Science.gov

Sample records for line region structure

  1. LINE EMISSION FROM RADIATION-PRESSURIZED H II REGIONS. I. INTERNAL STRUCTURE AND LINE RATIOS

    SciTech Connect

    Yeh, Sherry C. C.; Matzner, Christopher D.; Verdolini, Silvia; Tielens, Alexander G. G. M.; Krumholz, Mark R.

    2013-05-20

    The emission line ratios [O III] {lambda}5007/H{beta} and [N II] {lambda}6584/H{alpha} have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting H II regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper, we construct a grid of quasi-static H II region models to explore how choices about these parameters alter H II regions' emission line ratios. We find that when radiation pressure is included in our models, H II regions reach a saturation point beyond which further increase in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an H II region's line ratio. We also show that if stellar winds are assumed to be strong, the maximum possible ionization parameter is quite low. As a result of this effect, it is inconsistent to simultaneously assume that H II regions are wind-blown bubbles and that they have high ionization parameters; some popular H II region models suffer from this inconsistency. Our work in this paper provides a foundation for a companion paper in which we embed the model grids we compute here within a population synthesis code that enables us to compute the integrated line emission from galactic populations of H II regions.

  2. Broad-line region structure and kinematics in the radio galaxy 3C 120

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Ulbrich, K.; Zetzl, M.; Kaspi, S.; Haas, M.

    2014-06-01

    Context. Broad emission lines originate in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). These broad-line emitting regions are spatially unresolved even for the nearest AGN. The origin and geometry of broad-line region (BLR) gas and their connection with geometrically thin or thick accretion disks is of fundamental importance for the understanding of AGN activity. Aims: One method to investigate the extent, structure, and kinematics of the BLR is to study the continuum and line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C 120 as a target for this study. Methods: We took spectra with a high signal-to-noise ratio of 3C 120 with the 9.2 m Hobby-Eberly Telescope between Sept. 2008 and March 2009. In parallel, we photometrically monitored the continuum flux at the Wise observatory. We analyzed the continuum and line profile variations in detail (1D and 2D reverberation mapping) and modeled the geometry of the line-emitting regions based on the line profiles. Results: We show that the BLR in 3C 120 is stratified with respect to the distance of the line-emitting regions from the center with respect to the line widths (FWHM) of the rms profiles and with respect to the variability amplitude of the emission lines. The emission line wings of Hα and Hβ respond much faster than their central region. This is explained by accretion disk models. In addition, these lines show a stronger response in the red wings. However, the velocity-delay maps of the helium lines show a stronger response in the blue wing. Furthermore, the He ii λ4686 line responds faster in the blue wing in contradiction to observations made one and a half years later when the galaxy was in a lower state. The faster response in the blue wing is an indication for central outflow motions when this galaxy was in a bright state during our observations. The vertical BLR structure in 3C 120 coincides with that of other AGN. We confirm the

  3. The Fine-Structure Lines of Hydrogen in H II Regions

    NASA Astrophysics Data System (ADS)

    Dennison, Brian; Turner, B. E.; Minter, Anthony H.

    2005-11-01

    The 2s1/2 state of hydrogen is metastable and overpopulated in H II regions. In addition, the 2p states may be pumped by ambient Lyα radiation. Fine-structure transitions between these states may be observable in H II regions at 1.1 GHz (2s1/2-2p1/2) and/or 9.9 GHz (2s1/2-2p3/2), although the details of absorption versus emission are determined by the relative populations of the 2s and 2p states. The n=2 level populations are solved with a parameterization that allows for Lyα pumping of the 2p states. The Lyα pumping rate has long been considered uncertain, as it involves solution of the difficult Lyα transfer problem. The density of Lyα photons is set by their creation rate, easily determined from the recombination rate, and their removal rate. Here we suggest that the dominant removal mechanism of Lyα radiation in H II regions is absorption by dust. This circumvents the need to solve the Lyα transfer problem and provides an upper limit to the rate at which the 2p states are populated by Lyα photons. In virtually all cases of interest, the 2p states are predominantly populated by recombination, rather than Lyα pumping. We then solve the radiative transfer problem for the fine-structure lines in the presence of free-free radiation. In the likely absence of Lyα pumping, the 2s1/2-->2p1/2 lines will appear in stimulated emission, and the 2s1/2-->2p3/2 lines in absorption. Because the final 2p states are short lived, these lines are dominated by intrinsic line width (99.8 MHz). In addition, each fine-structure line is a multiplet of three blended hyperfine transitions. Searching for the 9.9 GHz lines in high emission measure H II regions offers the best prospects for detection. The lines are predicted to be weak; in the best cases, line-to-continuum ratios of several tenths of a percent might be expected with line strengths of tens to a hundred mK with the Green Bank Telescope. Predicted line strengths, at both 1.1 and 9.9 GHz, are given for a number of H II

  4. Structure and kinematics of the broad-line regions in active galaxies from IUE variability data

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha P.; Gaskell, C. Martin

    1991-01-01

    IUE archival data are used here to investigate the structure nad kinematics of the broad-line regions (BLRs) in nine AGN. It is found that the centroid of the line-continuum cross-correlation functions (CCFs) can be determined with reasonable reliability. The errors in BLR size estimates from CCFs for irregularly sampled light curves are fairly well understood. BLRs are found to have small luminosity-weighted radii, and lines of high ionization tend to be emitted closer to the central source than lines of low ionization, especially for low-luminosity objects. The motion of the gas is gravity-dominated with both pure inflow and pure outflow of high-velocity gas being excluded at a high confidence level for certain geometries.

  5. Characterizing HII regions in High-z ULIRGs with far infrared fine structure lines

    NASA Astrophysics Data System (ADS)

    Brisbin, Drew; Ferkinhoff, Carl; Stacey, Gordon J.; Parshley, Stephen; Hailey-Dunsheath, Steve; Lamarche, Cody

    2015-01-01

    The nature of star-forming ULIRGs in the early Universe remains mysterious. Is their star formation fueled predominantly through cold flow accretion, or through major mergers? What fraction of the sources have AGN, and what is the stellar mass function powering the HII regions? Of particular importance to these questions is the characterization of the ionized gas properties, and the coupling with the cooler photodissociation region (PDR) gas. To address these issues we have undertaken a mini-survey of several z~1-2 luminous galaxies observed in multiple ionized oxygen far infrared fine structure lines. These fine structure lines allow us to constrain the density and radiation field of the ionized gas and test for the presence of harder AGN powered radiation. Coupled with previous data including the [CII] and [OI] fine structure lines emanating from PDR gas, we will also test the ability to simultaneously model both PDR and HII gas components. This survey, modest in extent, offers an illustrative snapshot of the diversity of systems in the early Universe.

  6. The Broad Line Region in AGNs: Structure, Physics, and the f Factor

    NASA Astrophysics Data System (ADS)

    Grier, Catherine; Peterson, B. M.; Martini, P.; Pogge, R. W.; Pancoast, A.; Treu, T.; Watson, L. C.

    2014-01-01

    We present recent results in an effort to investigate the structure of the broad line region in active galactic nuclei (AGNs) using reverberation mapping data. AGNs provide our only means for exploring the black hole (BH) population outside the local universe. To measure black hole masses (MBH) in AGNs, we use the broad line region (BLR) by assuming that the motion of the emitting gas is dominated by the gravity of the BH. Virial MBH measurements can be made using the resulting Doppler-broadened emission lines: MBH = fRΔV^2/G. R is the distance of the emitting gas from the BH, ΔV is the velocity dispersion of the emitting gas, obtained from the width of the emission line, and f is a dimensionless factor that accounts for the geometry and orientation of the BLR. Because the BLR is unresolvable, the true value of f in for each object is unknown. Typically, an average virial factor f is used, calculated by assuming that AGNs follow the same MBH--σ relation as quiescent galaxies. Our inability to directly observe the structure of the BLR and is a major source of uncertainties in MBH measurements. To learn about BLR structure, we must rely on either reverberation mapping techniques or microlensing of gravitationally lensed quasars. We have been working on various aspects of this problem using high-quality reverberation-mapping data from various observing campaigns based at MDM Observatory on Kitt Peak. Results from these reverberation efforts have a broad impact on our understanding of AGN physics as well as on all MBH measurements in AGNs that provide a basis for galaxy evolution and AGN feedback models.

  7. Kinematics and structure of clumps in broad-line regions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ghayuri, Mohammad

    2016-10-01

    We use the Jeans equations for an ensemble of collisionless particles to describe the distribution of broad-line region (BLR) cloud in three classes: (A) non-disc (B) disc-wind (C) pure disc structure. We propose that clumpy structures in the brightest quasars belong to class A, fainter quasars and brighter Seyferts belong to class B, and dimmer Seyfert galaxies and all low-luminosity AGNs (LLAGNs) belong to class C. We derive the virial factor, f, for disc-like structures and find a negative correlation between the inclination angle, θ0, and f. We find similar behaviour for f as a function of the FWHM and σz, the z component of velocity dispersion. For different values of θ0 we find that 1.0 ≲ f ≲ 9.0 in type1 AGNs and 0.5 ≲ f ≲ 1.0 in type2 AGNs. Moreover we have 0.5 ≲ f ≲ 6.5 for different values of FWHM and 1.4 ≲ f ≲ 1.8 for different values of σz. We also find that f is relatively insensitive to the variations of bolometric luminosity and column density of each cloud and the range of variation of f is in order of 0.01. Considering wide range of f we see the use of average virial factor is not very safe. Therefore we propose AGN community to divide a sample into a few subsamples based on the value of θ0 and FWHM of members and calculate for each group separately to reduce uncertainty in black hole mass estimation.

  8. Nuclear structure and decay properties of even-even nuclei in Z = 70-80 drip-line region

    NASA Astrophysics Data System (ADS)

    Mahapatro, S.; Lahiri, C.; Kumar, Bharat; Mishra, R. N.; Patra, S. K.

    2016-08-01

    We study nuclear structure properties for various isotopes of Ytterbium (Yb), Hafnium(Hf), Tungsten(W), Osmium(Os), Platinum(Pt) and Mercury(Hg) in Z = 70-80 drip-line region starting from N = 80 to N = 170 within the formalism of relativistic mean field (RMF) theory. The pairing correlation is taken care by using BCS approach. We compared our results with finite range droplet model(FRDM) and experimental data and found that the calculated results are in good agreement. Neutron shell closure is obtained at N = 82 and 126 in this region. We have also studied probable decay mechanisms of these elements.

  9. Constraining the structure of the Narrow-Line Region of nearby QSO2s

    NASA Astrophysics Data System (ADS)

    Storchi-Bergmann, Thaisa

    2014-10-01

    The Narrow-Line Region (NLR) of Active Galactic Nuclei (AGN) is the only resolved region of AGN, observed via high excitation ionized gas emission that extends from hundred to kiloparsec scales in the host galaxies. In nearby AGN (z<0.03), the NLR is known to present an elongated or cone-like morphology seen in type 2 AGN, and circular morphology in type 1 AGN, supporting the Unified Model. Nevertheless, at somewhat higher z's (~ 0.5) recent ground-based studies have found mostly circular morphologies in observations of QSO2s (obscured QSOs). But at the corresponding distances of these objects, ground-based observations lack the necessary angular resolution to fully resolve the NLRs. It is not clear if the intrinsic NLR morphology changes for more luminous AGN or this is an effect of the atmospheric seeing. Only with HST we will be able to resolve the NLR morphology down to a few hundred parsec scales in the galaxy. We thus propose a "mini-survey" of the NLRs by obtaining narrow-band images in [OIII] and Halpha+[NII] of a sample of nearby QSO2s spanning the redshift range 0.05

  10. Temperature structure of active regions deduced from helium-like sulphur lines

    NASA Technical Reports Server (NTRS)

    Watanabe, Tetsuya; Hara, Hirohisa; Shimizu, Toshifumi; Hiei, Eijiro; Bentley, Robert D.; Lang, James; Phillips, Kenneth J. H.; Pike, C. David; Fludra, Andrzej; Bromage, Barbara J. I.

    1995-01-01

    Solar active-region temperatures have been determined from the full-Sun spectra of helium-like sulfur (S XV) observed by the Bragg Crystal Spectrometer on Board the Yohkoh satellite. The average temperature deduced from S XV is demonstrated to vary with the solar activity level: A temperature of 2.5 x 10(exp 6) K is derived from the spectra taken during low solar activity, similar to the general corona, while 4 x 10(exp 6) K is obtained during a higher activity phase. For the latter, the high- temperature tail of the differential emission measure of active regions is found most likely due to the superposition of numerous flare-like events (micro/nano-flares).

  11. Spatial structure in lines in the 3398-3526 A region at the extreme limb - Observation, identification and interpretation

    NASA Technical Reports Server (NTRS)

    Canfield, R. C.; Pasachoff, J. M.; Stencel, R. E.; Beckers, J. M.

    1978-01-01

    Spectrograms of high spatial and spectral resolution have been obtained of the extreme solar limb, using the vacuum tower telescope of Sacramento Peak Observatory. Emission lines in the range 3398-3526 A have been identified and classified according to intensity, spatial structure (intensity variation), and profile. Some lines show spatial intensity variation; others do not. It is shown that this effect is related to the abundance of the element responsible for the line and the mean lower-level excitation potential of interlocked lines. This effect is explained in terms of radiative interlocking with other lines, as well as the characteristic size of the volume contributing to the mean intensity.

  12. Molecular absorption in transition region spectral lines

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; Innes, D.; Ayres, T.; Peter, H.; Curdt, W.; Jaeggli, S.

    2014-09-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary. The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  13. Photoionisation modelling of the broad line region

    NASA Astrophysics Data System (ADS)

    King, Anthea

    2016-08-01

    Two of the most fundamental questions regarding the broad line region (BLR) are "what is its structure?" and "how is it moving?" Baldwin et al. (1995) showed that by summing over an ensemble of clouds at differing densities and distances from the ionising source we can easily and naturally produce a spectrum similar to what is observed for AGN. This approach is called the `locally optimally emitting clouds' (LOC) model. This approach can also explain the well-observed stratification of emission lines in the BLR (e.g. Clavel et al. 1991, Peterson et al. 1991, Kollatschny et al. 2001) and `breathing' of BLR with changes in the continuum luminosity (Netzer & Mor 1990, Peterson et al. 2014) and is therefore a generally accepted model of the BLR. However, LOC predictions require some assumptions to be made about the distribution of the clouds within the BLR. By comparing photoionization predictions, for a distribution of cloud properties, with observed spectra we can infer something about the structure of the BLR and distribution of clouds. I use existing reverberation mapping data to constrain the structure of the BLR by observing how individual line strengths and ratios of different lines change in high and low luminosity states. I will present my initial constraints and discuss the challenges associated with the method.

  14. Observations of the infrared fine-structure lines of S III at 18.71 and 33.47 microns in four H II regions

    NASA Technical Reports Server (NTRS)

    Herter, T.; Briotta, D. A., Jr.; Gull, G. E.; Shure, M. A.; Houck, J. R.

    1982-01-01

    Infrared fine-structure lines provide a particularly useful probe of ionized nebulae. The present investigation is concerned with measurements of the forbidden S III lines at 18.71 and 33.47 micrometers for four H II regions, S158A, S158G, G75.84+0.4, and W3 IRS 1. These lines are used to estimate densities, and comparisons are made with rms densities determined from radio observations to evaluate the importance of clumping. For the case of the optical H II region S158A, comparisons are made with both optical and forbidden O III line determinations of the density. The reported observations were made using a dual-grating, liquid-helium-cooled spectrometer containing a three-element Si:Sb detector array and a three-element Ge:Ga detector array. It is found that clumping is important in the cases of G75.84+0.4, W3 IRS 1, and M42. These three H II regions have filling factors of 0.024, 0.09, and 0.03, respectively.

  15. Structure of magnetic field lines

    NASA Astrophysics Data System (ADS)

    Golmankhaneh, Ali Khalili; Golmankhaneh, Alireza Khalili; Jazayeri, Seyed Masud; Baleanu, Dumitru

    2012-02-01

    In this paper the Hamiltonian structure of magnetic lines is studied in many ways. First it is used vector analysis for defining the Poisson bracket and Casimir variable for this system. Second it is derived Pfaffian equations for magnetic field lines. Third, Lie derivative and derivative of Poisson bracket is used to show structure of this system. Finally, it is shown Nambu structure of the magnetic field lines.

  16. EUV SPECTRAL LINE FORMATION AND THE TEMPERATURE STRUCTURE OF ACTIVE REGION FAN LOOPS: OBSERVATIONS WITH HINODE/EIS AND SDO/AIA

    SciTech Connect

    Brooks, David H.; Young, Peter R.; Warren, Harry P.

    2011-04-01

    With the aim of studying active region fan loops using observations from the Hinode EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA), we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why spectroheliograms formed from these lines look very similar despite the fact that ionization equilibrium calculations suggest that they have significantly different formation temperatures: log(T{sub e} /K) = 5.6 and 5.8, respectively. It is important to resolve these issues because confidence has been undermined in their use for differential emission measure (DEM) analysis, and Fe VIII is the main contributor to the AIA 131 A channel at low temperatures. Furthermore, the strong Fe VIII 185.213 A and Si VII 275.368 A lines are the best EIS lines to use for velocity studies in the transition region, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213 A line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log(T{sub e} /K) = 5.6-5.8 temperature range, or is strongly peaked, Fe VIII 185.213 A and Si VII 275.368 A will be formed at the same temperature. We show that this effect explains the similarity of these images in the fans. Furthermore, we show that the most recent ionization balance compilations resolve the discrepancies in absolute intensities. With these difficulties overcome, we combine EIS and AIA data to determine the temperature structure of a number of fan loops and find that they have peak temperatures of 0.8-1.2 MK. The EIS data indicate that the temperature distribution has a finite (but narrow) width < log ({sigma}{sub Te}/K) = 5.5 which, in one detailed case, is found to broaden substantially toward the loop base. AIA and EIS yield similar results on the temperature, emission

  17. A bayesian approach to estimate the size and structure of the broad-line region in active galactic nuclei using reverberation mapping data

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Du, Pu; Ho, Luis C.; Bai, Jin-Ming

    2013-12-20

    This is the first paper in a series devoted to the systematic study of the size and structure of the broad-line region (BLR) in active galactic nuclei (AGNs) using reverberation mapping (RM) data. We employ a recently developed Bayesian approach that statistically describes the variability as a damped random walk process and delineates the BLR structure using a flexible disk geometry that can account for a variety of shapes, including disks, rings, shells, and spheres. We allow for the possibility that the line emission may respond non-linearly to the continuum, and we detrend the light curves when there is clear evidence for secular variation. We use a Markov Chain Monte Carlo implementation based on Bayesian statistics to recover the parameters and uncertainties for the BLR model. The corresponding transfer function is obtained self-consistently. We tentatively constrain the virial factor used to estimate black hole masses; more accurate determinations will have to await velocity-resolved RM data. Application of our method to RM data with Hβ monitoring for about 40 objects shows that the assumed BLR geometry can reproduce quite well the observed emission-line fluxes from the continuum light curves. We find that the Hβ BLR sizes obtained from our method are on average ∼20% larger than those derived from the traditional cross-correlation method. Nevertheless, we still find a tight BLR size-luminosity relation with a slope of α = 0.55 ± 0.03 and an intrinsic scatter of ∼0.18 dex. In particular, we demonstrate that our approach yields appropriate BLR sizes for some objects (such as Mrk 142 and PG 2130+099) where traditional methods previously encountered difficulties.

  18. Carbon recombination lines as a diagnostic of photodissociation regions

    NASA Technical Reports Server (NTRS)

    Natta, A.; Walmsley, C. M.; Tielens, A. G. G. M.

    1994-01-01

    We have observed the C91 alpha radio recombination line toward the Orion H II region. This narrow (approximately 3-5 km per sec full width at half maximum (FWHM)) line is spatially very extended (approximately 8 arcmin or 1 pc). These charateristics compare well with the observed characteristics of the C II fine structure line at 158 microns. Thus, the C91 alpha line originates in the predominantly neutral photodissociation regions separating the H II region from the molecular cloud. We have developed theoretical models for the C II radio recombination lines from photodissociation regions. The results show that the I(C91 alpha)/I(C158) intensity ratio is a sensitive function of the temperature and density of the emitting gas. We have also extended theoretical models for photodissociation regions to include the C II recombination lines. Comparison with these models show that, in the central portion of the Orion region, the C91 alpha line originates in dense (10(exp 6) per cu cm), warm (500-1000 K) gas. Even at large projected distances (approximately 1 pc), the inferred density is still high (10(exp 5) per cu cm) and implies extremely high thermal pressures. As in the case of the (C II) 158 microns line, the large extent of the C91 alpha line shows that (FUV) photons can penetrate to large distances from the illuminating source. The decline of the intensity of the incident radiation field with distance from Theta(sup 1) C seems to be dominated by geometrical dilution, rather than dust extinction. Finally, we have used our models to calculate the intensity of the 9850 A recombination line of C II. The physical conditions inferred from this line are in good agreement with those determined from the radio recombination and the far-infrared fine-structure lines. We show that the ratio of the 9850 A to the C91 alpha lines is a very good probe of very high density clumps.

  19. Giant Broad Line Regions in Dwarf Seyferts

    NASA Astrophysics Data System (ADS)

    Devereux, Nick

    2015-12-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group, and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph (STIS) are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051 and NGC 3516.

  20. Giant Broad Line Regions in Dwarf Seyferts

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas A.

    2016-01-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051, and NGC 3516.

  1. Structured line illumination Raman microscopy

    PubMed Central

    Watanabe, Kozue; Palonpon, Almar F.; Smith, Nicholas I.; Chiu, Liang-da; Kasai, Atsushi; Hashimoto, Hitoshi; Kawata, Satoshi; Fujita, Katsumasa

    2015-01-01

    In the last couple of decades, the spatial resolution in optical microscopy has increased to unprecedented levels by exploiting the fluorescence properties of the probe. At about the same time, Raman imaging techniques have emerged as a way to image inherent chemical information in a sample without using fluorescent probes. However, in many applications, the achievable resolution is limited to about half the wavelength of excitation light. Here we report the use of structured illumination to increase the spatial resolution of label-free spontaneous Raman microscopy, generating highly detailed spatial contrast from the ensemble of molecular information in the sample. Using structured line illumination in slit-scanning Raman microscopy, we demonstrate a marked improvement in spatial resolution and show the applicability to a range of samples, including both biological and inorganic chemical component mapping. This technique is expected to contribute towards greater understanding of chemical component distributions in organic and inorganic materials. PMID:26626144

  2. Structured line illumination Raman microscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Kozue; Palonpon, Almar F.; Smith, Nicholas I.; Chiu, Liang-Da; Kasai, Atsushi; Hashimoto, Hitoshi; Kawata, Satoshi; Fujita, Katsumasa

    2015-12-01

    In the last couple of decades, the spatial resolution in optical microscopy has increased to unprecedented levels by exploiting the fluorescence properties of the probe. At about the same time, Raman imaging techniques have emerged as a way to image inherent chemical information in a sample without using fluorescent probes. However, in many applications, the achievable resolution is limited to about half the wavelength of excitation light. Here we report the use of structured illumination to increase the spatial resolution of label-free spontaneous Raman microscopy, generating highly detailed spatial contrast from the ensemble of molecular information in the sample. Using structured line illumination in slit-scanning Raman microscopy, we demonstrate a marked improvement in spatial resolution and show the applicability to a range of samples, including both biological and inorganic chemical component mapping. This technique is expected to contribute towards greater understanding of chemical component distributions in organic and inorganic materials.

  3. Magnetohydrodynamic stability of broad line region clouds

    NASA Astrophysics Data System (ADS)

    Krause, Martin; Schartmann, Marc; Burkert, Andreas

    2012-10-01

    Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilization by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields are present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few gauss for a sample of active galactic nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axisymmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and column density instabilities lead to a filamentary fragmentation of the cloud. This radiative dispersion continues until the cloud is shredded down to the resolution level. For a helical magnetic field configuration, a much more stable cloud core survives with a stationary density histogram which takes the form of a power law. Our simulated clouds develop sub-Alfvénic internal motions on the level of a few hundred km s-1.

  4. Changes in sinuosities of the rivers at geological structural lines in the Pannonian Basin - Mosaics to the neotectonic image of the region

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit

    2010-05-01

    In the central, flat area of the Pannonian Basin, there are just few topographic features for neotectonic investigations. However, a lot of meandering rivers flow here, and it is possible to reconstruct their natural, pre-regulation planforms. Using the map sheets of the Second Military Survey of the Habsburg Empire (mid-19th century; Timár et al., 2006), I digitized the meandering rivers on this area. Sinuosities at different sample section lengths were computed in a GIS environment, providing so-called 'sinuosity-spectra' (van Balen et al., 2008) for each point of the analyzed channels. The channel sinuosity of this river systems are analyzed in order to draw conclusions on the neotectonic activity of the Great Hungarian Plain and the other flat areas of the Pannonian Basin. Several points of sinuosity change were identified. To prove, that these are of neotectonic origin, seismic sections crossing the study area, were also analyzed as well as the geodinamical map of the area (Horváth et al., 2006). High sinuosity variations (low to high or high to low), spatially correlated to linear features identified in seismic survey sections, indicating their neotectonic activity (after Ouchi, 1985). We can see two significante sinuosity changes on the Hron/Garam River (Slovakia), one at Tekov and the one at Kéménd. There are faults on the neotectonic map at these points, crossing the river - they are the possible causes of the increasing of the sinuosity. The vertical activity of these structural lines is verified by the sinuosity changes. At the Maros/Mureş River (Romania/Hungary), a significant sinuosity change can also be identified near to the town of Aiud, where the phenomene is just the opposite like in the Hron/Garam river. There is a fault on the neotectonic map crossing the river. Upstream of the river has higher sinuosity values, and after crossing the fault, it decresed. Here also the fault caused the sinuosity changing, so this fault is also an active one

  5. Dusty Structure Around Type-I Active Galactic Nuclei: Clumpy Torus Narrow-line Region and Near-nucleus Hot Dust

    NASA Astrophysics Data System (ADS)

    Mor, Rivay; Netzer, Hagai; Elitzur, Moshe

    2009-11-01

    We fitted Spitzer/IRS ~ 2-35 μm spectra of 26 luminous quasi-stellar objects in an attempt to define the main emission components. Our model has three major components: a clumpy torus, dusty narrow-line region (NLR) clouds, and a blackbody-like dust. The models utilize the clumpy torus of Nenkova et al. and are the first to allow its consistent check in type-I active galactic nuclei (AGNs). Single torus models and combined torus-NLR models fail to fit the spectra of most sources, but three-component models adequately fit the spectra of all sources. We present torus inclination, cloud distribution, covering factor, and torus mass for all sources and compare them with bolometric luminosity, black hole mass, and accretion rate. The torus mass is found to be correlated with the bolometric luminosity of the sources. Torus-covering factor may also be (anti-)correlated, if some possibly anomalous points are omitted. We find that a substantial amount of the ~2-7 μm radiation originates from a hot dust component, which is likely situated in the innermost part of the torus. The luminosity radiated by this component and its covering factor are comparable to those of the torus. We quantify the emission by the NLR clouds and estimate their distance from the center. The distances are ~700 times larger than the dust sublimation radius, and the NLR-covering factor is about 0.07. The total covering factor by all components is in good agreement with the known AGN type-I:type-II ratio.

  6. The Broad-Line Region Cloud Model

    NASA Astrophysics Data System (ADS)

    Dietrich, Matthias

    Generally, it is believed that the broad-emission lines are emitted by rapidly moving clouds or filaments within the BLR. The line profiles are expected to be variable on time scales of years due to redistribution of the clouds. However, observations show that profile changes can occur more rapidly than this indicating that hydrodynamical instabilities are associated with the BLR clouds themselves. Since the number of clouds is estimated to at least ~ 10^7 it is difficult to explain how stochastic events affecting individual clouds can yield detectable profile variations. Small-scale fluctuations due to as many as 4 x 10^6 clouds would be still observable in emission-line profiles taken with high spectral resolution and high S/N ratio (cf. Capriotti et al. 1981). Echelle spectra of 3C 273 and NGC 5548 will be presented. The line profiles of H\\alpha and H\\beta have been studied with high spectral resolution (\\Delta v ~ 10 km s^{-1}). The statistical variations of the residua of the H\\alpha and H\\beta line profiles will be used to test whether this is consistent with the expected statistical scatter due to the finite number of line emitting clouds. Based on these fluctuations it will be possible to derive an estimation of the total number of emission-line clouds. The results will be compared with simulations of cloud ensembles with different distributions, geometries, and numbers of individual emitters.

  7. First structures on RyantoRainbow Line. Hframe structure on Line 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    First structures on Ryan-to-Rainbow Line. H-frame structure on Line 1 (right) has historic porcelain suspension insulators and H-frame structure on Line 2 (center) has two historic porcelain insulators and one modern non-ceramic insulator. View to north - Ryan Hydroelectric Facility, Ryan-to-Rainbow 100 kV Transmission Line, West bank of Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  8. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. II - An intensive study of NGC 5548 at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Balonek, T. J.; Barker, E. S.; Bechtold, J.; Bertram, R.

    1991-01-01

    A large, international program of ground-based optical spectroscopy and photometry of the variable Seyfert 1 galaxy NGC 5548 undertaken in support of an IUE monitoring campaign is described. This contribution presents the data base and describes the methods used to correct for systematic differences between spectra from different sources. Optical continuum and H-beta emission-line light curves are derived from the spectra. The behavior of the optical continuum is qualitatively the same as the behavior of the ultraviolet continuum. Cross-correlation of the ultraviolet and optical continuum measurements does not reveal any significant lag between them. The h-beta emission-line variations show the same basic pattern as seen in the continuum and ultraviolet emission lines, with H-beta lagging behind the continuum by about 20 days. This is significantly larger than the about 10 day lag deduced for Ly-alpha.

  9. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ∼ 700–1200 km s‑1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ∼{10}11.5 cm‑3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  10. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. III - Further observations of NGC 5548 at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Alloin, D.; Axon, D.; Balonek, T. J.; Bertram, R.; Boroson, T. A.; Christensen, J. A.; Clements, S. D.; Dietrich, M.; Elvis, M.

    1992-01-01

    The results of the second year of an intensive ground-based spectroscopic and photometric study of variability in the bright Seyfert 1 galaxy NGC 5548 are reported in order to study the relationship between continuum and emission-line variability. Relative to the first year of the monitoring program, the nucleus of NGC 5548 was considerably fainter and the continuum variations slower during the second year, but the continuum H-beta cross-correlation results for the two years are nearly identical. The variations in the broad H-beta emission-line lag behind those in the continuum by somewhat less than 20 days, as concluded from the first year's data.

  11. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. IV - Intensity variations of the optical emission lines of NGC 5548

    NASA Technical Reports Server (NTRS)

    Dietrich, M.; Kollatschny, W.; Peterson, B. M.; Bechtold, J.; Bertram, R.; Bochkarev, N. G.; Boroson, T. A.; Carone, T. E.; Elvis, M.; Filippenko, A. V.

    1993-01-01

    Measurements of optical emission-line flux variations based on spectra of the Seyfert galaxy NGC 5548 obtained between December 1988 and October 1989 are reported. All of the measured optical emission lines, H-alpha, H-beta, H-gamma, He I 5876, and He II 4686, exhibit the same qualitative behavior as the UV and optical continua, but with short time delays, or lags, which are different for the various lines. Cross-correlation analysis is applied to measure the lags between the various lines and the continuum. Similar lags are found with respect to the UV continuum for H-alpha and H-beta, 17 and 19 d, respectively. The lag for H-gamma is shorter (13 d), only somewhat larger than the lag measured for Ly-alpha (about 10 d). The helium lines respond to continuum variations more rapidly than the hydrogen lines, with lags of about 7 d for He II 4686 and 11 d for He I 5876.

  12. New considerations on the broad-line regions of quasars

    SciTech Connect

    You, J.H.; Cheng, F.H.

    1987-11-01

    In the broad-line regions of quasars, there exist three different line emission mechanisms, i.e., the Cerenkov line and conventional line by recombination and collisional excitation. However, the Cerenkov line photon can avoid the resonance absorption because of the Cerenkov redshift and can escape easily from the deep inner part of the gas, i.e., gas appears more transparent for the Cerenkov line than for a conventional line. For an optically thick dense gas, if there are sufficient relativistic electrons, the intensity of the Cerenkov line will be dominating. Taking the quasar 3C 273 as an example, it is shown that only if N(e) is roughly 10 to the 4th to -10 to the 6th/cu cm, the calculated Cerenkov Ly-alpha luminosity is in agreement with observation. 13 references.

  13. Variability of the coronal line region in NGC 4151

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Steenbrugge, Katrien C.; Ferland, Gary J.

    2015-06-01

    We present the first extensive study of the coronal line variability in an active galaxy. Our data set for the nearby source NGC 4151 consists of six epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about 8 yr and five epochs of X-ray spectroscopy overlapping in time with it. None of the coronal lines showed the variability behaviour observed for the broad emission lines and hot dust emission. In general, the coronal lines varied only weakly, if at all. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of ne ˜ 103 cm-3 and a relatively high ionization parameter of log U ˜ 1. The resultant distance of the coronal line gas from the ionizing source is about two light years, which puts this region well beyond the hot inner face of the obscuring dusty torus. The high ionization parameter implies that the coronal line region is an independent entity rather than part of a continuous gas distribution connecting the broad and narrow emission line regions. We present tentative evidence for the X-ray heated wind scenario of Pier & Voit. We find that the increased ionizing radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion.

  14. Steps toward determination of the size and structure of the broad-line region in active nuclei. 7: Variability of the optical spectrum of NGC 5548 over years

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Berlind, P.; Bertram, R.; Bochkarev, N. G.; Bond, D.; Brotherton, M. S.; Busler, J. R.; Chuvaev, K. K.; Cohen, R. D.; Dietrich, M.

    1994-01-01

    We report on the results of a continuation of a large monitoring program of optical spectroscopy of the Seyfert 1 galaxy NGC 5548. The new observations presented here were obtained between 1990 December and 1992 October, and extend the existing database to nearly 1400 days, dating back to 1988 December. The continuum variations are generally smooth and well-resolved, except during the third year of this 4 year project, when the variations were apparently more rapid and of lower amplitude than observed at other times. The broad H(beta) emission line is found to vary in response to the continuum variations with a lag of about 18 days, but with some changes from year to year. The H(beta) transfer functions for each of the 4 yr and for the entire 4 yr database are derived by using a maximum entropy method.

  15. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 6: Variability of NGC 3783 from ground-based data

    NASA Technical Reports Server (NTRS)

    Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.

    1994-01-01

    The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.

  16. Plasma simulations of emission line regions in high energy environments

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.

    This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can

  17. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 5: Variability of the ultraviolet continuum and emission lines of NGC 3783

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Rodriguez-Pascual, P. M.; Alloin, D.; Clavel, J.; Crenshaw, D. M.; Kriss, G. A.; Krolik, J. H.; Malkan, M. A.; Netzer, H.; Peterson, B. M.

    1994-01-01

    We report on the results of intensive ultraviolet spectral monitoring of the Seyfert 1 galaxy NGC 3783. The nucleus of NGC 3783 was observed with the International Ultraviolet Explorer satellite on a regular basis for a total of 7 months, once every 4 days for the first 172 days and once every other day for the final 50 days. Significant variability was observed in both continuum and emission-line fluxes. The light curves for the continuum fluxes exhibited two well-defined local minima or 'dips,' the first lasting is less than or approximately 20 days and the second is less than or approximately 4 days, with additional episodes of relatively rapid flickering of approximately the same amplitude. As in the case of NGC 5548 (the only other Seyfert galaxy that has been the subject of such an intensive, sustained monitoring effort), the largest continuum variations were seen at the shortest wavelengths, so that the continuum became 'harder' when brighter. The variations in the continuum occurred simultaneously at all wavelengths (delta(t) is less than 2 days). Generally, the amplitude of variability of the emission lines was lower than (or comparable to) that of the continuum. Apart from Mg II (which varied little) and N V (which is relatively weak and badly blended with Ly(alpha), the light curves of the emission lines are very similar to the continuum light curves, in each case with a small systematic delay or 'lag.' As for NGC 5548, the highest ionization lines seem to respond with shorter lags than the lower ionization lines. The lags found for NGC 3783 are considerably shorter than those obtained for NGC 5548, with values of (formally) approximately 0 days for He II + O III), and approximately 4 days for Ly(alpha) and C IV. The data further suggest lags of approximately 4 days for Si IV + O IV) and 8-30 days for Si III + C III). Mg II lagged the 1460 A continuum by approximately 9 days, although this result depends on the method of measuring the line flux and may

  18. Structure and form of grounding lines of modern ice sheets

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Bell, R. E.; Cochran, J. R.; Boghosian, A.; Porter, D. F.

    2015-12-01

    The form of the bed at the grounding line of a glacier and the character of the underlying rock can be critical to the stability of the glacier. Aerogravity measurements offer a unique insight in to the character of the grounding line environment. By combining depth measurements from further onshore radar and geological information from magnetic surveys, gravity-based models can reveal both the depth and slope of the bed at the grounding line. Where bed elevation is known at the grounding line, gravity models can show the density structure of the underlying rock. Operation IceBridge has flown coincident radar, lidar, photography, gravity and magnetic airborne surveys along fjords and over ice shelves in both Greenland and Antarctica. Aerogravity measurements have been used extensively to model the bathymetry of the sea floor in front of the grounding line, and to identify the depth of the grounding line in areas where radar measurements have proven challenging. These models have also been used to reveal the range of conditions at present day grounding lines, as well as those experienced in the past and predicted for future grounding line positions. In some regions, we have identified low-density sediment accumulations, at both present day grounding lines and within fjords, that we interpret to be terminal moraines deposited by the glacier itself during hiatuses in retreat. In other regions, we find that the present day grounding line is stalled on a ridge of high-density rock. Ridges such as these remain in the same position through many cycles of advance and retreat of the glacier. Our synthesis of gravity data from a wide range of glacial environments can be used to identify likely drivers of change at the grounding line, whether this is the depth, the slope, or the geological character of the glacier bed.

  19. What Quasars Really Look Like: Unification of the Emission and Absorption Line Regions

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    We propose a simple unifying structure for the inner regions of quasars and AGN. This empirically derived model links together the broad absorption line (BALS), the narrow UV/X-ray ionized absorbers, the BELR, and the 5 Compton scattering/fluorescing regions into a single structure. The model also suggests an alternative origin for the large-scale bi-conical outflows. Some other potential implications of this structure are discussed.

  20. Strong variability of the coronal line region in NGC 5548

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Steenbrugge, Katrien C.; Ferland, Gary J.

    2015-12-01

    We present the second extensive study of the coronal line variability in an active galaxy. Our data set for the well-studied Seyfert galaxy NGC 5548 consists of five epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about five years and three epochs of X-ray spectroscopy overlapping in time with it. Whereas the broad emission lines and hot dust emission varied only moderately, the coronal lines varied strongly. However, the observed high variability is mainly due to a flux decrease. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of ne ˜ 103 cm-3 and a relatively high ionisation parameter of log U ˜ 1. The resultant distance of the coronal line gas from the ionizing source of about eight light-years places this region well beyond the hot inner face of the dusty torus. These results imply that the coronal line region is an independent entity. We find again support for the X-ray heated wind scenario of Pier & Voit; the increased ionizing radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion. The much stronger coronal line variability of NGC 5548 relative to that of NGC 4151 can also be explained within this picture. NGC 5548 has much stronger coronal lines relative to the low-ionization lines than NGC 4151 indicating a stronger wind, in which case a stronger adiabatic expansion of the gas and so fading of the line emission is expected.

  1. SOLAR TRANSITION REGION LINES OBSERVED BY THE INTERFACE REGION IMAGING SPECTROGRAPH: DIAGNOSTICS FOR THE O IV AND Si IV LINES

    SciTech Connect

    Dudík, J.; Del Zanna, G.; Mason, H. E.; Dzifčáková, E.; Golub, L.

    2014-01-01

    The formation of the transition region O IV and Si IV lines observable by the Interface Region Imaging Spectrograph (IRIS) is investigated for both Maxwellian and non-Maxwellian conditions characterized by a κ-distribution exhibiting a high-energy tail. The Si IV lines are formed at lower temperatures than the O IV lines for all κ. In non-Maxwellian situations with lower κ, the contribution functions are shifted to lower temperatures. Combined with the slope of the differential emission measure, it is possible for the Si IV lines to be formed at very different regions of the solar transition region than the O IV lines; possibly close to the solar chromosphere. Such situations might be discernible by IRIS. It is found that photoexcitation can be important for the Si IV lines, but is negligible for the O IV lines. The usefulness of the O IV ratios for density diagnostics independently of κ is investigated and it is found that the O IV 1404.78 Å/1399.77 Å ratio provides a good density diagnostics except for very low T combined with extreme non-Maxwellian situations.

  2. LINE EMISSION FROM RADIATION-PRESSURIZED H II REGIONS. II. DYNAMICS AND POPULATION SYNTHESIS

    SciTech Connect

    Verdolini, Silvia; Tielens, Alexander G. G. M.; Yeh, Sherry C. C.; Matzner, Christopher D.; Krumholz, Mark R.

    2013-05-20

    Optical and infrared emission lines from H II regions are an important diagnostic used to study galaxies, but interpretation of these lines requires significant modeling of both the internal structure and dynamical evolution of the emitting regions. Most of the models in common use today assume that H II region dynamics are dominated by the expansion of stellar wind bubbles, and have neglected the contribution of radiation pressure to the dynamics, and in some cases also to the internal structure. However, recent observations of nearby galaxies suggest that neither assumption is justified, motivating us to revisit the question of how H II region line emission depends on the physics of winds and radiation pressure. In a companion paper we construct models of single H II regions including and excluding radiation pressure and winds, and in this paper we describe a population synthesis code that uses these models to simulate galactic collections of H II regions with varying physical parameters. We show that the choice of physical parameters has significant effects on galactic emission line ratios, and that in some cases the line ratios can exceed previously claimed theoretical limits. Our results suggest that the recently reported offset in line ratio values between high-redshift star-forming galaxies and those in the local universe may be partially explained by the presence of large numbers of radiation-pressure-dominated H II regions within them.

  3. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    SciTech Connect

    Guerras, E.; Mediavilla, E.; Kochanek, C. S.; Munoz, J. A.; Falco, E.; Motta, V.

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s} = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  4. The HST view of the innermost narrow line region

    NASA Astrophysics Data System (ADS)

    Balmaverde, Barbara; Capetti, Alessandro; Moisio, Daria; Baldi, Ranieri D.; Marconi, Alessandro

    2016-02-01

    We analyze the properties of the innermost narrow line region in a sample of low-luminosity AGN. We select 33 LINERs (bona fide AGN) and Seyfert galaxies from the optical spectroscopic Palomar survey observed by HST/STIS. We find that in LINERs the [ N II ] and [ O I ] lines are broader than the [ S II ] line and that the [ N II ] /[ S II ] flux ratio increases when moving from ground-based to HST spectra. This effect is more pronounced considering the wings of the lines. Our interpretation is that, as a result of superior HST spatial resolution, we isolate a compact region of dense ionized gas in LINERs, located at a typical distance of ~3 pc and with a gas density of ~104-105 cm-3, which we identify with the outer portion of the intermediate line region (ILR). Instead, we do not observe these kinds of effects in Seyferts; this may be the result of a stronger dilution from the NLR emission, since the HST slit maps a larger region in these sources. Alternatively, we argue that the innermost, higher density component of the ILR is only present in Seyferts, while it is truncated at larger radii because of the presence of the circumnuclear torus. The ILR is only visible in its entirety in LINERs because the obscuring torus is not present in these sources.

  5. Primary Students' Success on the Structured Number Line

    ERIC Educational Resources Information Center

    Diezmann, Carmel M.; Lowrie, Tom; Sugars, Lindy A.

    2010-01-01

    Number lines are part of people's everyday life and are frequently used in primary mathematics as instructional aids, in texts, and for assessment purposes on mathematics tests. There are two types of number lines; (1) structured number lines, which are the focus of this paper; and (2) empty number lines. Structured number lines represent…

  6. Different regions of line formation in the envelope of the early emission line star HD 190073

    NASA Technical Reports Server (NTRS)

    Ringuelet, A. E.; Rovira, M.; Cidale, L.; Sahade, J.

    1987-01-01

    A description is presented of the spectral features that characterize the spectrum of HD 190073 both in the photographic region (360-660 nm), and in the IUE UV (115-320 nm). A number of different types of profiles can be distinguished, and this seems to imply that many different 'broad' regions of line formation coexist in the extended envelope of the star, including regions with densities differing in several orders of magnitude.

  7. The broad-line region as supernova remnants

    NASA Astrophysics Data System (ADS)

    Tenorio-Tagle, Guillermo; Terlevich, Roberto; Franco, Jose; Melnick, Jorge

    Supernova remnants evolving in a dense medium (n about 10**7 percc) become strongly radiative while still expanding at velocities of several thousands of km/s. Radiative cooling becomes important well before the thermalization of the ejecta is completed and makes the remnant miss the Sedov adiabatic track. As a result, the shocked matter undergoes a rapid condensation behind both the leading and the reverse shocks. Two concentric, high-density, fast moving thin shells are then formed. Both cool dense shells, as well as the freely expanding ejecta, and a section of the still dynamically unperturbed interstellar gas, are irradiated and ionized by the photon field produced by the radiative shocks. The emitted spectrum has emission-line ratios similar to those observed in the broad line region of low-luminosity active galactic nuclei. Our model combines analytic and numerical hydrodynamic simulations, together with static photoionization calculations to reproduce the observed properties of these broad-line regions.

  8. Impurity Line Emissions in VUV Region of TCABR Tokamak

    SciTech Connect

    Machida, M.; Daltrini, A. M.; Severo, J. H. F.; Nascimento, I. C.; Sanada, E. K.; Elizondo, J. I.; Kuznetsov, Y. K.; Galvao, R. M. O.

    2008-04-07

    Spectral emissions in the vacuum ultraviolet region from 50 nm to 320 nm have been measured on TCABR tokamak using an one meter VUV spectrometer and a MCP coupled to a CCD detector. Among the 98 emissions classified, 37 are from first order diffraction, 29 are from second order, 24 are from third order, 7 from fourth order, and one from fifth order diffraction. Main impurity lines are OII to OVII, CII to CIV, NIII to N V, FVII, besides working gas plasma hydrogen Lyman lines.

  9. Molecular line observations of the S235B region

    NASA Astrophysics Data System (ADS)

    Nakano, Makoto; Yoshida, Shigeomi

    The core of the molecular cloud associated with the young stellar object S235B has been observed in molecular lines of CS, CO, and CH3OH with high angular resolution by the 45-m radio telescope of the Nobeyama Radio Observatory. The core is 0.6 x 1.0 pc in extent. The number density of molecular hydrogen and the fractional abundance of CS relative to molecular hydrogen are estimated to be 300,000/cu cm and 5 x 10 to the -10th, respectively. The CO observations show evidence of bipolar flow. This suggests that S235B is not a compact H II region but an expanding ionized envelope around a young star. The mass-loss rate from S235B is estimated as 10 to the -6th solar mass/yr. CH3OH emission shows a very compact distribution and a narrow line width, suggesting that the methanol lines are weakly masing.

  10. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  11. MUSCLE W49: A multi-scale continuum and line exploration of the most luminous star formation region in the Milky Way. I. Data and the mass structure of the giant molecular cloud

    SciTech Connect

    Galván-Madrid, R.; Pineda, J. E.; Peng, T.-C.; Liu, H. B.; Ho, P. T. P.; Zhang, Z.-Y.; Zhang, Q.; Keto, E. R.; Rodríguez, L. F.; Zapata, L.; Peters, T.; De Pree, C. G.

    2013-12-20

    The Multi-scale Continuum and Line Exploration of W49 is a comprehensive gas and dust survey of the giant molecular cloud (GMC) of W49A, the most luminous star-formation region in the Milky Way. The project covers, for the first time, the entire GMC at different scales and angular resolutions. In this paper, we present (1) an all-configuration Submillimeter Array mosaic in the 230 GHz (1.3 mm) band covering the central ∼3' × 3' (∼10 pc, known as W49N), where most of the embedded massive stars reside and (2) Purple Mountain Observatory 14 m telescope observations in the 90 GHz band, covering the entire GMC with maps of up to ∼35' × 35' in size, or ∼113 pc. We also make use of archival data from the Very Large Array, JCMT-SCUBA, the IRAM 30 m telescope, and the Caltech Submillimeter Observatory BOLOCAM Galactic Plane Survey. We derive the basic physical parameters of the GMC at all scales. Our main findings are as follows. (1) The W49 GMC is one of the most massive in the Galaxy, with a total mass M {sub gas} ∼ 1.1 × 10{sup 6} M {sub ☉} within a radius of 60 pc. Within a radius of 6 pc, the total gas mass is M {sub gas} ∼ 2 × 10{sup 5} M {sub ☉}. At these scales, only ∼1% of the material is photoionized. The mass reservoir is sufficient to form several young massive clusters (YMCs) as massive as a globular cluster. (2) The mass of the GMC is distributed in a hierarchical network of filaments. At scales <10 pc, a triple, centrally condensed structure peaks toward the ring of HC H II regions in W49N. This structure extends to scales from ∼10 to 100 pc through filaments that radially converge toward W49N and its less-prominent neighbor W49S. The W49A starburst most likely formed from global gravitational contraction with localized collapse in a 'hub-filament' geometry. (3) Currently, feedback from the central YMCs (with a present mass M {sub cl} ≳ 5 × 10{sup 4} M {sub ☉}) is still not enough to entirely disrupt the GMC, but further stellar

  12. MUSCLE W49: A Multi-Scale Continuum and Line Exploration of the Most Luminous Star Formation Region in the Milky Way. I. Data and the Mass Structure of the Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Galván-Madrid, R.; Liu, H. B.; Zhang, Z.-Y.; Pineda, J. E.; Peng, T.-C.; Zhang, Q.; Keto, E. R.; Ho, P. T. P.; Rodríguez, L. F.; Zapata, L.; Peters, T.; De Pree, C. G.

    2013-12-01

    The Multi-scale Continuum and Line Exploration of W49 is a comprehensive gas and dust survey of the giant molecular cloud (GMC) of W49A, the most luminous star-formation region in the Milky Way. The project covers, for the first time, the entire GMC at different scales and angular resolutions. In this paper, we present (1) an all-configuration Submillimeter Array mosaic in the 230 GHz (1.3 mm) band covering the central ~3' × 3' (~10 pc, known as W49N), where most of the embedded massive stars reside and (2) Purple Mountain Observatory 14 m telescope observations in the 90 GHz band, covering the entire GMC with maps of up to ~35' × 35' in size, or ~113 pc. We also make use of archival data from the Very Large Array, JCMT-SCUBA, the IRAM 30 m telescope, and the Caltech Submillimeter Observatory BOLOCAM Galactic Plane Survey. We derive the basic physical parameters of the GMC at all scales. Our main findings are as follows. (1) The W49 GMC is one of the most massive in the Galaxy, with a total mass M gas ~ 1.1 × 106 M ⊙ within a radius of 60 pc. Within a radius of 6 pc, the total gas mass is M gas ~ 2 × 105 M ⊙. At these scales, only ~1% of the material is photoionized. The mass reservoir is sufficient to form several young massive clusters (YMCs) as massive as a globular cluster. (2) The mass of the GMC is distributed in a hierarchical network of filaments. At scales <10 pc, a triple, centrally condensed structure peaks toward the ring of HC H II regions in W49N. This structure extends to scales from ~10 to 100 pc through filaments that radially converge toward W49N and its less-prominent neighbor W49S. The W49A starburst most likely formed from global gravitational contraction with localized collapse in a "hub-filament" geometry. (3) Currently, feedback from the central YMCs (with a present mass M cl >~ 5 × 104 M ⊙) is still not enough to entirely disrupt the GMC, but further stellar mass growth could be enough to allow radiation pressure to clear the

  13. Fine thermal structure of a coronal active region.

    PubMed

    Reale, Fabio; Parenti, Susanna; Reeves, Kathy K; Weber, Mark; Bobra, Monica G; Barbera, Marco; Kano, Ryouhei; Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro; Peres, Giovanni; Golub, Leon

    2007-12-01

    The determination of the fine thermal structure of the solar corona is fundamental to constraining the coronal heating mechanisms. The Hinode X-ray Telescope collected images of the solar corona in different passbands, thus providing temperature diagnostics through energy ratios. By combining different filters to optimize the signal-to-noise ratio, we observed a coronal active region in five filters, revealing a highly thermally structured corona: very fine structures in the core of the region and on a larger scale further away. We observed continuous thermal distribution along the coronal loops, as well as entangled structures, and variations of thermal structuring along the line of sight.

  14. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  15. Microlensing of the broad line region in 17 lensed quasars

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Courbin, F.; Meylan, G.; Wambsganss, J.

    2012-08-01

    When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars with bolometric luminosities between 1044.7 - 47.4 erg/s and black hole masses 107.6 - 9.8 M⊙. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a simple spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common emission lines in our spectra (C III] and Mg II) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification

  16. Modeling the water line emission from the high-mass star-forming region AFGL 2591

    NASA Astrophysics Data System (ADS)

    Poelman, D. R.; van der Tak, F. F. S.

    2007-12-01

    Context: Observations of water lines are a sensitive probe of the geometry, dynamics and chemical structure of dense molecular gas. The launch of Herschel with on board HIFI and PACS allows to probe the behaviour of multiple water lines with unprecedented sensitivity and resolution. Aims: We investigate the diagnostic value of specific water transitions in high-mass star-forming regions. As a test case, we apply our models to the AFGL 2591 region. Methods: A multi-zone escape probability method is used in two dimensions to calculate the radiative transfer. Similarities and differences of constant and jump abundance models are displayed, as well as when an outflow is incorporated. Results: In general, for models with a constant water abundance, the ground state lines, i.e., 110-101, 111-000, and 212-101, are predicted in absorption, all the others in emission. This behaviour changes for models with a water abundance jump profile in that the line profiles for jumps by a factor of ~10-100 are similar to the line shapes in the constant abundance models, whereas larger jumps lead to emission profiles. Asymmetric line profiles are found for models with a cavity outflow and depend on the inclination angle. Models with an outflow cavity are favoured to reproduce the SWAS observations of the 110-101 ground-state transition. PACS spectra will tell us about the geometry of these regions, both through the continuum and through the lines. Conclusions: It is found that the low-lying transitions of water are sensitive to outflow features, and represent the excitation conditions in the outer regions. High-lying transitions are more sensitive to the adopted density and temperature distribution which probe the inner excitation conditions. The Herschel mission will thus be very helpful to constrain the physical and chemical structure of high-mass star-forming regions such as AFGL 2591.

  17. Reverberation Mapping of the Broad Line Region: Application to a Hydrodynamical Line-driven Disk Wind Solution

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny

    2016-08-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (i≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .

  18. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  19. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  20. View facing north, Structure 162 in foreground, as Transmission Line ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing north, Structure 16-2 in foreground, as Transmission Line turns at intersection of Powerline Road and US 87 - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  1. View facing south, near Structure 515, of Transmission Line rising ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing south, near Structure 51-5, of Transmission Line rising out of Marias River Valley - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  2. Seafloor geology of the U.S. Line Islands region

    NASA Astrophysics Data System (ADS)

    Jones, M.; Eakins, B.; Barth, G. A.

