Science.gov

Sample records for line reveals specificity

  1. MicroRNA profiling of human intrahepatic cholangiocarcinoma cell lines reveals biliary epithelial cell-specific microRNAs.

    PubMed

    Kawahigashi, Yutaka; Mishima, Takuya; Mizuguchi, Yoshiaki; Arima, Yasuo; Yokomuro, Shigeki; Kanda, Tomohiro; Ishibashi, Osamu; Yoshida, Hiroshi; Tajiri, Takashi; Takizawa, Toshihiro

    2009-08-01

    Intrahepatic cholangiocarcinoma (ICC), which arises in the small bile ducts of the liver, is the second most common liver malignancy. Although modulation of microRNA (miRNA) expression has been shown to be a potent sign of malignant tumors, miRNA profiles of ICC remains unclear. We performed sequencing analysis of the small RNA libraries of 2 ICC cell lines (HuCCT1 and MEC) and one normal intrahepatic biliary epithelial cell line (HIBEpiC) to produce the miRNA profiles of ICC in vitro. Furthermore, by means of the real-time polymerase chain reaction (PCR) we validated the differential expression of miRNAs cloned exclusively or predominantly from each of the cell lines. A total of 35,759 small RNA clones were obtained from the 3 cell lines. We identified 27 miRNAs that were expressed exclusively or predominantly in each cell line. Subsequent validation with the real-time PCR confirmed that the miRNAs hsa-miR-22, -125a, -127, -199a, -199a*, -214, -376a, and -424 were expressed specifically in HIBEpiC but were downregulated in the ICC cell lines. Our study provides important information for facilitating studies of the functional role(s) of miRNAs in carcinogenesis of the hepatobiliary system. The biliary epithelial cell-specific miRNAs identified in this study may serve as potential biomarkers for ICC.

  2. MiRNA-Target Interaction Reveals Cell-Specific Post-Transcriptional Regulation in Mammalian Cell Lines

    PubMed Central

    Kulkarni, Varun; Naqvi, Afsar Raza; Uttamani, Juhi Raju; Nares, Salvador

    2016-01-01

    MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous transcriptome profiling studies, we observed that post-transcriptional regulation can differ substantially depending on the cell in context. Here we examined mechanistic differences in the regulation of a let-7a targeted (wild type) or resistant (mutant) engineered renilla transcript across various mammalian cell lines of diverse origin. Dual luciferase assays show that compared to mutant (mut), the reporter gene containing wild type (wt) let-7a binding sites was efficiently suppressed upon transfection in various cell lines. Importantly, the strength of miRNA regulation varied across the cell lines. Total RNA analysis demonstrates that wt renilla mRNA was expressed to similar or higher levels compared to mut suggesting that translation repression is a predominant mode of miRNA regulation. Nonetheless, transcript degradation was observed in some cell lines. Ago-2 immunoprecipitation show that miRNA repressed renilla mRNA are associated with functional mi-RISC (miRNA-RNA induced silencing complex). Given the immense potential of miRNA as a therapeutic option, these findings highlight the necessity to thoroughly examine the mode of mRNA regulation in order to achieve the beneficial effects in targeting cells. PMID:26761000

  3. cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance.

    PubMed

    Villeneuve, David J; Hembruff, Stacey L; Veitch, Zachary; Cecchetto, Melanie; Dew, William A; Parissenti, Amadeo M

    2006-03-01

    cDNA microarray analysis is a highly useful tool for the classification of tumors and for prediction of patient prognosis to specific cancers based on this classification. However, to date, there is little evidence that microarray approaches can be used to reliably predict patient response to specific chemotherapy drugs or regimens. This is likely due to an inability to differentiate between genes affecting patient prognosis and genes that play a role in response to specific drugs. Thus, it would be highly useful to identify genes whose expression correlates with tumor cell sensitivity to specific chemotherapy agents in a drug-specific manner. Using cDNA microarray analysis of wildtype MCF-7 breast tumor cells and isogenic paclitaxel-resistant (MCF-7(TAX)) or doxorubicin-resistant (MCF-7(DOX)) derivative cell lines, we have uncovered drug-specific changes in gene expression that accompany the establishment of paclitaxel or doxorubicin resistance. These changes in gene expression were confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting experiments, with a confirmation rate of approximately 91-95%. The genes identified may prove highly useful for prediction of response to paclitaxel or doxorubicin in patients with breast cancer. To our knowledge this is the first report of drug-specific genetic signatures of resistance to paclitaxel or doxorubicin, based on a comparison of gene expression between isogenic wildtype and drug-resistant tumor cell lines. Moreover, this study provides significant insight into the wide variety of mechanisms through which resistance to these agents may be acquired in breast cancer.

  4. Quantitative phosphoproteomic analysis reveals system-wide signaling pathways regulated by site-specific phosphorylation on Keratin-8 in skin squamous cell carcinoma derived cell- line.

    PubMed

    Tiwari, Richa; Sahu, Indrajit; Soni, Bihari Lal; Sathe, Gajanan J; Datta, Keshava K; Thapa, Pankaj; Sinha, Shruti; Vadivel, Chella Krishna; Dhaka, Bharti; Gowda, Harsha; Vaidya, Milind M

    2017-02-07

    Keratin 8/18, a simple epithelia specific keratin pair, is often aberrantly expressed in squamous cell carcinomas (SCC) where its expression is correlated with increased invasion and poor prognosis. Majority of Keratin 8 (K8) functions are governed by its phosphorylation at Serine(73) (head-domain) and Serine(431) (tail-domain) residues. Although, deregulation of K8 phosphorylation is associated with progression of different carcinomas, its role in skin-SCC and the underlying mechanism is obscure. In this direction, we performed TMT-based quantitative phosphoproteomics by expressing K8 wild type, phosphodead and phosphomimetic mutants in K8-deficient A431 cells. Further analysis of our phosphoproteomics data showed a significant proportion of total phosphoproteome associated with migratory, proliferative and invasive potential of these cells to be differentially phosphorylated. Differential phosphorylation of CDK1(T14,Y15) , EIF4EBP1(T46,T50) , EIF4B(S422) , AKT1S1T246,S247, CTTN1(T401,S405,) Y421 & CAP1(S307/309) in K8-S73A/D mutant and CTTN1(T401,S405,Y421) , BUB1B(S1043) & CARHSP1(S30,S32) in K8-S431A/D mutants as well as some anonymous phosphosites including MYC(S176) , ZYX(S344) and PNN(S692) could be potential candidates associated with K8 phosphorylation mediated tumorigenicity. Biochemical validation followed by phenotypic analysis further confirmed our quantitative phosphoproteomics data. In conclusion, our study provides the first global picture of K8 site- specific phosphorylation function in neoplastic progression of A431 cells and suggests various potential starting points for further mechanistic studies. This article is protected by copyright. All rights reserved.

  5. Memory strength and specificity revealed by pupillometry

    PubMed Central

    Papesh, Megan H.; Goldinger, Stephen D.; Hout, Michael C.

    2011-01-01

    Voice-specificity effects in recognition memory were investigated using both behavioral data and pupillometry. Volunteers initially heard spoken words and nonwords in two voices; they later provided confidence-based old/new classifications to items presented in their original voices, changed (but familiar) voices, or entirely new voices. Recognition was more accurate for old-voice items, replicating prior research. Pupillometry was used to gauge cognitive demand during both encoding and testing: Enlarged pupils revealed that participants devoted greater effort to encoding items that were subsequently recognized. Further, pupil responses were sensitive to the cue match between encoding and retrieval voices, as well as memory strength. Strong memories, and those with the closest encoding-retrieval voice matches, resulted in the highest peak pupil diameters. The results are discussed with respect to episodic memory models and Whittlesea’s (1997) SCAPE framework for recognition memory. PMID:22019480

  6. Memory strength and specificity revealed by pupillometry.

    PubMed

    Papesh, Megan H; Goldinger, Stephen D; Hout, Michael C

    2012-01-01

    Voice-specificity effects in recognition memory were investigated using both behavioral data and pupillometry. Volunteers initially heard spoken words and nonwords in two voices; they later provided confidence-based old/new classifications to items presented in their original voices, changed (but familiar) voices, or entirely new voices. Recognition was more accurate for old-voice items, replicating prior research. Pupillometry was used to gauge cognitive demand during both encoding and testing: enlarged pupils revealed that participants devoted greater effort to encoding items that were subsequently recognized. Further, pupil responses were sensitive to the cue match between encoding and retrieval voices, as well as memory strength. Strong memories, and those with the closest encoding-retrieval voice matches, resulted in the highest peak pupil diameters. The results are discussed with respect to episodic memory models and Whittlesea's (1997) SCAPE framework for recognition memory.

  7. A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics.

    PubMed

    Neelam, Anil; Cassol, Tatiana; Mehta, Roshni A; Abdul-Baki, Aref A; Sobolev, Anatoli P; Goyal, Ravinder K; Abbott, Judith; Segre, Anna L; Handa, Avtar K; Mattoo, Autar K

    2008-01-01

    Genetic modification of crop plants to introduce desirable traits such as nutritional enhancement, disease and pest resistance, and enhanced crop productivity is increasingly seen as a promising technology for sustainable agriculture and boosting food production in the world. Independently, cultural practices that utilize alternative agriculture strategies including organic cultivation subscribe to sustainable agriculture by limiting chemical usage and reduced tillage. How the two together affect fruit metabolism or plant growth in the field or whether they are compatible has not yet been tested. Fruit-specific yeast S-adenosylmethionine decarboxylase (ySAMdc) line 579HO, and a control line 556AZ were grown in leguminous hairy vetch (Vicia villosa Roth) (HV) mulch and conventional black polyethylene (BP) mulch, and their fruit analysed. Significant genotypexmulch-dependent interactions on fruit phenotype were exemplified by differential profiles of 20 fruit metabolites such as amino acids, sugars, and organic acids. Expression patterns of the ySAMdc transgene, and tomato SAMdc, E8, PEPC, and ICDHc genes were compared between the two lines as a function of growth on either BP or HV mulch. HV mulch significantly stimulated the accumulation of asparagine, glutamate, glutamine, choline, and citrate concomitant with a decrease in glucose in the 556AZ fruits during ripening as compared to BP. It enables a metabolic system in tomato somewhat akin to the one in higher polyamine-accumulating transgenic fruit that have higher phytonutrient content. Finally, synergism was found between HV mulch and transgenic tomato in up-regulating N:C indicator genes PEPC and ICDHc in the fruit.

  8. A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics

    PubMed Central

    Neelam, Anil; Cassol, Tatiana; Mehta, Roshni A.; Abdul-Baki, Aref A.; Sobolev, Anatoli P.; Goyal, Ravinder K.; Abbott, Judith; Segre, Anna L.; Handa, Avtar K.; Mattoo, Autar K.

    2008-01-01

    Genetic modification of crop plants to introduce desirable traits such as nutritional enhancement, disease and pest resistance, and enhanced crop productivity is increasingly seen as a promising technology for sustainable agriculture and boosting food production in the world. Independently, cultural practices that utilize alternative agriculture strategies including organic cultivation subscribe to sustainable agriculture by limiting chemical usage and reduced tillage. How the two together affect fruit metabolism or plant growth in the field or whether they are compatible has not yet been tested. Fruit-specific yeast S-adenosylmethionine decarboxylase (ySAMdc) line 579HO, and a control line 556AZ were grown in leguminous hairy vetch (Vicia villosa Roth) (HV) mulch and conventional black polyethylene (BP) mulch, and their fruit analysed. Significant genotype×mulch-dependent interactions on fruit phenotype were exemplified by differential profiles of 20 fruit metabolites such as amino acids, sugars, and organic acids. Expression patterns of the ySAMdc transgene, and tomato SAMdc, E8, PEPC, and ICDHc genes were compared between the two lines as a function of growth on either BP or HV mulch. HV mulch significantly stimulated the accumulation of asparagine, glutamate, glutamine, choline, and citrate concomitant with a decrease in glucose in the 556AZ fruits during ripening as compared to BP. It enables a metabolic system in tomato somewhat akin to the one in higher polyamine-accumulating transgenic fruit that have higher phytonutrient content. Finally, synergism was found between HV mulch and transgenic tomato in up-regulating N:C indicator genes PEPC and ICDHc in the fruit. PMID:18469323

  9. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content

    PubMed Central

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit; Saari, Heikki; Ibañez, Elisa Lazaro; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2015-01-01

    Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level. PMID:26649679

  10. Kinome sequencing reveals RET G691S polymorphism in human neuroendocrine lung cancer cell lines

    PubMed Central

    Sosonkina, Nadiya; Hong, Seung-Keun; Starenki, Dmytro; Park, Jong-In

    2014-01-01

    Neuroendocrine (NE) lung tumors comprise 20–25% of all invasive lung malignancies. Currently, no effective treatments are available to cure these tumors, and it is necessary to identify a molecular alteration(s) that characterizes NE lung tumor cells. We aimed to identify a kinase mutation(s) associated with NE lung tumor by screening 517 kinase-encoding genes in human lung cancer cell lines. Our next-generation sequencing analysis of six NE lung tumor cell lines (four small cell lung cancer lines and two non-small cell lung cancer lines) and three non-NE lung tumor lines revealed various kinase mutations, including a nonsynonymous mutation in the proto-oncogene RET (c.2071G>A; p.G691S). Further evaluation of the RET polymorphism in total 15 lung cancer cell lines by capillary sequencing suggested that the frequency of the minor allele (A-allele) in NE lung tumor lines was significantly higher than its frequency in a reference population (p = 0.0001). However, no significant difference between non-NE lung tumor lines and a reference group was detected (p = 1.0). Nevertheless, neither RET expression levels were correlated with the levels of neuron-specific enolase (NSE), a key NE marker, nor vandetanib and cabozantinib, small molecule compounds that inhibit RET, affected NSE levels in lung cancer cells. Our data suggest a potential association of G691S RET polymorphism with NE lung tumor, proposing the necessity of more thorough evaluation of this possibility. The dataset of kinase mutation profiles in this report may help choosing cell line models for study of lung cancer. PMID:25530832

  11. Line bisection by eye and by hand reveal opposite biases.

    PubMed

    Leonards, Ute; Stone, Samantha; Mohr, Christine

    2013-08-01

    The vision-for-action literature favours the idea that the motor output of an action-whether manual or oculomotor-leads to similar results regarding object handling. Findings on line bisection performance challenge this idea: healthy individuals bisect lines manually to the left of centre and to the right of centre when using eye fixation. In case that these opposite biases for manual and oculomotor action reflect more universal compensatory mechanisms that cancel each other out to enhance overall accuracy, one would like to observe comparable opposite biases for other material. In the present study, we report on three independent experiments in which we tested line bisection (by hand, by eye fixation) not only for solid lines, but also for letter lines; the latter, when bisected manually, is known to result in a rightward bias. Accordingly, we expected a leftward bias for letter lines when bisected via eye fixation. Analysis of bisection biases provided evidence for this idea: manual bisection was more rightward for letter as compared to solid lines, while bisection by eye fixation was more leftward for letter as compared to solid lines. Support for the eye fixation observation was particularly obvious in two of the three studies, for which comparability between eye and hand action was increasingly adjusted (paper-pencil versus touch screen for manual action). These findings question the assumption that ocular motor and manual output are always inter-changeable, but rather suggest that at least for some situations ocular motor and manual output biases are orthogonal to each other, possibly balancing each other out.

  12. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.

    PubMed

    Hill, Steven M; Nesser, Nicole K; Johnson-Camacho, Katie; Jeffress, Mara; Johnson, Aimee; Boniface, Chris; Spencer, Simon E F; Lu, Yiling; Heiser, Laura M; Lawrence, Yancey; Pande, Nupur T; Korkola, James E; Gray, Joe W; Mills, Gordon B; Mukherjee, Sach; Spellman, Paul T

    2017-01-25

    Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ∼70,000 phosphoprotein and ∼260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Isolation and characterization of mutant CHO cell lines with compartment-specific resistance to brefeldin A

    PubMed Central

    1994-01-01

    22 CHOBFY (BFY) cell lines were isolated at a frequency 2-30 x 10(-7) from mutagenized populations on the basis of their ability to grow in the presence of 1 microgram/ml brefeldin A (BFA). Four of the five mutant lines tested are genetically stable and none of the mutant lines characterized degrade this drug. Immunofluorescence studies reveal that whereas early endosomes and the Golgi complex have nearly identical BFA sensitivities in the parent CHO line, the relative sensitivities of these two organelles were dramatically altered in all six mutant lines tested. Four cell lines maintain normal Golgi appearance at a BFA concentration as high as 10 micrograms/ml. Mutant lines show wide variation in the level of resistance to growth inhibition by BFA, but none of the mutant lines characterized grow above 2 micrograms/ml BFA. This specific growth inhibition is observed under conditions where Golgi morphology and function remain unaffected, suggesting that some factor(s) unrelated to Golgi function remains sensitive to BFA in BFY mutant lines. These observations provide strong evidence for the presence of multiple, organelle-specific targets for BFA. Cell-free measurements with membrane extracts establish that resistance to BFA in BFY-1 cells involves a membrane-associated factor distinct from ARFs and coatomers. This collection of mutant lines may prove valuable for the identification of intracellular target(s) for BFA and/or of effectors that interact upstream or downstream with these targets, thereby uncovering the cascade which regulates assembly of organelle- specific coats. PMID:8027187

  14. Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line.

    PubMed

    Habibi, Laleh; Shokrgozar, Mohammad Ali; Tabrizi, Mina; Modarressi, Mohammad Hossein; Akrami, Seyed Mohammad

    2014-01-01

    L1 retro-elements comprise 17% of the human genome. Approximately 100 copies of these autonomous mobile elements are active in our DNA and can cause mutations, gene disruptions, and genomic instability. Therefore, human cells control the activities of L1 elements, in order to prevent their deleterious effects through different mechanisms. However, some toxic agents increase the retrotransposition activity of L1 elements in somatic cells. In order to identify specific effects of neurotoxic metals on L1 activity in neuronal cells, we studied the effects of mercury and cobalt on L1-retroelement activity by measuring levels of cellular transcription, protein expression, and genomic retrotransposition in a neuroblastoma cell line compared with the effects in three non-neuronal cell lines. Our results show that mercury increased the expression of L1 RNA, the activity of the L1 5'UTR, and L1 retrotransposition exclusively in the neuroblastoma cell line but not in non-neuronal cell lines. However, cobalt increased the expression of L1 RNA in neuroblastoma cells, HeLa cells, and wild-type human fibroblasts, and also increased the activity of the L1 5'UTR as well as the SV40 promoter in HeLa cells but not in neuroblastoma cells. Exposure to cobalt did not result in increased retrotransposition activity in HeLa cells or neuroblastoma cells. We conclude that non-toxic levels of the neurotoxic agent mercury could influence DNA by increasing L1 activities, specifically in neuronal cells, and may make these cells susceptible to neurodegeneration over time.

  15. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    SciTech Connect

    Carneiro, Ana; Airey, David; Thompson, Brent; Zhu, C; Rinchik, Eugene M; Lu, Lu; Chesler, Elissa J; Erikson, Keith; Blakely, Randy

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  16. Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.

    PubMed

    Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra

    2005-01-01

    Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.

  17. Specific fluorescent labeling of chicken myofibril Z-line proteins catalyzed by guinea pig liver transglutaminase

    PubMed Central

    1979-01-01

    Guinea pig liver transglutaminase has been found to catalyze the covalent incorporation of dansylcadaverine into chicken skeletal muscle myofibril proteins. Epifluorescence microscopy reveals that the incorporated dansylcadaverine is specifically localized at or near the myofibril Z line. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) indicates that actin constitutes a major fraction of the labeled material; the Z-line proteins alpha-actinin and desmin also show significant labeling, as well as tropomyosin, several additional unidentified proteins, and material with an extremely high molecular weight. The Z-line-specific fluorescence can be removed by brief trypsinization, which releases fluorescent alpha-actinin into the supernate. The majority of the fluorescent protein species are resistant to extraction by either 0.6 M KCl or KI. These results, in conjunction with the microscopic localization, suggest that the dansyl- labeled proteins are constituents of the myofibril Z line. A significant amount of fluorescently labeled transglutaminase is also present in labeled myofibrils, which is resistant to extraction with either 0.6 M KCl or KI. This result indicates a strong, noncovalent interaction between the transglutaminase molecule and the myofibril Z line. PMID:38257

  18. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases

    PubMed Central

    Dunn, Briana J.; Khosla, Chaitan

    2013-01-01

    Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active ‘unnatural’ natural products. PMID:23720536

  19. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases.

    PubMed

    Dunn, Briana J; Khosla, Chaitan

    2013-08-06

    Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active 'unnatural' natural products.

  20. Specific estradiol biosynthetic pathway in choriocarcinoma (JEG-3) cell line.

    PubMed

    Samson, Mélanie; Labrie, Fernand; Luu-The, Van

    2009-09-01

    Estradiol (E2) plays a crucial role in all reproduction processes. In the placenta, it is well recognized that E2 is synthesized from fetal dehydroepiandrosterone sulfate (DHEAS). However, there is some controversy about the biosynthetic pathway involved, some authors suggest that E2 is produced by aromatization of testosterone (T), while others suggest that E2 is produced by the conversion of estrone (E1) into E2 by type 1 17beta-HSD, subsequent to the aromatization of 4-androstenedione (4-dione) into E1. In the present report, using the precursor [(14)C]DHEA, inhibitors of steroidogenic enzymes (chemical inhibitors and siRNA) and a choriocarcinoma (JEG-3) cell line that expresses all the enzymes necessary to transform DHEA into E2, we could determine the sequential steps and the specific steroidogenic enzymes involved in the transformation of DHEA into E2. Quantification of mRNA expression levels using real-time PCR, strongly suggests that type 1 3beta-hydroxysteroid dehydrogenase (3beta-HSD1), aromatase and type 1 17beta-HSD (17beta-HSD1) that are highly expressed in JEG-3 cells are the enzymes responsible for the transformation of DHEA into E2. Analysis of the intermediates produced in the absence and presence of 3beta-HSD, aromatase and 17beta-HSD1 inhibitors permits to determine the following sequential steps: DHEA is transformed into 4-dione by 3beta-HSD1, then 4-dione is aromatized into E1 by aromatase and E1 is finally transformed into E2 by 17beta-HSD1. Our data are clearly in favor of the pathway in which the step of aromatization precedes the step of reduction by 17beta-HSD.

  1. A systems approach reveals distinct metabolic strategies among the NCI-60 cancer cell lines

    PubMed Central

    Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines

    2017-01-01

    The metabolic phenotype of cancer cells is reflected by the metabolites they consume and by the byproducts they release. Here, we use quantitative, extracellular metabolomic data of the NCI-60 panel and a novel computational method to generate 120 condition-specific cancer cell line metabolic models. These condition-specific cancer models used distinct metabolic strategies to generate energy and cofactors. The analysis of the models’ capability to deal with environmental perturbations revealed three oxotypes, differing in the range of allowable oxygen uptake rates. Interestingly, models based on metabolomic profiles of melanoma cells were distinguished from other models through their low oxygen uptake rates, which were associated with a glycolytic phenotype. A subset of the melanoma cell models required reductive carboxylation. The analysis of protein and RNA expression levels from the Human Protein Atlas showed that IDH2, which was an essential gene in the melanoma models, but not IDH1 protein, was detected in normal skin cell types and melanoma. Moreover, the von Hippel-Lindau tumor suppressor (VHL) protein, whose loss is associated with non-hypoxic HIF-stabilization, reductive carboxylation, and promotion of glycolysis, was uniformly absent in melanoma. Thus, the experimental data supported the predicted role of IDH2 and the absence of VHL protein supported the glycolytic and low oxygen phenotype predicted for melanoma. Taken together, our approach of integrating extracellular metabolomic data with metabolic modeling and the combination of different network interrogation methods allowed insights into the metabolism of cells. PMID:28806730

  2. Active medulloblastoma enhancers reveal subgroup-specific cellular origins

    PubMed Central

    Lin, Charles Y.; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J.; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C.; Ju, Bensheng; Orr, Brent A.; Zeid, Rhamy; Polaski, Donald R.; Segura-Wang, Maia; Waszak, Sebastian M.; Jones, David T.W.; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V.; Millen, Kathleen J.; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O.; Pfister, Stefan M.; Bradner, James E.; Northcott, Paul A.

    2016-01-01

    Summary Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Using H3K27ac and BRD4 ChIP-Seq, coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-Seq, that are responsible for subgroup divergence and implicate candidate cells-of-origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins. PMID:26814967

  3. Active medulloblastoma enhancers reveal subgroup-specific cellular origins.

    PubMed

    Lin, Charles Y; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C; Ju, Bensheng; Orr, Brent A; Zeid, Rhamy; Polaski, Donald R; Segura-Wang, Maia; Waszak, Sebastian M; Jones, David T W; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V; Millen, Kathleen J; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O; Pfister, Stefan M; Bradner, James E; Northcott, Paul A

    2016-02-04

    Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.

