload response depending upon the gender of the participant. Results are taken to support the assertion that subjective workload is responsive largely to task-related factors and indicates the important differences that may be expected due to operator gender.
Longitudinal changes in young children’s 0–100 to 0–1000 number-line error signatures
Reeve, Robert A.; Paul, Jacob M.; Butterworth, Brian
2015-01-01
We use a latent difference score (LDS) model to examine changes in young children’s number-line (NL) error signatures (errors marking numbers on a NL) over 18 months. A LDS model (1) overcomes some of the inference limitations of analytic models used in previous research, and in particular (2) provides a more reliable test of hypotheses about the meaning and significance of changes in NL error signatures over time and task. The NL error signatures of 217 6-year-olds’ (on test occasion one) were assessed three times over 18 months, along with their math ability on two occasions. On the first occasion (T1) children completed a 0–100 NL task; on the second (T2) a 0–100 NL and a 0–1000 NL task; on the third (T3) occasion a 0–1000 NL task. On the third and fourth occasions (T3 and T4), children completed mental calculation tasks. Although NL error signatures changed over time, these were predictable from other NL task error signatures, and predicted calculation accuracy at T3, as well as changes in calculation between T3 and T4. Multiple indirect effects (change parameters) showed that associations between initial NL error signatures (0–100 NL) and later mental calculation ability were mediated by error signatures on the 0–1000 NL task. The pattern of findings from the LDS model highlight the value of identifying direct and indirect effects in characterizing changing relationships in cognitive representations over task and time. Substantively, they support the claim that children’s NL error signatures generalize over task and time and thus can be used to predict math ability. PMID:26029152
ERIC Educational Resources Information Center
Seegers, Gerard; Van Putten, Cornelis M.; Vermeer, Harriet J.
2004-01-01
The authors investigated the effects of former learning experiences on how students adapt to challenging mathematics tasks. A distinction has been made between domain-specific variables (goal orientation, self-concept of mathematics ability) and task- (or context-) specific appraisals (estimated competence for, attractiveness and relevance of the…
Smile line assessment comparing quantitative measurement and visual estimation.
Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie
2011-02-01
Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
"Flash" dance: how speed modulates percieved duration in dancers and non-dancers.
Sgouramani, Helena; Vatakis, Argiro
2014-03-01
Speed has been proposed as a modulating factor on duration estimation. However, the different measurement methodologies and experimental designs used have led to inconsistent results across studies, and, thus, the issue of how speed modulates time estimation remains unresolved. Additionally, no studies have looked into the role of expertise on spatiotemporal tasks (tasks requiring high temporal and spatial acuity; e.g., dancing) and susceptibility to modulations of speed in timing judgments. In the present study, therefore, using naturalistic, dynamic dance stimuli, we aimed at defining the role of speed and the interaction of speed and experience on time estimation. We presented videos of a dancer performing identical ballet steps in fast and slow versions, while controlling for the number of changes present. Professional dancers and non-dancers performed duration judgments through a production and a reproduction task. Analysis revealed a significantly larger underestimation of fast videos as compared to slow ones during reproduction. The exact opposite result was true for the production task. Dancers were significantly less variable in their time estimations as compared to non-dancers. Speed and experience, therefore, affect the participants' estimates of time. Results are discussed in association to the theoretical framework of current models by focusing on the role of attention. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamauchi, Makoto; Iwamoto, Kazuyo
2010-05-01
Line heating is a skilled task in shipbuilding to shape the outer plates of ship hulls. Real-time information on the deformation of the plates during the task would be helpful to workers performing this process. Therefore, we herein propose an interactive scheme for supporting workers performing line heating; the system provides such information through an optical shape measurement instrument combined with an augmented reality (AR) system. The instrument was designed and fabricated so that the measured data were represented using coordinates based on fiducial markers. Since the markers were simultaneously used in the AR system for the purpose of positioning, the data could then be displayed to the workers through a head-mounted display as a virtual image overlaid on the plates. Feedback of the shape measurement results was thus performed in real time using the proposed system.
Development of Coordination in Time Estimation
ERIC Educational Resources Information Center
Kiefer, Adam W.; Wallot, Sebastian; Gresham, Lori J.; Kloos, Heidi; Riley, Michael A.; Shockley, Kevin; Van Orden, Guy
2014-01-01
How to best characterize cognitive development? The claim put forward in this article is that development is the improvement of a kind of coordination among a variety of factors. To determine the development of coordination in a cognitive task, children between 4 and 12 years of age and adults participated in a time estimation task: They had to…
ERIC Educational Resources Information Center
Dignath, David; Kiesel, Andrea; Eder, Andreas B.
2015-01-01
Conflict processing is assumed to serve two crucial, yet distinct functions: Regarding task performance, control is adjusted to overcome the conflict. Regarding task choice, control is harnessed to bias decision making away from the source of conflict. Despite recent theoretical progress, until now two lines of research addressed these…
Developmental Trajectory of Pseudoneglect in Adults Using the Greyscales Task
ERIC Educational Resources Information Center
Friedrich, Trista E.; Hunter, Paulette V.; Elias, Lorin J.
2016-01-01
Neurologically healthy adults display a reliable but slight leftward spatial bias, and this bias appears to change with age (Jewell & McCourt, 2000). Studies using line bisection and the landmark task to investigate pseudoneglect in participants over 60 years of age have shown suppression and near reversal of the leftward response bias. The…
Exaggerated Leftward Bias in the Mental Number Line of Patients with Schizophrenia
ERIC Educational Resources Information Center
Cavezian, Celine; Rossetti, Yves; Danckert, James; d'Amato, Thierry; Dalery, Jean; Saoud, Mohamed
2007-01-01
Several visuo-motor tasks can be used to demonstrate biases towards left hemispace in schizophrenic patients, suggesting a minor right hemineglect. Recent studies in neglect patients used a new number bisection task to highlight a lateralized defect in their visuo-spatial representation of numbers. To test a possible lateralized representational…
The Development of the Graphics-Decoding Proficiency Instrument
ERIC Educational Resources Information Center
Lowrie, Tom; Diezmann, Carmel M.; Kay, Russell
2011-01-01
The graphics-decoding proficiency (G-DP) instrument was developed as a screening test for the purpose of measuring students' (aged 8-11 years) capacity to solve graphics-based mathematics tasks. These tasks include number lines, column graphs, maps and pie charts. The instrument was developed within a theoretical framework which highlights the…
On-Line Orthographic Influences on Spoken Language in a Semantic Task
ERIC Educational Resources Information Center
Pattamadilok, Chotiga; Perre, Laetitia; Dufau, Stephane; Ziegler, Johannes C.
2009-01-01
Literacy changes the way the brain processes spoken language. Most psycholinguists believe that orthographic effects on spoken language are either strategic or restricted to meta-phonological tasks. We used event-related brain potentials (ERPs) to investigate the locus and the time course of orthographic effects on spoken word recognition in a…
The effect of concurrent semantic categorization on delayed serial recall.
Acheson, Daniel J; MacDonald, Maryellen C; Postle, Bradley R
2011-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Participants engaged in 2 picture-judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line-orientation judgments, engaging in semantic categorization judgments increased the proportion of item-ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture-judgment task manipulations. These results demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance.
The Effect of Concurrent Semantic Categorization on Delayed Serial Recall
Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.
2010-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Subjects engaged in two picture judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line orientation judgments, engaging in semantic categorization judgments increased the proportion of item ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture judgment task manipulations. These results thus demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance. PMID:21058880
2009-04-03
the concept calls for interagency task forces ( IATF ) co-led by a Special Representative of the President and the Commander of a military Joint Task...functional lines, civilian and military members comprise the IATF staff. Furthermore, when possible, the concept establishes the IATF early outside the...prepare and plan for the complex contingency. When deployed, the IATF relies on the military joint task force for most of its support including
Short Vigilance Tasks are Hard Work Even If Time Flies
2016-10-21
maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other...actual time. Upon completion of the task, participants filled out questionnaires related to the hedonic and temporal evaluation of the task. Participants...time. Upon completion of the task, participants filled out questionnaires related to the hedonic and temporal evaluation of the task. Participants
Teachers' Knowledge About Informal Line of Best Fit
ERIC Educational Resources Information Center
Casey, Stephanie A.; Wasserman, Nicholas H.
2015-01-01
The purpose of this study was to investigate teachers' subject matter knowledge relevant to the teaching of informal line of best fit. Task-based interviews were conducted with nineteen pre-service and in-service mathematics teachers. The results include descriptions and categorizations of teachers' conceptions, criteria for placement, accuracy of…
Teamwork on the Line Can Pay Off down the Line
ERIC Educational Resources Information Center
Lantz, Annika
2011-01-01
Purpose: Employees' work in innovation processes generates ideas, but more often it serves to create conditions so that new products or services can be effectively produced or delivered. Self-organizational activities involve proactively handling new possibilities, unexpected situations, problems or tasks. The aim of this paper is to provide…
Operational Design: The Art of Framing the Solution
2010-04-01
of moral or physical strength, power, and resistance — what Clausewitz called ‘the hub of all power and movement, on which everything depends…the... physical lines of operation to create decisive points. Connecting the dots already examined leads to an operational design construct that is...are identified, they should be oriented along physical or logical lines of operation. o Defining Tasks. Once lines of operation are developed
Sheridan, Rebecca; van Rooijen, Maaike; Giles, Oscar; Mushtaq, Faisal; Steenbergen, Bert; Mon-Williams, Mark; Waterman, Amanda
2017-10-01
Mathematics is often conducted with a writing implement. But is there a relationship between numerical processing and sensorimotor 'pen' control? We asked participants to move a stylus so it crossed an unmarked line at a location specified by a symbolic number (1-9), where number colour indicated whether the line ran left-right ('normal') or vice versa ('reversed'). The task could be simplified through the use of a 'mental number line' (MNL). Many modern societies use number lines in mathematical education and the brain's representation of number appears to follow a culturally determined spatial organisation (so better task performance is associated with this culturally normal orientation-the MNL effect). Participants (counter-balanced) completed two consistent blocks of trials, 'normal' and 'reversed', followed by a mixed block where line direction varied randomly. Experiment 1 established that the MNL effect was robust, and showed that the cognitive load associated with reversing the MNL not only affected response selection but also the actual movement execution (indexed by duration) within the mixed trials. Experiment 2 showed that an individual's motor abilities predicted performance in the difficult (mixed) condition but not the easier blocks. These results suggest that numerical processing is not isolated from motor capabilities-a finding with applied consequences.
Recommended Isolated-Line Profile for Representing High-Resolution Spectroscoscopic Transitions
NASA Astrophysics Data System (ADS)
Tennyson, J.; Bernath, P. F.; Campargue, A.; Császár, A. G.; Daumont, L.; Gamache, R. R.; Hodges, J. T.; Lisak, D.; Naumenko, O. V.; Rothman, L. S.; Tran, H.; Hartmann, J.-M.; Zobov, N. F.; Buldyreva, J.; Boone, C. D.; De Vizia, M. Domenica; Gianfrani, L.; McPheat, R.; Weidmann, D.; Murray, J.; Ngo, N. H.; Polyansky, O. L.
2014-06-01
Recommendations of an IUPAC Task Group, formed in 2011 on "Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and theory" (Project No. 2011-022-2-100), on line profiles of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules are presented. The well-documented inadequacies of the Voigt profile, used almost universally by databases and radiative-transfer codes to represent pressure effects and Doppler broadening in isolated vibrational-rotational and pure rotational transitions of the water molecule, have resulted in the development of a variety of alternative line profile models. These models capture more of the physics of the influence of pressure on line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially-Correlated quadratic-Speed-Dependent Hard-Collision profile should be adopted as the appropriate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann-Tran profile (HTP). This profile is sophisticated enough to capture the various collisional contributions to the isolated line shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including the Voigt profile, under certain simplifying assumptions. For further details see: J. Tennyson et al, Pure Appl. Chem., 2014, in press.
Refining Estimates of Bird Collision and Electrocution Mortality at Power Lines in the United States
Loss, Scott R.; Will, Tom; Marra, Peter P.
2014-01-01
Collisions and electrocutions at power lines are thought to kill large numbers of birds in the United States annually. However, existing estimates of mortality are either speculative (for electrocution) or based on extrapolation of results from one study to all U.S. power lines (for collision). Because national-scale estimates of mortality and comparisons among threats are likely to be used for prioritizing policy and management strategies and for identifying major research needs, these estimates should be based on systematic and transparent assessment of rigorously collected data. We conducted a quantitative review that incorporated data from 14 studies meeting our inclusion criteria to estimate that between 12 and 64 million birds are killed each year at U.S. power lines, with between 8 and 57 million birds killed by collision and between 0.9 and 11.6 million birds killed by electrocution. Sensitivity analyses indicate that the majority of uncertainty in our estimates arises from variation in mortality rates across studies; this variation is due in part to the small sample of rigorously conducted studies that can be used to estimate mortality. Little information is available to quantify species-specific vulnerability to mortality at power lines; the available literature over-represents particular bird groups and habitats, and most studies only sample and present data for one or a few species. Furthermore, additional research is needed to clarify whether, to what degree, and in what regions populations of different bird species are affected by power line-related mortality. Nonetheless, our data-driven analysis suggests that the amount of bird mortality at U.S. power lines is substantial and that conservation management and policy is necessary to reduce this mortality. PMID:24991997
Deep space network software cost estimation model
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1981-01-01
A parametric software cost estimation model prepared for Deep Space Network (DSN) Data Systems implementation tasks is presented. The resource estimation model incorporates principles and data from a number of existing models. The model calibrates task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit DSN software life cycle statistics. The estimation model output scales a standard DSN Work Breakdown Structure skeleton, which is then input into a PERT/CPM system, producing a detailed schedule and resource budget for the project being planned.
Simmering, Vanessa R
2016-09-01
Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real-time stability. The monograph concludes with implications for understanding memory, behavior, and development in a broader range of cognitive development. © 2016 The Society for Research in Child Development, Inc.
Hanford Environmental Dose Reconstruction Project. Monthly report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, S.D.; Finch, S.M.
1992-10-01
The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.
Suboptimal Decision Criteria Are Predicted by Subjectively Weighted Probabilities and Rewards
Ackermann, John F.; Landy, Michael S.