    2013-12-01

    Marine geophysical surveys of the U.S. Extended Continental Shelf and Exclusive Economic Zone in the U.S. portion of the Line Islands (Kingman Reef and Palmyra Atoll) have permitted the creation of a geologic map of the seafloor surrounding the islands. Source data include modern multibeam swath sonar surveys, GLORIA sidescan sonar imagery, and seismic reflection profiles. The region is principally comprised of a high bathymetric ridge that the islands sit atop, which is the source of significant sediment found in the region, and a seamount province to the northwest; the entire area is elevated above nearby abyssal plains. Analysis of seamount summit depths in the area show that flat-topped seamounts ('guyots') are found down to 1650 meters below sea level, while the summits of peaked seamounts are principally, though not exclusively, found at deeper depths. Landslide deposits, sediment channels and other bedforms are also identified.

  3. LINE-OF-SIGHT SHELL STRUCTURE OF THE CYGNUS LOOP

    SciTech Connect

    Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Kimura, Masashi; Kosugi, Hiroko; Takahashi, Hiroaki

    2009-11-10

    We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and northeast from the center. We estimated the former thin shell region to be approx1.{sup 0}3 in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.

  4. Mass Outflow in the Narrow Line Region of Markarian 573

    NASA Astrophysics Data System (ADS)

    Revalski, Mitchell; Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R.

    2016-01-01

    We present our progress toward determining the mass outflow rate in the narrow emission line region (NLR) of the Seyfert 2 galaxy Markarian 573. Mass outflows in Active Galactic Nuclei (AGN) drive gas away from the central supermassive black hole (SMBH) into the circumnuclear environment, and may play an important role in regulating the growth of the SMBH, and its coevolution with the host galaxy bulge. Recent work by Crenshaw et al. (2015, ApJ, 799, 83) found that the mass outflow rate in the NLR of NGC 4151 is too large for the outflowing mass to have originated only from the central region, indicating a significant amount of gas is picked up by the outflow as it travels away from the nucleus. Using archival spectra taken with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), we are working to determine the mass outflow rates in a sample of 10 Seyfert galaxies to determine if correlations exist between their outflows and other properties including galaxy luminosity. To accomplish this, we will analyze the emission line spectra using photoionization models to determine the mass of the outflowing gas. Combining this information with previous kinematic modeling from Fischer et al. (2013, ApJS, 209, 1), we can determine the mass outflow rates and kinetic luminosities as a function of radius from the nucleus. These quantities will provide a direct comparison between observation and theoretical feedback models, allowing us to determine the significance of these outflows in regulating AGN feedback.

  5. Is the Current Disruption Region the Genesis Region for the Substorm X-Line?

    NASA Astrophysics Data System (ADS)

    Erickson, G. M.; Maynard, N. C.; Wilson, G. R.

    2002-12-01

    The nominal location for the substorm near-Earth X-line (NEXL) has been found to be outside but near 20RE in the tail. The modified Near-Earth Neutral Line (NENL) model postulates that braking of fast, earthward flows and pile up of magnetic flux accounts for the initiation of the substorm current wedge and dipolarization within 10RE, and its tailward expansion. Current disruption (CD) and CD-like magnetic activity accompanies dipolarization in the 8--12RE range and commences in close temporal proximity to auroral onset. We report here, based on Geotail observations, that 70% of CD-like activity in the 9 (perigee) to 12 RE range of the pre-midnight and midnight plasma sheet begins in the absence of earthward flow. In only 20% of the cases does CD-like activity start coincident with arrival of earthward flow. Indeed, in a like number of cases, CD-like activity starts coincident with a clear signal (tailward Poynting flux) arriving from nearer Earth. When auroral coverage is adequate, we have shown that these substorms proceed in two stages, with reconnection occurring during the second stage. But this is not the entire story. We note three pieces of evidence that lead us to suggest that the CD region is the genesis region for the NEXL. (1) In 10% of CD-like events, magnetic fluctuations commence like typical CD events, but rather than dipolarizing, the magnetic field diminishes. Whereas the distribution for the typical CD signature shows a strong peak near 10RE, these hybrid events are more uniformly distributed between 9 and 19 RE, and from 13--19RE represent 30% of all CD-like activity. (2) Signatures of a substorm NEXL earthward of Geotail can be found as near Earth as 13RE on occasion. (3) A minimum in equatorial magnetic field strength is believed to evolve during the substorm growth phase near 10RE. Hau and Wolf [JGR, 92, 4745, 1987] discuss how, in the presence of resistivity, the B-minimum structure diffuses tailward, and the minimum deepens, until a NEXL

  6. 47 CFR 61.40 - Private line rate structure guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... structures; (4) Rate elements should be consistently defined with respect to underlying service functions and... 47 Telecommunication 3 2013-10-01 2013-10-01 false Private line rate structure guidelines. 61.40... (CONTINUED) TARIFFS General Rules for Dominant Carriers § 61.40 Private line rate structure guidelines....

  7. 47 CFR 61.40 - Private line rate structure guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... structures; (4) Rate elements should be consistently defined with respect to underlying service functions and... 47 Telecommunication 3 2012-10-01 2012-10-01 false Private line rate structure guidelines. 61.40... (CONTINUED) TARIFFS General Rules for Dominant Carriers § 61.40 Private line rate structure guidelines....

  8. Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei XVI: A 13 Year Study of Spectral Variability in NGC 5548

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.

    2002-01-01

    We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).

  9. Narrow-line-width UV Bursts in the Transition Region above Sunspots Observed by IRIS

    NASA Astrophysics Data System (ADS)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-10-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s‑1, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s‑1 found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  10. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  11. Physical Conditions in the Source Region of a Zebra Structure

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Stupishin, A. G.

    2016-07-01

    We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 - 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be T ≈ 2.0 × 104 K. Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

  12. Physical Conditions in the Source Region of a Zebra Structure

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Stupishin, A. G.

    2016-08-01

    We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 - 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be T ≈ 2.0 × 104~K. Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

  13. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    , with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.

  14. Geometry of Broad Line Regions of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lü, Xiao-Rong

    2008-02-01

    It has long remained an open question as to the geometry of the broad line region (BLR) in active galactic nuclei (AGNs). The reverberation mapping technique which measures the response of the broad emission lines to the ionizing continuum, when combined with multiwavelength continuum fitted by sophisticated accretion disks, provides a way of probing the BLR geometry. We analyze a sample of 35 AGNs, which have been monitored by the reverberation mapping campaign. In view of energy budget, the reverberation-based BH masses are found to be in agreement with those obtained by accretion disk models in two thirds of the present sample while the reverberation mapping methods underestimate the BH masses in about one third of objects, as also suggested by Collin et al. in a recent work. We point out that there are obviously two kinds of BLR geometry, which are strongly dependent on the Eddington ratio, and separated by the value LBol/LEdd~0.1. These results prefer a scenario of the disk and wind configuration of the BLR and identify the Eddington ratio as the physical driver regulating the wind in the BLR.

  15. HST/FOC imaging of the narrow-line region of NGC 1068

    NASA Technical Reports Server (NTRS)

    Macchetto, F.; Capetti, A.; Sparks, W. B.; Axon, D. J.; Boksenberg, A.

    1994-01-01

    We present imaging observations of NGC 1068 taken with the COSTAR-corrected (Corrective-Optics Space Telescope Axial Replacement) Faint Object Camera (FOC) on board the Hubble Space Telescope (HST) in the UV and optical continuum and (O III) emission lines. From these observations the structure of the nuclear region of NGC 1068 is shown to be very complex. Bright filamentary and patchy structures are intermingled with dark lanes. Other interesting features are identified, including the location of the UV peak with respect to the peak of line emission, the existence of an unusual 'twin-crescent' object near the nucleus, and point sources in the field. In the UV to optical flux ratio image, an extended conical region stands out for its blue color which may be tracing reflected nuclear light.

  16. Fe K LINE COMPLEX IN THE NUCLEAR REGION OF NGC 253

    SciTech Connect

    Mitsuishi, Ikuyuki; Yamasaki, Noriko Y.; Takei, Yoh

    2011-12-15

    A bright, nearby edge-on starburst galaxy, NGC 253, was studied using the Suzaku, XMM, and Chandra X-ray observatories. With Suzaku and XMM we detected complex line structure of Fe K, which is resolved into three lines (Fe I at 6.4 keV, Fe XXV at 6.7 keV, and Fe XXVI at 7.0 keV) around the center of NGC 253. Especially, the Fe I and Fe XXVI lines are the first clear detections, with a significance of >99.99% and 99.89% estimated by a Monte Carlo procedure. Imaging spectroscopy with Chandra revealed that the emission is distributed in {approx}60 arcsec{sup 2} region around the nucleus, which suggests that the source is not only the buried active galactic nucleus. The flux of highly ionized Fe lines can be explained by the accumulation of 10-1000 supernova remnants that are the result of high star-forming activity, while the Fe I line flux is consistent with the fluorescent line emission expected with the molecular clouds in the region.

  17. Faint emission lines in the Galactic HII regions M16, M20 and NGC 3603*

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Esteban, C.; Peimbert, M.; Costado, M. T.; Rodríguez, M.; Peimbert, A.; Ruiz, M. T.

    2006-05-01

    We present deep echelle spectrophotometry of the Galactic HII regions M16, M20 and NGC 3603. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10400 Å range. We have detected more than 200 emission lines in each region. Physical conditions have been derived using different continuum and line intensity ratios. We have derived He+, C++ and O++ abundances from pure recombination lines as well as collisionally excited lines (CELs) for a large number of ions of different elements. We have obtained consistent estimations of the temperature fluctuation parameter, t2, using different methods. We also report the detection of deuterium Balmer lines up to Dδ (M16) and to Dγ (M20) in the blue wings of the hydrogen lines, which excitation mechanism seems to be continuum fluorescence. The temperature fluctuation paradigm agrees with the results obtained from optical CELs, and the more uncertain ones from far-infrared fine-structure CELs in NGC 3603, although, more observations covering the same volume of the nebula are necessary to obtain solid conclusions.

  18. Inspection of composite structures using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Butera, Manny; Godinez, Valery

    2012-06-01

    This work deals with the non destructive analysis of different composite parts and structures using Line Scanning Thermography (LST), a non-contact inspection method based in dynamic thermography. The LST technique provides a quick and efficient methodology to scan wide areas rapidly; the technique has been used on the inspection of composite propellers, sandwich panels, motor case tubes and wind turbine blades, among others. In LST a line heat source is used to thermally excite the surface under study while an infrared detector records the transient surface temperature variation of the heated region. Line Scanning Thermography (LST), has successfully been applied to determine the thickness of metallic plates and to assess boiler tube thinning. In this paper the LST protocols developed for the detection of sub-surface defects in different composite materials commonly used in aerospace applications, plates will be presented. In most cases the thermal images acquired using LST will be compared with ultrasonic c-scans. The fundamentals of LST will be discussed, as well as the limitations of this technique for NDT inspection.

  19. Ig Constant Region Effects on Variable Region Structure and Function

    PubMed Central

    Janda, Alena; Bowen, Anthony; Greenspan, Neil S.; Casadevall, Arturo

    2016-01-01

    The adaptive humoral immune response is responsible for the generation of antimicrobial proteins known as immunoglobulin molecules or antibodies. Immunoglobulins provide a defense system against pathogenic microbes and toxins by targeting them for removal and/or destruction. Historically, antibodies have been thought to be composed of distinct structural domains known as the variable and constant regions that are responsible for antigen binding and mediating effector functions such as opsonization and complement activation, respectively. These domains were thought to be structurally and functionally independent. Recent work has revealed however, that in some families of antibodies, the two regions can influence each other. We will discuss the body of work that led to these observations, as well as the mechanisms that have been proposed to explain how these two different antibody regions may interact in the function of antigen binding. PMID:26870003

  20. Constraints on the broad-line region properties and extinction in local Seyferts

    NASA Astrophysics Data System (ADS)

    Schnorr-Müller, Allan; Davies, R. I.; Korista, K. T.; Burtscher, L.; Rosario, D.; Storchi-Bergmann, T.; Contursi, A.; Genzel, R.; Graciá-Carpio, J.; Hicks, E. K. S.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R.; Riffel, Rogemar A.; Schartmann, M.; Sternberg, A.; Sturm, E.; Tacconi, L.; Veilleux, S.; Ulrich, O. A.

    2016-11-01

    We use high-spectral resolution (R > 8000) data covering 3800-13 000 Å to study the physical conditions of the broad-line region (BLR) of nine nearby Seyfert 1 galaxies. Up to six broad H I lines are present in each spectrum. A comparison - for the first time using simultaneous optical to near-infrared observations - to photoionization calculations with our devised simple scheme yields the extinction to the BLR at the same time as determining the density and photon flux, and hence distance from the nucleus, of the emitting gas. This points to a typical density for the H I emitting gas of 1011 cm-3 and shows that a significant amount of this gas lies at regions near the dust sublimation radius, consistent with theoretical predictions. We also confirm that in many objects, the line ratios are far from case B, the best-fitting intrinsic broad-line Hα/H β ratios being in the range 2.5-6.6 as derived with our photoionization modelling scheme. The extinction to the BLR, based on independent estimates from H I and He II lines, is AV ≤ 3 for Seyfert 1-1.5s, while Seyfert 1.8-1.9s have AV in the range 4-8. A comparison of the extinction towards the BLR and narrow-line region (NLR) indicates that the structure obscuring the BLR exists on scales smaller than the NLR. This could be the dusty torus, but dusty nuclear spirals or filaments could also be responsible. The ratios between the X-ray absorbing column NH and the extinction to the BLR are consistent with the Galactic gas-to-dust ratio if NH variations are considered.

  1. Regions of Generation and Optical Thicknesses of dm-Zebra Lines

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.

    2015-07-01

    Using a new model based on the double plasma resonance (DPR), we show that the zebra structure seen in solar radio bursts is generated in the transition region and at the tops of the magnetic arcade. The magnetic field in zebra sources is probably weaker than 150 gauss. According to this model, a generation of zebras in stronger magnetic fields is improbable. The high-frequency boundary of decimetric zebras depends on the background electron plasma density, but not on the magnetic field strength in the generation regions. The bremsstrahlung absorption in atmospheric layers above the DPR zebra generation region and the cyclotron absorption in the DPR region and in the gyroresonance layers at higher altitudes limit the spectrum of zebras from both high-frequency and low-frequency sides. While the bremsstrahlung reduces the emission from the high-frequency side, the cyclotron absorption limits the low-frequency side. The observed frequency range and the number of observed zebra lines are determined not only by these absorptions, but also by appropriate distribution functions of superthermal electrons and plasma conditions in this region. Low-frequency (metric) zebra emissions can be generated at high altitudes. Computations show that such emissions can escape from the DPR generation region only at high gyro-harmonics () and with many zebra lines.

  2. Detail of insulator array at first line structure showing historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of insulator array at first line structure showing historic porcelain suspension insulators in strings of eight, porcelain jumper support insulators in strings of six, arch rings and ball weights - Morony Hydroelectric Facility, Morony-to-Rainbow 100 kV Transmission Line, West bank of the Missouri River, Great Falls, Cascade County, MT

  3. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    Observations of plasmas and electric field activity within regions of auroral particle acceleration have verified the existence of electric fields with components parallel to the magnetic field over large altitude regions. Evidence is presented which indicates that small-ampliatude double layers along the auroral magnetic field lines may provide a mechanism for the maintenance of auroral ion potential. Evidence is also presented of downward-directed parallel electric fields along the magnetic field lines in the return current region. It is suggested that the downward electric fields may have significant effects on ion trajectories, and further theoretical investigation of the effects of downward parallel electric fields on ion conic formation is recommended.

  4. Analysis of magnesium XI line profiles from solar active regions

    NASA Technical Reports Server (NTRS)

    Blake, R. L.; Cowan, R. D.; Felthauser, H.; Fenimore, E. E.; Hockaday, M. P.; Bely-Dubau, F.; Faucher, P.; Steenman-Clark, L.

    1984-01-01

    High-resolution solar spectra of the Mg XI 1s2 1S0-1s2p 1P1 resonance line at 9.169 A and the associated nearby satellite lines obtained from two rocket-borne crystal spectrometer measurements are presented. Comparisons with two independent sets of theoretical calculations for the 1s2nl-1s2pnl dielectronic satellite lines with n = 3-7 indicate electron temperatures of 4-4.5 million K. Measured line widths indicate either that the ion temperature exceeds the electron temperature by about a million K or that about 28 km/s of turbulence is present.

  5. Probing the Inner Regions of Protoplanetary Disks with CO Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    McJunkin, Matthew; France, Kevin; Burgh, Eric B.; Herczeg, Gregory J.; Schindhelm, Eric; Brown, Joanna M.; Brown, Alexander

    2013-03-01

    Carbon monoxide (CO) is the most commonly used tracer of molecular gas in the inner regions of protoplanetary disks. CO can be used to constrain the excitation and structure of the circumstellar environment. Absorption line spectroscopy provides an accurate assessment of a single line of sight through the protoplanetary disk system, giving more straightforward estimates of column densities and temperatures than CO and molecular hydrogen (H2) emission line studies. We analyze new observations of ultraviolet CO absorption from the Hubble Space Telescope along the sightlines to six classical T Tauri stars. Gas velocities consistent with the stellar velocities, combined with the moderate-to-high disk inclinations, argue against the absorbing CO gas originating in a fast-moving disk wind. We conclude that the far-ultraviolet observations provide a direct measure of the disk atmosphere or possibly a slow disk wind. The CO absorption lines are reproduced by model spectra with column densities in the range N(12CO) ~ 1016-1018 cm-2 and N(13CO) ~ 1015-1017 cm-2, rotational temperatures T rot(CO) ~ 300-700 K, and Doppler b-values, b ~ 0.5-1.5 km s-1. We use these results to constrain the line-of-sight density of the warm molecular gas (n CO ~ 70-4000 cm-3) and put these observations in context with protoplanetary disk models.

  6. Line-of-sight structure toward strong lensing galaxy clusters

    SciTech Connect

    Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren; Gladders, Michael D.; Oguri, Masamune

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines of sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.

  7. Structure Line Detection from LIDAR Point Clouds Using Topological Elevation Analysis

    NASA Astrophysics Data System (ADS)

    Lo, C. Y.; Chen, L. C.

    2012-07-01

    Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and modeldriven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis (TEA) to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original threedimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds.

  8. TEMPERATURE STRUCTURE AND METALLICITY IN H II REGIONS

    SciTech Connect

    Rodriguez, Monica; GarcIa-Rojas, Jorge E-mail: jogarcia@iac.e

    2010-01-10

    The metallicities implied by collisionally excited lines (CELs) of heavy elements in H II regions are systematically lower than those implied by recombination lines (RLs) by factors of approx2, introducing uncertainties of the same order in the metallicities inferred for the interstellar medium of any star-forming galaxy. Most explanations of this discrepancy are based on the different sensitivities of CELs and RLs to electron temperature, and invoke either some extra heating mechanism producing temperature fluctuations in the ionized region or the addition of cold gas in metal-rich inclusions or ionized by cosmic rays or X-rays. These explanations will change the temperature structure of the ionized gas from the one predicted by simple photoionization models, and depending on which one is correct, will imply different metallicities for the emitting gas. We select nine H II regions with observed spectra of high quality and show that simple models with metallicities close to the ones implied by oxygen CELs reproduce easily their temperature structure, measured with T{sub e}([N II])/T{sub e}([O III]), and their oxygen CELs emission. We discuss the strong constraints that this agreement places on the possible explanations of the discrepancy and suggest that the simplest explanation, namely errors in the line recombination coefficients by factors approx2, might be the correct one. In such case, CELs will provide the best estimates of metallicity.

  9. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  10. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I - An 8 month campaign of monitoring NGC 5548 with IUE

    NASA Technical Reports Server (NTRS)

    Clavel, J.; Wamsteker, W. A.; Reichert, G. A.; Crenshaw, D. M.; Alloin, D.

    1991-01-01

    Emission-line and UV continuum observations of the type I Seyfert galaxy NGC 5548 were carried out for a period of 8 months with the IUE satellite. It was found that both the continuum shape and the line ratios of NGC 5548, while being not unusual for type I Seyfert galaxies, are strongly variable. The UV continuum flux and broad emission line fluxed went through three large maxima and three deep minima; the ratio of miximum to minimum flux was about 4.5 for the continuum at 1350 A. The N V and the He II emission lines exhibited maximum-to-minimum flux ratios as high as those of the continuum; other ionization lines (Ly-alpha, C IV, and C III) exhibited smaller amplitude fluctuations, with the smallest being recorded for the Mg II line (about 1.3). It was found that, except for Mg II, the emission-line variations correlated extremely well with those of the 1350-A continuum.

  11. Gunn oscillators using distributed-feedback fin-line structures

    NASA Astrophysics Data System (ADS)

    Adelseck, B.; Sicking, F.; Hofmann, H.

    Approaches for the manufacture of planar structures can possibly provide inexpensive millimeter-wave components with good or even excellent characteristics. This is also true for oscillators. It has recently been found that these devices can be designed conveniently by making use of periodic fin-line structures. The considered investigation is concerned with a simple method for the design of such oscillators on the basis of fin-line technology. For the design of integrated millimeter-wave circuits, such oscillators can be easily integrated with other components which utilize the same technology. The layout of a Gunn oscillator is discussed. The design consists essentially of an asymmetric fin-line with a Gunn diode at one end, a grating structure, and a taper to provide a transition to the waveguide. Attention is given to the calculation of the grating structure, the design of the oscillator, and experimental results.

  12. The Regional Structure of Technical Innovation

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion

    2014-03-01

    There is strong evidence that the productivity per capita of cities and regions increases with population. One likely explanation for this phenomenon is that densely populated regions bring together otherwise unlikely combinations of individuals and organisations with diverse, specialised capabilities, leading to increased innovation and productivity. We have used the REGPAT patent database to construct a bipartite network of geographic regions and the patent classes for which those regions display a revealed comparative advantage. By analysing this network, we can infer relationships between different types of patent classes - and hence the structure of (patentable) technology. The network also provides a novel perspective for studying the combinations of technical capabilities in different geographic regions. We investigate measures such as the diversity and ubiquity of innovations within regions and find that diversity (resp. ubiquity) is positively (resp. negatively) correlated with population. We also find evidence of a nested structure for technical innovation. That is, specialised innovations tend to occur only when other more general innovations are already present.

  13. A note on chromospheric fine structure at active region polarity boundaries.

    NASA Technical Reports Server (NTRS)

    Prata, S. W.

    1971-01-01

    High resolution H-alpha filtergrams from Big Bear Solar Observatory reveal that some filamentary features in active regions have fine structure and hence magnetic field transverse to the gross structure and the zero longitudinal field line. These features are distinct from the usual active region filament, in which fine structure, magnetic field, and filament are all parallel to the zero longitudinal field line. The latter occur on boundaries between regions of weaker fields, while the former occur at boundaries between regions of stronger field.

  14. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki

    2016-03-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.

  15. A Multi-line Study of Atomic Carbon and Carbon Monoxide in the Galactic Star- forming Region W3

    NASA Astrophysics Data System (ADS)

    Jakob, H.; Kramer, C.; Mookerjea, B.; Jeyakumar, S.; Stutzki, J.

    We present results from simultaneous observations of the fine structure line emissions of neutral carbon (C I) at 492 and 809 GHz from selected Galactic star forming regions. These observations include the first results using the the newly installed SMART (SubmilliMeter Array Receiver at Two wavelengths) on KOSMA. The regions observed were selected in order to cover a range of strengths of the incident UV radiation from the exciting star/stars and also densities of the interstellar medium. Extended maps of C I emission from massive star forming regions including W3, S106 and Orion BN/KL have been observed. Simultaneous observation of the two C I lines ensures better relative calibration. The results from these observations will be combined with observed intensities of low-J and mid-J CO and C+ lines and analyzed using radiation transfer based models for Photon Dominated Regions (PDRs).

  16. Deep structure of the Urals region

    SciTech Connect

    Druzhinin, V.S.; Rybalka, V.M.; Khalevin, N.I.

    1986-01-01

    Five thousand kilometers of deep seismic-sounding profiles were run between 1962 and 1984 to investigate the structure of the Urals and neighboring areas on the margin of the East European and West Siberian platforms. The region examined is characterized by a variety of geological provinces, ancient and young platforms, and an intracontinental linear geosynclinal system, as well as a concentration of deposits of iron, copper, coal, asbestos, oil, gas, etc. Owing to the necessity of studying targets at differing depths the authors used two systems: refraction-reflection surveys with array lengths up to 100 km, and shot-point spacings of 10-20 km; and deep seismic sounding with shot-point spacings of 25-50 km and sometimes 100 km and arrays up to 450 km long. The specific nature of the deep-seated structure of the Urals region is described. The results of the studies enable them to establish a connection between the metallogeny and the crustal structure. The principal regional predictors of deposits of mineral resources are the basicity, the structure, the contrasting nature of the crustal structure, and the tectonic features associated with the location of the blocks and deep-seated fault zones. Locations of oil and gas deposits and ore and mineral deposits are described. 8 references, 4 figures.

  17. TOPOLOGICAL STRUCTURING OF RASTER-SCANNED LINE MAP DATA.

    USGS Publications Warehouse

    Fegeas, Robin G.; Pearsall, Richard A.

    1984-01-01

    The U. S. Geological Survey has a requirement for the collection of large amounts of digital map data from existing graphic map separates. Prototype production techniques have been developed to capture line data from the map separates using a raster-scanning input device. After minimal editing in raster form, the data are converted to 'unstructured' vector form. In order to be processed further, the line data must be topologically structured (nodes identified and start-node, end-node, area-left, and area-right tags associated with each line-segment chain). This paper describes the techniques which have been developed at the U. S. Geological Survey to topologically structure the raster-scanned line map data.

  18. Radiation pressure confinement - II. Application to the broad-line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-02-01

    Active galactic nuclei (AGN) are characterized by similar broad emission lines properties at all luminosities (1039 - 1047 erg s-1). What produces this similarity over a vast range of 108 in luminosity? Photoionization is inevitably associated with momentum transfer to the photoionized gas. Yet, most of the photoionized gas in the broad-line region (BLR) follows Keplerian orbits, which suggests that the BLR originates from gas with a large enough column for gravity to dominate. The photoionized surface layer of the gas must develop a pressure gradient due to the incident radiation force. We present solutions for the structure of such a hydrostatic photoionized gas layer in the BLR. The gas is stratified, with a low-density highly ionized surface layer, a density rise inwards and a uniform-density cooler inner region, where the gas pressure reaches the incident radiation pressure. This radiation pressure confinement (RPC) of the photoionized layer leads to a universal ionization parameter U ˜ 0.1 in the inner photoionized layer, independent of luminosity and distance. Thus, RPC appears to explain the universality of the BLR properties in AGN. We present predictions for the BLR emission per unit covering factor, as a function of distance from the ionizing source, for a range of ionizing continuum slopes and gas metallicity. The predicted mean strength of most lines (excluding H β), and their different average-emission radii, are consistent with available observations.

  19. Line-of-sight effects on spectroscopic measurements in the inner solar wind region

    NASA Technical Reports Server (NTRS)

    Esser, Ruth; Withbroe, George L.

    1989-01-01

    The effect of the integration along the line of sight on the spectral line profiles of the resonantly scattered Lyman alpha radiation emitted by low-density coronal holes at heights above 1.5 Rs from sun center is investigated. It is shown how the spectral lines from this region are influenced by the Lyman alpha emission from surrounding regions with higher densities. The coronal hole and the surrounding areas are described by a two-fluid solar wind model. It is shown that the line-of-sight effects can be important for the interpretation of the Lyman alpha spectral line measurements in the outer corona and inner solar wind.

  20. Telluric lines in the region lambda lambda 6327.5-6330.0 angstrom angstrom

    NASA Technical Reports Server (NTRS)

    Alikayeva, K. V.

    1973-01-01

    The solar spectrum region lambda lambda 6327.5 to 6330.0 AA was investigated. Six new telluric lines were found. The behavior of two of them (lambda 6328.51 and lambda 6328.71 A) is the same as identified molecular oxygen lines in the region. The lines lambda 6328.27, 6329.12, and 6329.29 A are more intensive when there are days with high humidity.

  1. Edge region hydrogen line emission in the PDX tokamak

    SciTech Connect

    McNeill, D.H.; Bell, M.G.; Grek, B.; LeBlanc, B.

    1984-02-01

    Measurements of the H/sub ..cap alpha../ line shape and of the spatial distribution of the H/sub ..cap alpha../ emissivity in the PDX tokamak are interpreted in terms of molecular dissociation reactions at the plasma edge. The influx of molecules is shown to be roughly proportional to the edge emission intensity over a wide range of temperatures. The H/sub 2/ particle lifetime is estimated for various types of discharges in PDX.

  2. Edge region hydrogen line emission in the PDX tokamak

    SciTech Connect

    McNeill, D.H.; Bell, M.G.; Grek, B.; LeBlanc, B.

    1984-04-01

    Measurements of the H/sub ..cap alpha../ line shape and of the spatial distribution of H/sub ..cap alpha../ emissivity in the PDX tokamak are interpreted in terms of molecular dissociation reactions at the plasma edge. The in-flux of molecules is shown to be roughly proportional to the edge emission intensity over a wide range of temperatures. The H/sub 2/ particle lifetime is estimated for various types of discharges in PDX.

  3. Structure and polarization of active region microwave emission

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Alissandrakis, C. E.

    1984-01-01

    Active region radio emission observations made at 6.16 cm wavelength during May 20-27, 1980, are the bases of maps of total intensity and circular polarization presented for the three regions whose Hale numbers are 16850, 16863, and 16864. A detailed comparison is made between these maps and on- and off-band H-alpha pictures and magnetograms. The neutral lines with which the strongest sources were associated have their two opposite polarities close to each other, implying a high magnetic field gradient, and are also associated with arch filament systems. A detailed analysis is undertaken of observations of the circular polarization sense inversion in region 16863. The large scale structure of the magnetic field can be approximated by a dipole with its axis inclined by 11 deg with respect to the photosphere, and with a dipole moment of about 2 x 10 to the 31 power cgs units.

  4. 3D form line construction by structural field interpolation (SFI) of geologic strike and dip observations

    NASA Astrophysics Data System (ADS)

    Hillier, Michael; de Kemp, Eric; Schetselaar, Ernst

    2013-06-01

    Interpreting and modelling geometries of complex geologic structures from strike/dip measurements using manually-drafted structural form lines is labour intensive, irreproducible and inherently limited to two dimensions. Herein, the structural field interpolation (SFI) algorithm is presented that overcomes these limitations by constructing 3D structural form lines from the vector components of strike/dip measurements. The SFI interpolation algorithm employs an anisotropic inverse distance weighting scheme derived from eigen analysis of the poles to strike/dip measurements within a neighbourhood of user defined dimension and shape (ellipsoidal to spherical) and honours younging directions, when available. The eigen analysis also provides local estimates of the plunge vector and associated Woodcock distribution properties to assure plunge-normal structural form line reconstruction with unidirectional propagation of form lines across fold and fan structures. The method is advantageous for modelling geometries of geologic structures from a wide range of structurally anisotropic data. Modelled vector fields from three case studies are presented that reproduce the expected bedding-foliation geometry and provide reasonable representation of complex folds from local to regional scales. Results illustrate the potential for using vector fields to support geologic interpretation through the direct visualization of geometric trends of structural features in 3D.

  5. An investigation of the convective region of numerically simulated squall lines

    NASA Astrophysics Data System (ADS)

    Bryan, George Howard

    High resolution numerical simulations are utilized to investigate the thermodynamic and kinematic structure of the convective region of squall lines. A new numerical modeling system was developed for this purpose. The model incorporates several new and/or recent advances in numerical modeling, including: a mass- and energy-conserving equation set, based on the compressible system of equations; third-order Runge-Kutta time integration, with high (third to sixth) order spatial discretization; and a new method for conserved-variable mixing in saturated environments, utilizing an exact definition for ice-liquid water potential temperature. A benchmark simulation for moist environments was designed to evaluate the new model. It was found that the mass- and energy-conserving equation set was necessary to produce acceptable results, and that traditional equation sets have a cool bias that leads to systematic underprediction of vertical velocity. The model was developed to run on massively-parallel distributed memory computing systems. This allows for simulations with very high resolution. In this study, squall lines were simulated with grid spacing of 125 m over a 300 km x 60 km x 18 km domain. Results show that the 125 m simulations contain sub-cloud-scale turbulent eddies that stretch and distort plumes of high equivalent potential temperature (thetae) that rise from the pre-squall-line boundary layer. In contrast, with 1 km grid spacing the high thetae plumes rise in a laminar manner, and require parameterized subgrid terms to diffuse the high theta e air. The high resolution output is used to refine the conceptual model of the structure and lifecycle of moist absolutely unstable layers (MAULs). Moist absolute instability forms in the inflow region of the squall line and is subsequently removed by turbulent processes of varying scales. Three general MAUL regimes (MRs) are identified: a laminar MR, characterized by deep (˜2 km) MAULs that extend continuously in both

  6. Molecular Lines of 13 Galactic Infrared Bubble Regions

    NASA Astrophysics Data System (ADS)

    Yan, Qing-zeng; Xu, Ye; Zhang, Bo; Lu, Deng-rong; Chen, Xi; Tang, Zheng-hong

    2016-11-01

    We investigated the physical properties of molecular clouds and star formation (SF) processes around infrared bubbles, which are essentially expanding H ii regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. We observed five molecular lines—12CO (J=1\\to 0), 13CO (J=1\\to 0), C18O (J=1\\to 0), HCN (J=1\\to 0), and HCO+ (J=1\\to 0)—and several publicly available surveys were used for comparison: Galactic Legacy Infrared Mid-Plane Survey Extraordinaire, Multiband Imaging Photometer for Spitzer Galactic Plane Survey, APEX Telescope Large Area Survey of the Galaxy, Bolocam Galactic Plane Survey, Very Large Array (VLA) Galactic Plane Survey, Multi-Array Galactic Plane Imaging Survey, and NRAO VLA Sky Survey. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad-shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 M ⊙, and their dynamic ages are about 0.3–3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles with larger angular sizes show shell-like morphologies, indicating that either collect-and-collapse or radiation-driven implosion processes may have occurred. Due to the contamination of adjacent molecular clouds, only six bubble regions are appropriate to search for outflows, and we find that four have outflow activities. Three bubbles display ultra-compact H ii regions at their borders, and one is probably responsible for its outflow. In total, only six bubbles show SF activities in the vicinity, and we suggest that SF processes might have been triggered.

  7. Active Region Magnetic Structure Observed in the Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Metcalf, Thomas R.

    2001-01-01

    The magnetic flux above sunspots and plage in NOAA (National Oceanic and Atmospheric Administration) Active Region 8299 has been measured in the photosphere and the chromosphere. We investigate the vertical magnetic structure above the umbrae, penumbrae and plage regions using quantitative statistical comparisons of the photospheric and chromospheric vector magnetic flux data. The results include: (1) a decrease in flux with height, (2) the direct detection of the superpenumbral canopy in the chromosphere, (3) values for dB/dz which are consistent with earlier investigations when derived from a straight difference between the two datasets but quite low when derived from the delta x B = 0 condition, (4) a monolithic structure in the umbra which extends well into the upper chromosphere with a very complex and varied structure in the penumbra and plage, as evidenced by (5) a uniform magnetic scale height in the umbrae with an abrupt jump to widely varying scale heights in the penumbral and plage regions. Further, we find (6) evidence for a very large (delta z approximately equals 3Mm) height difference between the atmospheric layers sampled in the two magnetograms, almost a factor of three larger than that implied by atmospheric models. We additionally test the apropriateness of using photospheric magnetic flux as a boundary for field-line extrapolations, and find a better agreement with observed coronal structure when the chromospheric flux is used as a boundary.

  8. Results and implications of new regional seismic lines in the Malay Basin

    SciTech Connect

    Leslie, W.; Ho, W.K.; Ghani, M.A. )

    1994-07-01

    Regional seismic data, which was previously acquired between 1968 and 1971 by early operators in the Malay Basin, has limitations because the sophisticated modern-day acquisition and processing techniques were not available. These old data do not permit confident mapping below 3 s (TWT), equivalent to approximately 3000 m subsea, but aeromagnetic data indicate that the total sedimentary thickness exceeds 13,000 m. Hence, existing regional seismic data with a record length of 5 s (TWT) is neither adequate to map deeper play opportunities nor able to aid in understanding the geological history of the basin. New plays at deeper levels may exist. (1) Geochemical modeling results now predict the top of the oil generation window at depths greater than previously thought. (2) Existing gas fields occur in the upper section in areas of thickest sedimentary fill but underlying targets have not been tested. (3) Past exploration has been focused on oil and not gas in deeper structures. Because of Malaysia's rapid development and its dedication to the protection of the environment, gas is becoming an increasingly important energy source. Hence, ample internal markets for additional gas discoveries are being created. A better understanding of the Malay Basin geological history will assist in locating these potential plays. To do this, Petronas acquired approximately 3000 line km of high-quality regional seismic data to further exploration efforts in this prospective region.

  9. Regional anaesthesia and analgesia on the front line.

    PubMed

    Scott, D M

    2009-11-01

    Deployment to a combat zone with the military poses many challenges to the anaesthetist. One of these challenges is the safe, rapid and comfortable initial wound management and repatriation of wounded combat soldiers to their home country or tertiary treatment facility for definitive care and rehabilitation. The current conflict in Afghanistan is associated with injury patterns that differ from wars such as Vietnam or Korea. This report describes the experience of an Australian military anaesthetist and the value of regional anaesthesia and analgesia for the care of the wounded combat soldier

  10. Proton Spin Structure in the Resonance Region

    SciTech Connect

    F. R. Wesselmann; K. Slifer; S. Tajima; A. Aghalaryan; A. Ahmidouch; R. Asaturyan; F. Bloch; W. Boeglin; P. Bosted; C. Carasco; R. Carlini; J. Cha; J. P. Chen; M. E. Christy; L. Cole; L. Coman; D. Crabb; S. Danagoulian; D. Day; J. Dunne; M. Elaasar; R. Ent; H. Fenker; E. Frlez; L. Gan; D. Gaskell; J. Gomez; B. Hu; M. K. Jones; J. Jourdan; C. Keith; C. E. Keppel; M. Khandaker; A. Klein; L. Kramer; Y. Liang; J. Lichtenstadt; R. Lindgren; D. Mack; P. McKee; D. McNulty; D. Meekins; H. Mkrtchyan; R. Nasseripour; I. Niculescu; K. Normand; B. Norum; D. Pocanic; Y. Prok; B. Raue; J. Reinhold; J. Roche; D. Rohe; O. A. Rondon; N. Savvinov; B. Sawatzky; M. Seely; I. Sick; C. Smith; G. Smith; S. Stepanyan; L. Tang; G. Testa; W. Vulcan; K. Wang; G. Warren; S. Wood; C. Yan; L. Yuan; Junho Yun; Markus Zeier; Hong Guo Zhu

    2006-10-11

    The RSS collaboration has measured the spin structure functions g{sub 1} and g{sub 2} of the proton at Jefferson Lab using the lab's polarized electron beam, the Hall C HMS spectrometer and the UVa polarized solid target. The asymmetries A{sub parallel} and A{sub perp} were measured at the elastic peak and in the region of the nucleon resonances (1.085 GeV < W < 1.910 GeV) at an average four momentum transfer of Q{sup 2} = 1.3 GeV{sup 2}. The extracted spin structure functions and their kinematic dependence make a significant contribution in the study of higher-twist effects and polarized duality tests.

  11. Physical conditions in the narrow-line regions of M51 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Bradley, Larry Daniel

    2004-04-01

    The relative proximity and luminosity of Seyfert galaxies allows for detailed studies of their spatially extended narrow-line regions (NLR), which are the largest structures in these active galactic nuclei (AGN) powered by the active nucleus. In this dissertation, I have used the high spatial resolution of the Hubble Space Telescope ( HST) and Very Large Array (VLA) to examine the physical conditions producing the kinematic and ionization structure observed in the NLR of two Seyfert galaxies, namely NGC 4151 and M51. The physical conditions in the NLR of NGC 4151 were investigated using medium spectral resolution HST/STIS slitless spectra and HST/Wide Field and Planetary Camera 2 (WFPC2) images. The slitless data allowed us to spatially map the velocity field of the complete inner NLR of NGC 4151. The observations show a biconical distribution of emission- line clouds with blueshifted radial velocities to the southwest of the nucleus and redshifted clouds to the northeast of the nucleus. The NLR clouds are distributed in at least two kinematic components, including a population of low-velocity (|v| < 400 km s-1), low-velocity dispersion (Δv < 130 km s-1 ) clouds and high-velocity (400 < |v| < 1700 km s-1), high-velocity dispersion (Δv ≥ 130 km s-1) clouds. Our results suggest that a wind-driven outflow is responsible for the acceleration of the NLR clouds. Within 3.'' 2 (˜200 pc) of the nucleus, the [O III] λ5007/Hβ emission-line ratio decreases approximately as r-0.3 . Because the ionization parameter is proportional to r -2 n-1, it appears that the density, n, of these NLR clouds falls off approximately as r-1.7. The physical conditions in the NLR of M51 were explored using long-slit spectra obtained with the Space Telescope Imaging Spectrograph (STIS) aboard HST and 8.4 GHz (3.6 cm) radio continuum observations obtained with the VLA. Emission-line diagnostics were employed for nine NLR clouds, which extend 2.'' 5 (102

  12. On the emitting region of X-ray fluorescent lines around Compton-thick AGN

    NASA Astrophysics Data System (ADS)

    Liu, Jiren

    2016-06-01

    X-ray fluorescent lines are unique features of the reflection spectrum of the torus when irradiated by the central active galactic nuclei (AGN). Their intrinsic line width can be used to probe the line-emitting region. Previous studies have focused on the Fe K α line at 6.4 keV, which is the most prominent fluorescent line. These studies, however, are limited by the spectral resolution of currently available instruments, the best of which is ˜1860 km s-1 afforded by the Chandra High-Energy Grating (HEG). The HEG spectral resolution is improved by a factor of 4 at 1.74 keV, where the Si K α line is located. We measured the full width at half-maximum of the Si K α line for Circinus, Mrk 3, and NGC 1068, which are 570 ± 240, 730 ± 320, and 320 ± 280 km s-1, respectively. They are 3-5 times smaller than those measured with the Fe K α line previously. It shows that the intrinsic widths of the Fe K α line are most likely to be overestimated. The measured widths of the Si K α line put the line-emitting region outside the dust sublimation radius in these galaxies. It indicates that for Compton-thick AGN, the X-ray fluorescence material are likely to be the same as the dusty torus emitting in the infrared band.

  13. REDSHIFTS, WIDTHS, AND RADIANCES OF SPECTRAL LINES EMITTED BY THE SOLAR TRANSITION REGION

    SciTech Connect

    Feldman, U.; Dammasch, I. E.; Doschek, G. A.

    2011-12-20

    A long-standing problem in understanding the physics of the transition region has been the ubiquitous redshifts of transition region ultraviolet spectral lines relative to chromospheric emission lines, a result known since the Skylab era. Extended spectral scans performed for various regions of the solar disk by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory contain thousands of line profiles per study and allow a thorough investigation of the redshift phenomenon. In using these data from seven distinct disk areas made in lines spanning the chromosphere to coronal temperature range, we derive a relationship between Doppler wavelength shifts and radiances and a relationship between line widths and radiances. While chromospheric and coronal lines emitted by very bright plasmas may in some cases show pronounced redshifts, transition-region lines predominantly show redshifts everywhere in the quiet Sun and in active regions. In coronal holes, however, they display a reduced shift, which at times altogether disappears. The observations and the findings will be described, and possible explanations will be considered.

  14. Three dimensional crustal structure beneath the Gulf of Aqaba region from regional earthquake tomography

    NASA Astrophysics Data System (ADS)

    El Khrepy, Sami; Koulakov, ivan; al-arifi, Nassir; Petrunin, Alexey

    2016-04-01

    Gulf of Aqaba is tectonically and seismically active according to up to date earthquake activity recorded by the National seismic network of Egypt and ISC. Aqaba Gulf is located at the southern part of the Dead Sea Rift at the Northern Red Sea Rift as a major component of the Sinai triple junction where the plate boundaries play an important role in the tectonic activity of this region. In this work we apply the regional earthquake tomography technique of Koulakov (2009) to the P and S waves arrival times . Checkerboard resolution test has been performed to estimate the resolution of the data used in the inversion. The synthetic tests reveled reasonable resolving for the main geologic structures. The results revealed three dimensional seismic structures of P and S waves beneath the Gulf of Ababa region for the first time. Consistent seismic velocity pattern is obtained for P and S seismic phases. Strong anomalies of high-velocity with abrupt change are observed coinciding with the northern Red sea coast lines. This new results indicate new perspective suggesting oceanic nature of the crust in the northern part of the Red Sea disagreeing with the Hypothesis of gradual stretching of the continental crust. Key words: Regional Seismic tomography, Gulf of Aqaba, Dead Sea Transform Fault, Northern Red Sea

  15. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  16. A TENTATIVE SIZE-LUMINOSITY RELATION FOR THE IRON EMISSION-LINE REGION IN QUASARS

    SciTech Connect

    Chelouche, Doron; Rafter, Stephen E.; Cotlier, Gabriel I.; Kaspi, Shai; Barth, Aaron J. E-mail: rafter@physics.technion.ac.il E-mail: barth@uci.edu

    2014-03-10

    New reverberation mapping measurements of the size of the optical iron emission-line region in quasars are provided, and a tentative size-luminosity relation for this component is reported. Combined with lag measurements in low-luminosity sources, the results imply an emission-region size that is comparable to and at most twice that of the Hβ line, and is characterized by a similar luminosity dependence. This suggests that the physics underlying the formation of the optical iron blends in quasars may be similar to that of other broad emission lines.

  17. Three dimensional structures of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1986-01-01

    Three dimensional structure of an active region is determined from observations with the Very Large Array (VLA) at 2, 6, and 20 cm. This region exhibits a single magnetic loop of length approx. 10 to the 10th power cm. The 2 cm radiation is mostly thermal bremsstrahlung and originates from the footpoints of the loop. The 6 and 20 cm radiation is dominated by the low harmonic gyroresonance radiation and originates from the upper portion of the legs or the top of the loop. The loop broadens toward the apex. The top of the loop is not found to be the hottest point, but two temperature maxima on either side of the loop apex are observed, which is consistent with the model proposed for long loops. From 2 and 6 cm observations it can be concluded that the electron density and temperature cannot be uniform in a plane perpendicular to the axis of the loop; the density should decrease away from the axis of the loop.

  18. Line-of-sight effects on spectroscopic measurements in the inner solar wind region

    SciTech Connect

    Esser, R.; Withbroe, G.L. )

    1989-06-01

    The effect of the integration along the line of sight on the spectral line profiles of the resonantly scattered Lyman alpha radiation emitted by low-density coronal holes at heights above 1.5 R{sub S} from Sun center is investigated. It is shown how the spectral lines from this region are influenced by the Lyman alpha emission from surrounding regions with higher densities. The coronal hole and the surrounding areas are described by a two-fluid solar wind model. It is shown that the line-of-sight effects can be important for the interpretation of the Lyman alpha spectral line measurements in the outer corona and inner solar wind.

  19. Crustal structure of Bristol Bay Region, Alaska

    SciTech Connect

    Cooper, A.K.; McLean, H.; Marlow, M.S.

    1985-04-01

    Bristol Bay lies along the northern side of the Alaska Peninsula and extends nearly 600 km southwest from the Nushagak lowlands on the Alaska mainland to near Unimak Island. The bay is underlain by a sediment-filled crustal downwarp known as the north Aleutian basin (formerly Bristol basin) that dips southeast toward the Alaska Peninsula and is filled with more than 6 km of strata, dominantly of Cenozoic age. The thickest parts of the basin lie just north of the Alaska Peninsula and, near Port Mollar, are in fault contact with older Mesozoic sedimentary rocks. These Mesozoic rocks form the southern structural boundary of the basin and extend as an accurate belt from at least Cook Inlet to Zhemchug Canyon (central Beringian margin). Offshore multichannel seismic-reflection, sonobuoy seismic-refraction, gravity, and magnetic data collected by the USGS in 1976 and 1982 indicate that the bedrock beneath the central and northern parts of the basin comprises layered, high-velocity, and highly magnetic rocks that are locally deformed. The deep bedrock horizons may be Mesozoic(.) sedimentary units that are underlain by igneous or metamorphic rocks and may correlate with similar rocks of mainland western Alaska and the Alaska Peninsula. Regional structural and geophysical trends for these deep horizons change from northeast-southwest to northwest-southeast beneath the inner Bering shelf and may indicate a major crustal suture along the northern basin edge.

  20. Medial Temporal Lobe Structures Contribute to On-Line Processing

    ERIC Educational Resources Information Center

    Warren, David

    2009-01-01

    For the last five decades, the medial temporal lobes have been generally understood to facilitate enduring representation of certain kinds of information. In particular, knowledge about the relations among items and concepts appears to rely on that region of the brain. Recent results suggest that those same structures also play a subtle role in…

  1. On-line structure-lossless digital mammogram image compression

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Huang, H. K.

    1996-04-01

    This paper proposes a novel on-line structure lossless compression method for digital mammograms during the film digitization process. The structure-lossless compression segments the breast and the background, compresses the former with a predictive lossless coding method and discards the latter. This compression scheme is carried out during the film digitization process and no additional time is required for the compression. Digital mammograms are compressed on-the-fly while they are created. During digitization, lines of scanned data are first acquired into a small temporary buffer in the scanner, then they are transferred to a large image buffer in an acquisition computer which is connected to the scanner. The compression process, running concurrently with the digitization process in the acquisition computer, constantly checks the image buffer and compresses any newly arrived data. Since compression is faster than digitization, data compression is completed as soon as digitization is finished. On-line compression during digitization does not increase overall digitizing time. Additionally, it reduces the mammogram image size by a factor of 3 to 9 with no loss of information. This algorithm has been implemented in a film digitizer. Statistics were obtained based on digitizing 46 mammograms at four sampling distances from 50 to 200 microns.

  2. Electromagnetic response of buried cylindrical structures for line current excitation

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Ponti, Cristina

    2013-04-01

    The Cylindrical-Wave Approach (CWA) rigorously solves, in the spectral domain, the electromagnetic forward scattering by a finite set of buried two-dimensional perfectly-conducting or dielectric objects [1]-[2]. In this technique, the field scattered by underground objects is represented in terms of a superposition of cylindrical waves. Use is made of the plane-wave spectrum [1] to take into account the interaction of such waves with the planar interface between air and soil, and between different layers eventually present in the ground [3]. Obstacles of general shape can be simulated through the CWA with good results, by using a suitable set of small circular-section cylinders [4]. Recently, we improved the CWA by facing the fundamental problem of losses in the ground [5]: this is of significant importance in remote-sensing applications, since real soils often have complex permittivity and conductivity, and sometimes also a complex permeability. While in previous works concerning the CWA a monochromatic or pulsed plane-wave incident field was considered, in the present work a different source of scattering is present: a cylindrical wave radiated by a line source. Such a source is more suitable to model the practical illumination field used in GPR surveys. The electric field radiated by the line current is expressed by means of a first-kind Hankel function of 0-th order. The theoretical solution to the scattering problem is developed for both dielectric and perfectly-conducting cylinders buried in a dielectric half-space. The approach is implemented in a Fortran code; an accurate numerical evaluation of the involved spectral integrals is performed, the highly-oscillating behavior of the homogeneous waves is correctly followed and evanescent contributions are taken into account. The electromagnetic field scattered in both air and ground can be obtained, in near- and far-field regions, for arbitrary radii and permittivity of the buried cylinders, as well as for

  3. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  4. Modelling Line Edge Roughness in Periodic Line-Space Structures by Fourier Optics to Improve Scatterometry

    NASA Astrophysics Data System (ADS)

    Gross, H.; Heidenreich, S.; Henn, M.-A.; Dai, G.; Scholze, F.; Bär, M.

    2014-01-01

    In the present paper, we propose a 2D-Fourier transform method as a simple and efficient algorithm for stochastical and numerical studies to investigate the systematic impacts of line edge roughness on light diffraction pattern of periodic line-space structures. The key concept is the generation of ensembles of rough apertures composed of many slits, to calculate the irradiance of the illuminated rough apertures far away from the aperture plane, and a comparison of their light intensities to those of the undisturbed, 'non-rough' aperture. We apply the Fraunhofer approximation and interpret the rough apertures as binary 2D-gratings to compute their diffraction patterns very efficiently as the 2D-Fourier transform of the light distribution of the source plane. The rough edges of the aperture slits are generated by means of power spectrum density (PSD) functions, which are often used in metrology of rough geometries. The mean efficiencies of the rough apertures reveal a systematic exponential decrease for higher diffraction orders if compared to the diffraction pattern of the unperturbed aperture. This confirms former results, obtained by rigorous calculations with computational expensive finite element methods (FEM) for a simplified roughness model. The implicated model extension for scatterometry by an exponential damping factor for the calculated efficiencies allows to determine the standard deviation σ_r of line edge roughness along with the critical dimensions (CDs), i.e., line widths, heights and other profile properties in the sub-micrometer range. First comparisons with the corresponding roughness value determined by 3D atomic force microscopy (3D AFM) reveal encouraging results.

  5. OUTFLOWS FROM ACTIVE GALACTIC NUCLEI: KINEMATICS OF THE NARROW-LINE AND CORONAL-LINE REGIONS IN SEYFERT GALAXIES

    SciTech Connect

    Mueller-Sanchez, F.; Prieto, M. A.; Vives-Arias, H.; Davies, R. I.; Tacconi, L. J.; Genzel, R.; Malkan, M.

    2011-10-01

    As part of an extensive study of the physical properties of active galactic nuclei (AGNs) we report high spatial resolution near-IR integral-field spectroscopy of the narrow-line region (NLR) and coronal-line region (CLR) of seven Seyfert galaxies. These measurements elucidate for the first time the two-dimensional spatial distribution and kinematics of the recombination line Br{gamma} and high-ionization lines [Si VI], [Al IX], and [Ca VIII] on scales <300 pc from the AGN. The observations reveal kinematic signatures of rotation and outflow in the NLR and CLR. The spatially resolved kinematics can be modeled as a combination of an outflow bicone and a rotating disk coincident with the molecular gas. High-excitation emission is seen in both components, suggesting it is leaking out of a clumpy torus. While NGC 1068 (Seyfert 2) is viewed nearly edge-on, intermediate-type Seyferts are viewed at intermediate angles, consistent with unified schemes. A correlation between the outflow velocity and the molecular gas mass in r < 30 pc indicates that the accumulation of gas around the AGN increases the collimation and velocity of the outflow. The outflow rate is 2-3 orders of magnitude greater than the accretion rate, implying that the outflow is mass loaded by the surrounding interstellar medium (ISM). In half of the observed AGNs, the kinetic power of the outflow is of the order of the power required by two-stage feedback models to be thermally coupled to the ISM and to match the M{sub BH}-{sigma}* relation. In these objects, the radio jet is clearly interacting with the ISM, indicative of a link between jet power and outflow power.