  4. Transcription factor family-specific DNA shape readout revealed by quantitative specificity models.

    PubMed

    Yang, Lin; Orenstein, Yaron; Jolma, Arttu; Yin, Yimeng; Taipale, Jussi; Shamir, Ron; Rohs, Remo

    2017-02-06

    Transcription factors (TFs) achieve DNA-binding specificity through contacts with functional groups of bases (base readout) and readout of structural properties of the double helix (shape readout). Currently, it remains unclear whether DNA shape readout is utilized by only a few selected TF families, or whether this mechanism is used extensively by most TF families. We resequenced data from previously published HT-SELEX experiments, the most extensive mammalian TF-DNA binding data available to date. Using these data, we demonstrated the contributions of DNA shape readout across diverse TF families and its importance in core motif-flanking regions. Statistical machine-learning models combined with feature-selection techniques helped to reveal the nucleotide position-dependent DNA shape readout in TF-binding sites and the TF family-specific position dependence. Based on these results, we proposed novel DNA shape logos to visualize the DNA shape preferences of TFs. Overall, this work suggests a way of obtaining mechanistic insights into TF-DNA binding without relying on experimentally solved all-atom structures. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Inner Warm Disk of ESO Hα 279a Revealed by NA I and CO Overtone Emission Lines

    NASA Astrophysics Data System (ADS)

    Lyo, A.-Ran; Kim, Jongsoo; Lee, Jae-Joon; Kim, Kyoung-Hee; Kang, Jihyun; Byun, Do-Young; Mace, Gregory; Sokal, Kimberly R.; Park, Chan; Chun, Moo-Young; Oh, Heeyoung; Yu, Young Sam; Sok Oh, Jae; Jeong, Ueejeong; Kim, Hwihyun; Pak, Soojong; Hwang, Narae; Park, Byeong-Gon; Lee, Sungho; Kaplan, Kyle; Lee, Hye-In; Nguyen Le, Huynh Anh; Jaffe, Daniel; Friends of AASTeX Collaboration

    2017-07-01

    We present an analysis of near-infrared, high-resolution spectroscopy toward the flat-spectrum young stellar object (YSO) ESO Hα 279a (˜1.5M ⊙) in the Serpens star-forming region at a distance of 429 pc. Using the Immersion GRating INfrared Spectrometer (IGRINS; R ≈ 45,000), we detect emission lines originating from the accretion channel flow, jet, and inner disk. Specifically, we identify hydrogen Brackett series recombination, [Fe II], [Fe III], [Fe IV], Ca I, Na I, H2, H2O, and CO overtone emission lines. By modeling five bands of CO overtone emission lines and the symmetric double-peaked line profile for Na I emission lines, we find that ESO Hα 279a has an actively accreting Keplerian disk. From our Keplerian disk model, we find that Na I emission lines originate between 0.04 and 1.00 au, while the CO overtone emission lines are from the outer part of the disk, in the range between 0.22 and 3.00 au. The model reveals that the neutral atomic Na gas is a good tracer of the innermost region of the actively accreting disk. We derive a mass accretion rate of 2-10× 10-7 M ⊙ yr-1 from the measured Brγ emission luminosity of 1.78(±0.31) × 1031 erg s-1.

  6. Eye Movements Reveal Fast, Voice-Specific Priming

    PubMed Central

    Papesh, Megan H.; Goldinger, Stephen D.; Hout, Michael C.

    2015-01-01

    In spoken word perception, voice specificity effects are well-documented: When people hear repeated words in some task, performance is generally better when repeated items are presented in their originally heard voices, relative to changed voices. A key theoretical question about voice specificity effects concerns their time-course: Some studies suggest that episodic traces exert their influence late in lexical processing (the time-course hypothesis; McLennan & Luce, 2005), whereas others suggest that episodic traces influence immediate, online processing. We report two eye-tracking studies investigating the time-course of voice-specific priming within and across cognitive tasks. In Experiment 1, participants performed modified lexical decision or semantic classification to words spoken by four speakers. The tasks required participants to click a red “×” or a blue “+” located randomly within separate visual half-fields, necessitating trial-by-trial visual search with consistent half-field response mapping. After a break, participants completed a second block with new and repeated items, half spoken in changed voices. Voice effects were robust very early, appearing in saccade initiation times. Experiment 2 replicated this pattern while changing tasks across blocks, ruling out a response priming account. In the General Discussion, we address the time-course hypothesis, focusing on the challenge it presents for empirical disconfirmation, and highlighting the broad importance of indexical effects, beyond studies of priming. PMID:26726911

  7. Legionella pneumophila pangenome reveals strain-specific virulence factors

    PubMed Central

    2010-01-01

    Background Legionella pneumophila subsp. pneumophila is a gram-negative γ-Proteobacterium and the causative agent of Legionnaires' disease, a form of epidemic pneumonia. It has a water-related life cycle. In industrialized cities L. pneumophila is commonly encountered in refrigeration towers and water pipes. Infection is always via infected aerosols to humans. Although many efforts have been made to eradicate Legionella from buildings, it still contaminates the water systems. The town of Alcoy (Valencian Region, Spain) has had recurrent outbreaks since 1999. The strain "Alcoy 2300/99" is a particularly persistent and recurrent strain that was isolated during one of the most significant outbreaks between the years 1999-2000. Results We have sequenced the genome of the particularly persistent L. pneumophila strain Alcoy 2300/99 and have compared it with four previously sequenced strains known as Philadelphia (USA), Lens (France), Paris (France) and Corby (England). Pangenome analysis facilitated the identification of strain-specific features, as well as some that are shared by two or more strains. We identified: (1) three islands related to anti-drug resistance systems; (2) a system for transport and secretion of heavy metals; (3) three systems related to DNA transfer; (4) two CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) systems, known to provide resistance against phage infections, one similar in the Lens and Alcoy strains, and another specific to the Paris strain; and (5) seven islands of phage-related proteins, five of which seem to be strain-specific and two shared. Conclusions The dispensable genome disclosed by the pangenomic analysis seems to be a reservoir of new traits that have mainly been acquired by horizontal gene transfer and could confer evolutionary advantages over strains lacking them. PMID:20236513

  8. Musical minds: attentional blink reveals modality-specific restrictions.

    PubMed

    Martens, Sander; Wierda, Stefan M; Dun, Mathijs; de Vries, Michal; Smid, Henderikus G O M

    2015-01-01

    Formal musical training is known to have positive effects on attentional and executive functioning, processing speed, and working memory. Consequently, one may expect to find differences in the dynamics of temporal attention between musicians and non-musicians. Here we address the question whether that is indeed the case, and whether any beneficial effects of musical training on temporal attention are modality specific or generalize across sensory modalities. When two targets are presented in close temporal succession, most people fail to report the second target, a phenomenon known as the attentional blink (AB). We measured and compared AB magnitude for musicians and non-musicians using auditory or visually presented letters and digits. Relative to non-musicians, the auditory AB was both attenuated and delayed in musicians, whereas the visual AB was larger. Non-musicians with a large auditory AB tended to show a large visual AB. However, neither a positive nor negative correlation was found in musicians, suggesting that at least in musicians, attentional restrictions within each modality are completely separate. AB magnitude within one modality can generalize to another modality, but this turns out not to be the case for every individual. Formal musical training seems to have a domain-general, but modality-specific beneficial effect on selective attention. The results fit with the idea that a major source of attentional restriction as reflected in the AB lies in modality-specific, independent sensory systems rather than a central amodal system. The findings demonstrate that individual differences in AB magnitude can provide important information about the modular structure of human cognition.

  9. Nonhomogeneous transfer reveals specificity in speech motor learning.

    PubMed

    Rochet-Capellan, Amélie; Richer, Lara; Ostry, David J

    2012-03-01

    Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning.

  10. Nonhomogeneous transfer reveals specificity in speech motor learning

    PubMed Central

    Rochet-Capellan, Amélie; Richer, Lara

    2012-01-01

    Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning. PMID:22190628

  11. Comparative plant sphingolipidomic reveals specific lipids in seeds and oil.

    PubMed

    Tellier, Frédérique; Maia-Grondard, Alessandra; Schmitz-Afonso, Isabelle; Faure, Jean-Denis

    2014-07-01

    Plant sphingolipids are a highly diverse family of structural and signal lipids. Owing to their chemical diversity and complexity, a powerful analytical method was required to identify and quantify a large number of individual molecules with a high degree of structural accuracy. By using ultra-performance liquid chromatography with a single elution system coupled to electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in the positive multiple reaction monitoring (MRM) mode, detailed sphingolipid composition was analyzed in various tissues of two Brassicaceae species Arabidopsis thaliana and Camelina sativa. A total of 300 molecular species were identified defining nine classes of sphingolipids, including Cers, hCers, Glcs and GIPCs. High-resolution mass spectrometry identified sphingolipids including amino- and N-acylated-GIPCs. The comparative analysis of seedling, seed and oil sphingolipids showed tissue specific distribution suggesting metabolic channeling and compartmentalization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis.

    PubMed

    Breban, Maxime; Tap, Julien; Leboime, Ariane; Said-Nahal, Roula; Langella, Philippe; Chiocchia, Gilles; Furet, Jean-Pierre; Sokol, Harry

    2017-09-01

    Altered microbiota composition or dysbiosis is suspected to be implicated in the pathogenesis of chronic inflammatory diseases, such as spondyloarthritis (SpA) and rheumatoid arthritis (RA). 16S ribosomal RNA gene sequencing was performed on faecal DNA isolated from stool samples in two consecutive cross-sectional cohorts, each comprising three groups of adult volunteers: SpA, RA and healthy controls (HCs). In the second study, HCs comprised a majority of aged-matched siblings of patients with known HLA-B27 status. Alpha and beta diversities were assessed using QIIME, and comparisons were performed using linear discriminant analysis effect size to examine differences between groups. In both cohorts, dysbiosis was evidenced in SpA and RA, as compared with HCs, and was disease specific. A restriction of microbiota biodiversity was detected in both disease groups. The most striking change was a twofold to threefold increased abundance of Ruminococcus gnavus in SpA, as compared with both RA and HCs that was significant in both studies and positively correlated with disease activity in patients having a history of inflammatory bowel disease (IBD). Among HCs, significant difference in microbiota composition were also detected between HLA-B27+ and HLA-B27 negative siblings, suggesting that genetic background may influence gut microbiota composition. Our results suggest that distinctive dysbiosis characterise both SpA and RA and evidence a reproducible increase in R. gnavus that appears specific for SpA and a marker of disease activity. This observation is consistent with the known proinflammatory role of this bacteria and its association with IBD. It may provide an explanation for the link that exists between SpA and IBD. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Specification and epigenetic programming of the human germ line.

    PubMed

    Tang, Walfred W C; Kobayashi, Toshihiro; Irie, Naoko; Dietmann, Sabine; Surani, M Azim

    2016-10-01

    Primordial germ cells (PGCs), the precursors of sperm and eggs, are established in perigastrulation-stage embryos in mammals. Signals from extra-embryonic tissues induce a unique gene regulatory network in germline-competent cells for PGC specification. This network also initiates comprehensive epigenome resetting, including global DNA demethylation and chromatin reorganization. Mouse germline development has been studied extensively, but the extent to which such knowledge applies to humans was unclear. Here, we review the latest advances in human PGC specification and epigenetic reprogramming. The overall developmental dynamics of human and mouse germline cells appear to be similar, but there are crucial mechanistic differences in PGC specification, reflecting divergence in the regulation of pluripotency and early development.

  14. Future plans for the MP line (Both general and specific)

    SciTech Connect

    Underwood, D.G.

    1988-01-01

    This talk consists of three sections. Topics range from suggestions of possible physics, which are presented to provoke thought and discussion about the distant future, to specific goals of E-704 for the next running period. The sections are on physics issues, possible upgrades of the beam and experimental apparatus, and goals for the next running period. 4 refs., 5 figs.

  15. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    PubMed Central

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  16. Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines

    PubMed Central

    2014-01-01

    Background Despite promising progress in targeted breast cancer therapy, drug resistance remains challenging. The monoclonal antibody drugs trastuzumab and pertuzumab as well as the small molecule inhibitor erlotinib were designed to prevent ErbB-2 and ErbB-1 receptor induced deregulated protein signalling, contributing to tumour progression. The oncogenic potential of ErbB receptors unfolds in case of overexpression or mutations. Dimerisation with other receptors allows to bypass pathway blockades. Our intention is to reconstruct the ErbB network to reveal resistance mechanisms. We used longitudinal proteomic data of ErbB receptors and downstream targets in the ErbB-2 amplified breast cancer cell lines BT474, SKBR3 and HCC1954 treated with erlotinib, trastuzumab or pertuzumab, alone or combined, up to 60 minutes and 30 hours, respectively. In a Boolean modelling approach, signalling networks were reconstructed based on these data in a cell line and time course specific manner, including prior literature knowledge. Finally, we simulated network response to inhibitor combinations to detect signalling nodes reflecting growth inhibition. Results The networks pointed to cell line specific activation patterns of the MAPK and PI3K pathway. In BT474, the PI3K signal route was favoured, while in SKBR3, novel edges highlighted MAPK signalling. In HCC1954, the inferred edges stimulated both pathways. For example, we uncovered feedback loops amplifying PI3K signalling, in line with the known trastuzumab resistance of this cell line. In the perturbation simulations on the short-term networks, we analysed ERK1/2, AKT and p70S6K. The results indicated a pathway specific drug response, driven by the type of growth factor stimulus. HCC1954 revealed an edgetic type of PIK3CA-mutation, contributing to trastuzumab inefficacy. Drug impact on the AKT and ERK1/2 signalling axes is mirrored by effects on RB and RPS6, relating to phenotypic events like cell growth or proliferation

  17. Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.

    PubMed Central

    Riedlinger, J; Grencis, R K; Wakelin, D

    1986-01-01

    T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438

  18. Efficient Genetic Method for Establishing Drosophila Cell Lines Unlocks the Potential to Create Lines of Specific Genotypes

    PubMed Central

    Truesdell, Sharon; Paul, Litty; Chen, Ting; Butchar, Jonathan P.; Justiniano, Steven

    2008-01-01

    Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene RasV12 (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of RasV12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype. PMID:18670627

  19. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots.

    PubMed Central

    Betz, A G; Rada, C; Pannell, R; Milstein, C; Neuberger, M S

    1993-01-01

    We have analyzed somatic hypermutation in mice carrying an immunoglobulin kappa transgene in order to discriminate mutations that reflect the intrinsic specificity of the hypermutation mechanism from those highlighted by antigenic selection. We have immunized animals with three different immunogens. With one immunogen, the antigen-specific B cells express a transgenic kappa chain, which does not form part of the antibody; the transgene is a passenger free to accumulate unselected mutations. With the other two immunogens, the transgenic kappa chain constitutes the light chain of the expressed antibody. A comparison of the transgene mutations obtained under these different circumstances allows us to identify common features that we attribute to the intrinsic specificity of the hypermutation process. In particular, it yields only base substitutions and leads to hot spots occurring in individual positions (e.g., the second base of the Ser-31 codon). The mutations preferentially accumulate around the first complementarity-determining region. The process exhibits specific base substitution preferences with transitions being favored over transversions. We propose that these substitution preferences can be used to discriminate intrinsic from antigen-selected hot spots. We also note that hypermutation distinguishes between the coding and noncoding strands since pyrimidines (particularly thymidines) mutate less frequently than purines. PMID:8460148

  20. A calibrated chronology of biochemistry reveals a stem line of descent responsible for planetary biodiversity.

    PubMed

    Caetano-Anollés, Gustavo; Mittenthal, Jay E; Caetano-Anollés, Derek; Kim, Kyung Mo

    2014-01-01

    Time-calibrated phylogenomic trees of protein domain structure produce powerful chronologies describing the evolution of biochemistry and life. These timetrees are built from a genomic census of millions of encoded proteins using models of nested accumulation of molecules in evolving proteomes. Here we show that a primordial stem line of descent, a propagating series of pluripotent cellular entities, populates the deeper branches of the timetrees. The stem line produced for the first time cellular grades ~2.9 billion years (Gy)-ago, which slowly turned into lineages of superkingdom Archaea. Prompted by the rise of planetary oxygen and aerobic metabolism, the stem line also produced bacterial and eukaryal lineages. Superkingdom-specific domain repertoires emerged ~2.1 Gy-ago delimiting fully diversified Bacteria. Repertoires specific to Eukarya and Archaea appeared 300 millions years later. Results reconcile reductive evolutionary processes leading to the early emergence of Archaea to superkingdom-specific innovations compatible with a tree of life rooted in Bacteria.

  1. History of Lipizzan horse maternal lines as revealed by mtDNA analysis

    PubMed Central

    Kavar, Tatjana; Brem, Gottfried; Habe, Franc; Sölkner, Johann; Dovč, Peter

    2002-01-01

    Sequencing of the mtDNA control region (385 or 695 bp) of 212 Lipizzans from eight studs revealed 37 haplotypes. Distribution of haplotypes among studs was biased, including many private haplotypes but only one haplotype was present in all the studs. According to historical data, numerous Lipizzan maternal lines originating from founder mares of different breeds have been established during the breed's history, so the broad genetic base of the Lipizzan maternal lines was expected. A comparison of Lipizzan sequences with 136 sequences of domestic- and wild-horses from GenBank showed a clustering of Lipizzan haplotypes in the majority of haplotype subgroups present in other domestic horses. We assume that haplotypes identical to haplotypes of early domesticated horses can be found in several Lipizzan maternal lines as well as in other breeds. Therefore, domestic horses could arise either from a single large population or from several populations provided there were strong migrations during the early phase after domestication. A comparison of Lipizzan haplotypes with 56 maternal lines (according to the pedigrees) showed a disagreement of biological parentage with pedigree data for at least 11% of the Lipizzans. A distribution of haplotype-frequencies was unequal (0.2%–26%), mainly due to pedigree errors and haplotype sharing among founder mares. PMID:12427390

  2. Proteomics Analysis of Ovarian Cancer Cell Lines and Tissues Reveals Drug Resistance-associated Proteins

    PubMed Central

    CRUZ*, ISA N.; COLEY*, HELEN M.; KRAMER, HOLGER B.; MADHURI, THUMULURU KAVITAH; SAFUWAN, NUR A.M.; ANGELINO, ANA RITA; YANG, MIN

    2016-01-01

    Background: Carboplatin and paclitaxel form the cornerstone of chemotherapy for epithelial ovarian cancer, however, drug resistance to these agents continues to present challenges. Despite extensive research, the mechanisms underlying this resistance remain unclear. Materials and Methods: A 2D-gel proteomics method was used to analyze protein expression levels of three human ovarian cancer cell lines and five biopsy samples. Representative proteins identified were validated via western immunoblotting. Ingenuity pathway analysis revealed metabolomic pathway changes. Results: A total of 189 proteins were identified with restricted criteria. Combined treatment targeting the proteasome-ubiquitin pathway resulted in re-sensitisation of drug-resistant cells. In addition, examination of five surgical biopsies of ovarian tissues revealed α-enolase (ENOA), elongation factor Tu, mitochondrial (EFTU), glyceraldehyde-3-phosphate dehydrogenase (G3P), stress-70 protein, mitochondrial (GRP75), apolipoprotein A-1 (APOA1), peroxiredoxin (PRDX2) and annexin A (ANXA) as candidate biomarkers of drug-resistant disease. Conclusion: Proteomics combined with pathway analysis provided information for an effective combined treatment approach overcoming drug resistance. Analysis of cell lines and tissues revealed potential prognostic biomarkers for ovarian cancer. *These Authors contributed equally to this study. PMID:28031236

  3. Induction of delayed-type hypersensitivity by the T cell line specific to bacterial peptidoglycans

    SciTech Connect

    Katsuki, M.; Kakimoto, K.; Kawata, S.; Kotani, S.; Koga, T.

    1987-12-01

    A T cell line specific for the chemically well-defined peptidoglycan of bacterial cell wall, disaccharide tetrapeptide, was established from Lewis rats immunized with the antigen covalently linked to the autologous rat serum albumin. The antigen specificity was examined with various analogues or derivatives of the peptidoglycan. The cell line was reactive to analogues with the COOH-terminal D-amino acid, but least reactive to those with L-amino acid as COOH terminus. Transferring of the T cell line into X-irradiated normal Lewis rats induced delayed-type hypersensitivity in an antigen specific manner.

  4. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth.

    PubMed

    Kohnen, Markus V; Schmid-Siegert, Emanuel; Trevisan, Martine; Petrolati, Laure Allenbach; Sénéchal, Fabien; Müller-Moulé, Patricia; Maloof, Julin; Xenarios, Ioannis; Fankhauser, Christian

    2016-12-01

    In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs. © 2016 American Society of Plant Biologists. All rights reserved.

  5. Odor-Specific Loss of Smell Sensitivity with Age as Revealed by the Specific Sensitivity Test.

    PubMed

    Seow, Yi-Xin; Ong, Peter K C; Huang, Dejian

    2016-07-01

    The perception of odor mixtures plays an important role in human food intake, behavior, and emotions. Decline of smell acuity with normal aging could impact food perception and preferences at various ages. However, since the landmark Smell Survey by National Geographic, little has been elucidated on differences in the onset and extent of loss in olfactory sensitivity toward single odorants. Here, using the Specific Sensitivity test, we show the onset and extent of loss in both identification and detection thresholds of odorants with age are odorant-specific. Subjects of Chinese descent in Singapore (186 women, 95 men), aged 21-80 years, were assessed for olfactory sensitivity of 10 odorants from various odor groups. Notably, subjects in their 70s required 179 times concentration of rose-like odorant (2-phenylethanol) than subjects in the 20s, while thresholds for onion-like 2-methyloxolane-3-thiol only differed by 3 times between the age groups. In addition, identification rate for 2-phenylethanol was negatively correlated with age throughout adult life whereas mushroom-like oct-1-en-3-ol was equally identified by subjects across all ages. Our results demonstrated the girth of differentiated olfactory loss due to normal ageing, which potentially affect overall perception and preferences of odor mixtures with age. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth[OPEN

    PubMed Central

    Trevisan, Martine; Petrolati, Laure Allenbach

    2016-01-01

    In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana. PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs. PMID:27923878

  7. Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes.

    PubMed

    Kitada, Kunio; Taima, Akira; Ogasawara, Kiyomoto; Metsugi, Shouichi; Aikawa, Satoko

    2011-04-01

    Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis. Copyright © 2011 Wiley-Liss, Inc.

  8. Bcl-2 family genetic profiling reveals microenvironment-specific determinants of chemotherapeutic response.

    PubMed

    Pritchard, Justin R; Gilbert, Luke A; Meacham, Corbin E; Ricks, Jennifer L; Jiang, Hai; Lauffenburger, Douglas A; Hemann, Michael T

    2011-09-01

    The Bcl-2 family encompasses a diverse set of apoptotic regulators that are dynamically activated in response to various cell-intrinsic and -extrinsic stimuli. An extensive variety of cell culture experiments have identified effects of growth factors, cytokines, and drugs on Bcl-2 family functions, but in vivo studies have tended to focus on the role of one or two particular members in development and organ homeostasis. Thus, the ability of physiologically relevant contexts to modulate canonical dependencies that are likely to be more complex has yet to be investigated systematically. In this study, we report findings derived from a pool-based shRNA assay that systematically and comprehensively interrogated the functional dependence of leukemia and lymphoma cells upon various Bcl-2 family members across many diverse in vitro and in vivo settings. This approach permitted us to report the first in vivo loss of function screen for modifiers of the response to a front-line chemotherapeutic agent. Notably, our results reveal an unexpected role for the extrinsic death pathway as a tissue-specific modifier of therapeutic response. In particular, our findings show that particular tissue sites of tumor dissemination play critical roles in demarcating the nature and extent of cancer cell vulnerabilities and mechanisms of chemoresistance. ©2011 AACR.

  9. Payload Specific Evaluation for Concrete Lined Drums in the Standard Waste Box

    SciTech Connect

    JOHNSON, P.G.

    2002-07-11

    Building 327 uses concrete-lined drums for handling waste generated from deactivation activities. This payload-specific evaluation assesses the shipment of these concrete-lined drums, as well as future drums, in the Standard Waste Box, certified Type A.

  10. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes.

    PubMed

    Winnard, Paul T; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-03-21

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.

  11. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes

    PubMed Central

    Winnard, Paul T.; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-01-01

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities – a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy. PMID:28145887

  12. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus

    PubMed Central

    Ge, Xian-Hong; Wang, Jing; Li, Zai-Yun

    2009-01-01

    Background and Aims In sexual hybrids between cultivated Brassica species and another crucifer, Orychophragmus violaceus (2n = 24), parental genome separation during mitosis and meiosis is under genetic control but this phenomenon varies depending upon the Brassica species. To further investigate the mechanisms involved in parental genome separation, complex hybrids between synthetic Brassica allohexaploids (2n = 54, AABBCC) from three sources and O. violaceus were obtained and characterized. Methods Genomic in situ hybridization, amplified fragment length polymorphism (AFLP) and single-strand conformation polymorphism (SSCP) were used to explore chromosomal/genomic components and rRNA gene expression of the complex hybrids and their progenies. Key Results Complex hybrids with variable fertility exhibited phenotypes that were different from the female allohexaploids and expressed some traits from O. violaceus. These hybrids were mixoploids (2n = 34–46) and retained partial complements of allohexaploids, including whole chromosomes of the A and B genomes and some of the C genome but no intact O. violaceus chromosomes; AFLP bands specific for O. violaceus, novel for two parents and absent in hexaploids were detected. The complex hybrids produced progenies with chromosomes/genomic complements biased to B. juncea (2n = 36, AABB) and novel B. juncea lines with two genomes of different origins. The expression of rRNA genes from B. nigra was revealed in all allohexaploids and complex hybrids, showing that the hierarchy of nucleolar dominance (B. nigra, BB > B. rapa, AA > B. oleracea, CC) in Brassica allotetraploids was still valid in these plants. Conclusions The chromosomes of three genomes in these synthetic Brassica allohexaploids showed different genome-specific stabilities (B > A > C) under induction of alien chromosome elimination in crosses with O. violaceus, which was possibly affected by nucleolar dominance. PMID:19403626

  13. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.

    PubMed

    Zdravkovic, Tamara; Nazor, Kristopher L; Larocque, Nicholas; Gormley, Matthew; Donne, Matthew; Hunkapillar, Nathan; Giritharan, Gnanaratnam; Bernstein, Harold S; Wei, Grace; Hebrok, Matthias; Zeng, Xianmin; Genbacev, Olga; Mattis, Aras; McMaster, Michael T; Krtolica, Ana; Valbuena, Diana; Simón, Carlos; Laurent, Louise C; Loring, Jeanne F; Fisher, Susan J

    2015-12-01

    Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines. © 2015. Published by The Company of Biologists Ltd.