2014-01-01
Subjects performed a visual detection task in which the probability of target occurrence at each of the two possible locations, and the rewards for correct responses for each, were varied across conditions. To maximize monetary gain, observers should bias their responses, choosing one location more often than the other in line with the varied probabilities and rewards. Typically, and in our task, observers do not bias their responses to the extent they should, and instead distribute their responses more evenly across locations, a phenomenon referred to as ‘conservatism.’ We investigated several hypotheses regarding the source of the conservatism. We measured utility and probability weighting functions under Prospect Theory for each subject in an independent economic choice task and used the weighting-function parameters to calculate each subject’s subjective utility (SU(c)) as a function of the criterion c, and the corresponding weighted optimal criteria (wcopt). Subjects’ criteria were not close to optimal relative to wcopt. The slope of SU (c) and of expected gain EG(c) at the neutral criterion corresponding to β = 1 were both predictive of subjects’ criteria. The slope of SU(c) was a better predictor of observers’ decision criteria overall. Thus, rather than behaving optimally, subjects move their criterion away from the neutral criterion by estimating how much they stand to gain by such a change based on the slope of subjective gain as a function of criterion, using inherently distorted probabilities and values. PMID:25366822
Harvey, Philip D; Stone, Laura; Lowenstein, David; Czaja, Sara J; Heaton, Robert K; Twamley, Elizabeth W; Patterson, Thomas L
2013-06-01
Despite multiple lines of evidence suggesting that people with schizophrenia tend to overestimate their ability to perform everyday tasks such as money management, self-report methods are still widely used to assess functioning. In today's technology driven financial world patients are faced with increasingly complex financial management tasks. To meet these challenges adequate financial skills are required. Thus, accurate assessments of these abilities are critical to decisions regarding a patient's need for support such as a financial trustee. As part of the larger VALERO study, 195 patients with schizophrenia were asked to self-report their everyday financial skills (five common financial tasks) with the Independent Living Skills Survey (ILSS). They were also assessed with performance-based measures of neuro-cognition and functional capacity with a focus on financial skills. In addition, a friend, relative, or clinician informant was interviewed with the ILSS and a best estimate rating of functioning was generated. Scores on the performance-based measures of financial skills and neuropsychological tests were uncorrelated with self-reported financial activities. Interviewer and all informant judgments of financial abilities were also minimally correlated with performance on functional skill tests. Discrete financial skills appear to be challenging for clinicians to rate with accuracy without the use of direct assessments. Direct assessment of financial skills seems prudent when making determinations about the need for guardianship or other financial supervision. Copyright © 2013 Elsevier B.V. All rights reserved.
Suboptimal decision criteria are predicted by subjectively weighted probabilities and rewards.
Ackermann, John F; Landy, Michael S
2015-02-01
Subjects performed a visual detection task in which the probability of target occurrence at each of the two possible locations, and the rewards for correct responses for each, were varied across conditions. To maximize monetary gain, observers should bias their responses, choosing one location more often than the other in line with the varied probabilities and rewards. Typically, and in our task, observers do not bias their responses to the extent they should, and instead distribute their responses more evenly across locations, a phenomenon referred to as 'conservatism.' We investigated several hypotheses regarding the source of the conservatism. We measured utility and probability weighting functions under Prospect Theory for each subject in an independent economic choice task and used the weighting-function parameters to calculate each subject's subjective utility (SU(c)) as a function of the criterion c, and the corresponding weighted optimal criteria (wc opt ). Subjects' criteria were not close to optimal relative to wc opt . The slope of SU(c) and of expected gain EG(c) at the neutral criterion corresponding to β = 1 were both predictive of the subjects' criteria. The slope of SU(c) was a better predictor of observers' decision criteria overall. Thus, rather than behaving optimally, subjects move their criterion away from the neutral criterion by estimating how much they stand to gain by such a change based on the slope of subjective gain as a function of criterion, using inherently distorted probabilities and values.
Harvey, Philip D.; Stone, Laura; Lowenstein, David; Czaja, Sara J.; Heaton, Robert K.; Patterson, Thomas L
2013-01-01
Despite multiple lines of evidence suggesting that people with schizophrenia tend to overestimate their ability to perform everyday tasks such as money management, self-report methods are still widely used to assess functioning. In today’s technology driven financial world patients are faced with increasingly complex financial management tasks. To meet these challenges adequate financial skills are required. Thus, accurate assessments of these abilities are critical to decisions regarding a patient’s need for support such as a financial trustee. As part of the larger VALERO study, 195 patients with schizophrenia were asked to self-report their everyday financial skills (five common financial tasks) with the Independent Living Skills Survey (ILSS). They were also assessed with performance-based measures of neuro-cognition and functional capacity with a focus on financial skills. In addition, a friend, relative, or clinician informant was interviewed with the ILSS and a best estimate rating of functioning was generated. Scores on the performance-based measures of financial skills and neuropsychological tests were uncorrelated with self-reported financial activities. Interviewer and all informant judgments of financial abilities were also minimally correlated with performance on functional skills tests. Discrete financial skills appear to be challenging for clinicians to rate with accuracy without the use of direct assessments. Direct assessment of financial skills seems prudent when making determinations about the need for guardianship or other financial supervision. PMID:23537475
Buzzi, Jacopo; Ferrigno, Giancarlo; Jansma, Joost M.; De Momi, Elena
2017-01-01
Teleoperated robotic systems are widely spreading in multiple different fields, from hazardous environments exploration to surgery. In teleoperation, users directly manipulate a master device to achieve task execution at the slave robot side; this interaction is fundamental to guarantee both system stability and task execution performance. In this work, we propose a non-disruptive method to study the arm endpoint stiffness. We evaluate how users exploit the kinetic redundancy of the arm to achieve stability and precision during the execution of different tasks with different master devices. Four users were asked to perform two planar trajectories following virtual tasks using both a serial and a parallel link master device. Users' arm kinematics and muscular activation were acquired and combined with a user-specific musculoskeletal model to estimate the joint stiffness. Using the arm kinematic Jacobian, the arm end-point stiffness was derived. The proposed non-disruptive method is capable of estimating the arm endpoint stiffness during the execution of virtual teleoperated tasks. The obtained results are in accordance with the existing literature in human motor control and show, throughout the tested trajectory, a modulation of the arm endpoint stiffness that is affected by task characteristics and hand speed and acceleration. PMID:29018319
Evaluation of line transect sampling based on remotely sensed data from underwater video
Bergstedt, R.A.; Anderson, D.R.
1990-01-01
We used underwater video in conjunction with the line transect method and a Fourier series estimator to make 13 independent estimates of the density of known populations of bricks lying on the bottom in shallows of Lake Huron. The pooled estimate of density (95.5 bricks per hectare) was close to the true density (89.8 per hectare), and there was no evidence of bias. Confidence intervals for the individual estimates included the true density 85% of the time instead of the nominal 95%. Our results suggest that reliable estimates of the density of objects on a lake bed can be obtained by the use of remote sensing and line transect sampling theory.
NASA Technical Reports Server (NTRS)
Farah, Jeffrey J.
1992-01-01
Developing a robust, task level, error recovery and on-line planning architecture is an open research area. There is previously published work on both error recovery and on-line planning; however, none incorporates error recovery and on-line planning into one integrated platform. The integration of these two functionalities requires an architecture that possesses the following characteristics. The architecture must provide for the inclusion of new information without the destruction of existing information. The architecture must provide for the relating of pieces of information, old and new, to one another in a non-trivial rather than trivial manner (e.g., object one is related to object two under the following constraints, versus, yes, they are related; no, they are not related). Finally, the architecture must be not only a stand alone architecture, but also one that can be easily integrated as a supplement to some existing architecture. This thesis proposal addresses architectural development. Its intent is to integrate error recovery and on-line planning onto a single, integrated, multi-processor platform. This intelligent x-autonomous platform, called the Planning Coordinator, will be used initially to supplement existing x-autonomous systems and eventually replace them.
HOPE: An On-Line Piloted Handling Qualities Experiment Data Book
NASA Technical Reports Server (NTRS)
Jackson, E. B.; Proffitt, Melissa S.
2010-01-01
A novel on-line database for capturing most of the information obtained during piloted handling qualities experiments (either flight or simulated) is described. The Hyperlinked Overview of Piloted Evaluations (HOPE) web application is based on an open-source object-oriented Web-based front end (Ruby-on-Rails) that can be used with a variety of back-end relational database engines. The hyperlinked, on-line data book approach allows an easily-traversed way of looking at a variety of collected data, including pilot ratings, pilot information, vehicle and configuration characteristics, test maneuvers, and individual flight test cards and repeat runs. It allows for on-line retrieval of pilot comments, both audio and transcribed, as well as time history data retrieval and video playback. Pilot questionnaires are recorded as are pilot biographies. Simple statistics are calculated for each selected group of pilot ratings, allowing multiple ways to aggregate the data set (by pilot, by task, or by vehicle configuration, for example). Any number of per-run or per-task metrics can be captured in the database. The entire run metrics dataset can be downloaded in comma-separated text for further analysis off-line. It is expected that this tool will be made available upon request
Reissland, Jessika; Manzey, Dietrich
2016-07-01
Understanding the mechanisms and performance consequences of multitasking has long been in focus of scientific interest, but has been investigated by three research lines more or less isolated from each other. Studies in the fields of the psychological refractory period, task switching, and interruptions have scored with a high experimental control, but usually do not give participants many degrees of freedom to self-organize the processing of two concurrent tasks. Individual strategies as well as their impact on efficiency have mainly been neglected. Self-organized multitasking has been investigated in the field of human factors, but primarily with respect to overall performance without detailed investigation of how the tasks are processed. The current work attempts to link aspects of these research lines. All of them, explicitly or implicitly, provide hints about an individually preferred type of task organization, either more cautious trying to work strictly serially on only one task at a time or more daring with a focus on task interleaving and, if possible, also partially overlapping (parallel) processing. In two experiments we investigated different strategies of task organization and their impact on efficiency using a new measure of overall multitasking efficiency. Experiment 1 was based on a classical task switching paradigm with two classification tasks, but provided one group of participants with a stimulus preview of the task to switch to next, enabling at least partial overlapping processing. Indeed, this preview led to a reduction of switch costs and to an increase of dual-task efficiency, but only for a subgroup of participants. They obviously exploited the possibility of overlapping processing, while the others worked mainly serially. While task-sequence was externally guided in the first experiment, Experiment 2 extended the approach by giving the participants full freedom of task organization in concurrent performance of the same tasks. Fine-grained analyses of response scheduling again revealed individual differences regarding the preference for strictly serial processing vs. some sort of task interleaving and overlapping processing. However, neither group showed a striking benefit in dual-task efficiency, although the results show that the costs of multitasking can partly be compensated by overlapping processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Demonstration of line transect methodologies to estimate urban gray squirrel density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hein, E.W.
1997-11-01
Because studies estimating density of gray squirrels (Sciurus carolinensis) have been labor intensive and costly, I demonstrate the use of line transect surveys to estimate gray squirrel density and determine the costs of conducting surveys to achieve precise estimates. Density estimates are based on four transacts that were surveyed five times from 30 June to 9 July 1994. Using the program DISTANCE, I estimated there were 4.7 (95% Cl = 1.86-11.92) gray squirrels/ha on the Clemson University campus. Eleven additional surveys would have decreased the percent coefficient of variation from 30% to 20% and would have cost approximately $114. Estimatingmore » urban gray squirrel density using line transect surveys is cost effective and can provide unbiased estimates of density, provided that none of the assumptions of distance sampling theory are violated.« less
Study to design and develop remote manipulator system. [computer simulation of human performance
NASA Technical Reports Server (NTRS)
Hill, J. W.; Mcgovern, D. E.; Sword, A. J.
1974-01-01
Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance.
Study to design and develop remote manipulator system
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
Human performance measurement techniques for remote manipulation tasks and remote sensing techniques for manipulators are described for common manipulation tasks, performance is monitored by means of an on-line computer capable of measuring the joint angles of both master and slave arms as a function of time. The computer programs allow measurements of the operator's strategy and physical quantities such as task time and power consumed. The results are printed out after a test run to compare different experimental conditions. For tracking tasks, we describe a method of displaying errors in three dimensions and measuring the end-effector position in three dimensions.
Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo
2011-10-11
We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology.
2011-01-01
Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology. PMID:21989196
Fritz, Jonathan B; Elhilali, Mounya; David, Stephen V; Shamma, Shihab A
2007-07-01
Acoustic filter properties of A1 neurons can dynamically adapt to stimulus statistics, classical conditioning, instrumental learning and the changing auditory attentional focus. We have recently developed an experimental paradigm that allows us to view cortical receptive field plasticity on-line as the animal meets different behavioral challenges by attending to salient acoustic cues and changing its cortical filters to enhance performance. We propose that attention is the key trigger that initiates a cascade of events leading to the dynamic receptive field changes that we observe. In our paradigm, ferrets were initially trained, using conditioned avoidance training techniques, to discriminate between background noise stimuli (temporally orthogonal ripple combinations) and foreground tonal target stimuli. They learned to generalize the task for a wide variety of distinct background and foreground target stimuli. We recorded cortical activity in the awake behaving animal and computed on-line spectrotemporal receptive fields (STRFs) of single neurons in A1. We observed clear, predictable task-related changes in STRF shape while the animal performed spectral tasks (including single tone and multi-tone detection, and two-tone discrimination) with different tonal targets. A different set of task-related changes occurred when the animal performed temporal tasks (including gap detection and click-rate discrimination). Distinctive cortical STRF changes may constitute a "task-specific signature". These spectral and temporal changes in cortical filters occur quite rapidly, within 2min of task onset, and fade just as quickly after task completion, or in some cases, persisted for hours. The same cell could multiplex by differentially changing its receptive field in different task conditions. On-line dynamic task-related changes, as well as persistent plastic changes, were observed at a single-unit, multi-unit and population level. Auditory attention is likely to be pivotal in mediating these task-related changes since the magnitude of STRF changes correlated with behavioral performance on tasks with novel targets. Overall, these results suggest the presence of an attention-triggered plasticity algorithm in A1 that can swiftly change STRF shape by transforming receptive fields to enhance figure/ground separation, by using a contrast matched filter to filter out the background, while simultaneously enhancing the salient acoustic target in the foreground. These results favor the view of a nimble, dynamic, attentive and adaptive brain that can quickly reshape its sensory filter properties and sensori-motor links on a moment-to-moment basis, depending upon the current challenges the animal faces. In this review, we summarize our results in the context of a broader survey of the field of auditory attention, and then consider neuronal networks that could give rise to this phenomenon of attention-driven receptive field plasticity in A1.
NASA Astrophysics Data System (ADS)
Kornilin, Dmitriy V.; Kudryavtsev, Ilya A.; McMillan, Alison J.; Osanlou, Ardeshir; Ratcliffe, Ian
2017-06-01
Modern hydraulic systems should be monitored on the regular basis. One of the most effective ways to address this task is utilizing in-line automatic particle counters (APC) built inside of the system. The measurement of particle concentration in hydraulic liquid by APC is crucial because increasing numbers of particles should mean functional problems. Existing automatic particle counters have significant limitation for the precise measurement of relatively low concentration of particle in aerospace systems or they are unable to measure higher concentration in industrial ones. Both issues can be addressed by implementation of the CMOS image sensor instead of single photodiode used in the most of APC. CMOS image sensor helps to overcome the problem of the errors in volume measurement caused by inequality of particle speed inside of tube. Correction is based on the determination of the particle position and parabolic velocity distribution profile. Proposed algorithms are also suitable for reducing the errors related to the particles matches in measurement volume. The results of simulation show that the accuracy increased up to 90 per cent and the resolution improved ten times more compared to the single photodiode sensor.
Gender differences in global-local perception? Evidence from orientation and shape judgments.