  6. Infrared Spectroscopy of Hot Methane: Empirical Line Lists Within the 1 - 2 μm Region

    NASA Astrophysics Data System (ADS)

    Wong, Andy; Hargreaves, Robert J.; Bernath, Peter F.

    2016-06-01

    Methane is one of the many hydrocarbons that is found in cool planetary atmospheres in our solar system. Its prominence also extents to hot sub-stellar environments such as brown dwarfs and hot Jupiter exoplanets. High resolution transmission spectra (0.02 wn) have been recorded at eight different temperatures (between 294 - 1000 K) within the 1 - 2 μm region using a Fourier transform infrared spectrometer and tube furnace. From these observations, temperature dependent empirical line lists have been produced that include line position, intensity, lower state energy and possible quantum number assignments. Our line lists and spectra can be used to directly simulate the atmospheric spectra of brown dwarfs and exoplanets. These experimental line lists are also compared to predictions from ab initio variational calculations that are known to have diminished accuracy in the 1 - 2 μm region.

  7. Lagrangian motion, coherent structures, and lines of persistent material strain.

    PubMed

    Samelson, R M

    2013-01-01

    Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.

  8. Moored offshore structures - evaluation of forces in elastic mooring lines

    NASA Astrophysics Data System (ADS)

    Crudu, L.; Obreja, D. C.; Marcu, O.

    2016-08-01

    In most situations, the high frequency motions of the floating structure induce important effects in the mooring lines which affect also the motions of the structure. The experience accumulated during systematic experimental tests and calculations, carried out for different moored floating structures, showed a complex influence of various parameters on the dynamic effects. Therefore, it was considered that a systematic investigation is necessary. Due to the complexity of hydrodynamics aspects of offshore structures behaviour, experimental tests are practically compulsory in order to be able to properly evaluate and then to validate their behaviour in real sea. Moreover the necessity to carry out hydrodynamic tests is often required by customers, classification societies and other regulatory bodies. Consequently, the correct simulation of physical properties of the complex scaled models becomes a very important issue. The paper is investigating such kind of problems identifying the possible simplification, generating different approaches. One of the bases of the evaluation has been found consideringtheresults of systematic experimental tests on the dynamic behaviour of a mooring chain reproduced at five different scales. Dynamic effects as well as the influences of the elasticity simulation for 5 different scales are evaluated together. The paper presents systematic diagrams and practical results for a typical moored floating structure operating as pipe layer based on motion evaluations and accelerations in waves.

  9. Emission Line Spectra in the Soft X-ray Region 20 - 75 Angstroms

    NASA Technical Reports Server (NTRS)

    Lepson, J. K.; Beiersdorfer, P.; Chen, H.; Behar, E.; Kahn, S. M.

    2002-01-01

    As part of a project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EDIT-II, emission lines of argon and sulfur in the soft X-ray and extreme ultraviolet region were studied. Observations of Ar IX through Ar XVI and S VII through S XIV between 20 and 75 Angstrom are presented to illustrate our work.

  10. Spectral Line Profile Analysis Using Higher Diffraction Order in Vacuum Ultraviolet Region

    SciTech Connect

    Machida, M.; Daltrini, A. M.; Severo, J. H. F.; Nascimento, I. C.; Sanada, E. K.; Elizondo, J. I.; Kuznetsov, Y. K.; Galvao, R. M. O.

    2008-04-07

    Using a one meter VUV spectrometer and a MCP coupled to a CCD detector on TCABR tokamak, ion temperatures from impurity species have been measured and much better spectral resolution was obtained using higher order diffraction lines. Due to very small Doppler effect in the VUV region compared to large instrumental broadening, ion temperatures obtained from first order diffraction present large errors. The use of second, third and fourth order diffraction emissions increases the line broadening and results in lower error temperature measurements.

  11. Consequences of hot gas in the broad line region of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Mushotzky, R.

    1985-01-01

    Models for hot gas in the broad line region of active galactic nuclei are discussed. The results of the two phase equilibrium models for confinement of broad line clouds by Compton heated gas are used to show that high luminosity quasars are expected to show Fe XXVI L alpha line absorption which will be observed with spectrometers such as those planned for the future X-ray spectroscopy experiments. Two phase equilibrium models also predict that the gas in the broad line clouds and the confining medium may be Compton thick. It is shown that the combined effects of Comptonization and photoabsorption can suppress both the broad emission lines and X-rays in the Einstein and HEAO-1 energy bands. The observed properties of such Compton thick active galaxies are expected to be similar to those of Seyfert 2 nuclei. The implications for polarization and variability are also discussed.

  12. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect

    Moloney, Joshua; Michael Shull, J. E-mail: michael.shull@colorado.edu

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ≤ z ≤ 0.64, two AGNs with 0.32 ≤ z ≤ 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ≥ 10{sup 12} cm{sup –3}) and hydrogen ionizing photon fluxes (Φ{sub H} ≥ 10{sup 22} cm{sup –2} s{sup –1}).

  13. Line and continuum radiation from the outer region of accretion discs in active galactic nuclei. I - Preliminary considerations

    NASA Astrophysics Data System (ADS)

    Collin-Souffrin, S.

    1987-06-01

    The structure and emission of the optically thin region of steady accretion discs in Active Galactic Nuclei (AGN) is investigated. It is shown that this region is located far from the center (R/RG very large 102). If its only energy source is provided by accretion, the temperature is very low (1000 - 2000K) and therefore it cannot be identified with the broad line emitting region (BLR). The overall emission of the optically thin region is negligible, except in the infrared at a few microns, where it gives some contribution of the "5 μ-bump". However it is found that, if the disc is heated by the down scattered part of the non-thermal continuum observed in AGN, the physical parameters of the optically thin region satisfy the requirements of photoionization models for the line emission. Hard X-ray heating of the external regions of accretion discs is the source of the "missing energy" in the budget of the BLR (Collin-Souffrin, 1986) and moreover gives rise to an intense infrared thermal continuum able to account for the 5 μ bump. Finally this model could solve the "Fell problem".

  14. DETECTION OF THE INTERMEDIATE-WIDTH EMISSION LINE REGION IN QUASAR OI 287 WITH THE BROAD EMISSION LINE REGION OBSCURED BY THE DUSTY TORUS

    SciTech Connect

    Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan; Liu, Bo; Liu, Wen-Juan; Pan, Xiang; Jiang, Peng; Hao, Lei; Ji, Tuo; Shi, Xiheng; Zhang, Shaohua E-mail: zhouhongyan@pric.org.cn

    2015-10-20

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similar to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.

  15. LINE-1 Elements in Structural Variation and Disease

    PubMed Central

    Beck, Christine R.; Garcia-Perez, José Luis; Badge, Richard M.; Moran, John V.

    2014-01-01

    The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes. PMID:21801021

  16. Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Phan, T. D.; Haggerty, C. C.; Fujimoto, M.; Drake, J. F.; Malakit, K.; Cassak, P. A.; Swisdak, M.

    2016-05-01

    Kinetic particle-in-cell simulations are used to identify signatures of the electron diffusion region (EDR) and its surroundings during asymmetric magnetic reconnection. A "shoulder" in the sunward pointing normal electric field (EN > 0) at the reconnection magnetic field reversal is a good indicator of the EDR and is caused by magnetosheath electron meandering orbits in the vicinity of the X line. Earthward of the X line, electrons accelerated by EN form strong currents and crescent-shaped distribution functions in the plane perpendicular to B. Just downstream of the X line, parallel electric fields create field-aligned crescent electron distribution functions. In the immediate upstream magnetosheath, magnetic field strength, plasma density, and perpendicular electron temperatures are lower than the asymptotic state. In the magnetosphere inflow region, magnetosheath ions intrude resulting in an Earthward pointing electric field and parallel heating of magnetospheric particles. Many of the above properties persist with a guide field of at least unity.

  17. Electron impact polarization expected in solar EUV lines from flaring chromospheres/transition regions

    NASA Technical Reports Server (NTRS)

    Fineschi, S.; Fontenla, Juan M.; Macneice, P.; Ljepojevic, N. N.

    1991-01-01

    We have evaluated lower bounds on the degree of impact Extreme Ultraviolet/Ultraviolet (EUV/UV) line polarization expected during solar flares. This polarization arises from collisional excitation by energetic electrons with non-Maxwellian velocity distributions. Linear polarization was observed in the S I 1437 A line by the Ultraviolet Spectrometer and Polarimeter/Solar Maximum Mission (UVSP/SMM) during a flare on 15 July 1980. An early interpretation suggested that impact excitation by electrons propagating through the steep temperature gradient of the flaring transition region/high chromosphere produced this polarization. Our calculations show that the observed polarization in this UV line cannot be due to this effect. We find instead that, in some flare models, the energetic electrons can produce an impact polarization of a few percent in EUV neutral helium lines (i.e., lambda lambda 522, 537, and 584 A).

  18. Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Ireland, J.

    2008-05-01

    Context: The relationships between the photospheric magnetic flux and either the X-ray or extreme ultraviolet emission from the solar atmosphere have been studied by several authors. Power-law relations have been found between the total magnetic flux and X-ray flux or intensities of the chromospheric, transition region, and coronal emission lines in solar active regions. These relations were then used to infer the mechanism of the coronal heating. Aims: We derive accurate power laws between EUV line intensities and the total magnetic flux in solar active regions and discuss their applications. We examine whether these global power laws are capable of providing the diagnostics of the coronal heating mechanism. Methods: This analysis is based on EUV lines recorded by the Coronal Diagnostic Spectrometer (CDS) on SOHO for 48 solar active regions, as they crossed the central meridian in years 1996-1998. Four spectral lines are used: He I 584.3 Å (3×104 K), O V 629.7 Å (2.2×105 K), Mg IX 368.06 Å (9.5×105 K), and Fe XVI 360.76 Å (2.0×106 K). In particular, the Fe XVI 360.76 Å line, seen only in areas of enhanced heating in active regions or bright points, has not been used before for this analysis. Results: Empirical power laws are established between the total active region intensity in the lines listed above and the total magnetic flux. We demonstrate the usefulness of some spatially integrated EUV line intensities, I_T, as a proxy for the total magnetic flux, Φ, in active regions. We point out the approximate, empirical nature of the I_T-Φ relationships and discuss the interpretation of the global power index. Different power index values for transition region and coronal lines are explained by their different dependence on pressure under the assumption of hydrostatic loop models. However, the global power laws are dominated by the size of the active regions, and we demonstrate for the first time the difficulties in uniquely relating the power index in the

  19. Improved spectroscopic line list of methyl chloride in the 1900-2600 cm-1 spectral region

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Dmitrieva, T. A.; Gordon, I. E.

    2016-07-01

    Parameters of line positions and line intensities up to 2×10-25 cm-1/(molecule cm-2) for 12CH335Cl and 12CH337Cl were retrieved from the Fourier transform spectra in the range of 1900-2600 cm-1. Line intensities were scaled with measurements from literature. Measured line positions and intensities were treated using global effective Hamiltonian and dipole moment model. The RMS of intensity fitting was 7.4% for 12CH335Cl and 6.6% for 12CH337Cl. List of positions and intensities were calculated for 22,098 and 21,014 lines between 1900 and 2600 cm-1 for 12CH335Cl and 12CH337Cl, respectively. Updated intensities allow extending assignments. The new line list of positions and intensities for both isotopologues in this spectral region was calculated. The calculations from the line list of this work have been compared with values from the HITRAN2012 database and PNNL spectra.

  20. The temperature of C II emission-line formation regions in cool stars

    NASA Technical Reports Server (NTRS)

    Brown, A.; Carpenter, K. G.

    1984-01-01

    An investigation has been conducted of the temperature of C II emission-line formation regions in the outer atmospheres of late-type giant and supergiant stars. A distinct dichotomy is seen in the C II lambda 2325/lambda 1335 ratio between coronal and noncoronal stars. It is found that C II emission from noncoronal giant and supergiant stars comes from regions with temperatures of 7000-9000 K, with the mean temperature being approximately 8500 K, whereas the C II emission from coronal stars likely comes from hotter regions. The C II ratio provides a powerful empirical tool for estimating the chromospheric temperatures of cool giants and supergiants.

  1. The inner region of the moving contact line - diffusive and nanoscale models

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Sibley, David N.; Goddard, Ben D.; Kalliadasis, Serafim

    2015-11-01

    Much of the work within the Complex Multiphase Systems group at Imperial College London for the last number of years has been to understand the moving contact line problem. In, it was shown that contrary to the classical asymptotic theory at the moving contact line, the intermediate region is in fact an overlap region between the inner and the outer regions. Here, we investigate the inner region independently for the Navier-Stokes/ Cahn-Hilliard (NS/CH) model for binary fluids, as well as dynamic density functional theory (DDFT) for a simple fluid. We show that in the NS/CH model, the overlap region is recovered in the sharp-interface limit, and we link the slip length to the mobility of the system. In contrast, DDFT, which is based on statistical mechanics of fluids, allows to incorporate nanoscale details. Results are presented for advancing and receding contact lines for a wide range of contact angles. The numerical method employs spectral methods in an unbounded domain along the surface. Advantages are discussed, both for differential and integral DDFT equations. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  2. Radial transmission line analysis of multi-layer structures

    SciTech Connect

    Hahn, H.; Hammons, L.

    2011-03-28

    The analysis of multi-layer beam tubes is a standard problem and involves axially propagating waves. This treatment is ill suited to a short multi-layer structure such as the present example of a ferrite covered ceramic break in the beam tube at the ERL photo-cathode electron gun. This paper demonstrates that such structure can better be treated by radial wave propagation. The theoretical method is presented and numerical results are compared with measured network analyser data and Microwave Studio generated simulations. The results confirm the concept of radial transmission lines as a valid analytical method. An Energy Recovery Linac (ERL) is being constructed at this laboratory for the purpose of research towards an envisioned Electron Ion Collider. One of the pertinent topics is damping of Higher Order Modes (HOM). In this ERL, the damping is provided by ferrite absorbers in the beam tube. A modified version thereof, a ceramic break surrounded by ferrite, is planed for the superconducting electron gun. The damper here is located at room temperature just outside of the gun. If used in a cavity chain, the ceramic break is in the vacuum tube at helium temperature whereas the ferrite is moved into the cryostat insulating vacuum allowing higher temperatures. The general properties of the ferrite HOM dampers have been published but are more detailed in this paper.

  3. Kinetic Structure of the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri

    2016-04-01

    We present high-resolution multi-spacecraft observations of electromagnetic fields and particle distributions by Magnetospheric Multiscale (MMS) mission throughout a reconnection layer at the sub-solar magnetopause. We study which terms in the generalized Ohm's law balance the observed electric field throughout the region. We also study waves and particle distribution functions in order to identify kinetic boundaries created due to acceleration and trapping of electrons and ions as well as mixing of electron populations from different sides of the reconnecting layer. We discuss the interplay between particles, waves, and DC electric and magnetic fields, which clearly demonstrates kinetic and multi-scale nature of the reconnection diffusion region.

  4. Broad-line region kinematics and black hole mass in Markarian 6

    NASA Astrophysics Data System (ADS)

    Doroshenko, V. T.; Sergeev, S. G.; Klimanov, S. A.; Pronik, V. I.; Efimov, Yu. S.

    2012-10-01

    We present the results of optical spectral and photometric observations of the nucleus of Markarian 6 made with the 2.6-m Shajn telescope at the Crimean Astrophysical Observatory. The continuum and emission Balmer-line intensities varied by more than a factor of two during 1992-2008. The lag between the continuum and Hβ emission-line flux variations is 21.1 ± 1.9 days. For the Hα line the lag is about 27 days, but its uncertainty is much larger. We use Monte Carlo simulations of random time series to check the effect of our data sampling on the lag uncertainties and we compare our simulation results with those obtained by the random subset selection (RSS) method of Peterson et al. The lags in the high-velocity wings are shorter than those in the line core in accordance with virial motion. However, the lag is slightly larger in the blue wing than in the red wing. This is a signature of infall gas motion. Probably the broad-line region kinematic in the Mrk 6 nucleus is a combination of Keplerian and infall motions. The velocity-delay dependence is similar for individual observational seasons. Measurements of the Hβ line width in combination with the reverberation lag permit us to determine the black hole mass, MBH = (1.8 ± 0.2) × 108 M⊙. This result is consistent with active galactic nucleus scaling relationships between the broad-line region radius and the optical continuum luminosity (RBLR ∝ L0.5) as well as with the black hole mass-luminosity relationship (MBH-L) under an Eddington luminosity ratio for Mrk 6 of Lbol/LEdd ˜ 0.01.

  5. Line Parameters of Carbon Dioxide in the 4850 CM-1 Region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Nugent, Emily; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Toth, Robert A.

    2011-06-01

    The spectral region near 4850 Cm-1 is used to monitor atmospheric carbon dioxide, but current accuracies of the line intensities and line shape coefficients do not permit carbon dioxide mixing ratios to be obtained to 1 ppm (about one part in 400). To improve the line parameters, we are remeasuring the prominent CO2 bands in this region specifically to characterize the non-Voigt effects of line mixing and speed dependence at room temperature. The laboratory spectra of air- and self-broadened CO2 have been recorded at a variety of pressures, path lengths, mixing ratios and resolutions (0.005 to 0.01 Cm-1) with two different Fourier transform spectrometers (the McMath-Pierce FTS at Kitt Peak and a Bruker 125 HR FTS at JPL). The line parameters of some 2000 transitions are being derived by simultaneous multispectrum fitting using a few dozen spectra encompassing a 230 Cm-1 wide spectral interval. The rovibrational constants for line positions and the band intensities and Herman-Wallis coefficients are being retrieved directly from the spectra, rather than floating positions and intensities individually. Self and foreign Lorentz widths and pressure shifts are being determined for the stronger bands while non-Voigt coefficients describing line mixing and speed dependence are being obtained for at least one of the strongest bands. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. V. M. Devi, D. Chris Benner, L. R. Brown, C. E. Miller, and R. A. Toth, J. Mol. Spectrosc. 2007;245:52-80. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. Support for the work at William and Mary was provided by contracts with JPL.

  6. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our

  7. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    NASA Technical Reports Server (NTRS)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  8. THE LICK AGN MONITORING PROJECT: ALTERNATE ROUTES TO A BROAD-LINE REGION RADIUS

    SciTech Connect

    Greene, Jenny E.; Hood, Carol E.; Barth, Aaron J.; Bentz, Misty C.; Walsh, Jonelle L.; Bennert, Vardha N.; Treu, Tommaso; Filippenko, Alexei V.; Gates, Elinor; Malkan, Matthew A.; Woo, Jong-Hak

    2010-11-01

    It is now possible to estimate black hole (BH) masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central BHs coevolve. Unfortunately, there are many outstanding uncertainties associated with these 'virial' mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region (BLR). Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the BLR scales as the square root of the X-ray and H{beta} luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total luminosity. The radius of the BLR correlates most tightly with H{beta} luminosity, while the X-ray and narrow-line relations both have comparable scatter of a factor of 2. These correlations provide useful alternative virial BH masses in objects with no detectable optical/UV continuum emission, such as high-redshift galaxies with broad emission lines, radio-loud objects, or local active galaxies with galaxy-dominated continua.

  9. High-resolution laboratory measurements of coronal lines in the 198-218 å region

    SciTech Connect

    Beiersdorfer, Peter; Träbert, Elmar; Lepson, Jaan K.; Brickhouse, Nancy S.; Golub, Leon

    2014-06-10

    We present high-resolution laboratory measurements of the emission from various ions of C, N, O, F, Ne, S, Ar, Fe, and Ni in the extreme ultraviolet wavelength band centered around the λ211 Fe XIV channel of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. While all of the strong iron lines in this region are well known, we note many weaker lines of iron that are not yet identified. The high resolution of our measurements also allows us to resolve several lines in Fe XI, Fe XII, and Fe XIII between 200 and 205 Å, whose identities were in question based on a disagreement between different databases. The spectra of the elements other than iron are much less known, and we find a multitude of lines that are not yet in the databases. For example, the CHIANTI database clearly disagrees with the NIST data listings on several of the argon lines we observe and also it contains only about half of the observed sulfur lines.

  10. Observation of a straight-line wind case caused by a gust front and its associated fine-scale structures

    NASA Astrophysics Data System (ADS)

    Quan, Wanqing; Xu, Xin; Wang, Yuan

    2014-12-01

    A straight-line wind case was observed in Tianjin on 13 June 2005, which was caused by a gust front from a squall line. Mesoscale analyses based on observations from in-situ surface stations, sounding, and in-situ radar as well as fine-scale analyses based on observation tower data were performed. The mesoscale characteristics of the gust front determined its shape and fine-scale internal structures. Based on the scale and wavelet analyses, the fine-scale structures within the gust front were distinguished from the classical mesoscale structures, and such fine-scale structures were associated with the distribution of straight-line wind zones. A series of cross-frontal fine-scale circulations at the lowest levels of the gust front was discovered, which caused a relatively weak wind zone within the frontal strong wind zone. The downdraft at the rear of the head region of the gust front was more intense than in the classical model, and similar to the microburst, a series of vertical vortices propagated from the rear region to the frontal region. In addition, strong tangential fine-scale instability was detected in the frontal region. Finally, a fine-scale gust front model with straight-line wind zones is presented.

  11. On structural patterns in H II regions

    SciTech Connect

    Feibelman, W.A. )

    1989-05-01

    High-resolution photographs of H II regions show that a large number of stars embedded in the nebulosities appear to be surrounded by emply spaces. This phenomenon seems to be quite common but has escaped attention up to now. The effect is not a photographic one, nor does it arise in the half-tone reproduction processes employed in publications, but no satisfactory explanation is apparent. 9 refs.

  12. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    NASA Technical Reports Server (NTRS)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  13. An Analysis of Water Line Profiles in Star Formation Regions Observed by SWAS

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew L. N.; Bergin, Edwin A.; Plume, Rene; Carpenter, John M.; Neufeld, David A.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, J. E.

    2000-01-01

    We present spectral line profiles for the 557 GHz 1(sub 1,0) yields 1(sub 0,1) ground-state rotational transition of ortho-H2(16)O for 18 galactic star formation regions observed by SWAS. 2 Water is unambiguously detected in every source. The line profiles exhibit a wide variety of shapes, including single-peaked spectra and self-reversed profiles. We interpret these profiles using a Monte Carlo code to model the radiative transport. The observed variations in the line profiles can be explained by variations in the relative strengths of the bulk flow and small-scale turbulent motions within the clouds. Bulk flow (infall, outflow) must be present in some cloud cores, and in certain cases this bulk flow dominates the turbulent motions.

  14. Embedded star formation in the extended narrow line region of Centaurus A: Extreme mixing observed by MUSE

    NASA Astrophysics Data System (ADS)

    Santoro, F.; Oonk, J. B. R.; Morganti, R.; Oosterloo, T. A.; Tadhunter, C.

    2016-05-01

    We present a detailed study of the complex ionization structure in a small (~250 pc) extended narrow line region (ENLR) cloud near Centaurus A using the Multi Unit Spectroscopic Explorer. This cloud is located in the so-called outer filament of ionized gas (about 15 kpc from the nucleus) where jet-induced star formation has been suggested to occur by different studies. We find that, despite the small size, a mixture of ionization mechanisms is operating, resulting in considerable complexity in the spatial ionization structure. The area includes two H ii regions where star formation is occurring and another location where star formation must have ceased very recently. Interestingly, the extreme Balmer decrement of one of the star forming regions (Hα/Hβobs ~ 6) indicates that it is still heavily embedded in its natal cocoon of gas and dust. At all three locations a continuum counterpart is found with spectra matching those of O/B stars local to Centaurus A. The H ii regions are embedded in a larger gas complex which is photoionized by the radiation of the central active galactic nucleus (AGN), but the O/B stars affect the spatial ionization pattern in the ENLR cloud very locally. In particular, in the surroundings of the youngest star forming region, we can isolate a tight mixing sequence in the diagnostic diagram going from gas with ionization due to a pure stellar continuum to gas only photoionized by the AGN. These results emphasize the complexity and the mixture of processes occurring in star forming regions under the influence of an AGN radiation. This is relevant for our understanding of AGN-induced star formation suggested to occur in a number of objects, including this region of Centaurus A. They also illustrate that these young stars influence the gas over only a limited region.

  15. Climate Services for Adaptation Support: Sectors, Regions, and Product Lines (Invited)

    NASA Astrophysics Data System (ADS)

    Owen, T.; Shea, E. E.

    2009-12-01

    Environmental information for decision support must be user-focused, accurate, and actionable. As the deleterious impacts of a non-stationary climate system manifest themselves through loss of civil infrastructure, cultural, and natural resources, NOAA and other science agencies are restructuring their approach to decision support, moving from a climate perspectives-centric model to one that offers more nimble, granular, and timely product lines supporting a breadth of sectoral- and regionally-focused decisions. This talk outlines NOAA’s efforts to this end, including its framing of sectors and regions, its development of emerging product lines, and its reliance on technological advances to better disseminate information. Through its climate services efforts, NOAA’s climate data resources can be leveraged to support sound adaptation decision making for societal infrastructure development and in the stewardship of marine, ocean, coastal, and terrestrial natural resources.

  16. Near-infrared dust and line emission from the central region of Mrk1066: constraints from Gemini NIFS

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Nagar, Neil M.

    2010-05-01

    β/Brγ line ratio ranges from E(B - V) ~ 0 to 1.7 with the highest values defining a S-shaped structure along PA ~ 135°/315°. The emission-line ratios are Seyfert-like within the ionization cone indicating that the line emission is powered by the central active nucleus in these locations. Low ionization regions are observed away from the ionization cone, and may be powered by the diffuse radiation field which filters through the ionization cone walls. Two regions at 0.5arcsec south-east and at 1arcsec north-west of the nucleus show starburst-like line ratios, co-spatial with an enhancement in the emission of the H lines. We attribute this change to additional emission from star-forming regions. The mass of ionized gas is MHII ~ 1.7 × 107Msolar and that of hot molecular gas is .

  17. Formation of Inner Structure of a Reconnection Separatrix Region

    SciTech Connect

    Khotyaintsev, Yu. V.; Vaivads, A.; Retino, A.; Andre, M.; Owen, C. J.; Nilsson, H.

    2006-11-17

    We present multipoint spacecraft observations at the dayside magnetopause of a magnetic reconnection separatrix region. This region separates two plasmas with significantly different temperatures and densities, at a large distance from the X line. We identify which terms in the generalized Ohm's law balance the observed electric field throughout the separatrix region. The electric field inside a thin {approx}c/{omega}{sub pi} Hall layer is balanced by the jxB/ne term while other terms dominate elsewhere. On the low density side of the region we observe a density cavity which forms due to the escape of magnetospheric electrons along the newly opened field lines. The perpendicular electric field inside the cavity constitutes a potential jump of several kV. The observed potential jump and field aligned currents can be responsible for strong aurora.

  18. Resolved Spectroscopy of the Narrow-Line Region in NGC 1068: Kinematics of the Ionized Gas.

    PubMed

    Crenshaw; Kraemer

    2000-04-01

    We have determined the radial velocities of the [O iii]-emitting gas in the inner narrow-line region of the Seyfert 2 galaxy NGC 1068, along a slit at position angle 202 degrees, from STIS observations at a spatial resolution of 0&farcs;1 and a spectral resolving power of lambda&solm0;Deltalambda approximately 1000. We use these data to investigate the kinematics of the narrow-line region within 6&arcsec; ( approximately 430 pc) of the nucleus. The emission-line knots show evidence for radial acceleration to a projected angular distance of 1&farcs;7 in most cases, followed by deceleration that approaches the systemic velocity at a projected distance of approximately 4&arcsec;. We find that a simple kinematic model of biconical radial outflow can match the general trend of observed radial velocities. In this model, the emitting material is evacuated along the bicone axis, and the axis is inclined 5 degrees out of the plane of the sky. The acceleration of the emission-line clouds provides support for dynamical models that invoke radiation and/or wind pressure. We suggest that the deceleration of the clouds is due to their collision with a patchy and anistropically distributed ambient medium.

  19. View facing northeast (60°) of Structure 259, other transmission lines ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing northeast (60°) of Structure 25-9, other transmission lines and small farmstead visible in background - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  20. Reverberation Mapping of the Broad-line Region in NGC 5548: Evidence for Radiation Pressure?

    NASA Astrophysics Data System (ADS)

    Lu, Kai-Xing; Du, Pu; Hu, Chen; Li, Yan-Rong; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Bi, Shao-Lan; Bai, Jin-Ming; Ho, Luis C.; Wang, Jian-Min

    2016-08-01

    NGC 5548 is the best-observed reverberation-mapped active galactic nucleus with long-term, intensive monitoring. Here we report results from a new observational campaign between 2015 January and July. We measure the centroid time lag of the broad Hβ emission line with respect to the 5100 Å continuum and obtain {τ }{{cent}}={7.20}-0.35+1.33 days in the rest frame. This yields a black hole mass of {M}\\bullet ={8.71}-2.61+3.21× {10}7{M}ȯ using a broad Hβ line dispersion of 3124 ± 302 km s‑1 and a virial factor of {f}{{{BLR}}}=6.3+/- 1.5 for the broad-line region (BLR), consistent with the mass measurements from previous Hβ campaigns. The high-quality data allow us to construct a velocity-binned delay map for the broad Hβ line, which shows a symmetric response pattern around the line center, a plausible kinematic signature of virialized motion of the BLR. Combining all the available measurements of Hβ time lags and the associated mean 5100 Å luminosities over 18 campaigns between 1989 and 2015, we find that the Hβ BLR size varies with the mean optical luminosity, but, interestingly, with a possible delay of {2.35}-1.25+3.47 years. This delay coincides with the typical BLR dynamical timescale of NGC 5548, indicating that the BLR undergoes dynamical changes, possibly driven by radiation pressure.

  1. Laboratory Calibration of Density-Dependent Lines in the EUV and Soft X-Ray Regions

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Gu, M F; Desai, P

    2010-12-09

    We analyzed spectral data of Fe XXII and Ar XIV from laboratory sources in which the electron density varies by several orders of magnitude to help benchmark density-sensitive emission lines useful for astrophysics and to test the atomic models underlying the diagnostic line ratios. We found excellent agreement for Fe XXII, but poorer agreement for Ar XIV. A number of astrophysically important emission lines are sensitive to electron density in the EUV and soft X-ray regions. Lines from Fe XXII, for example, have been used in recent years as diagnostics of stellar coronae, such as the active variable AB Dor, Capella, and EX Hya (Sanz-Forcada et al. 2003, Mewe et al. 2001, Mauche et al. 2003). Here we report spectral data of Fe XXII and Ar XIV from laboratory sources in which the electron density is known from either K-shell density diagnostics (for electron beam ion traps) or from non-spectroscopic means (tokamaks), ranging from 5 x 10{sup 10} cm{sup -3} to 5 x 10{sup 14} cm{sup -3}. These measurements were used to test the atomic data underlying the density diagnostic line ratios, complementing earlier work (Chen et al. 2004).

  2. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Moen, J. I.; Pedersen, A.

    2010-10-01

    Cluster data have been examined for quasi-stationary electric field structures and field-aligned currents (FACs) in the vicinity of the dayside cusp region. We have related the measurements to the Region 1/Region 2 (R1/R2) current system and the cusp current system. It has been theoretically proposed that the dayside R1 current may be located on open field lines, and experimental evidence has been shown for R1 currents partially on open field lines. We document that R1 currents may flow entirely on open field lines. The electric field structures are found to occur at plasma density gradients in the cusp. They are associated with strong FACs with current directions that are consistent with the cusp currents. This indicates that the electric field structures are closely coupled to the cusp current system. The electric equipotential structures linking the perpendicular electric fields seen at Cluster altitudes to field-aligned electric fields at lower altitudes fall into one of two categories: S shape or U shape. Both types are found at both the equatorward edge of the cusp ion dispersion and at the equatorward edge of injection events within the cusp. Previous studies in the nightside auroral region attributed the S-shaped potential structures to the boundary transition between the low-density polar cap and the high-density plasma sheet, concluding that the shape of the electric potential structure depends on whether the plasma populations on each side of the structure can support intense currents. This explanation is not applicable for the S-shaped structures observed in the dayside cusp region.

  3. Measurements of the Far-Infrared [N III] and [O III] Lines in the Outer-Galaxy H II Regions S 206, S 209, and S 212

    NASA Astrophysics Data System (ADS)

    Dinerstein, H. L.; Haas, M. R.; Erickson, E. F.; Werner, M. W.

    1993-05-01

    We report measurements of the far-infrared, fine-structure lines [O III] 52, 88 microns, and [N III] 57 microns in three H II regions in the outer Milky Way. The observations were made with a cooled grating spectrometer from NASA's Kuiper Airborne Observatory. This line trio allows one to determine both the gas density and the N/O abundance as traced by the ratio N(++) /O(++) . We measured all three lines from the regions S 206, S 212, and S 209, located at galactocentric distances of 11.5, 14, and 16 kpc, respectively, assuming a solar galactocentric distance of 8.5 kpc. The [O III] electron densities in these H II regions range from log ne = 1.8 to 2.5. For the recently revised collision strength for the [N III] 57 microns line (Blum and Pradhan 1992, Ap.J.Suppl., 80, 425), the mean value for the ionic N/O ratio in these three regions is N(++) /O(++) = 0.13 +/- 0.03. Our results for these outer-galaxy regions will be compared with N/O abundances derived from the far-infrared lines for H II regions in the inner part of the Galaxy. This research was supported by NASA Airborne Astronomy grant NAG2-372.

  4. On the observability of optically thin coronal hyperfine structure lines

    SciTech Connect

    Chatzikos, M.; Ferland, G. J.; Williams, R. J. R.; Fabian, A. C.

    2014-06-01

    We present CLOUDY calculations for the intensity of coronal hyperfine lines in various environments. We model indirect collisional and radiative transitions, and quantify the collisionally excited line emissivity in the density-temperature phase space. As an observational aid, we also express the emissivity in units of that in the 0.4-0.7 keV band. For most hyperfine lines, knowledge of the X-ray surface brightness and the plasma temperature is sufficient for rough estimates. We find that the radiation fields of both Perseus A and Virgo A can enhance the populations of highly ionized species within 1 kpc. They can also enhance line emissivity within the cluster core. This could have implications for the interpretation of spectra around bright active galactic nuclei. We find the intensity of the {sup 57}Fe XXIV λ3.068 mm line to be about two orders of magnitude fainter than previously thought, at ∼20 μK. Comparably bright lines may be found in the infrared. Finally, we find the intensity of hyperfine lines in the Extended Orion Nebula to be low, due to the shallow sightline. Observations of coronal hyperfine lines will likely be feasible with the next generation of radio and submillimeter telescopes.

  5. Yield Line Evaluation Methodology for Reinforced Concrete Structures

    1998-12-30

    Yield line theory is an analytical technique that can be used to determine the ultimate bending capacity of flat reinforced concrete plates subject to distributed and concentrated loadings. Alternately, yield line theory, combined with rotation limits can be used to determine the energy absorption capacity of plates subject to impulsive and impact loadings. Typical components analyzed by yield line theory are basemats, floor and roof slabs subject to vertical loads along with walls subject tomore » out of plane loadings. One limitation of yield line theory is that it is computationally difficult to evaluate some mechanisms. This problem is aggravated by the complex geometry and reinforcing layouts commonly found in practice. The program has the capability to either evaluate a single user defined mechanism or to iterate over a range of mechanisms to determine the minimum ultimate capacity. The program is verified by comparison to a series of yield line mechanisms with known solutions.« less

  6. Physical properties of emitting plasma near massive black holes: the Broad Line Region

    NASA Astrophysics Data System (ADS)

    Ilić, D.; Mura, G. La; Popović, L. Č.; Shapovalova, A. I.; Ciroi, S.; Chavushyan, V. H.; Rafanelli, P.; Burenkov, A. N.; Marcado, A.

    2007-04-01

    The dominant emission in Active Galactic Nuclei (AGN) spectra comes from the Broad Emission Lines (BEL) which originate in the Broad Line Region (BLR). The BLR can potentially provide a useful probe of the central part of an AGN, and consequently of the characteristics of the massive Black Hole (BH) that is assumed to be in the center of these objects. The understanding of the physics and kinematics of the BLR is crucial because of the following three reasons: (i) kinematics of the BLR is probably determined by the massive BH, with the competing effects of gravity and radiation pressure, (ii) the BLR reprocesses the UV energy emitted by the continuum source, consequently BEL can provide indirect information about the continuum source, (iii) there is indication that the physical and kinematical parameters of the BEL can be connected with the general characteristics of an AGN (e.g. mass of the BH). In order to connect the physical and kinematical parameters of the BLR, in this work we consider the intensities and widths of Balmer lines of a sample of 90 AGN from Sloan Digital Sky Survey (SDSS). Additionally, we consider the variation of the intensities and widths of Balmer lines from the BLR of NGC 5548 observed from 1996 till 2004. We apply the Boltzmann-Plot method (Popovic 2003, Popovic et al. 2006) to the Balmer line intensities and estimated the electron temperature of a typical BLR. Moreover, we discuss the possibility that the BLR is in general composed from two emitting regions: one that is closer to the BH and contributes to the BEL's wings, and another that is further from the central BH and contributes to the BEL's core.

  7. Rfp-Y region polymorphism and Marek's disease resistance in multitrait immunocompetence-selected chicken lines.

    PubMed

    Lakshmanan, N; Lamont, S J

    1998-04-01

    Although the influence of the chicken classical MHC in resistance to many diseases is well established, the role of the recently identified, genetically independent, MHC-like region known as Rfp-Y is unclear. The objectives of this study were to analyze the frequencies of DNA polymorphisms of the Rfp-Y region in White Leghorn lines, which were divergently selected in replicate for multitrait immunocompetence, and to determine the association of these polymorphisms with Marek's disease (MD) resistance. Chicks, either with or without herpes virus of turkey (HVT) vaccination, were challenged with 500 ffu of a very virulent Marek's disease virus (Md5) at 2 d of age. The MD-related data were collected for 10 wk. PvuII-digested genomic DNA was hybridized with an Rfp-Y region-specific probe, 18.1. Three Rfp-Y polymorphisms were observed. The frequency of one Rfp-Y polymorphism was significantly different between divergently selected multitrait immunocompetence lines in one replicate only; therefore, the impact of multitrait immunocompetence selection on Rfp-Y polymorphisms is inconclusive. The PvuII defined Rfp-Y region polymorphisms had no association with either innate or vaccine-induced MD resistance to Md5 virus challenge.

  8. Transgenic retinoic acid sensor lines in zebrafish indicate regions of available embryonic retinoic acid

    PubMed Central

    Mandal, Amrita; Rydeen, Ariel; Anderson, Jane; Sorrell, Mollie R.J.; Zygmunt, Tomas; Torres-Vázquez, Jesús; Waxman, Joshua S.

    2013-01-01

    Background Retinoic acid (RA) signaling plays a critical role in vertebrate development. Transcriptional reporters of RA signaling in zebrafish, thus far, have not reflected the broader availability of embryonic RA, necessitating additional tools to enhance our understanding of the spatial and temporal activity of RA signaling in vivo. Results We have generated novel transgenic RA sensors in which a RA receptor (RAR) ligand-binding domain (RLBD) is fused to the Gal4 DNA binding domain (GDBD) or a VP16-GDBD (VPBD) construct. Stable transgenic lines expressing these proteins when crossed with UAS reporter lines are responsive to RA. Interestingly, the VPBD RA sensor is significantly more sensitive than the GDBD sensor and demonstrates there may be almost ubiquitous availability of RA within the early embryo. Using confocal microscopy to compare the expression of the GDBD RA sensor to our previously established RA signaling transcriptional reporter line, Tg(12XRARE:EGFP), illustrates these reporters have significant overlap, but that expression from the RA sensor is much broader. We also identify previously unreported domains of expression for the Tg(12XRARE:EGFP) line. Conclusions Our novel RA sensor lines will be useful and complementary tools for studying RA signaling during development and anatomical structures independent of RA signaling. PMID:23703807

  9. Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.

    1996-01-01

    We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in

  10. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Farrah, D.; Petty, S. M.; Harris, K.; Lebouteiller, V.; Spoon, H. W. W.; Bernard-Salas, J.; Pearson, C.; Rigopoulou, D.; Smith, H. A.; González-Alfonso, E.; Clements, D. L.; Efstathiou, A.; Cormier, D.; Afonso, J.; Hurley, P.; Borys, C.; Verma, A.; Cooray, A.; Salvatelli, V.

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s{sup –1} and luminosities of 10{sup 7}-10{sup 9} L{sub ☉}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  11. Fine structure of the solar transition region - Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Cook, J. W.; Brueckner, G. E.

    1991-01-01

    An evaluation is conducted of recent high spatial resolution observations of the solar transition region and temperature minimum, in the form of UV spectra and spectroheliographs from both sounding rockets and the Spacelab 2 flights of the High Resolution Telescope and Spectrograph (HRTS). Attention is given to the solar atmosphere structure implications of the HRST's observational results. The inclusion of fine structure in conjectures concerning the transition region affects the plausibility of 1D average models of the solar atmosphere, as well as the determination of temperature gradients, possible nonradiative-heating mechanisms, and the comparison of transition region structures with corresponding observations of the photosphere and corona.

  12. The Density Structure of UCHII Regions: CS Observations

    NASA Astrophysics Data System (ADS)

    Butner, H. M.; Lauwers, T. L.

    2000-12-01

    Ultra-compact HII (UCHII) regions are sites of massive star formation. As yet, the physical conditions inside these regions are still poorly known. Submillimeter observations offer one way of probing the gas density and temperature. As part of an extensive study of the chemistry and physical conditions inside UCHII regions, we undertook a project to map several UCHII regions in CS. CS is an abundant molecule, and is an excellent density probe. Using the Submillimeter Telescope Observatory (SMTO), we are mapping ten UCHII regions in detail at a variety of CS transitions, including the CS 5-4, 7-6 and C34S 5-4 and 7-6 lines. The regions chosen also have far-infrared data and submm data available, so we will be able to compare the dust and gas properties. We report the first results of the CS mapping program for CS 5-4 and CS 7-6 lines. We compare our conclusions with other studies of these regions. T. L. Lauwers was supported by the University of Arizona/NASA Space Grant Undergraduate Research Internship Program.

  13. Formation of permitted lines in the spectrum of type 1 Seyfert galaxies and quasars. II - Fe II lines and the low excitation region

    NASA Astrophysics Data System (ADS)

    Collin-Souffrin, S.; Joly, M.; Dumont, S.; Heidmann, N.

    1980-03-01

    Following a previous study (Collin-Souffrin et al., 1979) we investigate the relative intensities of the visible and UV lines of the intense Fe II spectrum of type 1 Seyfert galaxies and quasars. A 9-level atom is used in the computation of the line intensities and relatively accurate collision strengths are computed as we devote particular attention to the collisional excitation mechanism. We confirm that the excitation mechanism is collisional: we show that, in addition to the drawbacks mentioned in Paper I, if the excitation was radiative, the line intensities would be too small compared to the observations. We find that relative intensities of the Fe II lines and of the Mg II 2798 line are well accounted for by an emission region with 1010 ≦ ne ≦ 1011 and 7500 ≦ Te ≦ 10,000 °K. The optical thickness in the UV lines of Fe II is large (˜105). We examine also other low excitation lines and show that Hα is likely to be emitted at least partly by the same Fe II region, while Lα, Si II, O I, should be emitted by a hotter region and Ca II by a colder one. The Fe II region is ionized by collisions from level 2 of hydrogen which is populated by the trapped Lα photons (τLα ˜109). We discuss the geometry of this Fe II region, and find typical dimensions of R ˜ 1016 cm, and H (thickness) ˜ 1014-1016 cm. Finally we examine the significance of this region and conclude that it is likely to be the outer part of an extended accretion disk completely shielded from the UV and X radiation of the central object. We discuss the reality of the photoionized models and, although we are not able to give a definite answer to this problem, we suggest that the collisional models could perhaps account for all the broad lines in quasars and Seyfert 1 galaxies.

  14. Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1995-01-01

    Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.

  15. Synthesis of regional crust and upper-mantle structure from seismic and gravity data

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Lavin, P. M.

    1979-01-01

    Available seismic and ground based gravity data are combined to infer the three dimensional crust and upper mantle structure in selected regions. This synthesis and interpretation proceeds from large-scale average models suitable for early comparison with high-altitude satellite potential field data to more detailed delineation of structural boundaries and other variations that may be significant in natural resource assessment. Seismic and ground based gravity data are the primary focal point, but other relevant information (e.g. magnetic field, heat flow, Landsat imagery, geodetic leveling, and natural resources maps) is used to constrain the structure inferred and to assist in defining structural domains and boundaries. The seismic data consists of regional refraction lines, limited reflection coverage, surface wave dispersion, teleseismic P and S wave delay times, anelastic absorption, and regional seismicity patterns. The gravity data base consists of available point gravity determinations for the areas considered.

  16. Evaluating Possible Heating Mechanisms Using the Transition Region Line Profiles of Late-Type Stars

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.; Ayres, Thomas R.

    1997-01-01

    Our analysis of high-resolution Goddard High-Resolution Spectrograph (GHRS) spectra of late-type stars shows that the Si IV and C IV lines formed near 10(exp 5) K can be decomposed into the sum of two Gaussians, a broad component and a narrow component. We find that the flux contribution of the broad components is correlated with both the C IV and X-ray surface fluxes. For main-sequence stars, the widths of the narrow components suggest subsonic nonthermal velocities, and there appears to be a tight correlation between these nonthermal velocities and stellar surface gravity [xi(sub nc) varies as g(sup (-.68 +/-.07))]. For evolved stars with lower surface gravities, the nonthermal velocities suggested by the narrow components are at or just above the sound speed. Nonthermal velocities computed from the widths of the broad components are always highly supersonic. We propose that the broad components are diagnostics for microflare heating. Turbulent dissipation and Alfven waves are both viable candidates for the narrow component heating mechanism. A solar analog for the broad components might be the 'explosive events' detected by the High-Resolution Telescope and Spectrograph (HRTS) experiment. The broad component we observe for the Si IV lambda 1394 line of alpha Cen A, a star that is nearly identical to the Sun, has a FWHM of 109 +/- 10 km/s and is blueshifted by 9 +/- 3 km/s relative to the narrow component. Both of these properties are consistent with the properties of the solar explosive events. However, the alpha Cen A broad component accounts for 25% +/- 4% of the total Si IV line flux, while solar explosive events are currently thought to account for no more than 5% of the Sun's total transition region emission. This discrepancy must be resolved before the connection between broad components and explosive events can be positively established. In addition to our analysis of the Si IV and C IV lines of many stars, we also provide a more thorough analysis of all

  17. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    SciTech Connect

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; Dalla Bontà, E.; Ciroi, S.

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  18. Effect of a partial coverage of quasar broad-line regions by intervening -bearing clouds

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Balashev, S. A.; Ivanchik, A. V.; Kaminker, A. D.; Klimenko, V. V.

    2015-09-01

    We consider the effect of a partial coverage of quasar broad-line regions (QSO BLRs) by intervening -bearing clouds when a part of quasar (QSO) radiation passes by a cloud not taking part in absorption-line system formation of the QSO spectrum. That leads to modification of observable absorption line profiles and consequently to a bias in physical parameters derived from standard absorption line analysis. In application to the absorption systems the effect has been revealed in the analysis of absorption system in the spectrum of Q 1232+082 (see Ivanchik et al. in Mon. Not. R. Astron. Soc. 404:1583, 2010, Balashev et al. in Mon. Not. R. Astron. Soc. 418:357, 2011). We estimate a probability of the effect to be detected in QSO spectra. To do this we derive distribution of BLR sizes of high-z QSOs from Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9) catalogue and assume different distributions of cloud sizes. We conclude that the low limit of the probability is about 11 %. The latest researches shows that about a fifth of observed absorption systems can be partially covered. Accounting of the effect may allow to revise significantly physical parameters of interstellar clouds obtained by the spectral analysis.

  19. MEASUREMENT OF THE BROAD-LINE REGION SIZE IN A LUMINOUS MACHO QUASAR

    SciTech Connect

    Chelouche, Doron; Daniel, Eliran; Kaspi, Shai E-mail: shai@wise.tau.ac.il

    2012-05-10

    We measure the broad emission line region (BLR) size of a luminous, L {approx} 10{sup 47} erg s{sup -1}, high-z quasar using broadband photometric reverberation mapping. To this end, we analyze {approx}7.5 years of photometric data for MACHO 13.6805.324 (z {approx_equal} 1.72) in the B and R MACHO bands and find a time delay of 180 {+-} 40 days in the rest frame of the object. Given the spectral-variability properties of high-z quasars, we associate this lag with the rest-UV iron emission blends. Our findings are consistent with a simple extrapolation of the BLR size-luminosity relation in local active galactic nuclei to the more luminous, high-z quasar population. Long-term spectroscopic monitoring of MACHO 13.6805.324 may be able to directly measure the line-to-continuum time delay and test our findings.

  20. Effect of the Drag Force on the Orbital Motion of the Broad-line Region Clouds

    NASA Astrophysics Data System (ADS)

    Khajenabi, Fazeleh

    2016-09-01

    We investigate the orbital motion of cold clouds in the broad-line region of active galactic nuclei subject to the gravity of a black hole, a force due to a non-isotropic central source, and a drag force proportional to the velocity square. The intercloud is described using the standard solutions for the advection-dominated accretion flows. The orbit of a cloud decays because of the drag force, but the typical timescale of clouds falling onto the central black hole is shorter compared to the linear drag case. This timescale is calculated when a cloud moves through a static or rotating intercloud. We show that when the drag force is a quadratic function of the velocity, irrespective of the initial conditions and other input parameters, clouds will generally fall onto the central region much faster than the age of whole system, and since cold clouds present in most of the broad-line regions, we suggest that mechanisms for the continuous creation of the clouds must operate in these systems.

  1. Study of NH3 Line Intensities in the THz and Far-IR Region

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan

    Ammonia (NH3) exists in the interstellar medium, late-type stars and giant planets of our solar system. Its temperature and abundance profiles in these environments, which are derived with its line parameters as fixed input , are commonly used to provide constraints on retrieving minor species. Therefore NH3 line parameters are essential for interpreting astrophysical and planetary spectra from Herschel, SOFIA, ALMA and JWST. However, our work under a predecessor grant with the APRA program revealed significant deficiencies in NH3 intensities in the terahertz and FIR region, including some weak Delta(K)=3 forbidden transitions predicted to be 100 times stronger. The Delta(K)=3 transitions are the ones connecting levels with different K values and therefore the only way other than collisions and l-doubled states to excite NH3 to K>0 levels. Their intensities have to be corrected to explain the observed high K excitation, such as the detection of NH3 (J,K) = (1,1), (2,2)&(14,14) and (18,18) transitions toward the galactic center star forming region Sgr B2, and to provide insights into the radiative- transfer vs. collision excitation mechanics of interstellar NH3. This proposal will remedy the serious deficiencies in the current databases involving NH3 line parameters in the terahertz and FIR region. We will target transitions with intensities greater than 10^{-23} cm-1/ (molecule/cm2) at 296 K, which will be among new astrophysical detections made by SOFIA, ALMA and JWST, and are 1000 times weaker than the strongest ground state transitions. We will retrieve new positions and intensities from existing laboratory spectra, use them to evaluate the current databases and ab initio calculations, and repair the line positions and intensities by replacing poorly calculated values with our new measurements. The proposed research will result in (1) a validated linelist containing the positions, intensities and lower state energies for the very important Delta(K)=3 NH3 FIR

  2. The Mechanosensory Lateral Line System Mediates Activation of Socially-Relevant Brain Regions during Territorial Interactions

    PubMed Central

    Butler, Julie M.; Maruska, Karen P.

    2016-01-01

    Animals use multiple senses during social interactions and must integrate this information in the brain to make context-dependent behavioral decisions. For fishes, the largest group of vertebrates, the mechanosensory lateral line system provides crucial hydrodynamic information for survival behaviors, but little is known about its function in social communication. Our previous work using the African cichlid fish, Astatotilapia burtoni, provided the first empirical evidence that fish use their lateral line system to detect water movements from conspecifics for mutual assessment and behavioral choices. It is unknown, however, where this socially-relevant mechanosensory information is processed in the brain to elicit adaptive behavioral responses. To examine for the first time in any fish species which brain regions receive contextual mechanosensory information, we quantified expression of the immediate early gene cfos as a proxy for neural activation in sensory and socially-relevant brain nuclei from lateral line-intact and -ablated fish following territorial interactions. Our in situ hybridization results indicate that in addition to known lateral line processing regions, socially-relevant mechanosensory information is processed in the ATn (ventromedial hypothalamus homolog), Dl (putative hippocampus homolog), and Vs (putative medial extended amygdala homolog). In addition, we identified a functional network within the conserved social decision-making network (SDMN) whose co-activity corresponds with mutual assessment and behavioral choice. Lateral line-intact and –ablated fight winners had different patterns of co-activity of these function networks and group identity could be determined solely by activation patterns, indicating the importance of mechanoreception to co-activity of the SDMN. These data show for the first time that the mechanosensory lateral line system provides relevant information to conserved decision-making centers of the brain during

  3. Physical Conditions in the Inner Narrow-Line Region of the Seyfert 2 Galaxy Markarian 573

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Trippe, M. L.; Crenshaw, D. M.; Meléndez, M.; Schmitt, H. R.; Fischer, T. C.

    2009-06-01

    We have examined the physical conditions within a bright emission-line knot in the inner narrow-line region (NLR) of the Seyfert 2 galaxy Mrk 573 using optical spectra and photoionization models. The spectra were obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph, through the 0farcs2 × 52farcs0 slit, at a position angle of -71fdg2, with the G430L and G750M gratings. Comparing the spatial emission-line profiles, we found [Fe X] λ 6734 barely resolved, [O III] λ5007 centrally peaked, but broader than [Fe X], and [O II] λ3727 the most extended. Spectra of the central knot were extracted from a region 1farcs1 in extent, corresponding to the full width at zero intensity in the cross-dispersion direction, of the knot. The spectra reveal that [Fe X] is broader in velocity width and blueshifted compared with lines from less ionized species. Our estimate of the bolometric luminosity indicates that the active galactic nucleus (AGN) is radiating at or above its Eddington luminosity, which is consistent with its identification as a hidden Narrow-Line Seyfert 1. We were able to successfully match the observed emission-line ratios with a three-component photoionization model. Two components, one to account for the [O III] emission and another in which the [Fe X] arises, are directly ionized by the AGN, while [O II] forms in a third component, which is ionized by a heavily absorbed continuum. Based on our assumed ionizing continuum and the model parameters, we determined that the two directly ionized components are ~55 pc from the AGN. We have found similar radial distances for the central knots in the Seyfert 2 galaxies Mrk 3 and NGC 1068, but much smaller radial distances for the inner NLR in the Seyfert 1 galaxies NGC 4151 and NGC 5548. Although in general agreement with the unified model, these results suggest that the obscuring material in Seyfert galaxies extends out to at least tens of parsecs from the AGN. Based on observations made with the

  4. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  5. Metabolic and Molecular Changes of the Phenylpropanoid Pathway in Tomato (Solanum lycopersicum) Lines Carrying Different Solanum pennellii Wild Chromosomal Regions

    PubMed Central

    Rigano, Maria Manuela; Raiola, Assunta; Docimo, Teresa; Ruggieri, Valentino; Calafiore, Roberta; Vitaglione, Paola; Ferracane, Rosalia; Frusciante, Luigi; Barone, Amalia

    2016-01-01

    Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4) carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL) were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux toward the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82. These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways toward the biosynthesis of phenolic acids in the pyramided lines

  6. THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. IV. HELIUM AND CARBON RECOMBINATION LINES

    SciTech Connect

    Wenger, Trey V.; Bania, T. M.; Balser, Dana S.; Anderson, L. D.