  14. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis.

    PubMed

    Marquès-Bueno, Maria Mar; Morao, Ana K; Cayrel, Anne; Platre, Matthieu P; Barberon, Marie; Caillieux, Erwann; Colot, Vincent; Jaillais, Yvon; Roudier, François; Vert, Grégory

    2016-01-01

    Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis.

  15. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis

    PubMed Central

    Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent

    2016-01-01

    Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936

  16. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    SciTech Connect

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  17. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    PubMed Central

    Heiser, Laura M; Wang, Nicholas J; Talcott, Carolyn L; Laderoute, Keith R; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L; Laquerre, Sylvie; Jackson, Jeffrey R; Wooster, Richard F; Kuo, Wen Lin; Gray, Joe W; Spellman, Paul T

    2009-01-01

    Background Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EgfR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. Results We were interested in identifying subnetworks within the EgfR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EgfR-MAPK signaling. This model was composed of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype-specific subnetworks, including one that suggested Pak1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that Pak1 over-expressing cell lines would have increased sensitivity to Mek inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three Mek inhibitors. We found that Pak1 over-expressing luminal breast cancer cell lines are significantly more sensitive to Mek inhibition compared to those that express Pak1 at low levels. This indicates that Pak1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to Mek inhibitors. Conclusions All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets. PMID:19317917

  18. OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis

    PubMed Central

    Mevissen, Tycho E.T.; Hospenthal, Manuela K.; Geurink, Paul P.; Elliott, Paul R.; Akutsu, Masato; Arnaudo, Nadia; Ekkebus, Reggy; Kulathu, Yogesh; Wauer, Tobias; El Oualid, Farid; Freund, Stefan M.V.; Ovaa, Huib; Komander, David

    2013-01-01

    Summary Sixteen ovarian tumor (OTU) family deubiquitinases (DUBs) exist in humans, and most members regulate cell-signaling cascades. Several OTU DUBs were reported to be ubiquitin (Ub) chain linkage specific, but comprehensive analyses are missing, and the underlying mechanisms of linkage specificity are unclear. Using Ub chains of all eight linkage types, we reveal that most human OTU enzymes are linkage specific, preferring one, two, or a defined subset of linkage types, including unstudied atypical Ub chains. Biochemical analysis and five crystal structures of OTU DUBs with or without Ub substrates reveal four mechanisms of linkage specificity. Additional Ub-binding domains, the ubiquitinated sequence in the substrate, and defined S1’ and S2 Ub-binding sites on the OTU domain enable OTU DUBs to distinguish linkage types. We introduce Ub chain restriction analysis, in which OTU DUBs are used as restriction enzymes to reveal linkage type and the relative abundance of Ub chains on substrates. PMID:23827681

  19. Identification of tapetum-specific genes by comparing global gene expression of four different male sterile lines in Brassica oleracea.

    PubMed

    Ma, Yuan; Kang, Jungen; Wu, Jian; Zhu, Yingguo; Wang, Xiaowu

    2015-04-01

    The tapetum plays an important role in anther development by providing necessary enzymes and nutrients for pollen development. However, it is difficult to identify tapetum-specific genes on a large-scale because of the difficulty of separating tapetum cells from other anther tissues. Here, we reported the identification of tapetum-specific genes by comparing the gene expression patterns of four male sterile (MS) lines of Brassica oleracea. The abortive phenotypes of the four MS lines revealed different defects in tapetum and pollen development but normal anther wall development when observed by transmission electron microscopy. These tapetum displayed continuous defective characteristics throughout the anther developmental stages. The transcriptome from flower buds, covering all anther developmental stages, was analyzed and bioinformatics analyses exploring tapetum development-related genes were performed. We identified 1,005 genes differentially expressed in at least one of the MS lines and 104 were non-pollen expressed genes (NPGs). Most of the identified NPGs were tapetum-specific genes considering that anther walls were normally developed in all four MS lines. Among the 104 NPGs, 22 genes were previously reported as being involved in tapetum development. We further separated the expressed NPGs into different developmental stages based on the MS defects. The data obtained in this study are not only informative for research on tapetum development in B. oleracea, but are also useful for genetic pathway research in other related species.

  20. Extracellular Matrix-dependent Pathways in Colorectal Cancer Cell Lines Reveal Potential Targets for Anticancer Therapies.

    PubMed

    Stankevicius, Vaidotas; Vasauskas, Gintautas; Noreikiene, Rimante; Kuodyte, Karolina; Valius, Mindaugas; Suziedelis, Kestutis

    2016-09-01

    Cancer cells grown in a 3D culture are more resistant to anticancer therapy treatment compared to those in a monolayer 2D culture. Emerging evidence has suggested that the key reasons for increased cell survival could be gene expression changes in cell-extracellular matrix (ECM) interaction-dependent manner. Global gene-expression changes were obtained in human colorectal carcinoma HT29 and DLD1 cell lines between 2D and laminin-rich (lr) ECM 3D growth conditions by gene-expression microarray analysis. The most significantly altered functional categories were revealed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The microarray data revealed that 841 and 1190 genes were differentially expressed in colorectal carcinoma DLD1 and HT29 cells. KEGG analysis indicated that the most significantly altered categories were cell adhesion, mitogen-activated protein kinase and immune response. Our results indicate altered pathways related to cancer development and progression and suggest potential ECM-regulated targets for the development of anticancer therapies. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Comprehensive prediction in 78 human cell lines reveals rigidity and compactness of transcription factor dimers

    PubMed Central

    Jankowski, Aleksander; Szczurek, Ewa; Jauch, Ralf; Tiuryn, Jerzy; Prabhakar, Shyam

    2013-01-01

    The binding of transcription factors (TFs) to their specific motifs in genomic regulatory regions is commonly studied in isolation. However, in order to elucidate the mechanisms of transcriptional regulation, it is essential to determine which TFs bind DNA cooperatively as dimers and to infer the precise nature of these interactions. So far, only a small number of such dimeric complexes are known. Here, we present an algorithm for predicting cell-type–specific TF–TF dimerization on DNA on a large scale, using DNase I hypersensitivity data from 78 human cell lines. We represented the universe of possible TF complexes by their corresponding motif complexes, and analyzed their occurrence at cell-type–specific DNase I hypersensitive sites. Based on ∼1.4 billion tests for motif complex enrichment, we predicted 603 highly significant cell-type–specific TF dimers, the vast majority of which are novel. Our predictions included 76% (19/25) of the known dimeric complexes and showed significant overlap with an experimental database of protein–protein interactions. They were also independently supported by evolutionary conservation, as well as quantitative variation in DNase I digestion patterns. Notably, the known and predicted TF dimers were almost always highly compact and rigidly spaced, suggesting that TFs dimerize in close proximity to their partners, which results in strict constraints on the structure of the DNA-bound complex. Overall, our results indicate that chromatin openness profiles are highly predictive of cell-type–specific TF–TF interactions. Moreover, cooperative TF dimerization seems to be a widespread phenomenon, with multiple TF complexes predicted in most cell types. PMID:23554463

  2. Exome sequencing reveals recurrent germ line variants in patients with familial Waldenström macroglobulinemia.

    PubMed

    Roccaro, Aldo M; Sacco, Antonio; Shi, Jiantao; Chiarini, Marco; Perilla-Glen, Adriana; Manier, Salomon; Glavey, Siobhan; Aljawai, Yosra; Mishima, Yuji; Kawano, Yawara; Moschetta, Michele; Correll, Mick; Improgo, Ma Reina; Brown, Jennifer R; Imberti, Luisa; Rossi, Giuseppe; Castillo, Jorge J; Treon, Steven P; Freedman, Matthew L; Van Allen, Eliezer M; Hide, Winston; Hiller, Elaine; Rainville, Irene; Ghobrial, Irene M

    2016-05-26

    Familial aggregation of Waldenström macroglobulinemia (WM) cases, and the clustering of B-cell lymphoproliferative disorders among first-degree relatives of WM patients, has been reported. Nevertheless, the possible contribution of inherited susceptibility to familial WM remains unrevealed. We performed whole exome sequencing on germ line DNA obtained from 4 family members in which coinheritance for WM was documented in 3 of them, and screened additional independent 246 cases by using gene-specific mutation sequencing. Among the shared germ line variants, LAPTM5(c403t) and HCLS1(g496a) were the most recurrent, being present in 3/3 affected members of the index family, detected in 8% of the unrelated familial cases, and present in 0.5% of the nonfamilial cases and in <0.05 of a control population. LAPTM5 and HCLS1 appeared as relevant WM candidate genes that characterized familial WM individuals and were also functionally relevant to the tumor clone. These findings highlight potentially novel contributors for the genetic predisposition to familial WM and indicate that LAPTM5(c403t) and HCLS1(g496a) may represent predisposition alleles in patients with familial WM. © 2016 by The American Society of Hematology.

  3. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean.

    PubMed

    Yin, Xiaojian; Hiraga, Susumu; Hajika, Makita; Nishimura, Minoru; Komatsu, Setsuko

    2017-03-01

    Soybean is highly sensitive to flooding stress and exhibits markedly reduced plant growth and grain yield under flooding conditions. To explore the mechanisms underlying initial flooding tolerance in soybean, RNA sequencing-based transcriptomic analysis was performed using a flooding-tolerant line and ABA-treated soybean. A total of 31 genes included 12 genes that exhibited similar temporal patterns were commonly changed in these plant groups in response to flooding and they were mainly involved in RNA regulation and protein metabolism. The mRNA expression of matrix metalloproteinase, glucose-6-phosphate isomerase, ATPase family AAA domain-containing protein 1, and cytochrome P450 77A1 was up-regulated in wild-type soybean under flooding conditions; however, no changes were detected in the flooding-tolerant line or ABA-treated soybean. The mRNA expression of cytochrome P450 77A1 was specifically up-regulated in root tips by flooding stress, but returned to the level found in control plants following treatment with the P450 inhibitor uniconazole. The survival ratio and root fresh weight of plants were markedly improved by 3-h uniconazole treatment under flooding stress. Taken together, these results suggest that cytochrome P450 77A1 is suppressed by uniconazole treatment and that this inhibition may enhance soybean tolerance to flooding stress.

  4. Nuclear Motility in Glioma Cells Reveals a Cell-Line Dependent Role of Various Cytoskeletal Components

    PubMed Central

    Kiss, Alexa; Horvath, Peter; Rothballer, Andrea; Kutay, Ulrike; Csucs, Gabor

    2014-01-01

    Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns - thereby forced into a bipolar morphology - displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved. PMID:24691067

  5. Government financing for health and specific national budget lines: the case of vaccines and immunization.

    PubMed

    Lydon, Patrick; Beyai, Pa Lamin; Chaudhri, Irtaza; Cakmak, Niyazi; Satoulou, Alexis; Dumolard, Laure

    2008-12-02

    A long standing question related to immunization financing and sustainability has been whether the existence of a specific line item for vaccines purchasing within the national health budget can contribute significantly to increasing national government financing of vaccines and routine immunizations. Based on immunization financing indicators from 185 countries collected through the joint WHO and UNICEF monitoring system, this paper attempts to answer this policy question. The study will present findings related to the status of countries that have such specific budget lines for purchasing vaccines and the levels of national budgetary allocation to the financing of vaccines and immunizations, particularly in low-income countries. The analysis shows evidence that the existence ofa specific line in the national budget is associated with increased governmental budget allocations for vaccines and routine immunization financing.

  6. Morphological characterization of a newly established human osteosarcoma cell line, HS-Os-1, revealing its distinct osteoblastic nature.

    PubMed

    Sonobe, H; Mizobuchi, H; Manabe, Y; Furihata, M; Iwata, J; Hikita, T; Oka, T; Ohtsuki, Y; Goto, T

    1991-01-01

    A newly established human osteosarcoma cell line, HS-Os-1, from an osteoblastic tumor arising in the left humerus of an 11-year-old girl was morphologically characterized in vitro and in vivo. HS-Os-1 cells in a monolayer have been maintained for more than 2 years since the initial cultivation, and were round or polygonal in shape with marked pleomorphism. Their cytoplasm was strongly positive for specific markers of osteoblasts, such as alkaline phosphatase and osteocalcin. Tumors induced in nude mice by HS-Os-1 cell inoculation at passage 12 or 23 revealed typical histological features of osteoblastic osteosarcoma, similar to those observed in the original tumor, producing prominent osteoid matrix with calcification. Ultrastructurally, HS-Os-1 cells in vitro and tumor cells in vivo showed similar well-developed, markedly dilated rough endoplasmic reticulum, polysomes and microfilaments in their cytoplasm. Additionally, many collagen fibers associated with deposition of electron-dense material were detected in the stroma featuring osteoid matrix. Thus, the HS-Os-1 cell line was shown to exhibit its osteoblastic nature in vitro and in vivo, and therefore might become an extremely useful tool for various pathomorphological investigations on human osteosarcomas.

  7. Replication Fork Polarity Gradients Revealed by Megabase-Sized U-Shaped Replication Timing Domains in Human Cell Lines

    PubMed Central

    Baker, Antoine; Audit, Benjamin; Chen, Chun-Long; Moindrot, Benoit; Leleu, Antoine; Guilbaud, Guillaume; Rappailles, Aurélien; Vaillant, Cédric; Goldar, Arach; Mongelard, Fabien; d'Aubenton-Carafa, Yves; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain

    2012-01-01

    In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome. PMID:22496629

  8. Specific Heat of Helium at Constant Volume along the Lambda Line

    SciTech Connect

    Lipa, J. A.; Nissen, J. A.; Avaloff, D.; Wang, Suwen

    2006-09-07

    We report new measurements of the constant-volume specific heat of helium along the lambda line from 0.15 to 24.4 bars. The pressure in the cell was also recorded as a function of temperature using a gauge with a superconducting readout. This data can be used to convert the results to the constant-pressure specific heat along isobars. The constant-volume data compare well with earlier results and extend the temperature range of the measurements much closer to the lambda line. A preliminary conversion to Cp(T,P) indicates good agreement with universality.

  9. Comparative drug pair screening across multiple glioblastoma cell lines reveals novel drug-drug interactions

    PubMed Central

    Schmidt, Linnéa; Kling, Teresia; Monsefi, Naser; Olsson, Maja; Hansson, Caroline; Baskaran, Sathishkumar; Lundgren, Bo; Martens, Ulf; Häggblad, Maria; Westermark, Bengt; Forsberg Nilsson, Karin; Uhrbom, Lene; Karlsson-Lindahl, Linda; Gerlee, Philip; Nelander, Sven

    2013-01-01

    Background Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults, and despite state-of-the-art treatment, survival remains poor and novel therapeutics are sorely needed. The aim of the present study was to identify new synergistic drug pairs for GBM. In addition, we aimed to explore differences in drug-drug interactions across multiple GBM-derived cell cultures and predict such differences by use of transcriptional biomarkers. Methods We performed a screen in which we quantified drug-drug interactions for 465 drug pairs in each of the 5 GBM cell lines U87MG, U343MG, U373MG, A172, and T98G. Selected interactions were further tested using isobole-based analysis and validated in 5 glioma-initiating cell cultures. Furthermore, drug interactions were predicted using microarray-based transcriptional profiling in combination with statistical modeling. Results Of the 5 × 465 drug pairs, we could define a subset of drug pairs with strong interaction in both standard cell lines and glioma-initiating cell cultures. In particular, a subset of pairs involving the pharmaceutical compounds rimcazole, sertraline, pterostilbene, and gefitinib showed a strong interaction in a majority of the cell cultures tested. Statistical modeling of microarray and interaction data using sparse canonical correlation analysis revealed several predictive biomarkers, which we propose could be of importance in regulating drug pair responses. Conclusion We identify novel candidate drug pairs for GBM and suggest possibilities to prospectively use transcriptional biomarkers to predict drug interactions in individual cases. PMID:24101737

  10. Specific patterns of DNA copy number gains and losses in eight new glioblastoma multiforme cell lines.

    PubMed

    Ramirez, Tzutzuy; Thoma, Karen; Taja-Chayeb, Lucia; Efferth, Thomas; Herrera, Luis A; Halatsch, Marc-Eric; Gebhart, Erich

    2003-08-01

    Eight cell lines newly established from glioblastoma multiforme were examined by comparative genomic hybridization for their patterns of genomic imbalance. The total number of DNA copy number alterations (CNAs) found in the eight cell lines varied between 15 and 24. This characterized the examined cell lines (or the tumors they were derived from) as distinctly progressed in karyotypic evolution. The most frequent CNAs were gains of the entire chromosome 6 or, at least, parts of it, and of 7p22, which were found in all eight cell lines. Other changes present in seven of the eight cell lines were gains of 3q26qter and the entire chromosome 7 and losses of segments on chromosome 4q (e.g., 4q34q35) and of the short arm of chromosome 10. Enh(3q21q25), dim(4q22q33) and dim(4qter), dim(13q22), enh(15q14), and enh(18q22q23) were found in six of the eight cell lines. Several other CNAs [e.g., dim(9p21)] were found in common in five or less of the eight lines. Using a hierarchical cluster analysis, the specific patterns of genomic imbalance allowed various groupings of the examined cell lines. Although a close relation could be confirmed among all examined lines on the basis of shared CNAs, two main groups could be roughly differentiated. Among those there were also more or less closely related subgroups. However, also alterations which were restricted to one single cell line each were found, e.g., dim(1q41qter), dim(2q22qter), enh(4p), dim(5p), dim(4p13pter), dim(8q21qter), enh(9p), dim(9q), dim(11p14pter), enh(12q15q23), enh(13q21), dim(14q21qter), dim(15q21qter), dim(19q), and enh(22q). The comparison of the obtained data on gains and losses of DNA copy numbers in specific chromosomal segments with the data on localization of genes possibly associated with the biology of glioblastoma multiforme additionally shows high conformity but also disparity of the examined cell lines among each other, as well as compared to primary glioblastoma multiforme. Eventually, each of the

  11. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients.

    PubMed

    Gainetdinov, Ildar V; Kapitskaya, Kristina Yu; Rykova, Elena Yu; Ponomaryova, Anastasia A; Cherdyntseva, Nadezda V; Vlassov, Valentin V; Laktionov, Pavel P; Azhikina, Tatyana L

    2016-09-01

    Circulating DNA has recently gained attention as a fast and non-invasive way to assess tumor biomarkers. Since hypomethylation of LINE-1 repetitive elements was described as one of the key hallmarks of tumorigenesis, we aimed to establish whether the methylation level of LINE-1 retrotransposons changes in cell-surface-bound fraction of circulating DNA (csbDNA) of lung cancer patients. Methylated CpG Island Recovery Assay (MIRA) coupled to qPCR-based quantitation was performed to assess integral methylation level of LINE-1 promoters in csbDNA of non-small cell lung cancer patients (n=56) and healthy controls (n=44). Deep sequencing of amplicons revealed that hypomethylation of LINE-1 promoters in csbDNA of lung cancer patients is more pronounced for the human-specific L1Hs family. Statistical analysis demonstrates significant difference in LINE-1 promoter methylation index between cancer patients and healthy individuals (ROC-curve analysis: n=100, AUC=0.69, p=0.0012) and supports the feasibility of MIRA as a promising non-invasive approach.

  12. A predictive modeling approach for cell line-specific long-range regulatory interactions

    PubMed Central

    Roy, Sushmita; Siahpirani, Alireza Fotuhi; Chasman, Deborah; Knaack, Sara; Ay, Ferhat; Stewart, Ron; Wilson, Michael; Sridharan, Rupa

    2015-01-01

    Long range regulatory interactions among distal enhancers and target genes are important for tissue-specific gene expression. Genome-scale identification of these interactions in a cell line-specific manner, especially using the fewest possible datasets, is a significant challenge. We develop a novel computational approach, Regulatory Interaction Prediction for Promoters and Long-range Enhancers (RIPPLE), that integrates published Chromosome Conformation Capture (3C) data sets with a minimal set of regulatory genomic data sets to predict enhancer-promoter interactions in a cell line-specific manner. Our results suggest that CTCF, RAD21, a general transcription factor (TBP) and activating chromatin marks are important determinants of enhancer-promoter interactions. To predict interactions in a new cell line and to generate genome-wide interaction maps, we develop an ensemble version of RIPPLE and apply it to generate interactions in five human cell lines. Computational validation of these predictions using existing ChIA-PET and Hi-C data sets showed that RIPPLE accurately predicts interactions among enhancers and promoters. Enhancer-promoter interactions tend to be organized into subnetworks representing coordinately regulated sets of genes that are enriched for specific biological processes and cis-regulatory elements. Overall, our work provides a systematic approach to predict and interpret enhancer-promoter interactions in a genome-wide cell-type specific manner using a few experimentally tractable measurements. PMID:26338778

  13. Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines

    USDA-ARS?s Scientific Manuscript database

    Novel wheat lines with altered flour compositions can be used to decipher the roles of specific gluten proteins in flour quality. Grain proteins from transgenic wheat lines in which genes encoding the omega-5 gliadins were silenced by RNA interference (RNAi) were analyzed in detail by quantitative 2...

  14. T-cell receptor usage by melanoma-specific clonal and highly oligoclonal tumor-infiltrating lymphocyte lines.

    PubMed Central

    Shilyansky, J; Nishimura, M I; Yannelli, J R; Kawakami, Y; Jacknin, L S; Charmley, P; Rosenberg, S A

    1994-01-01

    Tumor-infiltrating lymphocytes (TIL) obtained from human melanomas can specifically lyse autologous tumor in vitro and mediate tumor regression in vivo. To develop more effective therapeutic reagents and to further understand the T-cell response to tumors, the diversity of T-cell receptors (TCRs) involved in melanoma antigen recognition has been studied. The TCR variable (V) genes, joining (J) segments, and N diversity regions used by five clonal lines and one highly oligoclonal, melanoma-specific, CD8+ TIL line were examined utilizing PCR amplification with V gene subfamily-specific primers and anchor PCR. The TIL lysed multiple allogeneic melanomas expressing matched surface major histocompatibility complex class I molecules. TCR analysis confirmed the clonal nature of the TIL lines; however, the TCR repertoire was diverse. Even among the three HLA-A2 restricted TIL (TIL 1200, TIL F2-2, and TIL-5), no common V gene usage was found. Comparison of the third complementarity-determining regions of the TCRs from the HLA-A2 restricted TIL revealed no homology. Results presented here identify T-cell clonotypes that recognize epitopes on highly prevalent, shared melanoma tumor-associated antigens presented in the context of HLA-B55, HLA-A1, and HLA-A2. These T cells and the antigens they recognize represent important components for the design of new immunotherapies for patients with advanced melanoma. PMID:7511820

  15. Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines

    PubMed Central

    Zhang, Shu-Wen; Zhu, Xie-Fei; Feng, Liu-Chun; Gao, Xiang; Yang, Biao; Zhang, Tian-Zhen; Zhou, Bao-Liang

    2016-01-01

    Fiber quality improvement is a driving force for further cotton domestication and breeding. Here, QTLs for fiber quality were mapped in 115 introgression lines (ILs) first developed from two intraspecific populations of cultivated and feral cotton landraces. A total of 60 QTLs were found, which explained 2.03–16.85% of the phenotypic variance found in fiber quality traits. A total of 36 markers were associated with five fiber traits, 33 of which were found to be associated with QTLs in multiple environments. In addition, nine pairs of common QTLs were identified; namely, one pair of QTLs for fiber elongation, three pairs for fiber length, three pairs for fiber strength and two pairs for micronaire (qMICs). All common QTLs had additive effects in the same direction in both IL populations. We also found five QTL clusters, allowing cotton breeders to focus their efforts on regions of QTLs with the highest percentages of phenotypic variance. Our results also reveal footprints of domestication; for example, fourteen QTLs with positive effects were found to have remained in modern cultivars during domestication, and two negative qMICs that had never been reported before were found, suggesting that the qMICs regions may be eliminated during artificial selection. PMID:27549323

  16. RNA-Mediated Gene Duplication and Retroposons: Retrogenes, LINEs, SINEs, and Sequence Specificity

    PubMed Central

    2013-01-01

    A substantial number of “retrogenes” that are derived from the mRNA of various intron-containing genes have been reported. A class of mammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3′-end sequences of various SINEs originated from a corresponding LINE. As the 3′-untranslated regions of several LINEs are essential for retroposition, these LINEs presumably require “stringent” recognition of the 3′-end sequence of the RNA template. However, the 3′-ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3′-poly(A) repeats. Since the 3′-poly(A) repeats of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu SINE but also cytosolic mRNA. Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A) repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution. PMID:23984183

  17. Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site-specific integration.

    PubMed

    Amenya, D A; Bonizzoni, M; Isaacs, A T; Jasinskiene, N; Chen, H; Marinotti, O; Yan, G; James, A A

    2010-04-01

    Genetically modified mosquitoes that are unable to transmit pathogens offer opportunities for controlling vector-borne diseases such as malaria and dengue. Site-specific gene recombination technologies are advantageous in the development of these insects because antipathogen effector genes can be inserted at integration sites in the genome that cause the least alteration in mosquito fitness. Here we describe Anopheles stephensi transgenic lines containing phi C31 attP'docking' sites linked to a fluorescent marker gene. Chromosomal insertion sites were determined and life-table parameters were assessed for transgenic mosquitoes of each line. No significant differences in fitness between the transgenic and nontransgenic mosquitoes were detected in this study. These transgenic lines are suitable for future site-specific integrations of antiparasite transgenes into the attP sites.

  18. Specificity and isotype of Rh specific antibodies produced by human B-cell lines established from alloimmunized Rh negative women.