Kimchi, Ruth; Amishav, Rama; Sulitzeanu-Kenan, Anat
2009-01-01
Direct examinations of gender differences in global-local processing are sparse, and the results are inconsistent. We examined this issue with a visuospatial judgment task and with a shape judgment task. Women and men were presented with hierarchical stimuli that varied in closure (open or closed shape) or in line orientation (oblique or horizontal/vertical) at the global or local level. The task was to classify the stimuli on the basis of the variation at the global level (global classification) or at the local level (local classification). Women's classification by closure (global or local) was more accurate than men's for stimuli that varied in closure on both levels, suggesting a female advantage in discriminating shape properties. No gender differences were observed in global-local processing bias. Women and men exhibited a global advantage, and they did not differ in their speed of global or local classification, with only one exception. Women were slower than men in local classification by orientation when the to-be-classified lines were embedded in a global line with a different orientation. This finding suggests that women are more distracted than men by misleading global oriented context when performing local orientation judgments, perhaps because women and men differ in their ability to use cognitive schemes to compensate for the distracting effects of the global context. Our findings further suggest that whether or not gender differences arise depends not only on the nature of the visual task but also on the visual context.
Participatory ergonomic intervention for prevention of low back pain: assembly line redesign case.
Bernardes, João Marcos; Wanderck, Claudia; Moro, Antônio Renato Pereira
2012-01-01
This paper gives an overview of a participatory ergonomic intervention aimed at reducing low back pain cases in the dispatch department of a catalogue and e-commerce retail company. Based on the findings of the ergonomic analysis and design committee, the company's own employees redesigned the assembly line's layout. As a result of these changes two job tasks that involved manual material handling of boxes, identified by the revised NIOSH equation as posing an increased risk for lifting-related low back pain, were totally eliminated, and the employees responsible for moving boxes from the end of the assembly line to pallets on the ground were given more control over their jobs, and these jobs were also enriched with a new, less heavy task. These results demonstrate that participatory ergonomic interventions are a viable and effective strategy to reduce the exposure to work-related physical and psychosocial risk factors for low back pain.
Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.
Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita
2014-04-01
Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.
Recurrent neural network based virtual detection line
NASA Astrophysics Data System (ADS)
Kadikis, Roberts
2018-04-01
The paper proposes an efficient method for detection of moving objects in the video. The objects are detected when they cross a virtual detection line. Only the pixels of the detection line are processed, which makes the method computationally efficient. A Recurrent Neural Network processes these pixels. The machine learning approach allows one to train a model that works in different and changing outdoor conditions. Also, the same network can be trained for various detection tasks, which is demonstrated by the tests on vehicle and people counting. In addition, the paper proposes a method for semi-automatic acquisition of labeled training data. The labeling method is used to create training and testing datasets, which in turn are used to train and evaluate the accuracy and efficiency of the detection method. The method shows similar accuracy as the alternative efficient methods but provides greater adaptability and usability for different tasks.
On-Line Method and Apparatus for Coordinated Mobility and Manipulation of Mobile Robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1996-01-01
A simple and computationally efficient approach is disclosed for on-line coordinated control of mobile robots consisting of a manipulator arm mounted on a mobile base. The effect of base mobility on the end-effector manipulability index is discussed. The base mobility and arm manipulation degrees-of-freedom are treated equally as the joints of a kinematically redundant composite robot. The redundancy introduced by the mobile base is exploited to satisfy a set of user-defined additional tasks during the end-effector motion. A simple on-line control scheme is proposed which allows the user to assign weighting factors to individual degrees-of-mobility and degrees-of-manipulation, as well as to each task specification. The computational efficiency of the control algorithm makes it particularly suitable for real-time implementations. Four case studies are discussed in detail to demonstrate the application of the coordinated control scheme to various mobile robots.
ERIC Educational Resources Information Center
Huang, Tracy; Loft, Shayne; Humphreys, Michael S.
2014-01-01
"Time-based prospective memory" (PM) refers to performing intended actions at a future time. Participants with time-based PM tasks can be slower to perform ongoing tasks (costs) than participants without PM tasks because internal control is required to maintain the PM intention or to make prospective-timing estimates. However, external…
Racemization of aspartic acid in root dentin as a tool for age estimation in a Kuwaiti population.
Elfawal, Mohamed Amin; Alqattan, Sahib Issa; Ghallab, Noha Ayman
2015-01-01
Estimation of age is one of the most significant tasks in forensic practice. Amino acid racemization is considered one of the most reliable and accurate methods of age estimation and aspartic acid shows a high racemization reaction rate. The present study has investigated the application of aspartic acid racemization in age estimation in a Kuwaiti population using root dentin from a total of 89 upper first premolar teeth. The D/L ratio of aspartic acid was obtained by HPLC technique in a test group of 50 subjects and a linear regression line was established between aspartic acid racemization and age. The correlation coefficient (r) was 0.97, and the standard error of estimation was ±1.26 years. The racemization age "t" of each subject was calculated by applying the following formula: ln [(1 + D/L)/(1 - D/L)] = 0.003181 t + (-0.01591). When the proposed formula "estimated age t = ln [(1 + D/L)/(1 - D/L)] + 0.01591/0.003181" was applied to a validation group of 39 subjects, the range of error was less than one year in 82.1% of the cases and the standard error of estimation was ±1.12. The current work has established a reasonably significant correlation of the D-/L-aspartic acid ratio with age, and proposed an apparently reliable formula for calculating the age in Kuwaiti populations through aspartic acid racemization. Further research is required to find out whether similar findings are applicable to other ethnic populations. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Why are You Late?: Investigating the Role of Time Management in Time-Based Prospective Memory
Waldum, Emily R; McDaniel, Mark A.
2016-01-01
Time-based prospective memory tasks (TBPM) are those that are to be performed at a specific future time. Contrary to typical laboratory TBPM tasks (e.g., “hit the “z” key every 5 minutes”), many real-world TBPM tasks require more complex time-management processes. For instance to attend an appointment on time, one must estimate the duration of the drive to the appointment and then utilize this estimate to create and execute a secondary TBPM intention (e.g., “I need to start driving by 1:30 to make my 2:00 appointment on time”). Future under- and overestimates of drive time can lead to inefficient TBPM performance with the former lending to missed appointments and the latter to long stints in the waiting room. Despite the common occurrence of complex TBPM tasks in everyday life, to date, no studies have investigated how components of time management, including time estimation, affect behavior in such complex TBPM tasks. Therefore, the current study aimed to investigate timing biases in both older and younger adults and further to determine how such biases along with additional time management components including planning and plan fidelity influence complex TBPM performance. Results suggest for the first time that younger and older adults do not always utilize similar timing strategies, and as a result, can produce differential timing biases under the exact same environmental conditions. These timing biases, in turn, play a vital role in how efficiently both younger and older adults perform a later TBPM task that requires them to utilize their earlier time estimate. PMID:27336325
The method for homography estimation between two planes based on lines and points
NASA Astrophysics Data System (ADS)
Shemiakina, Julia; Zhukovsky, Alexander; Nikolaev, Dmitry
2018-04-01
The paper considers the problem of estimating a transform connecting two images of one plane object. The method based on RANSAC is proposed for calculating the parameters of projective transform which uses points and lines correspondences simultaneously. A series of experiments was performed on synthesized data. Presented results show that the algorithm convergence rate is significantly higher when actual lines are used instead of points of lines intersection. When using both lines and feature points it is shown that the convergence rate does not depend on the ratio between lines and feature points in the input dataset.
Human behavioral complexity peaks at age 25
Brugger, Peter
2017-01-01
Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity. PMID:28406953
ERIC Educational Resources Information Center
Chan, David W.
2010-01-01
Data of item responses to the Impossible Figures Task (IFT) from 492 Chinese primary, secondary, and university students were analyzed using the dichotomous Rasch measurement model. Item difficulty estimates and person ability estimates located on the same logit scale revealed that the pooled sample of Chinese students, who were relatively highly…
Ribolsi, Michele; Lisi, Giulia; Di Lorenzo, Giorgio; Rociola, Giuseppe; Niolu, Cinzia; Siracusano, Alberto
2013-01-01
Introduction: Recent studies have found a lack of normal pseudoneglect in schizophrenia patients and in their first degree relatives. Similarly, several contributions have reported that measures of schizotypy in the healthy population may be related to signs of right-sided lateralization, but most of these studies differ greatly in methodology (sample size, choice of schizotypy scales, and laterality tasks) and, consequently, the results cannot be compared and so definitive conclusion cannot be drawn. In this study, our purpose is to investigate whether some tasks of spatial attention may be related to different dimensions of schizotypy not only in a larger sample of healthy subjects (HS), but testing the same people with several supposedly related measures several times. Materials and Methods: In the first part of the study (Part I), the performance on “paper and pencil” line bisection (LB) tasks in 205 HS was investigated. Each task was repeated three times. In the second part of the study (Part II), a subgroup of 80 subjects performed a computerized version of the LB test and of the mental number line bisection (MNL) test. In both parts of the study, every subject completed the 74-item version of the Schizotypal Personality Questionnaire (SPQ) and the Edinburgh Handedness Inventory (EHI). Results: In both parts of the study, high scores on the subscale “magical thinking” of SPQ have resulted in being closely linked to a decreased pseudoneglect as assessed by the LB task. On the contrary, right handedness is related to an increased leftward bias at the same task. No association was found between MNL and the other variables. Discussion: The main finding of this study is that a decreased spatial leftward bias at the LB task correlates with positive schizotypy in the healthy population. This finding supports the hypothesis that a deviation from leftward hemispatial visual preference may be related to the degree of psychosis-like schizotypal signs in non-clinical population and should be investigated as a possible marker of psychosis. PMID:24294208
Chieffi, Sergio; Messina, Giovanni; Messina, Antonietta; Villano, Ines; Monda, Vincenzo; Ambra, Ferdinando Ivano; Garofalo, Elisabetta; Romano, Felice; Mollica, Maria Pina; Monda, Marcellino; Iavarone, Alessandro
2017-01-01
Previous studies suggested that the occipitoparietal stream orients attention toward the near/lower space and is involved in immediate reaching, whereas the occipitotemporal stream orients attention toward the far/upper space and is involved in delayed reaching. In the present study, we investigated the role of the occipitotemporal stream in attention orienting and delayed reaching in a patient (GP) with bilateral damage to the occipitoparietal areas and optic ataxia. GP and healthy controls took part in three experiments. In the experiment 1, the participants bisected lines oriented along radial, vertical, and horizontal axes. GP bisected radial lines farther, and vertical lines more above, than the controls, consistent with an attentional bias toward the far/upper space and near/lower space neglect. The experiment 2 consisted of two tasks: (1) an immediate reaching task, in which GP reached target locations under visual control and (2) a delayed visual reaching task, in which GP and controls were asked to reach remembered target locations visually presented. We measured constant and variable distance and direction errors. In immediate reaching task, GP accurately reached target locations. In delayed reaching task, GP overshot remembered target locations, whereas the controls undershot them. Furthermore, variable errors were greater in GP than in the controls. In the experiment 3, GP and controls performed a delayed proprioceptive reaching task. Constant reaching errors did not differ between GP and the controls. However, variable direction errors were greater in GP than in the controls. We suggest that the occipitoparietal damage, and the relatively intact occipitotemporal region, produced in GP an attentional orienting bias toward the far/upper space (experiment 1). In turns, the attentional bias selectively shifted toward the far space remembered visual (experiment 2), but not proprioceptive (experiment 3), target locations. As a whole, these findings further support the hypothesis of an involvement of the occipitotemporal stream in delayed reaching. Furthermore, the observation that in both delayed reaching tasks the variable errors were greater in GP than in the controls suggested that in optic ataxia is present not only a visuo- but also a proprioceptivo-motor integration deficit. PMID:28620345
Bradford, Amanda L.; Forney, Karin A.; Oleson, Erin M.; Barlow, Jay
2014-01-01
For biological populations that form aggregations (or clusters) of individuals, cluster size is an important parameter in line-transect abundance estimation and should be accurately measured. Cluster size in cetaceans has traditionally been represented as the total number of individuals in a group, but group size may be underestimated if group members are spatially diffuse. Groups of false killer whales (Pseudorca crassidens) can comprise numerous subgroups that are dispersed over tens of kilometers, leading to a spatial mismatch between a detected group and the theoretical framework of line-transect analysis. Three stocks of false killer whales are found within the U.S. Exclusive Economic Zone of the Hawaiian Islands (Hawaiian EEZ): an insular main Hawaiian Islands stock, a pelagic stock, and a Northwestern Hawaiian Islands (NWHI) stock. A ship-based line-transect survey of the Hawaiian EEZ was conducted in the summer and fall of 2010, resulting in six systematic-effort visual sightings of pelagic (n = 5) and NWHI (n = 1) false killer whale groups. The maximum number and spatial extent of subgroups per sighting was 18 subgroups and 35 km, respectively. These sightings were combined with data from similar previous surveys and analyzed within the conventional line-transect estimation framework. The detection function, mean cluster size, and encounter rate were estimated separately to appropriately incorporate data collected using different methods. Unlike previous line-transect analyses of cetaceans, subgroups were treated as the analytical cluster instead of groups because subgroups better conform to the specifications of line-transect theory. Bootstrap values (n = 5,000) of the line-transect parameters were randomly combined to estimate the variance of stock-specific abundance estimates. Hawai’i pelagic and NWHI false killer whales were estimated to number 1,552 (CV = 0.66; 95% CI = 479–5,030) and 552 (CV = 1.09; 95% CI = 97–3,123) individuals, respectively. Subgroup structure is an important factor to consider in line-transect analyses of false killer whales and other species with complex grouping patterns. PMID:24587372
Bradford, Amanda L; Forney, Karin A; Oleson, Erin M; Barlow, Jay
2014-01-01
For biological populations that form aggregations (or clusters) of individuals, cluster size is an important parameter in line-transect abundance estimation and should be accurately measured. Cluster size in cetaceans has traditionally been represented as the total number of individuals in a group, but group size may be underestimated if group members are spatially diffuse. Groups of false killer whales (Pseudorca crassidens) can comprise numerous subgroups that are dispersed over tens of kilometers, leading to a spatial mismatch between a detected group and the theoretical framework of line-transect analysis. Three stocks of false killer whales are found within the U.S. Exclusive Economic Zone of the Hawaiian Islands (Hawaiian EEZ): an insular main Hawaiian Islands stock, a pelagic stock, and a Northwestern Hawaiian Islands (NWHI) stock. A ship-based line-transect survey of the Hawaiian EEZ was conducted in the summer and fall of 2010, resulting in six systematic-effort visual sightings of pelagic (n = 5) and NWHI (n = 1) false killer whale groups. The maximum number and spatial extent of subgroups per sighting was 18 subgroups and 35 km, respectively. These sightings were combined with data from similar previous surveys and analyzed within the conventional line-transect estimation framework. The detection function, mean cluster size, and encounter rate were estimated separately to appropriately incorporate data collected using different methods. Unlike previous line-transect analyses of cetaceans, subgroups were treated as the analytical cluster instead of groups because subgroups better conform to the specifications of line-transect theory. Bootstrap values (n = 5,000) of the line-transect parameters were randomly combined to estimate the variance of stock-specific abundance estimates. Hawai'i pelagic and NWHI false killer whales were estimated to number 1,552 (CV = 0.66; 95% CI = 479-5,030) and 552 (CV = 1.09; 95% CI = 97-3,123) individuals, respectively. Subgroup structure is an important factor to consider in line-transect analyses of false killer whales and other species with complex grouping patterns.