    2013-02-10

    The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here, we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average {sup 4}He{sup +}/H{sup +} abundance ratio by number, (y {sup +}), is 0.068 {+-} 0.023(1{sigma}). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y {sup +} upper limits. There are 5 RRL emission components with y {sup +} less than 0.04 and another 12 with upper limits below this value. These H II regions must have either a very low {sup 4}He abundance or contain a significant amount of neutral helium. The HRDS has 20 nebulae with carbon RRL emission but no helium emission at its sensitivity level. There is no correlation between the carbon RRL parameters and the 8 {mu}m mid-infrared morphology of these nebulae.

  7. Absolute velocity measurements in the solar transition region and corona from observations of ultraviolet emission line profiles

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.

    An experimental technique to measure absolute velocities of minor ions formed in the solar transition region and corona is presented. A sounding rocket experiment July 27, 1987 obtained high resolution extreme ultraviolet (EUV) spectra along a solar diameter with spatial resolution of 20 x 20 arcseconds. The center-to-limb behavior of four representative lines (Si II 1553, Fe II 1563, CIV 1548, Ne VIII 770) formed at different heights in the solar atmosphere is discussed. Assuming that horizontal motions cancel statistically so that the line-of-sight velocity approaches zero at the limb, we find a net radial downflow of approximately 7.5 +/- 1.0 km/s for C IV, 2.7 +/- 1.5 km/s for Fe II 1563, and upper limits of 0 +/- 1.2 km/s and 0 +/- 4 km/s for Si II and Ne VIII, respectively. The absolute wavelengths of each emission line were determined by direct comparison with wavelengths of known platinum lines generated by an inflight calibration lamp. We then test the assumption of line-of-sight velocity approaching zero at the limb by comparing our wavelengths with recently published laboratory rest wavelengths of the solar emission lines. We find agreement within the published uncertainties of the laboratory wavelengths. The result for Si II indicates that the next radial flow in the chromosphere is near zero, although small scale velocity structures may vary by as much as 4-6 km/sec. The center-to-limb behavior of Fe II 1563 suggests, contrary to previous thinking, that there might be a significant contribution of Fe II emission at higher temperatures characteristic of the lower transition region. Finally, the upper limit on the radial flow velocity for Ne VIII provides a constraint on the radial flow at coronal temperatures. Complicating the accurate measurement of Doppler velocities is the presence of small nonlinearities in the microchannel plates used in UV and EUV detectors which introduce small position offsets between the input and output of the detector. The

  8. Virilization of the Broad Line Region in Active Galactic Nuclei—connection between shifts and widths of broad emission lines

    NASA Astrophysics Data System (ADS)

    Jonić, S.; Kovačević-Dojčinović, J.; Ilić, D.; Popović, L. Č.

    2016-03-01

    We investigate the virilization of the emission lines {Hβ } and Mg II in the sample of 287 Type 1 Active Galactic Nuclei taken from the Sloan Digital Sky Survey database. We explore the connections between the intrinsic line shifts and full widths at different levels of maximal intensity. We found that: (i) {Hβ} seems to be a good virial estimator of black hole masses, and an intrinsic redshift of {Hβ} is dominantly caused by the gravitational effect, (ii) there is an anti-correlation between the redshift and width of the wings of the Mg II line, (iii) the broad Mg II line can be used as virial estimator only at 50 % of the maximal intensity, while the widths and intrinsic shifts of the line wings cannot be used for this purpose.

  9. Ion source and low energy injection line for a central region model cyclotrona)

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Li, Zhenguo; Lu, Yinlong; Wei, Sumin; Cai, Hongru; Ge, Tao; Wu, Longcheng; Pan, Gaofeng; Yao, Hongjuan; Kuo, T.; Yuan, D.

    2008-02-01

    At CIAE, a 100MeV H- cyclotron (CYCIAE-100) is under design and construction. A central region model (CRM) cyclotron was built for various experimental verifications for the CYCIAE-100 project and for research and development of high current injection to accelerate milliampere H- beam. The H- multicusp source built in 2003 has been improved recently to make the source operation more stable. A new injection line for axial low energy high current injection has been designed and constructed for the CRM cyclotron.

  10. Simulations of the Broad Line Region of NGC 5548 with Cloudy Code: Temperature Determination

    NASA Astrophysics Data System (ADS)

    Ilic, D.

    2007-12-01

    In this paper an analysis of the physical properties of the Broad Line Region (BLR) of the active galaxy NGC 5548 is presented. Using the photoionization code CLOUDY and the measurements of Peterson et al. (2002), the physical conditions of the BLR are simulated and the BLR temperature is obtained. This temperature was compared to the temperature estimated with the Boltzmann-Plot (BP) method (Popović et al. 2007). It was shown that the measured variability in the BLR temperature could be due to the change in the hydrogen density.

  11. PHOTOMETRIC REVERBERATION MAPPING OF THE BROAD EMISSION LINE REGION IN QUASARS

    SciTech Connect

    Chelouche, Doron; Daniel, Eliran E-mail: elirandviv@gmail.com

    2012-03-01

    A method is proposed for measuring the size of the broad emission line region (BLR) in quasars using broadband photometric data. A feasibility study, based on numerical simulations, points to the advantages and pitfalls associated with this approach. The method is applied to a subset of the Palomar-Green quasar sample for which independent BLR size measurements are available. An agreement is found between the results of the photometric method and the spectroscopic reverberation mapping technique. Implications for the measurement of BLR sizes and black hole masses for numerous quasars in the era of large surveys are discussed.

  12. THE BROAD LINE REGION IN NGC 4051: AN INFLOW ILLUMINATED BY A 10{sup 5} K ACCRETION DISK

    SciTech Connect

    Devereux, Nick; Heaton, Emily E-mail: heatone@erau.edu

    2013-08-20

    Adopting a spherically symmetric steady-state ballistic inflow as the kinematic model for the gas distribution responsible for producing the H{alpha} emission line, and a central black hole (BH) mass of 1.7 Multiplication-Sign 10{sup 6} M{sub Sun} determined from prior reverberation mapping, leads to the following dimensions for the size of the broad line region (BLR) in NGC 4051; an inner radius {approx}3 lt-day and a lower limit to the outer radius {approx}475 lt-day. Thus, the previously determined reverberation size for the BLR marks just the inner radius of a much larger volume of ionized gas. The number of ionizing photons required to sustain the H{alpha} emission line luminosity exceeds the number observed to be available from the central active galactic nucleus (AGN) by a factor of 3-4. Such a large ionizing deficit can be reconciled if the BLR is ionized by a 10{sup 5} K accretion disk that is hidden from direct view by the high opacity of intervening H gas. A new definition is introduced for the ionization parameter that acknowledges the fact that H opacity significantly attenuates the flux of ionizing photons in the large, partially ionized nebula surrounding the AGN. Collectively, the results have important implications for BH masses estimated using reverberation radii and the structure of the BLR inferred from velocity-delay maps.

  13. A Correlation Between Length of Strong-Shear Neutral Lines and Total X-Ray Brightness in Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.

    1997-01-01

    From a sample of 7 MSFC vector magnetograms,of active regions and 17 Yohkoh SXT soft X-ray images of these active regions, we have found that the total x-ray brightness of an entire active region is correlated with the total length of neutral lines on which the magnetic field is both strong (less than 250 G) and strongly sheared (shear angle greater than 75 deg) in the same active region. This correlation, if not fortuitous, is additional evidence of the importance of strong-shear strong-field neutral lines to strong heating in active regions.

  14. Exceptional polarization structures near the C-lines in diffracted near fields.

    PubMed

    Yu, Renlong; Xin, Yu; Zhao, Qi; Shao, Yanming; Chen, Yanru

    2015-08-01

    We study the polarization structures in the vicinity of C-lines in the near fields diffracted from a pair of small holes. We find that, when the incident light is circularly polarized, both the true C-lines and the structures near them are controlled only by the longitudinal component. Furthermore, we find that all the existing singular lines of circular polarization have the winding number ±1, which is very different than the usual numbers ±1/2, and the structure of major axes of the polarization ellipses surrounding these lines are shown to form structures different than the Möbius strip type. All these features prove to be stable upon small changes of shapes or positions of the apertures. However, C-lines with a unit winding number split into two C-lines of half-winding numbers when the incident light is elliptically polarized light. PMID:26367290

  15. Helium abundance and ionization structure in the Orion nebula: radio recombination lines observations

    NASA Astrophysics Data System (ADS)

    Poppi, S.; Tsivilev, A. P.; Cortiglioni, S.; Palumbo, G. G. C.; Sorochenko, R. L.

    2007-03-01

    Results of the Ori A HII region mapping based on hydrogen (H), helium (He) and carbon (C) Radio Recombination lines (RRL) are presented. Observations were made with the same angular resolution (2') using the 32 m VLBI dish of Medicina (Italy, 22.4 GHz) and the Pushchino RT-22 dish (Russia, 36.5 GHz). The behaviour of the ionized helium abundance, y^+, with distance from the center shows that the He+ zone size is smaller than that of H^+. Such a behaviour is different for the core and for the envelope, as well as for different directions from the center. The helium abundance, N(He)/N(H)=10.0(± 0.8)%, is measured. Derived line radial velocities, their widths and y+ data support the well-known "blister-type" structure of this HII region. LTE electron temperatures (7800-9600 K) are also measured. Appendices (Figs. 15, 16 and Sect. 4.1 "Carbon RRLs") are only available in electronic form at http://www.aanda.org

  16. Structure and evolution of fossil H II regions

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Schwarz, J.

    1971-01-01

    The structure and evolution of a fossil H II region created by a burst of ionizing radiation from a supernova is considered. The cooling time scale for the shell is about 10 to the 6th power years. Superposition of million-year-old fossil H II regions may account for the temperature and ionization of the interstellar medium. Fossil H II regions are unstable to growth of thermal condensations. Highly ionized filamentary structures form and dissipate in about 10,000 years. Partially ionized clouds form and dissipate in about 10 to the 6th power years.

  17. Hyperfine structure in stellar spectral lines: a little nothing, a help, or a troublemaker?

    NASA Astrophysics Data System (ADS)

    Huehnermann, H.

    Hyperfine structure is common in spectral lines. Hfs splits lines due to nuclear moments and shifts lines of different isotopes (IS). Both effects, even if they are small compared with the line- and instrumental-width, broaden and shift the lines and alter their shape and may lead to erroneous interpretations of spectra of astrophysical interest. The IS permits in principle the observation of isotope abundances (e.g. for H-D) but - if unresolved - shifts lines particularly if intensities are strongly affected by absorption (a fake Doppler shift, especially of interstellar lines). The hfs-splitting and its influence on spectral-lines is investigated with a momentum analysis of the hfs and the line-profile, and of the convolved curve. It is found that the hfs can be misinterpretated as Doppler broadening. In optically dense media (e.g. in stellar interior) hfs and IS may decrease the average transparency.

  18. Verbal Working Memory Performance Correlates with Regional White Matter Structures in the Frontoparietal Regions

    ERIC Educational Resources Information Center

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-01-01

    Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working…

  19. New method of on-line quantification of regional wall motion with automated segmental motion analysis.

    PubMed

    Fujino, T; Ono, S; Murata, K; Tanaka, N; Tone, T; Yamamura, T; Tomochika, Y; Kimura, K; Ueda, K; Liu, J; Wada, Y; Murashita, M; Kondo, Y; Matsuzaki, M

    2001-09-01

    We have recently developed an automated segmental motion analysis (A-SMA) system, based on an automatic "blood-tissue interface" detection technique, to provide real-time and on-line objective echocardiographic segmental wall motion analysis. To assess the feasibility of A-SMA in detecting regional left ventricular (LV) wall motion abnormalities, we performed 2-dimensional echocardiography with A-SMA in 13 healthy subjects, 22 patients with prior myocardial infarction (MI), and 9 with dilated cardiomyopathy (DCM). Midpapillary parasternal short-axis and apical 2- and 4-chamber views were obtained to clearly trace the blood-tissue interface. The LV cavity was then divided into 6 wedge-shaped segments by A-SMA. The area of each segment was calculated automatically throughout a cardiac cycle, and the area changes of each segment were displayed as bar graphs or time-area curves. The systolic fractional area change (FAC), peak ejection rate (PER), and filling rate (PFR) were also calculated with the use of A-SMA. In the control group, a uniform FAC was observed in real time among 6 segments in the short-axis view (60% +/- 10% to 78% +/- 9%), or among 5 segments in either the 2-chamber (59% +/- 12% to 75% +/- 16%) or 4-chamber view (58% +/- 13% to 72% +/- 12%). The variations of FAC, PER, and PFR were obviously decreased in infarct-related regions in the MI group and were globally decreased in the DCM group. We conclude that A-SMA is an objective and time-saving method for assessing regional wall motion abnormalities in real time. This method is a reliable new tool that provides on-line quantification of regional wall motion.

  20. WHY IS NON-THERMAL LINE BROADENING OF SPECTRAL LINES IN THE LOWER TRANSITION REGION OF THE SUN INDEPENDENT OF SPATIAL RESOLUTION?

    SciTech Connect

    De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.; Peter, H.; Pereira, T. M. D.

    2015-01-20

    Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s{sup −1}) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s{sup −1}. This invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)

  1. Does the inner broad-line region dim down when the power turns up?. [Seyfert 1 galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Sparke, Linda S.

    1993-01-01

    The temporal correlations of continuum and broad emission-line fluxes from the Seyfert galaxy NGC 5548 as measured during the 1989 monitoring campaign show two related peculiarities: first, some of the crosscorrelations of line and continuum flux appear steeper on the negative time lag side than the continuum autocorrelation itself; then, the autocorrelation of the line flux is sometimes more sharply peaked than the continuum autocorrelation function. These are here interpreted as evidence that conditions in the inner part of the broad-line region are such that some emission lines decrease in intensity as the continuum strengthens.

  2. Sensitivity of bandpass filters using recirculating delay-line structures

    NASA Astrophysics Data System (ADS)

    Heyde, Eric C.

    1996-12-01

    Recirculating delay lines have value notably as sensors and optical signal processors. Most useful applications depend on a high-finesse response from a network. A proof that, with given response parameters, more complex systems can produce behavior that is more stable to the effects of nonidealities than a single recirculating loop is presented.

  3. Genomic heterogeneity and structural variation in soybean near isogenic lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-isogenic lines (NILs) are a critical genetic resource for the soybean research community. The ability to identify and characterize the genes driving the phenotypic differences between NILs is limited by the degree to which differential genetic introgressions can be resolved. Furthermore, the ge...

  4. PROBING THE PHYSICS OF NARROW LINE REGIONS IN ACTIVE GALAXIES. II. THE SIDING SPRING SOUTHERN SEYFERT SPECTROSCOPIC SNAPSHOT SURVEY (S7)

    SciTech Connect

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Sutherland, Ralph; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-15

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  5. SEMICONDUCTOR DEVICES: Trench gate IGBT structure with floating P region

    NASA Astrophysics Data System (ADS)

    Mengliang, Qian; Zehong, Li; Bo, Zhang; Zhaoji, Li

    2010-02-01

    A new trench gate IGBT structure with a floating P region is proposed, which introduces a floating P region into the trench accumulation layer controlled IGBT (TAC-IGBT). The new structure maintains a low on-state voltage drop and large forward biased safe operating area (FBSOA) of the TAC-IGBT structure while reduces the leakage current and improves the breakdown voltage. In addition, it enlarges the short circuit safe operating area (SCSOA) of the TAC-IGBT, and is simple in fabrication and design. Simulation results indicate that, for IGBT structures with a breakdown voltage of 1200 V, the leakage current of the new trench gate IGBT structure is one order of magnitude lower than the TAC-IGBT structure and the breakdown voltage is 150 V higher than the TAC-IGBT.

  6. Relationship between interphasic nucleolar organizer regions and growth rate in two neuroblastoma cell lines.

    PubMed Central

    Derenzini, M.; Pession, A.; Farabegoli, F.; Trerè, D.; Badiali, M.; Dehan, P.

    1989-01-01

    The relationship between the quantity of silver-stained interphasic nucleolar organizer regions (NORs) and nuclear synthetic activity, caryotype, and growth rate was studied in two established neuroblastoma cell lines (CHP 212 and HTB 10). Statistical analysis of silver-stained NORs revealed four times as many in CHP 212 cells compared with HTB 10 cells. No difference was observed in the ribosomal RNA synthesis between the two cell lines. The caryotype index was 1.2 for CHP 212 and 1.0 for HTB 10 cells. The number of chromosomes carrying NORs and the quantity of ribosomal genes was found to be the same for the two cell lines. Doubling time of CHP 212 cells was 20 hours compared with 54 hours for HTB 10 cells. In CHP 212 cells bindering of cell duplication by serum deprivation induced a progressive lowering (calculated at 48, 72, and 96 hours) of the quantity of silver-stained interphasic NORs. Recovery of duplication by new serum addition induced, after 24 hours, an increase of the quantity of silver-stained interphasic NORs up to control levels. In the light of available data, these results indicate that the quantity of interphasic NORs is strictly correlated only to the growth rate of the cell. Images Figure 2 Figure 3 Figure 4 PMID:2705511

  7. The Size of the Broad Line Region in M84 (NGC 4374)

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas A.; Eracleous, M.

    2010-01-01

    M84 is a giant elliptical galaxy located in the Virgo cluster. Prior imaging with the Hubble Space Telescope (HST) revealed a small, highly inclined, nuclear ionized gas disk, the kinematics of which indicate the presence of a 1.5 billion solar mass black hole. Two prominent radio jets emerge perpendicular to the nuclear ionized gas disk terminating in large radio lobes that extend beyond the visible galaxy. Plausible kinematic models are used to constrain the size of the broad line region (BLR) in M84 by modeling the shape of the broad Hα emission line profile. The analysis indicates that the emitting volume is large with an outer radius between 6 and 10 pc, depending on whether the kinematic model is represented by a spherically symmetric free-fall or a Keplerian disk. The inferred size makes the BLR in M84 the largest yet to be measured. The BLR contains less than 2754 M⊙ of dense, ≥ 103 cm-3, ionized gas, leading to a very low filling factor of ≤ 3 x 10-2. The fact that the BLR in M84 is so large may explain why the AGN is unable to sustain the ionization seen there. Thus, the AGN in M84 is not simply a scaled down quasar. The gas density is pivotal in deciding between an accretion disk and a spherically symmetric infall as the origin for the broad Hα emission line seen in M84.

  8. The broad-line region and dust torus size of the Seyfert 1 galaxy PGC 50427

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, F.; Ramolla, M.; Westhues, C.; Haas, M.; Chini, R.; Steenbrugge, K.; Barr Domínguez, A.; Kaderhandt, L.; Hackstein, M.; Kollatschny, W.; Zetzl, M.; Hodapp, K. W.; Murphy, M.

    2015-04-01

    We present the results of three-year monitoring campaigns of the z = 0.024 type 1 active Galactic nucleus (AGN) PGC 50427. Using robotic telescopes of the Universitätssternwarte Bochum near Cerro Armazones in Chile, we monitored PGC 50427 in the optical and near-infrared (NIR). Through the use of photometric reverberation mapping with broad- and narrowband filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the Hα emission line. The Hα emission line responds to blue continuum variations with an average rest frame lag of 19.0 ± 1.23 days. Using single epoch spectroscopy obtained with the Southern African Large Telescope (SALT) we determined a broad-line Hα velocity width of 1020 km s-1 and in combination with the rest frame lag and adoption of a geometric scaling factor f = 5.5, we calculate a black hole mass of MBH ~ 17 × 106 M⊙. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100 Å luminosity at the time of our monitoring campaign. We measured small luminosity variations in the AGN (~10%) accross the three years of the monitoring campaign. The rest frame lag and the host-subtracted luminosity permit us to derive the position of PGC 50427 in the BLR size - AGN luminosity diagram, which is remarkably close to the theoretically expected relation of R ∝ L0.5. The simultaneous optical and NIR (J and Ks) observations allow us to determine the size of the dust torus through the use of dust reverberation mapping method. We find that the hot dust emission (~1800 K) lags the optical variations with an average rest frame lag of 46.2 ± 2.60 days. The dust reverberation radius and the nuclear NIR luminosity permit us to derive the position of PGC 50427 on the known τ - MV diagram. The simultaneous observations for the broad-line region and dust thermal emission demonstrate that the innermost dust

  9. Narrow-line region gas kinematics of 24 264 optically selected AGN: the radio connection

    NASA Astrophysics Data System (ADS)

    Mullaney, J. R.; Alexander, D. M.; Fine, S.; Goulding, A. D.; Harrison, C. M.; Hickox, R. C.

    2013-07-01

    lower L1.4 GHz AGNs, and the width of the [O III] λ5007 line peaks in moderate-radio-luminosity AGNs (L1.4 GHz ˜ 1024 W Hz-1). Our results are consistent with the most disturbed gas kinematics being induced by compact radio cores (rather than powerful radio jets), although broadened [O III] λ5007 lines are also present, but much rarer, in low-L1.4 GHz systems. Our catalogue of multicomponent fits is freely available as an online resource for statistical studies of the kinematics and luminosities of the narrow- and broad-line AGN regions and the identification of potential targets for follow-up observations at http://sites.google.com/site/sdssalpaka.

  10. On-line Education Initiatives to Galvanize Climate Mitigation in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Mooney, M. E.; Ackerman, S. A.

    2014-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) is supporting two different on-line education initiatives that teach about climate change while emphasizing informed and effective responses. The first is an on-line introductory level course for undergraduate students (http://c3.ssec.wisc.edu/) offered through the University of Wisconsin-Madison Atmospheric and Oceanic Sciences (AOS) department. Along with a lighter carbon footprint and the convenience of web-based access, students interact via Drupal forums, Google hangouts and twitter. Activities include several pedagogical tools with sustainability-related content and a final project requiring a discussion of regionally relevant mitigation responses to achieve low emission scenarios for assigned locations. The other initiative is a MOOC (massive open online course) focusing on the changing weather and climate in the Great Lakes Region. This 4-week course is set to launch February 23 2015. One of the primary goals of this MOOC will be having participants change four habits, one per week. Each behavior change will provide a personal benefit to participating individuals while also helping to mitigate the collective impacts of climate change. This presentation will share strategies and insights from both projects.

  11. Line segment confidence region-based string matching method for map conflation

    NASA Astrophysics Data System (ADS)

    Huh, Yong; Yang, Sungchul; Ga, Chillo; Yu, Kiyun; Shi, Wenzhong

    2013-04-01

    In this paper, a method to detect corresponding point pairs between polygon object pairs with a string matching method based on a confidence region model of a line segment is proposed. The optimal point edit sequence to convert the contour of a target object into that of a reference object was found by the string matching method which minimizes its total error cost, and the corresponding point pairs were derived from the edit sequence. Because a significant amount of apparent positional discrepancies between corresponding objects are caused by spatial uncertainty and their confidence region models of line segments are therefore used in the above matching process, the proposed method obtained a high F-measure for finding matching pairs. We applied this method for built-up area polygon objects in a cadastral map and a topographical map. Regardless of their different mapping and representation rules and spatial uncertainties, the proposed method with a confidence level at 0.95 showed a matching result with an F-measure of 0.894.

  12. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Silk, Joseph

    2016-10-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal (φ -direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ˜ 0.1 R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disk of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ˜0.1 of the Eddington limit.

  13. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    NASA Astrophysics Data System (ADS)

    Abolmasov, Pavel; Poutanen, Juri

    2016-09-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Lyα and He II Lyα. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher-order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  14. The coronal and transition region temperature structure of a solar active region

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Pye, J. P.

    1980-01-01

    Using measurements of EUV and X-ray spectral lines, the differential emission measure vs electron temperature from the transition region to the corona of an active region (electron temperature between 100,000 and 5,000,000 K) is derived. The total emission measure and radiative losses are of the order 3 x 10 to the 48th/cu cm and 4 x 10 to the 26th ergs/sec, respectively. The emission measure at electron temperatures greater than approximately 1,000,000 K (i.e. that mainly responsible for the X-ray emission) is about 75% of the total. The use of the Mg x line at 625 A as an indicator of coronal electron density is also examined. A set of theoretical energy balance models of coronal loops in which the loop divergence is a variable parameter is presented and compared with the observations.

  15. The West African Squall Line Observed on 23 June 1981 during COPT 81: Mesoscale Structure and Transports.

    NASA Astrophysics Data System (ADS)

    Chalon, J. P.; Jaubert, G.; Lafore, J. P.; Roux, F.

    1988-10-01

    Durirg the night of 23/24 June 1981, new Korhogo, Ivory Coast, a squall line passed over the instrumented area of the COPT 81 experiment. Observations were obtained with a dual-Doppler radar system, a sounding station and 22 automatic meteorological surface stations. Data from these instruments and from satellite pictures were analyzed to depict the kinematic and thermodynamic structure of the squall line. Composite analysis techniques were used to obtain a vertical cross section of the reflectivity structure and of the wind field relative to the line. The redistributions of air, moisture and thermodynamic energy by the convection wet calculated through averaged two-dimensional wind fields from a dual-Doppler radar system. The method also allowed the evaluation of the exchanges that were occurring between the convective and the stratiform regions.This squall line had many similarities with tropical squall lines previously described by others. The leading convective part, composed of intense updrafts and downdrafts, and the trailing part, containing weak mesoscale updraft and downdraft, were separated by a reflectivity trough. A notable feature of this line was the presence of a leading anvil induced by intense easterly environmental winds in the upper troposphere. Observations of the evolution of the system at different scales indicated that the mesoalpha-scale (following the classification of Orlanski) and the mosobeta-scale patterns combined to allow the system to have optimum conditions for maximum strength and a maximum lifetime.A rear-to-front flow was found at midlevels in the stratiform region. The flow sloped downward to the surface and took on the characteristics of a density current in the forward half of the squall lice. Entering the convective region, this flow was supplied with cold air by the convective downdrafts and played an important role in forcing upward the less dense monsoon flow entering at the leading edge.Calculations of mass, moisture and

  16. REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS

    SciTech Connect

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W. E-mail: deborah@astro.unam.mx E-mail: sulentic@iaa.es

    2013-07-01

    Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR} directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.

  17. THE LINK BETWEEN THE HIDDEN BROAD LINE REGION AND THE ACCRETION RATE IN SEYFERT 2 GALAXIES

    SciTech Connect

    Marinucci, Andrea; Bianchi, Stefano; Matt, Giorgio; Nicastro, Fabrizio; Goulding, Andy D.

    2012-04-01

    In the past few years, more and more pieces of evidence have been presented for a revision of the widely accepted unified model of active galactic nuclei. A model based solely on orientation cannot explain all the observed phenomenology. In the following, we will present evidence that accretion rate is also a key parameter for the presence of hidden broad line regions (HBLRs) in Seyfert 2 galaxies. Our sample consists of 21 sources with polarized hidden broad lines and 18 sources without hidden broad lines. We use stellar velocity dispersions from several studies on the Ca II and Mg b triplets in Seyfert 2 galaxies to estimate the mass of the central black holes via the M{sub BH}-{sigma}{sub *} relation. The ratio between the bolometric luminosity, derived from the intrinsic (i.e., unabsorbed) X-ray luminosity, and the Eddington luminosity is a measure of the rate at which matter accretes onto the central supermassive black hole. A separation between Compton-thin HBLR and non-HBLR sources is clear, both in accretion rate (log L{sub bol}/L{sub Edd} = -1.9) and in luminosity (log L{sub bol} = 43.90). When properly luminosity-corrected Compton-thick sources are included, the separation between HBLR and non-HBLR is less sharp but no HBLR source falls below the Eddington ratio threshold. We speculate that non-HBLR Compton-thick sources with accretion rate higher than the threshold do possess a BLR, but something, probably related to their heavy absorption, is preventing us from observing it even in polarized light. Our results for Compton-thin sources support theoretical expectations. In a model presented by Nicastro, the presence of broad emission lines is intrinsically connected with disk instabilities occurring in proximity of a transition radius, which is a function of the accretion rate, becoming smaller than the innermost stable orbit for very low accretion rates and therefore luminosities.

  18. A Gravity data along LARSE (Los Angeles Regional Seismic Experiment) Line II, Southern California

    USGS Publications Warehouse

    Wooley, R.J.; Langenheim, V.E.

    2001-01-01

    The U.S. Geological Survey conducted a detailed gravity study along part of the Los Angeles Regional Seismic Experiment (LARSE) transect across the San Fernando Basin and Transverse Ranges to help characterize the structure underlying this area. 249 gravity measurements were collected along the transect and to augment regional coverage near the profile. An isostatic gravity low of 50-60 mGal reflects the San Fernando-East Ventura basin. Another prominent isostatic gravity with an amplitude of 30 mGal marks the Antelope Valley basin. Gravity highs occur over the Santa Monica Mountains and the Transverse Ranges. The highest isostatic gravity values coincide with outcrops of Pelona schist.

  19. Radiative Transfer Models of Mid-Infrared H2O Lines in the Planet-Forming Region of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Meijerink, R.; Pontoppidan, K. M.; Blake, G. A.; Poelman, D. R.; Dullemond, C. P.

    2009-10-01

    The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H2O and organic molecules to the surfaces of rocky planets/satellites. Recent Spitzer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. Here, we present a non-local thermodynamic equilibrium (LTE) two-dimensional radiative transfer model of water lines in the 10-36 μm range that can be used to constrain the abundance structure of water vapor, given an observed spectrum, and show that an assumption of LTE does not accurately estimate the physical conditions of the water vapor emission zones, including temperatures and abundance structures. By applying the model to published Spitzer spectra we find that: (1) most water lines are subthermally excited, (2) the gas-to-dust ratio must be as much as 1-2 orders of magnitude higher than the canonical interstellar medium ratio of 100-200, (3) the gas temperature must be significantly higher than the dust temperature, in agreement with detailed heating/cooling models, and (4) the water vapor abundance in the disk surface must be significantly truncated beyond ~1 AU. A low efficiency of water formation below T ~ 300 K may naturally result in a lower water abundance beyond a certain radius. However, we find that chemistry, although not necessarily ruled out, may not be sufficient to produce a sharp abundance drop of many orders of magnitude and speculate that the depletion may also be caused by vertical turbulent diffusion of water vapor from the superheated surface to regions below the snow line, where the water can freeze out and be transported to the midplane as part of the general dust settling. Such a vertical cold finger effect is likely to be efficient due to the lack of a replenishment mechanism of large, water-ice coated dust grains to the disk surface.

  20. Structural properties of prokaryotic promoter regions correlate with functional features.

    PubMed

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  1. Jupiter’s Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    NASA Astrophysics Data System (ADS)

    Bjoraker, G. L.; Wong, M. H.; de Pater, I.; Ádámkovics, M.

    2015-09-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use (a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and (b) pressure-broadened line profiles of deuterated methane (CH3D) at 4.66 μm to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter’s 5 μm spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that hot spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that hot spots in the North Equatorial Belt and South Equatorial Belt (SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32{}^\\circ S has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter’s belt-zone structure. We also constrained the vertical profile of H2O in an SEB hot spot and in the STZ. The hot spot is very dry for P < 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  2. Probing the physics of Seyfert galaxies using their emission-line regions

    SciTech Connect

    Shastri, P. Kharb, P.; Jose, J.; Ramya, S.; Bhatt, H. C.; Gupta, M.; Dopita, M.; Kewley, L.; Davies, R.; Sutherland, R.; Hampton, E.; Scharwächter, J.; Banfield, J.; Srivastava, S.; Jin, J.; Basurah, H.; Fischer, S.; Panda, S.; Sundar, M. N.; Radhakrishnan, V.

    2015-12-31

    Active galaxies have powerhouses of radiation in their nuclear regions that are driven by accreting super-massive black holes. The accretion system also generates outflows of ionized gas and synchrotron-emitting bipolar jets of plasma, which could have a significant impact on the host galaxy. We have initiated an investigation into the physics of nearby active galaxies by studying the morphology, kinematics, excitation abundance structure, and radio structure of about 120 nearby targets. We present a few early results from this investigation.

  3. Gamma–Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  4. Structure and evolution of a squall line in northern China: A case study

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Ling; Xiao, Hui; Guo, Chun-Wei

    2015-05-01

    The dynamical, thermodynamical and microphysical structures of convective cells associated with a squall line that occurred on 23 June 2011 in northern China are investigated using observational data and the Regional Atmospheric Modeling System (RAMS). The results suggest that: 1) The squall line appears in the front of the upper-level trough with moderate vertical wind shear at the low levels. 2) The cold pool is formed mainly by rainfall in the initial developing stage. During both the developing and mature stages, the cold pool locates behind the leading edge of the storm. The convergence of the cold air diverged from the cold pool and the warm-moist air transported from the southeast environment is the major mechanism that maintains momentum for the squall line development. Meanwhile, the front-to-rear flow forms systematically in the squall line system. During the dissipation stage, the front-to-rear flow fades away and the air flow passes through the storm at the high level. The cold pool moves ahead of the storm and cuts off the supply of the warm-moist air to the updraft of the storm, leading to demise of the storm. 3) The location of the squall line leading edge is closed to the location where the wind speed and direction at 1 km altitude suddenly occurs to be changed. 4) The total warming effect during all the stages processes similar trends of change with height. During the developing stage, the total cooling effect mainly comes from evaporation of cloud water. During the mature and dissipation stages, the melting of hail dominates the total cooling effect in the lower layer. 5) In the developing stage, the growth of hail primarily comes from the processes accreting with raindrops and cloud droplets. During the mature and dissipation stages, the hail particles grow mainly through their accreting with raindrops. Correspondingly, during the initial developing stage, the rainwater comes mainly from cloud water by accreting process near the freezing level

  5. Still Raining in Quasars: An Origin for the Broad Emission Line Region

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2016-01-01

    The strong broad emission lines (BELs) characteristic of quasars do not have an agreed-upon physical explanation. Why is there dense gas at hundreds to thousands of Schwarzchild radii around all* accreting super-massive black holes?I propose that dense cool clouds naturally form (Krolik et al. 1981) in the accretion disk winds of quasars and AGNs (Murray et al. 1995) before the wind reaches escape velocity. X-ray variability causes the gas to accumulate in the stable regions on the thermal equilibrium curve. These clouds have the density and temperature of BEL clouds. The narrow range of density at which the BEL clouds form in pressure equilibrium with the warm wind may explain the simple L1/2 scaling of BEL region radius. The clouds are self-shielding and can no longer accelerate; so they rain back on elliptical orbits. They are then destroyed by Kelvin-Helmholtz instabilities as they move at Mach ~ 30 through the warm disk wind. The timescales for all these processes fit with this picture.Observationally this "quasar rain" model agrees with the Pancoast et al. (2014) kinematics of the BEL region, with the cool phase of the warm absorber wind seen in X-rays (e.g. Krongold et al. 2005), and with the "cometary" tails seen in a few AGN X-ray eclipses (Maiolino et al. 2010).[* unobscured, non-jet-dominated.

  6. Measurements of Non-thermal Line Widths in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  7. Abundances of argon, sulfur, and neon in six galactic H II regions from infrared forbidden lines

    NASA Technical Reports Server (NTRS)

    Herter, T.; Helfer, H. L.; Forrest, W. J.; Mccarthy, J.; Houck, J. R.; Willner, S. P.; Puetter, R. C.; Rudy, R. J.; Soifer, B. T.; Pipher, J. L.

    1981-01-01

    Airborne measurements of the Ar II (6.99 micron) and S III (18.71 micron) forbidden lines for six compact H II regions are presented, as well as ground-based 2-4 micron and 8-13 micron spectroscopy if not already published. From these data and radio data, lower limits to the elemental abundances of Ar, Ne, and S are deduced. G29.9-0.0, at 5 kpc from the galactic center, is overabundant in all these elements. The other five regions (at distances 6-13 kpc from the center) mainly appear to be consistent with standard abundances, with the exception of G75.84 + 0.4 at 10 kpc from the galactic center, which is overabundant in S. However, preliminary results on G12.8-0.2 at 6 kpc from the galactic center suggest a possible underabundance. A large statistical sample of H II regions is required in order to determine if there is a radial gradient in the heavy element abundances of the Galaxy.

  8. Hyperfine Structure Study of Several Lines of 207Pb I

    NASA Astrophysics Data System (ADS)

    Wasowicz, T. J.; Drozdowski, R.; Kwela, J.

    2005-01-01

    The hfs splitting of four lines from the array 6p7s → 6p2 as well as two lines from the array 6p8s → 6p2 of Pb I have been analyzed. A discharge tube containing metallic isotope 207Pb was used as a light source. Our experiment yields hyperfine splitting constants A for some levels of the configurations 6p2 and 6p7s: A(6p2 1D2) = (20.99 ± 0.43) mK, A(6p2 3P2) = (91.37 ± 0.34) mK, A(6p7s 3P1) = (294.16 ± 0.93) mK, A(6p7s 1P1) = (16.45 ± 0.95) mK and A = (202.04 ± 0.48) mK for the level 6p8s 3P1. Our results are compared with recent theory and other experiments.

  9. Rapid detection of regionally clustered germ-line BRCA1 mutations by multiplex heteroduplex analysis

    SciTech Connect

    Gayther, S.A.; Harrington, P.; Russell, P.

    1996-03-01

    Germ-line mutations of the BRCA1 gene are responsible for a substantial proportion of families with multiple cases of early-onset breast and/or ovarian cancer. Since the isolation of BRCA1 last year, >65 distinct mutations scattered throughout the coding region have been detected, making analysis of the gene time consuming and technically challenging. We have developed a multiplex heteroduplex analysis that is designed to analyze one-quarter of the coding sequence in a single-step screening procedure and that will detect {approximately}50% of all BRCA1 mutations so far reported in breast/ovarian cancer families. We have used this technique to analyze BRCA1 in 162 families with a history of breast and/or ovarian cancer and identified 12 distinct mutations in 35 families. 20 refs., 2 figs., 2 tabs.

  10. The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kaspi, Shai; Maoz, Dan; Netzer, Hagai; Peterson, Bradley M.; Vestergaard, Marianne; Jannuzi, Buell T.

    2005-08-01

    We reinvestigate the relationship between the characteristic broad-line region size (RBLR) and the Balmer emission-line, X-ray, UV, and optical continuum luminosities. Our study makes use of the best available determinations of RBLR for a large number of active galactic nuclei (AGNs) from Peterson et al. Using their determinations of RBLR for a large sample of AGNs and two different regression methods, we investigate the robustness of our correlation results as a function of data subsample and regression technique. Although small systematic differences were found depending on the method of analysis, our results are generally consistent. Assuming a power-law relation RBLR~Lα, we find that the mean best-fitting α is about 0.67+/-0.05 for the optical continuum and the broad Hβ luminosity, about 0.56+/-0.05 for the UV continuum luminosity, and about 0.70+/-0.14 for the X-ray luminosity. We also find an intrinsic scatter of ~40% in these relations. The disagreement of our results with the theoretical expected slope of 0.5 indicates that the simple assumption of all AGNs having on average the same ionization parameter, BLR density, column density, and ionizing spectral energy distribution is not valid and there is likely some evolution of a few of these characteristics along the luminosity scale.

  11. A new method to obtain the broad line region size of high redshift quasars

    SciTech Connect

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W. E-mail: deborah@astro.unam.mx E-mail: sulentic@iaa.es

    2014-10-10

    We present high signal-to-noise ratio UV spectra for eight quasars at z ∼ 3 obtained with Very Large Telescope/FORS. The spectra enable us to analyze in detail the strong and weak emission features in the rest frame range 1300-2000 Å of each source (C III] λ1909, Si III] λ1892, Al III λ1860, Si II λ1814, C IV λ1549 and blended Si IV λ1397+O IV] λ1402). The flux ratios Al III λ1860/Si III] λ1892, C IV λ1549/Al III λ1860, Si IV λ1397+O IV] λ1402/Si III] λ1892 and Si IV λ1397+O IV] λ1402/C IV λ1549 strongly constrain ionizing photon flux and metallicity through the use of diagnostic maps built from CLOUDY simulations. The radius of the broad line region is then derived from the ionizing photon flux applying the definition of the ionization parameter. The r {sub BLR} estimate and the width of a virial component isolated in prominent UV lines yields an estimate of black hole mass. We compare our results with previous estimates obtained from the r {sub BLR}-luminosity correlation customarily employed to estimate the black hole masses of high redshift quasars.

  12. Height changes along selected lines through the Death Valley region, California and Nevada, 1905-1984

    USGS Publications Warehouse

    Castle, Robert O.; Gilmore, Thomas D.; Walker, James P.; Castle, Susan A.

    2005-01-01

    Comparisons among repeated levelings along selected lines through the Death Valley region of California and adjacent parts of Nevada have disclosed surprisingly large vertical displacements. The vertical control data in this lightly populated area is sparse; moreover, as much as a third of the recovered data is so thoroughly contaminated by systematic error and survey blunders that no attempt was made to correct these data and they were simply discarded. In spite of these limitations, generally episodic, commonly large vertical displacements are disclosed along a number of lines. Displacements in excess of 0.4 m, with respect to our selected control point at Beatty, Nevada, and differential displacements of about 0.7 m apparently occurred during the earlier years of the 20th century and continued episodically through at least 1943. While this area contains abundant evidence of continuing tectonic activity through latest Quaternary time, it is virtually devoid of historic seismicity. We have detected no clear connection between the described vertical displacements and fault zones reportedly active during Holocene time, although we sense some association with several more broadly defined tectonic features.

  13. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to ‑3.2 ≲ log U ≲ ‑3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  14. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers

    PubMed Central

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F.

    2015-01-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. PMID:22277302

  15. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers.

    PubMed

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F

    2012-04-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA.

  16. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Anguita, T.; Braibant, L.; Riaud, P.

    2015-10-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R-1/ν. We find a most likely source half-light radius of R1/2 = 0.61 × 1016cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form

  17. Deuteron Spin Structure Functions in the Resonance and DIS Regions

    SciTech Connect

    S. Kulagin; W. Melnitchouk

    2007-10-03

    We derive relations between spin-dependent nuclear and nucleon g_1 and g_2 structure functions, valid at all Q^2, and in both the resonance and deep inelastic regions. We apply the formalism to the specific case of the deuteron, which is often used as a source of neutron structure information, and compare the size of the nuclear corrections calculated using exact kinematics and using approximations applicable at large Q^2.

  18. Hydrogen Emission Line n110 rarr n109: Detection at 5009 Megahertz in Galactic H II Regions.

    PubMed

    Höglund, B; Mezger, P G

    1965-10-15

    The hydrogen emission line n(1l0) --> n(109) at the frequency 5009 megahertz which was predicted by Kardashev has been detected in M 17, Orion, and nine other galactic H II regions with the 42.7-m (140-foot) telescope and a 20-channel receiver at the National Radio Astronomy Observatory. The measured product of the half-power width of the line times the ratio of line-to-continuum brightness temperature is larger than that predicted by Kardashev's theory. The radial velocity obtained for M 17 and Orion agrees well with optical measurements. The search for a similar line of excited helium was without success.

  19. Marginal Structural Models to Assess Delays in Second-Line HIV Treatment Initiation in South Africa

    PubMed Central

    Ive, Prudence; Horsburgh, C. Robert; Berhanu, Rebecca; Shearer, Kate; Maskew, Mhairi; Long, Lawrence; Sanne, Ian; Bassett, Jean; Ebrahim, Osman; Fox, Matthew P.

    2016-01-01

    Background South African HIV treatment guidelines call for patients who fail first-line antiretroviral therapy (ART) to be switched to second-line ART, yet logistical issues, clinician decisions and patient preferences make delay in switching to second-line likely. We explore the impact of delaying second-line ART after first-line treatment failure on rates of death and virologic failure. Methods We include patients with documented virologic failure on first-line ART from an observational cohort of 9 South African clinics. We explored predictors of delayed second-line switch and used marginal structural models to analyze rates of death following first-line failure by categorical time to switch to second-line. Cox proportional hazards models were used to examine virologic failure on second-line ART among patients who switched to second-line. Results 5895 patients failed first-line ART, and 63% switched to second-line. Among patients who switched, median time to switch was 3.4 months (IQR: 1.1–8.7 months). Longer time to switch was associated with higher CD4 counts, lower viral loads and more missed visits prior to first-line failure. Worse outcomes were associated with delay in second-line switch among patients with a peak CD4 count on first-line treatment ≤100 cells/mm3. Among these patients, marginal structural models showed increased risk of death (adjusted HR for switch in 6–12 months vs. 0–1.5 months = 1.47 (95% CI: 0.94–2.29), and Cox models showed increased rates of second-line virologic failure despite the presence of survivor bias (adjusted HR for switch in 3–6 months vs. 0–1.5 months = 2.13 (95% CI: 1.01–4.47)). Conclusions Even small delays in switch to second-line ART were associated with increased death and second-line failure among patients with low CD4 counts on first-line. There is opportunity for healthcare providers to switch patients to second-line more quickly. PMID:27548695

  20. Structural health monitoring of pipelines rehabilitated with lining technology

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2014-03-01

    Damage detection of pipeline systems is a tedious and time consuming job due to digging requirement, accessibility, interference with other facilities, and being extremely wide spread in metropolitans. Therefore, a real-time and automated monitoring system can pervasively reduce labor work, time, and expenditures. This paper presents the results of an experimental study aimed at monitoring the performance of full scale pipe lining systems, subjected to static and dynamic (seismic) loading, using Acoustic Emission (AE) technique and Guided Ultrasonic Waves (GUWs). Particularly, two damage mechanisms are investigated: 1) delamination between pipeline and liner as the early indicator of damage, and 2) onset of nonlinearity and incipient failure of the liner as critical damage state.

  1. Effects of High Ion Temperatures on Spectral Line Diagnostics in the Source Region of the High-speed Solar Wind

    NASA Astrophysics Data System (ADS)

    Brickhouse, N. S.; Esser, R.

    1997-04-01

    Theoretical work on solar wind acceleration has suggested that the proton and electron temperatures at the base of the solar coronal hole region are not thermally equilibrated but that instead the proton temperature may exceed the electron temperature significantly. Recently, Kohl, Strachan, & Gardner have measured both broad and narrow components of the H Lyα profile and have suggested that the broad component may be the signature of high proton temperatures, ~4-6 × 106 K or more. Since proton impact excitation can contribute to the emission line excitation processes, high proton temperatures have important implications for some spectral line emissivities that are useful for electron temperature and density determinations. The diagnostics most affected are those which are sensitive to the distribution of population within the fine structure of the ground state configuration. We discuss selected case studies. For modest proton temperatures (Tp = 3Te) we have found effects on temperature diagnostics to be less than 30% but effects on some density diagnostics may be as large as 1 order of magnitude.

  2. The age structure of selected countries in the ESCAP region.

    PubMed

    Hong, S

    1982-01-01

    The study objective was to examine the age structure of selected countries in the Economic and Social Commission for Asia and the Pacific (ESCAP) region, using available data and frequently applied indices such as the population pyramid, aged-child ratio, and median age. Based on the overall picture of the age structure thus obtained, age trends and their implication for the near future were arrived at. Countries are grouped into 4 types based on the fertility and mortality levels. Except for Japan, Hong Kong, and Singapore, the age structure in the 18 ESCAP region countries changed comparatively little over the 1950-80 period. The largest structural change occurred in Singapore, where the proportion of children under age 15 in the population declined significantly from 41-27%, while that of persons 65 years and older more than doubled. This was due primarily to the marked decline in fertility from a total fertility rate (TFR) of 6.7-1.8 during the period. Hong Kong also had a similar major transformation during the same period: the proportion of the old age population increased 2 1/2 times, from 2.5-6.3%. The age structures of the 18 ESCAP countries varied greatly by country. 10 countries of the 2 high fertility and mortality types showed a similar young age structural pattern, i.e., they have higher dependency ratios, a higher proportion of children under 15 years, a lower proportion of population 65 years and older, lower aged-child ratios, and younger median ages than the average countries in the less developed regions of the world. With minimal changes over the 1950-80 period, the gap between these countries and the average of the less developed regions widened. Unlike these 10 (mostly South Asian) countries, moderately low fertility and mortality countries (China, Korea, and Sri Lanka) are located between the world average and the less developed region in most of the indices, particularly during the last decade. Although their rate of population aging is not

  3. Dielectric-Lined High-Gradient Accelerator Structure

    SciTech Connect

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  4. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    1985-05-01

    In the 1970's major advances in the understanding of auroral processes were brought about by observations of plasmas and electric fields within the regions of space responsible for auroral particle acceleration. The major contribution of these observations was the verification of the existence of electric fields with components parallel to the magnetic field over large regions of altitude (1000 to 20000 kilometers). These electric fields constitute potential drops of several kilovolts, accelerating magnetospheric electrons downward to form the aurora and ionospheric ions upward, where they contribute significantly to the magnetospheric hot ion population. Perpendicular spatial scales of about 100 kilometers are most common, although finer scales have been observed embedded, and individual small amplitude double layers occur on much smaller parallel spatial scales. More recently, the same data sets have revealed the existance of about 100 V electric potential drops directed downward in return current regions. Downward electric fields are in a direction to accelerate electrons out of the ionsphere and tend to retard the propagation of ions upward. An association between upflowing electron beams and transversely heated ions at low altitude has been noted, and a casual relationship between downward electric fields and ion conics is suggested.

  5. Experimental phase determination of the structure factor from Kossel line profile

    PubMed Central

    Faigel, G.; Bortel, G.; Tegze, M.

    2016-01-01

    Kossel lines are formed when radiation from point x-ray sources inside a single crystal are diffracted by the crystal itself. In principle, Kossel line patterns contain full information on the crystalline structure: phase and magnitude of the structure factors. The phase is coded into the profile of the lines. Although this was known for a long time, experimental realization has not been presented. In this work we demonstrate experimentally that phases can be directly determined from the profile of the Kossel lines. These measurements are interesting not only theoretically, but they would facilitate structure solution of samples within extreme conditions, such as high pressure, high and low temperatures, high magnetic fields and extremely short times. The parallel measurement of many diffraction lines on a stationary sample will allow a more efficient use of the new generation of x-ray sources the X-ray free electron lasers (XFELs). PMID:26965321

  6. Two-Year-Olds Compute Syntactic Structure On-Line

    ERIC Educational Resources Information Center

    Bernal, Savita; Dehaene-Lambertz, Ghislaine; Millotte, Severine; Christophe, Anne

    2010-01-01

    Syntax allows human beings to build an infinite number of new sentences from a finite stock of words. Because toddlers typically utter only one or two words at a time, they have been thought to have no syntax. Using event-related potentials (ERPs), we demonstrated that 2-year-olds do compute syntactic structure when listening to spoken sentences.…

  7. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  8. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  9. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  10. Structure of retroviral RNAs produced by cell lines derived from spontaneous lymphomas of AKR mice.

    PubMed Central

    Pedersen, F S; Crowther, R L; Hays, E F; Nowinski, R C; Haseltine, W A

    1982-01-01

    The retrovirus expression of eight independent lymphoid cell lines derived from spontaneous thymomas of AKR mice was investigated. The RNase T1 fingerprints of viral 70S RNA produced by these cell lines were compared with genome structures of the non-leukemogenic Akv virus and with two types of cloned leukemogenic viruses derived from one of the thymoma cell lines. Viral RNAs from three cell lines, SL3, 4, and 7, were indistinguishable from one another. The fingerprint patterns indicated that these cell lines produce equal amounts of two prototype, leukomogenic SL viruses that were previously isolated from the SL3 cell line. Viral RNA produced by the SL1 and SL2 cell lines contained similar components, but at a different ratio. Two other cell lines (SL5 and SL11) produced viral RNAs that resemble those of AKR mink cell focus-forming viruses. One additional line, SL9, produced viral RNA of a novel structure. The complex pattern of viral RNA expression observed for these lymphoid cell lines can be interpreted in terms of recombination among three types of endogenous viral sequences: the Akv virus, a xenotropic virus, and an SL (for spontaneous leukemia) virus. Images PMID:7086955

  11. Detail of insulator array at Hframe structure on RyantoRainbow Line ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of insulator array at H-frame structure on Ryan-to-Rainbow Line 2 about three and one-fourth miles southwest of Ryan Dam. Array has three historic porcelain suspension insulators - Ryan Hydroelectric Facility, Ryan-to-Rainbow 100 kV Transmission Line, West bank of Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  12. Detail of insulator array at Hframe structure on RyantoRainbow Line ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of insulator array at H-frame structure on Ryan-to-Rainbow Line 1 about three miles southwest of Ryan Dam. Array has one historic porcelain suspension insulator and two non-ceramic insulators - Ryan Hydroelectric Facility, Ryan-to-Rainbow 100 kV Transmission Line, West bank of Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  13. Extracting Neutron Structure Functions in the Resonance Region

    SciTech Connect

    Yonatan Kahn

    2009-07-01

    A new iterative method is presented for extracting neutron structure functions from inclusive structure functions of nuclei, focusing specifically on the resonance region. Unlike earlier approaches, this method is applicable to both spin-averaged and spin-dependent structure functions. We show that in numerical tests, this method is able to reproduce known input functions of nearly arbitrary shape after only 5–10 iterations. We illustrate the method on extractions of F2n and g1,2n from data, and discuss the treatment of systematic errors from this extraction procedure.

  14. Target hepatic artery regional chemotherapy and bevacizumab perfusion in liver metastatic colorectal cancer after failure of first-line or second-line systemic chemotherapy.

    PubMed

    Chen, Hui; Zhang, Ji; Cao, Guang; Liu, Peng; Xu, Haifeng; Wang, Xiaodong; Zhu, Xu; Gao, Song; Guo, Jianhai; Zhu, Linzhong; Zhang, Pengjun

    2016-02-01

    Colorectal cancer liver metastasis (CRLM) is a refractory disease after failure of first-line or second-line chemotherapy. Bevacizumab is recommended as first-line therapy for advanced colorectal cancer, but is unproven in CRLM through the hepatic artery. We report favorable outcomes with targeted vessel regional chemotherapy (TVRC) for liver metastatic gastric cancer. TVRC with FOLFOX and bevacizumab perfusion through the hepatic artery was attempted for CRLM for efficacy and safety evaluation. In a single-institution retrospective observational study, 246 patients with CRLM after at least first-line or second-line failure of systemic chemotherapy received TVRC with FOLFOX (i.e. oxaliplatin, leucovorin, and 5-fluorouracil). Of 246 patients, 63 were enrolled into two groups: group 1 (n=30) received bevacizumab and TVRC following tumor progression during previous TVRC treatments; group 2 (n=33) received TVRC plus bevacizumab for CRLM on initiating TVRC. There were no significant differences in the median survival time (14.7 vs. 13.2 months, P=0.367), although the median time to progression was significant (3.3 vs. 5.5 months, P=0.026) between groups. No severe adverse events related to TVRC plus bevacizumab perfusion occurred. Target vessel regional chemotherapy with FOLFOX plus bevacizumab perfusion through the hepatic artery was effective and safe in CRLM. The optimal combination of TVRC and bevacizumab needs further confirmation in future phase II-III clinical trials.