    PubMed

    Pasha, Roya Payam Khaja; Bahrami, Zahra Samadi; Niroomanesh, Shirin; Ramzi, Fereshteh; Razavi, Ali Reza; Shokri, Fazel

    2005-10-01

    Despite the successful outcome of anti-D prophylaxis program, alloimmunization still occurs. The aim of this study was to examine the specificity and isotype of anti-Rh antibodies in plasma samples of Rh negative alloimmunized individuals and to study the same parameters in lymphoblastoid cell lines (LCLs) generated from the same donors. Specificity of anti-Rh antibodies was determined in plasma of nine alloimmunized subjects by direct hemagglutination using a panel of known RBC genotypes and isotype of specific antibodies were identified by an antigen specific ELISA. Similar methods were employed to determine specificity and isotype of antibodies produced by Rh specific LCLs established from four donors. LCLs were generated by Epstein-Barr virus transformation of peripheral blood mononuclear cells isolated from each donor followed by their culture over a feeder of human fetal fibroblasts. Upon emergence of lymphoblastoid cells, culture supernatants were assayed for presence of Rh specific antibody by hemagglutination assay. Anti-D was the predominant antibody in both plasma samples and among the 128 established LCLs; however, antibodies to other Rh specificities namely C and E were also produced. The isotype of anti-Rh antibody in all plasma samples was found to be IgG, predominantly IgG1, combined in 7 samples with IgM. Similarly 76%, 9.2% and 14.8% of LCLs were determined to produce antibody of IgG, IgM and of both isotypes, respectively. The data supported that the D antigen is the immunodominant component of the Rh system as indicated by the in vitro and in vivo profiles of Rh specificities in our alloimmunized subjects.

  19. Comfortably Numb and Back: Plasma Metabolomics Reveals Biochemical Adaptations in the Hibernating 13-Lined Ground Squirrel.

    PubMed

    D'Alessandro, Angelo; Nemkov, Travis; Bogren, Lori K; Martin, Sandra L; Hansen, Kirk C

    2017-02-03

    Hibernation is an evolutionary adaptation that affords some mammals the ability to exploit the cold to achieve extreme metabolic depression (torpor) while avoiding ischemia/reperfusion or hemorrhagic shock injuries. Hibernators cycle periodically out of torpor, restoring high metabolic activity. If understood at the molecular level, the adaptations underlying torpor-arousal cycles may be leveraged for translational applications in critical fields such as intensive care medicine. Here, we monitored 266 metabolites to investigate the metabolic adaptations to hibernation in plasma from 13-lined ground squirrels (57 animals, 9 time points). Results indicate that the periodic arousals foster the removal of potentially toxic oxidative stress-related metabolites, which accumulate in plasma during torpor while replenishing reservoirs of circulating catabolic substrates (free fatty acids and amino acids). Specifically, we identified metabolic fluctuations of basic amino acids lysine and arginine, one-carbon metabolism intermediates, and sulfur-containing metabolites methionine, cysteine, and cystathionine. Conversely, reperfusion injury markers such as succinate/fumarate remained relatively stable across cycles. Considering the cycles of these metabolites with the hibernator's cycling metabolic activity together with their well-established role as substrates for the production of hydrogen sulfide (H2S), we hypothesize that these metabolic fluctuations function as a biological clock regulating torpor to arousal transitions and resistance to reperfusion during arousal.

  20. T lymphocyte line specific for thyroglobulin produces or vaccinates against autoimmune thyroiditis in mice.

    PubMed

    Maron, R; Zerubavel, R; Friedman, A; Cohen, I R

    1983-11-01

    We investigated Ly-1+ T lymphocyte line cells specifically reactive to thyroglobulin (Tg) that were isolated from mice primed with mouse Tg in adjuvant. Intravenous inoculation of as few as 10(5) line cells was sufficient to cause severe and prolonged thyroiditis in recipient mice that were intact, irradiated, or athymic nudes. Disease was independent of circulating Tg antibodies, suggesting that anti-Tg T lymphocytes could cause thyroiditis unaided by antibodies. Thyroiditogenic T lymphocytes could be isolated as cell lines from apparently healthy mice that had been immunized with non-thyroiditogenic bovine Tg in adjuvant, which indicates that autoimmune effector T lymphocytes may develop covertly in the course of immunization with foreign antigens. Finally, a single i.v. inoculation of anti-Tg T lymphocyte line cells attenuated by irradiation vaccinated mice completely against subsequent development of autoimmune thyroiditis produced either by active immunization to Tg or by passive transfer of intact line cells. Vaccinated mice that were protected from inflammatory lesions of thyroiditis still produced high titers of Tg antibodies in response to active immunization. Thus, vaccination specifically inhibited thyroiditogenic T lymphocytes but not helper T lymphocytes required for the production of Tg autoantibodies.

  1. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    PubMed Central

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  2. Salivary gland-specific P. berghei reporter lines enable rapid evaluation of tissue-specific sporozoite loads in mosquitoes.

    PubMed

    Ramakrishnan, Chandra; Rademacher, Annika; Soichot, Julien; Costa, Giulia; Waters, Andrew P; Janse, Chris J; Ramesar, Jai; Franke-Fayard, Blandine M; Levashina, Elena A

    2012-01-01

    Malaria is a life-threatening human infectious disease transmitted by mosquitoes. Levels of the salivary gland sporozoites (sgs), the only mosquito stage infectious to a mammalian host, represent an important cumulative index of Plasmodium development within a mosquito. However, current techniques of sgs quantification are laborious and imprecise. Here, transgenic P. berghei reporter lines that produce the green fluorescent protein fused to luciferase (GFP-LUC) specifically in sgs were generated, verified and characterised. Fluorescence microscopy confirmed the sgs stage specificity of expression of the reporter gene. The luciferase activity of the reporter lines was then exploited to establish a simple and fast biochemical assay to evaluate sgs loads in whole mosquitoes. Using this assay we successfully identified differences in sgs loads in mosquitoes silenced for genes that display opposing effects on P. berghei ookinete/oocyst development. It offers a new powerful tool to study infectivity of P. berghei to the mosquito, including analysis of vector-parasite interactions and evaluation of transmission-blocking vaccines.

  3. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    PubMed Central

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  4. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    NASA Astrophysics Data System (ADS)

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  5. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes.

    PubMed

    Chu, Wen-Ting; Wang, Jin

    2016-06-14

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the "hot-spot" within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  6. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    SciTech Connect

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J. . E-mail: jianlu@shsmu.edu.cn

    2007-04-27

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron.

  7. High-throughput sequencing reveals differing immune responses in the intestinal mucosa of two inbred lines afflicted with necrotic enteritis.

    PubMed

    Truong, Anh Duc; Hong, Yeong Ho; Lillehoj, Hyun S

    2015-08-15

    We investigated the necrotic enteritis (NE)-induced transcripts of immune-related genes in the intestinal mucosa of two highly inbred White Leghorn chicken lines, line 6.3 and line 7.2, which share the same MHC haplotype and show different levels of NE susceptibility using high-throughput RNA sequencing (RNA-Seq) technology. NE was induced by the previously described co-infection model using Eimeria maxima and Clostridium perfringens. The RNA-Seq generated over 38 million sequence reads for Marek's disease (MD)-resistant line 6.3 and over 40 million reads for the MD-susceptible line 7.2. Alignment of these sequences with the Gallus gallus genome database revealed the expression of over 29,900 gene transcripts induced by NE in these two lines, among which 7,841 genes were significantly upregulated and 2,919 genes were downregulated in line 6.3 chickens and 6,043 genes were significantly upregulated and 2,764 genes were downregulated in NE-induced line 7.2 compared with their uninfected controls. Analysis of 560 differentially expressed genes (DEGs) using the gene ontology database revealed annotations for 246 biological processes, 215 molecular functions, and 81 cellular components. Among the 53 cytokines and 96 cytokine receptors, 15 cytokines and 29 cytokine receptors were highly expressed in line 6.3, whereas the expression of 15 cytokines and 15 cytokine receptors was higher in line 7.2 than in line 6.3 (fold change ≥ 2, p<0.01). In a hierarchical cluster analysis of novel mRNAs, the novel mRNA transcriptome showed higher expression in line 6.3 than in line 7.2, which is consistent with the expression profile of immune-related target genes. In qRT-PCR and RNA-Seq analysis, all the genes examined showed similar responses to NE (correlation coefficient R=0.85-0.89, p<0.01) in both lines 6.3 and 7.2. This study is the first report describing NE-induced DEGs and novel transcriptomes using RNA-seq data from two inbred chicken lines showing different levels of NE

  8. Venus trap in the mouse embryo reveals distinct molecular dynamics underlying specification of first embryonic lineages.

    PubMed

    Dietrich, Jens-Erik; Panavaite, Laura; Gunther, Stefan; Wennekamp, Sebastian; Groner, Anna C; Pigge, Anton; Salvenmoser, Stefanie; Trono, Didier; Hufnagel, Lars; Hiiragi, Takashi

    2015-08-01

    Mammalian development begins with the segregation of embryonic and extra-embryonic lineages in the blastocyst. Recent studies revealed cell-to-cell gene expression heterogeneity and dynamic cell rearrangements during mouse blastocyst formation. Thus, mechanistic understanding of lineage specification requires quantitative description of gene expression dynamics at a single-cell resolution in living embryos. However, only a few fluorescent gene expression reporter mice are available and quantitative live image analysis is limited so far. Here, we carried out a fluorescence gene-trap screen and established reporter mice expressing Venus specifically in the first lineages. Lineage tracking, quantitative gene expression and cell position analyses allowed us to build a comprehensive lineage map of mouse pre-implantation development. Our systematic analysis revealed that, contrary to the available models, the timing and mechanism of lineage specification may be distinct between the trophectoderm and the inner cell mass. While expression of our trophectoderm-specific lineage marker is upregulated in outside cells upon asymmetric divisions at 8- and 16-cell stages, the inside-specific upregulation of the inner-cell-mass marker only becomes evident at the 64-cell stage. This study thus provides a framework toward systems-level understanding of embryogenesis marked by high dynamicity and stochastic variability.

  9. Direct lineage reprogramming reveals disease-specific phonotypes of motor neurons from human ALS patients

    PubMed Central

    Liu, Meng-Lu; Zang, Tong; Zhang, Chun-Li

    2015-01-01

    SUMMARY Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS-patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS-hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification. PMID:26725112

  10. Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients.

    PubMed

    Liu, Meng-Lu; Zang, Tong; Zhang, Chun-Li

    2016-01-05

    Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.

  11. Genome-wide association study reveals sex-specific selection signals against autosomal nucleotide variants.

    PubMed

    Ryu, Dongchan; Ryu, Jihye; Lee, Chaeyoung

    2016-05-01

    A genome-wide association study (GWAS) was conducted to examine genetic associations of common autosomal nucleotide variants with sex in a Korean population with 4183 males and 4659 females. Nine genetic association signals were identified in four intragenic and five intergenic regions (P<5 × 10(-8)). Further analysis with an independent data set confirmed two intragenic association signals in the genes encoding protein phosphatase 1, regulatory subunit 12B (PPP1R12B, intron 12, rs1819043) and dynein, axonemal, heavy chain 11 (DNAH11, intron 61, rs10255013), which are directly involved in the reproductive system. This study revealed autosomal genetic variants associated with sex ratio by GWAS for the first time. This implies that genetic variants in proximity to the association signals may influence sex-specific selection and contribute to sex ratio variation. Further studies are required to reveal the mechanisms underlying sex-specific selection.

  12. SNP array profiling of mouse cell lines identifies their strains of origin and reveals cross-contamination and widespread aneuploidy.

    PubMed

    Didion, John P; Buus, Ryan J; Naghashfar, Zohreh; Threadgill, David W; Morse, Herbert C; de Villena, Fernando Pardo-Manuel

    2014-10-03

    The crisis of Misidentified and contaminated cell lines have plagued the biological research community for decades. Some repositories and journals have heeded calls for mandatory authentication of human cell lines, yet misidentification of mouse cell lines has received little publicity despite their importance in sponsored research. Short tandem repeat (STR) profiling is the standard authentication method, but it may fail to distinguish cell lines derived from the same inbred strain of mice. Additionally, STR profiling does not reveal karyotypic changes that occur in some high-passage lines and may have functional consequences. Single nucleotide polymorphism (SNP) profiling has been suggested as a more accurate and versatile alternative to STR profiling; however, a high-throughput method for SNP-based authentication of mouse cell lines has not been described. We have developed computational methods (Cell Line Authentication by SNP Profiling, CLASP) for cell line authentication and copy number analysis based on a cost-efficient SNP array, and we provide a reference database of commonly used mouse strains and cell lines. We show that CLASP readily discriminates among cell lines of diverse taxonomic origins, including multiple cell lines derived from a single inbred strain, intercross or wild caught mouse. CLASP is also capable of detecting contaminants present at concentrations as low as 5%. Of the 99 cell lines we tested, 15 exhibited substantial divergence from the reported genetic background. In all cases, we were able to distinguish whether the authentication failure was due to misidentification (one cell line, Ba/F3), the presence of multiple strain backgrounds (five cell lines), contamination by other cells and/or the presence of aneuploid chromosomes (nine cell lines). Misidentification and contamination of mouse cell lines is potentially as widespread as it is in human cell culture. This may have substantial implications for studies that are dependent on the

  13. Molecular Integrative Clustering of Asian Gastric Cell Lines Revealed Two Distinct Chemosensitivity Clusters

    PubMed Central

    Choong, Meng Ling; Tan, Shan Ho; Tan, Tuan Zea; Manesh, Sravanthy; Ngo, Anna; Yong, Jacklyn W. Y.; Yang, Henry He; Lee, May Ann

    2014-01-01

    Cell lines recapitulate cancer heterogeneity without the presence of interfering tissue found in primary tumor. Their heterogeneous characteristics are reflected in their multiple genetic abnormalities and variable responsiveness to drug treatments. In order to understand the heterogeneity observed in Asian gastric cancers, we have performed array comparative genomic hybridization (aCGH) on 18 Asian gastric cell lines. Hierarchical clustering and single-sample Gene Set Enrichment Analysis were performed on the aCGH data together with public gene expression data of the same cell lines obtained from the Cancer Cell Line Encyclopedia. We found a large amount of genetic aberrations, with some cell lines having 13 fold more aberrations than others. Frequently mutated genes and cellular pathways are identified in these Asian gastric cell lines. The combined analyses of aCGH and expression data demonstrate correlation of gene copy number variations and expression profiles in human gastric cancer cells. The gastric cell lines can be grouped into 2 integrative clusters (ICs). Gastric cells in IC1 are enriched with gene associated with mitochondrial activities and oxidative phosphorylation while cells in IC2 are enriched with genes associated with cell signaling and transcription regulations. The two clusters of cell lines were shown to have distinct responsiveness towards several chemotherapeutics agents such as PI3 K and proteosome inhibitors. Our molecular integrative clustering provides insight into critical genes and pathways that may be responsible for the differences in survival in response to chemotherapy. PMID:25343454

  14. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines

    PubMed Central

    Campbell-Sills, Hugo; El Khoury, Mariette; Favier, Marion; Romano, Andrea; Biasioli, Franco; Spano, Giuseppe; Sherman, David J.; Bouchez, Olivier; Coton, Emmanuel; Coton, Monika; Okada, Sanae; Tanaka, Naoto; Dols-Lafargue, Marguerite; Lucas, Patrick M.

    2015-01-01

    Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne. PMID:25977455

  15. Identification of Hyaloperonospora arabidopsidis Transcript Sequences Expressed during Infection Reveals Isolate-Specific Effectors

    PubMed Central

    Cabral, Adriana; Stassen, Joost H. M.; Seidl, Michael F.; Bautor, Jaqueline; Parker, Jane E.; Van den Ackerveken, Guido

    2011-01-01

    Biotrophic plant pathogens secrete effector proteins that are important for infection of the host. The aim of this study was to identify effectors of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) that are expressed during infection of its natural host Arabidopsis thaliana. Infection-related transcripts were identified from Expressed Sequence Tags (ESTs) derived from leaves of the susceptible Arabidopsis Ws eds1-1 mutant inoculated with the highly virulent Hpa isolate Waco9. Assembly of 6364 ESTs yielded 3729 unigenes, of which 2164 were Hpa-derived. From the translated Hpa unigenes, 198 predicted secreted proteins were identified. Of these, 75 were found to be Hpa-specific and six isolate Waco9-specific. Among 42 putative effectors identified there were three Elicitin-like proteins, 16 Cysteine-rich proteins and 18 host-translocated RXLR effectors. Sequencing of alleles in different Hpa isolates revealed that five RXLR genes show signatures of diversifying selection. Thus, EST analysis of Hpa-infected Arabidopsis is proving to be a powerful method for identifying pathogen effector candidates expressed during infection. Delivery of the Waco9-specific protein RXLR29 in planta revealed that this effector can suppress PAMP-triggered immunity and enhance disease susceptibility. We propose that differences in host colonization can be conditioned by isolate-specific effectors. PMID:21573066

  16. DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

    PubMed

    Korch, Christopher; Spillman, Monique A; Jackson, Twila A; Jacobsen, Britta M; Murphy, Susan K; Lessey, Bruce A; Jordan, V Craig; Bradford, Andrew P

    2012-10-01

    Cell lines derived from human ovarian and endometrial cancers, and their immortalized non-malignant counterparts, are critical tools to investigate and characterize molecular mechanisms underlying gynecologic tumorigenesis, and facilitate development of novel therapeutics. To determine the extent of misidentification, contamination and redundancy, with evident consequences for the validity of research based upon these models, we undertook a systematic analysis and cataloging of endometrial and ovarian cell lines. Profiling of cell lines by analysis of DNA microsatellite short tandem repeats (STR), p53 nucleotide polymorphisms and microsatellite instability was performed. Fifty-one ovarian cancer lines were profiled with ten found to be redundant and five (A2008, OV2008, C13, SK-OV-4 and SK-OV-6) identified as cervical cancer cells. Ten endometrial cell lines were analyzed, with RL-92, HEC-1A, HEC-1B, HEC-50, KLE, and AN3CA all exhibiting unique, uncontaminated STR profiles. Multiple variants of Ishikawa and ECC-1 endometrial cancer cell lines were genotyped and analyzed by sequencing of mutations in the p53 gene. The profile of ECC-1 cells did not match the EnCa-101 tumor, from which it was reportedly derived, and all ECC-1 isolates were genotyped as Ishikawa cells, MCF-7 breast cancer cells, or a combination thereof. Two normal, immortalized endometrial epithelial cell lines, HES cells and the hTERT-EEC line, were identified as HeLa cervical carcinoma and MCF-7 breast cancer cells, respectively. Results demonstrate significant misidentification, duplication, and loss of integrity of endometrial and ovarian cancer cell lines. Authentication by STR DNA profiling is a simple and economical method to verify and validate studies undertaken with these models. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex

    PubMed Central

    Gray, Lucas T; Yao, Zizhen; Nguyen, Thuc Nghi; Kim, Tae Kyung; Zeng, Hongkui; Tasic, Bosiljka

    2017-01-01

    Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex. DOI: http://dx.doi.org/10.7554/eLife.21883.001 PMID:28112643

  18. Transgenic Zebrafish Reveal Tissue-Specific Differences in Estrogen Signaling in Response to Environmental Water Samples

    PubMed Central

    Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to

  19. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer

    PubMed Central

    Le Dévédec, Sylvia; Waldman, Yedael Y; Stein, Gideon Y; van de Water, Bob

    2014-01-01

    Utilizing molecular data to derive functional physiological models tailored for specific cancer cells can facilitate the use of individually tailored therapies. To this end we present an approach termed PRIME for generating cell-specific genome-scale metabolic models (GSMMs) based on molecular and phenotypic data. We build >280 models of normal and cancer cell-lines that successfully predict metabolic phenotypes in an individual manner. We utilize this set of cell-specific models to predict drug targets that selectively inhibit cancerous but not normal cell proliferation. The top predicted target, MLYCD, is experimentally validated and the metabolic effects of MLYCD depletion investigated. Furthermore, we tested cell-specific predicted responses to the inhibition of metabolic enzymes, and successfully inferred the prognosis of cancer patients based on their PRIME-derived individual GSMMs. These results lay a computational basis and a counterpart experimental proof of concept for future personalized metabolic modeling applications, enhancing the search for novel selective anticancer therapies. DOI: http://dx.doi.org/10.7554/eLife.03641.001 PMID:25415239

  20. Discovery of novel isoforms of huntingtin reveals a new hominid-specific exon.

    PubMed

    Ruzo, Albert; Ismailoglu, Ismail; Popowski, Melissa; Haremaki, Tomomi; Croft, Gist F; Deglincerti, Alessia; Brivanlou, Ali H

    2015-01-01

    Huntington's disease (HD) is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT). HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC) lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease.

  1. The Nuclear X-Ray Emission-line Structure in NGC 2992 Revealed by Chandra-HETGS

    NASA Astrophysics Data System (ADS)

    Murphy, K. D.; Nowak, M. A.; Marshall, H. L.

    2017-05-01

    We present the narrow emission-line structure revealed by a 135 ks Chandra observation of Seyfert galaxy NGC 2992, using the High Energy Transmission Grating Spectrometer. The source was observed in an historically low-flux state. Using a Bayesian Block search technique, we detected neutral Si Kα and S Kα fluorescence and two additional lines that are consistent with redshifted, ionized Si emission. The latter two features are indicative of a photoionized outflow with a velocity of ˜ 2500 {km} {{{s}}}-1. We also observed prominent, unresolved line emission at the rest energy of Fe Kα, with a 90% confidence FWHM velocity width of < 2000 {km} {{{s}}}-1 (< 2800 {km} {{{s}}}-1) and equivalent width of 406-1148 eV (288-858 eV) when broad Fe Kα line emission, as detected by Suzaku, was (was not) included in the model.

  2. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen.

    PubMed

    Eckhard, Ulrich; Huesgen, Pitter F; Brandstetter, Hans; Overall, Christopher M

    2014-04-04

    Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified >100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1', proline at P2 and P2', and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage. We demonstrate the striking sequence specificity of a family of clostridial collagenases using proteome derived peptide libraries and PICS, Proteomic Identification of protease Cleavage Sites. In combination with the previously published crystal structures of these proteases, our results represent an important piece of the puzzle in understanding the complex mechanism underlying collagen hydrolysis, and pave the way for the rational design of specific test substrates and

  3. Different segments of the cerebral vasculature reveal specific endothelial specifications, while tight junction proteins appear equally distributed.

    PubMed

    Hanske, Sophie; Dyrna, Felix; Bechmann, Ingo; Krueger, Martin

    2017-04-01

    The identification of the "paucity of transportation vesicles" and "belt-like" tight junctions (TJs) of endothelial cells as the "morphological correlate of a blood-brain barrier" (BBB) by Reese and Karnovsky (J Cell Biol 34:207-217, 1967) has become textbook knowledge, and countless studies have helped to further define the elements, functions, and dynamics of the BBB. Most work, however, has focused on parenchymal capillaries or less clearly defined "microvessels", while a systematic study on similarities and differences between BBB architecture along the vascular tree within the brain and the meninges has been lacking. Since astrocytes induce endothelial cells to display BBB-typical characteristics by sonic hedgehog and Wnt/β-catenin signaling, we hypothesized that BBB-typical features should be most pronounced in parenchymal capillaries, where endothelium and astrocytes are separated by a basement membrane only. In contrast, this intimate contact is absent in leptomeningeal vessels, thereby potentially affecting BBB architecture. However, here, we show that claudin-3, claudin-5, zonula occludens-1, and occludin as typical constitutes of BBB TJs are comparably distributed in all segments of the parenchymal and the meningeal vascular tree of C57Bl6 mice. While electron microscopy revealed equally occluded interendothelial clefts, arterial vessels of the brain parenchyma but not within the meninges exhibited significantly longer TJ overlaps compared to capillaries. The highest density of endothelial vesicles was found in arterial vessels. Thus, endothelial expression of BBB-typical TJ proteins is not reflected by the distance to surrounding astrocytes, but electron microscopy reveals significant differences of endothelial specification along different segments of the CNS vasculature.

  4. Fingerprinting the Asterid Species Using Subtracted Diversity Array Reveals Novel Species-Specific Sequences

    PubMed Central

    Mantri, Nitin; Olarte, Alexandra; Li, Chun Guang; Xue, Charlie; Pang, Edwin C. K.

    2012-01-01

    Background Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade. Methodology/Principal Findings Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5%) subtraction efficiency. Twenty-five Asterid species (mostly medicinal) representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants. Conclusions/Significance Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting) plant species. In addition, this method allowed detection of several new loci that can be explored to solve

  5. Transcriptome Analysis in Tardigrade Species Reveals Specific Molecular Pathways for Stress Adaptations

    PubMed Central

    Förster, Frank; Beisser, Daniela; Grohme, Markus A.; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C.; Shkumatov, Alexander V.; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O.; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant. PMID:22563243

  6. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea.

    PubMed

    Lee, On On; Wang, Yong; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2011-04-01

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.

  7. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations.

    PubMed

    Förster, Frank; Beisser, Daniela; Grohme, Markus A; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C; Shkumatov, Alexander V; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant.

  8. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea

    PubMed Central

    Lee, On On; Wang, Yong; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2011-01-01

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored. PMID:21085196

  9. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  10. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines

    PubMed Central

    Zeng, Deying; Luo, Jiangtao; Li, Zenglin; Chen, Gang; Zhang, Lianquan; Ning, Shunzong; Yuan, Zhongwei; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2016-01-01

    Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the ‘Chinese Spring’ common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence ‘Chinese Spring’ genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the ‘Chinese Spring’ bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses. PMID:27611704

  11. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  12. Comprehensive cysteine-scanning mutagenesis reveals Claudin-2 pore-lining residues with different intrapore locations.