Significant Tasks in Training of Job-Shop Supervisors
ERIC Educational Resources Information Center
Pederson, Leonard S.; Dresdow, Sally; Benson, Joy
2013-01-01
Purpose: The need for effective training of first-line supervisors is well established. Well-trained supervision is essential to our future as a country. A fundamental step in developing effective training is to develop a jobs needs assessment. In order to develop an effective needs assessment, it is necessary to know what the tasks are of…
Sensory and Postural Input in the Occurrence of a Gender Difference in Orienting Liquid Surfaces
ERIC Educational Resources Information Center
Robert, Michele; Longpre, Sophie
2005-01-01
In the water-level task, both spatial skill and physical knowledge contribute to representing the surface of a liquid as horizontal irrespective of the container's tilt. Under the standard visual format of the task, men systematically surpass women at drawing correct water lines in outlines of tilted containers. The present exploratory experiments…
1997-04-18
Marshall's Neutral Buoyancy Simulator (NBS) is used to simulate the gravitational fields and buoyancy effects outer space has on astronauts and their ability to perform tasks in this environment. In this example, a diver performs a temporary fluid line repair task using a repair kit developed by Marshall engineers. The analysis will determine the value of this repair kit and its feasibility.
ERIC Educational Resources Information Center
Rinkenauer, Gerhard; Osman, Allen; Ulrich, Rolf; Muller-Gethmann, Hiltraut; Mattes, Stefan
2004-01-01
Lateralized readiness potentials (LRPs) were used to determine the stage(s) of reaction time (RT) responsible for speed-accuracy trade-offs (SATs). Speeded decisions based on several types of information were examined in 3 experiments, involving, respectively, a line discrimination task, lexical decisions, and an Erikson flanker task. Three levels…
A Generalized Fraction: An Entity Smaller than One on the Mental Number Line
ERIC Educational Resources Information Center
Kallai, Arava Y.; Tzelgov, Joseph
2009-01-01
The representation of fractions in long-term memory (LTM) was investigated by examining the automatic processing of such numbers in a physical comparison task, and their intentional processing in a numerical comparison task. The size congruity effect (SiCE) served as a marker of automatic processing and consequently as an indicator of the access…
ERIC Educational Resources Information Center
Lafontaine, Helene; Chetail, Fabienne; Colin, Cecile; Kolinsky, Regine; Pattamadilok, Chotiga
2012-01-01
Acquiring literacy establishes connections between the spoken and written system and modifies the functioning of the spoken system. As most evidence comes from on-line speech recognition tasks, it is still a matter of debate when and how these two systems interact in metaphonological tasks. The present event-related potentials study investigated…
NASA TLA workload analysis support. Volume 3: FFD autopilot scenario validation data
NASA Technical Reports Server (NTRS)
Sundstrom, J. L.
1980-01-01
The data used to validate a seven time line analysis of forward flight deck autopilot mode for the pilot and copilot for NASA B737 terminal configured vehicle are presented. Demand workloads are given in two forms: workload histograms and workload summaries (bar graphs). A report showing task length and task interaction is also presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... individuals with PTSD may benefit by using a service animal, the work or tasks performed appropriately by such... many individuals with PTSD may benefit by using a service animal, the work or tasks performed... line 40, remove the following sentence: ``A pet or support animal may be able to discern that the...
A line transect model for aerial surveys
Quang, Pham Xuan; Lanctot, Richard B.
1991-01-01
We employ a line transect method to estimate the density of the common and Pacific loon in the Yukon Flats National Wildlife Refuge from aerial survey data. Line transect methods have the advantage of automatically taking into account “visibility bias” due to detectability difference of animals at different distances from the transect line. However, line transect methods must overcome two difficulties when applied to inaccurate recording of sighting distances due to high travel speeds, so that in fact only a few reliable distance class counts are available. We propose a unimodal detection function that provides an estimate of the effective area lost due to the blind strip, under the assumption that a line of perfect detection exists parallel to the transect line. The unimodal detection function can also be applied when a blind strip is absent, and in certain instances when the maximum probability of detection is less than 100%. A simple bootstrap procedure to estimate standard error is illustrated. Finally, we present results from a small set of Monte Carlo experiments.
Acute effects of caffeine on several operant behaviors in rhesus monkeys.
Buffalo, E A; Gillam, M P; Allen, R R; Paule, M G
1993-11-01
The acute effects of 1,3-trimethylxanthine (caffeine) were assessed using an operant test battery (OTB) of complex food-reinforced tasks that are thought to depend upon relatively specific brain functions, such as motivation to work for food (progressive ratio, PR), learning (incremental repeated acquisition, IRA), color and position discrimination (conditioned position responding, CPR), time estimation (temporal response differentiation, TRD), and short-term memory and attention (delayed matching-to-sample, DMTS). Endpoints included response rates (RR), accuracies (ACC), and percent task completed (PTC). Caffeine sulfate (0.175-20.0 mg/kg, IV), given 15 min pretesting, produced significant dose-dependent decreases in TRD percent task completed and accuracy at doses > or = 5.6 mg/kg. Caffeine produced no systematic effects on either DMTS or PR responding, but low doses tended to enhance performance in both IRA and CPR tasks. Thus, in monkeys, performance of an operant task designed to model time estimation is more sensitive to the disruptive effects of caffeine than is performance of the other tasks in the OTB.
Lateral Biases and Reading Direction: A Dissociation between Aesthetic Preference and Line Bisection
ERIC Educational Resources Information Center
Ishii, Yukiko; Okubo, Matia; Nicholls, Michael E. R.; Imai, Hisato
2011-01-01
Perceptual asymmetries for tasks involving aesthetic preference or line bisection can be affected by asymmetrical neurological mechanisms or left/right reading habits. This study investigated the relative contribution of these mechanisms in 100 readers of Japanese and English. Participants made aesthetic judgments between pairs of mirror-reversed…
Children's On-Line Processing of Scrambling in Japanese
ERIC Educational Resources Information Center
Suzuki, Takaaki
2013-01-01
This study investigates the on-line processing of scrambled sentences in Japanese by preschool children and adults using a combination of self-paced listening and speeded picture selection tasks. The effects of a filler-gap dependency, reversibility, and case markers were examined. The results show that both children and adults had difficulty in…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... Definition To Address Advanced Fuel Designs,'' Using the Consolidated Line Item Improvement Process AGENCY...-specific adoption using the Consolidated Line Item Improvement Process (CLIIP). Additionally, the NRC staff..., which may be more reactive at shutdown temperatures above 68[emsp14][deg]F. This STS improvement is part...
Task representation in individual and joint settings
Prinz, Wolfgang
2015-01-01
This paper outlines a framework for task representation and discusses applications to interference tasks in individual and joint settings. The framework is derived from the Theory of Event Coding (TEC). This theory regards task sets as transient assemblies of event codes in which stimulus and response codes interact and shape each other in particular ways. On the one hand, stimulus and response codes compete with each other within their respective subsets (horizontal interactions). On the other hand, stimulus and response code cooperate with each other (vertical interactions). Code interactions instantiating competition and cooperation apply to two time scales: on-line performance (i.e., doing the task) and off-line implementation (i.e., setting the task). Interference arises when stimulus and response codes overlap in features that are irrelevant for stimulus identification, but relevant for response selection. To resolve this dilemma, the feature profiles of event codes may become restructured in various ways. The framework is applied to three kinds of interference paradigms. Special emphasis is given to joint settings where tasks are shared between two participants. Major conclusions derived from these applications include: (1) Response competition is the chief driver of interference. Likewise, different modes of response competition give rise to different patterns of interference; (2) The type of features in which stimulus and response codes overlap is also a crucial factor. Different types of such features give likewise rise to different patterns of interference; and (3) Task sets for joint settings conflate intraindividual conflicts between responses (what), with interindividual conflicts between responding agents (whom). Features of response codes may, therefore, not only address responses, but also responding agents (both physically and socially). PMID:26029085
Howard, Charla L; Wallace, Chris; Abbas, James; Stokic, Dobrivoje S
2017-01-01
We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls. Subjects walked first over an electronic walkway while performing separately a serial subtraction and backwards spelling task, and then at self-selected slow, normal, and fast speeds used to derive the best fit line for stride length and cadence against velocity. Construct validity was demonstrated by significantly greater increase in RSD during dual-task gait in prosthesis users than controls (group-by-condition interaction, stride length p=0.0006, cadence p=0.009). Concurrent validity was established against coefficient of variation (CV) by moderate-to-high correlations (r=0.50-0.87) between dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis users and controls. Discriminative validity was documented by the ability of dual-task cost calculated from RSD to effectively differentiate prosthesis users from controls (area under the receiver operating characteristic curve, stride length 0.863, p=0.001, cadence 0.808, p=0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, respectively, not significant). These results validate RSD as a new measure of variability in below-knee prosthesis users. Future studies should include larger cohorts and other populations to ascertain its generalizability. Copyright © 2016 Elsevier B.V. All rights reserved.
Musical expertise has minimal impact on dual task performance.
Cocchini, Gianna; Filardi, Maria Serena; Crhonkova, Marcela; Halpern, Andrea R
2017-05-01
Studies investigating effect of practice on dual task performance have yielded conflicting findings, thus supporting different theoretical accounts about the organisation of attentional resources when tasks are performed simultaneously. Because practice has been proven to reduce the demand of attention for the trained task, the impact of long-lasting training on one task is an ideal way to better understand the mechanisms underlying dual task decline in performance. Our study compared performance during dual task execution in expert musicians compared to controls with little if any musical experience. Participants performed a music recognition task and a visuo-spatial task separately (single task) or simultaneously (dual task). Both groups showed a significant but similar performance decline during dual tasks. In addition, the two groups showed a similar decline of dual task performance during encoding and retrieval of the musical information, mainly attributed to a decline in sensitivity. Our results suggest that attention during dual tasks is similarly distributed by expert and non-experts. These findings are in line with previous studies showing a lack of sensitivity to difficulty and lack of practice effect during dual tasks, supporting the idea that different tasks may rely on different and not-sharable attentional resources.
Neural efficiency as a function of task demands☆
Dunst, Beate; Benedek, Mathias; Jauk, Emanuel; Bergner, Sabine; Koschutnig, Karl; Sommer, Markus; Ischebeck, Anja; Spinath, Birgit; Arendasy, Martin; Bühner, Markus; Freudenthaler, Heribert; Neubauer, Aljoscha C.
2014-01-01
The neural efficiency hypothesis describes the phenomenon that brighter individuals show lower brain activation than less bright individuals when working on the same cognitive tasks. The present study investigated whether the brain activation–intelligence relationship still applies when more versus less intelligent individuals perform tasks with a comparable person-specific task difficulty. In an fMRI-study, 58 persons with lower (n = 28) or respectively higher (n = 30) intelligence worked on simple and difficult inductive reasoning tasks having the same person-specific task difficulty. Consequently, less bright individuals received sample-based easy and medium tasks, whereas bright subjects received sample-based medium and difficult tasks. This design also allowed a comparison of lower versus higher intelligent individuals when working on the same tasks (i.e. sample-based medium task difficulty). In line with expectations, differences in task performance and in brain activation were only found for the subset of tasks with the same sample-based task difficulty, but not when comparing tasks with the same person-specific task difficulty. These results suggest that neural efficiency reflects an (ability-dependent) adaption of brain activation to the respective task demands. PMID:24489416
Required Area for a Crew Person in a Space Vehicle
NASA Technical Reports Server (NTRS)
Mount, Frances E.
1998-01-01
This 176 page report was written in circa 1966 to examine the effects of confmement during space flight. One of the topics covered was the required size of a space vehicle for extended missions. Analysis was done using size of crew and length of time in a confmed space. The report was based on all information available at that time. The data collected and analyzed included both NASA and (when possible) Russian missions flown to date, analogs (such as submarines), and ground studies. Both psychological and physiological responses to confmement were examined. Factors evaluated in estimating the degree of impairment included the level of performance of intellectual, perceptual, manual and co-ordinated tasks, response to psychological testing, subjective comments of the participants, nature and extent of physiological change, and the nature and extent of behavioral change and the nature and extent of somatic complaints. Information was not included from studies where elements of perceptual isolation were more than mildly incidental - water immersion studies, studies in darkened and acoustically insulated rooms, studies with distorted environmental inputs - unpattemed light and white noise. Using the graph from the document, the upper line provides a threshold of minimum acceptable volumeall points above the line may be considered acceptable. The lower line provides a threshold of unacceptable volume - all points below the line are unacceptable. The area in between the two lines is the area of doubtful acceptability where impairment tends to increase with reduction in volume and increased duration of exposure. Reference is made of the Gemini VII, 14-day duration mission which had detectable impairment with a combination of 40 cubic feet per man for 14 days. In line with all other data this point should be in the 'marked impairment' zone. It is assumed that the state of fitness, dedication and experience influenced this outcome.
Application of Multi-task Lasso Regression in the Parametrization of Stellar Spectra
NASA Astrophysics Data System (ADS)
Chang, Li-Na; Zhang, Pei-Ai
2015-07-01
The multi-task learning approaches have attracted the increasing attention in the fields of machine learning, computer vision, and artificial intelligence. By utilizing the correlations in tasks, learning multiple related tasks simultaneously is better than learning each task independently. An efficient multi-task Lasso (Least Absolute Shrinkage Selection and Operator) regression algorithm is proposed in this paper to estimate the physical parameters of stellar spectra. It not only can obtain the information about the common features of the different physical parameters, but also can preserve effectively their own peculiar features. Experiments were done based on the ELODIE synthetic spectral data simulated with the stellar atmospheric model, and on the SDSS data released by the American large-scale survey Sloan. The estimation precision of our model is better than those of the methods in the related literature, especially for the estimates of the gravitational acceleration (lg g) and the chemical abundance ([Fe/H]). In the experiments we changed the spectral resolution, and applied the noises with different signal-to-noise ratios (SNRs) to the spectral data, so as to illustrate the stability of the model. The results show that the model is influenced by both the resolution and the noise. But the influence of the noise is larger than that of the resolution. In general, the multi-task Lasso regression algorithm is easy to operate, it has a strong stability, and can also improve the overall prediction accuracy of the model.
NASA Technical Reports Server (NTRS)
Davari, Sadegh; Sha, Lui
1992-01-01
In the design of real-time systems, tasks are often assigned priorities. Preemptive priority driven schedulers are used to schedule tasks to meet the timing requirements. Priority inversion is the term used to describe the situation when a higher priority task's execution is delayed by lower priority tasks. Priority inversion can occur when there is contention for resources among tasks of different priorities. The duration of priority inversion could be long enough to cause tasks to miss their dead lines. Priority inversion cannot be completely eliminated. However, it is important to identify sources of priority inversion and minimize the duration of priority inversion. In this paper, a comprehensive review of the problem of and solutions to unbounded priority inversion is presented.
Reliability of drivers in urban intersections.