  15. On the orbital motion of cold clouds in broad-line regions

    NASA Astrophysics Data System (ADS)

    Shadmehri, Mohsen

    2015-08-01

    We study the orbit of a pressure-confined cloud in the broad-line region (BLR) of active galactic nuclei when the combined effects of the central gravity and anisotropic radiation pressure and the drag force are considered. The physical properties of the intercloud gas, such as its pressure and dynamic viscosity, are defined as power-law functions of the radial distance. For a drag force proportional to the relative velocity of a cloud and the background gas, a detailed analysis of the orbits is performed for different values of the input parameters. We also present analytical solutions for when the intercloud pressure is uniform and the viscosity is proportional to the inverse square of the radial distance. Our analytical and numerical solutions demonstrate decay of the orbits due to the drag force, so that a cloud will eventually fall on to the central region after the so-called time-of-flight. We found that the time-of-flight of a BLR cloud is proportional to the inverse of the dimensionless drag coefficient. If the time-of-flight becomes shorter than the lifetime of the whole system, then mechanisms for continually forming BLR clouds are needed.

  16. Estimates of Regional Equilibrium Line Altitudes and Net Mass Balance from MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Menounos, B.; Moore, R. D.

    2011-12-01

    Glacier mass balance is a key variable used to assess the health of glaciers and ice sheets. Estimates of glacier mass balance are required to model the dynamic response of glaciers and ice sheets to climate change, estimate sea-level contribution from surface melt, and document the response of glaciers to climate forcing. Annually resolved estimates of regional mass balance for mountain ranges is often inferred from a sparse network of ground-based measurements of mass balance for individual glaciers. Given that net mass balance is highly correlated with the annual equilibrium line altitude (ELA), we develop an automated approach to estimate the ELA, and by inference net mass balance, on large glaciers and icefields using MODIS 250 m imagery (MOD02QKM). We discriminate areas of bare ice and snow/firn using the product of MODIS' red (0.620 - 0.670 μ m) and near infrared (0.841 - 0.876 μ m) bands. To assess the skill in estimating glacier ELAs, we compare ELAs derived from (1) manual delineation and (2) unsupervised classification of the band product to ground-based observations of ELA and net mass balance at seven long term mass-balance monitoring sites in western North America (Gulkana, Wolverine, Lemon Creek, Taku, Place, Peyto, and South Cascade). Spatial and temporal variations in MODIS-derived ELAs provide an opportunity to validate regional mass-balance models, estimate surface melt contributions to sea-level rise, and examine the cryospheric response to climate change.

  17. Direct Retrieval of Line-of-Sight Atmospheric Structure From Limb Sounding Observations

    NASA Technical Reports Server (NTRS)

    Livesey, N.; Read, W.

    1999-01-01

    Optimal estimation of atmospheric temperature and composition from limb sounding observations is extended to the direct retrieval of line-of-sight atmospheric structure that can be obtained in certain limb viewing geometries.

  18. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique

    PubMed Central

    Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja

    2015-01-01

    In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706

  19. Constructing the Coronal Magnetic Field by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Allen, Gary G.; Alexander, David

    1999-01-01

    A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (1) the normal component of the photospheric field remains unchanged, (2) the field is given in the entire corona over an active region, (3) the field remains divergence-free, and 4electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10(exp -5.5) g per s(exp 2) resulting from an electric current density of 0.79 micro A per m(exp 2). Calculations show that the plasma beta becomes larger than unity at a strong non-radial currents requires low height of about 0.25 solar radii supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients fo maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  20. How do disordered regions achieve comparable functions to structured domains?

    PubMed Central

    Latysheva, Natasha S; Flock, Tilman; Weatheritt, Robert J; Chavali, Sreenivas; Babu, M Madan

    2015-01-01

    The traditional structure to function paradigm conceives of a protein's function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases. PMID:25752799

  1. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  2. Temperature Structure of the 80 Km to 120 Km Region

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.

    1985-01-01

    Between 80 and 120 km the CIRA 1972 model is based heavily on NASA Meteorological Sounding Rocket Program (MSRP) data collected prior to 1967. Since about 1970 an abundance of E-region (100-130 km) temperature data from the incoherent scatter facilities at Arecibo, Millstone Hill, and St. Santin have also become available. The present study examines the temperature structure of the 80 to 120 km region given considerable additional MSRP rocket data, thus providing better seasonal, latitudinal, and longitudinal coverage in the 80 to 100 km region, and a combination of incoherent scatter and rocket data in the 100 to 120 km region which allows a much improved delineation of lower thermosphere temperature structue. Although some individual station comparisons indicate measurable asymmetries in longitude and latitude, data are still insufficient to separate these effects. Specific recommendations of the new CIRA are given.

  3. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics

  4. First structure on MoronytoRainbow 100kV Transmission Line below Morony Dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    First structure on Morony-to-Rainbow 100kV Transmission Line below Morony Dam and Power House. Three-pole H-frame structure with historic porcelain suspension insulators, jumper supports insulators, overhead ground wires, and pole stubs. View to east-northeast - Morony Hydroelectric Facility, Morony-to-Rainbow 100 kV Transmission Line, West bank of the Missouri River, Great Falls, Cascade County, MT

  5. Tectonic and sedimentary structures in the northern Chukchi region, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hegewald, Anne; Jokat, Wilfried

    2013-07-01

    interpretation of tectonic and sedimentary structures in the northern Chukchi region, Arctic Ocean, is important to enhance our understanding of the tectonic evolution of this region. Therefore, multichannel seismic lines as well as seismic wide-angle reflection and refraction data were acquired in the northern Chukchi region during the RV Polarstern ARK-XXIII/3 summer expedition in 2008. These data have been processed and interpreted for the three main geological provinces (Chukchi Plateau, Chukchi Abyssal Plain, and Mendeleev Ridge) to describe the sedimentary and basement structures of the northern Chukchi region. Furthermore, using the age control of five exploration wells drilled near the coast of Alaska in combination with additional seismic reflection lines located on the Chukchi Shelf, we were able to date sediment horizons within the research area. In total, six sediment horizons with ages between Barremian/Hauterivian and the Top Miocene were identified. Especially, the Top Oligocene horizon forms a pronounce unconformity on the Chukchi Plateau and on the Mendeleev Ridge flanks. The origin of this unconformity can be associated with the opening of the Fram Strait indicating a significant change in the Arctic Ocean current system.

  6. Water Structure Studied by Far Infrared Spectroscopy in FTIR Beam Line of MIRRORCLE 20

    SciTech Connect

    Miura, Nobuhiro; Moon, Ahsa; Kitagawa, Toshimichi; Yamada, Hironari

    2007-03-30

    Far infrared vibrational Spectroscopy for distilled water was performed by Fourier Transform Infrared Spectroscopy (FT-IR) in the FTIR beam line of MIRRORCLE 20. Synchrotron radiation was utilized as a light source for the absorption Spectroscopy in the frequency range from 100cm-1 to 20cm-1. Off-line measurements by black body radiation of ceramic heater were also examined in the range from 400cm-1 to 50cm-1. Wide range spectrum was obtained after the SR data merged the off-line data. We report the recent development in the beam line and the examples of spectra related to the water structure.

  7. Nuclear structure studies far from the line of beta stability

    SciTech Connect

    Avignone, F.T. III

    1986-04-15

    This report includes research activities concerning nuclear structure research of neutron rich and neutron deficient isotopes. Individual sections deal with Coulomb interactions; lifetime measurements of nuclei; calculations and Monte Carlo simulations for predicting responses of Ge and NaI(Tl) detectors to gamma radiation; and beta decay, energy levels, and mass measurements of selected isotopes. The research program features the discovery of new isotopes via their delayed proton decay and the detailed investigation of the beta-delayed, proton spectra. This report covers activities through the contract period from 1979 through 1985. 10 refs. (DWL)

  8. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  9. Determining inclinations of active galactic nuclei via their narrow-line region kinematics. II. Correlation with observed properties

    SciTech Connect

    Fischer, T. C.; Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Turner, T. J.

    2014-04-10

    Active galactic nuclei (AGNs) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight, yet the specific inclinations of all but a few AGNs are generally unknown. By determining the inclinations and geometries of nearby Seyfert galaxies using the kinematics of their narrow-line regions (NLRs) and comparing them with observed properties, we find strong correlations between inclination and total hydrogen column density, infrared color, and Hβ FWHM. These correlations provide evidence that the orientation of AGNs with respect to our line of sight affects how we perceive them beyond the Seyfert 1/2 dichotomy. They can also be used to constrain three-dimensional models of AGN components such as the broad-line region and torus. Additionally, we find weak correlations between AGN luminosity and several modeled NLR parameters, which suggests that the NLR geometry and kinematics are dependent to some degree on the AGN's radiation field.

  10. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    SciTech Connect

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  11. A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335

    SciTech Connect

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Bord, D. J.; Che, X.; Chen, C.; Cohen, S. A.; and others

    2012-01-15

    We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II {lambda}4686 broad emission line relative to the optical continuum to be 2.7 {+-} 0.6 days and the lag in the H{beta}{lambda}4861 broad emission line to be 13.9 {+-} 0.9 days. Combined with the line width, the He II lag yields a black hole mass M{sub BH} = (2.6 {+-} 0.8) Multiplication-Sign 10{sup 7} M{sub Sun }. This measurement is consistent with measurements made using the H{beta}{lambda}4861 line, suggesting that the He II emission originates in the same structure as H{beta}, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.

  12. Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Ridnour, Andrew; Brethen, Mark

    2011-01-01

    The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight

  13. Gamma-ray spectroscopy of the galactic center region: Confirmation of the time-variability of the positron annihilation line

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Cline, T. L.; Teegarden, B. J.; Tueller, J.; Durouchoux, P.; Hameury, J. M.

    1982-01-01

    The GSFC Low-Energy Gamma-Ray Spectrometer observed the region of the galactic center during a balloon flight from Alice Springs, Australia, on 1981 November 20. No significant excess over background was evident in the 511 keV annihilation line. A 98 percent confidence upper limit is derived for this line of 1.2 x .001 photons/sq. cm-s. Continuum emission was detected above 100 keV with a best-fitting power law spectrum.

  14. The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models.

    PubMed Central

    Kerr, I D; Sansom, M S

    1997-01-01

    Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore. Images FIGURE 7 FIGURE 12 PMID:9251779

  15. Resonance Region Structure Functions and Parity Violating Deep Inelastic Scattering

    SciTech Connect

    Carl E. Carlson, Benjamin C. Rislow

    2012-04-01

    The primary motive of parity violating deep inelastic scattering experiments has been to test the standard model, particularly the axial couplings to the quarks, in the scaling region. The measurements can also test for the validity of models for the off-diagonal structure functions $F_{1,2,3}^{\\gamma Z}(x,Q^2)$ in the resonance region. The off-diagonal structure functions are important for the accurate calculation of the $\\gamma Z$-box correction to the weak charge of the proton. Currently, with no data to determine $F_{1,2,3}^{\\gamma Z}(x,Q^2)$ directly, models are constructed by modifying existing fits to electromagnetic data. We present the asymmetry value for deuteron and proton target predicted by several different $F_{1,2,3}^{\\gamma Z}(x,Q^2)$ models, and demonstrate that there are notable disagreements.

  16. IPS observations of heliospheric density structures associated with active regions

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Altrock, R.; Woan, G.; Slater, G.

    1996-01-01

    Interplanetary scintillation (IPS) measurements of the 'disturbance factor' g, obtained with the Cambridge (UK) array can be used to explore the heliospheric density structure. We have used these data to construct synoptic (Carrington) maps, representing the large-scale enhancements of the g-factor in the inner heliosphere. These maps emphasize the stable corotating, rather than the transient heliospheric density enhancements. We have compared these maps with Carrington maps of Fe XIV observations National Solar Observatory ((NSO), Sacramento Peak) and maps based on Yohkoh Soft X-Ray Telescope (SXT) X-ray observations. Our results indicate that the regions of enhanced g tend to map to active regions rather than the current sheet. The implication is that act ve regions are the dominant source of the small-scale (approximately equal 200 km) density variations present in the quiet solar wind.

  17. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region

    NASA Technical Reports Server (NTRS)

    Grossmann, Benoist E.; Browell, Edward V.

    1989-01-01

    High-resolution spectroscopic measurements of H2O vapor in the 720-nm wavelength region were conducted to investigate the broadening and shifting of H2O lines by air, nitrogen, oxygen, and argon over a wide range of pressures and temperatures. For each of the buffer gases under study, a linear relationship was found between the widths and the shifts, with the broader lines having the smaller pressure shifts. The pressure shifts measured compared favorably with theoretical values reported by Bykov et al. (1988). The temperature-dependence exponents for air-broadening were found to be J-dependent, with the lower-J lines having the higher exponents.

  18. Absolute intensities of CO2 lines in the 3140-3410/cm spectral region

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Devi, V. Malathy; Ferry-Leeper, Penelope S.; Rinsland, Curtis P.

    1988-01-01

    Absolute intensities for 430 transitions belonging to eleven rotation-vibration bands of (C-12)(O-16)2, (C-13)(O-16)2, and (O-16)(C-18)(O-18) in the 3140-3410/cm spectral region have been determined by analyzing spectra recorded at 0.01/cm resolution with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak. The data were recorded at room temperature and low pressures (less than 10 torr) using a natural sample of carbon dioxide. Intensities were derived using a nonlinear least-squares spectral fitting procedure, and the values obtained for each band have been analyzed to determine the vibrational band intensity and nonrigid rotor coefficients. An alternative mathematical formulation is shown in the case of bands for which the Coriolis effect is large and the Q-branch line intensities were not determinable either because they were severely blended or absent from the spectra. Comparison are made between the results obtained in this study and other published values.

  19. Multiple regression equations modelling of groundwater of Ajmer-Pushkar railway line region, Rajasthan (India).

    PubMed

    Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra

    2010-01-01

    In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.

  20. Isomer Studies for Nuclei near the Proton Drip Line in the Mass 130-160 Region

    SciTech Connect

    Cullen, D. M.; Mason, P. J. R.; Khan, S.; Kishada, A. M.; Varley, B. J.; Rigby, S. V.; Scholey, C.; Greenlees, P.; Rahkila, P.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppaenen, A. P.; Nyman, M.; Uusitalo, J.; Grahn, T.; Nieminen, P.; Pakarinen, J.

    2007-11-30

    This report details the status of an experimental research programme which has studied isomeric states in the mass 130-160 region of the nuclear chart. Several new isomers have been established and characterised near the proton drip line using a recoil isomer tagging technique at the University of Jyvaeskylae, Finland. The latest experiments have been performed with a modified setup where the standard GREAT focal-plane double-sided silicon-strip detector was changed to a dual multi-wire proportional-counter arrangement. This new setup has improved capability for short-lived isomer studies where high focal-plane rates can be tolerated. The results of key recent experiments for nuclei situated above ({sup 153}Yb,{sup 152}Tm) and below ({sup 136}Pm,{sup 142}Tb) the N = 82 shell gap were presented along with an interpretation for the isomers. Finally, the future prospects of the technique, using an isomer-tagged differential-plunger setup, were discussed. This technique will be capable of establishing the deformation of the states above the isomers and will aid in the process of assigning underlying single-particle configurations to the isomeric states.

  1. Absolute intensities of CO(2) lines in the 3140-3410-cm(-1) spectral region.

    PubMed

    Benner, D C; Devi, V M; Rinsland, C P; Ferry-Leeper, P S

    1988-04-15

    Absolute intensities for 430 transitions belonging to eleven rotation-vibration bands of (12)C(16)O(2),(13)C(16)O(2) and(16)O(12)C(18)O in the 3140-3410-cm(-1) spectral region have been determined by analyzing spectra recorded at 0.01-cm(-1) resolution with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak. The data were recorded at room temperature and low pressures (<10 Torr) using a natural sample of carbon dioxide. Intensities were derived using a nonlinear least-squares spectral fitting procedure, and the values obtained for each band have been analyzed to determine the vibrational band intensity and nonrigid rotor coefficients. An alternative mathematical formulation is shown in the case of bands for which the Coriolis effect is large and the Q-branch line intensities were not determinate either because they were severely blended or absent from the spectra. Comparisons are made between the results obtained in this study and other published values.

  2. Density structure of the giant HII region NGC 2363

    NASA Astrophysics Data System (ADS)

    Pérez, Enrique; González Delgado, Rosa; Vílchez, José M.

    We perform a detailed measurement of the electron density along two slit position angles in the bright, low metallicity extragalactic HII region NGC 2363. A comparison of the density structures obtained with the two independent diagnostics given by [AIV]4711/4740 and [SII]6716/6731, show that they present both different absolute values and different radial dependencies, with the [AIV] densities reaching up to 1000 cm^-3. We explore the implications for the computation of the He abundance.

  3. ESSEA On-Line Courses and the WestEd Eisenhower Regional Consortium (WERC)

    NASA Astrophysics Data System (ADS)

    Rognier, E.

    2001-12-01

    The WestEd Eisenhower Regional Consortium (WERC) is in its second year of offering two Earth Systems Science On-line Graduate courses from IGES - one for High School teachers, and one for Middle School teachers. These high-quality courses support WERC's commitment to "supporting increased scientific and mathematical literacy among our nation's youth through services and other support aimed at enhancing the efforts of those who provide K-12 science and mathematics education." WERC has been able to use its EdGateway online community network to offer these courses to environmental education and science teachers nationwide. Through partnerships with the North American Association for Environmental Education (NAAEE), the National Environmental Education Advancement Project (NEEAP), and other regional, state and local science and environmental education organizations, WERC has a broad reach in connecting with science educators nationwide. WERC manages several state and national listservs, which enable us to reach thousands of educators with information about the courses. EdGateway also provides a private online community in which we offer the courses. WERC partners with two Master Teachers from Utah, who facilitate the courses, and with the Center for Science and Mathematics Education at Weber State University, who provides low-cost graduate credit for the courses. Our students have included classroom teachers from upper elementary through high school, community college science teachers, and environmental science center staff who provide inservice for teachers. Educators from Hawaii to New Jersey have provided diverse personal experiences of Earth Systems Science events, and add richness to the online discussions. Two Earth Science Experts, Dr. Rick Ford from Weber State University, and Dr. Art Sussman from WestEd also contribute to the high caliber of learning the students experience in the courses. (Dr. Sussman's book, Dr. Art's Guide to Planet Earth, is used as one of

  4. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: III. Emission Line Diagnostics of Ensembles of H II Regions

    SciTech Connect

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Leitherer, C; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A

    2006-05-10

    We have built, as far as possible, fully self-consistent models of H II regions around aging clusters of stars. These produce strong emission line diagnostics applicable to either individual H II regions in galaxies, or to the integrated emission line spectra of disk or starburst galaxies. The models assume that the expansion and internal pressure of individual H II regions is driven by the net input of mechanical energy from the central cluster, be it through winds or supernova events. This eliminates the ionization parameter as a free variable, replacing it with a parameter which depends on the ratio of the cluster mass to the pressure in the surrounding interstellar medium. These models explain why H II regions with low abundances have high excitation, and demonstrate that at least part of the warm ionized medium is the result of overlapping faint, old, large, and low pressure H II regions. We present a number of line ratios (at both optical and IR wavelengths) that provide reliable abundance diagnostics for either single H II regions or for integrated galaxy spectra, and others that are sensitive to the age of the cluster stars exciting individual H II regions.

  5. Self-shadowing Effects of Slim Accretion Disks in Active Galactic Nuclei: The Diverse Appearance of the Broad-line Region

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Min; Qiu, Jie; Du, Pu; Ho, Luis C.

    2014-12-01

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.

  6. Self-shadowing effects of slim accretion disks in active galactic nuclei: the diverse appearance of the broad-line region

    SciTech Connect

    Wang, Jian-Min; Qiu, Jie; Du, Pu; Ho, Luis C.

    2014-12-10

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.

  7. The structure of non-hierarchical triple system stability regions

    NASA Astrophysics Data System (ADS)

    Martynova, A. I.; Orlov, V. V.; Rubinov, A. V.

    2009-08-01

    A detailed study of the two-dimensional initial conditions region section in the planar three-body problem is performed. The initial conditions for the three well-known stable periodic orbits (the Schubart’s orbit, the Broucke’s orbit and the eight-like orbit) belong to this section. Continuous stability regions (for the fixed integration interval) generated by these periodic orbits are found. Zones of the quick stability violation are outlined. The analysis of some concrete trajectories coming from various stability regions is performed. In particular, trajectories possessing varying number of “eights” formed by moving triple system components are discovered. Orbits with librations are also found. The new periodic orbit originated from the zone siding with the Schubart’s orbit region is discovered. This orbit has reversibility points (each of the outer bodies possess a reversibility point) and two points of close double approach of the central body to each of the outer bodies. The influence of the numerical integration accuracy on the results is studied. The stability regions structure is preserved during calculations with different values of the precision parameter, numerical integration methods and regularization algorithms of the equations of motion.

  8. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: RADIO STRUCTURE

    SciTech Connect

    Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N.

    2015-04-01

    We present deep radio images of the inner ∼50 kpc of Centaurus A, taken with the Karl G. Jansky Very Large Array at 90 cm. We focus on the Transition Regions between the inner galaxy—including the active nucleus, inner radio lobes, and star-forming disk—and the outer radio lobes. We detect previously unknown extended emission around the Inner Lobes, including radio emission from the star-forming disk. We find that the radio-loud part of the North Transition Region (NTR), known as the North Middle Lobe, is significantly overpressured relative to the surrounding interstellar medium. We see no evidence for a collimated flow from the active galactic nucleus through this region. Our images show that the structure identified by Morganti et al. as a possible large-scale jet appears to be part of a narrow ridge of emission within the broader, diffuse, radio-loud region. This knotty radio ridge is coincident with other striking phenomena: compact X-ray knots, ionized gas filaments, and streams of young stars. Several short-lived phenomena in the NTR, as well as the frequent re-energization required by the Outer Lobes, suggest that energy must be flowing through both Transition Regions at the present epoch. We suggest that the energy flow is in the form of a galactic wind.

  9. Seismic Structure of India from Regional Waveform Matching

    NASA Astrophysics Data System (ADS)

    Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.

    2003-12-01

    We use a neighborhood adaptive grid search procedure and reflectivity synthetics to model regional distance range (500-2000~km) seismograms recorded in India and to determine the variation in the crust and uppermost mantle structure across the subcontinent. The portions of the regional waveform which are most influenced by the crust and uppermost mantle structure are the 10-100~s period Pnl and fundamental mode surface waves. We use the adaptive grid search algorithm to match both portions of the seismogram simultaneously. This procedure results in a family of 1-D path average crust and upper mantle velocity and attenuation models whose propagation characteristics closely match those of the real Earth. Our data set currently consist of ˜20 seismograms whose propagation paths are primarily confined to the Ganges Basin in north India and the East Dharwar Craton of south India. The East Dharwar Craton has a simple and uniform structure consisting of a 36+/-2 km thick two layer crust, and an uppermost mantle with a sub-Moho velocity of 4.5~km/s. The structure of northern India is more complicated, with pronounced low velocities in the upper crustal layer due to the large sediment thicknesses in the Ganges basin.

  10. Predicted Fe II Spectra plus UV through sub-mm Emission Line Fluxes for Other Species Arising in Narrow Line Regions of AGNs

    NASA Astrophysics Data System (ADS)

    Verner, Ekaterina; Bruhweiler, F. C.; Wills, B. J.

    2009-01-01

    Optical and UV spectra indicate pronounced Fe II emission from multitudinous lines superposed on the underlying UV and optical continua of Seyferts and QSOs. Although the intrinsic UV of the these objects exhibit strong Fe II emission arising in higher density Broad Line Region (BLR) gas, observations at visual wavelengths indicate Fe II originating in both BLR and lower density Narrow Line Region (NLR) gas. Our modeling of observed intrinsic UV Fe II emission produces better fits with both BLR and NLR components. We have calculated a grid of photoionization models appropriate for NLR, spanning a range of number density [log (n/cm-3) = 1.0 to 8.0], photoionizing flux [log (Φ/cm-2 s-1) = 10.0-18.0], microturbulence (ξ = 0, 2, 10, and 20 km s-1), and abundance (0.1, 0.5, 1.0 and 5 times solar). These models include the effects of cooling from Fe II. The effects of Fe II cooling and the use of a 371 versus an 830-level atom for Fe II in producing the Fe II emission spectra are explored. We present predicted Fe II spectra from the UV through the IR, plus fluxes of important lines of other species from the UV through the sub-mm wavelength range. These predictions, besides being relevant for studies of Fe II in AGNs, provide predicted fluxes for important lines for upcoming missions such as Herschel and SOPHIA. These results will be made available to researchers via the World Wide Web. We acknowledge the support of the National Science Foundation through grant AST-0607465 to CUA.

  11. Sound transmission through triple-panel structures lined with poroelastic materials

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2015-03-01

    In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.

  12. Crustal structure of the Nordland region, northern Norway

    NASA Astrophysics Data System (ADS)

    Maystrenko, Yuriy P.; Olesen, Odleiv; Gernigon, Laurent; Gradmann, Sofie

    2016-04-01

    To understand the major structural features of the sedimentary cover and crystalline crust within the Nordland County area of Norway, a data-based 3D structural model has been constructed in the framework of the Neonor2 project, "Neotectonics in Nordland - implications for petroleum exploration". The 3D structural model covers the Lofoten Ridge, the Ribban and Vestfjorden basins and adjacent areas of the Norwegian mainland. The model also covers the northern part of the adjacent Vøring Basin. At the regional scale, the 3D model includes the rifted margin which is located at the transition from the exposed crystalline rocks of the Fennoscandian Shield in the east to the Cenozoic oceanic domain of the Norwegian-Greenland Sea in the west. During the construction of the 3D structural model, all recently published and/or released data have been compiled in order to set the initial model. This initial 3D model has been validated by a 3D density modelling in order to obtain a gravity-consistent 3D structural model of the entire study area. The 3D density modelling has been carried out by using the IGMAS plus software (the Interactive Gravity and Magnetic Application System). During the 3D density modelling, densities have been assigned as constant values for the crystalline rocks. In contrast, densities of sedimentary rocks have been set to be depth-dependent in order to reflect the compaction of sedimentary rocks with depth. According to the results of the 3D density modeling, the crystalline crust of the investigated region consists of several layers with different densities. The deepest crustal layer is the high-density lower crust which corresponds to the high-velocity lower crustal layer. The regional-scale gravity response associated with the positions of the Moho and lithosphere-asthenosphere boundary is one of the key factors for performing a proper 3D density model of the study area. At the regional scale, the Moho and lithosphere-asthenosphere boundary are

  13. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.; Moore, Ronald L.

    2014-01-01

    Hi-C: first observational evidence of field line braiding in the AR corona; NLFFF extrapolations support. Flux emergence and/or cancellation in the coronal braided region generate large stresses and tension in the coronal field loops which is released as heat in the corona. The field in these sub-regions are highly sheared and have apparent high speed plasma flows, therefore, the contribution from shearing flows to power the coronal and transition region heating can not be ruled out! The spatial resolution of Hi-­C is five times better than AIA. The cadence of Hi-C is 2.5 - 6 times better than AIA. The 193 Å was selected because of the strong emission line of Fe XII (peak formation temperature of 1.5 MK). Hi-­C collected data for 345 s @ 5.4 s cadence. The Hi-C target region was NOAA AR 11520; 11 July 2012, 18:51-18:57 UT. NLFFF extrapolation confirms the braided structure, and free magnetic energy estimates in the given volume.

  14. The spatial and kinematic structure of QSO metal-line absorption systems

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.

    1992-01-01

    Recent attempts to infer the spatial and kinematic distributions of the material responsible for absorption lines observed in the spectra of background QSOs are presented. Current models of the absorbing regions are compared, and initial observational results are described. This research is expected to lead eventually to a detailed picture of the extended gaseous halo regions of galaxies at early evolutionary stages and to an understanding of the physical processes at work in these halos.

  15. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Wetzel, D.; Bonwell, E; Fritz, T; Fritz, A

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the {alpha}-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of {alpha}-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm{sup -1} was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}mX5{mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the {alpha}-helix population relative to other secondary protein structures from the position and shape of the amide I

  16. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Bonwell,E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of a-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}m x 5 {mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current

  17. Line group techniques in description of the structural phase transitions in some superconductors

    NASA Technical Reports Server (NTRS)

    Meszaros, CS.; Balint, A.; Bankuti, J.

    1995-01-01

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature SUperconductors. As an example, the material YBa2Cu3O(7-x) is discussed briefly.

  18. On-line failure detection and damping measurement of aerospace structures by random decrement signatures

    NASA Technical Reports Server (NTRS)

    Cole, H. A., Jr.

    1973-01-01

    Random decrement signatures of structures vibrating in a random environment are studied through use of computer-generated and experimental data. Statistical properties obtained indicate that these signatures are stable in form and scale and hence, should have wide application in one-line failure detection and damping measurement. On-line procedures are described and equations for estimating record-length requirements to obtain signatures of a prescribed precision are given.

  19. Structural design considerations for a line-focus reflective module using inexpensive composite materials

    NASA Astrophysics Data System (ADS)

    Murphy, L. M.

    1982-08-01

    The structural design aspects of a parabolic trough reflective module is addressed. The reflective module is a lightweight, low flexural rigidity design that is rotated about the focal line. The modules and support frame are designed to rotate with a cable drive system in a cross row manner. Analysis indicates that the structural and optical aspects of the reflector frame concept are adequate, with dramatic savings in weight and costs for the structure.

  20. The effect of nonequilibrium ionization on ultraviolet line shifts in the solar transition region

    NASA Technical Reports Server (NTRS)

    Spadaro, D.; Noci, G.; Zappala, R. A.; Antiochos, S. K.

    1990-01-01

    The line profiles and wavelength positions of all the important emission lines due to carbon were computed for a variety of steady state siphon flow loop models. For the lines from the lower ionization states (C II-C IV) a preponderance of blueshifts was found, contrary to the observations. The lines from the higher ionization states can show either a net red- or blueshift, depending on the position of the loop on the solar disk. Similar results are expected for oxygen. It is concluded that the observed redshifts cannot be explained by the models proposed here.

  1. The host galaxies and narrow-line regions of four double-peaked [OIII] AGNs

    SciTech Connect

    Villforth, Carolin; Hamann, Fred

    2015-03-01

    Major gas-rich mergers of galaxies are expected to play an important role in triggering and fueling luminous active galactic nuclei (AGNs). The mechanism of AGN fueling during mergers, however, remains poorly understood. We present deep multi-band (u/r/z) imaging and long-slit spectroscopy of four double-peaked [OIII] emitting AGNs. This class of object is likely associated with either kiloparsec-separated binary AGNs or final stage major mergers, although AGNs with complex narrow-line regions (NLRs) are known contaminants. Such objects are of interest since they represent the onset of AGN activity during the merger process. Three of the four double-peaked [OIII] emitters studied have been confirmed as major mergers using near-infrared imaging and one is a confirmed X-ray binary AGN. All AGNs are luminous, radio-quiet to radio-intermediate, and have redshifts of 0.1regions showing considerable reddening, consistent with enhanced star formation. One source shows an offset between gas and stellar kinematics, consistent with either a bipolar flow or a counter-rotating gas disk. In all other sources, the ionized gas

  2. Variations of line parameters and bisectors over granular-intergranular regions in the 2-D artificial solar granulation.

    NASA Astrophysics Data System (ADS)

    Gadun, A. S.; Hanslmeier, A.

    Variations in the Fe I lines λλ 491.154, 491.178, and 649.499 nm in the solar spectrum observed with high spectral and spatial resolution in selected granular-intergranular regions are interpreted with the use of two sets of solar granulation models which differ by the horizontal size of the region modeled and by treatment of thermal convection. The authors analyze variations of the continuum intensity, residual intensity in the line cores, Doppler velocities, equivalent widths, half-widths, and asymmetries of synthesized lines in the center of the solar disk, as well as correlations between the parameter variations. The authors compare also these correlations with those between the observed line parameters. It is found that the models which describe the solar thermal convection as quasi-stationary, cellular, and laminar motions show strong correlation between line parameter variations and cannot reproduce the behavior of spectral line characteristics observed in individual granular-intergranular areas. Observational results are well reproduced by the models where the thermal convection is treated as a completely nonstationary system with active secondary motions in the middle and upper photosphere.

  3. Velocity structure along the Ogasawara Ridge fore-arc region

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Yamashita, M.; Kodaira, S.; Kaiho, Y.; Sato, T.; Takahashi, T.; No, T.; Tatsumi, Y.

    2012-12-01

    The Ogasawara Ridge is known as one of oldest arc on the Philippine Sea Plate. This Ridge has very complex structure. According to refraction survey crossing the ridge, the ridge has a very thin granitic layer with velocity of approximately 6 km/s, an andesitic layer with a velocity of 6.4-6.6 km/s and gabbroic layer with a velocity of 7.0-7.2 km/s (Takahashi et al., 2009). On the other hand, the thin crust with a thickness less than 10 km distributes beneath the shallowest topographic peak (Kodaira et al., 2012). According to geologic studies, boninites, fore-arc basalts, gabbros and peridotites were collected by Shinkai 6500 dives on the trench slope (Ishizuka et al., 2006). The observation is expected to be helpful for subduction initiation studies because these geological sequences are similar characteristics of ophiolite. Therefore, we carried out refraction survey using ocean bottom seismographs (OBSs) along the strike of the Ogasawara Ridge to detect such geological sequences using seismic imaging technique as one of site surveys for IBM drilling. This survey was carried by using R/V "Kairei" of Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in 2011 and we collected not only OBSs data but also multi-channel reflection data (MCSs) on a seismic line with a length of 250 km. Total 43 OBSs were deployed at an interval of 5 km and the airgun shooting with a total capacity of 7800 cu.in. was 200 m interval. First arrivals on OBS records are traced to offsets of 40-60 km, and the data is generally noisy suggesting complexity of fore-arc structure. If there is peridotite layer in the hanging wall side, the refractions with apparent velocity of about 8 km/s are identified, and discontinuous jump of the first arrivals should be at far side due to subducting oceanic crust. The observed refractions, however, have apparent velocities between 6.0-7.5 km/s to far side. Refractions with an apparent velocity of 8 km/s seem to be limited in narrow area. In

  4. Mg ii Lines Observed During the X-class Flare on 29 March 2014 by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Liu, W.; Heinzel, P.; Kleint, L.; Kašparová, J.

    2015-12-01

    Mg ii lines represent one of the strongest emissions from the chromospheric plasma during solar flares. In this article, we studied the Mg ii lines observed during the X1 flare on 29 March 2014 (SOL2014-03-29T17:48) by the Interface Region Imaging Spectrograph (IRIS). IRIS detected large intensity enhancements of the Mg ii h and k lines, subordinate triplet lines, and several other metallic lines at the flare footpoints during this flare. We have used the advantage of the slit-scanning mode (rastering) of IRIS and performed, for the first time, a detailed analysis of spatial and temporal variations of the spectra. Moreover, we were also able to identify positions of strongest hard X-ray (HXR) emissions using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations and to correlate them with the spatial and temporal evolution of IRIS Mg ii spectra. The light curves of the Mg ii lines increase and peak contemporarily with the HXR emissions but decay more gradually. There are large red asymmetries in the Mg ii h and k lines after the flare peak. We see two spatially well-separated groups of Mg ii line profiles, non-reversed and reversed. In some cases, the Mg ii footpoints with reversed profiles are correlated with HXR sources. We show the spatial and temporal behavior of several other line parameters (line metrics) and briefly discuss them. Finally, we have synthesized the Mg ii k line using our non-LTE code with the Multilevel Accelerated Lambda Iteration (MALI) technique. Two kinds of models are considered, the flare model F2 of Machado et al. ( Astrophys. J. 242, 336, 1980) and the models of Ricchiazzi and Canfield ( Astrophys. J. 272, 739, 1983, RC models). Model F2 reproduces the peak intensity of the non-reversed Mg ii k profile at flare maximum, but does not account for high wing intensities. On the other hand, the RC models show the sensitivity of Mg ii line intensities to various electron-beam parameters. Our simulations also show that

  5. Studying the Variation of the Fine-Structure Constant Using Emission-Line Multiplets

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk; Pradhan, Anil K.; Frank, Stephan

    2005-08-01

    As an extension of the method by Bahcall and coworkers to investigate the time dependence of the fine-structure constant, we describe an approach based on new observations of forbidden-line multiplets from different ionic species. We obtain optical spectra of fine-structure transitions in [Ne III], [Ne V], [O III], [O I], and [S II] multiplets from a sample of 14 Seyfert 1.5 galaxies in the low-z range 0.035line studies of the time variation of the fine-structure constant. The approach can be further extended and generalized to a ``many-multiplet emission-line method'' analogous in principle to the corresponding method using absorption lines. With that aim, we note that the theoretical limits on emission-line ratios of selected ions are precisely known and provide well-constrained selection criteria. We also discuss several other forbidden and allowed lines that may constitute the basis for a more rigorous study using high-resolution instruments on the next generation of 8 m class telescopes. Based on observations obtained at MDM Observatory, Arizona.

  6. Bioclimatic regions influence genetic structure of four Jordanian Stipa species.

    PubMed

    Hamasha, H R; Schmidt-Lebuhn, A N; Durka, W; Schleuning, M; Hensen, I

    2013-09-01

    Strong environmental gradients can affect the genetic structure of plant populations, but little is known as to whether closely related species respond similarly or idiosyncratically to ecogeographic variation. We analysed the extent to which gradients in temperature and rainfall shape the genetic structure of four Stipa species in four bioclimatic regions in Jordan. Genetic diversity, differentiation and structure of Stipa species were investigated using amplified fragment length polymorphism (AFLP) molecular markers. For each of the four study species, we sampled 120 individuals from ten populations situated in distinct bioclimatic regions and assessed the degree of genetic diversity and genetic differentiation within and among populations. The widespread ruderals Stipa capensis and S. parviflora had higher genetic diversity than the geographically restricted semi-desert species S. arabica and S. lagascae. In three of the four species, genetic diversity strongly decreased with precipitation, while genetic diversity increased with temperature in S. capensis. Most genetic diversity resided among populations in the semi-desert species (Φ(ST) = 0.572/0.595 in S. arabica/lagascae) but within populations in the ruderal species (Φ(ST) = 0.355/0.387 S. capensis/parviflora). Principal coordinate analysis (PCoA) and STRUCTURE analysis showed that Stipa populations of all species clustered ecogeographically. A genome scan revealed that divergent selection at particular AFLP loci contributed to genetic differentiation. Irrespective of their different life histories, Stipa species responded similarly to the bioclimatic gradient in Jordan. We conclude that, in addition to predominant random processes, steep climatic gradients might shape the genetic structure of plant populations.

  7. Bioclimatic regions influence genetic structure of four Jordanian Stipa species.

    PubMed

    Hamasha, H R; Schmidt-Lebuhn, A N; Durka, W; Schleuning, M; Hensen, I

    2013-09-01

    Strong environmental gradients can affect the genetic structure of plant populations, but little is known as to whether closely related species respond similarly or idiosyncratically to ecogeographic variation. We analysed the extent to which gradients in temperature and rainfall shape the genetic structure of four Stipa species in four bioclimatic regions in Jordan. Genetic diversity, differentiation and structure of Stipa species were investigated using amplified fragment length polymorphism (AFLP) molecular markers. For each of the four study species, we sampled 120 individuals from ten populations situated in distinct bioclimatic regions and assessed the degree of genetic diversity and genetic differentiation within and among populations. The widespread ruderals Stipa capensis and S. parviflora had higher genetic diversity than the geographically restricted semi-desert species S. arabica and S. lagascae. In three of the four species, genetic diversity strongly decreased with precipitation, while genetic diversity increased with temperature in S. capensis. Most genetic diversity resided among populations in the semi-desert species (Φ(ST) = 0.572/0.595 in S. arabica/lagascae) but within populations in the ruderal species (Φ(ST) = 0.355/0.387 S. capensis/parviflora). Principal coordinate analysis (PCoA) and STRUCTURE analysis showed that Stipa populations of all species clustered ecogeographically. A genome scan revealed that divergent selection at particular AFLP loci contributed to genetic differentiation. Irrespective of their different life histories, Stipa species responded similarly to the bioclimatic gradient in Jordan. We conclude that, in addition to predominant random processes, steep climatic gradients might shape the genetic structure of plant populations. PMID:23369254

  8. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  9. A STRUCTURAL ANALYSIS OF STAR-FORMING REGION AFGL 490

    SciTech Connect

    Masiunas, L. C.; Gutermuth, R. A.; Pipher, J. L.; Megeath, S. T.; Myers, P. C.; Kirk, H. M.; Fazio, G. G.; Allen, L. E.

    2012-06-20

    We present Spitzer IRAC and MIPS observations of the star-forming region containing intermediate-mass young stellar object (YSO) AFGL 490. We supplement these data with near-IR Two Micron All Sky Survey photometry and with deep Simultaneous Quad Infrared Imaging Device observations off the central high-extinction region. We have more than doubled the known membership of this region to 57 Class I and 303 Class II YSOs via the combined 1-24 {mu}m photometric catalog derived from these data. We construct and analyze the minimum spanning tree of their projected positions, isolating one locally overdense cluster core containing 219 YSOs (60.8% of the region's members). We find this cluster core to be larger yet less dense than similarly analyzed clusters. Although the structure of this cluster core appears irregular, we demonstrate that the parsec-scale surface densities of both YSOs and gas are correlated with a power-law slope of 2.8, as found for other similarly analyzed nearby molecular clouds. We also explore the mass segregation implications of AFGL 490's offset from the center of its core, finding that it has no apparent preferential central position relative to the low-mass members.

  10. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    NASA Astrophysics Data System (ADS)

    Wilczynska, Michael R.; Webb, John K.; King, Julian A.; Murphy, Michael T.; Bainbridge, Matthew B.; Flambaum, Victor V.

    2015-12-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of 0.4 ≤ zabs ≤ 2.3 observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of Δα/α = (0.22 ± 0.23) × 10-5, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular, we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of Δα/α measurements, thus unnecessarily reducing the overall precision. We further show that fitting absorption systems with too few velocity components also results in a significant increase in the scatter of Δα/α measurements, and in addition causes Δα/α error estimates to be systematically underestimated. These results thus identify some of the potential pitfalls in analysis techniques and provide a guide for future analyses.

  11. MAGNETIC STRUCTURE PRODUCING X- AND M-CLASS SOLAR FLARES IN SOLAR ACTIVE REGION 11158

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Shiota, D.

    2013-06-10

    We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13-16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

  12. Alignment of the system's chief nursing officer: staff or direct line structure?

    PubMed

    Kerfoot, Karlene M; Luquire, Rosemary

    2012-01-01

    The role of the system chief nursing officer nationally and internationally has been traditionally structured as a staff model, a direct line model, or a hybrid that includes parts of each model. The choice of structure should be made after a thorough investigation of what outcomes the system wants this position to accomplish, developing the appropriate structure to achieve these outcomes, and then engaging a chief nursing officer with the skills indicated by the type of structure chosen. This article describes these 3 structures and the support infrastructure necessary for each model.

  13. TagLine: Information Extraction for Semi-Structured Text in Medical Progress Notes

    PubMed Central

    Finch, Dezon K.; McCart, James A.; Luther, Stephen L.

    2014-01-01

    Statistical text mining and natural language processing have been shown to be effective for extracting useful information from medical documents. However, neither technique is effective at extracting the information stored in semi-structure text elements. A prototype system (TagLine) was developed to extract information from the semi-structured text using machine learning and a rule based annotator. Features for the learning machine were suggested by prior work, and by examining text, and selecting attributes that help distinguish classes of text lines. Classes were derived empirically from text and guided by an ontology developed by the VHA’s Consortium for Health Informatics Research (CHIR). Decision trees were evaluated for class predictions on 15,103 lines of text achieved an overall accuracy of 98.5 percent. The class labels applied to the lines were then used for annotating semi-structured text elements. TagLine achieved F-measure over 0.9 for each of the structures, which included tables, slots and fillers. PMID:25954358

  14. A time-resolved study of the broad-line region in blazar 3C 454.3

    SciTech Connect

    Isler, Jedidah C.; Urry, C. M.; Coppi, P.; Bailyn, C.; Buxton, M.; Chatterjee, R.; Bonning, E. W.; Maraschi, L.

    2013-12-20

    We present multi-epoch optical observations of the blazar 3C 454.3 (z = 0.859) from 2008 August through 2011 December, using the Small and Medium Aperture Research Telescope System Consortium 1.5 m + RCSpectrograph and 1.3 m + ANDICAM in Cerro Tololo, Chile. The spectra reveal that the broad emission lines Mg II, Hβ, and Hγ are far less variable than the optical or γ-ray continuum. Although the γ-rays varied by a factor of 100 above the EGRET era flux, the lines generally vary by a factor of two or less. Smaller variations in the γ-ray flux did not produce significant variation in any of the observed emission lines. Therefore, to first order, the ionizing flux from the disk changes only slowly during large variations of the jet. However, two exceptions in the response of the broad emission lines are reported during the largest γ-ray flares in 2009 December and 2010 November, when significant deviations from the mean line flux in Hγ and Mg II were observed. Hγ showed a maximum 3σ and 4σ deviation in each flare, respectively, corresponding to a factor of 1.7 and 2.5 increase in flux. Mg II showed a 2σ deviation in both flares; no variation was detected in Hβ during either flare. These significant deviations from the mean line flux also coincide with 7 mm core ejections reported previously (Jorstad et al.). The correlation of the increased emission line flux with millimeter core ejections and γ-ray, optical, and ultraviolet flares suggests that the broad-line region extends beyond the γ-emitting region during the 2009 and 2010 flares.

  15. The Spin Structure of the Proton in the Resonance Region

    SciTech Connect

    Renee Fatemi

    2002-01-01

    Inclusive double spin asymmetries have been measured for {rvec p}({rvec e},e{prime}) using the CLAS detector and a polarized {sup 15}NH{sub 3} target at Jefferson Lab in 1998. The virtual photon asymmetry A{sub 1}, the longitudinal spin structure function, g{sub 1} (x, Q{sup 2}), and the first moment {Gamma}{sub 1}{sup p}, have been extracted for a Q{sup 2} range of 0.15-2.0 GeV{sup 2}. These results provide insight into the low Q{sup 2} evolution of spin dependent asymmetries and structure functions as well as the transition of {Gamma}{sub 1}{sup p} from the photon point, where the Gerasimov, Drell and Hearn Sum Rule is expected to be satisfied, to the deep inelastic region.

  16. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, Knut; Moen, Joran; Pedersen, Arne

    2010-05-01

    Quasistatic electric field structures in the vicinity of the cusp have been studied using Cluster data. There are two categories of electric potential structures, S-shaped and U-shaped. In previous studies in the nightside auroral region, the S-shaped potential was uniquely related to the boundary transition between low density and high density plasma regimes, leading to the conclusion that the electric field profile depends on whether the plasma populations on each side of the boundary can support intense field-aligned and Pedersen currents. In this study in the dayside cusp this is not the case, and a different explanation has to be sought. Most electric field structures are associated with the start of the cusp ion dispersion or with injection signatures within the cusp, and the field-aligned currents associated with these structures are found to be consistent with the cusp currents expected for the IMF By polarity at the time. This indicates that the electric field structures are generated by the cusp current system, or modified by the cusp current system to be consistent with the required currents. Furthermore, we provide firm evidence for the dayside Region 1 current to be located on open field lines, which have been postulated but to our knowledge heretofore not experimentally verified.

  17. Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Gamache, Robert R.

    2016-08-01

    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

  18. Shallow velocity structure in the Imperial Valley region of Southern California

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.

    2013-12-01

    The Imperial Valley, located south of the Salton Sea of Southern California, contains a pull-apart basin formed by the on-going oblique extension between the southernmost San Andreas fault and the northern Imperial fault. In this very seismically active area, the earthquakes tend to occur in the form of seismic swarms (e.g. events in August 2012), often related to the geothermal systems in the valley. Previous active seismic studies (e.g. Fuis et al. 1979, Parsons and McCarthy 1996) have revealed major crustal structures including the shallow basin structures in the valley and surroundings, based primarily on 2D models. A better 3D structure model is still awaiting construction to provide improved information on the location of earthquakes, faults, fault-zone properties, and the evolution of the basin. The 2011 Salton Seismic Imaging Project (SSIP) deployed a seismic array at 2-km grid spacing in the central northern part of the valley (Line 11), and three longer seismic lines across the valley with active sources (Lines 1, 2, and 3). Here we will present the shallow (to 8-km depth) 3D structure in this region obtained by modeling the traveltimes of the first arrivals in these recordings and from earlier experiments. We have processed arrivals from all shots at all receivers, from the SSIP dataset, in the region south of the Salton Sea. Relevant data from the 1979 Imperial Valley experiment has also been used. The 3D structure of the valley was inverted from the surface to 8-km depth using the technique of Hole (1992). On average, the velocity increases rapidly from ~2 km/s at the surface to 5.6 km/s at 5 km depth, a velocity range corresponding to the unmetamorphosed sediments (Fuis et al. 1984). Below 5-km depth, velocity increases slowly to 6.3 km/s at 8-km depth, a velocity range corresponding to the metasedimentary rocks, or 'basement' (Fuis et al. 1984). In depth slices, geothermal areas are characterized by high velocity zones. Specifically, we observe a

  19. Temporal and Spatial Characteristics of Acceleration Structures in the Auroral Return Current Region

    NASA Astrophysics Data System (ADS)

    Marklund, G. T.; Karlsson, T.; Figueiredo, S.; Johansson, T.; Buchert, S.

    2003-12-01

    Temporal and spatial characteristics of high-altitude auroral electric fields, and, in particular, those which are related to quasi-static auroral electric potential structures, are discussed using Cluster multi-point observations from auroral field line crossings at geocentric distances of about 5 RE. Intense and narrow-structured diverging electric fields, associated with upward accelerated electrons, being fingerprints of quasi-static acceleration structures in the auroral return current region, appear more frequently at these altitudes than their counterpart, converging electric fields, on auroral field lines, for reasons not yet understood. The time needed for evacuating ionospheric electrons at the ionospheric end of the return current flux tube, which depend on the field-aligned current density, represent one characteristic time scale for the accelerating electric fields. We present results from four Cluster encounters with such acceleration structures and how these and their associated field-aligned current and electron distributions, evolve on the different time scales given by different inter-spacecraft separation distances.

  20. Molecular hydrogen line ratios in four regions of shock-excited gas

    NASA Technical Reports Server (NTRS)

    Burton, M. G.; Brand, P. W. J. L.; Geballe, T. R.; Webster, A. S.

    1989-01-01

    Five emission lines of molecular hydrogen, with wavelengths in the ranges of 2.10-2.25 and 3.80-3.85 microns, have been observed in four objects of different type in which the line emission is believed to be excited by shocks. The relative intensities of the lines 1 - 0 S(1):1 - 0 S(O):2 - 1 S(1) are approximately 10.5:2.5:1.0 in all four objects. The 0 - 0 S(13):1 - 0 O(7) line ratio, however, varies from 1.05 in OMC-1 to about 2.3 in the Herbig-Haro object HH 7. The excitation temperature derived from the S(13) and O(7) lines is higher than that derived from the 1 - 0 and 2 - 1 S(1) lines in all four objects, so the shocked gas in these objects cannot be characterized by a single temperature. The constancy of the (1-0)/(2-1) S(1) line ratio between sources suggests that the post-shock gas is 'thermalized' in each source. The S(13)/O(7) ratio is particularly sensitive to the density and temperature conditions in the gas.

  1. Automated measurement of epidermal thickness from optical coherence tomography images using line region growing

    NASA Astrophysics Data System (ADS)

    Delacruz, Jomer; Weissman, Jesse; Gossage, Kirk

    2010-02-01

    Optical Coherence Tomography (OCT) is a non-invasive imaging modality that acquires cross sectional images of tissue in-vivo. It accelerates skin diagnosis by eliminating invasive biopsy and laborious histology in the process. Dermatologists have widely used it for looking at morphology of skin diseases such as psoriasis, dermatitis, basal cell carcinoma etc. Skin scientists have also successfully used it for looking at differences in epidermal thickness and its underlying structure with respect to age, body sites, ethnicity, gender, and other related factors. Similar to other in-vivo imaging systems, OCT images suffer from a high degree of speckle and noise content, which hinders examination of tissue structures. Most of the previous work in OCT segmentation of skin was done manually. This compromised the quality of the results by limiting the analyses to a few frames per area. In this paper, we discuss a region growing method for automatic identification of the upper and lower boundaries of the epidermis in living human skin tissue. This image analysis method utilizes images obtained from a frequency-domain OCT. This system is high-resolution and high-speed, and thus capable of capturing volumetric images of the skin in short time. The three-dimensional (3D) data provides additional information that is used in the segmentation process to help compensate for the inherent noise in the images. This method not only provides a better estimation of the epidermal thickness, but also generates a 3D surface map of the epidermal-dermal junction, from which underlying topography can be visualized and further quantified.

  2. [Effect of laminin on structural karyotype variability of kangaroo rat kidney cell lines].

    PubMed

    Polianskaia, G G; Goriachaia, T S; Pinaev, G P

    2003-01-01

    The structural karyotypic variability has been investigated in the "markerless" epithelial-like Rat kangaroo kidney cell lines NBL-3-17 and NBL-3-11 on cultivation on a laminin-2/4 coated surface. In cell line NBL-3-17, cultivated on the laminin-coated surface for 2, 4 and 12 days, and in cell line NBL-3-11, cultivated on the laminin-coated surface for 2 and 4 days, there is a significant increase in the frequency of chromosomal aberrations, both chromosomal breaks and dicentrics (telomeric associations). Different sensitivity of individual chromosomes to inducing chromosomal breaks was observed in addition to a preferential involvement of some chromosomes in dicentric formation. Structural instability of chromosomes at cultivation on laminin demonstrates nonspecific reaction of the "markerless" cell lines to unfavourable factors of the environment. We discuss possible reasons of differences in the character of karyotypic variability between a cell line of the Indian muntjac skin fibroblasts and epithelial-like Rat kangaroo kidney cell lines cultivated on laminin.

  3. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines.

    PubMed

    Ritter, Anett; Voedisch, Bernd; Wienberg, Johannes; Wilms, Burkhard; Geisse, Sabine; Jostock, Thomas; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for large scale production of recombinant biopharmaceuticals. Although these cells have been extensively used, a demand to further increase the performance, for example, to facilitate the process of clone selection to isolate the highest producing cell lines that maintain stability of production over time is still existing. We compared gene expression profiles of high versus low producing CHO clones to identify regulated genes which can be used as biomarkers during clone selection or for cell line engineering. We present evidence that increased production rates and cell line stability are correlated with the loss of the telomeric region of the chromosome 8. A new parental CHO cell line lacking this region was generated and its capability for protein production was assessed. The average volumetric productivity of cells after gene transfer and selection was found to be several fold improved, facilitating the supply of early drug substance material to determine for example, quality. In addition, significantly more cell clones with a higher average productivity and higher protein production stability were obtained with the new host cell line after single cell cloning. This allows reduced efforts in single cell sorting, screening of fewer clones and raises the opportunity to circumvent time and labor-intensive stability studies.