    PubMed

    Li, Jiahua; Zhuo, Min; Pei, Lei; Rajagopal, Madhumitha; Yu, Alan S L

    2014-03-07

    The first extracellular loop (ECL1) of claudins forms paracellular pores in the tight junction that determine ion permselectivity. We aimed to map the pore-lining residues of claudin-2 by comprehensive cysteine-scanning mutagenesis of ECL1. We screened 45 cysteine mutations within the ECL1 by expression in polyclonal Madin-Darby canine kidney II Tet-Off cells and found nine mutants that displayed a significant decrease of conductance after treatment with the thiol-reactive reagent 2-(trimethylammonium)ethyl methanethiosulfonate, indicating the location of candidate pore-lining residues. Next, we stably expressed these candidates in monoclonal Madin-Darby canine kidney I Tet-Off cells and exposed them to thiol-reactive reagents. The maximum degree of inhibition of conductance, size selectivity of degree of inhibition, and size dependence of the kinetics of reaction were used to deduce the location of residues within the pore. Our data support the following sequence of pore-lining residues located from the narrowest to the widest part of the pore: Ser(68), Ser(47), Thr(62)/Ile(66), Thr(56), Thr(32)/Gly(45), and Met(52). The paracellular pore appears to primarily be lined by polar side chains, as expected for a predominantly aqueous environment. Furthermore, our results strongly suggest the existence of a continuous sequence of residues in the ECL1 centered around Asp(65)-Ser(68) that form a major part of the lining of the pore.

  13. Comprehensive Cysteine-scanning Mutagenesis Reveals Claudin-2 Pore-lining Residues with Different Intrapore Locations*

    PubMed Central

    Li, Jiahua; Zhuo, Min; Pei, Lei; Rajagopal, Madhumitha; Yu, Alan S. L.

    2014-01-01

    The first extracellular loop (ECL1) of claudins forms paracellular pores in the tight junction that determine ion permselectivity. We aimed to map the pore-lining residues of claudin-2 by comprehensive cysteine-scanning mutagenesis of ECL1. We screened 45 cysteine mutations within the ECL1 by expression in polyclonal Madin-Darby canine kidney II Tet-Off cells and found nine mutants that displayed a significant decrease of conductance after treatment with the thiol-reactive reagent 2-(trimethylammonium)ethyl methanethiosulfonate, indicating the location of candidate pore-lining residues. Next, we stably expressed these candidates in monoclonal Madin-Darby canine kidney I Tet-Off cells and exposed them to thiol-reactive reagents. The maximum degree of inhibition of conductance, size selectivity of degree of inhibition, and size dependence of the kinetics of reaction were used to deduce the location of residues within the pore. Our data support the following sequence of pore-lining residues located from the narrowest to the widest part of the pore: Ser68, Ser47, Thr62/Ile66, Thr56, Thr32/Gly45, and Met52. The paracellular pore appears to primarily be lined by polar side chains, as expected for a predominantly aqueous environment. Furthermore, our results strongly suggest the existence of a continuous sequence of residues in the ECL1 centered around Asp65–Ser68 that form a major part of the lining of the pore. PMID:24436330

  14. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines.

    PubMed

    Campbell-Sills, Hugo; El Khoury, Mariette; Favier, Marion; Romano, Andrea; Biasioli, Franco; Spano, Giuseppe; Sherman, David J; Bouchez, Olivier; Coton, Emmanuel; Coton, Monika; Okada, Sanae; Tanaka, Naoto; Dols-Lafargue, Marguerite; Lucas, Patrick M

    2015-05-14

    Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Conservative site-specific and single-copy transgenesis in human LINE-1 elements

    PubMed Central

    Vijaya Chandra, Shree Harsha; Makhija, Harshyaa; Peter, Sabrina; Myint Wai, Cho Mar; Li, Jinming; Zhu, Jindong; Ren, Zhonglu; D'Alcontres, Martina Stagno; Siau, Jia Wei; Chee, Sharon; Ghadessy, Farid John; Dröge, Peter

    2016-01-01

    Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, termed attH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes. PMID:26673710

  16. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D)

    SciTech Connect

    Judge, S.M.; Chatterton, R.T. Jr.

    1983-09-01

    The purpose of this study was to examine the lactogenic response of human mammary cancer cell lines to hormones in vitro. Progesterone was found to stimulate the incorporation of 14C from (14C)acetate into triglycerides (TG) and to promote accumulation of TG with a fatty acid composition similar to that of human milk fat in T-47D cells. Lipid droplets were observed in larger numbers without concomitant accumulation of casein granules in cells incubated with progesterone, but secretion of lipid into the medium did not occur. An effect of progesterone on TG accumulation was detectable after 12 hr and was maximal at 72 hr. Increasing doses of progesterone (10(-9) to 10(-5) M) caused a progressive increase in TG accumulation. The presence of cortisol and/or prolactin did not alter TG formation nor the dose response of the cells to progesterone. The growth rate of T-47D cells was not altered by the presence of progesterone in the medium. Neither of the human mammary cancer cell lines, MCF-7 and HBL-100, nor the human fibroblast cell lines, 28 and 857, responded to progesterone. The data indicate that, while the normally lactogenic hormones do not stimulate milk product biosynthesis in the cell lines tested, progesterone specifically stimulated synthesis and accumulation of TG in the T-47D cells.

  17. Conservative site-specific and single-copy transgenesis in human LINE-1 elements.

    PubMed

    Vijaya Chandra, Shree Harsha; Makhija, Harshyaa; Peter, Sabrina; Myint Wai, Cho Mar; Li, Jinming; Zhu, Jindong; Ren, Zhonglu; D'Alcontres, Martina Stagno; Siau, Jia Wei; Chee, Sharon; Ghadessy, Farid John; Dröge, Peter

    2016-04-07

    Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, term edattH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes.

  18. Gene regulatory network analysis reveals differences in site-specific cell fate determination in mammalian brain

    PubMed Central

    Ertaylan, Gökhan; Okawa, Satoshi; Schwamborn, Jens C.; del Sol, Antonio

    2014-01-01

    Neurogenesis—the generation of new neurons—is an ongoing process that persists in the adult mammalian brain of several species, including humans. In this work we analyze two discrete brain regions: the subventricular zone (SVZ) lining the walls of the lateral ventricles; and the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus in mice and shed light on the SVZ and SGZ specific neurogenesis. We propose a computational model that relies on the construction and analysis of region specific gene regulatory networks (GRNs) from the publicly available data on these two regions. Using this model a number of putative factors involved in neuronal stem cell (NSC) identity and maintenance were identified. We also demonstrate potential gender and niche-derived differences based on cell surface and nuclear receptors via Ar, Hif1a, and Nr3c1. We have also conducted cell fate determinant analysis for SVZ NSC populations to Olfactory Bulb interneurons and SGZ NSC populations to the granule cells of the Granular Cell Layer. We report 31 candidate cell fate determinant gene pairs, ready to be validated. We focus on Ar—Pax6 in SVZ and Sox2—Ncor1 in SGZ. Both pairs are expressed and localized in the suggested anatomical structures as shown by in situ hybridization and found to physically interact. Finally, we conclude that there are fundamental differences between SGZ and SVZ neurogenesis. We argue that these regulatory mechanisms are linked to the observed differential neurogenic potential of these regions. The presence of nuclear and cell surface receptors in the region specific regulatory circuits indicate the significance of niche derived extracellular factors, hormones and region specific factors such as the oxygen sensitivity, dictating SGZ and SVZ specific neurogenesis. PMID:25565969

  19. Tissue-Specific Cell Cycle Indicator Reveals Unexpected Findings for Cardiac Myocyte Proliferation

    PubMed Central

    Hirai, Maretoshi; Chen, Ju; Evans, Sylvia M.

    2017-01-01

    Rationale Discerning cardiac myocyte cell cycle behavior is challenging owing to commingled cell types with higher proliferative activity. Objective To investigate cardiac myocyte cell cycle activity in development and the early postnatal period. Methods and Results To facilitate studies of cell type–specific proliferation, we have generated tissue-specific cell cycle indicator BAC transgenic mouse lines. Experiments using embryonic fibroblasts from CyclinA2-LacZ-floxed-EGFP, or CyclinA2-EGFP mice, demonstrated that CyclinA2-βgal and CyclinA2-EGFP were expressed from mid-G1 to mid-M phase. Using Troponin T-Cre;CyclinA2-LacZ-EGFP mice, we examined cardiac myocyte cell cycle activity during embryogenesis and in the early postnatal period. Our data demonstrated that right ventricular cardiac myocytes exhibited reduced cell cycle activity relative to left ventricular cardiac myocytes in the immediate perinatal period. Additionally, in contrast to a recent report, we could find no evidence to support a burst of cardiac myocyte cell cycle activity at postnatal day 15. Conclusions Our data highlight advantages of a cardiac myocyte–specific cell cycle reporter for studies of cardiac myocyte cell cycle regulation. PMID:26472817

  20. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin.

    PubMed

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G

    2009-02-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland.

  1. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; hide

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  2. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; Christensen, F. E.; Craig, W. W.; Forster, K.; Giommi, P.; Hailey, C. J.; Hornstrup, A.; Kitaguchi, T.; Koglin, J. E.; Madsen, K. K.; Zhang, W. W.

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  3. Optical scatterometry system for detecting specific line edge roughness of resist gratings subjected to detector noises

    NASA Astrophysics Data System (ADS)

    Lee, Yen-Min; Li, Jia-Han; Wang, Fu-Min; Cheng, Hsin-Hung; Shen, Yu-Tian; Tsai, Kuen-Yu; Shieh, Jason J.; Chen, Alek C.

    2014-06-01

    The Fourier scatterometry model was used to measure the ZEP 520A electron beam resist lines with specific line edge roughness (LER). By obtaining the pupils via an objective lens, the angle-resolved diffraction spectrum was collected efficiently without additional mechanical scanning. The concavity of the pupil was considered as the weight function in specimen recognition. A series of white noises was examined in the model, and the tolerant white noise levels for different system numerical apertures (NAs) were reported. Our numerical results show that the scatterometry model of a higher NA can identify a target with a higher white noise level. Moreover, the fabricated ZEP 520A electron beam resist gratings with LER were measured by using our model, and the fitting results were matched with scanning electron microscope measurements.

  4. Identification of Sex-Specific Markers Reveals Male Heterogametic Sex Determination in Pseudobagrus ussuriensis.

    PubMed

    Pan, Zheng-Jun; Li, Xi-Yin; Zhou, Feng-Jian; Qiang, Xiao-Gang; Gui, Jian-Fang

    2015-08-01

    Comprehending sex determination mechanism is a first step for developing sex control breeding biotechnologies in fish. Pseudobagrus ussuriensis, one of bagrid catfishes in Bagridae, had been observed to have about threefold size dimorphism between males and females, but its sex determination mechanism had been unknown. In this study, we firstly used the amplified fragment length polymorphism (AFLP)-based screening approach to isolate a male-specific DNA fragment and thereby identified a 10,569 bp of male-specific sequence and a 10,365 bp of female-related sequence by genome walking in the bagrid catfish, in which a substantial genetic differentiation with 96.35 % nucleotide identity was revealed between them. Subsequently, a high differentiating region of 650 bp with only 70.26 % nucleotide identity was found from the corresponding two sequences, and three primer pairs of male-specific marker, male and female-shared marker with different length products in male and female genomes, and female-related marker were designed. Significantly, when these markers were used to identify genetic sex of the bagrid catfish, only male individuals was detected to amplify the male-specific marker fragment, and female-related marker was discovered to produce dosage association in females and in males. Our current data provide significant genetic evidence that P. ussuriensis has heterogametic XY sex chromosomes in males and homogametic XX sex chromosomes in females. Therefore, sex determination mechanism of P. ussuriensis is male heterogametic XX/XY system.

  5. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    PubMed

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases.

    PubMed

    Koryakina, Irina; McArthur, John; Randall, Shan; Draelos, Matthew M; Musiol, Ewa M; Muddiman, David C; Weber, Tilmann; Williams, Gavin J

    2013-01-18

    Polyketide synthases construct polyketides with diverse structures and biological activities via the condensation of extender units and acyl thioesters. Although a growing body of evidence suggests that polyketide synthases might be tolerant to non-natural extender units, in vitro and in vivo studies aimed at probing and utilizing polyketide synthase specificity are severely limited to only a small number of extender units, owing to the lack of synthetic routes to a broad variety of acyl-CoA extender units. Here, we report the construction of promiscuous malonyl-CoA synthetase variants that can be used to synthesize a broad range of malonyl-CoA extender units substituted at the C2-position, several of which contain handles for chemoselective ligation and are not found in natural biosynthetic systems. We highlighted utility of these enzymes by probing the acyl-CoA specificity of several trans-acyltransferases, leading to the unprecedented discovery of poly specificity toward non-natural extender units, several of which are not found in naturally occurring biosynthetic pathways. These results reveal that polyketide biosynthetic machinery might be more tolerant to non-natural substrates than previously established, and that mutant synthetases are valuable tools for probing the specificity of biosynthetic machinery. Our data suggest new synthetic biology strategies for harnessing this promiscuity and enabling the regioselective modification of polyketides.

  7. An exploratory analysis of the impact of specific interventions: Some clients reveal more than others.

    PubMed

    Boswell, James F; Bugatti, Matteo

    2016-11-01

    Recent work has highlighted that process-outcome relationships are likely to vary depending on the client, yet there is little direct evidence regarding specific intervention effects in individual clients. This study attempted to address the hypothesis that some clients reveal more than others regarding the impact of specific interventions. Intensive case study analyses were applied to 2 clients with principal major depressive disorder and comorbid anxiety disorders receiving transdiagnostic psychotherapy. Clients completed a battery of symptom and psychological assessments of mindfulness, cognitive reappraisal use, and emotion avoidance on many occasions throughout treatment. Time series analyses were applied to symptom and change construct data. Results included: (a) significant decreases in depression, anxiety, and emotion avoidance from baseline to posttreatment were observed, as well as significant increases in mindfulness and reappraisal; and (b) in one case, intervention strategies exerted little influence on changes in key variables; in the other, emotion exposure strategies had the strongest influence on increases in mindfulness and present-focused awareness strategies had the strongest influence on reductions in emotion avoidance. Even when different clients appear to similarly benefit from the same treatment, specific intervention effects on putative change factors may be more prevalent for some clients and less prevalent for others. Regular assessment is needed to determine if a client requires an alternative set of specific intervention strategies. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling

    NASA Astrophysics Data System (ADS)

    Sohmen, Daniel; Chiba, Shinobu; Shimokawa-Chiba, Naomi; Innis, C. Axel; Berninghausen, Otto; Beckmann, Roland; Ito, Koreaki; Wilson, Daniel N.

    2015-04-01

    Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5-3.9 Å, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner.

  9. Comparative genome sequencing reveals chemotype-specific gene clusters in the toxigenic black mold Stachybotrys.

    PubMed

    Semeiks, Jeremy; Borek, Dominika; Otwinowski, Zbyszek; Grishin, Nick V

    2014-07-12

    The fungal genus Stachybotrys produces several diverse toxins that affect human health. Its strains comprise two mutually-exclusive toxin chemotypes, one producing satratoxins, which are a subclass of trichothecenes, and the other producing the less-toxic atranones. To determine the genetic basis for chemotype-specific differences in toxin production, the genomes of four Stachybotrys strains were sequenced and assembled de novo. Two of these strains produce atranones and two produce satratoxins. Comparative analysis of these four 35-Mbp genomes revealed several chemotype-specific gene clusters that are predicted to make secondary metabolites. The largest, which was named the core atranone cluster, encodes 14 proteins that may suffice to produce all observed atranone compounds via reactions that include an unusual Baeyer-Villiger oxidation. Satratoxins are suggested to be made by products of multiple gene clusters that encode 21 proteins in all, including polyketide synthases, acetyltransferases, and other enzymes expected to modify the trichothecene skeleton. One such satratoxin chemotype-specific cluster is adjacent to the core trichothecene cluster, which has diverged from those of other trichothecene producers to contain a unique polyketide synthase. The results suggest that chemotype-specific gene clusters are likely the genetic basis for the mutually-exclusive toxin chemotypes of Stachybotrys. A unified biochemical model for Stachybotrys toxin production is presented. Overall, the four genomes described here will be useful for ongoing studies of this mold's diverse toxicity mechanisms.

  10. A ghostly damped Ly α system revealed by metal absorption lines

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Petitjean, P.; Zou, S.; Noterdaeme, P.; Ledoux, C.; Krühler, T.; Srianand, R.

    2017-03-01

    We report the discovery of the first 'ghostly' damped Ly α absorption system (DLA), which is identified by the presence of absorption from strong low-ion species at zabs = 1.704 65 along the line of sight to the quasar SDSS J113341.29-005740.0 with zem = 1.704 41. No Ly α absorption trough is seen associated with these absorptions because the DLA trough is filled with the leaked emission from the broad emission-line region of the quasar. By modelling the quasar spectrum and analysing the metal lines, we derive log N(H I)(cm-2) ∼21.0 ± 0.3. The DLA cloud is small (≤0.32 pc), thus not covering entirely the broad-line region and is located at ≥39 pc from the central active galactic nucleus (AGN). Although the DLA is slightly redshifted relative to the quasar, its metallicity ([S/H] = -0.41 ± 0.30) is intermediate between what is expected from infalling and outflowing gas. It could be possible that the DLA is part of some infalling material accreting on to the quasar host galaxy through filaments, and that its metallicity is raised by mixing with the enriched outflowing gas emanating from the central AGN. Current DLA surveys miss these 'ghostly' DLAs, and it would be important to quantify the statistics of this population by searching the Sloan Digital Sky Survey (SDSS) data base using metal absorption templates.

  11. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-05

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  12. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, Ciro; Middleton, Matthew J.; Fabian, Andrew C.

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 1039 ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (103-105 solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  13. Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold

    SciTech Connect

    Feng, Yingang; Song, Xiaxia; Lin, Jinzhong; Xuan, Jinsong; Cui, Qiu; Wang, Jinfeng

    2014-07-18

    Highlights: • The archaea-specific ribosomal protein L46a has no homology to known proteins. • Three dimensional structure and backbone dynamics of L46a were determined by NMR. • The structure of L46a represents a novel protein fold. • A potential rRNA-binding surface on L46a was identified. • The potential position of L46a on the ribosome was proposed. - Abstract: Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.

  14. Specific Gene Expression Responses to Parasite Genotypes Reveal Redundancy of Innate Immunity in Vertebrates

    PubMed Central

    Haase, David; Rieger, Jennifer K.; Witten, Anika; Stoll, Monika; Bornberg-Bauer, Erich; Kalbe, Martin; Reusch, Thorsten B. H.

    2014-01-01

    Vertebrate innate immunity is the first line of defense against an invading pathogen and has long been assumed to be largely unspecific with respect to parasite/pathogen species. However, recent phenotypic evidence suggests that immunogenetic variation, i.e. allelic variability in genes associated with the immune system, results in host-parasite genotype-by-genotype interactions and thus specific innate immune responses. Immunogenetic variation is common in all vertebrate taxa and this reflects an effective immunological function in complex environments. However, the underlying variability in host gene expression patterns as response of innate immunity to within-species genetic diversity of macroparasites in vertebrates is unknown. We hypothesized that intra-specific variation among parasite genotypes must be reflected in host gene expression patterns. Here we used high-throughput RNA-sequencing to examine the effect of parasite genotypes on gene expression patterns of a vertebrate host, the three-spined stickleback (Gasterosteus aculeatus). By infecting naïve fish with distinct trematode genotypes of the species Diplostomum pseudospathaceum we show that gene activity of innate immunity in three-spined sticklebacks depended on the identity of an infecting macroparasite genotype. In addition to a suite of genes indicative for a general response against the trematode we also find parasite-strain specific gene expression, in particular in the complement system genes, despite similar infection rates of single clone treatments. The observed discrepancy between infection rates and gene expression indicates the presence of alternative pathways which execute similar functions. This suggests that the innate immune system can induce redundant responses specific to parasite genotypes. PMID:25254967

  15. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth.

    PubMed

    Rauskolb, Stefanie; Zagrebelsky, Marta; Dreznjak, Anita; Deogracias, Rubén; Matsumoto, Tomoya; Wiese, Stefan; Erne, Beat; Sendtner, Michael; Schaeren-Wiemers, Nicole; Korte, Martin; Barde, Yves-Alain

    2010-02-03

    Although brain-derived neurotrophic factor (BDNF) is linked with an increasing number of conditions causing brain dysfunction, its role in the postnatal CNS has remained difficult to assess. This is because the bdnf-null mutation causes the death of the animals before BDNF levels have reached adult levels. In addition, the anterograde axonal transport of BDNF complicates the interpretation of area-specific gene deletion. The present study describes the generation of a new conditional mouse mutant essentially lacking BDNF throughout the CNS. It shows that BDNF is not essential for prolonged postnatal survival, but that the behavior of such mutant animals is markedly altered. It also reveals that BDNF is not a major survival factor for most CNS neurons and for myelination of their axons. However, it is required for the postnatal growth of the striatum, and single-cell analyses revealed a marked decreased in dendritic complexity and spine density. In contrast, BDNF is dispensable for the growth of the hippocampus and only minimal changes were observed in the dendrites of CA1 pyramidal neurons in mutant animals. Spine density remained unchanged, whereas the proportion of the mushroom-type spine was moderately decreased. In line with these in vivo observations, we found that BDNF markedly promotes the growth of cultured striatal neurons and of their dendrites, but not of those of hippocampal neurons, suggesting that the differential responsiveness to BDNF is part of a neuron-intrinsic program.

  16. Molecular characterization and chromosome-specific TRAP-marker development for Langdon durum D-genome disomic substitution lines.

    PubMed

    Li, J; Klindworth, D L; Shireen, F; Cai, X; Hu, J; Xu, S S

    2006-12-01

    The aneuploid stocks of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husnot) and common wheat (T. aestivum L.) have been developed mainly in 'Langdon' (LDN) and 'Chinese Spring' (CS) cultivars, respectively. The LDN-CS D-genome chromosome disomic substitution (LDN-DS) lines, where a pair of CS D-genome chromosomes substitute for a corresponding homoeologous A- or B-genome chromosome pair of LDN, have been widely used to determine the chromosomal locations of genes in tetraploid wheat. The LDN-DS lines were originally developed by crossing CS nulli-tetrasomics with LDN, followed by 6 backcrosses with LDN. They have subsequently been improved with 5 additional backcrosses with LDN. The objectives of this study were to characterize a set of the 14 most recent LDN-DS lines and to develop chromosome-specific markers, using the newly developed TRAP (target region amplification polymorphism)-marker technique. A total of 307 polymorphic DNA fragments were amplified from LDN and CS, and 302 of them were assigned to individual chromosomes. Most of the markers (95.5%) were present on a single chromosome as chromosome-specific markers, but 4.5% of the markers mapped to 2 or more chromosomes. The number of markers per chromosome varied, from a low of 10 (chromosomes 1A and 6D) to a high of 24 (chromosome 3A). There was an average of 16.6, 16.6, and 15.9 markers per chromosome assigned to the A-, B-, and D-genome chromosomes, respectively, suggesting that TRAP markers were detected at a nearly equal frequency on the 3 genomes. A comparison of the source of the expressed sequence tags (ESTs), used to derive the fixed primers, with the chromosomal location of markers revealed that 15.5% of the TRAP markers were located on the same chromosomes as the ESTs used to generate the fixed primers. A fixed primer designed from an EST mapped on a chromosome or a homoeologous group amplified at least 1 fragment specific to that chromosome or group, suggesting that the fixed primers

  17. Deciphering laminar-specific neural inputs with line-scanning fMRI

    PubMed Central

    Yu, Xin; Qian, Chunqi; Chen, Der-yow; Dodd, Stephen; Koretsky, Alan P.

    2014-01-01

    Using a line-scanning method during functional magnetic resonance imaging (fMRI) we obtain high temporal (50 ms) and spatial (50 μm) resolution information along the cortical thickness, and show that the laminar position of fMRI onset coincides with distinct neural inputs t in therat somatosensory and motor cortices. This laminar specific fMRI onset allowed the identification of the neural inputs underlying ipsilateral fMRI activation in the barrel cortex due to peripheral denervation-induced plasticity. PMID:24240320

  18. Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts.

    PubMed

    Ramachandra, Abhay B; Kahn, Andrew M; Marsden, Alison L

    2016-08-01

    Mechanical stimuli are key to understanding disease progression and clinically observed differences in failure rates between arterial and venous grafts following coronary artery bypass graft surgery. We quantify biologically relevant mechanical stimuli, not available from standard imaging, in patient-specific simulations incorporating non-invasive clinical data. We couple CFD with closed-loop circulatory physiology models to quantify biologically relevant indices, including wall shear, oscillatory shear, and wall strain. We account for vessel-specific material properties in simulating vessel wall deformation. Wall shear was significantly lower (p = 0.014*) and atheroprone area significantly higher (p = 0.040*) in venous compared to arterial grafts. Wall strain in venous grafts was significantly lower (p = 0.003*) than in arterial grafts while no significant difference was observed in oscillatory shear index. Simulations demonstrate significant differences in mechanical stimuli acting on venous vs. arterial grafts, in line with clinically observed graft failure rates, offering a promising avenue for stratifying patients at risk for graft failure.

  19. Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts

    PubMed Central

    Ramachandra, Abhay B.; Kahn, Andrew M.