Gstalter, Herbert; Fastenmeier, Wolfgang
2010-01-01
The concept of human reliability has been widely used in industrial settings by human factors experts to optimise the person-task fit. Reliability is estimated by the probability that a task will successfully be completed by personnel in a given stage of system operation. Human Reliability Analysis (HRA) is a technique used to calculate human error probabilities as the ratio of errors committed to the number of opportunities for that error. To transfer this notion to the measurement of car driver reliability the following components are necessary: a taxonomy of driving tasks, a definition of correct behaviour in each of these tasks, a list of errors as deviations from the correct actions and an adequate observation method to register errors and opportunities for these errors. Use of the SAFE-task analysis procedure recently made it possible to derive driver errors directly from the normative analysis of behavioural requirements. Driver reliability estimates could be used to compare groups of tasks (e.g. different types of intersections with their respective regulations) as well as groups of drivers' or individual drivers' aptitudes. This approach was tested in a field study with 62 drivers of different age groups. The subjects drove an instrumented car and had to complete an urban test route, the main features of which were 18 intersections representing six different driving tasks. The subjects were accompanied by two trained observers who recorded driver errors using standardized observation sheets. Results indicate that error indices often vary between both the age group of drivers and the type of driving task. The highest error indices occurred in the non-signalised intersection tasks and the roundabout, which exactly equals the corresponding ratings of task complexity from the SAFE analysis. A comparison of age groups clearly shows the disadvantage of older drivers, whose error indices in nearly all tasks are significantly higher than those of the other groups. The vast majority of these errors could be explained by high task load in the intersections, as they represent difficult tasks. The discussion shows how reliability estimates can be used in a constructive way to propose changes in car design, intersection layout and regulation as well as driver training.
ERIC Educational Resources Information Center
Hazelwood, R. Jordan; Armeson, Kent E.; Hill, Elizabeth G.; Bonilha, Heather Shaw; Martin-Harris, Bonnie
2017-01-01
Purpose: The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. Method: This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived…
NASA Astrophysics Data System (ADS)
Sandborn, A.; Engstrom, R.; Yu, Q.
2014-12-01
Mapping urban areas via satellite imagery is an important task for detecting and anticipating land cover and land use change at multiple scales. As developing countries experience substantial urban growth and expansion, remotely sensed based estimates of population and quality of life indicators can provide timely and spatially explicit information to researchers and planners working to determine how cities are changing. In this study, we use commercial high spatial resolution satellite imagery in combination with fine resolution census data to determine the ability of using remotely sensed data to reveal the spatial patterns of quality of life in Accra, Ghana. Traditionally, spectral characteristics are used on a per-pixel basis to determine land cover; however, in this study, we test a new methodology that quantifies spatial characteristics using a variety of spatial features observed in the imagery to determine the properties of an urban area. The spatial characteristics used in this study include histograms of oriented gradients, PanTex, Fourier transform, and line support regions. These spatial features focus on extracting structural and textural patterns of built-up areas, such as homogeneous building orientations and straight line indices. Information derived from aggregating the descriptive statistics of the spatial features at both the fine-resolution census unit and the larger neighborhood level are then compared to census derived quality of life indicators including information about housing, education, and population estimates. Preliminary results indicate that there are correlations between straight line indices and census data including available electricity and literacy rates. Results from this study will be used to determine if this methodology provides a new and improved way to measure a city structure in developing cities and differentiate between residential and commercial land use zones, as well as formal versus informal housing areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Stanley; Sandra Brown; Ellen Hawes
2002-09-01
The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less
Estimation of line dimensions in 3D direct laser writing lithography
NASA Astrophysics Data System (ADS)
Guney, M. G.; Fedder, G. K.
2016-10-01
Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.
Space Tug Docking Study. Volume 5: Cost Analysis
NASA Technical Reports Server (NTRS)
1976-01-01
The cost methodology, summary cost data, resulting cost estimates by Work Breakdown Structure (WBS), technical characteristics data, program funding schedules and the WBS for the costing are discussed. Cost estimates for two tasks of the study are reported. The first, developed cost estimates for design, development, test and evaluation (DDT&E) and theoretical first unit (TFU) at the component level (Level 7) for all items reported in the data base. Task B developed total subsystem DDT&E costs and funding schedules for the three candidate Rendezvous and Docking Systems: manual, autonomous, and hybrid.
ERIC Educational Resources Information Center
Jastrzembski, Tiffany S.; Charness, Neil
2007-01-01
The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20;…
Cognitive Performance Decrement in U.S. Army Aircrews.
1985-08-31
through his technical insight, patience and understanding of the challenges A associated with large- scale data collection. Inputs from members of... SCALES FOR HELICOPTER TASK TAXONOMY -1-------133 F LITERATURE REVIEW ON TIME ESTIMATION -------- --- 137 F.1 PURPOSE ----------------------- 137 F.2...The Glickman study indi- cates that the time estimation methodology employed by them did a minimal job of discriminating tasks. However, the current
The role of the right superior temporal gyrus in stimulus-centered spatial processing.
Shah-Basak, Priyanka P; Chen, Peii; Caulfield, Kevin; Medina, Jared; Hamilton, Roy H
2018-05-01
Although emerging neuropsychological evidence supports the involvement of temporal areas, and in particular the right superior temporal gyrus (STG), in allocentric neglect deficits, the role of STG in healthy spatial processing remains elusive. While several functional brain imaging studies have demonstrated involvement of the STG in tasks involving explicit stimulus-centered judgments, prior rTMS studies targeting the right STG did not find the expected neglect-like rightward bias in size judgments using the conventional landmark task. The objective of the current study was to investigate whether disruption of the right STG using inhibitory repetitive transcranial magnetic stimulation (rTMS) could impact stimulus-centered, allocentric spatial processing in healthy individuals. A lateralized version of the landmark task was developed to accentuate the dissociation between viewer-centered and stimulus-centered reference frames. We predicted that inhibiting activity in the right STG would decrease accuracy because of induced rightward bias centered on the line stimulus irrespective of its viewer-centered or egocentric locations. Eleven healthy, right-handed adults underwent the lateralized landmark task. After viewing each stimulus, participants had to judge whether the line was bisected, or whether the left (left-long trials) or the right segment (right-long trials) of the line was longer. Participants repeated the task before (pre-rTMS) and after (post-rTMS) receiving 20 min of 1 Hz rTMS over the right STG, the right supramarginal gyrus (SMG), and the vertex (a control site) during three separate visits. Linear mixed models for binomial data were generated with either accuracy or judgment errors as dependent variables, to compare 1) performance across trial types (bisection, non-bisection), and 2) pre- vs. post-rTMS performance between the vertex and the STG and the vertex and the SMG. Line eccentricity (z = 4.31, p < 0.0001) and line bisection (z = 5.49, p < 0.0001) were significant predictors of accuracy. In the models comparing the effects of rTMS, a significant two-way interaction with STG (z = -3.09, p = 0.002) revealed a decrease in accuracy of 9.5% and an increase in errors of the right-long type by 10.7% on bisection trials, in both left and right viewer-centered locations. No significant changes in leftward errors were found. These findings suggested an induced stimulus-centered rightward bias in our participants after STG stimulation. Notably, accuracy or errors were not influenced by SMG stimulation compared to vertex. In line with our predictions, the findings provide compelling evidence for right STG's involvement in healthy stimulus-centered spatial processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cid Ruzafa, Javier; Merinopoulou, Evie; Baggaley, Rebecca F; Leighton, Pamela; Werther, Winifred; Felici, Diana; Cox, Andrew
2016-08-01
Multiple myeloma (MM) is a progressive, malignant neoplasia with a worldwide, age-standardized annual incidence of 1.5 per 100 000 individuals and 5-year prevalence around 230 000 patients. Main favorable prognostic factors are younger age, low/standard cytogenetic risk, and undergoing stem cell transplantation. Our aim was to estimate the size of the patient population with MM eligible to receive a new MM therapy at different lines of therapy in the USA. We constructed a compartmental, differential equation model representing the flow of MM patients from diagnosis to death, via two possible treatment pathways and distinguished in four groups based on prognostic factors. Parameters were obtained from published references, available statistics, and assumptions. The model was used to estimate number of diagnosed MM patients and number of patient transitions from one line of therapy to the next over 1 year. Model output included 95% credible intervals from probabilistic sensitivity analyses. The base-case estimates were 80 219 patients living with MM, including 70 375 on treatment, 780 symptomatic untreated patients, and 9064 asymptomatic untreated patients. Over a 1-year period, the number of MM patients on treatment line 1 was estimated at 23 629 (credible intervals 22 236-25 029), and the number of transitions from treatment line 1 to treatment line 2 was estimated at 14 423. The size of the patient population with MM on different lines of therapy and in patient subgroups of interest estimated from this epidemiologic model can be used to assess the number of patients who could benefit from new MM therapies and their corresponding budgetary impact. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lin, Po-Han; Luck, Steven J.
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556
Lin, Po-Han; Luck, Steven J
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.
Development of a Low cost Ultra tiny Line Laser Range Sensor
2016-12-01
Development of a Low-cost Ultra-tiny Line Laser Range Sensor Xiangyu Chen∗, Moju Zhao∗, Lingzhu Xiang†, Fumihito Sugai∗, Hiroaki Yaguchi∗, Kei Okada...and Masayuki Inaba∗ Abstract— To enable robotic sensing for tasks with require- ments on weight, size, and cost, we develop an ultra-tiny line laser ...view customizable using different laser lenses. The optimal measurement range of the sensor is 0.05[m] ∼ 2[m]. Higher sampling rates can be achieved
Akkas, Oguz; Lee, Cheng Hsien; Hu, Yu Hen; Harris Adamson, Carisa; Rempel, David; Radwin, Robert G
2017-12-01
Two computer vision algorithms were developed to automatically estimate exertion time, duty cycle (DC) and hand activity level (HAL) from videos of workers performing 50 industrial tasks. The average DC difference between manual frame-by-frame analysis and the computer vision DC was -5.8% for the Decision Tree (DT) algorithm, and 1.4% for the Feature Vector Training (FVT) algorithm. The average HAL difference was 0.5 for the DT algorithm and 0.3 for the FVT algorithm. A sensitivity analysis, conducted to examine the influence that deviations in DC have on HAL, found it remained unaffected when DC error was less than 5%. Thus, a DC error less than 10% will impact HAL less than 0.5 HAL, which is negligible. Automatic computer vision HAL estimates were therefore comparable to manual frame-by-frame estimates. Practitioner Summary: Computer vision was used to automatically estimate exertion time, duty cycle and hand activity level from videos of workers performing industrial tasks.
Michels, Lars; O'Gorman, Ruth; Kucian, Karin
2018-04-01
Developmental dyscalculia (DD) is a developmental learning disability associated with deficits in processing numerical and mathematical information. Although behavioural training can reduce these deficits, it is unclear which neuronal resources show a functional reorganization due to training. We examined typically developing (TD) children (N=16, mean age: 9.5 years) and age-, gender-, and handedness-matched children with DD (N=15, mean age: 9.5 years) during the performance of a numerical order task with fMRI and functional connectivity before and after 5-weeks of number line training. Using the intraparietal sulcus (IPS) as seed region, DD showed hyperconnectivity in parietal, frontal, visual, and temporal regions before the training controlling for age and IQ. Hyperconnectivity disappeared after training, whereas math abilities improved. Multivariate classification analysis of task-related fMRI data corroborated the connectivity results as the same group of TD could be discriminated from DD before but not after number line training (86.4 vs. 38.9%, respectively). Our results indicate that abnormally high functional connectivity in DD can be normalized on the neuronal level by intensive number line training. As functional connectivity in DD was indistinguishable to TD's connectivity after training, we conclude that training lead to a re-organization of inter-regional task engagement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Perceptual Learning via Modification of Cortical Top-Down Signals
Schäfer, Roland; Vasilaki, Eleni; Senn, Walter
2007-01-01
The primary visual cortex (V1) is pre-wired to facilitate the extraction of behaviorally important visual features. Collinear edge detectors in V1, for instance, mutually enhance each other to improve the perception of lines against a noisy background. The same pre-wiring that facilitates line extraction, however, is detrimental when subjects have to discriminate the brightness of different line segments. How is it possible to improve in one task by unsupervised practicing, without getting worse in the other task? The classical view of perceptual learning is that practicing modulates the feedforward input stream through synaptic modifications onto or within V1. However, any rewiring of V1 would deteriorate other perceptual abilities different from the trained one. We propose a general neuronal model showing that perceptual learning can modulate top-down input to V1 in a task-specific way while feedforward and lateral pathways remain intact. Consistent with biological data, the model explains how context-dependent brightness discrimination is improved by a top-down recruitment of recurrent inhibition and a top-down induced increase of the neuronal gain within V1. Both the top-down modulation of inhibition and of neuronal gain are suggested to be universal features of cortical microcircuits which enable perceptual learning. PMID:17715996
Estimation of 3D reconstruction errors in a stereo-vision system
NASA Astrophysics Data System (ADS)
Belhaoua, A.; Kohler, S.; Hirsch, E.
2009-06-01
The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.
Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2015-05-15
The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.
The return map: tracking product teams.
House, C H; Price, R L
1991-01-01
With a new product, time is now more valuable than money. The costs of conceiving and designing a product are less important to its ultimate success than timeliness to market. One of the most important ways to speed up product development is through interfunctional teamwork. The "Return Map," developed at Hewlett-Packard, provides a way for people from different functions to triangulate on the product development process as a whole. It graphically represents the contributions of all team members to the moment when a project breaks even. It forces the team to estimate and re-estimate the time it will take to perform critical tasks, so that products can get out fast. It subjects the team to the only discipline that works, namely, self-discipline. The map is, in effect, a graph representing time and money, where the time line is divided into three phases: investigation, development, and manufacturing and sales. Meanwhile, costs are plotted against time--as are revenues when they are realized after manufacturing release. Within these points of reference, four novel metrics emerge: Break-Even-Time, Time-to-Market, Break-Even-After-Release, and the Return Factor. All metrics are estimated at the beginning of a project to determine its feasibility, then they are tracked carefully while the project evolves to determine its success. Missed forecasts are inevitable, but managers who punish employees for missing their marks will only encourage them to estimate conservatively, thus building slack into a system meant to eliminate slack. Estimates are a team responsibility, and deviations provide valuable information that spurs continuous investigation and improvement.
Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit.
Hillenbrand, Sarah F; Ivry, Richard B; Schlerf, John E
2016-05-15
The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging (fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as heart rate (HR) and respiratory variation (RV) affect the BOLD signal in a way that may interfere with the estimation and detection of true task-related neural activity. This interference is of particular concern when these variables themselves show task-related modulations. We first establish that a simple movement task reliably induces a change in HR but not RV. In group data, the effect of HR on the BOLD response was larger and more widespread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function (HRF) in M1 and the cerebellum. We next asked whether the inclusion of a nested set of physiological regressors combining phase, RV, and HR significantly improved the model fit in individual participants' data sets. There was a significant improvement from HR correction in M1 for the greatest number of participants, followed by RV and phase correction. These improvements were more modest in the cerebellum. These results indicate that accounting for task-related modulation of physiological variables can improve the detection and estimation of true neural effects of interest. Copyright © 2016 Elsevier Inc. All rights reserved.
Why are you late? Investigating the role of time management in time-based prospective memory.