  4. Ion-scale structure in Mercury's magnetopause reconnection diffusion region

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-06-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use ~150 ms measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of ~0.3-3 mV/m reconnection electric fields separated by ~5-10 s, resulting in average and peak normalized dayside reconnection rates of ~0.02 and ~0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  5. Nuclear structure in the neutron-rich doubly magic sup 78 Ni region

    SciTech Connect

    Hill, J.C.; Wohn, F.K.; Winger, J.A.; Warburton, E.K.; Gill, R.L.; Schuhmann, R.B.; Brookhaven National Lab., Upton, NY; Clark Univ., Worcester, MA )

    1989-01-01

    The magic numbers Z=28 and N=50 imply that very neutron-rich {sup 78}Ni, which has not yet been observed, is doubly magic. The {sup 78}Ni region was investigated by studying the N=50 isotones and neutron-rich Zn isotopes. Results on the level structure of {sup 83}As, {sup 74}Zn, and {sup 76}Zn populated in the decays of {sup 83}Ge, {sup 74}Cu, and {sup 76}Cu are presented. The parent nuclides were produced and mass separated using the TRISTAN facility on-line to the High-Flux Beam Reactor at Brookhaven. The systematics of the N=50 isotones and even-A Zn isotopes are discussed and compared with shell-model calculations involving active nucleons outside of a {sup 78}Ni and {sup 66}Ni core, respectively. The extent to which the {sup 78}Ni region can be considered doubly magic is assessed. 43 refs., 7 figs.

  6. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    SciTech Connect

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  7. Evidence of structural genomic region recombination in Hepatitis C virus

    PubMed Central

    Cristina, Juan; Colina, Rodney

    2006-01-01

    Background/Aim Hepatitis C virus (HCV) has been the subject of intense research and clinical investigation as its major role in human disease has emerged. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there have been few studies reporting recombination on natural populations of HCV. Recombination break-points have been identified in non structural proteins of the HCV genome. Given the implications that recombination has for RNA virus evolution, it is clearly important to determine the extent to which recombination plays a role in HCV evolution. In order to gain insight into these matters, we have performed a phylogenetic analysis of 89 full-length HCV strains from all types and sub-types, isolated all over the world, in order to detect possible recombination events. Method Putative recombinant sequences were identified with the use of SimPlot program. Recombination events were confirmed by bootscaning, using putative recombinant sequence as a query. Results Two crossing over events were identified in the E1/E2 structural region of an intra-typic (1a/1c) recombinant strain. Conclusion Only one of 89 full-length strains studied resulted to be a recombinant HCV strain, revealing that homologous recombination does not play an extensive roll in HCV evolution. Nevertheless, this mechanism can not be denied as a source for generating genetic diversity in natural populations of HCV, since a new intra-typic recombinant strain was found. Moreover, the recombination break-points were found in the structural region of the HCV genome. PMID:16813646

  8. Interface structure of co-rotating interaction regions

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Roelof, E. C.; Forsyth, R. J.

    1997-01-01

    Plasma and particle observations on Ulysses during its passes through the southern and northern heliosphere have revealed that, inside the streamer belt, the large-scale structure of the quiet global heliosphere is dominated by corotating interaction regions (CIRs). Therefore, considerable attention is now being given to the internal plasma structure of CIRs, and in particular, to the manifestations of the stream interfaces that should mark their origins as interactions between low speed solar wind (in the low-latitude streamer belt) and high speed solar wind (from the equatorial extensions of the high latitude polar coronal holes). The SWICS and HI-SCALE experiments on Ulysses combine plasma and energetic particle measurements that are of considerable utility for such studies because, between them, they cover the proton energy range from 10 eV to 5 MeV. These measurements are used, together with magnetic field data, to study the remarkable series of CIRs that occurred during the period beginning July 1992 and the end of 1993 as Ulysses rose from the ecliptic to a southern heliographic latitude of 48 deg. The structure of the regions between the forward and reverse shocks were previously analyzed in terms of the proton specific entropy argument log that should exhibit a discontinuous jump at the stream interface. It was claimed that the stream interface, defined with respect to specific entropy, is also associated with a discontinuity in energetic proton intensities. The energetic particle data (greater than 60 keV) and how they were ordered with respect to interfaces and with respect to the magnetic field were examined.

  9. Path integral formalism for the spectral line shape in plasmas: Lyman-{alpha} with fine structure

    SciTech Connect

    Bedida, N.; Meftah, M. T.; Boland, D.; Stamm, R.

    2008-10-22

    We examine in this work the expression of the dipolar autocorrelation function for an emitter in the plasma using the path integrals formalism. The results for Lyman alpha lines with fine structure are retrieved in a compact formula. The expression of the dipolar autocorrelation function takes into account the ions dynamics and the fine structure effects. The electron's effect is represented by the impact operator {phi}{sub e} in the final formula.

  10. [Resistance to second-line drugs in migrants with multidrug-resistant tuberculosis in the Berlin region].

    PubMed

    Otto-Knapp, R; Bös, L; Schönfeld, N; Wagner, S; Starzacher, A K; Weiss, T; Vesenbeckh, S; Glaser-Paschke, G; Mauch, H; Rüssmann, H; Bauer, T T

    2014-07-01

    The empiric therapy of multidrug-resistant (MDR) tuberculosis (TB) after rapid molecular testing is rendered difficult by an often several weeks-long period of uncertainty, because results of susceptibility testing for second-line TB drugs are pending. The analysis of regional resistance patterns could lead to a more targeted empiric treatment for migrants depending on their country of origin. The results of the susceptibility testing from 2008 to 2013 of all mycobacteria sent to the Institute of Microbiology, working with the department of Pneumology, Heckeshorn Lung Clinic, Berlin, were reanalysed and tested for regional differences. We found 39 multidrug-resistant Mycobacterium tuberculosis strains among the examined strains. More than half of these strains tested susceptible to the following second line drugs namely, linezolid (97%), clofazimine (95%), cycloserine (95%), capreomycin (90%), p-aminosalicylic acid (82%), moxifloxacin (79%) and amikacin (79%). The proportion of strains susceptible to pyrazinamide (44%), ethambutol (28%), prothionamide (15%), rifabutin (8%) and streptomycin (8%) was lower. The mycobacterial cultures of the Chechen patients (n = 14) showed significantly different susceptibilities to amikacin (57%) and prothionamide (36%) compared to the strains from migrants of other regions. In this study, the regional differences in mycobacterial susceptibility to second line drugs suggest that the initial MDR TB therapy of migrants should be tailored to their country of origin.

  11. A new approach to plane-sweep overlay: topological structuring and line-segment classification

    USGS Publications Warehouse

    van Roessel, Jan W.

    1991-01-01

    An integrated approach to spatial overlay was developed with the objective of creating a single function that can perform most of the tasks now assigned to discrete functions in current systems. Two important components of this system are a unique method for topological structuring, and a method for attribute propagation and line-segment classification. -Author

  12. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  13. This aerial photograph displays solid propellant line structures E34 through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This aerial photograph displays solid propellant line structures E-34 through E-40. Original 4 x 5 in negative housed in the JPL Archives, Pasadena, California. (JPL negative no. 384-6572A, 24 May 1967) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  14. Nanoscale structure and mechanical behavior of growth lines in shell of abalone Haliotis gigantea.

    PubMed

    Sumitomo, Taro; Kakisawa, Hideki; Kagawa, Yutaka

    2011-04-01

    In the natural world, bottom-up hierarchical construction of complex structures results in materials with remarkable properties. A well known example is the nacre of mollusk shells, commonly called "mother of pearl", whose excellent strength and toughness has been the subject of research for many decades. A significant discovery has been the presence of periodic layers called "growth lines". These are thin distinct layers within the bulk of the shell which form periodically, with their structure affected by environmental changes. Studies of their formation and behavior offer valuable insight into the architecture of seashells. In this work, the structure and mechanical behavior of growth lines in shells of abalone Haliotis gigantea were investigated using electron microscopy and nanoindentation. Growth lines form directly out of nacre into layers of blocks and irregular particles. In comparison to nacre, they have basic structures, form rapidly, and are harder, which suggest that they serve a protective role during lifecycle transitions. This exemplifies how natural structures are able to closely control growth architecture in order to form different structures for different functions, all from the same base materials. PMID:21232604

  15. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors.

    PubMed

    Fallaux, F J; Kranenburg, O; Cramer, S J; Houweling, A; Van Ormondt, H; Hoeben, R C; Van Der Eb, A J

    1996-01-20

    Currently, the preferred host for the production of early region-1 (E1)-deleted recombinant adenoviruses (rAdV) is cell line 293, which was generated by transformation of human embryonic kidney cells by sheared adenovirus 5 (Ad5) DNA. To develop alternative hosts for the production of rAdV, we generated adenovirus-transformed human cell lines by transformation of human embryonic retinoblasts (HER) with a plasmid containing base pairs 79-5789 of the Ad5 genome. One of the established HER cell lines, which we called 911, exhibited favorable growth characteristics and was chosen for further study. This cell line is demonstrated to have several characteristics in common with the well-known 293 cell line: The 911 cell line is highly transfectable, and exhibits similar frequencies of homologous recombination. However, it has additional characteristics that make it a useful alternative for 293. The 911 cells perform particularly well in plaque assays. Upon infection with E1-deleted adenoviruses, plaques become apparent in monolayers of 911 cells already after 3-4 days versus 4-10 days in monolayers of 293 cells, thereby reducing the time required for quantitative plaque assays. Furthermore, yields of E1-deleted adenovirus vectors up to three times as high as those achieved with 293 cells can be obtained with 911 cells. Finally, the Ad5-DNA content of the 911 cell line is completely known. These features make the 911 cell line a useful alternative for the construction, propagation, and titration of E1-deleted recombinant adenoviruses.

  16. Magnetic Structure of Sites of Braiding in Hi-C Active Region

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.

  17. Lyman-alpha line as a solar activity index for calculations of solar spectrum in the EUV region

    NASA Astrophysics Data System (ADS)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Katyushina, Valeria; Woods, Thomas

    It is investigated a possibility of retrieval of solar spectrum data using intensity observational data of the only solar spectral line L (Hydrogen Lyman-alpha, 121.6 nm).Using as an example spectra obtained by SEE instruments on TIMED satellite, it was shown, that both for lines and for continuum in the spectral range 27-105 nm, which is essential for ionization processes in the ionosphere, a correlation between their intensities and L was high. Therefore it becomes possible to use L measurements data as a natural solar activity index for calculations of EUV solar emission spectrum for solving aeronomical problems. It is noticed, that EUV model, obtained with using SEE data, does not allow to calculate correctly critical frequencies of ionospheric E-layer owing to low intensities of lines 97.7 and 102.6 nm, which produce the main part of ionization in ionospheric E-region.

  18. Time, spatial, and spectral resolution of the Hα line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer

    NASA Astrophysics Data System (ADS)

    Chesneau, O.; Dessart, L.; Mourard, D.; Bério, Ph.; Buil, Ch.; Bonneau, D.; Borges Fernandes, M.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Meilland, A.; Millour, F.; Nardetto, N.; Perraut, K.; Roussel, A.; Spang, A.; Stee, P.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2010-10-01

    Context. BA-type supergiants are amongst the most optically-bright stars. They are observable in extragalactic environments, hence potential accurate distance indicators. Aims: An extensive record of emission activity in the Hα line of the BA supergiants β Orionis (Rigel, B8Ia) and α Cygni (Deneb, A2Ia) is indicative of localized time-dependent mass ejections. However, little is known about the spatial distribution of these apparent structures. Here, we employ optical interferometry to study the Hα line-formation region in these stellar environments. Methods: High spatial- ( 0.001'') and spectral- (R = 30 000) resolution observations of Hα were obtained with the visible recombiner VEGA installed on the CHARA interferometer, using the S1S2 array-baseline (34 m). Six independent observations were done on Deneb during the years 2008 and 2009, and two of Rigel in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code cmfgen, and assess the impact of the wind on the visible and near-IR interferometric signatures, using both Balmer-line and continuum photons. Results: We observe a visibility decrease in Hα for both Rigel and Deneb, suggesting that the line-formation region is extended ( 1.5-1.75 Rstar). We observe a significant visibility decrease for Deneb in the Siii 6371 Å line. We witness time variations in the differential phase for Deneb, implying an inhomogeneous and unsteady circumstellar environment, while no such variability is seen in differential visibilities. Radiative-transfer modeling of Deneb, with allowance for stellar-wind mass loss, accounts fairly well for the observed decrease in the Hα visibility. Based on the observed differential visibilities, we estimate that the mass-loss rate of Deneb has changed by less than 5%. Based on observations made with the CHARA array.

  19. Regional and local geologic structure of the Momotombo field, Nicaragua

    SciTech Connect

    Goldsmith, L.H.

    1980-09-01

    The regional geologic-tectonic setting of northwestern Nicaragua is the result of subduction. Differential plate margin movement and segmentation formed a deep rift paralleling the Middle American Trench. Deep-seated shear faults provided access to sublithospheric magmas to create the Nicaraguan volcanic chain. Volcan Momotombo is the southernmost volcano of the Marabios Range of northern Nicaragua. It hosts a proven geothermal resource known as the Momotombo field, located within a small graben structure and measuring less than one square kilometer. This geothermally productive area appears not to be a geothermal reservoir, but rather part of a thermal convection system. Wells in the central and eastern part of the field have diminished in output and temperature. The presence of a temperature inversion zone, clearly distinguishable in the eastern end of the field, indicates that no conductive heating of the productive zone is taking place.

  20. THE HANLE EFFECT OF THE HYDROGEN Ly{alpha} LINE FOR PROBING THE MAGNETISM OF THE SOLAR TRANSITION REGION

    SciTech Connect

    Trujillo Bueno, Javier; Stepan, JirI; Casini, Roberto E-mail: stepan@iac.es

    2011-09-01

    We present some theoretical predictions concerning the amplitude and magnetic sensitivity of the linear-polarization signals produced by scattering processes in the hydrogen Ly{alpha} line of the solar transition region. To this end, we have calculated the atomic-level polarization (population imbalances and quantum coherences) induced by anisotropic radiation pumping in semiempirical and hydrodynamical models of the solar atmosphere, taking into account radiative transfer and the Hanle effect caused by the presence of organized and random magnetic fields. The line-center amplitudes of the emergent linear-polarization signals are found to vary typically between 0.1% and 1%, depending on the scattering geometry and the strength and orientation of the magnetic field. The results shown here encourage the development of UV polarimeters for sounding rockets and space telescopes with the aim of opening up a diagnostic window for magnetic field measurements in the upper chromosphere and transition region of the Sun.

  1. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  2. Ionization structure of the Orion Nebula - infrared line observations and models

    SciTech Connect

    Simpson, J.P.; Rubin, R.H.; Erickson, E.F.; Haas, M.R.

    1986-12-01

    Observations of the forbidden O III 52 and 88 microns lines and the forbidden N III 57 microns line have been made at six positions and the forbidden Ne III 36 microns line at four positions in the Orion Nebula to probe its ionization structure. The wavelength of the forbidden Ne III line was measured to be 36.009-36.017 microns. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one-component and two-component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37,000-40,000 K and log g = 4.0 and 4.5. Both the new IR observations and the visible line measurements of oxygen and nitrogen require Teff of no more than 37,000 K. However, the doubly ionized neon requires a model with Teff of at least 39,000 K, which is more consistent with that inferred from the radio flux or spectral type. These differences in Teff are not due to effects of dust on the stellar radiation field but are probably due to inaccuracies in the assumed stellar spectrum. Neon and nitrogen are approximately solar, but oxygen is half-solar in abundance. From the IR O(++) lines, it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement. 54 references.

  3. The ionization structure of the Orion Nebula - Infrared line observations and models

    NASA Technical Reports Server (NTRS)

    Simpson, J. P.; Rubin, R. H.; Erickson, E. F.; Haas, M. R.

    1986-01-01

    Observations of the forbidden O III 52 and 88 microns lines and the forbidden N III 57 microns line have been made at six positions and the forbidden Ne III 36 microns line at four positions in the Orion Nebula to probe its ionization structure. The wavelength of the forbidden Ne III line was measured to be 36.009-36.017 microns. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one-component and two-component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37,000-40,000 K and log g = 4.0 and 4.5. Both the new IR observations and the visible line measurements of oxygen and nitrogen require Teff of no more than 37,000 K. However, the doubly ionized neon requires a model with Teff of at least 39,000 K, which is more consistent with that inferred from the radio flux or spectral type. These differences in Teff are not due to effects of dust on the stellar radiation field but are probably due to inaccuracies in the assumed stellar spectrum. Neon and nitrogen are approximately solar, but oxygen is half-solar in abundance. From the IR O(++) lines, it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement.

  4. Heterogeneous structure in and around the source region of hazardous inland earthquake

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Iidaka, T.; Iwasaki, T.; Tsumura, N.

    2014-12-01

    A detailed crustal structure and deep geometry of the active fault provide important information to constrain the process of earthquake occurrence. Dense seismic array observation is one of the most effective techniques to reveal inhomogeneous structure. Recently, several dense seismic array observations have been conducted across the active fault in Japan: for example, Tachikawa fault located near the Tokyo metropolitan area, and the Neodani fault located in the central Japan. Previous studies indicated that the heterogeneous lower crust should be the key to understand the mechanism of earthquake occurrence (e.g., Iio et al., 2002). In November of 2012, a highly dense seismic experiment was conducted in and around the source region of the 1891 Nobi-earthquake (M 8.0), central Japan. The transect line ran from Fukuchiyama-city to Ina-city over a 260 km profile, on which 8 explosives were fired. We deployed 1,793 off-line recorders to record the explosive seismic signal. The collected data have high signal-to-noise ratios, from which we can easily recognize not only the first arrival phases but also latter phages. Two-dimensional (2-D) P-wave velocity structure beneath the survey line was derived by ray tracing method. Remarkable characteristics of the 2-D velocity structure are relatively low-velocity middle and lower crusts (Vp=5.9-6.3 km/s) and change in crustal thickness beneath the central part of the profile (Shiga and Gifu Prefecture). This low velocity region involves the deeper extension of the Neodani fault. The 1891 Nobi-earthquake was associated with rupture of the Neodani fault. The subducting Philippine Sea plate (PHS) is in contact with the low-velocity lower island-arc crust. The contact zone between the base of the low-velocity lower crust and the top of the PHS is located at a depth of about 28km. The island arc Moho is about 33 km deep beneath the eastern part of the profile (Gifu and Nagano Prefecture). Several reflectors can be recognized within

  5. Structure and stability in TMC-1: Analysis of NH3 molecular line and Herschel continuum data

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Tóth, L. V.; Ward-Thompson, D.; Kirk, J.; Kraus, A.; Pelkonen, V.-M.; Pintér, S.; Zahorecz, S.

    2016-05-01

    Aims: We examined the velocity, density, and temperature structure of Taurus molecular cloud-1 (TMC-1), a filamentary cloud in a nearby quiescent star forming area, to understand its morphology and evolution. Methods: We observed high signal-to-noise (S/N), high velocity resolution NH3(1,1), and (2, 2) emission on an extended map. By fitting multiple hyperfine-split line profiles to the NH3(1, 1) spectra, we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE far-infrared continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps (PGCCs) in the region, including the two in TMC-1. The morphology of TMC-1 was investigated with several types of clustering methods in the parameter space consisting of position, velocity, and column density. Results: Our Herschel-based column density map shows a main ridge with two local maxima and a separated peak to the south-west. The H2 column densities and dust colour temperatures are in the range of 0.5-3.3 × 1022 cm-2 and 10.5-12 K, respectively. The NH3 column densities and H2 volume densities are in the range of 2.8-14.2 × 1014 cm-2 and 0.4-2.8 × 104 cm-3. Kinetic temperatures are typically very low with a minimum of 9 K at the maximum NH3 and H2 column density region. The kinetic temperature maximum was found at the protostar IRAS 04381+2540 with a value of 13.7 K. The kinetic temperatures vary similarly to the colour temperatures in spite of the fact that densities are lower than the critical density for coupling between the gas and dust phase. The k-means clustering method separated four sub-filaments in TMC-1 with masses of 32.5, 19.6, 28.9, and 45.9 M⊙ and low turbulent velocity dispersion in the range of 0.13-0.2 km s-1. Conclusions: The main ridge of TMC-1 is composed of four sub-filaments that are close to gravitational equilibrium. We label these TMC-1F1 through F4. The sub-filaments TMC

  6. Line Positions and Intensities of (73)C(189)CH(6) in the 12.2 µm Region

    NASA Astrophysics Data System (ADS)

    Smith, M. A. H.; Devi, V. Malathy; Benner, D. Chris; Sung, K.; Crawford, T. J.; Mantz, A. W.

    2014-06-01

    High-resolution, high signal-to-noise spectra of mono-substituted 13C-ethane (13C12CH6) in the 12.2 µm region have been recorded with a Bruker IFS 125HR Fourier transform spectrometer. Four of these spectra were recorded at three different temperatures between 130 and 208 K using a 99% 13C-enriched ethane sample contained in a 20.38-cm long coolable absorption cell1. A multispectrum nonlinear least squares fitting technique2 was used to fit the same intervals in these four spectra simultaneously to determine line positions and intensities. Similar to our previous analyses of 12C2H6 spectra in this same region3, constraints were applied to accurately fit each pair of doublet components arising from torsional Coriolis interaction of the excited ν12 = 1 state with the nearby torsional ν6 = 3 state. Line intensities are reported for 1660 ν12 absorption lines for which the assignments are known, and integrated intensities are estimated as the summation of the measured values. The measured line positions and intensities are compared with values in recent editions of spectroscopic databases.4

  7. The region of formation of the ultraviolet high temperature resonance lines in the eclipsing binary Beta Persei (Algol)

    NASA Technical Reports Server (NTRS)

    Brandi, E.; Garcia, L. G.; Kondo, Y.; Sahade, J.

    1989-01-01

    A new series of IUE observations of Beta Persei has shown that the high temperature resonance lines of Si IV and C IV arise in a region that surrounds the brighter, early-type component of the system. The continuum spectrum corresponds to that of a B8V object, and the value of E(B-V) that yielded the best match between the two IUE regions was 0.06, the value quoted for Beta Per in Jamar et al.'s (1976) Catalog.

  8. On-Line Modal State Monitoring of Slowly Time-Varying Structures

    NASA Technical Reports Server (NTRS)

    Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.

    1997-01-01

    Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.

  9. BOND: Bayesian Oxygen and Nitrogen abundance Determinations in giant H II regions using strong and semistrong lines

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2016-08-01

    We present the Bayesian oxygen and nitrogen abundance determinations (BOND) method. BOND is a Bayesian code (available at: http://bond.ufsc.br) to simultaneously derive oxygen and nitrogen abundances in giant H II regions. It compares observed emission lines to a grid of photoionization models without assuming any relation between O/H and N/O. Our grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Varying starburst ages accounts for variations in the ionizing radiation field hardness, which arise due to the ageing of H II regions or the stochastic sampling of the initial mass function. All previous approaches assume a strict relation between the ionizing field and metallicity. The other novelty is extracting information on the nebular physics from semistrong emission lines. While strong lines ratios alone ([O III]/Hβ, [O II]/Hβ and [N II]/Hβ) lead to multiple O/H solutions, the simultaneous use of [Ar III]/[Ne III] allows one to decide whether an H II region is of high or low metallicity. Adding He I/Hβ pins down the hardness of the radiation field. We apply our method to H II regions and blue compact dwarf galaxies, and find that the resulting N/O versus O/H relation is as scattered as the one obtained from the temperature-based method. As in previous strong-line methods calibrated on photoionization models, the BOND O/H values are generally higher than temperature-based ones, which might indicate the presence of temperature fluctuations or kappa distributions in real nebulae, or a too soft ionizing radiation field in the models.

  10. Differential interferometry of QSO broad-line regions - I. Improving the reverberation mapping model fits and black hole mass estimates

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Petrov, Romain G.; Meilland, Anthony; Hönig, Sebastian F.

    2015-03-01

    Reverberation mapping (RM) estimates the size and kinematics of broad-line regions (BLR) in quasars and type I AGNs. It yields size-luminosity relation to make QSOs standard cosmological candles, and mass-luminosity relation to study the evolution of black holes and galaxies. The accuracy of these relations is limited by the unknown geometry of the BLR clouds distribution and velocities. We analyse the independent BLR structure constraints given by super-resolving differential interferometry. We developed a three-dimensional BLR model to compute all differential interferometry and RM signals. We extrapolate realistic noises from our successful observations of the QSO 3C 273 with AMBER on the VLTI. These signals and noises quantify the differential interferometry capacity to discriminate and measure BLR parameters including angular size, thickness, spatial distribution of clouds, local-to-global and radial-to-rotation velocity ratios, and finally central black hole mass and BLR distance. A Markov Chain Monte Carlo model-fit, of data simulated for various VLTI instruments, gives mass accuracies between 0.06 and 0.13 dex, to be compared to 0.44 dex for RM mass-luminosity fits. We evaluate the number of QSOs accessible to observe with current (AMBER), upcoming (GRAVITY) and possible (OASIS with new generation fringe trackers) VLTI instruments. With available technology, the VLTI could resolve more than 60 BLRs, with a luminosity range larger than four decades, sufficient for a good calibration of RM mass-luminosity laws, from an analysis of the variation of BLR parameters with luminosity.

  11. Late Cretaceous intraplate silicic volcanic rocks from the Lake Chad region: An extension of the Cameroon volcanic line?

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. G.; Lee, T.-Y.; Torng, P.-K.; Yang, C.-C.; Lee, Y.-H.

    2016-07-01

    Silicic volcanic rocks at Hadjer el Khamis, near Lake Chad, are considered to be an extension of the Cameroon volcanic line (CVL) but their petrogenetic association is uncertain. The silicic rocks are divided into peraluminous and peralkaline groups with both rock types chemically similar to within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma indicating the magmas erupted ˜10 million years before the next oldest CVL rocks (i.e., ˜66 Ma). The Sr isotopes (i.e., ISr = 0.7021-0.7037) show a relatively wide range but the Nd isotopes (i.e., 143Nd/144Ndi = 0.51268-0.51271) are uniform and indicate that the rocks were derived from a moderately depleted mantle source. Thermodynamic modeling shows that the silicic rocks likely formed by fractional crystallization of a mafic parental magma but that the peraluminous rocks were affected by low temperature alteration processes. The silicic rocks are more isotopically similar to Late Cretaceous basalts identified within the Late Cretaceous basins (i.e., 143Nd/144Ndi = 0.51245-0.51285) of Chad than the uncontaminated CVL rocks (i.e., 143Nd/144Ndi = 0.51270-0.51300). The age and isotopic compositions suggest the silicic volcanic rocks of the Lake Chad region are related to Late Cretaceous extensional volcanism in the Termit basin. It is unlikely that the silicic volcanic rocks are petrogenetically related to the CVL but it is possible that magmatism was structurally controlled by suture zones that formed during the opening of the Central Atlantic Ocean and/or the Pan-African Orogeny.

  12. Line group techniques in description of the structural phase transitions in some superconductors

    SciTech Connect

    Meszaros, C.; Bankuti, J.; Balint, A.

    1994-12-31

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature Superconductors. As an example, the material YBa{sub 2}Cu{sub 3}O{sub 7-x} is discussed briefly.

  13. Micromagnetic structure of the domain wall with Bloch lines in an electric field

    NASA Astrophysics Data System (ADS)

    Borich, M. A.; Tankeev, A. P.; Smagin, V. V.

    2016-07-01

    The micromagnetic structure of the domain wall (DW) with periodically distributed horizontal Bloch lines in a ferromagnetic film in an external electric field has been studied. The effect of the electric field on the internal DW micromagnetic structure is caused by inhomogeneous magnetoelectric coupling. Possible scenarios of the DW internal structure transformations implemented with varying the electric fields strength have been analyzed in detail. For each scenario, static characteristics of the system, such as the energy, DW profile, DW effective thickness, and electric polarization have been calculated.

  14. An atlas of emission line fluxes of planetary nebulae in the 1150-3200 A region

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Mccracken, C. W.

    1981-01-01

    Emission line fluxes for 28 planetary nebulae are presented. The nebulae were chosen to cover a wide range of excitation classes, apparent diameters, location in the sky, and types of central stars. All objects were observed in the low dispersion mode of the IUE spectrographs, using the large entrance aperture.

  15. Crustal Structure Beneath Pleasant Valley, Nevada from Local and Regional Earthquake Travel Times

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Nabelek, J.; Braunmiller, J.

    2011-12-01

    In 1915 the Pleasant Valley fault in the Basin and Range Province of northern Nevada ruptured in a Mw~7 earthquake, one of the largest normal faulting earthquakes in U.S. history. We are currently operating a densely spaced linear array of broadband three-component seismometers across the Pleasant Valley fault to investigate the structure and the geometry of the fault zone. Here, we present a local crustal velocity model derived from P and S wave travel times of local and regional earthquakes recorded by the Pleasant Valley array. Regional events in northern California, eastern Nevada and Utah that occurred in line with the array are well recorded and provide constraints on upper mantle velocities. Many local seismic events were also observed. Only a few of these events were detected by the ANSS network, reflecting the limited detection capability in sparsely instrumented northern Nevada. The local event set includes earthquakes, mining blasts and sonic booms from nearby jet airplane flights. A subset of these events was located using Hypoinverse. Their travel time curves are used to estimate crustal structure and velocity in the Pleasant Valley region. This is an EarthScope FlexArray project.

  16. Shallow velocity structure and hidden faults of Kunming city region

    NASA Astrophysics Data System (ADS)

    Yu, Geng-Xin; Lou, Hai; Wang, Chun-Yong; Fu, Li-Yun; Zhang, Jian-Guo; Qin, Jia-Zheng; Yang, Run-Hai; Li, Hai-Ou

    2008-09-01

    In order to image the 3-D velocity structure of its shallow crust in Kunming region, China, finite-difference seismic tomography is used to invert the seismic data selected carefully from six-shot data. The result lays a foundation for the discussion of the relationship between the obtained velocity structure and the hidden faults, and for the illumination of the depth extents of main active faults surrounding Kunming city. Puduhe-Xishan fault lies on the western margin of the Kunming basin and is just situated on the west edge of the low velocity anomaly zone found at all depth levels. This indicates that this fault is a borderline fault of the Kunming basin. It can be concluded that the fault dips eastwards with a steep angle and its depth extent is large. Puji-Hanjiacun fault and Heilongtan-Guandu fault play a role in controlling the low velocity anomaly zone in middle basin. The depth extents of the two faults are comparatively small, without traversing the interface of basin floor.

  17. Murine leukemia virus vector integration favors promoter regions and regional hot spots in a human T-cell line

    SciTech Connect

    Tsukahara, Tomonori; Agawa, Hideyuki; Matsumoto, Sayori; Matsuda, Mizuho; Ueno, Shuichi; Yamashita, Yuki; Yamada, Koichiro; Tanaka, Nobuyuki; Kojima, Katsuhiko; Takeshita, Toshikazu . E-mail: takesit@sch.md.shinshu-u.ac.jp

    2006-07-07

    Genomic analysis of integration will be important in evaluating the safety of human gene therapy with retroviral vectors. Here, we investigated MLV vector integration sites in human T-cells, since they are amenable to gene transfer studies, and have been used therapeutically in clinical trials. We mapped 340 MLV vector integration sites in the infected human T-cell clones we established. The data showed that MLV preferred integration near the transcription start sites ({+-}5 kb), near CpG islands ({+-}1 kb), and within the first intron of RefSeq genes. We also identified MLV integration hot spots that contained three or more integrations within a 100 kb region. RT-PCR revealed that mRNA-levels of T-cell clones that contained MLV integrations near transcription start sites or introns were dysregulated compared to the uninfected cells. These studies help define the profile of MLV integration in T-cells and the risks associated with MLV-based gene therapy.

  18. Spectropolarimetry of a Limb Active Region and its Cool Coronal Structures

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Kleint, L.; Casini, R.; Schad, T.

    2012-05-01

    During the SDO mission we have regularly used the IBIS and FIRS spectropolarimeters at the Dunn Solar Telescope to measure magnetic fields and plasma parameters from photosphere up to the coronal base. Here we analyze data of a region at and above the east limb (later named NOAA 11302) obtained on September 22nd 2011. The measurements show an erupting prominence, remarkably uniform cool plumes and some material seemingly draining into the active region along post-flare loops. The imaging Fabry-Perot instrument IBIS obtained 30 scans of intensity spectra (30s cadence) and 40 scans of Stokes parameters (90s cadence) in lines of Fe I 630 nm, Na I 596 nm, Ca II 852 nm and H-alpha 656 nm, with an angular resolution near 0.2", over a 40"x80" field of view. The FIRS slit was scanned across the solar image to obtain Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm. We obtained 3 FIRS scans covering a 90"x75" area with cadences of between half an hour and an hour simultaneously with IBIS, at a lower angular resolution. Simultaneous broad band Ca II K and G-band data were obtained with a cadence of 5s. We discuss the vector magnetic fields and plasma properties of NOAA 11302, with emphasis on cool plasma structures extending many Mm into the corona.

  19. Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses.

    PubMed

    Huang, Cheng; Zhong, Mingmin; Wu, Zhengmao

    2016-07-28

    We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2-1.5 × 10(14) W/cm(2) using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10(14) W/cm(2)) is also observed in the correlated electron momentum spectra for 1.2-1.4 × 10(14) W/cm(2). However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI is not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI. PMID:27475356

  20. Space Telescope Imaging Spectrograph Long-Slit Spectroscopy of the Narrow-Line Region of NGC 4151. 1; Kinematics and Emission-Line Ratios

    NASA Technical Reports Server (NTRS)

    Nelson, C. H.; Weistrop, D.; Hutchinson, J. B.; Crenshaw, D. M.; Gull, T. R.; Kaiser, M. E.; Kraemer, S. B.; Lindler, D.

    2003-01-01

    Long-slit spectra of the Seyfert galaxy NGC 4151 from the UV to the near-infrared have been obtained with the Space Telescope Imaging Spectrograph (STIS) to study the kinematics and physical conditions in the narrow-line region (NLR). The kinematics shows evidence for three components, a low-velocity system in normal disk rotation, a high-velocity system in radial outflow at a few hundred kilometers per second relative to the systemic velocity, and an additional high-velocity system also in outflow with velocities up to 1400 km s(-l), in agreement with results from STIS slitless spectroscopy. We have explored two simple kinematic models and suggest that radial outflow in the form of a wind is the most likely explanation. We also present evidence indicating that the wind may be decelerating with distance from the nucleus. We find that the emission-line ratios along our slits are all entirely consistent with photoionization from the nuclear continuum source. A decrease in the ratios [O III] lambda 5007/H beta and [O III] lambda 5007/[O II] lambda 3727 suggests that the density decreases with distance from the nucleus. This trend is borne out by the [S II] ratios as well. We find no strong evidence for interaction between the radio jet and the NLR gas in either the kinematics or the emission-line ratios, in agreement with the recent results of Kaiser et al., who found no spatial coincidence of NLR clouds and knots in the radio jet. These results are in contrast to other recent studies of nearby active galactic nuclei that find evidence for significant interaction between the radio source and the NLR gas.

  1. Sound Transmission Through Multi-Panel Structures Lined with Elastic Porous Materials

    NASA Astrophysics Data System (ADS)

    Bolton, J. S.; Shiau, N.-M.; Kang, Y. J.

    1996-04-01

    Theory and measurements related to sound transmission through double panels lined with elastic porous media are presented. The information has application to the design of noise control barriers and to the optimization of aircraft fuselage transmission loss, for example. The major difference between the work described here and earlier research in this field relates to the treatment of the porous material that is used to line the cavity between the two panels of the double panel structure. Here we have used the porous material theory proposed by Biot since it takes explicit account of all the wave types known to propagate in elastic porous materials. As a result, it is possible to use the theory presented here to calculate the transmission loss of lined double panels at arbitrary angles of incidence; results calculated over a range of incidence angles may then be combined to yield the random incidence transmission loss. In this paper, the equations governing wave propagation in an elastic porous material are first considered briefly and then the general forms for the stresses and displacements within the porous material are given. Those solutions are expressed in terms of a number of constants that can be determined by application of appropriate boundary conditions. The boundary conditions required to model double panels having linings that are either directly attached to the facing panels or separated?!from them by air gaps are presented and discussed. Measurements of the random incidence transmission loss of aluminium double-panel structures lined with polyurethane foam are presented and have been found to be in good agreement with theoretical predictions. Both the theoretical predictions and the measured results have shown that the method by which an elastic porous lining material is attached to the facing panels can have a profound influence on the transmission loss of the panel system. It has been found, for example, that treatments in which the lining material

  2. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    SciTech Connect

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-25

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution ({lambda}/{Delta}{lambda} >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  3. Quasar discs. II - A composite model for the broad-line region

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai

    1987-03-01

    The possibility of geometrically thin accretion discs in active galactic nuclei (AGNs) was discussed in Paper I of this series (H. Netzer, 1985). The apparent luminosity of such discs depends on the viewing angle and this may be the reason for the observed correlation of continuum brightness and line equivalent width. This idea is taken one step further in the present work and the emission line spectrum of a gas exposed to the anisotropic ionizing radiation of a disc is investigated. One example which is studied in detail is that of a disc UV continuum combined with an isotropic X-ray source. Analysis of the L-M relationship in AGNs, within the framework of the new model, shows that these objects have smaller central masses and higher accretion efficiencies compared with previous estimates. There are important consequences for the two-phase model and cloud formation, and specific predictions of the observed LUV/LX, which is angle dependent.

  4. A linear cavity multiwavelength fiber laser with adjustable lasing line number for fixed spectral regions

    NASA Astrophysics Data System (ADS)

    Tian, J. J.; Yao, Y.

    2011-03-01

    We report an experimental demonstration of muliwavelength erbium-doped fiber laser with adjustable wavelength number based on a power-symmetric nonlinear optical loop mirror (NOLM) in a linear cavity. The intensity-dependent loss (IDL) induced by the NOLM is used to suppress the mode competition and realize the stable multiwavelength oscillation. The controlling of the wavelength number is achieved by adjusting the strength of IDL, which is dependent on the pump power. As the pump power increases from 40 to 408 mW, 1-7 lasing line(s) at fixed wavelength around 1601 nm are obtained. The output power stability is also investigated. The most power fluctuation of single wavelength is less than 0.9 dB, when the wavelength number is increased from 1-7.

  5. Ectopic recombination within homologous immunoglobulin mu gene constant regions in a mouse hybridoma cell line.

    PubMed Central

    Baker, M D; Read, L R

    1992-01-01

    We have transferred a pSV2neo vector containing the wild-type constant region of the immunoglobulin mu gene (C mu) into the mutant hybridoma igm482, which bears a 2-bp deletion in the third constant-region exon of its haploid chromosomal mu gene (C mu 3). Independent igm482 transformants contain the wild-type immunoglobulin C mu region stably integrated in ectopic chromosomal positions. We report here that the wild-type immunoglobulin C mu region can function as the donor sequence in a gene conversion event which corrects the 2-bp deletion in the mutant igm482 chromosomal C mu 3 exon. The homologous recombination event restores normal immunoglobulin M production in the mutant cell. Images PMID:1406631

  6. Analysis of Cliff-Ramp Structures in Homogeneous Scalar Turbulence by the Method of Line Segments

    NASA Astrophysics Data System (ADS)

    Gauding, Michael; Goebbert, Jens Henrik; Peters, Norbert; Hasse, Christian

    2015-11-01

    The local structure of a turbulent scalar field in homogeneous isotropic turbulence is analyzed by direct numerical simulations (DNS). A novel signal decomposition approach is introduced where the signal of the scalar along a straight line is partitioned into segments based on the local extremal points of the scalar field. These segments are then parameterized by the distance between adjacent extremal points and a segment-based gradient. Joint statistics of the length and the segment-based gradient provide novel understanding about the local structure of the turbulent field and particularly about cliff-ramp-like structures. Ramp-like structures are unveiled by the asymmetry of joint distribution functions. Cliff-like structures are further analyzed by conditional statistics and it is shown from DNS that the width of cliffs scales with the Kolmogorov length scale.

  7. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents.

    PubMed

    Thambugala, Dinushika; Ragupathy, Raja; Cloutier, Sylvie

    2016-07-01

    Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications. PMID:27142663

  8. Crustal Structure of the Middle East from Regional Seismic Studies

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Sibol, Matthew; Caron, Pierre; Ghalib, Hafidh; Chen, Youlin

    2010-05-01

    We present results of crustal studies obtained with seismic data from the Northern Iraq Seismic Network (NISN). NISN has operated ten broadband stations in north-eastern Iraq since late 2005. This network was supplemented by the five-element broadband Iraq Seismic Array (KSIRS) in 2007. More recently, the former Iraq Seismic Network (ISN), destroyed during the war with Iran, was reestablished with the deployment of six broadband stations throughout Iraq. The aim of the present study is to derive models of the local and regional crustal structure of the Middle East, including Eastern Turkey, Iraq and Iran. To achieve this goal, we derive crustal velocity models using receiver function, surface wave and body wave analyses. These refined velocity models will eventually be used to obtain accurate hypocenter locations and event focal mechanisms. Our analysis of preliminary hypocenter locations produced a clearer picture of the seismicity associated with the tectonics of the region. The largest seismicity rate is confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases in the Bandar Abbas region again. Additionally, the rift zones in the Red Sea and the Gulf of Aden are clearly demarked by high seismicity rates. Surface wave velocity analysis resulted in a clear demarcation of the tectonic features in the region. The Arabian shield, Zagros thrust zone and the Red Sea are apparent through distinct velocity distributions separating them from each other. Furthermore, the shear wave velocity of the crust in North Iraq appears to be 10% higher than that of the Iranian plateau. The velocity anomaly of the Zagros mountains appears to be present into the upper mantle beyond the resolving limit of our model. Analysis of waveform data for obstructed pathways indicates clear propagation paths from the west or south-west across the Arabian shield as well as from the north and east into NISN. Phases

  9. The ionization structure of the Orion nebula: Infrared line observations and models

    NASA Technical Reports Server (NTRS)

    Simpson, J. P.; Rubin, R. H.; Erickson, E. F.; Haas, M. R.

    1986-01-01

    Observations of the (O III) 52 and 88 micron lines and the (N III) 57 micron line have been made at 6 positions and the (Ne III) 36 micron line at 4 positions in the Orion Nebula to probe its ionization structure. The measurements, made with a -40" diameter beam, were spaced every 45" in a line south from and including the Trapezium. The wavelength of the (Ne III) line was measured to be 36.013 + or - 0.004 micron. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one component and two component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37 to 40,000K and log g = 4.0 and 4.5. Both the new infrared observations and the visible line measurements of oxygen and nitrogen require T sub eff approx less than 37,000K. However, the double ionized neon requires a model with T sub eff more than or equal to 39,000K, which is more consistent with that inferred from the radio flux or spectral type. These differences in T sub eff are not due to effects of dust on the stellar radiation field, but are probably due to inaccuracies in the assumed stellar spectrum. The observed N(++)/O(++) ratio is almost twice the N(+)/O(+) ratio. The best fit models give N/H = 8.4 x 10 to the -5 power, O/H = 4.0 x 10 to the -4 power, and Ne/H = 1.3 x 10 to the -4 power. Thus neon and nitrogen are approximately solar, but oxygen is half solar in abundance. From the infrared O(++) lines it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement.

  10. Structural differences between C-terminal regions of tropomyosin isoforms

    PubMed Central

    Śliwińska, Małgorzata

    2013-01-01

    Tropomyosins are actin-binding regulatory proteins which overlap end-to-end along the filament. High resolution structures of the overlap regions were determined for muscle and non-muscle tropomyosins in the absence of actin. Conformations of the junction regions bound to actin are unknown. In this work, orientation of the overlap on actin alone and on actin–myosin complex was evaluated by measuring FRET distances between a donor (AEDANS) attached to tropomyosin and an acceptor (DABMI) bound to actin’s Cys374. Donor was attached to the Cys residue introduced by site-directed mutagenesis near the C-terminal half of the overlap. The recombinant alpha-tropomyosin isoforms used in this study – skeletal muscle skTM, non-muscle TM2 and TM5a, and chimeric TM1b9a had various amino acid sequences of the N- and C-termini involved in the end-to-end overlap. The donor-acceptor distances calculated for each isoform varied between 36.4 Å and 48.1 Å. Rigor binding of myosin S1 increased the apparent FRET distances of skTM and TM2, but decreased the distances separating TM5a and TM1b9a from actin. The results show that isoform-specific sequences of the end-to-end overlaps determine orientations and dynamics of tropomyosin isoforms on actin. This can be important for specificity of tropomyosin in the regulation of actin filament diverse functions. PMID:24167776

  11. Seasonal Variations in the CO Line Profile and the Retrieved Thermal/Pressure Structures in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2013-10-01

    We report retrievals of temperature vertical profiles up to 100 km over Tharsis and Syrtis regions on Mars obtained by inverting the strong rotational (3-2) line of carbon monoxide (CO) at 346 GHz. Observations of CO were made from mid Northern Spring to early Northern Summer on Mars (Ls= 36°-108°, 23 Nov, 2011 - 13 May, 2012) using the Caltech Submillimeter Observatory's (CSO) high-resolution heterodyne receiver (Barney) on top of Mauna Kea, Hawai'i. The temperature profiles were derived using our radiative transfer model that considers the latest spectroscopic constants for CO collisionally broadened by CO2. We observe notable changes of the line profile for different dates, which are directly related to seasonal variations in the thermal/pressure structure of the atmosphere. The seasonal variability of the martian CO line profile, the extracted temperature profiles, and comparisons with modeled profiles from the Mars Climate Database (Lewis et al, 1999) will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program , NASA Astrobiology Institute, Planetary Atmospheres programs. This material is based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under cooperative agreement with the National Science Foundation, grant number AST-0838261.

  12. A novel structure of transmission line pulse transformer with mutually coupled windings.

    PubMed

    Yu, Binxiong; Su, Jiancang; Li, Rui; Zhao, Liang; Zhang, Xibo; Wang, Junjie

    2014-03-01

    A novel structure of transmission line transformer (TLT) with mutually coupled windings is described in this paper. All transmission lines except the first stage of the transformer are wound on a common ferrite core for the TLT with this structure. A referral method was introduced to analyze the TLT with this structure, and an analytic expression of the step response was derived. It is shown that a TLT with this structure has a significantly slower droop rate than a TLT with other winding structures and the number of ferrite cores needed is largely reduced. A four-stage TLT with this structure was developed, whose input and output impedance were 4.2 Ω and 67.7 Ω, respectively. A frequency response test of the TLT was carried out. The test results showed that pulse response time of the TLT is several nanoseconds. The TLT described in this paper has the potential to be used as a rectangle pulse transformer with very fast response time.

  13. On-site calibration of line-structured light vision sensor in complex light environments.

    PubMed

    Liu, Zhen; Li, Xiaojing; Yin, Yang

    2015-11-16

    A novel calibration method for the line-structured light vision sensor that only requires the image of the light stripe on the target using a movable parallel cylinder target is proposed in this paper. The corresponding equations between two ellipses obtained from the intersection of the light stripe and the target and their projected images are established according to the perspective projection transformation, and the light plane equation is solved based on the constraint conditions that the minor axis of the ellipse is equal to the diameter of the cylinder. In the physical experiment, the field of view of the line-structured light vision sensor is about 500 mm × 400 mm, and the measurement distance is about 700 mm. A calibration accuracy of 0.07 mm is achieved using the proposed method, which is comparable to that when planar targets are used.

  14. TEM characterization of invariant line interfaces and structural ledges in a Mo-Si alloy

    SciTech Connect

    Xiao, S.Q.; Dahmen, U.; Maloy, S.A.; Heuer, A.H.

    1995-06-01

    Two distinct <1{bar 1}0> lath morphologies of Mo{sub 5}Si{sub 3} precipitates observed in MoSi{sub 2} differ in their cross-sectional shape and lattice orientation. Type I laths exhibit a rectangular cross section, with interfaces parallel to low-index planes, while Type II laths are parallelogram-shaped, with their major interface at 13{degree} to the Type I precipitate. The corresponding orientation relationships differ by a 1.8{degree} rotation around the lath axis. In this study, the difference between the two characteristic morphologies and orientation relationships is shown to be the formation of an invariant line strain for Type II precipitates. On an atomic scale, both interfaces have a terrace and ledge structure but differ in the stacking sequence of interfacial ledges associated with partial dislocations. The structural unit model and the invariant line model predict identical interface geometries which agree closely with the observations.

  15. Tracing quasar narrow-line regions across redshift: a library of high-S/N optical spectra

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Richards, Gordon

    2015-04-01

    In a single optical spectrum, the quasar narrow-line region (NLR) reveals low-density, photoionized gas in the host galaxy interstellar medium (ISM), while the immediate vicinity of the central engine generates the accretion disc continuum and broad emission lines. To isolate these two components, we construct a library of high-S/N optical composite spectra created from the Sloan Digital Sky Survey Data Release 7. We divide the sample into bins of continuum luminosity and Hβ full width at half-maximum that are used to construct median composites at different redshift steps up to 0.75. We measure the luminosities of the narrow-emission lines [Ne V] λ3427, [Ne III] λ3870, [O III] λ5007, and [O II] λ3728 with ionization potentials (IPs) of 97, 40, 35, and 13.6 eV, respectively. The high IP lines' luminosities show no evidence of increase with redshift consistent with no evolution in the AGN spectral energy distribution or the host galaxy ISM illuminated by the continuum. In contrast, we find that the [O II] line becomes stronger at higher redshifts, and we interpret this as a consequence of enhanced star formation contributing to the [O II] emission in host galaxies at higher redshifts. The SFRs estimated from the [O II] luminosities show a flatter increase with z than non-AGN galaxies given our assumed AGN contribution to the [O II] luminosity. Finally, we confirm an inverse correlation between the strength of the Fe II λ4570 complex and both the [O III] equivalent width (though not the luminosity) and the width of the Hβ line as known from the eigenvector 1 correlations.

  16. Crustal structure of the Pannonian-Carpathian region, Central Europe, from ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Stuart, G. W.; Houseman, G. A.; Carpathian Basins Project Working Group

    2010-12-01

    The Pannonian Basin of Central Europe is a major extensional basin surrounded by the Carpathian Mountains. During the evolution of the Carpathian-Pannonian region, extension of the crust and lithosphere created several inter-related basins of which the Pannonian basin is the largest. Imaging the seismic velocity structure of the crust and the upper mantle may help us understand the structure and geodynamic evolution of this part of central Europe. Here, we use ambient noise tomography to investigate the crust and uppermost mantle structure in the region. We have collected and processed continuous data from 56 temporary stations deployed in the Carpathian Basins Project (CBP) for 16 months (2005-2007) and 41 permanent broadband stations; this dataset enables the most well-resolved images of the S-wave structure of the region yet obtained. We computed the cross-correlation between vertical component seismograms from pairs of stations and stacked the correlated waveforms over 1-2 years to estimate the Rayleigh wave Green’s function. Frequency-time analysis is used to measure the group velocity dispersion curves, which are then inverted for the group velocity maps. Our 4-10 s group velocity maps exhibit low velocity anomalies which clearly defined the major sediment depo-centers in the Carpathian region. A broad low velocity anomaly in the center of the 5 s group velocity map can be associated with the Pannonian Basin, whereas an anomaly in the southeastern region is related to the Moesian platform. Further east, the Vienna Basin can also be seen on our maps. A fast anomaly in the central region can be associated with the Mid-Hungarian line. At periods from 18 to 24 seconds, group velocities become increasingly sensitive to crustal thickness. The maps also reveal low-velocity anomalies associated with the Carpathians. The low velocity anomalies are probably caused by deeper crustal roots beneath the mountain ranges which occur due to isostatic compensation. CBP

  17. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.

    PubMed

    Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng

    2016-03-01

    Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues. PMID:26768475

  18. On open and closed field line regions in Tsyganenko's field model and their possible associations with horse collar auroras

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hones, E. W., Jr.; Craven, J. D.; Frank, L. A.; Elphinstone, R. D.; Stern, D. P.

    1991-01-01

    The boundary between open and closed field lines is investigated in the empirical Tsyganenko (1987) magnetic field model. All field lines extending to distances beyond -70 R(E), the tailward velocity limit of the Tsyganenko model are defined as open, while all other field lines, which cross the equatorial plane earthward of -70 R(E) and are connected with the earth at both ends, are assumed closed. It is found that this boundary at the surface of the earth, identified as the polar cap boundary, can exhibit the arrowhead shape, pointed toward the sun, which is found in horse collar auroras. For increasing activity levels, the polar cap increases in area and becomes rounder, so that the arrowhead shape is less pronounced. The presence of a net B(y) component can also lead to considerable rounding of the open flux region. The arrowhead shape is found to be closely associated with the increase of B(z) from the midnight region to the flanks of the tail, consistent with a similar increase of the plasma sheet thickness.

  19. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  20. Size and disk-like shape of the broad-line region of ESO 399-IG20

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, F.; Westhues, C.; Ramolla, M.; Bruckmann, C.; Haas, M.; Chini, R.; Steenbrugge, K.; Lemke, R.; Murphy, M.

    2013-04-01

    We present photometric reverberation mapping of the narrow-line Seyfert 1 galaxy ESO 399-IG20 performed with the robotic 15 cm telescope VYSOS-6 at the Cerro Armazones Observatory. Through the combination of broad- and narrow-band filters we determine the size of the broad-line emitting region (BLR) by measuring the time delay between the variability of the continuum and the Hα emission line. We use the flux variation gradient method to separate the host galaxy contribution from that of the active galactic nucleus (AGN), and to calculate the 5100 Å luminosity LAGN of the AGN. Both measurements permit us to derive the position of ESO 399-IG20 in the BLR size - AGN luminosity RBLR ∝ LAGN0.5 diagram. We infer the basic geometry of the BLR through modeling of the light curves. The pronounced sharp variability patterns in both the continuum and the emission line light curves allow us to reject a spherical BLR geometry. The light curves are best fitted by a disk-like BLR seen nearly face-on with an inclination angle of 6° ± 3° and with an extension from 16 to 20 light days.

  1. Structural characterization of a neuroblast-specific phosphorylated region of MARCKS.

    PubMed

    Tinoco, Luzineide W; Fraga, Jully L; Anobom, Cristiane D; Zolessi, Flavio R; Obal, Gonzalo; Toledo, Andrea; Pritsch, Otto; Arruti, Cristina

    2014-04-01

    MARCKS (Myristoylated Alanine-Rich C Kinase substrate) is a natively unfolded protein that interacts with actin, Ca(2+)-Calmodulin, and some plasma membrane lipids. Such interactions occur at a highly conserved region that is specifically phosphorylated by PKC: the Effector Domain. There are two other conserved domains, MH1 (including a myristoylation site) and MH2, also located in the amino terminal region and whose structure and putative protein binding capabilities are currently unknown. MH2 sequence contains a serine that we described as being phosphorylated only in differentiating neurons (S25 in chick). Here, Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopy were used to characterize the phosphorylated and unphosphorylated forms of a peptide with the MARCKS sequence surrounding S25. The peptide phosphorylated at this residue is recognized by monoclonal antibody 3C3 (mAb 3C3). CD and NMR data indicated that S25 phosphorylation does not cause extensive modifications in the peptide structure. However, the sharper lines, the absence of multiple spin systems and relaxation dispersion data observed for the phosphorylated peptide suggested a more ordered structure. Surface Plasmon Resonance was employed to compare the binding properties of mAb 3C3 to MARCKS protein and peptide. SPR showed that mAb 3C3 binds to the whole protein and the peptide with a similar affinity, albeit different kinetics. The slightly ordered structure of the phosphorylated peptide might be at the origin of its ability to interact with mAb 3C3 antibody, but this binding did not noticeably modify the peptide structure.