    2017-01-01

    Mechanical stimuli are key to understanding disease progression and clinically observed differences in failure rates between arterial and venous grafts following coronary artery bypass graft surgery. We quantify biologically relevant mechanical stimuli, not available from standard imaging, in patient-specific simulations incorporating non-invasive clinical data. We couple CFD with closed-loop circulatory physiology models to quantify biologically relevant indices, including wall shear, oscillatory shear, and wall strain. We account for vessel-specific material properties in simulating vessel wall deformation. Wall shear was significantly lower (p = 0.014*) and atheroprone area significantly higher (p = 0.040*) in venous compared to arterial grafts. Wall strain in venous grafts was significantly lower (p = 0.003*) than in arterial grafts while no significant difference was observed in oscillatory shear index. Simulations demonstrate significant differences in mechanical stimuli acting on venous vs. arterial grafts, in line with clinically observed graft failure rates, offering a promising avenue for stratifying patients at risk for graft failure. PMID:27447176

  20. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    USGS Publications Warehouse

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  1. Universal deformation of soft substrates near contact line reveals solid surface stresses

    NASA Astrophysics Data System (ADS)

    Style, Robert; Wettlaufer, John; Wilen, Larry; Dufresne, Eric

    2012-11-01

    We study how sessile droplets behave on soft substrates. Using confocal microscopy, we investigate how droplet surface tension (and Laplace pressure) deforms the substrate. We show that the near-tip shape of the wetting ridge is entirely determined by the surface tensions of the three contacting phases. In particular we can use this observation to (i) directly measure solid-vapour and solid-liquid surface tensions, (ii) resolve how out-of-plane force balance is ensured at the contact line.

  2. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.

    PubMed

    Pattison, Richard J; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-08-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs.

  3. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation

    NASA Astrophysics Data System (ADS)

    Gentleman, Eileen; Swain, Robin J.; Evans, Nicholas D.; Boonrungsiman, Suwimon; Jell, Gavin; Ball, Michael D.; Shean, Tamaryn A. V.; Oyen, Michelle L.; Porter, Alexandra; Stevens, Molly M.

    2009-09-01

    An important aim of regenerative medicine is to restore tissue function with implantable, laboratory-grown constructs that contain tissue-specific cells that replicate the function of their counterparts in the healthy native tissue. It remains unclear, however, whether cells used in bone regeneration applications produce a material that mimics the structural and compositional complexity of native bone. By applying multivariate analysis techniques to micro-Raman spectra of mineralized nodules formed in vitro, we reveal cell-source-dependent differences in interactions between multiple bone-like mineral environments. Although osteoblasts and adult stem cells exhibited bone-specific biological activities and created a material with many of the hallmarks of native bone, the `bone nodules' formed from embryonic stem cells were an order of magnitude less stiff, and lacked the distinctive nanolevel architecture and complex biomolecular and mineral composition noted in the native tissue. Understanding the biological mechanisms of bone formation in vitro that contribute to cell-source-specific materials differences may facilitate the development of clinically successful engineered bone.

  4. Language-specific phoneme representations revealed by electric and magnetic brain responses

    NASA Astrophysics Data System (ADS)

    Näätänen, Risto; Lehtokoski, Anne; Lennes, Mietta; Cheour, Marie; Huotilainen, Minna; Iivonen, Antti; Vainio, Martti; Alku, Paavo; Ilmoniemi, Risto J.; Luuk, Aavo; Allik, Jüri; Sinkkonen, Janne; Alho, Kimmo

    1997-01-01

    There is considerable debate about whether the early processing of sounds depends on whether they form part of speech. Proponents of such speech specificity postulate the existence of language-dependent memory traces, which are activated in the processing of speech1-3 but not when equally complex, acoustic non-speech stimuli are processed. Here we report the existence of these traces in the human brain. We presented to Finnish subjects the Finnish phoneme prototype /e/ as the frequent stimulus, and other Finnish phoneme prototypes or a non-prototype (the Estonian prototype /õ/) as the infrequent stimulus. We found that the brain's automatic change-detection response, reflected electrically as the mismatch negativity (MMN)4-10, was enhanced when the infrequent, deviant stimulus was a prototype (the Finnish /ö/) relative to when it was a non-prototype (the Estonian /õ/). These phonemic traces, revealed by MMN, are language-specific, as /õ/ caused enhancement of MMN in Estonians. Whole-head magnetic recordings11,12 located the source of this native-language, phoneme-related response enhancement, and thus the language-specific memory traces, in the auditory cortex of the left hemisphere.

  5. PrPSc-Specific Antibody Reveals C-Terminal Conformational Differences between Prion Strains

    PubMed Central

    Saijo, Eri; Hughson, Andrew G.; Raymond, Gregory J.; Suzuki, Akio; Horiuchi, Motohiro

    2016-01-01

    ABSTRACT Understanding the structure of PrPSc and its strain variation has been one of the major challenges in prion disease biology. To study the strain-dependent conformations of PrPSc, we purified proteinase-resistant PrPSc (PrPRES) from mouse brains with three different murine-adapted scrapie strains (Chandler, 22L, and Me7) and systematically tested the accessibility of epitopes of a wide range of anti-PrP and anti-PrPSc specific antibodies by indirect enzyme-linked immunosorbent assay (ELISA). We found that epitopes of most anti-PrP antibodies were hidden in the folded structure of PrPRES, even though these epitopes are revealed with guanidine denaturation. However, reactivities to a PrPSc-specific conformational C-terminal antibody showed significant differences among the three different prion strains. Our results provide evidence for strain-dependent conformational variation near the C termini of molecules within PrPSc multimers. IMPORTANCE It has long been apparent that prion strains can have different conformations near the N terminus of the PrPSc protease-resistant core. Here, we show that a C-terminal conformational PrPSc-specific antibody reacts differently to three murine-adapted scrapie strains. These results suggest, in turn, that conformational differences in the C terminus of PrPSc also contribute to the phenotypic distinction between prion strains. PMID:26937029

  6. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors

    PubMed Central

    Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

    2014-01-01

    Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

  7. The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity.

    PubMed

    Verhaeghe, Tom; Aerts, Dirk; Diricks, Margo; Soetaert, Wim; Desmet, Tom

    2014-08-01

    Sucrose phosphorylase is a promising biocatalyst for the glycosylation of a wide range of compounds, but its industrial application has been hampered by the low thermostability of known representatives. Hence, in this study, the putative sucrose phosphorylase from the thermophile Thermoanaerobacterium thermosaccharolyticum was recombinantly expressed and fully characterised. The enzyme showed significant activity on sucrose (optimum at 55 °C), and with a melting temperature of 79 °C and a half-life of 60 h at the industrially relevant temperature of 60 °C, it is far more stable than known sucrose phosphorylases. Substrate screening and detailed kinetic characterisation revealed however a preference for sucrose 6'-phosphate over sucrose. The enzyme can thus be considered as a sucrose 6'-phosphate phosphorylase, a specificity not yet reported to date. Homology modelling and mutagenesis pointed out particular residues (Arg134 and His344) accounting for the difference in specificity. Moreover, phylogenetic and sequence analysis suggest that glycoside hydrolase 13 subfamily 18 might harbour even more specificities. In addition, the second gene residing in the same operon as sucrose 6'-phosphate phosphorylase was identified as well, and found to be a phosphofructokinase. The concerted action of both these enzymes implies a new pathway for the breakdown of sucrose, in which the reaction products end up at different stages of the glycolysis.

  8. Evolution-guided functional analyses reveal diverse antiviral specificities encoded by IFIT1 genes in mammals

    PubMed Central

    Daugherty, Matthew D; Schaller, Aaron M; Geballe, Adam P; Malik, Harmit S

    2016-01-01

    IFIT (interferon-induced with tetratricopeptide repeats) proteins are critical mediators of mammalian innate antiviral immunity. Mouse IFIT1 selectively inhibits viruses that lack 2'O-methylation of their mRNA 5' caps. Surprisingly, human IFIT1 does not share this antiviral specificity. Here, we resolve this discrepancy by demonstrating that human and mouse IFIT1 have evolved distinct functions using a combination of evolutionary, genetic and virological analyses. First, we show that human IFIT1 and mouse IFIT1 (renamed IFIT1B) are not orthologs, but are paralogs that diverged >100 mya. Second, using a yeast genetic assay, we show that IFIT1 and IFIT1B proteins differ in their ability to be suppressed by a cap 2'O-methyltransferase. Finally, we demonstrate that IFIT1 and IFIT1B have divergent antiviral specificities, including the discovery that only IFIT1 proteins inhibit a virus encoding a cap 2'O-methyltransferase. These functional data, combined with widespread turnover of mammalian IFIT genes, reveal dramatic species-specific differences in IFIT-mediated antiviral repertoires. DOI: http://dx.doi.org/10.7554/eLife.14228.001 PMID:27240734

  9. Chromosome Specific Substitution Lines of Aegilops geniculata Alter Parameters of Bread Making Quality of Wheat

    PubMed Central

    Tsujimoto, Hisashi; Gupta, Raj Kumar; Kumar, Aman; Kaur, Navneet; Kumar, Rohit; Chunduri, Venkatesh; Sharma, Nand Kishor; Chawla, Meenakshi; Sharma, Saloni; Mundey, Jaspreet Kaur

    2016-01-01

    Wheat cultivars with wide introgression have strongly impacted global wheat production. Aegilops geniculata (MgUg) is an important wild relative with several useful traits that can be exploited for wheat improvement. Screening of Ae. geniculata addition lines indicated a negative effect of 1Ug and the positive effect of 1Mg chromosome on wheat dough strength. Negative effect of 1Ug is probably associated with variation in number and position of the tripeptide repeat motif in the high molecular weight glutenin (HMW-G) gene. To utilize the positive potential of 1Mg chromosome, three disomic substitution lines (DSLs) 1Mg(1A), 1Mg(1B) and 1Mg(1D) were created. These lines were characterized for morphological, cytogenetic properties and biochemical signatures using FISH, 1D-, 2D-PAGE and RP-HPLC. Contribution of wheat 1A, 1B and 1D chromosomes towards dough mixing and baking parameters, chapatti quality, Fe/Zn content and glume color were identified. Observed order of variation in the dough mixing and baking parameters {1Mg(1D) ≤wheat ≤1Mg(1B) ≤1Mg(1A)} indicated that chromosome specific introgression is desirable for best utilization of wild species’ potential. PMID:27755540

  10. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.

    PubMed

    Ren, Xingjie; Sun, Jin; Housden, Benjamin E; Hu, Yanhui; Roesel, Charles; Lin, Shuailiang; Liu, Lu-Ping; Yang, Zhihao; Mao, Decai; Sun, Lingzhu; Wu, Qujie; Ji, Jun-Yuan; Xi, Jianzhong; Mohr, Stephanie E; Xu, Jiang; Perrimon, Norbert; Ni, Jian-Quan

    2013-11-19

    The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.

  11. High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Campylobacter jejuni Isolates

    PubMed Central

    Förstner, Konrad U.; Heidrich, Nadja; Reinhardt, Richard; Nieselt, Kay; Sharma, Cynthia M.

    2013-01-01

    Campylobacter jejuni is currently the leading cause of bacterial gastroenteritis in humans. Comparison of multiple Campylobacter strains revealed a high genetic and phenotypic diversity. However, little is known about differences in transcriptome organization, gene expression, and small RNA (sRNA) repertoires. Here we present the first comparative primary transcriptome analysis based on the differential RNA–seq (dRNA–seq) of four C. jejuni isolates. Our approach includes a novel, generic method for the automated annotation of transcriptional start sites (TSS), which allowed us to provide genome-wide promoter maps in the analyzed strains. These global TSS maps are refined through the integration of a SuperGenome approach that allows for a comparative TSS annotation by mapping RNA–seq data of multiple strains into a common coordinate system derived from a whole-genome alignment. Considering the steadily increasing amount of RNA–seq studies, our automated TSS annotation will not only facilitate transcriptome annotation for a wider range of pro- and eukaryotes but can also be adapted for the analysis among different growth or stress conditions. Our comparative dRNA–seq analysis revealed conservation of most TSS, but also single-nucleotide-polymorphisms (SNP) in promoter regions, which lead to strain-specific transcriptional output. Furthermore, we identified strain-specific sRNA repertoires that could contribute to differential gene regulation among strains. In addition, we identified a novel minimal CRISPR-system in Campylobacter of the type-II CRISPR subtype, which relies on the host factor RNase III and a trans-encoded sRNA for maturation of crRNAs. This minimal system of Campylobacter, which seems active in only some strains, employs a unique maturation pathway, since the crRNAs are transcribed from individual promoters in the upstream repeats and thereby minimize the requirements for the maturation machinery. Overall, our study provides new insights into

  12. Cell line specific control of polyethylenimine-mediated transient transfection optimized with "Design of experiments" methodology.

    PubMed

    Thompson, Ben C; Segarra, Camille R J; Mozley, Olivia L; Daramola, Olalekan; Field, Ray; Levison, Peter R; James, David C

    2012-01-01

    We describe a design of experiments (DoE) response surface modeling strategy to optimize the concentration of basal variables underpinning polyethylenimine (PEI) mediated transfection of different CHO-K1 derived parental cell populations in a chemically defined medium, specifically the relative concentration of linear 25 kD PEI, host CHO cells and plasmid DNA. Using recombinant secreted alkaline phosphatase (SEAP) reporter activity as the modeled response, a discrete simple maximum was predicted for each CHO host cell population. Differences between the modeled optima derived from host cell specific differences in PEI cytotoxicity, such that the PEI:cell interaction effectively limited PEI-DNA polyplex load at a relatively constant PEI:DNA ratio. However, across the three CHO host cell populations, SEAP reporter production was not proportional to plasmid DNA input at the host cell specific predicted basal variable optima. A 10-fold variation in SEAP reporter output per mass of plasmid DNA delivered was observed. To determine the cellular basis of this difference in transient productivity, host CHO cells were transfected with fluorescently labeled polyplexes followed by flow cytometric analysis. Each CHO host cell population exhibited a distinct functional phenotype, varying in the extent of PEI-DNA polyplex binding to the cell surface and degree of polyplex internalization. SEAP production was directly proportional to the level of polyplex internalization and heparan sulfate proteoglycan level. Taken together, these data show that choice of host CHO cell line is a critical parameter, which should rationally precede cell line specific transient production platform design using DoE methodology. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  13. Establishment of a congenital amegakaryocytic thrombocytopenia model and a thrombocyte-specific reporter line in zebrafish.

    PubMed

    Lin, Q; Zhang, Y; Zhou, R; Zheng, Y; Zhao, L; Huang, M; Zhang, X; Leung, A Y H; Zhang, W; Zhang, Y

    2016-11-29

    Mutations in the human myeloproliferative leukemia (MPL) protein gene are known to cause congenital amegakaryocytic thrombocytopenia (CAMT). The prognosis of this heritable disorder is poor and bone marrow transplantation is the only effective treatment. Here, by using the TALEN (transcription activator-like effector nuclease) technology, we created a zebrafish mpl mutant to model human CAMT. Disruption of zebrafish mpl lead to a severe reduction in thrombocytes and a high bleeding tendency, as well as deficiencies in adult hematopoietic stem/progenitor cells. We further demonstrated that thrombocytopenia in mpl mutant zebrafish was caused by impaired Tpo/Mpl/Jak2 signaling, resulting in reduced proliferation of thrombocyte precursors. These results indicate that mpl mutant zebrafish develop thrombocytopenia resembling the human CAMT. To utilize fully zebrafish to study thrombocyte biology and thrombocytopenia disorders, we generated a transgenic reporter line Tg(mpl:eGFP)smu4, in which green fluorescent protein (GFP) expression was driven by the mpl promoter. Detailed characterization of Tg(mpl:eGFP)smu4 fish confirmed that the thrombocyte lineage was specifically marked by GFP expression. In conclusion, we generated the first transmissible congenital thrombocytopenia zebrafish model mimicking human CAMT and a thrombocyte-specific transgenic line. Together with Tg(mpl:eGFP)smu4, mpl mutant zebrafish provide a useful tool for drug screening and study of thrombocytopoiesis.Leukemia advance online publication, 29 November 2016; doi:10.1038/leu.2016.320.

  14. Mycobacterium tuberculosis Rv2536 protein implicated in specific binding to human cell lines

    PubMed Central

    García, Javier; Puentes, Alvaro; Rodríguez, Luis; Ocampo, Marisol; Curtidor, Hernando; Vera, Ricardo; Lopez, Ramses; Valbuena, John; Cortes, Jimena; Vanegas, Magnolia; Barrero, Carlos; Patarroyo, Manuel A.; Urquiza, Mauricio; Patarroyo, Manuel E.

    2005-01-01

    The gene encoding the Mycobacterium tuberculosis Rv2536 protein is present in the Mycobacterium tuberculosis complex (as assayed by PCR) and transcribed (as determined by RT-PCR) in M. tuberculosis H37Rv, M. tuberculosis H37Ra, M. bovis BCG, and M. africanum strains. Rabbits immunized with synthetic polymer peptides from this protein produced antibodies specifically recognizing a 25-kDa band in mycobacterial sonicate. U937 and A549 cells were used in binding assays involving 20-amino-acid-long synthetic peptides covering the whole Rv2536 protein sequence. Peptide 11207 (161DVFSAVRADDSPTGEMQVAQY180) presented high specific binding to both types of cells; the binding was saturable and presented nanomolar affinity constants. Cross-linking assays revealed that this peptide specifically binds to 50 kDa U937 cell membrane and 45 kDa A549 cell membrane proteins. PMID:16131654

  15. Mycobacterium tuberculosis Rv2536 protein implicated in specific binding to human cell lines.

    PubMed

    García, Javier; Puentes, Alvaro; Rodríguez, Luis; Ocampo, Marisol; Curtidor, Hernando; Vera, Ricardo; Lopez, Ramses; Valbuena, John; Cortes, Jimena; Vanegas, Magnolia; Barrero, Carlos; Patarroyo, Manuel A; Urquiza, Mauricio; Patarroyo, Manuel E

    2005-09-01

    The gene encoding the Mycobacterium tuberculosis Rv2536 protein is present in the Mycobacterium tuberculosis complex (as assayed by PCR) and transcribed (as determined by RT-PCR) in M. tuberculosis H37Rv, M. tuberculosis H37Ra, M. bovis BCG, and M. africanum strains. Rabbits immunized with synthetic polymer peptides from this protein produced antibodies specifically recognizing a 25-kDa band in mycobacterial sonicate. U937 and A549 cells were used in binding assays involving 20-amino-acid-long synthetic peptides covering the whole Rv2536 protein sequence. Peptide 11207 (161DVFSAVRADDSPTGEMQVAQY180) presented high specific binding to both types of cells; the binding was saturable and presented nanomolar affinity constants. Cross-linking assays revealed that this peptide specifically binds to 50 kDa U937 cell membrane and 45 kDa A549 cell membrane proteins.

  16. Information Gathering Revealed within the Social Network of Line-Managers.

    ERIC Educational Resources Information Center

    Mackenzie, Maureen L.

    2003-01-01

    Results of this study revealed that relationship, more than knowledge, may be the reason a manager is sought as an information source within a business environment. Social network mapping was used to capture a more intimate view of the information relationships within a business environment. Content analysis was used to analyze the data and to…

  17. Information Gathering Revealed within the Social Network of Line-Managers.

    ERIC Educational Resources Information Center

    Mackenzie, Maureen L.

    2003-01-01

    Results of this study revealed that relationship, more than knowledge, may be the reason a manager is sought as an information source within a business environment. Social network mapping was used to capture a more intimate view of the information relationships within a business environment. Content analysis was used to analyze the data and to…

  18. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  19. REVEALING THE NATURE OF EXTREME CORONAL-LINE EMITTER SDSS J095209.56+214313.3

    SciTech Connect

    Palaversa, Lovro; Holl, Berry; Gezari, Suvi; Sesar, Branimir; Stuart, J. Scott; Wozniak, Przemyslaw; Ivezić, Željko

    2016-03-10

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event; however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope. The well-sampled, ∼10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ∼10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. These new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.

  20. Revealing the Nature of Extreme Coronal-line Emitter SDSS J095209.56+214313.3

    NASA Astrophysics Data System (ADS)

    Palaversa, Lovro; Gezari, Suvi; Sesar, Branimir; Stuart, J. Scott; Wozniak, Przemyslaw; Holl, Berry; Ivezić, Željko

    2016-03-01

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope. The well-sampled, ˜10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ˜10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. These new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.

  1. Learning to use demonstratives in conversation: what do language specific strategies in Turkish reveal?

    PubMed

    Küntay, Aylin C; Ozyürek, Asli; Planck, Max

    2006-05-01

    Pragmatic development requires the ability to use linguistic forms, along with non-verbal cues, to focus an interlocutor's attention on a referent during conversation. We investigate the development of this ability by examining how the use of demonstratives is learned in Turkish, where a three-way demonstrative system (bu, su, o) obligatorily encodes both distance contrasts (i.e. proximal and distal) and absence or presence of the addressee's visual attention on the referent. A comparison of the demonstrative use by Turkish children (6 four- and 6 six-year-olds) and 6 adults during conversation shows that adultlike use of attention directing demonstrative, su, is not mastered even at the age of six, while the distance contrasts are learned earlier. This language specific development reveals that designing referential forms in consideration of recipient's attentional status during conversation is a pragmatic feat that takes more than six years to develop.

  2. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles

    PubMed Central

    Varn, Frederick S.; Andrews, Erik H.; Mullins, David W.; Cheng, Chao

    2016-01-01

    Transcriptional programmes active in haematopoietic cells enable a variety of functions including dedifferentiation, innate immunity and adaptive immunity. Understanding how these programmes function in the context of cancer can provide valuable insights into host immune response, cancer severity and potential therapy response. Here we present a method that uses the transcriptomes of over 200 murine haematopoietic cells, to infer the lineage-specific haematopoietic activity present in human breast tumours. Correlating this activity with patient survival and tumour purity reveals that the transcriptional programmes of many cell types influence patient prognosis and are found in environments of high lymphocytic infiltration. Collectively, these results allow for a detailed and personalized assessment of the patient immune response to a tumour. When combined with routinely collected patient biopsy genomic data, this method can enable a richer understanding of the complex interplay between the host immune system and cancer. PMID:26725977

  3. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    PubMed

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  4. Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium

    PubMed Central

    Kumar, Roshan; Verma, Helianthous; Haider, Shazia; Bajaj, Abhay; Sood, Utkarsh; Ponnusamy, Kalaiarasan; Nagar, Shekhar; Shakarad, Mallikarjun N.; Negi, Ram Krishan; Singh, Yogendra; Khurana, J. P.; Gilbert, Jack A.

    2017-01-01

    ABSTRACT Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a

  5. Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium.

    PubMed

    Kumar, Roshan; Verma, Helianthous; Haider, Shazia; Bajaj, Abhay; Sood, Utkarsh; Ponnusamy, Kalaiarasan; Nagar, Shekhar; Shakarad, Mallikarjun N; Negi, Ram Krishan; Singh, Yogendra; Khurana, J P; Gilbert, Jack A; Lal, Rup

    2017-01-01

    Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups-rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats-freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in

  6. Phenotypic mechanisms of host resistance against greenbug (Homoptera: Aphididae) revealed by near isogenic lines of wheat.

    PubMed

    Weng, Yiqun; Lazar, Mark D; Michels, Gerald J; Rudd, Jackie C

    2004-04-01

    Interactions between biotype E greenbug, Schizaphis graminum (Rondani), and wheat, Triticum aestivum L., were investigated using resistant and susceptible near isogenic lines of the greenbug resistance gene Gb3. In an antixenosis test, the greenbugs preferred susceptible plants to resistant ones when free choice of hosts was allowed. Aphid feeding resulted in quick and severe damage to susceptible plants, which seemed to follow a general pattern spatially and was affected by the position where the greenbugs were initially placed. Symptom of damage in resistant plants resembled senescence. Within-plant distribution of aphids after infestation was clearly different between the two genotypes. Significantly more greenbugs fed on the first (oldest) leaf than on the stem in resistant plants, but this preference was reversed in the susceptible one. After reaching its peak, aphid population on the susceptible plants dropped quickly. All susceptible plants were dead in 10-14 d after infestation due to greenbug feeding. Aphid population dynamics on resistant plants exhibited a multipeak curve. After the first peak, the greenbug population declined slowly. More than 70% of resistant plants were killed 47 d after infestation. Performance of both biotype E and I greenbugs on several Gb3-related wheat germplasm lines were also examined. It seems that the preference-on-stem that was characteristic of biotype E greenbugs on the susceptible plants was aphid biotype- and host genotype-dependent. Results from this study suggested that antixenosis, antibiosis, and tolerance in the resistant plants of wheat might all contribute to resistance against greenbug feeding.

  7. Germ-line specific variants of components of the mitochondrial outer membrane import machinery in Drosophila.

    PubMed

    Hwa, Jennifer J; Zhu, Alan J; Hiller, Mark A; Kon, Charlene Y; Fuller, Margaret T; Santel, Ansgar

    2004-08-13

    A search of the Drosophila genome for genes encoding components of the mitochondrial translocase of outer membrane (TOM) complex revealed duplication of genes encoding homologues of Tom20 and Tom40. Tom20 and Tom40 were represented by two differentially expressed homologues in the Drosophila genome. While dtom20 and dtom40 appeared to be expressed ubiquitously, the second variants, called tomboy20 and tomboy40, were expressed only in the male germ-line. Transcripts for tomboy20 and tomboy40 were detected in primary spermatocytes as well as post-meiotic stages. Transcription of tomboy20 and tomboy40 in spermatocytes was not dependent on the transcription factor Cannonball, which is responsible for controlling expression of gene products exclusively required for post-meiotic germ cell differentiation. Epitope-tagging and transient expression of dTom20 and Tomboy40 in mammalian cell culture showed proper targeting to mitochondria.

  8. Landsat archive reveals 15 years of grounding line migration in the Marie Byrd Land Sector, West Antarctica

    NASA Astrophysics Data System (ADS)

    Christie, F.; Bingham, R. G.; Gourmelen, N.; Bisset, R.; Goldberg, D.