Waldum, Emily R; McDaniel, Mark A
2016-08-01
Time-based prospective memory tasks (TBPM) are those that are to be performed at a specific future time. Contrary to typical laboratory TBPM tasks (e.g., hit the Z key every 5 min), many real-world TBPM tasks require more complex time-management processes. For instance, to attend an appointment on time, one must estimate the duration of the drive to the appointment and then use this estimate to create and execute a secondary TBPM intention (e.g., "I need to start driving by 1:30 to make my 2:00 appointment on time"). Future under- and overestimates of drive time can lead to inefficient TBPM performance with the former lending to missed appointments and the latter to long stints in the waiting room. Despite the common occurrence of complex TBPM tasks in everyday life, to date, no studies have investigated how components of time management, including time estimation, affect behavior in such complex TBPM tasks. Therefore, the current study aimed to investigate timing biases in both older and younger adults and, further, to determine how such biases along with additional time management components including planning and plan fidelity influence complex TBPM performance. Results suggest for the first time that younger and older adults do not always utilize similar timing strategies, and as a result, can produce differential timing biases under the exact same environmental conditions. These timing biases, in turn, play a vital role in how efficiently both younger and older adults perform a later TBPM task that requires them to utilize their earlier time estimate. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Music and Sound in Time Processing of Children with ADHD
Carrer, Luiz Rogério Jorgensen
2015-01-01
ADHD involves cognitive and behavioral aspects with impairments in many environments of children and their families’ lives. Music, with its playful, spontaneous, affective, motivational, temporal, and rhythmic dimensions can be of great help for studying the aspects of time processing in ADHD. In this article, we studied time processing with simple sounds and music in children with ADHD with the hypothesis that children with ADHD have a different performance when compared with children with normal development in tasks of time estimation and production. The main objective was to develop sound and musical tasks to evaluate and correlate the performance of children with ADHD, with and without methylphenidate, compared to a control group with typical development. The study involved 36 participants of age 6–14 years, recruited at NANI-UNIFESP/SP, subdivided into three groups with 12 children in each. Data was collected through a musical keyboard using Logic Audio Software 9.0 on the computer that recorded the participant’s performance in the tasks. Tasks were divided into sections: spontaneous time production, time estimation with simple sounds, and time estimation with music. Results: (1) performance of ADHD groups in temporal estimation of simple sounds in short time intervals (30 ms) were statistically lower than that of control group (p < 0.05); (2) in the task comparing musical excerpts of the same duration (7 s), ADHD groups considered the tracks longer when the musical notes had longer durations, while in the control group, the duration was related to the density of musical notes in the track. The positive average performance observed in the three groups in most tasks perhaps indicates the possibility that music can, in some way, positively modulate the symptoms of inattention in ADHD. PMID:26441688
Van Leijenhorst, Linda; Westenberg, P Michiel; Crone, Eveline A
2008-01-01
Decision making, or the process of choosing between competing courses of actions, is highly sensitive to age-related change, showing development throughout adolescence. In this study, we tested whether the development of decision making under risk is related to changes in risk-estimation abilities. Participants (N = 93) between ages 8-30 performed a child friendly gambling task, the Cake Gambling task, which was inspired by the Cambridge Gambling Task (Rogers et al., 1999), which has previously been shown to be sensitive to orbitofrontal cortex (OFC) damage. The task allowed comparisons of the contributions to risk perception of (1) the ability to estimate probabilities and (2) evaluate rewards. Adult performance patterns were highly similar to those found in previous reports, showing increased risk taking with increases in the probability of winning and the magnitude of potential reward. Behavioral patterns in children and adolescents did not differ from adult patterns, showing a similar ability for probability estimation and reward evaluation. These data suggest that participants 8 years and older perform like adults in a gambling task, previously shown to depend on the OFC in which all the information needed to make an advantageous decision is given on each trial and no information needs to be inferred from previous behavior. Interestingly, at all ages, females were more risk-averse than males. These results suggest that the increase in real-life risky behavior that is seen in adolescence is not a consequence of changes in risk perception abilities. The findings are discussed in relation to theories about the protracted development of the prefrontal cortex.
Garg, Arun; Kapellusch, Jay M
2016-08-01
The objectives were to: (a) develop a continuous frequency multiplier (FM) for the Revised NIOSH Lifting Equation (RNLE) as a function of lifting frequency and duration of a lifting task, and (b) describe the Cumulative Lifting Index (CULI), a methodology for estimating physical exposure to workers with job rotation. The existing FM for the RNLE (FME) does not differentiate between task duration >2 hr and <8 hr, which makes quantifying physical exposure to workers with job rotation difficult and presents challenges to job designers. Using the existing FMs for 1, 2, and 8 hr of task durations, we developed a continuous FM (FMP) that extends to 12 hr per day. We simulated 157,500 jobs consisting of two tasks each and, using different combinations of Frequency Independent Lifting Index, lifting frequency and duration of lifting. Biomechanical stresses were estimated using the CULI, time-weighted average (TWA), and peak exposure. The median difference between FME and FMP was ±1% (range: 0%-15%). Compared to CULI, TWA underestimated risk of low-back pain (LBP) for 18% to 30% of jobs, and peak exposure for an assumed 8-hr work shift overestimated risk of LBP for 20% to 25% of jobs. Peak task exposure showed 90% agreement with CULI but ignored one of two tasks. The CULI partially addressed the underestimation of physical exposure using the TWA approach and overestimation of exposure using the peak-exposure approach. The proposed FM and CULI may provide more accurate physical exposure estimates, and therefore estimated risk of LBP, for workers with job rotation. © 2016, Human Factors and Ergonomics Society.
Music and Sound in Time Processing of Children with ADHD.
Carrer, Luiz Rogério Jorgensen
2015-01-01
ADHD involves cognitive and behavioral aspects with impairments in many environments of children and their families' lives. Music, with its playful, spontaneous, affective, motivational, temporal, and rhythmic dimensions can be of great help for studying the aspects of time processing in ADHD. In this article, we studied time processing with simple sounds and music in children with ADHD with the hypothesis that children with ADHD have a different performance when compared with children with normal development in tasks of time estimation and production. The main objective was to develop sound and musical tasks to evaluate and correlate the performance of children with ADHD, with and without methylphenidate, compared to a control group with typical development. The study involved 36 participants of age 6-14 years, recruited at NANI-UNIFESP/SP, subdivided into three groups with 12 children in each. Data was collected through a musical keyboard using Logic Audio Software 9.0 on the computer that recorded the participant's performance in the tasks. Tasks were divided into sections: spontaneous time production, time estimation with simple sounds, and time estimation with music. (1) performance of ADHD groups in temporal estimation of simple sounds in short time intervals (30 ms) were statistically lower than that of control group (p < 0.05); (2) in the task comparing musical excerpts of the same duration (7 s), ADHD groups considered the tracks longer when the musical notes had longer durations, while in the control group, the duration was related to the density of musical notes in the track. The positive average performance observed in the three groups in most tasks perhaps indicates the possibility that music can, in some way, positively modulate the symptoms of inattention in ADHD.
Number line estimation and mental addition: examining the potential roles of language and education.
Laski, Elida V; Yu, Qingyi
2014-01-01
This study investigated the relative importance of language and education to the development of numerical knowledge. Consistent with previous research suggesting that counting systems that transparently reflect the base-10 system facilitate an understanding of numerical concepts, Chinese and Chinese American kindergartners' and second graders' number line estimation (0-100 and 0-1000) was 1 to 2 years more advanced than that of American children tested in previous studies. However, Chinese children performed better than their Chinese American peers, who were fluent in Chinese but had been educated in America, at kindergarten on 0-100 number lines, at second grade on 0-1000 number lines, and at both time points on complex addition problems. Overall, the pattern of findings suggests that educational approach may have a greater influence on numerical development than the linguistic structure of the counting system. The findings also demonstrate that, despite generating accurate estimates of numerical magnitude on 0-100 number lines earlier, it still takes Chinese children approximately 2 years to demonstrate accurate estimates on 0-1000 number lines, which raises questions about how to promote the mapping of knowledge across numerical scales. Copyright © 2013 Elsevier Inc. All rights reserved.
Touch-screen task-element times for improving SAE recommended practice J2365 : a first proposal.
DOT National Transportation Integrated Search
2015-10-01
This report describes the identification of task elements and the estimation of their times for in-vehicle tasks such as dialing a phone number or finding a song using a touch screen. These : elements were derived from an experiment in which 24 drive...
Domain-general contributions to social reasoning: theory of mind and deontic reasoning re-explored.
McKinnon, Margaret C; Moscovitch, Morris
2007-02-01
Using older adults and dual-task interference, we examined performance on two social reasoning tasks: theory of mind (ToM) tasks and versions of the deontic selection task involving social contracts and hazardous conditions. In line with performance accounts of social reasoning, evidence from both aging and the dual-task method suggested that domain-general resources contribute to performance of these tasks. Specifically, older adults were impaired relative to younger adults on all types of social reasoning tasks tested; performance varied as a function of the demands these tasks placed on domain-general resources. Moreover, in younger adults, simultaneous performance of a working memory task interfered with younger adults' performance on both types of social reasoning tasks; here too, the magnitude of the interference effect varied with the processing demands of each task. Limits placed on social reasoning by executive functions contribute a great deal to performance, even in old age and in healthy younger adults under conditions of divided attention. The role of potentially non-modular and modular contributions to social reasoning is discussed.
2011-09-01
Transport Association ( ATA ) Maintenance & Ramp Human Factors Task Force committee members—we are deeply grateful for their contributions in the...6 Air Transport Association ( ATA ) Human Factors Task Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Form Development...garnered many valuable les- sons, safety improvements, and significant returns on their investment. 1The FAA ATA Human Factors Taskforce has
ERIC Educational Resources Information Center
Brehm, John; Gates, Scott
2008-01-01
The mere word "bureaucracy" brings to mind images of endless lines, piles of paperwork, and frustrating battles over rules and red tape. But some bureaucracies are clearly more efficient and responsive than others. Why? In "Teaching, Tasks, and Trust", distinguished political scientists John Brehm and Scott Gates show that a good part of the…
Transition to the space shuttle operations era
NASA Technical Reports Server (NTRS)
1985-01-01
The tasks involved in the Space Shuttle Development Program are discussed. The ten major characteristics of an operational Shuttle are described, as well as the changes occurring in Shuttle processing, on-line operations, operations engineering, and support operations. A summary is given of tasks and goals that are being pursued in the effort to create a cost effective and efficient system.
ERIC Educational Resources Information Center
Baltruschat, Lisa; Hasselhorn, Marcus; Tarbox, Jonathan; Dixon, Dennis R.; Najdowski, Adel; Mullins, Ryan David; Gould, Evelyn
2012-01-01
This study is part of a programmatic line of research into the use of basic positive reinforcement procedures for improving working memory in children with autism spectrum disorders. The authors evaluated the effects of multiple exemplar training, utilizing positive reinforcement, on performance of a "digit span backwards" task--a test of working…
ERIC Educational Resources Information Center
Trempe, Maxime; Proteau, Luc
2010-01-01
Consolidation is a time-dependent process responsible for the storage of information in long-term memory. As such, it plays a crucial role in motor learning. In two experiments, we sought to determine whether one's performance influences the outcome of the consolidation process. We used a visuomotor adaptation task in which the cursor moved by the…
ERIC Educational Resources Information Center
Sirkis, Jocelyn Eager
2013-01-01
Academic department chairs serve as front-line managers and leaders who perform a wide variety of tasks. These tasks may include mundane chores, such as ordering office supplies, or important ones, such as changing the department culture to one that embraces assessment. Too often, however, individuals take on the chair position with little to no…
ERIC Educational Resources Information Center
Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.
2015-01-01
Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…
Graphics simulation and training aids for advanced teleoperation
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1993-01-01
Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.
48 CFR 1852.232-81 - Contract funding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... allotment is for [Insert applicable item number(s), task(s), or work description] _____ and covers the following estimated period of performance: _____. (b) An additional amount of $______ is obligated under...
Oudman, Erik; Van der Stigchel, Stefan; Nijboer, Tanja C W; Wijnia, Jan W; Seekles, Maaike L; Postma, Albert
2016-03-01
Korsakoff's syndrome (KS) is characterized by explicit amnesia, but relatively spared implicit memory. The aim of this study was to assess to what extent KS patients can acquire spatial information while performing a spatial navigation task. Furthermore, we examined whether residual spatial acquisition in KS was based on automatic or effortful coding processes. Therefore, 20 KS patients and 20 matched healthy controls performed six tasks on spatial navigation after they navigated through a residential area. Ten participants per group were instructed to pay close attention (intentional condition), while 10 received mock instructions (incidental condition). KS patients showed hampered performance on a majority of tasks, yet their performance was superior to chance level on a route time and distance estimation tasks, a map drawing task and a route walking task. Performance was relatively spared on the route distance estimation task, but there were large variations between participants. Acquisition in KS was automatic rather than effortful, since no significant differences were obtained between the intentional and incidental condition on any task, whereas for the healthy controls, the intention to learn was beneficial for the map drawing task and the route walking task. The results of this study suggest that KS patients are still able to acquire spatial information during navigation on multiple domains despite the presence of the explicit amnesia. Residual acquisition is most likely based on automatic coding processes. © 2014 The British Psychological Society.
Differences in perceptual learning transfer as a function of training task.
Green, C Shawn; Kattner, Florian; Siegel, Max H; Kersten, Daniel; Schrater, Paul R
2015-01-01
A growing body of research--including results from behavioral psychology, human structural and functional imaging, single-cell recordings in nonhuman primates, and computational modeling--suggests that perceptual learning effects are best understood as a change in the ability of higher-level integration or association areas to read out sensory information in the service of particular decisions. Work in this vein has argued that, depending on the training experience, the "rules" for this read-out can either be applicable to new contexts (thus engendering learning generalization) or can apply only to the exact training context (thus resulting in learning specificity). Here we contrast learning tasks designed to promote either stimulus-specific or stimulus-general rules. Specifically, we compare learning transfer across visual orientation following training on three different tasks: an orientation categorization task (which permits an orientation-specific learning solution), an orientation estimation task (which requires an orientation-general learning solution), and an orientation categorization task in which the relevant category boundary shifts on every trial (which lies somewhere between the two tasks above). While the simple orientation-categorization training task resulted in orientation-specific learning, the estimation and moving categorization tasks resulted in significant orientation learning generalization. The general framework tested here--that task specificity or generality can be predicted via an examination of the optimal learning solution--may be useful in building future training paradigms with certain desired outcomes.
Caçola, Priscila M; Pant, Mohan D
2014-10-01
The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.
Optimal multi-dimensional poverty lines: The state of poverty in Iraq
NASA Astrophysics Data System (ADS)
Ameen, Jamal R. M.
2017-09-01
Poverty estimation based on calories intake is unrealistic. The established concept of multidimensional poverty has methodological weaknesses in the treatment of different dimensions and there is disagreement in methods of combining them into a single poverty line. This paper introduces a methodology to estimate optimal multidimensional poverty lines and uses the Iraqi household socio-economic survey data of 2012 to demonstrate the idea. The optimal poverty line for Iraq is found to be 170.5 Thousand Iraqi Dinars (TID).
Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2007-01-01
This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.