  2. Structural characterization of a neuroblast-specific phosphorylated region of MARCKS.

    PubMed

    Tinoco, Luzineide W; Fraga, Jully L; Anobom, Cristiane D; Zolessi, Flavio R; Obal, Gonzalo; Toledo, Andrea; Pritsch, Otto; Arruti, Cristina

    2014-04-01

    MARCKS (Myristoylated Alanine-Rich C Kinase substrate) is a natively unfolded protein that interacts with actin, Ca(2+)-Calmodulin, and some plasma membrane lipids. Such interactions occur at a highly conserved region that is specifically phosphorylated by PKC: the Effector Domain. There are two other conserved domains, MH1 (including a myristoylation site) and MH2, also located in the amino terminal region and whose structure and putative protein binding capabilities are currently unknown. MH2 sequence contains a serine that we described as being phosphorylated only in differentiating neurons (S25 in chick). Here, Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopy were used to characterize the phosphorylated and unphosphorylated forms of a peptide with the MARCKS sequence surrounding S25. The peptide phosphorylated at this residue is recognized by monoclonal antibody 3C3 (mAb 3C3). CD and NMR data indicated that S25 phosphorylation does not cause extensive modifications in the peptide structure. However, the sharper lines, the absence of multiple spin systems and relaxation dispersion data observed for the phosphorylated peptide suggested a more ordered structure. Surface Plasmon Resonance was employed to compare the binding properties of mAb 3C3 to MARCKS protein and peptide. SPR showed that mAb 3C3 binds to the whole protein and the peptide with a similar affinity, albeit different kinetics. The slightly ordered structure of the phosphorylated peptide might be at the origin of its ability to interact with mAb 3C3 antibody, but this binding did not noticeably modify the peptide structure. PMID:24590112

  3. Environmental significance of vesicular sediment structure in arid regions

    NASA Astrophysics Data System (ADS)

    Dietze, M.; Kleber, A.

    2012-04-01

    Vesicular structure is a frequent and widely spread phenomenon in surficial fine-grained sediments in arid environments. It typically affects the upper few millimetres to decimetres of sediment and consists of isolated, spherical to ovoid pores, some 100 to 1000 micrometres in diameter, which give the sediment a foamy appearance. The vesicular layer has, together with an often genetically associated stone pavement cover, major control functions for dust trapping as well as dust mobilisation, water infiltration, soil moisture and surface runoff, as well as ecological site characteristics. Accordingly, there are numerous but often contradictory hypotheses about vesicular structure formation. Most of them are based on individual experiments with settings that were never consistent and overarching but rather focused on one sediment or environmental variable and its relative influence on vesicle formation. We present highlights of extensive laboratory experiments where physical and chemical sediment properties as well as environmental variables such as wetting technique, wetting amount, surface cover type or drying temperature were changed systematically over the entire range of published characteristics of vesicular layers. A series of measures of vesicle features, derived from digitised sediment sections, forms the base for quantitative sample comparison. Furthermore, the experimental results are related to natural analogues from severe regions throughout a climatic gradient from the hyper-arid part of Baja California, Mexico, to the sub-humid southern Sevier Basin, USA. Based on the results, the plausibility of published vesicle formation hypotheses is discussed and a genetic model is formulated. Vesicles are no transient feature but rather evolve exponentially and become stabilised. They form due to surface puddling and a wetting front which advances downward, thereby elevating the gas pressure within the sediment matrix. Translocation of clay and calcium carbonate

  4. On-line structural damage localization and quantification using wireless sensors

    NASA Astrophysics Data System (ADS)

    Hsu, Ting-Yu; Huang, Shieh-Kung; Lu, Kung-Chung; Loh, Chin-Hsiung; Wang, Yang; Lynch, Jerome Peter

    2011-10-01

    In this paper, a wireless sensing system is designed to realize on-line damage localization and quantification of a structure using a frequency response function change method (FRFCM). Data interrogation algorithms are embedded in the computational core of the wireless sensing units to extract the necessary structural features, i.e. the frequency spectrum segments around eigenfrequencies, automatically from measured structural response for the FRFCM. Instead of the raw time history of the structural response, the extracted compact structural features are transmitted to the host computer. As a result, with less data transmitted from the wireless sensors, the energy consumed by the wireless transmission is reduced. To validate the performance of the proposed wireless sensing system, a six-story steel building with replaceable bracings in each story is instrumented with the wireless sensors for on-line damage detection during shaking table tests. The accuracy of the damage detection results using the wireless sensing system is verified through comparison with the results calculated from data recorded of a traditional wired monitoring system. The results demonstrate that, by taking advantage of collocated computing resources in wireless sensors, the proposed wireless sensing system can locate and quantify damage with acceptable accuracy and moderate energy efficiency.

  5. Structure of the solar chromosphere. II - The underlying photosphere and temperature-minimum region

    NASA Technical Reports Server (NTRS)

    Vernazza, J. E.; Avrett, E. H.; Loeser, R.

    1976-01-01

    The paper presents a non-LTE empirical model of the quiet solar photosphere and the temperature-minimum region. The continuous spectrum computed from this model is in good overall agreement with available disk-center observations throughout the wavelength range from 0.125 to 500 microns. It is found that (1) absolute-intensity measurements are needed in the range between 1 and 2 microns to establish the structure of the deepest observable layers; (2) absolute-intensity or flux measurements are needed in the range between 20 and 200 microns to determine whether the minimum solar temperature occurring between the photosphere and the chromosphere is as low as indicated by present observations or much higher, as recent theoretical predictions indicate; (3) studies of the far-ultraviolet spectrum based on the assumption of LTE can be substantially in error; and (4) line opacity seems to account for the 'missing opacity' in the ultraviolet.

  6. Journal Writing and Learning: Reading between the Structural, Holistic, and Post-Structural Lines.

    ERIC Educational Resources Information Center

    Mannion, Greg

    2001-01-01

    Structural approaches to journal writing enable learners to manage subjectivity while seeking "objective truth." Holistic approaches attempt to synthesize ways of learning, giving a false sense of completion and inclusion. Poststructuralism places journal text in the context of discourses; through reflection and deconstruction, the writer is not…

  7. New insight in the solar T(sub MIN) region from the CO lines at 4.67 micron

    NASA Technical Reports Server (NTRS)

    Uitenbroek, Han; Noyes, Robert W.

    1995-01-01

    We discuss recent observations of the fundamental vibration-rotation transitions of carbon monoxide (CO) in the solar infrared spectrum. Employing a new array detector at the McMath-Pierce facility on Kitt Peak we find that the CO lines sketch a rich picture of the dynamics of the solar temperature minimum region, the lower boundary of the chromosphere. In a spectra-spectroheliogram and a time-sequence of the slit-spectra obtained during exceptional seeing conditions we observe small-scale bright, ring shaped, blueshifted features. We speculate that they are the signature of granular overshoot into the convectively stable temperature minimum. The centers of the rings are among the coolest elements seen in strong CO-line heliograms on the disk, and may be instrumental to the low temperature observed in CO close to the solar limb.

  8. The optical depth of the 158 micron forbidden C-12 II line - Detection of the F = 1 - 0 forbidden C-13 II hyperfine-structure component. [in Orion nebula

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.

    1991-01-01

    The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.

  9. On the line profile changes observed during the X2.2 class flare in the active region NOAA 11158

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, Ankala; Kumar, Brajesh; Venkatakrishnan, Parameswaran; Kunchandy Mathew, Shibu; Ravindra, Belur; Mathur, Savita; Garcia, Rafael A.

    2014-02-01

    The solar active region NOAA 11158 produced a series of flares during its passage through the solar disk. The first major flare (of class X2.2) of the current solar cycle occurred in this active region on 2011 February 15 around 01:50 UT. We have analyzed the Dopplergrams and magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) instrument onboard Solar Dynamics Observatory to examine the photospheric velocity and magnetic field changes associated with this flare. The HMI instrument provides high-quality Doppler and magnetic maps of the solar disk with 0.5″ spatial scale at a cadence of 45 s along with imaging spectroscopy. We have identified five locations of velocity transients in the active region during the flare. These transient velocity signals are located in and around the flare ribbons as observed by Hinode in the Ca II H wavelength and the footpoints of hard X-ray enhancement are in the energy range 12-25 keV from RHESSI. The changes in shape and width of two circular polarization states have been observed at the time of transients in three out of five locations. Forward modeling of the line profiles shows that the change in atmospheric parameters such as magnetic field strength, Doppler velocity and source function could explain the observed changes in the line profiles with respect to the pre-flare condition.

  10. Kiloparsec-scale Radio Structures in Narrow-line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Doi, Akihiro; Nagira, Hiroshi; Kawakatu, Nozomu; Kino, Motoki; Nagai, Hiroshi; Asada, Keiichi

    2012-11-01

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two γ-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of >~ 1044 erg s-1, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of >~ 107 M ⊙, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of ~0.01c-0.3c and kinematic ages of >~ 107 years. On the other hand, most typical NLS1s would be driven by black holes of <~ 107 M ⊙ in a limited lifetime of ~107 years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  11. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Doi, Akihiro; Kino, Motoki; Nagira, Hiroshi; Kawakatu, Nozomu; Nagai, Hiroshi; Asada, Keiichi

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  12. The temperature and density structure in the closed field regions of the solar corona

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Sukhorukova, G. V.; Axford, W. I.

    1999-10-01

    In this paper we study the temperature and density structure in the closed field region of the solar corona using a dipole plus current sheet model to simulate the global solar magnetic field and a heating function of the same type used in models of the fast wind. The heat equation, describing the redistributing effects of heat conduction on the heat input in the presence of radiative losses, is solved simultaneously with hydrostatic pressure balance. At the base we prescribe the temperature and assume that the heat flux is zero there. We also insist that the heat flux is zero at the equator. This ensures that whatever heat has been added is radiated away. From the mathematical viewpoint this additional requirement sets up an eigenvalue problem which implies that the density at the base must be chosen in just the right way to fulfill the condition of zero heat flux at the equator. Thus our model not only provides the temperature and density structure in the closed regions of a global solar magnetic field appropriate to solar minimum but also predicts the latitudinal variation of the base density whose characteristic value is determined by the ratio of the amplitudes of the heating to the cooling. However it should be stressed that this last prediction represents, at best, an approximation to the real stale of affairs which is more complex and involves the connection of the coronal field lines to the magnetic funnels of the chromospheric network.

  13. Regional analysis assessment of landslide hazard and zoning map for transmission line route selection using GIS

    NASA Astrophysics Data System (ADS)

    Baharuddin, I. N. Z.; Omar, R. C.; Usman, F.; Mejan, M. A.; Abd Halim, M. K.; Zainol, M. A.; Zulkarnain, M. S.

    2013-06-01

    The stability of ground as foundation for infrastructure development is always associated with geology and geomorphology aspects. Failure to carefully analyze these aspects may induce ground instability such subsidence and landslide which eventually can cause catastrophe to the infrastructure i.e. instability of transmission tower. However, in some cases such as the study area this is unavoidable. A GIS system for analysis of route was favoured to perform optimal route predictions based selection by incorporating multiple influence factors into its analysis by incorporating the Landslide Hazard Map (LHM) that was produced on basis of slope map, aspect map, land use map and geological map with the help of ArcGIS using weighted overlay method. Based on LHM it is safe to conclude that the proposed route for Ulu Jelai- Neggiri-Lebir-LILO transmission line has very low risk in term of landslides.

  14. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A. ); Siemiginowska, A. )

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such star tails'' with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  15. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A.; Siemiginowska, A.

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle_dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much_gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such ``star tails`` with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  16. Far Infrared Line Profiles from Photodissociation Regions and Warm Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Boreiko, R. T.; Betz, A. L.

    1998-01-01

    This report summarizes the work done under NASA Grant NAG2-1056 awarded to the University of Colorado. The aim of the project was to analyze data obtained over the past several years with the University of Colorado far-infrared heterodyne spectrometer aboard the Kuiper Airborne Observatory. Of particular interest were observations of CO and ionized carbon (C II) in photodissociation regions (PDRS) at the interface between UV-ionized H II regions and the neutral molecular clouds supporting star formation. These data, obtained with a heterodyne spectrometer having a resolution of 3.2 MHz, which is equivalent to a velocity resolution of 0.2 km s(exp -1) at 60 microns and 1.0 km s(exp -1) at 300 microns, were analyzed to obtain physical parameters such as density and temperature in the observed PDR.

  17. D IR Line Shapes for Determining the Structure of a Peptide in a Bilayer

    NASA Astrophysics Data System (ADS)

    Woys, Ann Marie; Lin, Y. S.; Skinner, J. S.; Zanni, M. T.; Reddy, A. S.; de Pablo, J. J.

    2010-06-01

    Structure of the antimicrobial peptide, ovispirin, on a lipid bilayer was determined using 2D IR spectroscopy and spectra calculated from molecular dynamics simulations. Ovispirin is an 18 residue amphipathic peptide that binds parallel to the membrane in a mostly alpha helical conformation. 15 of the 18 residues were ^1^3C^1^8O isotopically labeled on the backbone to isolate the amide I vibration at each position. 2D IR spectra were collected for each labeled peptide in 3:1 POPC/POPG vesicles, and peak width along the diagonal was measured. The diagonal line width is sensitive to the vibrator's electrostatic environment, which varies through the bilayer. We observe an oscillatory line width spanning 10 to 24 cm-1 and with a period of nearly 3.6 residues. To further investigate the position of ovispirin in a bilayer, molecular dynamics simulations determined the peptide depth to be just below the lipid headgroups. The trajectory of ovispirin at this depth was used to calculate 2D IR spectra, from which the diagonal line width is measured. Both experimental and simulated line widths are similar in periodicity and suggest a kink in the peptide backbone and the tilt in the bilayer. A. Woys, Y. S. Lin, A. S. Reddy, W. Xiong, J. J. de Pablo, J. S. Skinner, and M. T. Zanni, JACS 132, 2832-2838 (2010).

  18. Comparison of structural and least-squares lines for estimating geologic relations

    USGS Publications Warehouse

    Williams, G.P.; Troutman, B.M.

    1990-01-01

    Two different goals in fitting straight lines to data are to estimate a "true" linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating "true" straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal-predicting the dependent variable-OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples. ?? 1990 International Association for Mathematical Geology.

  19. A parametric study of nonlinear seismic response analysis of transmission line structures.

    PubMed

    Tian, Li; Wang, Yanming; Yi, Zhenhua; Qian, Hui

    2014-01-01

    A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures.

  20. Studying the large scale structure and interstellar medium of galaxies during the epochs of peak cosmic star formation and Reionization with infrared fine structure lines

    NASA Astrophysics Data System (ADS)

    Uzgil, Bade D.

    Infrared (IR) fine-structure (FS) lines from trace metals in the interstellar medium (ISM) of galaxies are valuable diagnostics of the physical conditions in a broad range of astrophysical environments, such gas irradiated by stellar far-ultraviolet (FUV) photons or X-rays from accreting supermassive black holes, called active galactic nuclei (AGN). The transparency of these lines to dust and their high escape fractions into the intergalactic medium (IGM) render them as useful probes to study the epochs of peak cosmic star formation (SF) and Reionization. Chapter 1 of this thesis is a study of the ISM of the Cloverleaf quasar. Observations of IR FS lines from singly ionized carbon and neutral oxygen have allowed us to assess the physical conditions---parametrized by their gas density and the impingent FUV flux---prevalent in atomic gas heated by stellar FUV photons. We find that UV heating from local SF is not sufficient to explain the measured FS and molecular luminosities, and suggest that X-ray heating from the AGN is required to simultaneously explain both sets of data. The general picture of the Cloverleaf ISM that emerges from our composite model is one where the [CII] and [OI]63 line emission is produced primarily within PDRs and HII regions of a 1.3-kpc wide starburst, which is embedded in a denser XDR component that is the dominant source of heating for the CO gas. The fact that the star-forming PDR and HII region gas is co-spatial with the XDR---and within ˜ 650 pc of the accreting black hole---provides strong evidence that SF is ongoing while immersed in a strong X-ray radiation field provided by the nearby AGN. This finding has implications for the co-evolution of supermassive black holes and their host galaxies. The work in this chapter will be submitted for first-author publication imminently. In Chapter 2, we explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3-D) power spectra

  1. Efficient Banknote Recognition Based on Selection of Discriminative Regions with One-Dimensional Visible-Light Line Sensor

    PubMed Central

    Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-01-01

    Banknote papers are automatically recognized and classified in various machines, such as vending machines, automatic teller machines (ATM), and banknote-counting machines. Previous studies on automatic classification of banknotes have been based on the optical characteristics of banknote papers. On each banknote image, there are regions more distinguishable than others in terms of banknote types, sides, and directions. However, there has been little previous research on banknote recognition that has addressed the selection of distinguishable areas. To overcome this problem, we propose a method for recognizing banknotes by selecting more discriminative regions based on similarity mapping, using images captured by a one-dimensional visible light line sensor. Experimental results with various types of banknote databases show that our proposed method outperforms previous methods. PMID:26959022

  2. Line-field parallel swept source MHz OCT for structural and functional retinal imaging

    PubMed Central

    Fechtig, Daniel J.; Grajciar, Branislav; Schmoll, Tilman; Blatter, Cedric; Werkmeister, Rene M.; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-01-01

    We demonstrate three-dimensional structural and functional retinal imaging with line-field parallel swept source imaging (LPSI) at acquisition speeds of up to 1 MHz equivalent A-scan rate with sensitivity better than 93.5 dB at a central wavelength of 840 nm. The results demonstrate competitive sensitivity, speed, image contrast and penetration depth when compared to conventional point scanning OCT. LPSI allows high-speed retinal imaging of function and morphology with commercially available components. We further demonstrate a method that mitigates the effect of the lateral Gaussian intensity distribution across the line focus and demonstrate and discuss the feasibility of high-speed optical angiography for visualization of the retinal microcirculation. PMID:25798298

  3. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  4. Evolution of Mhc Class i Complex Region with Special Reference to Fragmentary Line Sequences

    NASA Astrophysics Data System (ADS)

    Tateno, Yoshio; Fukami-Kobayashi, Kaoru; Inoko, Hidetoshi

    2008-03-01

    We reviewed the origin and evolution of the two pairs of immune genes, (MHC-B and MHC-C) and (MICA and MICB) in man, chimpanzee and rhesus monkey based mainly on our previous work. Since those genes were well known to have been subject to strong natural selection in evolution, they themselves were not suitable for our study. We thus took another approach to use fragmented and nonfunctional LINEs that had coevolved with the two pairs in the same genomic fragments. Our results showed that MHC-B and MHC-C duplicated about 22 Mry (million years) ago, and MICA and MICB duplicated about 14 Myr ago. Interestingly, rhesus monkey was found not to have either pair but many repeats similar to MHC-B. Therefore, we estimated the divergence time of the monkey, and found that it diverged out from a common ancestor of man and chimpanzee about 30 Myr ago. The divergence time was consistent with the duplication times of the two pairs of immune genes. Based on our results we would predict that orangutan and gorilla also have the two pairs, because the both primate species are considered to have diverged less than 14 Myr ago.

  5. Effects of external radiation fields on line emission—application to star-forming regions

    SciTech Connect

    Chatzikos, Marios; Ferland, G. J.; Williams, R. J. R.; Porter, Ryan; Van Hoof, P. A. M.

    2013-12-20

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.

  6. Far Infrared Line Profiles from Photodissociation Regions and Warm Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Boreiko, R. T.; Betz, A. L.

    1998-01-01

    This report summarizes the work done under NASA Grant NAG2-1056 awarded to the University of Colorado. The aim of the project was to analyze data obtained over the past several years with the University of Colorado far-infrared heterodyne spectrometer (Betz & Boreiko 1993) aboard the Kuiper Airborne Observatory. Of particular interest were observations of CO and ionized carbon (C II) in photodissociation regions (PDRs) at the interface between UV-ionized H II regions and the neutral molecular clouds supporting star formation. These data, obtained with a heterodyne spectrometer having a resolution of 3.2 MHz, which is equivalent to a velocity resolution of 0.2 km/s at 60 microns and 1.0 km/s at 300 microns, were analyzed to obtain physical parameters such as density and temperature in the observed PDR. The publication resulting from the work reported here is appended. No inventions were made nor was any federally owned property acquired as a result of the activities under this grant.

  7. Far Infrared Line Profiles from Photodissociation Regions and Warm Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Boreiko, R. T.; Betz, A. L.

    1998-01-01

    This report summarizes the work done under NASA Grant NAG2-1056 awarded to the University of Colorado. The aim of the project was to analyze data obtained over the past several years with the University of Colorado far-infrared heterodyne spectrometer (Betz Boreiko 1993) aboard the Kuiper Airborne Observatory. Of particular interest were observations of CO and ionized carbon (C II) in photodissociation regions (PDRS) at the interface between UV-ionized H II regions and the neutral molecular clouds supporting star formation. These data, obtained with a heterodyne spectrometer having a resolution of 3.2 MHz, which is equivalent to a velocity resolution of 0.2 km/s at 60 microns and 1.0 km/s at 300 microns, were analyzed to obtain physical parameters such as density and temperature in the observed PDR. The publication resulting from the work reported here is appended. No inventions were made nor was any federally owned property acquired as a result of the activities under this grant.

  8. Insight into Excitement: Balmer-Line Imaging of Evolved Galactic HII Regions

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Rumstay, K. S.

    1997-12-01

    As part of a long-term investigation into the distribution of dust within evolved galactic HII regions, calibrated H-alpha images have been obtained of the objects M20 (= S30, the Trifid Nebula), S106, and NGC 7538 (= S158). Observations were made with an Axiom/Apogee 2048x2048 CCD camera attached to the 0.9-m telescope operated by the Southeastern Association for Research in Astronomy (SARA) at Kitt Peak National Observatory. Each object was observed with a narrow-band (0.3 nm) H-alpha filter as well as with a 10-nm wide filter centered at 645.7 nm in order to remove the contribution of continuum emission from the H-alpha images. Flux calibration was performed by observation of planetary nebulae for which calibrated spectrophotometry has been published. Comparison of the resulting H-alpha contour maps with published radio continuum maps permits determination of the distribution of obscuring dust within each nebula. Future H-beta observations will be used to prepare contour maps of the reddening within each nebula, which will in turn provide insight into variations of grain properties within HII regions. This research is supported by grants from the National Science Foundation Research Experience for Undergraduates program and from the American Astronomical Society.

  9. Observations of the 6 Centimeter Lines of OH in OH/IR Stars and Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Zschaechner, Laura K.; Fish, V. L.; Sjouwerman, L. O.; Pihlstrom, Y. M.; Claussen, M. J.

    2006-12-01

    Recent observational and theoretical advances have given rise to ambiguities regarding the model for OH maser pumping in OH/IR stars. While ground-state OH lines have already been observed, the detection of excited-state OH lines would provide additional constraints on theoretical pumping models. To date, the only positive detections of excited-state OH emission in OH/IR stars have been a 4750 MHz maser in AU Gem and 6035 MHz maser emission in NML Cyg. We report on Very Large Array observations of the 4750 and 4765 MHz OH lines toward 45 sources, most of which are OH/IR stars. All of the sources have previously exhibited ground-state maser emission. We do not detect excited-state emission in any evolved star at the 100 mJy level (5 σ). However, masers in the 4765 MHz transition are detected toward two star forming regions: Mon R2 and LDN 1084. Masers in each of these sources have been previously detected and have shown significant variability in the past. the 4765 MHz maser in Mon R2, which had exhibited two distinct flares, one of which surpassed 75 Jy before disappearing in 1998 December, appears to be undergoing a new flaring event. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. L. K. Z. acknowledges support from the NSF Research Experiences for Undergraduates program.

  10. Three-dimensional velocity structure, seismicity, and fault structure in the Parkfield region, central California

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Michael, A.J.

    1993-01-01

    This study examines the three-dimensional velocity structure in a 60- by 80-km region containing the Parkfield segment of the San Andreas fault. The San Andreas fault (SAF), characterized by a sharp across-fault velocity gradient, is the primary feature in the velocity solution. The model also shows significant variations in the velocity and in the complexity of the velocity patterns along the SAF. There may be a general relation between increasing velocity and increasing ability of the rocks to store strain energy and release it as brittle failure. -from Authors

  11. Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends.

    PubMed

    Short, Frederick T; Coles, Robert; Fortes, Miguel D; Victor, Steven; Salik, Maxwell; Isnain, Irwan; Andrew, Jay; Seno, Aganto

    2014-06-30

    Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures. PMID:24746094

  12. Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends.

    PubMed

    Short, Frederick T; Coles, Robert; Fortes, Miguel D; Victor, Steven; Salik, Maxwell; Isnain, Irwan; Andrew, Jay; Seno, Aganto

    2014-06-30

    Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures.

  13. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  14. Closed magnetic structures in the chromosphere and in the transition region

    NASA Technical Reports Server (NTRS)

    Malherbe, J. M. (Editor); Schmieder, B.; Simon, G.; Mein, P.; Tandberg-Hanssen, E.

    1987-01-01

    Using simultaneous observations of the same solar regions in the lines H-alpha and C IV 1548 A, schematic models of closed magnetic lines have been derived from dynamical constraints. It is concluded that the magnetic loops are closed at higher levels above facular than above nonfacular regions. This result remains valid whatever are the assumed density models and even if the 3-min oscillations are taken into account. The center-to-limb behavior is well predicted by taking into account the relative opacity in the chromosphere and transition region.

  15. Optimal Image Stitching for Concrete Bridge Bottom Surfaces Aided by 3d Structure Lines

    NASA Astrophysics Data System (ADS)

    Liu, Yahui; Yao, Jian; Liu, Kang; Lu, Xiaohu; Xia, Menghan

    2016-06-01

    Crack detection for bridge bottom surfaces via remote sensing techniques is undergoing a revolution in the last few years. For such applications, a large amount of images, acquired with high-resolution industrial cameras close to the bottom surfaces with some mobile platform, are required to be stitched into a wide-view single composite image. The conventional idea of stitching a panorama with the affine model or the homographic model always suffers a series of serious problems due to poor texture and out-of-focus blurring introduced by depth of field. In this paper, we present a novel method to seamlessly stitch these images aided by 3D structure lines of bridge bottom surfaces, which are extracted from 3D camera data. First, we propose to initially align each image in geometry based on its rough position and orientation acquired with both a laser range finder (LRF) and a high-precision incremental encoder, and these images are divided into several groups with the rough position and orientation data. Secondly, the 3D structure lines of bridge bottom surfaces are extracted from the 3D cloud points acquired with 3D cameras, which impose additional strong constraints on geometrical alignment of structure lines in adjacent images to perform a position and orientation optimization in each group to increase the local consistency. Thirdly, a homographic refinement between groups is applied to increase the global consistency. Finally, we apply a multi-band blending algorithm to generate a large-view single composite image as seamlessly as possible, which greatly eliminates both the luminance differences and the color deviations between images and further conceals image parallax. Experimental results on a set of representative images acquired from real bridge bottom surfaces illustrate the superiority of our proposed approaches.

  16. All-thin-film multilayered multiferroic structures with a slot-line for spin-electromagnetic wave devices

    SciTech Connect

    Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Lähderanta, E.

    2014-03-03

    Spin-electromagnetic waves propagating in thin-film multilayered multiferroic structures containing a slot transmission line have been investigated both experimentally and theoretically. The thin-film structure was composed of a ferrite film, a ferroelectric film, and a slot-line. It was shown that the spectrum of the spin-electromagnetic wave was formed as a result of hybridization of the spin wave in the ferrite film with the electromagnetic wave in the slot-line and was electrically and magnetically tunable. For the experimental investigations, a microwave phase shifter based on the multiferroic structure has been fabricated. Performance characteristics are presented.

  17. [Regional early mortality in relation to social and hospital structure].

    PubMed

    Obladen, M

    1985-01-01

    Detailed analysis of governmental mortality statistics yields information on regional differences in the care for preterm infants in West Germany. 68% of newborn infants dying within the first 7 days of life are of low birth weight. In the 11 states, highest/lowest early neonatal mortality fell from 11.6/6.0 to 6.2/3.1 during the years 1978 to 1982. In the 31 administrative districts, a small negative correlation (r = -0.37) exists for neonatal mortality and tax revenue. Increased regional mortality indicates diminished regionalization of perinatal care for preterm infants.

  18. Photometrical analysis of the Neck-Line structure of Comet Bennet 1970II

    SciTech Connect

    Fulle, M.; Sedmak, G.

    1988-06-01

    The Kimura and Liu (1977) analysis of the motion in space of cometary dust tail grains, which furnished information on the size-dependence of the dust ejection velocity from the inner coma and the size distribution on a millimetric scale, is presently applied to the Neck-Line Structure (NLS) displayed by Comet Bennett 1970II at the begining of May, 1970. Attention is given to two photographs of the comet which have been analyzed by digital image processing in order to extract reliable photometric data; the strong excess of millimetric grains noted is in agreement with the Fulle (1987) results for preperihelion times. 24 references.

  19. Transgenically mediated shRNAs targeting conserved regions of foot-and-mouth disease virus provide heritable resistance in porcine cell lines and suckling mice

    PubMed Central

    2013-01-01

    Foot-and-mouth disease virus (FMDV) is responsible for substantial economic losses in livestock breeding each year, and the development of new strategies is needed to overcome the limitations of existing vaccines and antiviral drugs. In this study, we evaluated the antiviral potential of transgenic porcine cells and suckling mice that simultaneously expressed two short-hairpin RNAs (shRNAs) targeting the conserved regions of the viral polymerase protein 3D and the non-structural protein 2B. First, two recombinant shRNA-expressing plasmids, PB-EN3D2B and PB-N3D2B, were constructed and the efficiency of the constructs for suppressing an artificial target was demonstrated in BHK-21 cells. We then integrated PB-EN3D2B into the genome of the porcine cell line IBRS-2 using the piggyBac transposon system, and stable monoclonal transgenic cell lines (MTCL) were selected. Of the 6 MTCL that were used in the antiviral assay, 3 exhibited significant resistance with suppressing ratios of more than 94% at 48 hours post-challenge (hpc) to both serotype O and serotype Asia 1 FMDV. MTCL IB-3D2B-6 displayed the strongest antiviral activity, which resulted in 100% inhibition of FMDV replication until 72 hpc. Moreover, the shRNA-expressing fragment of PB-N3D2B was integrated into the mouse genome by DNA microinjection to produce transgenic mice. When challenged with serotype O FMDV, the offspring of the transgenic mouse lines N3D2B-18 and N3D2B-81 exhibited higher survival rates of 19% to 27% relative to their non-transgenic littermates. The results suggest that these heritable shRNAs were able to suppress FMDV replication in the transgenic cell lines and suckling mice. PMID:23822604

  20. RADIATIVE TRANSFER MODELS OF MID-INFRARED H{sub 2}O LINES IN THE PLANET-FORMING REGION OF CIRCUMSTELLAR DISKS

    SciTech Connect

    Meijerink, R.; Pontoppidan, K. M.; Blake, G. A.; Poelman, D. R.; Dullemond, C. P.

    2009-10-20

    The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H{sub 2}O and organic molecules to the surfaces of rocky planets/satellites. Recent Spitzer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. Here, we present a non-local thermodynamic equilibrium (LTE) two-dimensional radiative transfer model of water lines in the 10-36 mum range that can be used to constrain the abundance structure of water vapor, given an observed spectrum, and show that an assumption of LTE does not accurately estimate the physical conditions of the water vapor emission zones, including temperatures and abundance structures. By applying the model to published Spitzer spectra we find that: (1) most water lines are subthermally excited, (2) the gas-to-dust ratio must be as much as 1-2 orders of magnitude higher than the canonical interstellar medium ratio of 100-200, (3) the gas temperature must be significantly higher than the dust temperature, in agreement with detailed heating/cooling models, and (4) the water vapor abundance in the disk surface must be significantly truncated beyond approx1 AU. A low efficiency of water formation below T approx 300 K may naturally result in a lower water abundance beyond a certain radius. However, we find that chemistry, although not necessarily ruled out, may not be sufficient to produce a sharp abundance drop of many orders of magnitude and speculate that the depletion may also be caused by vertical turbulent diffusion of water vapor from the superheated surface to regions below the snow line, where the water can freeze out and be transported to the midplane as part of the general dust settling. Such a vertical cold finger effect is likely to be efficient due to the lack of a replenishment mechanism of large, water-ice coated dust grains to the disk

  1. High-spin states in 136La and possible structure change in the N =79 region

    NASA Astrophysics Data System (ADS)

    Nishibata, H.; Leguillon, R.; Odahara, A.; Shimoda, T.; Petrache, C. M.; Ito, Y.; Takatsu, J.; Tajiri, K.; Hamatani, N.; Yokoyama, R.; Ideguchi, E.; Watanabe, H.; Wakabayashi, Y.; Yoshinaga, K.; Suzuki, T.; Nishimura, S.; Beaumel, D.; Lehaut, G.; Guinet, D.; Desesquelles, P.; Curien, D.; Higashiyama, K.; Yoshinaga, N.

    2015-05-01

    High-spin states in the odd-odd nucleus 136La, which is located close to the β -stability line, have been investigated in the radioactive-beam-induced fusion-evaporation reaction 124Sn(17N,5 n ). The use of the radioactive beam enabled a highly sensitive and successful search for a new isomer [14+,T1 /2=187 (27 ) ns] in 136La. In the A =130 -140 mass region, no such long-lived isomer has been observed at high spin in odd-odd nuclei. The 136La level scheme was revised, incorporating the 14+ isomer and six new levels. The results were compared with pair-truncated shell model (PTSM) calculations which successfully explain the level structure of the π h11 /2⊗ν h11/2 -1 bands in 132La and 134La. The isomerism of the 14+ state was investigated also by a collective model, the cranked Nilsson-Strutinsky (CNS) model, which explains various high-spin structures in the medium-heavy mass region. It is suggested that a new type of collective structure is induced in the PTSM model by the increase of the number of π g7 /2 pairs, and/or in the CNS model by the configuration change associated with the shape change in 136La.

  2. Fine-structure collision strengths and line ratios for [Ne V] in infrared and optical sources

    NASA Astrophysics Data System (ADS)

    Dance, Michael; Palay, Ethan; Nahar, Sultana N.; Pradhan, Anil K.

    2013-10-01

    New collisions' strengths for the mid-infrared (mid-IR) and optical transitions in Ne V are presented. Breit-Pauli-R-Matrix calculations for electron impact excitation are carried out with fully resolved near-threshold resonances at very low energies. In particular, the fine-structure lines at 14 and 24 μm due to transitions among the ground state levels 1s22s22p3 3P0, 1, 2, and the optical/near-ultraviolet lines at 2973, 3346 and 3426 Å transitions among the 3P0, 1, 2, 1D2, 1S0 levels are described. Maxwellian-averaged collision strengths are tabulated for all forbidden transitions within the ground configuration. While some significant differences are found for both the far infrared and the optical transitions compared to previous results, computed line emissivity ratios are in good agreement, but change rapidly in the low temperature range Te < 10 000 K. An analysis of the 14/24 μm ratio in low-energy-density (LED) plasma conditions reveals considerable variation; the effective rate coefficient may be dominated by the very low energy behaviour rather than the Maxwellian-averaged collision strengths. Computed values suggest a possible solution to the anomalous mid-IR ratios found to be lower than theoretical limits observed from planetary nebulae and Seyfert galaxies. While such LED conditions may be present in infrared sources, they might be inconsistent with photoionization equilibrium models.

  3. NEUROZONE: on-line recognition of brain structures in stereotactic surgery--application to Parkinson's disease.

    PubMed

    Vargas Cardona, Hernán Darío; Padilla, Jose Bestier; Arango, Ramiro; Carmona, Hans; Álvarez, Mauricio A; Guijarro Estellés, Enrique; Orozco, Álvaro Ángel

    2012-01-01

    The success of stereotactic surgery for Deep Brain Stimulation depends critically on the exact positioning of a microelectrode recording in a target area of the brain. This paper presents the software system NEUROZONE composed of two main applications: first, it allows online recognition of brain structures by the analysis of signals from microelectrode recordings (MER), and second, it processes and analyses off-line databases allowing the inclusion of new trained classifiers for automatic identification. The software serves as a support to the analysis done by a medical specialist during surgery, and seeks to reduce the adverse side effects that may occur because of inadequate identification of the target areas. The software also allows the specialists to label recordings obtained during surgery, in order to generate a new off-line database or increase the amount of records in an already existing off-line database. NEUROZONE has been tested for Deep Brain Stimulation performed at the Institute for Epilepsy and Parkinson of the Eje Cafetero (Colombia), achieving positive identifications of the Subthalamic Nucleus (STN) over to 85% using a naive Bayes classifier. PMID:23366364

  4. Far-infrared molecular lines from low- to high-mass star forming regions observed with Herschel

    NASA Astrophysics Data System (ADS)

    Karska, A.; Herpin, F.; Bruderer, S.; Goicoechea, J. R.; Herczeg, G. J.; van Dishoeck, E. F.; San José-García, I.; Contursi, A.; Feuchtgruber, H.; Fedele, D.; Baudry, A.; Braine, J.; Chavarría, L.; Cernicharo, J.; van der Tak, F. F. S.; Wyrowski, F.

    2014-02-01

    Aims: Our aim is to study the response of the gas-to-energetic processes associated with high-mass star formation and compare it with previously published studies on low- and intermediate-mass young stellar objects (YSOs) using the same methods. The quantified far-IR line emission and absorption of CO, H2O, OH, and [O i] reveals the excitation and the relative contribution of different atomic and molecular species to the gas cooling budget. Methods: Herschel/PACS spectra covering 55-190 μm are analyzed for ten high-mass star forming regions of luminosities Lbol ~ 104-106 L⊙ and various evolutionary stages on spatial scales of ~104 AU. Radiative transfer models are used to determine the contribution of the quiescent envelope to the far-IR CO emission. Results: The close environments of high-mass protostars show strong far-IR emission from molecules, atoms, and ions. Water is detected in all 10 objects even up to high excitation lines, often in absorption at the shorter wavelengths and in emission at the longer wavelengths. CO transitions from J = 14 - 13 up to typically 29 - 28 (Eu/kB ~ 580-2400 K) show a single temperature component with a rotational temperature of Trot ~ 300 K. Typical H2O excitation temperatures are Trot ~250 K, while OH has Trot ~ 80 K. Far-IR line cooling is dominated by CO (~75%) and, to a smaller extent, by [O i] (~20%), which becomes more important for the most evolved sources. H2O is less important as a coolant for high-mass sources because many lines are in absorption. Conclusions: Emission from the quiescent envelope is responsible for ~45-85% of the total CO luminosity in high-mass sources compared with only ~10% for low-mass YSOs. The highest- J lines (Jup ≥ 20) originate most likely in shocks, based on the strong correlation of CO and H2O with physical parameters (Lbol, Menv) of the sources from low- to high-mass YSOs. The excitation of warm CO described by Trot ~ 300 K is very similar for all mass regimes, whereas H2O

  5. Structural analysis of airborne flux estimates over a region

    NASA Technical Reports Server (NTRS)

    Caramori, Paulo; Schuepp, Peter; Desjardins, Raymond; Macpherson, Ian

    1994-01-01

    Aircraft-based observations of turbulence fields of velocity, moisture, and temperature are used to study coherent turbulent structures that dominate turbulent transfer of moisture and heat above three different eco-systems. Flux traces are defragmented, to reconstruct the presumed full size (along the sampled transect) of these structures, and flux traces are simplified by elimination of those that contribute negligibly to the flux estimate. Structures are analyzed in terms of size, spatial distribution, and contribution to the flux, in the four 'quadrant' modes of eddy-covariance transfer (excess up/down and deficit up/down). The effect of nonlinear detrending of moisture and temperature data on this 'structural analysis,' over surfaces with heterogeneous surface wetness, is also examined. Results over grassland, wetland, and moist and dry agricultural land, show that nonlinear detrending may provide a more physically realistic description of structures. Significant differences are observed between structure size and associated relative flux contribution, between moist and dry areas, with smaller structures playing a more important role over the moist areas. Structure size generally increases with height, as spatial reorganization from smaller structures into larger ones takes place. This coincides with a gradual loss of surface 'signature' (position and clustering of plumes above localized source areas). The data are expected to provide a basis for an eventual statistical description of boundary-layer transfer events , and help to interpret the link between boundary-layer transfer and hydrological surface conditions.

  6. The Ubiquitous Presence of Looplike Fine Structure inside Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.

    2016-03-01

    Although most of the solar surface outside active regions (ARs) is pervaded by small-scale fields of mixed polarity, this magnetic “carpet” or “junkyard” is thought to be largely absent inside AR plages and strong network. However, using extreme-ultraviolet images and line-of-sight magnetograms from the Solar Dynamics Observatory, we find that unipolar flux concentrations, both inside and outside ARs, often have small, loop-shaped Fe ix 17.1 and Fe xii 19.3 nm features embedded within them, even though no minority-polarity flux is visible in the corresponding magnetograms. Such looplike structures, characterized by horizontal sizes of ˜3-5 Mm and varying on timescales of minutes or less, are seen inside bright 17.1 nm moss, as well as in fainter moss-like regions associated with weaker network outside ARs. We also note a tendency for bright coronal loops to show compact, looplike features at their footpoints. Based on these observations, we suggest that present-day magnetograms may be substantially underrepresenting the amount of minority-polarity flux inside plages and strong network, and that reconnection between small bipoles and the overlying large-scale field could be a major source of coronal heating both in ARs and in the quiet Sun.

  7. Identification of YAC and cosmid clones encompassing the ZFX-POLA region using irradiation hybrid cell lines

    SciTech Connect

    Francis, F.; Hamvas, R.M.J.; Lehrach, H. ); Benham, F.; See, C.G.; Fox, M. ); Ishikawa-Brush, Y.; Monaco, A.P. ); Weiss, B.; Rappold, G. )

    1994-03-01

    The human Xp21.3-p22.1 region is poorly mapped relative to other X chromosome regions. To target cosmid and YAC clones specifically from Xp21.3-p22.1 for rapid contig construction, a hybridization-based screening approach using irradiation hybrids has been used. Alu-PCR products generated from hybrid lines containing small overlapping fragments from Xp21-p22 were hybridized to an X chromosome cosmid library, and cosmids predicted by their hybridization pattern to map to the region of interest were analyzed by fluorescence in situ hybridization (FISH). Hybridization of the cosmids in pools to gridded YAC libraries identified 15 YACs, which were verified and tested for chimerism by FISH. Cosmid content analysis of the YACs defined two contigs, one with 12 YACs covering about 1.5 Mb and one with 3 YACs. Five YACs from the 12-YAC cluster had been previously recognized by DNA polymerase alpha (POLA). ZFX identified a single YAC; hence, the physical linkage of ZFX and POLA was demonstrated within the contig. Four YACs had been isolated previously with ZRX and these extend the contig to 2 Mb. Restriction mapping of several YACs demonstrates that ZFX and POLA are about 700 kb apart, a distance similar to that reported in the mouse between Zfx and Pola. The order of these two loci and two additional loci identified by homologous mouse linking clones was found to be conserved between human and mouse; tel-ZFX-DXCre57-DXCre140-POLA-cen. The authors have shown that YAC contigs can be rapidly constructed from targeted regions without the need for time-consuming YAC end rescue and chromosomal walking. This approach also generates a series of ordered cosmids, which is particularly valuable for marker generation in regions in which disease gene localization is hampered by low marker density. 32 refs., 4 figs., 2 tabs.

  8. Investigations of glass structure using fluorescence line narrowing and moleuclar dynamics simulations

    SciTech Connect

    Weber, M.J.; Brawer, S.A.

    1982-07-02

    The local structure at individual ion sites in simple and multicomponent glasses is simulated using methods of molecular dynamics. Computer simulations of fluoroberyllate glasses predict a range of ion separations and coordination numbers that increases with increasing complexity of the glass composition. This occurs at both glass forming and glass modifying cation sites. Laser-induced fluorescence line-narrowing techniques provide a unique probe of the local environments of selected subsets of ions and are used to measure site to site variations in the electronic energy levels and transition probabilities of rare earth ions. These and additional results from EXAFS, neutron and x-ray diffraction, and NMR experiments are compared with simulated glass structures.

  9. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  10. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    NASA Astrophysics Data System (ADS)

    Sesé, Luis M.

    2016-03-01

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  11. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    PubMed Central

    Webb, Carol F.; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. PMID:26111446

  12. Security monitoring system based on a line structure Sagnac interferometer with 3×3 coupler

    NASA Astrophysics Data System (ADS)

    Ruan, Li; He, Cunfu; Wu, Bin

    2016-06-01

    Damage action, such as human disruption, is one of the major threats to pipeline operation. It is essential to monitor perturbation behavior and locate the position in real time. A pipeline security monitoring system is proposed using a line structure Sagnac distributed optic fiber interferometer with a 3×3 coupler that can modulate the optic signal phase without special modulation and demodulation. The optic structure of the system is simplified, signal processing accuracy improved, and the effect of polarization reduced. The working principle of the monitoring in ideal conditions and phase demodulation are analyzed and the location of the possible damage point is formulated. Simulation and validation tests confirm the feasibility of the proposed monitoring system and indicate that the low frequency signals <1 kHz can be detected effectively. A disturbance can be accurately located over long monitoring distances.

  13. Hyperfine structure and isotope shifts in 733.2 nm mixed forbidden line of Pb I

    NASA Astrophysics Data System (ADS)

    Wąsowicz, T. J.; Drozdowski, R.; Kwela, J.

    2007-05-01

    Studies of the hyperfine structure and isotope shifts in 733.2 nm mixed (M1+E2) multipole line of Pb I are presented. As a light source the electrodeless discharge tube was used. The high resolution spectral apparatus consisted of a silver coated Fabry-Perot etalon and a grating spectrograph combined with a CCD camera used as a detector. In the analysis of the spectra a computer simulation technique was used. The experiments with the isotope 207Pb yielded the hyperfine structure splitting constant A for the 3P1 and 1D2 levels of the 6s26p2 ground configuration. In the experiment with natural lead the isotope shifts between four stable isotopes (204, 206, 207, 208) were measured.

  14. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line.

    PubMed

    Sesé, Luis M

    2016-03-01

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing. PMID:26957169

  15. The composition, structure, temperature and dynamics of the upper thermosphere in the polar regions during October to December 1981

    NASA Technical Reports Server (NTRS)

    Rees, D.; Gordon, R.; Fuller-Rowell, T. J.; Smith, M.; Carignan, G. R.; Killeen, T. L.; Hays, P. B.; Spencer, N. W.

    1985-01-01

    Observational data obtained by the Dynamics Explorer-2 (DE-2) spacecraft were compared with global model simulations in order to study the composition, structure, temperature, and dynamics of the upper thermosphere in polar regions during the period October-December 1981. A UCL three-dimensional model was used to simulate the seasonal, diurnal, and geomagnetic response of the neutral thermosphere and to follow the major features of the solar and geomagnetic inputs during the late 1981 period. Overall agreement was obtained between the simulations and the DE-2 data for thermospheric wind structure at high latitudes, and for the combined thermal and compositional structure in both hemispheres. Computer-generated line drawings of the variations in thermospheric structure are given, as well as a series of color graphic illustrations of the DE-2 data.

  16. A semi-automatic method for extracting thin line structures in images as rooted tree network

    SciTech Connect

    Brazzini, Jacopo; Dillard, Scott; Soille, Pierre

    2010-01-01

    This paper addresses the problem of semi-automatic extraction of line networks in digital images - e.g., road or hydrographic networks in satellite images, blood vessels in medical images, robust. For that purpose, we improve a generic method derived from morphological and hydrological concepts and consisting in minimum cost path estimation and flow simulation. While this approach fully exploits the local contrast and shape of the network, as well as its arborescent nature, we further incorporate local directional information about the structures in the image. Namely, an appropriate anisotropic metric is designed by using both the characteristic features of the target network and the eigen-decomposition of the gradient structure tensor of the image. Following, the geodesic propagation from a given seed with this metric is combined with hydrological operators for overland flow simulation to extract the line network. The algorithm is demonstrated for the extraction of blood vessels in a retina image and of a river network in a satellite image.

  17. Walkable Worlds give a Rich Self-Similar Structure to the Real Line

    NASA Astrophysics Data System (ADS)

    Rosinger, Elemér E.

    2010-05-01

    It is a rather universal tacit and unquestioned belief—and even more so among physicists—that there is one and only one real line, namely, given by the coodinatisation of Descartes through the usual field R of real numbers. Such a dramatically limiting and thus harmful belief comes, unknown to equally many, from the similarly tacit acceptance of the ancient Archimedean Axiom in Euclid's Geometry. The consequence of that belief is a similar belief in the uniqueness of the coordinatization of the plane by the usual field C of complex numbers, and therefore, of the various spaces, manifolds, etc., be they finite or infinite dimensional, constructed upon the real or complex numbers, including the Hilbert spaces used in Quantum Mechanics. A near total lack of awareness follows therefore about the rich self-similar structure of other possible coordinatisations of the real line, possibilities given by various linearly ordered scalar fields obtained through the ultrapower construction. Such fields contain as a rather small subset the usual field R of real numbers. The concept of walkable world, which has highly intuitive and pragmatic algebraic and geometric meaning, illustrates the mentioned rich self-similar structure.

  18. Late Cretaceous intraplate silicic volcanism in the Lake Chad region: incipient continental rift volcanism vs. Cameroon Line volcanism

    NASA Astrophysics Data System (ADS)

    Shellnutt, G.; Lee, T. Y.; Torng, P. K.; Yang, C. C.

    2015-12-01

    The crustal evolution of west-central Africa during the Cretaceous was directly related to plate motion associated with the opening of the central Atlantic Ocean. Late Cretaceous (~66 Ma) to recent magmatism related to the Cameroon Line stretches from Northern Cameroon (i.e. Golda Zuelva) to the Gulf of Guinea (i.e. Pagalu) and is considered to be due to mantle-crust interaction. The volcanic rocks at Hadjer el Khamis, west-central Chad, are considered to be amongst the oldest volcanic rocks of the Cameroon Line but their relationship is uncertain because they erupted during a period of a regional extension associated with the opening of the Late Cretaceous (~75 Ma) Termit basin. The silicic volcanic rocks can be divided into a peraluminous group and a peralkaline group with both rock types having similar chemical characteristics as within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma and indicates the rocks erupted ~10 million years before the next oldest eruption attributed to the Cameroon Line. The Sr isotopes (i.e. ISr = 0.7050 to 0.7143) show a wide range but the Nd isotopes (i.e. 143Nd/144Ndi = 0.51268 to 0.51271) are more uniform and indicate that the rocks were derived from a moderately depleted mantle source. Major and trace elemental modeling show that the silicic rocks likely formed by shallow fractionation of a mafic parental magma where the peraluminous rocks experienced crustal contamination and the peralkaline rocks did not. The silicic rocks are more isotopically similar to Late Cretaceous basalts in the Doba and Bongor basins (i.e. ISr = 0.7040 to 0.7060; 143Nd/144Ndi = 0.51267 to 0.51277) of southern Chad than to rocks of the Cameroon Line (i.e. ISr = 0.7026 to 0.7038; 143Nd/144Ndi = 0.51270 to 0.51300). Given the age and isotopic compositions, it is likely that the silicic volcanic rocks of the Lake Chad area are related to Late Cretaceous extensional tectonics rather than to Cameroon Line magmatism.

  19. DSSTOX NATIONAL TOXICOLOGY PROGRAM BIOASSAY ON-LINE DATABASE STRUCTURE-INDEX LOCATOR FILE: SDF FILE AND DOCUMENTATION

    EPA Science Inventory

    NTPBSI: National Toxicology Program Bioassay On-line Database Structure-Index Locator File. Database contains the results collected on approxiately 300 toxicity studies from shorter duration test and from genetic toxicity studies, both in vitro and in vivo tests.

  20. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOEpatents

    De Ceuster, Denis; Cousins, Peter John; Smith, David D

    2013-05-28

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  1. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOEpatents

    De Ceuster, Denis; Cousins, Peter John; Smith, David D

    2014-03-18

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  2. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOEpatents

    De Ceuster, Denis; Cousins, Peter John; Smith, David D.

    2010-12-14

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  3. Structural analysis of airborne flux estimates over a region

    SciTech Connect

    Caramori, P.; Schuepp, P. ); Desjardins, R. ); MacPherson, I. )

    1994-05-01

    Aircraft-based observations of turbulence fields of velocity, moisture, and temperature are used to study coherent turbulent structures that dominate turbulent transfer of moisture and heat above three different ecosystems. Flux traces are defragmented, to reconstruct the presumed full size (along the sampled transect) of these structures, and flux traces are simplified by elimination of those that contribute negligibly to the flux estimates. Structures are analyzed in terms of size, spatial distribution, and contribution to the flux, in the four [open quotes]quadrant[close quotes] modes of eddy-covariance transfer (excess up/down and deficit up/down). The effect of nonlinear detrending of moisture and temperature data on this [open quotes]structural analysis,[close quotes] over surfaces with heterogeneous surface wetness, is also examined. Results over grassland, wetland, and moist and dry agricultural land, show that nonlinear detrending may provide a more physically realistic description of structures. Significant difference are observed between structure size and associated relative flux contribution, between moist and dry areas, with smaller structures playing a more important role over the moist areas. Structure size generally increases with height, as spatial reorganization from smaller structures into larger ones takes place. This coincides with a gradual loss of surface [open quotes]signature[close quotes] (position and clustering of plumes above localized source area). The data are expected to provide a basis for an eventual statistical description of boundary-layer transfer events, and help to interpret the link between boundary-layer transfer and hydrological surface conditions. 48 refs., 15 figs. 2 tabs.

  4. PDR MODEL MAPPING OF OBSCURED H{sub 2} EMISSION AND THE LINE-OF-SIGHT STRUCTURE OF M17-SW

    SciTech Connect

    Sheffer, Y.; Wolfire, M. G.

    2013-09-01

    We observed H{sub 2} line emission with Spitzer-IRS toward M17-SW and modeled the data with our photon-dominated region (PDR) code. Derived gas density values of up to few times 10{sup 7} cm{sup -3} indicate that H{sub 2} emission originates in high-density clumps. We discover that the PDR code can be utilized to map the amount of intervening extinction obscuring the H{sub 2} emission layers, and thus we obtain the radial profile of A{sub V} relative to the central ionizing cluster NGC 6618. The extinction has a positive radial gradient, varying between 15-47 mag over the projected distance of 0.9-2.5 pc from the primary ionizer, CEN 1. These high extinction values are in good agreement with previous studies of A{sub V} toward stellar targets in M17-SW. The ratio of data to PDR model values is used to infer the global line-of-sight structure of the PDR surface, which is revealed to resemble a concave surface relative to NGC 6618. Such a configuration confirms that this PDR can be described as a bowl-shaped boundary of the central H II region in M17. The derived structure and physical conditions are important for interpreting the fine-structure and rotational line emission from the PDR.