    2016-12-01

    Recent studies utilizing satellite and airborne altimetry data have revealed that ice along much of West Antarctica's coast from the Antarctic Peninsula to the Ross Sea is undergoing dynamic thinning, likely as a response to atmospheric or oceanic forcing. As part of a wider goal to understand how these forcings operate, and how they may vary in nature along West Antarctica's coastline, it is necessary to quantify indicators of dynamic thinning along the entire region, including those parts of West Antarctica that have traditionally received less attention. Here, we quantify changes to the grounding line position along coastal Marie Byrd Land, which comprises approximately 50% of West Antarctica's Pacific-facing margin, and incorporates the 650 km wide Getz Ice Shelf and the coastline stretching westwards to the Ross Ice Shelf. Changes to grounding line position are recovered over multiple epochs from optical satellite imagery. Using Landsat ETM+ and OLI imagery, we derive advance and retreat quantifications along the coastline for 3-to-5-year periods from 2000-2015. Analysis of grounding line change reveals: i) insignificant grounding line retreat across the Nickerson and Sulzberger Ice Shelves, in contrast to the Getz Ice Shelf where notable retreat has occurred over the past decade and a half. Additionally, we find: ii) a strong correspondence between observed grounding line retreat at Getz with previously published evidence of recent glaciological change, including rapid glacial thinning as detected by satellite altimetry; high ice-flow velocities, and large modelled/observed ice-shelf melt rates. Together, the collective patterns of glacial change observed in the Marie Byrd Land Sector emphasise the importance of subglacial topography in moderating ice-ocean interaction across this region, similar to the nearby Amundsen and Bellingshausen Sea Sectors, and underscore the requirement for continued in-depth observation of this important coastline in the future.

  9. ROCK1 isoform-specific deletion reveals a role for diet-induced insulin resistance

    PubMed Central

    Lee, Seung-Hwan; Huang, Hu; Choi, Kangduk; Lee, Dae Ho; Shi, Jianjian; Liu, Tiemin; Chun, Kwang Hoon; Seo, Ji A.; Lima, Ines S.; Zabolotny, Janice M.; Wei, Lei

    2013-01-01

    Rho kinase (ROCK) isoforms regulate insulin signaling and glucose metabolism negatively or positively in cultured cell lines and skeletal muscle. However, the in vivo function of the ROCK1 isoform in adipose tissue has not been addressed. To determine the specific role of the adipose ROCK1 isoform in the development of insulin resistance and obesity, mice lacking ROCK1 in adipose tissue globally or selectively were studied. Here, we show that insulin's ability to activate IRS-1/PI3K/Akt signaling was greatly enhanced in adipose tissue of ROCK1−/− mice compared with wild-type mice. These effects resulted from the inhibitory effect of ROCK1 on insulin receptor action, as evidenced by the fact that IR tyrosine phosphorylation was abolished in ROCK1−/− MEF cells when ROCK1 was reexpressed. Consistently, adipose-specific disruption of ROCK1 increased IR tyrosine phosphorylation in adipose tissue and modestly improved sensitivity to insulin in obese mice induced by high-fat feeding. This effect is independent of any changes in adiposity, number or size of adipocytes, and metabolic parameters, including glucose, insulin, leptin, and triglyceride levels, demonstrating a minimal effect of adipose ROCK1 on whole body metabolism. Enzymatic activity of ROCK1 in adipose tissue remained ∼50%, which likely originated from the fraction of stromal vascular cells, suggesting involvement of these cells for adipose metabolic regulation. Moreover, ROCK isoform activities were increased in adipose tissue of diet-induced or genetically obese mice. These data suggest that adipose ROCK1 isoform plays an inhibtory role for the regulation of insulin sensitivity in diet-induced obesity in vivo. PMID:24326423

  10. Phylogenetic analysis of vertebrate CXC chemokines reveals novel lineage specific groups in teleost fish.

    PubMed

    Chen, Jun; Xu, Qiaoqing; Wang, Tiehui; Collet, Bertrand; Corripio-Miyar, Yolanda; Bird, Steve; Xie, Ping; Nie, Pin; Secombes, Christopher J; Zou, Jun

    2013-10-01

    In this study, we have identified 421 molecules across the vertebrate spectrum and propose a unified nomenclature for CXC chemokines in fish, amphibians and reptiles based on phylogenetic analysis. Expanding on earlier studies in teleost fish, lineage specific CXC chemokines that have no apparent homologues in mammals were confirmed. Furthermore, in addition to the two subgroups of the CXCL8 homologues known in teleost fish, a third group was identified (termed CXCL8_L3), as was a further subgroup of the fish CXC genes related to CXCL11. Expression of the CXC chemokines found in rainbow trout, Oncorhynchus mykiss, was studied in response to stimulation with inflammatory and antiviral cytokines, and bacterial. Tissue distribution analysis revealed distinct expression profiles for these trout CXC chemokines. Lastly three of the trout chemokines, including two novel fish specific CXC chemokines containing three pairs of cysteines, were produced as recombinant proteins and their effect on trout leucocyte migration studied. These molecules increased the relative expression of CD4 and MCSFR in migrated cells in an in vitro chemotaxis assay.

  11. Genetic manipulation of single neurons in vivo reveals specific roles of flamingo in neuronal morphogenesis.

    PubMed

    Sweeney, Neal T; Li, Wenjun; Gao, Fen-Biao

    2002-07-01

    To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.

  12. Computational dissection of human episodic memory reveals mental process-specific genetic profiles.

    PubMed

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2015-09-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory.

  13. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice

    PubMed Central

    Machado, Ana S; Darmohray, Dana M; Fayad, João; Marques, Hugo G; Carey, Megan R

    2015-01-01

    The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion. DOI: http://dx.doi.org/10.7554/eLife.07892.001 PMID:26433022

  14. Lineage-specific molecular probing reveals novel diversity and ecological partitioning of haplosporidians

    PubMed Central

    Hartikainen, Hanna; Ashford, Oliver S; Berney, Cédric; Okamura, Beth; Feist, Stephen W; Baker-Austin, Craig; Stentiford, Grant D; Bass, David

    2014-01-01

    Haplosporidians are rhizarian parasites of mostly marine invertebrates. They include the causative agents of diseases of commercially important molluscs, including MSX disease in oysters. Despite their importance for food security, their diversity and distributions are poorly known. We used a combination of group-specific PCR primers to probe environmental DNA samples from planktonic and benthic environments in Europe, South Africa and Panama. This revealed several highly distinct novel clades, novel lineages within known clades and seasonal (spring vs autumn) and habitat-related (brackish vs littoral) variation in assemblage composition. High frequencies of haplosporidian lineages in the water column provide the first evidence for life cycles involving planktonic hosts, host-free stages or both. The general absence of haplosporidian lineages from all large online sequence data sets emphasises the importance of lineage-specific approaches for studying these highly divergent and diverse lineages. Combined with host-based field surveys, environmental sampling for pathogens will enhance future detection of known and novel pathogens and the assessment of disease risk. PMID:23966100

  15. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces

    PubMed Central

    Zhu, Shujia; Riou, Morgane; Yao, C. Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C.; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-01-01

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo–cross-linker p-azido-l-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  16. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    PubMed Central

    Lundby, Alicia; Lage, Kasper; Weinert, Brian T.; Bekker-Jensen, Dorte B.; Secher, Anna; Skovgaard, Tine; Kelstrup, Christian D.; Dmytriyev, Anatoliy; Choudhary, Chunaram; Lundby, Carsten; Olsen, Jesper V.

    2014-01-01

    SUMMARY Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity. PMID:22902405

  17. Metabolomics Analysis Reveals Specific Novel Tetrapeptide and Potential Anti-Inflammatory Metabolites in Pathogenic Aspergillus species

    PubMed Central

    Lee, Kim-Chung; Tam, Emily W. T.; Lo, Ka-Ching; Tsang, Alan K. L.; Lau, Candy C. Y.; To, Kelvin K. W.; Chan, Jasper F. W.; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2015-01-01

    Infections related to Aspergillus species have emerged to become an important focus in infectious diseases, as a result of the increasing use of immunosuppressive agents and high fatality associated with invasive aspergillosis. However, laboratory diagnosis of Aspergillus infections remains difficult. In this study, by comparing the metabolomic profiles of the culture supernatants of 30 strains of six pathogenic Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, A. nomius and A. tamarii) and 31 strains of 10 non-Aspergillus fungi, eight compounds present in all strains of the six Aspergillus species but not in any strain of the non-Aspergillus fungi were observed. One of the eight compounds, Leu–Glu–Leu–Glu, is a novel tetrapeptide and represents the first linear tetrapeptide observed in Aspergillus species, which we propose to be named aspergitide. Two other closely related Aspergillus-specific compounds, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid, may possess anti-inflammatory properties, as 2-(sulfooxy)benzoic acid possesses a structure similar to those of aspirin [2-(acetoxy)benzoic acid] and salicylic acid (2-hydroxybenzoic acid). Further studies to examine the potentials of these Aspergillus-specific compounds for laboratory diagnosis of aspergillosis are warranted and further experiments will reveal whether Leu–Glu–Leu–Glu, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid are virulent factors of the pathogenic Aspergillus species. PMID:26090713

  18. Computational dissection of human episodic memory reveals mental process-specific genetic profiles

    PubMed Central

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G.; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.

    2015-01-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory. PMID:26261317

  19. Unexpected acoustic stimulation during action preparation reveals gradual re-specification of movement direction.

    PubMed

    Marinovic, Welber; Tresilian, James; Chapple, Jack L; Riek, Stephan; Carroll, Timothy J

    2017-04-21

    A loud acoustic stimulus (LAS) is often used as a tool to investigate motor preparation in simple reaction time (RT) tasks, where all movement parameters are known in advance. In this report, we used a LAS to examine direction specification in simple and choice RT tasks. This allowed us to investigate how the specification of movement direction unfolds during the preparation period. In two experiments, participants responded to the appearance of an imperative stimulus (IS) with a ballistic wrist force directed toward one of two targets. In probe trials, a LAS (120dBa) was delivered around the time of IS presentation. In Experiment 1, RTs in the simple RT task were faster when the LAS was presented, but the effect on the movement kinematics was negligible. In the Choice RT task, however, movement direction variability increased when the LAS was presented. In Experiment 2, when we primed movements toward one direction, our analyses revealed that the longer participants took to start a movement, the more accurate their responses became. Our results show not only that movement direction reprogramming occurs quickly and continuously, but also that LAS can be a valuable tool to obtain meaningful readouts of the motor system's preparatory state. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Transcriptional profile of TB antigen-specific T cells reveals novel multifunctional features1

    PubMed Central

    Arlehamn, Cecilia Lindestam; Seumois, Gregory; Gerasimova, Anna; Huang, Charlie; Fu, Zheng; Yue, Xiaojing; Sette, Alessandro; Vijayanand, Pandurangan; Peters, Bjoern

    2014-01-01

    In latent tuberculosis infection (LTBI) spread of the bacteria is contained by a persistent immune response, which includes CD4+ T cells as important contributors. Here we show that TB-specific CD4+ T cells have a characteristic chemokine expression signature (CCR6+CXCR3+CCR4−), and that the overall number of these cells is significantly increased in LTBI donors compared to healthy subjects. We have comprehensively characterized the transcriptional signature of CCR6+CXCR3+CCR4− cells and find significant differences to conventional Th1, Th17 and Th2 cells, but no major changes between healthy and LTBI donors. CCR6+CXCR3+CCR4− cells display linage-specific signatures of both Th1 and Th17 cells, but also have a unique gene expression program including genes associated with susceptibility to TB, enhanced T cell activation, enhanced cell survival, and induction of a cytotoxic program akin to CTL cells. Overall, the gene expression signature of CCR6+CXCR3+CCR4− cells reveals characteristics important for controlling latent TB infections. PMID:25092889

  1. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity.

    PubMed

    Robles, Estuardo; Laurell, Eva; Baier, Herwig

    2014-09-22

    Visual information is transmitted to the vertebrate brain exclusively via the axons of retinal ganglion cells (RGCs). The functional diversity of RGCs generates multiple representations of the visual environment that are transmitted to several brain areas. However, in no vertebrate species has a complete wiring diagram of RGC axonal projections been constructed. We employed sparse genetic labeling and in vivo imaging of the larval zebrafish to generate a cellular-resolution map of projections from the retina to the brain. Our data define 20 stereotyped axonal projection patterns, the majority of which innervate multiple brain areas. Morphometric analysis of pre- and postsynaptic RGC structure revealed more than 50 structural RGC types with unique combinations of dendritic and axonal morphologies, exceeding current estimates of RGC diversity in vertebrates. These single-cell projection mapping data indicate that specific projection patterns are nonuniformly specified in the retina to generate retinotopically biased visual maps throughout the brain. The retinal projectome also successfully predicted a functional subdivision of the pretectum. Our data indicate that RGC projection patterns are precisely coordinated to generate brain-area-specific visual representations originating from RGCs with distinct dendritic morphologies and topographic distributions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles.

    PubMed

    Huang, Yanmei; Ng, Fanny S; Jackson, F Rob

    2015-02-04

    The analysis of adult astrocyte glial cells has revealed a remarkable heterogeneity with regard to morphology, molecular signature, and physiology. A key question in glial biology is how such heterogeneity arises during brain development. One approach to this question is to identify genes with differential astrocyte expression during development; certain genes expressed later in neural development may contribute to astrocyte differentiation. We have utilized the Drosophila model and Translating Ribosome Affinity Purification (TRAP)-RNA-seq methods to derive the genome-wide expression profile of Drosophila larval astrocyte-like cells (hereafter referred to as astrocytes) for the first time. These studies identified hundreds of larval astrocyte-enriched genes that encode proteins important for metabolism, energy production, and protein synthesis, consistent with the known role of astrocytes in the metabolic support of neurons. Comparison of the larval profile with that observed for adults has identified genes with astrocyte-enriched expression specific to adulthood. These include genes important for metabolism and energy production, translation, chromatin modification, protein glycosylation, neuropeptide signaling, immune responses, vesicle-mediated trafficking or secretion, and the regulation of behavior. Among these functional classes, the expression of genes important for chromatin modification and vesicle-mediated trafficking or secretion is overrepresented in adult astrocytes based on Gene Ontology analysis. Certain genes with selective adult enrichment may mediate functions specific to this stage or may be important for the differentiation or maintenance of adult astrocytes, with the latter perhaps contributing to population heterogeneity.

  3. LINE-1 repetitive DNA probes for species-specific cloning from Mus spretus and Mus domesticus genomes.

    PubMed

    Rikke, B A; Hardies, S C

    1991-12-01

    Mus domesticus and Mus spretus mice are closely related subspecies. For genetic investigations involving hybrid mice, we have developed a set of species-specific oligonucleotide probes based on the detection of LINE-1 sequence differences. LINE-1 is a repetitive DNA family whose many members are interspersed among the genes. In this study, library screening experiments were used to fully characterize the species specificity of four M. domesticus LINE-1 probes and three M. spretus LINE-1 probes. It was found that the nucleotide differences detected by the probes define large, species-specific subfamilies. We show that collaborative use of such probes can be employed to selectively detect thousands of species-specific library clones. Consequently, these probes could be exploited to monitor and access almost any given species-specific region of interest within hybrid genomes.

  4. Cell type-specific genetic and optogenetic tools reveal novel hippocampal CA2 circuits

    PubMed Central

    Kohara, Keigo; Pignatelli, Michele; Rivest, Alexander J.; Jung, Hae-Yoon; Kitamura, Takashi; Suh, Junghyup; Frank, Dominic; Kajikawa, Koichiro; Mise, Nathan; Obata, Yuichi; Wickersham, Ian R.; Tonegawa, Susumu

    2014-01-01

    The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit, entorhinal cortex layer II (ECII)→dentate gyrus (DG)→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the main substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Here, by using highly cell type-specific transgenic mouse lines, optogenetics, and patch-clamp recordings, we show that DG cells, long believed not to project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells, through abundant longitudinal projections. CA2 innervates CA1 to complete an alternate trisynaptic circuit but, unlike CA3, projects preferentially to the deep rather than superficial sublayer of CA1. Furthermore, contrary to the current knowledge, ECIII does not project to CA2. These new anatomical results will allow for a deeper understanding of the biology of learning and memory. PMID:24336151

  5. Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis.

    PubMed

    Xin, Zeyu; Zhao, Yihong; Zheng, Zhi-Liang

    2005-11-01

    Abscisic acid (ABA) is a hormone that modulates a variety of agronomically important growth and developmental processes and various stresses responses, but its signal transduction pathways remain poorly understood. ROP10, a member of ROP small GTPases in Arabidopsis (Arabidopsis thaliana), is a plasma membrane-associated protein specifically involved in negative regulation of ABA responses. To dissect the ROP10-mediated ABA signaling, we carried out transcriptome analysis using the Arabidopsis full-genome chip. Our analysis revealed a total of 262 and 125 genes that were, respectively, up- and down-regulated (> or =2-fold cutoff) by 1 mum ABA in wild type (Wassilewskija [Ws]); 42 up-regulated and 38 down-regulated genes have not been identified in other studies. Consistent with the nonpleiotropic phenotypes of rop10-1, only three genes were altered in rop10-1 in the absence of ABA treatment. In response to 1 microm ABA, 341 and 127 genes were, respectively, activated and repressed in rop10-1. Interestingly, a particular subset of 21 genes that were not altered by 1 microm ABA in Ws but only activated in rop10-1 was identified. Reverse transcription-polymerase chain reaction analysis revealed the existence of three distinct categories of ABA dose-response patterns. One novel category is characterized by their ABA unresponsiveness in Ws and activation in rop10-1 at 1 microm but not 10 and 100 microm of ABA. This indicates that ROP10 gates the expression of genes that are specific to low concentrations of ABA. Furthermore, almost all of these 21 genes are known to be highly induced by various biotic and abiotic stresses. Consequently, we found that rop10-1 enhanced the sensitivity of seed germination inhibition to mannitol and sodium chloride. Our results suggest that ROP10 negatively regulates ABA responses by specifically and differentially modulating the ABA sensitivity of a subset of genes including protein kinases and zinc-finger family proteins.

  6. Single cell analysis reveals gametic and tissue-specific instability of the SCA1 CAG repeat

    SciTech Connect

    Chong, S.S.; McCall, A.E.; Cota, J.

    1994-09-01

    Spinocerebellar ataxia type 1 is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat within the SCA1 gene on chromosome 6p22-23. We performed a comparative analysis of the SCA1 CAG repeat from blood and sperm of an affected male. Genomic amplification revealed a broader smear of the SCA1 allele product from sperm compared to that from peripheral blood leukocytes (PBL). To resolve this observed difference, we analyzed single sperm directly and demonstrate that the SCA1 allele in PBL is also heterogeneous, although the range of variability in allele sizes is much less than that observed in sperm. Limited genome analysis was also performed on PBL DNA from an unaffected individual with an upper normal allele of 36 repeats in parallel with an affected individual with an expanded allele of 40 repeats. The 36 repeat normal allele, which contains a CAT interruption, was completely stable compared to the uninterrupted repeat of the SCA1 allele, demonstrating a direct correlation between absence of a CAT interruption and somatic instability of the repeat. We also analyzed the size of the CAG repeat in tissues derived from various brain regions from a patient with juvenile-onset disease to determine if the size of the expansion correlated with the site of neuropathology. The results clearly show tissue-specific differences in mosaicism of repeat length. More importantly, the pattern of tissue-specific differences in repeat-length mosaicism in SCA1 within the brain parallels those seen in Huntington disease. In both disorders the expanded alleles are smaller in cerebellar tissue. These results suggest that the observed tissue-specific differences in instability of the SCA1 CAG repeat, either within the brain or between blood and sperm, are a function of the intracellular milieu or the intrinsic replicative potential of the various celltypes.

  7. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    SciTech Connect

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; Karpiak, Joel; Kortemme, Tanja

    2014-10-13

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.

  8. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine.

    PubMed

    Iurlaro, Mario; McInroy, Gordon R; Burgess, Heather E; Dean, Wendy; Raiber, Eun-Ang; Bachman, Martin; Beraldi, Dario; Balasubramanian, Shankar; Reik, Wolf

    2016-06-29

    Genome-wide methylation of cytosine can be modulated in the presence of TET and thymine DNA glycosylase (TDG) enzymes. TET is able to oxidise 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TDG can excise the oxidative products 5fC and 5caC, initiating base excision repair. These modified bases are stable and detectable in the genome, suggesting that they could have epigenetic functions in their own right. However, functional investigation of the genome-wide distribution of 5fC has been restricted to cell culture-based systems, while its in vivo profile remains unknown. Here, we describe the first analysis of the in vivo genome-wide profile of 5fC across a range of tissues from both wild-type and Tdg-deficient E11.5 mouse embryos. Changes in the formylation profile of cytosine upon depletion of TDG suggest TET/TDG-mediated active demethylation occurs preferentially at intron-exon boundaries and reveals a major role for TDG in shaping 5fC distribution at CpG islands. Moreover, we find that active enhancer regions specifically exhibit high levels of 5fC, resulting in characteristic tissue-diagnostic patterns, which suggest a role in embryonic development. The tissue-specific distribution of 5fC can be regulated by the collective contribution of TET-mediated oxidation and excision by TDG. The in vivo profile of 5fC during embryonic development resembles that of embryonic stem cells, sharing key features including enrichment of 5fC in enhancer and intragenic regions. Additionally, by investigating mouse embryo 5fC profiles in a tissue-specific manner, we identify targeted enrichment at active enhancers involved in tissue development.

  9. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE PAGES

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; ...

    2014-10-13

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  10. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    PubMed Central

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; Karpiak, Joel; Kortemme, Tanja

    2014-01-01

    Reengineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. Although the context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context. PMID:25313039

  11. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition.

    PubMed

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; Karpiak, Joel; Kortemme, Tanja

    2014-10-28

    Reengineering protein-protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of "second-site suppressors," where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein-protein interfaces. To extend this approach, it would be advantageous to be able to "transplant" existing engineered and experimentally validated specificity changes to other homologous protein-protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain-peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein-protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. Although the context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein-protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.

  12. Genomic characterization of a fructophilic bee symbiont Lactobacillus kunkeei reveals its niche-specific adaptation.

    PubMed

    Maeno, Shintaro; Tanizawa, Yasuhiro; Kanesaki, Yu; Kubota, Eri; Kumar, Himanshu; Dicks, Leon; Salminen, Seppo; Nakagawa, Junichi; Arita, Masanori; Endo, Akihito

    2016-12-01

    Lactobacillus kunkeei is classified as a sole obligate fructophilic lactic acid bacterium that is found in fructose-rich niches, including the guts of honeybees. The species is differentiated from other lactobacilli based on its poor growth with glucose, enhanced growth in the presence of oxygen and other electron acceptors, and production of high concentrations of acetate from the metabolism of glucose. These characteristics are similar to phylogenetically distant Fructobacillus spp. In the present study, the genomic structure of L. kunkeei was characterized by using 16 different strains, and it had significantly less genes and smaller genomes when compared with other lactobacilli. Functional gene classification revealed that L. kunkeei had lost genes specifically involved in carbohydrate transport and metabolism. The species also lacked most of the genes for respiration, although growth was enhanced in the presence of oxygen. The adhE gene of L. kunkeei, encoding a bifunctional alcohol dehydrogenase (ADH)/aldehyde dehydrogenase (ALDH) protein, lacked the part encoding the ADH domain, which is reported here for the first time in lactic acid bacteria. The deletion resulted in the lack of ADH activity, implying a requirement for electron acceptors in glucose assimilation. These results clearly indicated that L. kunkeei had undergone a specific reductive evolution in order to adapt to fructose-rich environments. The reduction characteristics were similar to those of Fructobacillus spp., but distinct from other lactobacilli with small genomes, such as Lactobacillus gasseri and Lactobacillus vaginalis. Fructose-richness thus induced an environment-specific gene reduction in phylogenetically distant microorganisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci.

    PubMed

    Richards, Jonathan K; Friesen, Timothy L; Brueggeman, Robert S

    2017-05-01

    A diverse collection of barley lines was phenotyped with three North American Pyrenophora teres f. teres isolates and association analyses detected 78 significant marker-trait associations at 16 genomic loci. Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the causal agent of the economically important foliar disease net form net blotch (NFNB) of barley. The deployment of effective and durable resistance against P. teres f. teres has been hindered by the complexity of quantitative resistance and susceptibility. Several bi-parental mapping populations have been used to identify QTL associated with NFNB disease on all seven barley chromosomes. Here, we report the first genome-wide association study (GWAS) to detect marker-trait associations for resistance or susceptibility to P. teres f. teres. Geographically diverse barley genotypes from a world barley core collection (957) were genotyped with the Illumina barley iSelect chip and phenotyped with three P. teres f. teres isolates collected in two geographical regions of the USA (15A, 6A and LDNH04Ptt19). The best of nine regression models tested were identified for each isolate and used for association analysis resulting in the identification of 78 significant marker-trait associations (MTA; -log10p value >3.0). The MTA identified corresponded to 16 unique genomic loci as determined by analysis of local linkage disequilibrium between markers that did not meet a correlation threshold of R (2) ≥ 0.1, indicating that the markers represented distinct loci. Five loci identified represent novel QTL and were designated QRptts-3HL, QRptts-4HS, QRptts-5HL.1, QRptts-5HL.2, and QRptts-7HL.1. In addition, 55 of the barley lines examined exhibited a high level of resistance to all three isolates and the SNP markers identified will provide useful genetic resources for barley breeding programs.