ERIC Educational Resources Information Center
Gurlitt, Johannes; Renkl, Alexander
2010-01-01
Two experiments investigated the effects of characteristic features of concept mapping used for prior knowledge activation. Characteristic demands of concept mapping include connecting lines representing the relationships between concepts and labeling these lines, specifying the type of the semantic relationships. In the first experiment,…
Advanced Spectral Modeling Development
1992-09-14
above, the AFGL line-by-line code already possesses many of the attributes desired of a generally applicable transmittance/radiance simulation code, it...transmittance calculations, (b) perform generalized multiple scattering calculations, (c) calculate both heating and dissociative fluxes, (d) provide...This report is subdivided into task specific subsections. The following section describes our general approach to address these technical issues (Section
Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition
ERIC Educational Resources Information Center
Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.
2012-01-01
Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…
Mental Number Line Disruption in a Right-Neglect Patient after a Left-Hemisphere Stroke
ERIC Educational Resources Information Center
Pia, Lorenzo; Corazzini, Luca Latini; Folegatti, Alessia; Gindri, Patrizia; Cauda, Franco
2009-01-01
A right-neglect patient with focal left-hemisphere damage to the posterior superior parietal lobe was assessed for numerical knowledge and tested on the bisection of numerical intervals and visual lines. The semantic and verbal knowledge of numbers was preserved, whereas the performance in numerical tasks that strongly emphasize the visuo-spatial…
Plan for a Statewide On-Line Information System for Libraries (MnLINK).
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul.
The 1996 Legislature directed the Minnesota Higher Education Services Office (HESO), in cooperation with the Library Planning Task Force to, "create a plan and process to develop a statewide on-line information system for libraries"; this memo with attached information was submitted in fulfillment of that request. The name chosen for the…
2016-09-09
law enforcement detachment (USCG) LEO law enforcement operations LOC line of communications MACCS Marine air command and control system MAS...enemy command and control [C2], intelligence, fires, reinforcing units, lines of communications [ LOCs ], logistics, and other operational- and tactical...enemy naval, engineering, and personnel resources to the tasks of repairing and recovering damaged equipment, facilities, and LOCs . It can draw the
PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models.
Glueck, Michael; Naeini, Mahdi Pakdaman; Doshi-Velez, Finale; Chevalier, Fanny; Khan, Azam; Wigdor, Daniel; Brudno, Michael
2018-01-01
PhenoLines is a visual analysis tool for the interpretation of disease subtypes, derived from the application of topic models to clinical data. Topic models enable one to mine cross-sectional patient comorbidity data (e.g., electronic health records) and construct disease subtypes-each with its own temporally evolving prevalence and co-occurrence of phenotypes-without requiring aligned longitudinal phenotype data for all patients. However, the dimensionality of topic models makes interpretation challenging, and de facto analyses provide little intuition regarding phenotype relevance or phenotype interrelationships. PhenoLines enables one to compare phenotype prevalence within and across disease subtype topics, thus supporting subtype characterization, a task that involves identifying a proposed subtype's dominant phenotypes, ages of effect, and clinical validity. We contribute a data transformation workflow that employs the Human Phenotype Ontology to hierarchically organize phenotypes and aggregate the evolving probabilities produced by topic models. We introduce a novel measure of phenotype relevance that can be used to simplify the resulting topology. The design of PhenoLines was motivated by formative interviews with machine learning and clinical experts. We describe the collaborative design process, distill high-level tasks, and report on initial evaluations with machine learning experts and a medical domain expert. These results suggest that PhenoLines demonstrates promising approaches to support the characterization and optimization of topic models.
Cultural differences in on-line sensitivity to emotional voices: comparing East and West
Liu, Pan; Rigoulot, Simon; Pell, Marc D.
2015-01-01
Evidence that culture modulates on-line neural responses to the emotional meanings encoded by vocal and facial expressions was demonstrated recently in a study comparing English North Americans and Chinese (Liu et al., 2015). Here, we compared how individuals from these two cultures passively respond to emotional cues from faces and voices using an Oddball task. Participants viewed in-group emotional faces, with or without simultaneous vocal expressions, while performing a face-irrelevant visual task as the EEG was recorded. A significantly larger visual Mismatch Negativity (vMMN) was observed for Chinese vs. English participants when faces were accompanied by voices, suggesting that Chinese were influenced to a larger extent by task-irrelevant vocal cues. These data highlight further differences in how adults from East Asian vs. Western cultures process socio-emotional cues, arguing that distinct cultural practices in communication (e.g., display rules) shape neurocognitive activity associated with the early perception and integration of multi-sensory emotional cues. PMID:26074808
Enhancing social ability by stimulating right temporoparietal junction.
Santiesteban, Idalmis; Banissy, Michael J; Catmur, Caroline; Bird, Geoffrey
2012-12-04
The temporoparietal junction (TPJ) is a key node within the "social brain". Several studies suggest that the TPJ controls representations of the self or another individual across a variety of low-level (agency discrimination, visual perspective taking, control of imitation) and high-level (mentalizing, empathy) sociocognitive processes. We explored whether sociocognitive abilities relying on on-line control of self and other representations could be modulated with transcranial direct current stimulation (tDCS) of TPJ. Participants received excitatory (anodal), inhibitory (cathodal), or sham stimulation before completing three sociocognitive tasks. Anodal stimulation improved the on-line control of self-other representations elicited by the imitation and perspective-taking tasks while not affecting attribution of mental states during a self-referential task devoid of such a requirement. Our findings demonstrate the efficacy of tDCS to improve social cognition and highlight the potential for tDCS to be used as a tool to aid self-other processing in clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1980-01-01
Using simulation, an improved longitudinal velocity vector control wheel steering mode and an improved electronic display format for an advanced flight system were developed and tested. Guidelines for the development phase were provided by test pilot critique summaries of the previous system. The results include performances from computer generated step column inputs across the full airplane speed and configuration envelope, as well as piloted performance results taken from a reference line tracking task and an approach to landing task conducted under various environmental conditions. The analysis of the results for the reference line tracking and approach to landing tasks indicates clearly detectable improvement in pilot tracking accuracy with a reduction in physical workload. The original objectives of upgrading the longitudinal axis of the velocity vector control wheel steering mode were successfully met when measured against the test pilot critique summaries and the original purpose outlined for this type of augment control mode.
Affective bias in visual working memory is associated with capacity.
Xie, Weizhen; Li, Huanhuan; Ying, Xiangyu; Zhu, Shiyou; Fu, Rong; Zou, Yingmin; Cui, Yanyan
2017-11-01
How does the affective nature of task stimuli modulate working memory (WM)? This study investigates whether WM maintains emotional information in a biased manner to meet the motivational principle of approaching positivity and avoiding negativity by retaining more approach-related positive content over avoidance-related negative content. This bias may exist regardless of individual differences in WM functionality, as indexed by WM capacity (overall bias hypothesis). Alternatively, this bias may be contingent on WM capacity (capacity-based hypothesis), in which a better WM system may be more likely to reveal an adaptive bias. In two experiments, participants performed change localisation tasks with emotional and non-emotional stimuli to estimate the number of items that they could retain for each of those stimuli. Although participants did not seem to remember one type of emotional content (e.g. happy faces) better than the other type of emotional content (e.g. sad faces), there was a significant correlation between WM capacity and affective bias. Specifically, participants with higher WM capacity for non-emotional stimuli (colours or line-drawing symbols) tended to maintain more happy faces over sad faces. These findings demonstrated the presence of a "built-in" affective bias in WM as a function of its systematic limitations, favouring the capacity-based hypothesis.
Critical care and the World Wide Web.
Varon, J; Marik, P E
1999-07-01
The Internet was created in 1969, when the Advanced Research Projects Agency of the United States Department of Defense fired up an experimental network consisting of only four computers. Over the past five years there has been an exponential explosion in the number of computers added to this network. It is estimated that Internet traffic doubles every 100 days with more than 100 million people worldwide now on-line. The Internet is so vast that practically every aspect of human interest is represented is some form or fashion. From recreation to applied science and technology, and from Critical Care Medicine case scenarios to digitized radiology images and pathology specimens, the Internet has become increasingly useful for critical care practitioners. To date, no resource is better equipped to assist critical care providers in many of their daily tasks. This article presents some of the historical developments of the Internet as well as common applications that are useful for critical care practitioners.
The frequency and distribution of high-velocity gas in the Galaxy
NASA Technical Reports Server (NTRS)
Nichols, Joy S.
1995-01-01
The purpose of this study was to estimate the frequency and distribution of high-velocity gas in the Galaxy using UV absorption line measurements from archival high-dispersion IUE spectra and to identify particularly interesting regions for future study. Approximately 500 spectra have been examined. The study began with the creation of a database of all 0 and B stars with b less than or = to 30 deg observed with IUE at high dispersion over its 18-year lifetime. The original database of 2500 unique objects was reduced to 1200 objects which had optimal exposures available. The next task was to determine the distances of these stars so the high-velocity structures could be mapped in the Galaxy. Spectroscopic distances were calculated for each star for which photometry was available. The photometry was acquired for each star using the SIMBAD database. Preference was given to the ubvy system where available; otherwise the UBV system was used.
Scanning linear estimation: improvements over region of interest (ROI) methods
NASA Astrophysics Data System (ADS)
Kupinski, Meredith K.; Clarkson, Eric W.; Barrett, Harrison H.
2013-03-01
In tomographic medical imaging, a signal activity is typically estimated by summing voxels from a reconstructed image. We introduce an alternative estimation scheme that operates on the raw projection data and offers a substantial improvement, as measured by the ensemble mean-square error (EMSE), when compared to using voxel values from a maximum-likelihood expectation-maximization (MLEM) reconstruction. The scanning-linear (SL) estimator operates on the raw projection data and is derived as a special case of maximum-likelihood estimation with a series of approximations to make the calculation tractable. The approximated likelihood accounts for background randomness, measurement noise and variability in the parameters to be estimated. When signal size and location are known, the SL estimate of signal activity is unbiased, i.e. the average estimate equals the true value. By contrast, unpredictable bias arising from the null functions of the imaging system affect standard algorithms that operate on reconstructed data. The SL method is demonstrated for two different tasks: (1) simultaneously estimating a signal’s size, location and activity; (2) for a fixed signal size and location, estimating activity. Noisy projection data are realistically simulated using measured calibration data from the multi-module multi-resolution small-animal SPECT imaging system. For both tasks, the same set of images is reconstructed using the MLEM algorithm (80 iterations), and the average and maximum values within the region of interest (ROI) are calculated for comparison. This comparison shows dramatic improvements in EMSE for the SL estimates. To show that the bias in ROI estimates affects not only absolute values but also relative differences, such as those used to monitor the response to therapy, the activity estimation task is repeated for three different signal sizes.
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2015-06-01
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analysed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. Although estimating of the earthquake foci location is relatively simple, a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling and a priori uncertainties. In this paper, we addressed this task when statistics of observational and/or modelling errors are unknown. This common situation requires introduction of a priori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland, we propose an approach based on an analysis of Shanon's entropy calculated for the a posteriori distribution. We show that this meta-characteristic of the a posteriori distribution carries some information on uncertainties of the solution found.
Park, Subok; Clarkson, Eric
2010-01-01
The Bayesian ideal observer is optimal among all observers and sets an absolute upper bound for the performance of any observer in classification tasks [Van Trees, Detection, Estimation, and Modulation Theory, Part I (Academic, 1968).]. Therefore, the ideal observer should be used for objective image quality assessment whenever possible. However, computation of ideal-observer performance is difficult in practice because this observer requires the full description of unknown, statistical properties of high-dimensional, complex data arising in real life problems. Previously, Markov-chain Monte Carlo (MCMC) methods were developed by Kupinski et al. [J. Opt. Soc. Am. A 20, 430(2003) ] and by Park et al. [J. Opt. Soc. Am. A 24, B136 (2007) and IEEE Trans. Med. Imaging 28, 657 (2009) ] to estimate the performance of the ideal observer and the channelized ideal observer (CIO), respectively, in classification tasks involving non-Gaussian random backgrounds. However, both algorithms had the disadvantage of long computation times. We propose a fast MCMC for real-time estimation of the likelihood ratio for the CIO. Our simulation results show that our method has the potential to speed up ideal-observer performance in tasks involving complex data when efficient channels are used for the CIO. PMID:19884916
Kim, Elizabeth B; Chen, Chuansheng; Smetana, Judith G; Greenberger, Ellen
2016-10-01
The current study tested whether preschoolers' moral and social-conventional judgments change under social pressure using Asch's conformity paradigm. A sample of 132 preschoolers (Mage=3.83years, SD=0.85) rated the acceptability of moral and social-conventional events and also completed a visual judgment task (i.e., comparing line length) both independently and after having viewed two peers who consistently made immoral, unconventional, or visually inaccurate judgments. Results showed evidence of conformity on all three tasks, but conformity was stronger on the social-conventional task than on the moral and visual tasks. Older children were less susceptible to pressure for social conformity for the moral and visual tasks but not for the conventional task. Copyright © 2016 Elsevier Inc. All rights reserved.
DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A
2015-03-25
Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies.
Impairment in judgement of the moral emotion guilt following orbitofrontal cortex damage.
Funayama, Michitaka; Koreki, Akihiro; Muramatsu, Taro; Mimura, Masaru; Kato, Motoichiro; Abe, Takayuki
2018-04-19
Although neuroimaging studies have provided evidence for an association between moral emotions and the orbitofrontal cortex, studies on patients with focal lesions using experimental probes of moral emotions are scarce. Here, we addressed this topic by presenting a moral emotion judgement task to patients with focal brain damage. Four judgement tasks in a simple pairwise choice paradigm were given to 72 patients with cerebrovascular disease. These tasks consisted of a perceptual line judgement task as a control task; the objects' preference task as a basic preference judgement task; and two types of moral emotion judgement task, an anger task and a guilt task. A multiple linear regression analysis was performed on each set of task performance scores to take into account potential confounders. Performance on the guilt emotion judgement task negatively correlated with the orbitofrontal cortex damage, but not with the other variables. Results for the other judgement tasks did not reach statistical significance. The close association between orbitofrontal cortex damage and a decrease in guilt emotion judgement consistency might suggest that the orbitofrontal cortex plays a key role in the sense of guilt, a hallmark of morality. © 2018 The British Psychological Society.
Script-independent text line segmentation in freestyle handwritten documents.
Li, Yi; Zheng, Yefeng; Doermann, David; Jaeger, Stefan; Li, Yi
2008-08-01
Text line segmentation in freestyle handwritten documents remains an open document analysis problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge to algorithms developed for machine printed or hand-printed documents. In this paper, we propose a novel approach based on density estimation and a state-of-the-art image segmentation technique, the level set method. From an input document image, we estimate a probability map, where each element represents the probability that the underlying pixel belongs to a text line. The level set method is then exploited to determine the boundary of neighboring text lines by evolving an initial estimate. Unlike connected component based methods ( [1], [2] for example), the proposed algorithm does not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that our algorithm consistently outperforms previous methods [1]-[3]. Further experiments show the proposed algorithm is robust to scale change, rotation, and noise.