  5. De novo LINE-1 retrotransposition in HepG2 cells preferentially targets gene poor regions of chromosome 13.

    PubMed

    Bojang, Pasano; Anderton, Mark J; Roberts, Ruth A; Ramos, Kenneth S

    2014-08-01

    Long interspersed nuclear elements (Line-1 or L1s) account for ~17% of the human genome. While the majority of human L1s are inactive, ~80-100 elements remain retrotransposition competent and mobilize through RNA intermediates to different locations within the genome. De novo insertions of L1s account for polymorphic variation of the human genome and disruption of target loci at their new location. In the present study, fluorescence in situ hybridization and DNA sequencing were used to characterize retrotransposition profiles of L1(RP) in cultured human HepG2 cells. While expression of synthetic L1(RP) was associated with full-length and truncated insertions throughout the entire genome, a strong preference for gene-poor regions, such as those found in chromosome 13 was observed for full-length insertions. These findings shed light into L1 targeting mechanisms within the human genome and question the putative randomness of L1 retrotransposition.

  6. Investigation on a compact in-line multimode-single-mode-multimode fiber structure

    NASA Astrophysics Data System (ADS)

    Yin, Bin; Li, Yang; Liu, Zhi-bo; Feng, Suchun; Bai, Yunlong; Xu, Yao; Jian, Shuisheng

    2016-06-01

    We carried out a detailed investigation on a compact in-line multimode single-mode multimode (MSM) fiber structure. Both theoretical modal and experimental setup were established to demonstrate the transmission characteristics and the corresponding responses of the applied strain and temperature. The proposed structure simply involves a section of the single-mode fiber (SMF) spliced to two sections of multimode fiber (MMF) and lead-in and lead-out SMFs. The excited environment-sensitive cladding modes together with the fundamental mode in the central SMF form a typical Mach-Zehnder interferometer (MZI). We analyzed the transmission characteristics of the different length of the middle SMF and the MMF in detail. In the experiment, we obtained the extinction ratio of the MSM fiber structure based MZI comb spectrum which was up to 20 dB, and sensitivities of 0.7096 pm/με (0-2000 με) and 44.12 pm/°C (10-70 °C), which proved the potential sensing applications of the proposed fiber structure.

  7. Evolution of pre-collective nuclei: Structural signatures near the drip lines

    SciTech Connect

    Casten, R.F.; Zamfir, N.V. ||

    1994-10-01

    Recent studies have shown that the phenomenology of single-magic and near-magic nuclei has universal characteristics analogous to those of collective nuclei and that, moreover, this phenomenology attaches smoothly to that describing collective nuclei. This has led to a number of new signatures of structure as well as to a new, tripartite, classification of nuclear structure that embraces the gamut of structures from magic, through pre-collective, to fully collective and rotational nuclei. Aside from the natural appeal of simple global correlations of collective observables, these results have particular significance for soon-to-be accessible exotic nuclei near the drip lines since they rely on only the simplest-to-obtain data, in particular, the energies of just the first two excited states, E(4{sub 1}{sup +}) and E(2{sub 1}{sup +}), of even-even nuclei, and the B(E2:2{sub 1}{sup +}{yields}0{sub 1}{sup +}) value. Indeed, without the need for more extensive level schemes, these basic data alone can reveal information about the goodness of seniority, about the validity of pair-addition mode relationships of adjacent even-even nuclei, about underlying shell structure (validity of magic numbers) and even about the shell model potential itself (e.g., the strengths of the l{center_dot} and l{sup 2} terms).

  8. Structure of a seismogenic fault zone in dolostones: the Foiana Line (Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Fondriest, M.; Smith, S. A.; Aretusini, S.

    2012-12-01

    Fault zones in carbonate rocks (limestones and dolostones) represent significant upper crustal seismogenic sources in several areas worldwide (e.g. L'Aquila 2009 Mw = 6.3 in central Italy). Here we describe an exhumed example of a regionally-significant fault zone cutting dolostones. The Foiana Line (FL) is a major NNE-SSW-trending sinistral transpressive fault cutting sedimentary Triassic dolostones in the Italian Southern Alps. The FL has a cumulative vertical throw of 1.5-2 km that reduces toward its southern termination. The fault zone is 50-300 m wide and is exposed for ~ 10 km along strike within several outcrops exhumed from increasing depths from the south (1 km) to the north (2.5 km). The southern portion of the FL consists of heavily fractured (shattered) dolostones, with particles of a few millimeters in size (exposed in badlands topography over an area of 6 km2), cut by a dense network of 1-20 m long mirror-like fault surfaces with dispersed attitudes. The mirror-like faults have mainly dip-slip reverse kinematics and displacements ranging between 0.04 m and 0.5 m. The northern portion of the FL consists of sub-parallel fault strands spaced 2-5 m apart, surrounded by 2-3 m thick bands of shattered dolostones. The fault strands are characterized by smooth to mirror-like sub-vertical slip surfaces with dominant strike-slip kinematics. Overall, deformation is more localized moving from South to North along the FL. Mirror-like fault surfaces similar to those found in the FL were produced in friction experiments at the deformation conditions expected during seismic slip along the FL (Fondriest et al., this meeting). Scanning Electron Microscope investigations of the natural shattered dolostones beneath the mirror-like fault surfaces show: 1) lack of significant shear strain (even at a few micrometers from the slip surface), 2) pervasive extensional fracturing down to the micrometer scale, 3) exploded clasts with radial fractures, and 4) chains of split

  9. Constructing the Coronal Magnetic Field: by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    1998-01-01

    The reconstruction of the coronal magnetic field is carried out using a perturbation procedure. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal fluxtubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures (1) that the normal component of the photospheric field remains unchanged, (2) that the field is given in the entire corona, (3) that the field remains divergence free, and (4) that electrical currents are introduced into the field. It is demonstrated that a simple radial parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 Nov 26. At a coronal height of 30 km, the resulting magnetic field is a non-force free magnetic field with the maximum Lorentz force being on the order of 2.6 x 10(exp -9) dyn resulting from an electric current density of $0.13 mu A/ sq m. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  10. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  11. Field line equipotentiality and ion neutral collision frequencies in the dynamo region deduced from Saint-Santin ion drift measurements

    SciTech Connect

    Taieb, C.; Blanc, M.

    1981-08-01

    We analyze three-dimensional ion drift data from the Saint-Santin incoherent scatter facility to test experimentally the theoretical description of ion transport in the ionospheric dynamo layer, and to deduce electric fields and ion neutral collision frequencies from the observed drifts. Using a geometrical representation of the ion momentum equation, we show that at middle latitudes, because horizontal neutral wind influences ion motions both parallel and orthogonal to the field lines in the ionospheric dynamo layer, the information contained in a three-dimensional ion drift measurement is redundant, thus permitting to check the standard theoretical description of ionospheric electrodynamics in two ways. First, assuming a model ion-neutral collision frequency profile, one can deduce the north-south perpendicular component of the electric field function of height in the E region from Saint-Santin drift data. We find that its altitude variations remain within the experimental uncertainty of the method, in agreement with the theoretical assumption of equipotential field lines. Second, assuming that the electric field is constant in altitude, one can determine the ion collision ratio, or ratio of the ion collision frequency to the ion gyrofrequency, from a comparison of E and F region drift measurements. Daily median values of the ion collision frequencies, thus obtained for each of the three seasons, are found to compare reasonably well with ion collision frequencies derived from the Jacchia neutral atmosphere model for the case of the equinox sample, but determinations for the other seasons are contaminated by a high level of measurement noise.

  12. On open and closed field line regions in Tsyganenko's field model and their possible associations with horse collar auroras

    SciTech Connect

    Birn, J.; Hones, E.W. Jr. ); Craven, J.D.; Frank, L.A. ); Elphinstone, R.D. ); Stern, D.P. )

    1991-03-01

    Using the empirical Tsyganenko (1987) long model as a prime example of a megnetospheric field model, the authors have attempted to identify the boundary between open and closed field lines. They define as closed all field lines that are connested with the Earth at both ends and cross the equatorial plane earthward of x = {minus}70 R{sub E}, the tailward validity limit of the Tsyganenko model. They find that the form of the open/closed boundary at the Earth's surface, identified with the polar cap boundary, can exhibit the arrowhead shape, pointed toward the Sun, observed in horse collar auroras (Hones et al., 1989). The polar cap size in the Tsyganenko model increases with increasing K{sub p} values, and it becomes rounder and less pointed. The superposition of a net B{sub y} field, which is the expected consequence of an IMF B{sub y}, rotates the polar cap pattern and, for larger values, degrades the arrowhead shape, resulting in polar cap configurations consistent with known asymmetries in the aurora. The pointedness of the polar cap shape also diminishes or even completely disappears if the low-latitude magnetopause is assumed open and located considerably inside of the outermost magnetic flux surface in the Tsyganenko model. The arrowhead shape of the polar cap is found to be associated with a strong increase of B{sub z} from midnight toward the tail flanks, which is observed independently, and is possibly related to the NBZ field-aligned current system, observed during quiet times and strongly northward IMF B{sub z}. The larger B{sub z} values near the flanks of the tail cause more magnetic flux to close through these regions than through the midnight equatorial region.

  13. The temperature structure and pressure balance of magnetic loops in active regions. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Foukal, P.

    1975-01-01

    EUV observations show many active region loops in lines formed at temperatures between 10,000 and 2,000,000 K. The brightest loops are associated with flux tubes leading to the umbrae of sunspots. It is shown that the high visibility of certain loops in transition region lines is due principally to a sharp radial decrease of temperature to chromospheric values toward the loop axis. The plasma density of these cool loops is not significantly greater than in the hot gas immediately surrounding it. Consequently, the internal gas pressure of the cool material is clearly lower. The hot material immediately surrounding the cool loops is generally denser than the external corona by a factor 3-4. When the active region is examined in coronal lines, this hot high pressure plasma shows up as loops that are generally parallel to the cool loops but significantly displaced laterally.

  14. HITRANonline: a New Structure and Interface for HITRAN Line Lists and Cross Sections

    NASA Astrophysics Data System (ADS)

    Hill, Christian; Rothman, Laurence S.; Gordon, Iouli E.; Kochanov, Roman V.; Wcislo, Piotr; Wilzewski, Jonas

    2015-06-01

    We present HITRANonline, an online interface to the internationally-recognised HITRAN molecular spectroscopic database[1], and describe the structure of its relational database backend[2]. As the amount and complexity of spectroscopic data on molecules used in atmospheric modelling has increased, the existing 160-character, text-based format has become inadequate for its description. For example, line shapes such as the Hartmann-Tran profile[3] require up to six parameters for their full description (each with uncertainties and references), data is available on line-broadening by species other than ``air'' and ``self'' and more than the current maximum of 10 isotopologues of some molecules (for example, CO_2) can be important for accurate radiative-transfer modelling. The new relational database structure overcomes all of these limitations as well as allowing for better data provenance through ``timestamping'' of transitions and a direct link between items of data and their literature sources. To take full advantage of this new database structure, the online interface HITRANonline, available at www.hitran.org, provides a user-friendly way to make queries of HITRAN data with the option of returning it in a customizable format with user-defined fields and precisions. Binary formats such as HDF-5 are also supported. In addition to the data, each query also produces its own bibliography (in HTML and BibTeX formats), ``README'' documentation and interactive graph for easy visualization. L. S. Rothman et al., JSQRT 130, 4-50 (2013). C. Hill, I. E. Gordon, L. S. Rothman, J. Tennyson, JQSRT130, 51-61 (2013). N. H. Ngo, D. Lisak, H. Tran, J.-M. Hartmann, JQSRT 129, 89--100, (2013); erratum: JQSRT 134, 105 (2014). This work has been supported by NASA Aura Science Team Grant NNX14AI55G and NASA Planetary Atmospheres Grant NNX13AI59G.

  15. Hints of a rotating spiral structure in the innermost regions around IRC +10216

    PubMed Central

    Quintana-Lacaci, G.; Cernicharo, J.; Agúndez, M.; Prieto, L. Velilla; Castro-Carrizo, A.; Marcelino, N.; Cabezas, C.; Peña, I.; Alonso, J.L.; Zúñiga, J.; Requena, A.; Bastida, A.; Kalugina, Y.; Lique, F.; Guélin, M.

    2016-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is allowing us to study the innermost regions of the circumstellar envelopes of evolved stars with un-precedented precision and sensitivity. Key processes in the ejection of matter and dust from these objects occur in their inner zones. In this work, we present sub-arcsecond interferometric maps of transitions of metal-bearing molecules towards the prototypical C-rich evolved star IRC +10216. While Al-bearing molecules seem to be present as a roughly spherical shell, the molecular emission from the salts NaCl and KCl presents an elongation in the inner regions, with a central minimum. In order to accurately analyze the emission from the NaCl rotational lines, we present new calculations of the collisional rates for this molecule based on new spectroscopic constants. The most plausible interpretation for the spatial distribution of the salts is a spiral with a NaCl mass of 0.08M☉. Alternatively, a torus of gas and dust would result in similar structures as those observed. From the torus scenario we derive a mass of ~ 1.1 × 10−4M☉. In both cases, the spiral and the torus, the NaCl structure presents an inner minimum of 27 AU. In the case of the torus, the outer radius is 73 AU. The kinematics of both the spiral and the torus suggests that they are slowly expanding and rotating. Alternative explanations for the presence of the elongation are explored. The presence of these features only in KCl and NaCl might be a result of their comparatively high dipole moment with respect to the Al-bearing species. PMID:26997665

  16. Nature of the boundary between open and closed magnetic field line regions at the Sun revealed by composition data and numerical models

    NASA Astrophysics Data System (ADS)

    Posner, Arik; Zurbuchen, Thomas H.; Schwadron, Nathan A.; Fisk, Lennard A.; Gloeckler, George; Linker, Jon A.; Mikić, Zoran; Riley, Pete

    2001-08-01

    Recently, Fisk et al. [1999] have presented a theory that describes a number of features of the large-scale coronal and heliospheric magnetic field. This theory predicts large-scale transport of magnetic flux across the boundaries of the polar coronal holes, which leads to reconnection processes of open field lines with preliminary closed magnetic structures. Reconnection processes reveal themselves in solar wind composition data: Plasma released out of previously closed magnetic field structures exhibits hotter charge state distributions and has a tendency to be enriched by elements with low first ionization potentials. The idea of reconnection at the boundaries of coronal holes is not new. For example, Wang and Sheeley [1993] and Luhmann et al. [1999] found evidence for that mechanism by comparison of observations of the rotation and evolution of coronal holes with potential field models of the solar corona. We use Ulysses Solar Wind Ion Composition Spectrometer composition measurements and sophisticated numerical models [Linker et al., 1999; Riley et al., 1999] to accurately map these observations back to the solar surface. We then constrain the thickness of the stream interface at the Sun and compare the location of the source region with SOHO observations of the low corona. The results are discussed in the context of the global structure of the heliospheric magnetic field.

  17. Momentum-space structure of surface states in a topological semimetal with a nexus point of Dirac lines

    NASA Astrophysics Data System (ADS)

    Hyart, T.; Heikkilä, T. T.

    2016-06-01

    Three-dimensional topological semimetals come in different variants, either containing Weyl points or Dirac lines. Here we describe a more complicated momentum-space topological defect where several separate Dirac lines connect with each other, forming a momentum-space equivalent of the real-space nexus considered before for helium-3. Close to the nexus the Dirac lines exhibit a transition from type I to type II lines. We consider a general model of stacked honeycomb lattices with the symmetry of Bernal (AB) stacked graphite and show that the structural mirror symmetries in such systems protect the presence of the Dirac lines, and also naturally lead to the formation of the nexus. By the bulk-boundary correspondence of topological media, the presence of Dirac lines lead to the formation of drumhead surface states at the side surfaces of the system. We calculate the surface state spectrum, and especially illustrate the effect of the nexus on these states.

  18. An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Moore, R. L.; Porter, J. G.; Falconer, D. A.

    1999-01-01

    We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the

  19. THE Ly{alpha} LINES OF H I AND He II: A DIFFERENTIAL HANLE EFFECT FOR EXPLORING THE MAGNETISM OF THE SOLAR TRANSITION REGION

    SciTech Connect

    Trujillo Bueno, Javier; Stepan, Jiri; Belluzzi, Luca E-mail: stepan@iac.es

    2012-02-10

    The Ly{alpha} line of He II at 304 Angstrom-Sign is one of the spectral lines of choice for EUV channels of narrowband imagers on board space telescopes, which provide spectacular intensity images of the outer solar atmosphere. Since the magnetic field information is encoded in the polarization of the spectral line radiation, it is important to investigate whether the He II line radiation from the solar disk can be polarized, along with its magnetic sensitivity. Here we report some theoretical predictions concerning the linear polarization signals produced by scattering processes in this strong emission line of the solar transition region, taking into account radiative transfer and the Hanle effect caused by the presence of organized and random magnetic fields. We find that the fractional polarization amplitudes are significant ({approx}1%), even when considering the wavelength-integrated signals. Interestingly, the scattering polarization of the Ly{alpha} line of He II starts to be sensitive to the Hanle effect for magnetic strengths B {approx}> 100 G (i.e., for magnetic strengths of the order of and larger than the Hanle saturation field of the hydrogen Ly{alpha} line at 1216 Angstrom-Sign ). We therefore propose simultaneous observations of the scattering polarization in both Ly{alpha} lines to facilitate magnetic field measurements in the upper solar chromosphere. Even the development of a narrowband imaging polarimeter for the He II 304 Angstrom-Sign line alone would be already of great diagnostic value for probing the solar transition region.

  20. THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hbeta

    SciTech Connect

    Bentz, Misty C.; Walsh, Jonelle L.; Barth, Aaron J.; Baliber, Nairn; Bennert, Vardha Nicola; Greene, Jenny E.; Hidas, Marton G.; Canalizo, Gabriela; Hiner, Kyle D.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Lee, Nicholas; Li, Weidong; Serduke, Frank J. D.; Silverman, Jeffrey M.; Steele, Thea N.; Gates, Elinor L.; Malkan, Matthew A.; Minezaki, Takeo; Sakata, Yu

    2009-11-01

    We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range approx10{sup 6}-10{sup 7} M {sub sun} and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission. We present here the light curves for all the objects in this sample and the subsequent Hbeta time lags for the nine objects where these measurements were possible. The Hbeta lag time is directly related to the size of the broad-line region (BLR) in AGNs, and by combining the Hbeta lag time with the measured width of the Hbeta emission line in the variable part of the spectrum, we determine the virial mass of the central supermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al., which brings the masses determined by reverberation mapping into agreement with the local M {sub BH}-sigma{sub *}relationship for quiescent galaxies. We also examine the time lag response as a function of velocity across the Hbeta line profile for six of the AGNs. The analysis of four leads to rather ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting BLR clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple gravitational infall model. Further investigation will be necessary to fully understand the constraints placed on the physical models of the BLR by the velocity-resolved response

  1. Large-Scale Structures in the Zone of Avoidance: The Galactic Anticenter Region

    NASA Technical Reports Server (NTRS)

    Lu, Nanyao Y.; Freudling, Wolfram

    1995-01-01

    We have selected a sample of 876 galaxy candidates from the IRAS Point Source Catalog in the region of 2(exp h) < alpha < 10(exp h) and 0 deg < delta < 36 deg, which crosses the Galactic anticenter part of the Zone of Avoidance (ZOA) and includes most of the highly obscured Orion-Taurus complex region. We have identified galaxies among the candidate sources by attempting to detect the 21 cm H I line of those sources which were not known to be galaxies at the beginning of the survey. In this manner, we constructed a galaxy sample which is largely free from Galactic reddening. Of the 272 observed candidates, 89 were detected in the H I line up to a heliocentric velocity of v(sub h) approximately 16,000 km/s. The resulting galaxy sample of 717 galaxies is fairly complete (within about 10%) and uniform (within about 4%) in the part of the survey area 10 deg away from the Galactic plane and for velocities up to at least 9000 km/s. This provides, for the first time, a largely unbiased view on the large-scale structures in much of the survey area. Our main results are the following: (1) Several large voids are identified. In particular, a void between alpha approximately equals 3(sup h) and 4(sup h), up to v(sub h) approximately 6000 km/s, separates the Pisces-Perseus supercluster at alpha < 3(sup h) from structures at alpha > 4(sup h); and a "nearby void" occupies most of our survey area and reaches out to a redshift of nearly 3000 km/s. (2) We found no nearby galaxy concentration that could significantly contribute to the "Local Velocity Anomoly" (LVA), but a general excess of galaxies around v(sub h) approximately 5000 km/s in the survey area. (3) The contrast between the "Great Wall" at v(sub h) approximately 8500 km/s and the void in front of it appears to gradually diffuse out after it enters the Zone of Avoidance from the northern Galactic hemisphere. (4) Our data combined with other galaxy surveys in or near the Galactic anticenter part of the ZOA suggest that the

  2. Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering

    NASA Astrophysics Data System (ADS)

    Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven

    2014-09-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.

  3. Perinatal Risk Factors Altering Regional Brain Structure in the Preterm Infant

    ERIC Educational Resources Information Center

    Thompson, Deanne K.; Warfield, Simon K.; Carlin, John B.; Pavlovic, Masa; Wang, Hong X.; Bear, Merilyn; Kean, Michael J.; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.

    2007-01-01

    Neuroanatomical structure appears to be altered in preterm infants, but there has been little insight into the major perinatal risk factors associated with regional cerebral structural alterations. MR images were taken to quantitatively compare regional brain tissue volumes between term and preterm infants and to investigate associations between…

  4. Structure of the breakpoint region on current-voltage characteristics of intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Mahfouzi, F.; Suzuki, M.

    2008-10-01

    A fine structure of the breakpoint region in the current-voltage characteristics of the coupled intrinsic Josephson junctions in the layered superconductors is found. We establish a correspondence between the features in the current-voltage characteristics and the character of the charge oscillations in superconducting layers in the stack and explain the origin of the breakpoint region structure.

  5. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice

    PubMed Central

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-01-01

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs. PMID:27465821

  6. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice.

    PubMed

    Ookawa, Taiichiro; Aoba, Ryo; Yamamoto, Toshio; Ueda, Tadamasa; Takai, Toshiyuki; Fukuoka, Shuichi; Ando, Tsuyu; Adachi, Shunsuke; Matsuoka, Makoto; Ebitani, Takeshi; Kato, Yoichiro; Mulsanti, Indria Wahyu; Kishii, Masahiro; Reynolds, Matthew; Piñera, Francisco; Kotake, Toshihisa; Kawasaki, Shinji; Motobayashi, Takashi; Hirasawa, Tadashi

    2016-07-28

    Severe lodging has occurred in many improved rice varieties after the recent strong typhoons in East and Southeast Asian countries. The indica variety Takanari possesses strong culm characteristics due to its large section modulus, which indicates culm thickness, whereas the japonica variety Koshihikari is subject to substantial bending stress due to its thick cortical fibre tissue. To detect quantitative trait loci (QTLs) for lodging resistance and to eliminate the effects of genetic background, we used reciprocal chromosome segment substitution lines (CSSLs) derived from a cross between Koshihikari and Takanari. The oppositional effects of QTLs for section modulus were confirmed in both genetic backgrounds on chromosomes 1, 5 and 6, suggesting that these QTLs are not affected by the genetic background and are controlled independently by a single factor. The candidate region of a QTL for section modulus included SD1. The section modulus of NIL-sd1 was lower than that of Koshihikari, whereas the section modulus of NIL-SD1 was higher than that of Takanari. This result indicated that those regions regulate the culm thickness. The reciprocal effects of the QTLs for cortical fibre tissue thickness were confirmed in both genetic backgrounds on chromosome 9 using CSSLs.

  7. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths

    SciTech Connect

    Gapinski, Jacek Patkowski, Adam; Nägele, Gerhard

    2014-09-28

    Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shown to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio.

  8. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid

    NASA Astrophysics Data System (ADS)

    Tanaka, Koji; Caaveiro, Jose M. M.; Morante, Koldo; González-Mañas, Juan Manuel; Tsumoto, Kouhei

    2015-02-01

    Pore-forming toxins (PFT) are water-soluble proteins that possess the remarkable ability to self-assemble on the membrane of target cells, where they form pores causing cell damage. Here, we elucidate the mechanism of action of the haemolytic protein fragaceatoxin C (FraC), a α-barrel PFT, by determining the crystal structures of FraC at four different stages of the lytic mechanism, namely the water-soluble state, the monomeric lipid-bound form, an assembly intermediate and the fully assembled transmembrane pore. The structure of the transmembrane pore exhibits a unique architecture composed of both protein and lipids, with some of the lipids lining the pore wall, acting as assembly cofactors. The pore also exhibits lateral fenestrations that expose the hydrophobic core of the membrane to the aqueous environment. The incorporation of lipids from the target membrane within the structure of the pore provides a membrane-specific trigger for the activation of a haemolytic toxin.

  9. Metal-line absorption around z ≈ 2.4 star-forming galaxies in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Turner, Monica L.; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison L.

    2014-11-01

    We study metal absorption around 854 z ≈ 2.4 star-forming galaxies taken from the Keck Baryonic Structure Survey. The galaxies examined in this work lie in the fields of 15 hyperluminous background quasi-stellar objects, with galaxy impact parameters ranging from 35 proper kpc (pkpc) to 2 proper Mpc (pMpc). Using the pixel optical depth technique, we present the first galaxy-centred 2D maps of the median absorption by O VI, N V, C IV, C III, and Si IV, as well as updated results for H I. At small galactocentric radii we detect a strong enhancement of the absorption relative to randomly located regions that extend out to at least 180 pkpc in the transverse direction, and ±240 km s-1 along the line of sight (LOS, ˜1 pMpc in the case of pure Hubble flow) for all ions except N V. For C IV (and H I) we detect a significant enhancement of the absorption signal out to 2 pMpc in the transverse direction, corresponding to the maximum impact parameter in our sample. After normalizing the median absorption profiles to account for variations in line strengths and detection limits, in the transverse direction we find no evidence for a sharp drop-off in metals distinct from that of H I. We argue instead that non-detection of some metal-line species in the extended circumgalactic medium is consistent with differences in the detection sensitivity. Along the LOS, the normalized profiles reveal that the enhancement in the absorption is more extended for O VI, C IV, and Si IV than for H I. We also present measurements of the scatter in the pixel optical depths, covering fractions, and equivalent widths as a function of projected galaxy distance. Limiting the sample to the 340 galaxies with redshifts measured from nebular emission lines does not decrease the extent of the enhancement along the LOS compared to that in the transverse direction. This rules out redshift errors as the source of the observed redshift-space anisotropy and thus implies that we have detected the signature

  10. Nuclear structure investigations in the region of superheavy nuclei

    SciTech Connect

    Hessberger, F. P.

    2007-08-15

    Radioactive decay from the ground state or isomeric states has been investigated for a series of nuclei in the region of Z = 100-106 by means of {alpha}-{gamma}-or evaporation residue-({gamma}, conversion electron)-measurements in prompt and delayed coincidence. Systematic trends in single-particle level energies in N = 145-151 odd-even isotones could be extended up to Z = 104, while an energy systematics of lowlying Nilsson levels in odd-mass einsteinium isotopes was established. Information on nuclear levels at E* > 500 keV was obtained from the decay study of isomeric states in {sup 251-255}No.

  11. Erratum: ``What the Optical Recombination Lines Can Tell Us about the Broad-Line Regions of Active Galactic Nuclei'' (ApJ, 606, 749 [2004])

    NASA Astrophysics Data System (ADS)

    Korista, Kirk T.; Goad, Michael R.

    2005-07-01

    An emission line flux ratio appearing in the Abstract and under point 6 of the Summary in § 5 was inadvertently inverted. In the Abstract the relevant sentence should state: ``The broad Hα/Hβ and Hβ/He I flux ratios and the Balmer emission-line responsivity are observed to decrease from the line center to the line wings.'' Under point 6 of the Summary in § 5 the relevant sentence should state: ``Because the emissivities and responsivities of the optical recombination lines are anticorrelated with the incident continuum flux, observations that Hα/Hβ and Hβ/He I flux ratios and the Balmer line responsivity decrease from the core to the wings indicate that the BLR velocity field diminishes with increasing distance from the central continuum source.'' This emission line flux ratio, Hβ/He I λ5876, is quoted in its correct form in § 3.6 and Figure 8, where it was discussed. In addition, two sentences within § 3.3 should be clarified as follows. About midway down paragraph 1, the sentence should read: ``After positing that the UV continuum is more intimately connected to the driving ionizing continuum and accounting for the relation that they found between the λ5100 and λ1350 continuum bands (F5100~F0.561350), the relation τ~F0.53UV resulted.'' The second sentence of paragraph 5 should state: ``As discussed in § 3.1, the low-state responsivity is higher in every case, and Figure 3 shows that the line's radial responsivity and Rη shift to larger distances in higher continuum states.'' Finally, we also note that the work cited in our paper as K. Horne (2004, in preparation) has been submitted and is anticipated to appear as Cackett, E. M., & Horne, K. (MNRAS, in press [2005]). None of these changes affects the results of the paper.

  12. Dnmt3b Prefers Germ Line Genes and Centromeric Regions: Lessons from the ICF Syndrome and Cancer and Implications for Diseases.

    PubMed

    Walton, Emma L; Francastel, Claire; Velasco, Guillaume

    2014-01-01

    The correct establishment and maintenance of DNA methylation patterns are critical for mammalian development and the control of normal cell growth and differentiation. DNA methylation has profound effects on the mammalian genome, including transcriptional repression, modulation of chromatin structure, X chromosome inactivation, genomic imprinting, and the suppression of the detrimental effects of repetitive and parasitic DNA sequences on genome integrity. Consistent with its essential role in normal cells and predominance at repetitive genomic regions, aberrant changes of DNA methylation patterns are a common feature of diseases with chromosomal and genomic instabilities. In this context, the functions of DNA methyltransferases (DNMTs) can be affected by mutations or alterations of their expression. DNMT3B, which is involved in de novo methylation, is of particular interest not only because of its important role in development, but also because of its dysfunction in human diseases. Expression of catalytically inactive isoforms has been associated with cancer risk and germ line hypomorphic mutations with the ICF syndrome (Immunodeficiency Centromeric instability Facial anomalies). In these diseases, global genomic hypomethylation affects repeated sequences around centromeric regions, which make up large blocks of heterochromatin, and is associated with chromosome instability, impaired chromosome segregation and perturbed nuclear architecture. The review will focus on recent data about the function of DNMT3B, and the consequences of its deregulated activity on pathological DNA hypomethylation, including the illicit activation of germ line-specific genes and accumulation of transcripts originating from repeated satellite sequences, which may represent novel physiopathological biomarkers for human diseases. Notably, we focus on cancer and the ICF syndrome, pathological contexts in which hypomethylation has been extensively characterized. We also discuss the potential

  13. Rapid super-resolution line-scanning microscopy through virtually structured detection.

    PubMed

    Zhi, Yanan; Lu, Rongwen; Wang, Benquan; Zhang, Qiuxiang; Yao, Xincheng

    2015-04-15

    Virtually structured detection (VSD) has been demonstrated to break the diffraction limit in scanning laser microscopy (SLM). VSD provides an easy, low-cost, and phase-artifact-free strategy to achieve super-resolution imaging. However, practical application of this method is challenging due to a limited image acquisition speed. We report here the combination of VSD and line-scanning microscopy (LSM) to improve the image acquisition speed. A motorized dove prism was used to achieve automatic control of four-angle (i.e., 0°, 45°, 90°, and 135°) scanning, thus ensuring isotropic resolution improvement. Both an optical resolution target and a living frog eyecup were used to verify resolution enhancement.

  14. Rapid super-resolution line-scanning microscopy through virtually structured detection

    PubMed Central

    Zhi, Yanan; Lu, Rongwen; Wang, Benquan; Zhang, Qiuxiang; Yao, Xincheng

    2015-01-01

    Virtually structured detection (VSD) has been demonstrated to break the diffraction limit in scanning laser microscopy (SLM). VSD provides an easy, low-cost, and phase-artifact-free strategy to achieve super-resolution imaging. However, practical application of this method is challenging due to a limited image acquisition speed. We report here the combination of VSD and line-scanning microscopy (LSM) to improve the image acquisition speed. A motorized dove prism was used to achieve automatic control of four-angle (i.e., 0°, 45°, 90°, and 135°) scanning, thus ensuring isotropic resolution improvement. Both an optical resolution target and a living frog eyecup were used to verify resolution enhancement. PMID:25872047

  15. A case study of a density structure over a vertical magnetic field region in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Diéval, C.; Morgan, D. D.; Pisa, D.; Lundin, R.

    2016-05-01

    One of the discoveries made by the radar sounder on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in bulges in the ionospheric electron density contours. These bulges lead in turn to oblique echoes, which show up as hyperbola-shaped features in the echograms. A hyperbola-shaped feature observed over an isolated region of strong crustal magnetic field is associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. We suggest that along open magnetic field lines, the solar wind electrons are accelerated downward and the ionospheric ions are accelerated upward in a manner similar to the field line-driven auroral acceleration at Earth. This heating due to precipitating electrons may cause an increase in the scale height and may drive a loss of ionospheric plasma at high altitudes.

  16. Sequence and structural analysis of the 5' noncoding region of hepatitis C virus in patients with chronic infection.

    PubMed

    Araújo, Flávio Marcos Gomes; Machado-Lima, Ariane; Durham, Alan Mitchell; Teixeira, Rosangela; Oliveira, Guilherme

    2009-07-01

    Hepatitis C virus (HCV), exhibits considerable genetic diversity, but presents a relatively well conserved 5' noncoding region (5' NCR) among all genotypes. In this study, the structural features and translational efficiency of the HCV 5' NCR sequences were analyzed using the programs RNAfold, RNAshapes and RNApdist and with a bicistronic dual luciferase expression system, respectively. RNA structure prediction software indicated that base substitutions will alter potentially the 5' NCR structure. The heterogeneous sequence observed on 5' NCR led to important changes in their translation efficiency in different cell culture lines. Interactions of the viral RNA with cellular transacting factors may vary according to the cell type and viral genome polymorphisms that may result in the translational efficiency observed.

  17. Structural development of the central Kyrenia Range (north Cyprus) in its regional setting in the eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Robertson, A. H. F.; Kinnaird, T. C.

    2016-01-01

    A detailed structural analysis of the Mesozoic-Cenozoic geological development of the central segment of the Kyrenia Range in its regional tectonic context is given here. The structural evidence comes from five structural traverses, outcrop observations, small-scale structures and related regional evidence. The majority of the structures are fault planes, of which a subordinate number exhibit slickenlines (fault plane data, n = 2688; with kinematics, n = 537). Additional kinematic data were obtained from C-S fabrics and folds. Small-scale structures in each stratigraphic unit were `backstripped' to reveal relative chronology. Synthesis of the structural information indicates three phases of convergence-related deformation: (1) Late Cretaceous, associated with greenschist facies metamorphism, followed by exhumation that was probably associated with WNW-ESE to ENE-WSW-trending high-angle faulting; (2) Mid-Eocene, associated with southward thrusting, coupled with ~N-S strike-slip (transfer faulting) and oblique faulting in an overall sinistral transpressive stress regime; (3) Late Miocene-earliest Pliocene, involving southward thrusting and folding, localised back-thrusting, extensive fault reactivation and large-scale segmentation of the range. Intense uplift of the Kyrenia Range took place during the Plio-Pleistocene, possibly related to the collision of the Eratosthenes Seamount with the Cyprus trench to the south of the island. The three main convergent phases relate to stages of northward subduction and diachronous continental collision affecting the northerly, active continental margin of the Southern Neotethys.

  18. Electrodynamic structure of the morning high-latitude trough region

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.; Aikio, A.; Voiculescu, M.; Juusola, L.; Nygrén, T.; Kuula, R.

    2016-03-01

    We describe the electrodynamics of a postmidnight, high-latitude ionospheric trough, observed with the European Incoherent Scatter radar in northern Scandinavia on 24-25 June 2003 around 22:00-02:30 UT during quiet conditions. The UHF radar made meridian scans with a 30 min cadence resulting in nine cross sections of ionospheric parameters. The F region electric field was also determined with the tristatic system. Ionospheric equivalent currents, calculated from ground magnetometer data, mostly show an electrojet-like current that is reasonably uniform in the longitudinal direction. Combined analysis of the conductances and equivalent current with a local Kamide-Richmond-Matsushita (KRM) method yields the ionospheric electric field and field-aligned current (FAC) in a 2-D (latitude-longitude) area around the radar. We conclude that the most likely scenario is one where the trough is initially created poleward of the auroral oval by downward FAC that evacuates the F region, but as the trough moves to lower latitudes during the early morning hours, it becomes colocated with the westward electrojet. There the electron density further decreases due to increased recombination caused by enhanced ion temperature, which in turn is brought about by a larger convection speed. Later in the morning the convection speed decreases and the trough is filled by increasing photoionization.

  19. Regional gravity analysis of the crustal structure of Tunisia

    NASA Astrophysics Data System (ADS)

    Jallouli, Chokri; Mickus, Kevin

    2000-01-01

    Gravity data were integrated with seismic refraction/reflection data, well data and geological investigations to determine a general crustal structure of Tunisia. The gravity data analysis included the construction of a complete Bouguer gravity anomaly map, residual gravity anomaly maps, horizontal gravity gradient maps and a 2.5-D gravity model. Residual gravity anomaly maps illustrate crustal anomalies associated with various structural domains within Tunisia including the Sahel Block, Saharian Flexure, Erg Oriental Basin, Algerian Anticlinorium, Gafsa Trough, Tunisian Trough, Kasserine Platform and the Tell Mountains. Gravity anomalies associated with these features are interpreted to be caused either by thickening or thinning of Palæozoic and younger sediments or by crustal thinning. Analysis of the residual gravity anomaly and horizontal gravity gradient maps also determined a number of anomalies that may be associated with previously unknown structures. A north-south trending gravity model in general indicated similar subsurface bodies as a coincident seismic model. However, thinner Mesozoic sediments within the Tunisian Trough, thinner Palæozoic sediments in the Gafsa Trough, and a greater offset on the Saharian Flexure were required by the gravity data. Additionally, basement uplifts under the Kasserine Platform and Gafsa Trough, not imaged by seismic data, were required by the gravity data. The gravity model revealed two previously unknown basins north and south of the Algerian Anticlinorium (5 km), while the Erg Oriental Basin is composed of at least two sub-basins, each with a depth of 5 km.

  20. An element in the 3' untranslated region of human LINE-1 retrotransposon mRNA binds NXF1(TAP) and can function as a nuclear export element.

    PubMed Central

    Lindtner, Susan; Felber, Barbara K; Kjems, Jørgen

    2002-01-01

    Export of unspliced mRNA to the cytoplasm is required for the replication of all retroviruses. In simian type D retroviruses, the RNA export is mediated by the constitutive transport element (CTE) that binds the cellular nuclear export factor 1, NXF1(TAP). To search for potential cellular RNA substrates for NXF1, we have set up an in vitro selection procedure, using an RNA library expressed from total human genomic DNA. A sequence that was isolated most frequently as independent clones exhibits extensive homology to the 3' untranslated region of expressed LINE1 (L1) retrotransposons. This region, termed L1-NXF1 binding element (L1-NBE) bears no structural resemblance to the viral CTE, but binds NXF1 as strongly as CTE, based on gel mobility shift competition assays. A deletion analysis of the NXF1 protein reveals that CTE and L1-NBE have different, but overlapping, binding domains on NXF1. Placed in an intron, L1-NBE is capable of mediating nuclear export of lariat RNA species in Xenopus laevis oocytes and of an unspliced HIV-1 derived RNA in human 293 cells, suggesting that it may function as a nuclear export element for the intronless L1 mRNA. PMID:12003494

  1. Bulk regional viral injection in neonatal mice enables structural and functional interrogation of defined neuronal populations throughout targeted brain areas.

    PubMed

    Cheetham, Claire E J; Grier, Bryce D; Belluscio, Leonardo

    2015-01-01

    The ability to label and manipulate specific cell types is central to understanding the structure and function of neuronal circuits. Here, we have developed a simple, affordable strategy for labeling of genetically defined populations of neurons throughout a targeted brain region: Bulk Regional Viral Injection (BReVI). Our strategy involves a large volume adeno-associated virus (AAV) injection in the targeted brain region of neonatal Cre driver mice. Using the mouse olfactory bulb (OB) as a model system, we tested the ability of BReVI to broadly and selectively label tufted cells, one of the two principal neuron populations of the OB, in CCK-IRES-Cre mice. BReVI resulted in labeling of neurons throughout the injected OB, with no spatial bias toward the injection site and no evidence of damage. The specificity of BReVI labeling was strikingly similar to that seen previously using immunohistochemical staining for cholecystokinin (CCK), an established tufted cell marker. Hence, the CCK-IRES-Cre line in combination with BReVI can provide an important tool for targeting and manipulation of OB tufted cells. We also found robust Cre-dependent reporter expression within three days of BReVI, which enabled us to assess developmental changes in the number and laminar distribution of OB tufted cells during the first three postnatal weeks. Furthermore, we demonstrate that BReVI permits structural and functional imaging in vivo, and can be combined with transgenic strategies to facilitate multi-color labeling of neuronal circuit components. BReVI is broadly applicable to different Cre driver lines and can be used to regionally manipulate genetically defined populations of neurons in any accessible brain region. PMID:26594154

  2. Bulk regional viral injection in neonatal mice enables structural and functional interrogation of defined neuronal populations throughout targeted brain areas

    PubMed Central

    Cheetham, Claire E. J.; Grier, Bryce D.; Belluscio, Leonardo

    2015-01-01

    The ability to label and manipulate specific cell types is central to understanding the structure and function of neuronal circuits. Here, we have developed a simple, affordable strategy for labeling of genetically defined populations of neurons throughout a targeted brain region: Bulk Regional Viral Injection (BReVI). Our strategy involves a large volume adeno-associated virus (AAV) injection in the targeted brain region of neonatal Cre driver mice. Using the mouse olfactory bulb (OB) as a model system, we tested the ability of BReVI to broadly and selectively label tufted cells, one of the two principal neuron populations of the OB, in CCK-IRES-Cre mice. BReVI resulted in labeling of neurons throughout the injected OB, with no spatial bias toward the injection site and no evidence of damage. The specificity of BReVI labeling was strikingly similar to that seen previously using immunohistochemical staining for cholecystokinin (CCK), an established tufted cell marker. Hence, the CCK-IRES-Cre line in combination with BReVI can provide an important tool for targeting and manipulation of OB tufted cells. We also found robust Cre-dependent reporter expression within three days of BReVI, which enabled us to assess developmental changes in the number and laminar distribution of OB tufted cells during the first three postnatal weeks. Furthermore, we demonstrate that BReVI permits structural and functional imaging in vivo, and can be combined with transgenic strategies to facilitate multi-color labeling of neuronal circuit components. BReVI is broadly applicable to different Cre driver lines and can be used to regionally manipulate genetically defined populations of neurons in any accessible brain region. PMID:26594154

  3. Perfumers' expertise induces structural reorganization in olfactory brain regions.

    PubMed

    Delon-Martin, Chantal; Plailly, Jane; Fonlupt, Pierre; Veyrac, Alexandra; Royet, Jean-Pierre

    2013-03-01

    The human brain's ability to adapt to environmental changes is obvious in specific sensory domains of experts, and olfaction is one of the least investigated senses. As we have previously demonstrated that olfactory expertise is related to functional brain modifications, we investigated here whether olfactory expertise is also coupled with structural changes. We used voxel-based morphometry to compare the gray-matter volume in student and professional perfumers, as well as untrained control subjects, and accounted for all methodological improvements that have been recently developed to limit possible errors associated with image processing. In all perfumers, we detected an increase in gray-matter volume in the bilateral gyrus rectus/medial orbital gyrus (GR/MOG), an orbitofrontal area that surrounds the olfactory sulcus. In addition, gray-matter volume in the anterior PC and left GR/MOG was positively correlated with experience in professional perfumers. We concluded that the acute olfactory knowledge acquired through extensive olfactory training leads to the structural reorganization of olfactory brain areas.

  4. EVIDENCE FOR THE INTERMEDIATE BROAD-LINE REGION OF REVERBERATION-MAPPED ACTIVE GALACTIC NUCLEUS PG 0052+251

    SciTech Connect

    Zhang Xueguang

    2011-11-10

    We study the properties of the broad-line region (BLR) of a well-known reverberation-mapped active galactic nucleus (AGN) in order to find reliable evidence for the intermediate BLR. We first check properties of the mapped AGN collected from the literature in the plane of {sigma}{sup 2}{sub H}{beta}/{sigma}H{alpha} {sup 2} versus R {sup H}{alpha}{sub BLR}/R{sub BLR} {sup H}{beta}. Commonly, virial black hole masses based on observed broad H{alpha} and H{beta} should be coincidental. However, among the mapped objects, PG 0052 and NGC 4253 are two apparent outliers in the plane of {sigma}{sup 2}{sub H}{beta}/{sigma}H{alpha} {sup 2} versus R {sup H}{alpha}{sub BLR}/R{sub BLR} {sup H}{beta}, which indicates that BLRs of PG 0052 and NGC 4253 have some special characters. Based on the 55 public spectra of PG 0052, the BLR of PG 0052 has been carefully studied in detail. We find that the line width ratio of the total observed broad H{alpha} to the total observed broad H{beta} is {approx}0.7, which is much smaller than the theoretical/observational value of {approx}0.9. Furthermore, the flux ratio of the total broad H{alpha} to the total broad H{beta} is about 6.8 (Balmer decrement), which is not a reasonable value for the blue quasar PG 0052+251. Moreover, properties of line cores based on the principal component analysis technique confirm that there is one inner broad component and one seriously obscured intermediate broad component in the BLR of PG 0052. If the seriously obscured intermediate BLR was accepted, properties of PG 0052 in the plane of {sigma}{sup 2}{sub H}{beta}/{sigma}H{alpha} {sup 2} versus R {sup H}{alpha}{sub BLR}/R{sub BLR} {sup H}{beta} could be reproduced, which indicates that the intermediate BLR actually is appropriate for the mapped quasar PG 0052+251. Finally, the large distance between the inner and the intermediate components of the BLR based on the results of the cross-correlation function rejects the possibility that the intermediate

  5. Measurements of Line Positions and Intensities of 14NH_3 in the 1.5 μm Region

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Brown, Linda R.; Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2011-06-01

    In the atmosphere of outer planets, low mass brown dwarfs, and possibly extrasolar planets, ammonia (NH_3) is one of the major opacity sources particularly in the 1.5 μm region (the H-band). However, the spectroscopic information of NH_3 in the region is completely missing in the HITRAN database. NH_3 has four infrared active fundamental modes, with the well-known inversion doubling for {ν_2} band, in addition to the usual vibrational degeneracies. Its strong bands, {ν_1}, {ν_3} and 2{ν_4}, dominate the spectrum at 3 μm, while their corresponding overtone and combination bands (e.g., 2{ν_1}, 2{ν_3}, {ν_1}+{ν_3}, {ν_1}+2{ν_4} and {ν_3}+2{ν_4}) are prominent in the 1.5 μm region. As part of an effort to provide a complete set of NH_3 spectroscopic information in the 1.5 μm region, we are analyzing the laboratory spectra recorded at various temperatures (200 - 299 K) with the McMath-Pierce Fourier transform spectrometer (FTS) on Kitt Peak Observatory in Arizona. Line positions and strengths have been measured from the laboratory spectra, from which lower state energies and quantum assignments are being determined by adopting intensity ratios at two different temperatures and combination differnces. A theoretical IR linelist built upon the recent HSL-2 potential energy surface (nonadiabatic corrections included) is complementarily used for the quantum assignments. Preliminary results are presented for {ν_1}+{ν_3}, 2{ν_3}, {ν_1}+2{ν_4} and {ν_3}+{2ν_4} bands and compared with those from early work available. X. Huang, D.W. Schwenke, and T.J. Lee J. Chem. Phys. 134, (2011) 044320/044321 The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology and the Ames Research Center under contracts with National Aeronautics and Space Administration.

  6. Genetic diversity and population structure in lines of chickens divergently selected for high and low 8-week body weight.

    PubMed

    Márquez, G C; Siegel, P B; Lewis, R M

    2010-12-01

    A long-term selection experiment for high or low 8-wk BW in White Plymouth Rock chickens was conducted to study effects of selection on BW and correlated characters. Two lines [high (HWS), low (LWS) weight] were established and have undergone 48 generations of selection. The lines were managed to curtail inbreeding and to maintain similar population structures; such is necessary for equitable comparison of selection response between lines. Our objective was to test the success of that breeding strategy by characterizing genetic diversity and inbreeding in these lines. A pedigree of 5,998 individuals was assembled, with 68 founders, 2,962 HWS chickens, and 2,968 LWS chickens. Inbreeding coefficients (F) were calculated for each line. Maximum F was 0.53 and 0.61, mean F was 0.26 (SD 0.15) and 0.30 (SD 0.17), and change in F was 1.3 and 1.6% per generation in LWS and HWS lines, respectively. The effective population size was 38.3 in LWS and 32.1 in HWS lines. The effective number of founders was 15.7 in both lines, and the effective number of ancestors was 17.5 and 15.5 in LWS and HWS lines, respectively. Thirty ancestors accounted for 90% of the genetic makeup of both lines. Seven male and eight female founders still contributed to both lines at generation 48, although some contributed more to one line than the other. Family sizes were similar for males and females of each line, with males having larger family sizes with greater variance. Accumulated inbreeding was high and effective population size was low, as expected in closed lines. Effective number of founders was relatively low compared with actual number of founders, indicating some contributed more than others to the last generation. Family size statistics indicated that fewer males than females were used, leading to the observed levels of inbreeding. Given their similarity in genetic diversity and family size, it can be concluded that breeding decisions throughout the project resulted in similar population

  7. Simulations of the Plasma Structure of a Radial Line Slotted Antenna Plasma Source

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun

    2011-10-01

    The Radial Line Slot Antenna (RLSA) plasma source couples microwave power through a slot antenna structure and window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This property renders the source useful for soft etch applications and thin film processing for which low ion energy is desirable. Another property of the diffusion zone is that the plasma density falls from the axis to the walls. Static magnetic fields at the walls of other plasma sources have been shown to impede electron losses to walls lowering their loss rate and changing the plasma profile. In this presentation, the impact of different magnetic field configurations on the diffusion zone plasma structure will be described. To do this, an ambipolar-electromagnetic field model previously used to describe RLSA plasmas is modified to account for the impact of magnetic fields on transport coefficients and plasma chemistry. Resonant and other effects of magnetic field are also discussed.

  8. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  9. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  10. Nitrogen-broadened lines of monodeuterated methane in the 4.5 micron region at low temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1983-01-01

    Nitrogen-broadened halfwidths of rotational lines of CH3D have been deduced from spectral transmittance measurements in the nu2-fundamental at 100 and 200 K with a spectral resolution of 0.06 per cm. The line widths appear to be 1.5 times larger and exhibit the same 1/T dependence on temperature as lines of CH4.

  11. LOW-LATITUDE CORONAL HOLES, DECAYING ACTIVE REGIONS, AND GLOBAL CORONAL MAGNETIC STRUCTURE

    SciTech Connect

    Petrie, G. J. D.; Haislmaier, K. J.

    2013-10-01

    We study the relationship between decaying active-region magnetic fields, coronal holes, and the global coronal magnetic structure using Global Oscillations Network Group synoptic magnetograms, Solar TErrestrial RElations Observatory extreme-ultraviolet synoptic maps, and coronal potential-field source-surface models. We analyze 14 decaying regions and associated coronal holes occurring between early 2007 and late 2010, 4 from cycle 23 and 10 from cycle 24. We investigate the relationship between asymmetries in active regions' positive and negative magnetic intensities, asymmetric magnetic decay rates, flux imbalances, global field structure, and coronal hole formation. Whereas new emerging active regions caused changes in the large-scale coronal field, the coronal fields of the 14 decaying active regions only opened under the condition that the global coronal structure remained almost unchanged. This was because the dominant slowly varying, low-order multipoles prevented opposing-polarity fields from opening and the remnant active-region flux preserved the regions' low-order multipole moments long after the regions had decayed. Thus, the polarity of each coronal hole necessarily matched the polar field on the side of the streamer belt where the corresponding active region decayed. For magnetically isolated active regions initially located within the streamer belt, the more intense polarity generally survived to form the hole. For non-isolated regions, flux imbalance and topological asymmetry prompted the opposite to occur in some cases.

  12. The collision strength of the [Ne v] infrared fine-structure lines

    NASA Astrophysics Data System (ADS)

    van Hoof, P. A. M.; Beintema, D. A.; Verner, D. A.; Ferland, G. J.

    2000-02-01

    The calculation of accurate collision strengths for atomic transitions has been a long standing problem in quantitative spectroscopy. Most modern calculations are based on the R-matrix method and problems pertaining to the use of this method have led to a discussion of the accuracy of these results. More in particular, based on an analysis of the spectra of NGC 3918 and NGC 6302, Clegg et al. (1987) and Oliva et al. (1996) have questioned R-matrix calculations for the infrared {Ne}{v} fine-structure transitions. Using improved flux measurements for the {Ne}{v} lines, we show that the conclusion that these collision strengths would be too high, is not correct. The discrepancies found by Clegg et al. (1987) can be explained by the inaccuracy of the {Ne}{v} 342.6 nm flux they adopted. The discrepancies found by Oliva et al. (1996) can be explained by the inaccuracy of the LRS flux for the {Ne}{v} 14.32 mu m line. Based on the data presented in this paper there is no reason to assume that there are any problems with the R-matrix calculations for \\ion{Ne}{4+} of Lennon & Burke (1994). We show that the data are accurate at the 30 % level or better. This confirms the validity of the close coupling method. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA

  13. Smart patch integration development of compression connector structural health monitoring in overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wang, Jy-An J.; Ren, Fei; Chan, John

    2016-04-01

    Integration of smart patches into full-tension splice connectors in overhead power transmission lines was investigated. Lead zirconate titanate (PZT) -5A was used as a smart material and an aluminum beam was used as a host structure. Negative electrode termination was examined by using copper adhesive tape and direct bonding methods. Various commercial adhesives were studied for PZT integration onto the host structure. Aluminum beam specimens with integrated PZT smart patches were tested under thermal cycling at a temperature of 125°C, which is the higher-end temperature experienced by in-service aluminum conductor steel-reinforced cables. Electromechanical impedance (EMI) measurements were conducted at room temperature, and the root mean square deviation (RMSD) of the conductance signals was used to analyze the EMI data. It has been shown that the negative electrode method has an important effect on the performance of the integrated PZT. The PZT displayed more susceptibility to cracking when copper tape was used than when direct bonding was used. The reliability of PZT in direct bonding depended on the adhesives used in bonding layers. Although a hard alumina-based adhesive can lead to cracking of the PZT, a high-temperature epoxy with adequate flexibility, such as Duralco 4538D, can provide the desired performance under target thermal cycling conditions. The RMSD parameter can characterize conductance signatures effectively. It also was demonstrated that RMSD can be used to quantify the fatigue of the PZT integration system, although RMSD is used primarily as a damage index in monitoring structural health.