Taya, Shuichiro; Windridge, David; Osman, Magda
2012-01-01
Several studies have reported that task instructions influence eye-movement behavior during static image observation. In contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers’ beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual attention to the items presented in the clip (e.g., ball, players, court lines, and umpire). However, before attending to the clips, observers were either told to simply watch clips (non-specific goal), or they were told to watch the clips with a view to judging which of the two tennis players was awarded the point (specific goal). The results of subjective reports suggest that observers believed that they allocated their attention more to goal-related items (e.g. court lines) if they performed the goal-specific task. However, we did not find the effect of goal specificity on major eye-movement parameters (i.e., saccadic amplitudes, inter-saccadic intervals, and gaze coherence). We conclude that the specificity of a task goal can alter observer’s beliefs about their attention allocation strategy, but such task-driven meta-attentional modulation does not necessarily correlate with eye-movement behavior. PMID:22768058
The Relationship Between Speech Production and Speech Perception Deficits in Parkinson's Disease.
De Keyser, Kim; Santens, Patrick; Bockstael, Annelies; Botteldooren, Dick; Talsma, Durk; De Vos, Stefanie; Van Cauwenberghe, Mieke; Verheugen, Femke; Corthals, Paul; De Letter, Miet
2016-10-01
This study investigated the possible relationship between hypokinetic speech production and speech intensity perception in patients with Parkinson's disease (PD). Participants included 14 patients with idiopathic PD and 14 matched healthy controls (HCs) with normal hearing and cognition. First, speech production was objectified through a standardized speech intelligibility assessment, acoustic analysis, and speech intensity measurements. Second, an overall estimation task and an intensity estimation task were addressed to evaluate overall speech perception and speech intensity perception, respectively. Finally, correlation analysis was performed between the speech characteristics of the overall estimation task and the corresponding acoustic analysis. The interaction between speech production and speech intensity perception was investigated by an intensity imitation task. Acoustic analysis and speech intensity measurements demonstrated significant differences in speech production between patients with PD and the HCs. A different pattern in the auditory perception of speech and speech intensity was found in the PD group. Auditory perceptual deficits may influence speech production in patients with PD. The present results suggest a disturbed auditory perception related to an automatic monitoring deficit in PD.
Earth resources data analysis program, phase 3
NASA Technical Reports Server (NTRS)
1975-01-01
Tasks were performed in two areas: (1) systems analysis and (2) algorithmic development. The major effort in the systems analysis task was the development of a recommended approach to the monitoring of resource utilization data for the Large Area Crop Inventory Experiment (LACIE). Other efforts included participation in various studies concerning the LACIE Project Plan, the utility of the GE Image 100, and the specifications for a special purpose processor to be used in the LACIE. In the second task, the major effort was the development of improved algorithms for estimating proportions of unclassified remotely sensed data. Also, work was performed on optimal feature extraction and optimal feature extraction for proportion estimation.
Statistical Cost Estimation in Higher Education: Some Alternatives.
ERIC Educational Resources Information Center
Brinkman, Paul T.; Niwa, Shelley
Recent developments in econometrics that are relevant to the task of estimating costs in higher education are reviewed. The relative effectiveness of alternative statistical procedures for estimating costs are also tested. Statistical cost estimation involves three basic parts: a model, a data set, and an estimation procedure. Actual data are used…
Suitability of the line intersect method for sampling hardwood logging residues
A. Jeff Martin
1976-01-01
The line intersect method of sampling logging residues was tested in Appalachian hardwoods and was found to provide unbiased estimates of the volume of residue in cubic feet per acre. Thirty-two chains of sample line were established on each of sixteen 1-acre plots on cutover areas in a variety of conditions. Estimates from these samples were then compared to actual...
Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff
2015-02-01
Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Usami, Yumi; Stork, David G.; Fujiki, Jun; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2011-03-01
We derive and demonstrate new methods for dewarping images depicted in convex mirrors in artwork and for estimating the three-dimensional shapes of the mirrors themselves. Previous methods were based on the assumption that mirrors were spherical or paraboloidal, an assumption unlikely to hold for hand-blown glass spheres used in early Renaissance art, such as Johannes van Eyck's Portrait of Giovanni (?) Arnolfini and his wife (1434) and Robert Campin's Portrait of St. John the Baptist and Heinrich von Werl (1438). Our methods are more general than such previous methods in that we assume merely that the mirror is radially symmetric and that there are straight lines (or colinear points) in the actual source scene. We express the mirror's shape as a mathematical series and pose the image dewarping task as that of estimating the coefficients in the series expansion. Central to our method is the plumbline principle: that the optimal coefficients are those that dewarp the mirror image so as to straighten lines that correspond to straight lines in the source scene. We solve for these coefficients algebraically through principal component analysis, PCA. Our method relies on a global figure of merit to balance warping errors throughout the image and it thereby reduces a reliance on the somewhat subjective criterion used in earlier methods. Our estimation can be applied to separate image annuli, which is appropriate if the mirror shape is irregular. Once we have found the optimal image dewarping, we compute the mirror shape by solving a differential equation based on the estimated dewarping function. We demonstrate our methods on the Arnolfini mirror and reveal a dewarped image superior to those found in prior work|an image noticeably more rectilinear throughout and having a more coherent geometrical perspective and vanishing points. Moreover, we find the mirror deviated from spherical and paraboloidal shape; this implies that it would have been useless as a concave projection mirror, as has been claimed. Our dewarped image can be compared to the geometry in the full Arnolfini painting; the geometrical agreement strongly suggests that van Eyck worked from an actual room, not, as has been suggested by some art historians, a "fictive" room of his imagination. We apply our method to other mirrors depicted in art, such as Parmigianino's Self-portrait in a convex mirror and compare our results to those from earlier computer graphics simulations.
Parallel task processing of very large datasets
NASA Astrophysics Data System (ADS)
Romig, Phillip Richardson, III
This research concerns the use of distributed computer technologies for the analysis and management of very large datasets. Improvements in sensor technology, an emphasis on global change research, and greater access to data warehouses all are increase the number of non-traditional users of remotely sensed data. We present a framework for distributed solutions to the challenges of datasets which exceed the online storage capacity of individual workstations. This framework, called parallel task processing (PTP), incorporates both the task- and data-level parallelism exemplified by many image processing operations. An implementation based on the principles of PTP, called Tricky, is also presented. Additionally, we describe the challenges and practical issues in modeling the performance of parallel task processing with large datasets. We present a mechanism for estimating the running time of each unit of work within a system and an algorithm that uses these estimates to simulate the execution environment and produce estimated runtimes. Finally, we describe and discuss experimental results which validate the design. Specifically, the system (a) is able to perform computation on datasets which exceed the capacity of any one disk, (b) provides reduction of overall computation time as a result of the task distribution even with the additional cost of data transfer and management, and (c) in the simulation mode accurately predicts the performance of the real execution environment.
Characterization and Targeting of the Aldehyde Dehydrogenase Subpopulation in Ovarian Cancer
2013-07-01
from the A2780cp20 cell line . Task 2: Determine if ALDH1-positive cells survive chemotherapy in the tumor microenvironment. We have previously... lines . Anti- endoglin siRNAs were used to downregulate expression in ES2 and HeyA8MDR. In vitro, the effects of endoglin-knockdown individually and...ES2 or HeyA8MDR cell lines were administered chitosan-encapsulated anti- ENG siRNA or control siRNA with and without carboplatin. As described in the
Number sense and mathematics: Which, when and how?
Tosto, Maria G; Petrill, Stephen A; Malykh, Sergey; Malki, Karim; Haworth, Claire M A; Mazzocco, Michele M M; Thompson, Lee; Opfer, John; Bogdanova, Olga Y; Kovas, Yulia
2017-10-01
Individual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts. In this study, 4,984 16-year-old students were assessed on estimation ability, one aspect of number sense. Estimation was measured using 2 different tasks: number line and dot-comparison. Using cognitive and achievement data previously collected from these students at ages 7, 9, 10, 12, and 14, the study explored for which of the measures and when in development these links are observed, and how strong these links are and how much these links are moderated by other cognitive abilities. The 2 number sense measures correlated modestly with each other (r = .22), but moderately with mathematics at age 16. Both measures were also associated with earlier mathematics; but this association was uneven across development and was moderated by other cognitive abilities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A Horizontal Tilt Correction Method for Ship License Numbers Recognition
NASA Astrophysics Data System (ADS)
Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi
2018-02-01
An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.
MIA - A free and open source software for gray scale medical image analysis
2013-01-01
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed. PMID:24119305
MIA - A free and open source software for gray scale medical image analysis.
Wollny, Gert; Kellman, Peter; Ledesma-Carbayo, María-Jesus; Skinner, Matthew M; Hublin, Jean-Jaques; Hierl, Thomas
2013-10-11
Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large.Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers.One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development.Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don't provide an clear approach when one wants to shape a new command line tool from a prototype shell script. The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.
Threatening scenes but not threatening faces shorten time-to-contact estimates.
DeLucia, Patricia R; Brendel, Esther; Hecht, Heiko; Stacy, Ryan L; Larsen, Jeff T
2014-08-01
We previously reported that time-to-contact (TTC) judgments of threatening scene pictures (e.g., frontal attacks) resulted in shortened estimations and were mediated by cognitive processes, and that judgments of threatening (e.g., angry) face pictures resulted in a smaller effect and did not seem cognitively mediated. In the present study, the effects of threatening scenes and faces were compared in two different tasks. An effect of threatening scene pictures occurred in a prediction-motion task, which putatively requires cognitive motion extrapolation, but not in a relative TTC judgment task, which was designed to be less reliant on cognitive processes. An effect of threatening face pictures did not occur in either task. We propose that an object's explicit potential of threat per se, and not only emotional valence, underlies the effect of threatening scenes on TTC judgments and that such an effect occurs only when the task allows sufficient cognitive processing. Results are consistent with distinctions between predator and social fear systems and different underlying physiological mechanisms. Not all threatening information elicits the same responses, and whether an effect occurs at all may depend on the task and the degree to which the task involves cognitive processes.
Weinreich, André; Funcke, Jakob Maria
2014-01-01
Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.
Contingency and similarity in response selection.
Prinz, Wolfgang
2018-05-09
This paper explores issues of task representation in choice reaction time tasks. How is it possible, and what does it take, to represent such a task in a way that enables a performer to do the task in line with the prescriptions entailed in the instructions? First, a framework for task representation is outlined which combines the implementation of task sets and their use for performance with different kinds of representational operations (pertaining to feature compounds for event codes and code assemblies for task sets, respectively). Then, in a second step, the framework is itself embedded in the bigger picture of the classical debate on the roles of contingency and similarity for the formation of associations. The final conclusion is that both principles are needed and that the operation of similarity at the level of task sets requires and presupposes the operation of contingency at the level of event codes. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.
Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G
2015-06-01
FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.
Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G.
2015-01-01
FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine–cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mm Hg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. PMID:25795342
Performance on a functional motor task is enhanced by sleep in middle-aged and older adults.
Al-Sharman, Alham; Siengsukon, Catherine F
2014-07-01
Although sleep has been shown to enhance motor skill learning, it remains unclear whether sleep enhances learning of a functional motor task in middle-aged and older individuals. The purpose of this study was to examine whether sleep enhances motor learning of a functional motor task in middle-aged and older adults. Twenty middle-aged and 20 older individuals were randomly assigned to either the sleep condition or the no-sleep condition. Participants in the sleep condition practiced a novel walking task in the evening, and returned the following morning for retesting. Participants in the no-sleep condition practiced the walking task in the morning and returned the same day in the evening for a retest. Outcome measures included time around the walking path and spatiotemporal gait parameters. Only the middle-aged and older adults in the sleep condition demonstrated significant off-line improvement in performance, measured as a decline in time to walk around the novel path and improvement in spatiotemporal gait parameters. The middle-aged and older adults in the no-sleep condition failed to demonstrate off-line improvements in performance of this functional task. This is the first study to provide evidence that sleep facilitates learning a clinically relevant functional motor task in middle-aged and older adults. Because many neurologic conditions occur in the middle-aged and older adults and sleep issues are very prevalent in many neurologic conditions, it is imperative that physical therapists consider sleep as a factor that may impact motor learning and recovery in these individuals. (See Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A73) for more insights from the authors.
Andoh, Jamila; Paus, Tomás
2011-02-01
Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word recognition tasks. To investigate the neural substrate of these behavioral effects, off-line rTMS was combined with fMRI acquired during the performance of a word recognition task. Twenty right-handed healthy men underwent fMRI scans before and after a session of 10-Hz rTMS applied outside the magnetic resonance scanner. Functional magnetic resonance images were acquired during the performance of a word recognition task that used English or foreign-language words. rTMS was applied over the LTMP in one group of 10 participants (LTMP group), whereas the homologue region in the right hemisphere was stimulated in another group of 10 participants (RTMP group). Changes in task-related fMRI response (English minus foreign languages) and task performances (response time and accuracy) were measured in both groups and compared between pre-rTMS and post-rTMS. Our results showed that rTMS increased task-related fMRI response in the homologue areas contralateral to the stimulated sites. We also found an effect of rTMS on response time for the LTMP group only. These findings provide insights into changes in neural activity in cortical regions connected to the stimulated site and are consistent with a hypothesis raised in a previous review about the role of the homologue areas in the contralateral hemisphere for preserving behavior after neural interference.
Preserved learning of novel information in amnesia: evidence for multiple memory systems.
Gordon, B
1988-06-01
Four of five patients with marked global amnesia, and others with new learning impairments, showed normal processing facilitation for novel stimuli (nonwords) and/or for familiar stimuli (words) on a word/nonword (lexical) decision task. The data are interpreted as a reflection of the learning capabilities of in-line neural processing stages with multiple, distinct, informational codes. These in-line learning processes are separate from the recognition/recall memory impaired by amygdalohippocampal/dosomedial thalamic damage, but probably supplement such memory in some tasks in normal individuals. Preserved learning of novel information seems incompatible with explanations of spared learning in amnesia that are based on the episodic/semantic or memory/habit distinctions, but is consistent with the procedural/declarative hypothesis.
Brick and Stone Masonry Series. Duty Task List.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This task list is intended for use in planning and/or evaluating a competency-based course in brick and stone masonry. The tasks required for 15 different duties performed by bricklayers and 13 different duties typically performed by rocklayers are outlined. The following bricklaying duties are covered: estimating materials for and laying out a…
Industrial Electrical Maintenance Learning Guides and Task Listing by Occupational Titles.
ERIC Educational Resources Information Center
Whitmer, Melvin
Seven student learning guides are provided for an industrial electrical maintenance program at the secondary, postsecondary, or adult level. Each learning guide is composed of these component parts: a title page that states the task, purpose, program and task numbers, estimated time, and prerequisites; an optional learning contract that includes…
Logistic Regression Modeling for Predicting Task-Related ICT Use in Teaching
ERIC Educational Resources Information Center
Askar, Petek; Usluel, Yasemin Kocak; Mumcu, Filiz Kuskaya
2006-01-01
The main goal of this study is to estimate the extent to which perceived innovation characteristics are associated with the probability of task related ICT use among secondary school teachers. The tasks were categorized as teaching preparation, teaching delivery, and management. Four hundred and sixteen teachers from secondary schools in Turkey,…