  14. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    PubMed Central

    2012-01-01

    Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult. PMID:23268714

  15. Where is psychology going? Structural fault lines revealed by psychologists' use of Kuhn.

    PubMed

    Driver-Linn, Erin

    2003-04-01

    Psychologists' appropriation of language and ideas from Thomas Kuhn's (1962, 1970b) The Structure of Scientific Revolutions reveals deep and contradictory concerns about truth, science, and the progress of the field. The author argues that psychologists, uncomfortably straddling natural and social science traditions, reference Structure for 2 reasons largely overlooked: first, because it presents an intermediate, naturalistic position in the war between relativist and rationalist views of scientific truth, and second, because it presents a psychologized model of scientific change. The author suggests that the history of this mutual influence--psychologists being influenced by Kuhn and vice versa--may usefully inform current practices of psychological science.

  16. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    PubMed

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Specific Considerations on IEC Standardization of Externally Gapped Line Surge Arresters (EGLAs)

    NASA Astrophysics Data System (ADS)

    Ishizaki, Yoshihiro; Tsuge, Kenji; Kobayashi, Misao; Izumi, Kunikazu; Kawamura, Tatsuo

    The application of externally gapped line surge arresters (EGLAs), which have been developed and established in Japan, is now expanding into many countries. Therefore, the maintenance team 4 (MT4) in the international electrotechnical commission (IEC) technical committee 37 (TC37) for surge arresters advances the standardization works to specify the minimum criteria for requirements and testing methods of EGLAs. EGLAs are effective lightning protection of overhead transmission lines, and have unique required performances originated from the external series gap. The unique required performances of EGLA are insulation coordination performance of EGLA sparkover voltage for lightning overvoltage with the insulator assembly to be protected, withstand voltage performance for switching surge overvoltage and TOV, and follow current interruption performance. This paper discusses the specific issues to be considered for the standardization, such as classification of lightning discharge current rating and a test procedure for follow current interruption performance, based on the Japanese technology through more than twenty years of experience with a large numbers of EGLAs in 22kV to 500kV systems.

  18. Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines

    PubMed Central

    Kim, Sebo; Sundaresan, Varsha; Zhou, Lei; Kahveci, Tamer

    2016-01-01

    One of fundamental challenges in cancer studies is that varying molecular characteristics of different tumor types may lead to resistance to certain drugs. As a result, the same drug can lead to significantly different results in different types of cancer thus emphasizing the need for individualized medicine. Individual prediction of drug response has great potential to aid in improving the clinical outcome and reduce the financial costs associated with prescribing chemotherapy drugs to which the patient’s tumor might be resistant. In this paper we develop a network based classifier (NBC) method for predicting sensitivity of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from different tumor types to various anticancer drugs. Furthermore, we incorporate domain specific knowledge such as the use of apoptotic gene list and clinical dose information in our method to impart biological significance to the prediction. Our experimental results suggest that our network based classifier (NBC) method outperforms existing classifiers in estimating sensitivity of cell lines for different drugs. PMID:27607242

  19. Cytotoxicity of a GalNAc-specific C-type lectin CEL-I toward various cell lines.

    PubMed

    Kuramoto, Takuya; Uzuyama, Hitomi; Hatakeyama, Tomomitsu; Tamura, Tadashi; Nakashima, Takuji; Yamaguchi, Kenichi; Oda, Tatsuya

    2005-01-01

    We found that CEL-I was a potent cytotoxic lectin. MDCK, HeLa, and XC cells were highly sensitive to CEL-I cytotoxicity and killed in a dose-dependent manner, whereas CHO, L929, and RAW264.7 cells were relatively resistant to CEL-I, and no significant toxicity was observed up to 10 microg/ml. Among these cell lines, MDCK cells showed the highest susceptibility to CEL-I cytotoxicity. A binding study using FITC-labeled CEL-I (F-CEL-I) revealed that the amounts of bound F-CEL-I on the sensitive cell lines were evidently greater than those on the resistant cell lines, suggesting that the different susceptibility of the cell lines to CEL-I cytotoxicity is partly explained by different efficiencies of binding of CEL-I to these cell lines. Interestingly, the cytotoxicity of CEL-I toward MDCK cells was more potent than those of other lectins such as WGA, PHA-L, and Con A, even though these lectins were capable of binding to MDCK cells at comparable levels to CEL-I. Since the cytotoxicity of CEL-I was strongly inhibited by GalNAc, the binding to cell surface specific carbohydrates is essential for the CEL-I cytotoxicity. The trypan blue dye exclusion test indicated that CEL-I caused a disorder of plasma membrane integrity as a relatively early event. CEL-I failed to induce the release of carboxyfluorescein (CF) from CF-loaded MDCK cells as seen for pore-forming hemolytic isolectin CEL-III, suggesting that the primary cellular target of CEL-I may be the plasma membrane, but its action mechanism differs from that of CEL-III. Although CEL-I induced dramatic cellular morphological changes in MDCK cells, neither typical apoptotic nuclear morphological changes nor DNA fragmentation was observed in CEL-I-treated MDCK cells even after such cellular changes. Our results demonstrated that CEL-I showed a potent cytotoxic effect, especially on MDCK cells, by causing plasma membrane disorder without induction of apoptosis.

  20. 3-Dimensional Examination of the Adult Mouse Subventricular Zone Reveals Lineage-Specific Microdomains

    PubMed Central

    Azim, Kasum; Fiorelli, Roberto; Zweifel, Stefan; Hurtado-Chong, Anahi; Yoshikawa, Kazuaki; Slomianka, Lutz; Raineteau, Olivier

    2012-01-01

    Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling “stem” cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess

  1. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing.

    PubMed

    Agogué, Hélène; Lamy, Dominique; Neal, Phillip R; Sogin, Mitchell L; Herndl, Gerhard J

    2011-01-01

    Bacterial assemblages from subsurface (100 m depth), meso- (200-1000 m depth) and bathy-pelagic (below 1000 m depth) zones at 10 stations along a North Atlantic Ocean transect from 60°N to 5°S were characterized using massively parallel pyrotag sequencing of the V6 region of the 16S rRNA gene (V6 pyrotags). In a dataset of more than 830,000 pyrotags, we identified 10,780 OTUs of which 52% were singletons. The singletons accounted for less than 2% of the OTU abundance, whereas the 100 and 1000 most abundant OTUs represented 80% and 96% respectively of all recovered OTUs. Non-metric Multi-Dimensional Scaling and Canonical Correspondence Analysis of all the OTUs excluding the singletons revealed a clear clustering of the bacterial communities according to the water masses. More than 80% of the 1000 most abundant OTUs corresponded to Proteobacteria of which 55% were Alphaproteobacteria, mostly composed of the SAR11 cluster. Gammaproteobacteria increased with depth and included a relatively large number of OTUs belonging to Alteromonadales and Oceanospirillales. The bathypelagic zone showed higher taxonomic evenness than the overlying waters, albeit bacterial diversity was remarkably variable. Both abundant and low-abundance OTUs were responsible for the distinct bacterial communities characterizing the major deep-water masses. Taken together, our results reveal that deep-water masses act as bio-oceanographic islands for bacterioplankton leading to water mass-specific bacterial communities in the deep waters of the Atlantic. © 2010 Blackwell Publishing Ltd.

  2. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing

    PubMed Central

    Agogué, Hélène; Lamy, Dominique; Neal, Phillip R.; Sogin, Mitchell L.; Herndl, Gerhard J.

    2011-01-01

    Bacterial assemblages from subsurface (100 m depth), meso- (200–1000 m depth) and bathy-pelagic (below 1000 m depth) zones at 10 stations along a North Atlantic Ocean transect from 60°N to 5°S were characterized using massively parallel pyrotag sequencing of the V6 region of the 16S rRNA gene (V6 pyrotags). In a dataset of more than 830,000 pyrotags we identified 10,780 OTUs of which 52% were singletons. The singletons accounted for less than 2% of the OTU abundance, while the 100 and 1,000 most abundant OTUs represented 80% and 96%, respectively, of all recovered OTUs. Non-metric Multi-Dimensional Scaling and Canonical Correspondence Analysis of all the OTUs excluding the singletons revealed a clear clustering of the bacterial communities according to the water masses. More than 80% of the 1,000 most abundant OTUs corresponded to Proteobacteria of which 55% were Alphaproteobacteria, mostly composed of the SAR11 cluster. Gammaproteobacteria increased with depth and included a relatively large number of OTUs belonging to Alteromonadales and Oceanospirillales. The bathypelagic zone showed higher taxonomic evenness than the overlying waters, albeit bacterial diversity was remarkably variable. Both abundant and low-abundance OTUs were responsible for the distinct bacterial communities characterizing the major deep-water masses. Taken together, our results reveal that deep-water masses act as bio-oceanographic islands for bacterioplankton leading to water mass-specific bacterial communities in the deep waters of the Atlantic. PMID:21143328

  3. Diverse Phenotypes and Specific Transcription Patterns in Twenty Mouse Lines with Ablated LincRNAs

    PubMed Central

    Lai, Ka-Man Venus; Gong, Guochun; Atanasio, Amanda; Rojas, José; Quispe, Joseph; Posca, Julita; White, Derek; Huang, Mei; Fedorova, Daria; Grant, Craig; Miloscio, Lawrence; Droguett, Gustavo; Poueymirou, William T.; Auerbach, Wojtek; Yancopoulos, George D.; Frendewey, David; Rinn, John; Valenzuela, David M.

    2015-01-01

    In a survey of 20 knockout mouse lines designed to examine the biological functions of large intergenic non-coding RNAs (lincRNAs), we have found a variety of phenotypes, ranging from perinatal lethality to defects associated with premature aging and morphological and functional abnormalities in the lungs, skeleton, and muscle. Each mutant allele carried a lacZ reporter whose expression profile highlighted a wide spectrum of spatiotemporal and tissue-specific transcription patterns in embryos and adults that informed our phenotypic analyses and will serve as a guide for future investigations of these genes. Our study shows that lincRNAs are a new class of encoded molecules that, like proteins, serve essential and important functional roles in embryonic development, physiology, and homeostasis of a broad array of tissues and organs in mammals. PMID:25909911

  4. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    PubMed Central

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  5. Fluorescence microscopy reveals molecular localisation at line defects in nematic liquid crystals

    PubMed Central

    Ohzono, Takuya; Katoh, Kaoru; Fukuda, Jun-ichi

    2016-01-01

    Topological defects easily form in liquid crystals (LCs) as a result of frustrations in spatially dependent anisotropic molecular ordering, and have been regarded as promising tools for facilitating manipulation of relatively large non-LC materials such as colloids. However, it remains unclear whether low-molecular-weight (LMW) impurities that do not aggregate or self-assemble in bulk LCs because of the dominance of entropy can localise at LC defects. Here, by fluorescence microscopy, we directly show the localisation of LMW molecules at the topological line defects of a nematic LC. It is theoretically explained that excess free energy density of nematic ordering at the defect core allows LMW solutes to accumulate at a non-negligible level overcoming the entropy leading to their uniform distributions. Our results demonstrate the usefulness of LC defects as a bottom-up field that enables micromanipulation of LMW molecules and realisation of transformable three-dimensional micro-architectures composed of versatile small functional molecules. PMID:27812045

  6. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition.

    PubMed

    Taylor, Martin S; LaCava, John; Mita, Paolo; Molloy, Kelly R; Huang, Cheng Ran Lisa; Li, Donghui; Adney, Emily M; Jiang, Hua; Burns, Kathleen H; Chait, Brian T; Rout, Michael P; Boeke, Jef D; Dai, Lixin

    2013-11-21

    LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here, we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the copurified proteome, identifying 37 high-confidence candidate interactors. These data sets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest that this occurs during or immediately after target-primed reverse transcription.

  7. Photosynthetic characterization of Rubisco transplantomic lines reveals alterations on photochemistry and mesophyll conductance.

    PubMed

    Galmés, Jeroni; Perdomo, Juan Alejandro; Flexas, Jaume; Whitney, Spencer M

    2013-07-01

    Improving Rubisco catalysis is considered a promising way to enhance C3-photosynthesis and photosynthetic water use efficiency (WUE) provided the introduced changes have little or no impact on other processes affecting photosynthesis such as leaf photochemistry or leaf CO2 diffusion conductances. However, the extent to which the factors affecting photosynthetic capacity are co-regulated is unclear. The aim of the present study was to characterize the photochemistry and CO2 transport processes in the leaves of three transplantomic tobacco genotypes expressing hybrid Rubisco isoforms comprising different Flaveria L-subunits that show variations in catalysis and differing trade-offs between the amount of Rubisco and its activation state. Stomatal conductance (g s) in each transplantomic tobacco line matched wild-type, while their photochemistry showed co-regulation with the variations in Rubisco catalysis. A tight co-regulation was observed between Rubisco activity and mesophyll conductance (g m) that was independent of g s thus producing plants with varying g m/g s ratios. Since the g m/g s ratio has been shown to positively correlate with intrinsic WUE, the present results suggest that altering photosynthesis by modifying Rubisco catalysis may also be useful for targeting WUE.

  8. Impaired Intracellular Ca2+ Dynamics in Live Cardiomyocytes Revealed by Rapid Line Scan Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Plank, David M.; Sussman, Mark A.

    2005-06-01

    Altered intracellular Ca2+ dynamics are characteristically observed in cardiomyocytes from failing hearts. Studies of Ca2+ handling in myocytes predominantly use Fluo-3 AM, a visible light excitable Ca2+ chelating fluorescent dye in conjunction with rapid line-scanning confocal microscopy. However, Fluo-3 AM does not allow for traditional ratiometric determination of intracellular Ca2+ concentration and has required the use of mathematic correction factors with values obtained from separate procedures to convert Fluo-3 AM fluorescence to appropriate Ca2+ concentrations. This study describes methodology to directly measure intracellular Ca2+ levels using inactivated, Fluo-3-AM-loaded cardiomyocytes equilibrated with Ca2+ concentration standards. Titration of Ca2+ concentration exhibits a linear relationship to increasing Fluo-3 AM fluorescence intensity. Images obtained from individual myocyte confocal scans were recorded, average pixel intensity values were calculated, and a plot is generated relating the average pixel intensity to known Ca2+ concentrations. These standard plots can be used to convert transient Ca2+ fluorescence obtained with experimental cells to Ca2+ concentrations by linear regression analysis. Standards are determined on the same microscope used for acquisition of unknown Ca2+ concentrations, simplifying data interpretation and assuring accuracy of conversion values. This procedure eliminates additional equipment, ratiometric imaging, and mathematic correction factors and should be useful to investigators requiring a straightforward method for measuring Ca2+ concentrations in live cells using Ca2+-chelating dyes exhibiting variable fluorescence intensity.

  9. Genome-Wide Association Mapping of Fertility Reduction upon Heat Stress Reveals Developmental Stage-Specific QTLs in Arabidopsis thaliana

    PubMed Central

    Bac-Molenaar, Johanna A.; Fradin, Emilie F.; Becker, Frank F.M.; Rienstra, Juriaan A.; van der Schoot, J.; Vreugdenhil, Dick; Keurentjes, Joost J.B.

    2015-01-01

    For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing. PMID:26163573

  10. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  11. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  12. New Phosphospecific Antibody Reveals Isoform-Specific Phosphorylation of CPEB3 Protein

    PubMed Central

    Sehgal, Kapil; Sylvester, Marc; Skubal, Magdalena; Josten, Michele; Steinhäuser, Christian; De Koninck, Paul; Theis, Martin

    2016-01-01

    Cytoplasmic Polyadenylation Element Binding proteins (CPEBs) are a family of polyadenylation factors interacting with 3’UTRs of mRNA and thereby regulating gene expression. Various functions of CPEBs in development, synaptic plasticity, and cellular senescence have been reported. Four CPEB family members of partially overlapping functions have been described to date, each containing a distinct alternatively spliced region. This region is highly conserved between CPEBs-2-4 and contains a putative phosphorylation consensus, overlapping with the exon seven of CPEB3. We previously found CPEBs-2-4 splice isoforms containing exon seven to be predominantly present in neurons, and the isoform expression pattern to be cell type-specific. Here, focusing on the alternatively spliced region of CPEB3, we determined that putative neuronal isoforms of CPEB3 are phosphorylated. Using a new phosphospecific antibody directed to the phosphorylation consensus we found Protein Kinase A and Calcium/Calmodulin-dependent Protein Kinase II to robustly phosphorylate CPEB3 in vitro and in primary hippocampal neurons. Interestingly, status epilepticus induced by systemic kainate injection in mice led to specific upregulation of the CPEB3 isoforms containing exon seven. Extensive analysis of CPEB3 phosphorylation in vitro revealed two other phosphorylation sites. In addition, we found plethora of potential kinases that might be targeting the alternatively spliced kinase consensus site of CPEB3. As this site is highly conserved between the CPEB family members, we suggest the existence of a splicing-based regulatory mechanism of CPEB function, and describe a robust phosphospecific antibody to study it in future. PMID:26915047

  13. Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts.

    PubMed

    Fritz, Heather M; Buchholz, Kerry R; Chen, Xiucui; Durbin-Johnson, Blythe; Rocke, David M; Conrad, Patricia A; Boothroyd, John C

    2012-01-01

    Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1-10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear "off" in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle.

  14. Demographic costs of inbreeding revealed by sex-specific genetic rescue effects

    PubMed Central

    2009-01-01

    Background Inbreeding can slow population growth and elevate extinction risk. A small number of unrelated immigrants to an inbred population can substantially reduce inbreeding and improve fitness, but little attention has been paid to the sex-specific effects of immigrants on such "genetic rescue". We conducted two subsequent experiments to investigate demographic consequences of inbreeding and genetic rescue in guppies. Results Populations established from pairs of full siblings that were descended either from two generations of full-sibling inbreeding or unrelated outbred guppies did not grow at different rates initially, but when the first generation offspring started breeding, outbred-founded populations grew more slowly than inbred-founded populations. In a second experiment, adding two outbred males to the inbred populations resulted in significantly faster population growth than in control populations where no immigrants were added. Adding females resulted in growth at a rate intermediate to the control and male-immigrant treatments. Conclusion The slower growth of the outbred-founded than inbred-founded populations is the opposite of what would be expected under inbreeding depression unless many deleterious recessive alleles had already been selectively purged in the inbreeding that preceded the start of the experiment, and that significant inbreeding depression occurred when the first generation offspring in outbred-founded populations started to inbreed. The second experiment revealed strong inbreeding depression in the inbred founded populations, despite the apparent lack thereof in these populations earlier on. Moreover, the fact that the addition of male immigrants resulted in the highest levels of population growth suggests that sex-specific genetic rescue may occur in promiscuous species, with male rescue resulting in higher levels of outbreeding than female rescue. PMID:20003302

  15. Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts

    PubMed Central

    Fritz, Heather M.; Buchholz, Kerry R.; Chen, Xiucui; Durbin-Johnson, Blythe; Rocke, David M.

    2012-01-01

    Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle

  16. Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control.

    PubMed

    Müller, Lukas M; von Korff, Maria; Davis, Seth J

    2014-06-01

    The plant circadian system exists in a framework of rhythmic metabolism. Much has been learned about the transcriptional machinery that generates the clock rhythm. Interestingly, these components are largely conserved between monocots and dicots, but key differences in physiological and developmental output processes have been found. How the clock coordinates carbon metabolism to drive plant growth performance is described with a focus on starch breakdown in Arabidopsis. It is proposed that clock effects on plant growth and fitness are more complex than just matching internal with external rhythms. Interesting recent findings support that the products of photosynthesis, probably sucrose, in turn feeds back to the clock to set its rhythm. In this way, the clock both controls and is controlled by carbon fluxes. This has an interesting connection to stress signalling and water-use efficiency, and it is now known that the clock and abscisic acid pathways are reciprocally coordinated. These processes converge to drive growth in a species-specific context such that predictions from the Arabidopsis model to other species can be restricted. This has been seen from phenotypic growth studies that revealed that dicot shoot growth is rhythmic whereas monocot shoot growth is continuous. Taken together, emerging evidence suggests reciprocal interactions between metabolism, the circadian clock, and stress signalling to control growth and fitness in Arabidopsis, but transferability to other species is not always possible due to species-specific effects. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Transcript Profiling Reveals the Presence of Abiotic Stress and Developmental Stage Specific Ascorbate Oxidase Genes in Plants

    PubMed Central

    Batth, Rituraj; Singh, Kapil; Kumari, Sumita; Mustafiz, Ananda

    2017-01-01

    Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants. PMID:28261251

  18. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species.

    PubMed

    Marcelletti, Simone; Ferrante, Patrizia; Petriccione, Milena; Firrao, Giuseppe; Scortichini, Marco

    2011-01-01

    A recent re-emerging bacterial canker disease incited by Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses to Actinidia chinensis and A. deliciosa cultivations in southern Europe, New Zealand, Chile and South Korea. Little is known about the genetic features of this pathovar. We generated genome-wide Illumina sequence data from two Psa strains causing outbreaks of bacterial canker on the A. deliciosa cv. Hayward in Japan (J-Psa, type-strain of the pathovar) and in Italy (I-Psa) in 1984 and 1992, respectively as well as from a Psa strain (I2-Psa) isolated at the beginning of the recent epidemic on A. chinensis cv. Hort16A in Italy. All strains were isolated from typical leaf spot symptoms. The phylogenetic relationships revealed that Psa is more closely related to P. s. pv. theae than to P. avellanae within genomospecies 8. Comparative genomic analyses revealed both relevant intrapathovar variations and putative pathovar-specific genomic regions in Psa. The genomic sequences of J-Psa and I-Psa were very similar. Conversely, the I2-Psa genome encodes four additional effector protein genes, lacks a 50 kb plasmid and the phaseolotoxin gene cluster, argK-tox but has acquired a 160 kb plasmid and putative prophage sequences. Several lines of evidence from the analysis of the genome sequences support the hypothesis that this strain did not evolve from the Psa population that caused the epidemics in 1984-1992 in Japan and Italy but rather is the product of a recent independent evolution of the pathovar actinidiae for infecting Actinidia spp. All Psa strains share the genetic potential for copper resistance, antibiotic detoxification, high affinity iron acquisition and detoxification of nitric oxide of plant origin. Similar to other sequenced phytopathogenic pseudomonads associated with woody plant species, the Psa strains isolated from leaves also display a set of genes involved in the catabolism of plant-derived aromatic compounds.

  19. Transcript Profiling Reveals the Presence of Abiotic Stress and Developmental Stage Specific Ascorbate Oxidase Genes in Plants.

    PubMed

    Batth, Rituraj; Singh, Kapil; Kumari, Sumita; Mustafiz, Ananda

    2017-01-01

    Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants.

  20. Pseudomonas syringae pv. actinidiae Draft Genomes Comparison Reveal Strain-Specific Features Involved in Adaptation and Virulence to Actinidia Species

    PubMed Central

    Marcelletti, Simone; Ferrante, Patrizia; Petriccione, Milena; Firrao, Giuseppe; Scortichini, Marco

    2011-01-01

    A recent re-emerging bacterial canker disease incited by Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses to Actinidia chinensis and A. deliciosa cultivations in southern Europe, New Zealand, Chile and South Korea. Little is known about the genetic features of this pathovar. We generated genome-wide Illumina sequence data from two Psa strains causing outbreaks of bacterial canker on the A. deliciosa cv. Hayward in Japan (J-Psa, type-strain of the pathovar) and in Italy (I-Psa) in 1984 and 1992, respectively as well as from a Psa strain (I2-Psa) isolated at the beginning of the recent epidemic on A. chinensis cv. Hort16A in Italy. All strains were isolated from typical leaf spot symptoms. The phylogenetic relationships revealed that Psa is more closely related to P. s. pv. theae than to P. avellanae within genomospecies 8. Comparative genomic analyses revealed both relevant intrapathovar variations and putative pathovar-specific genomic regions in Psa. The genomic sequences of J-Psa and I-Psa were very similar. Conversely, the I2-Psa genome encodes four additional effector protein genes, lacks a 50 kb plasmid and the phaseolotoxin gene cluster, argK-tox but has acquired a 160 kb plasmid and putative prophage sequences. Several lines of evidence from the analysis of the genome sequences support the hypothesis that this strain did not evolve from the Psa population that caused the epidemics in 1984–1992 in Japan and Italy but rather is the product of a recent independent evolution of the pathovar actinidiae for infecting Actinidia spp. All Psa strains share the genetic potential for copper resistance, antibiotic detoxification, high affinity iron acquisition and detoxification of nitric oxide of plant origin. Similar to other sequenced phytopathogenic pseudomonads associated with woody plant species, the Psa strains isolated from leaves also display a set of genes involved in the catabolism of plant-derived aromatic compounds. PMID

  1. Comparative genomics reveals a functional thyroid-specific element in the far upstream region of the PAX8 gene

    PubMed Central

    2010-01-01

    Background The molecular mechanisms leading to a fully differentiated thyrocite are still object of intense study even if it is well known that thyroglobulin, thyroperoxidase, NIS and TSHr are the marker genes of thyroid differentiation. It is also well known that Pax8, TTF-1, Foxe1 and Hhex are the thyroid-enriched transcription factors responsible for the expression of the above genes, thus are responsible for the differentiated thyroid phenotype. In particular, the role of Pax8 in the fully developed thyroid gland was studied in depth and it was established that it plays a key role in thyroid development and differentiation. However, to date the bases for the thyroid-enriched expression of this transcription factor have not been unraveled yet. Here, we report the identification and characterization of a functional thyroid-specific enhancer element located far upstream of the Pax8 gene. Results We hypothesized that regulatory cis-acting elements are conserved among mammalian genes. Comparison of a genomic region extending for about 100 kb at the 5'-flanking region of the mouse and human Pax8 gene revealed several conserved regions that were tested for enhancer activity in thyroid and non-thyroid cells. Using this approach we identified one putative thyroid-specific regulatory element located 84.6 kb upstream of the Pax8 transcription start site. The in silico data were verified by promoter-reporter assays in thyroid and non-thyroid cells. Interestingly, the identified far upstream element manifested a very high transcriptional activity in the thyroid cell line PC Cl3, but showed no activity in HeLa cells. In addition, the data here reported indicate that the thyroid-enriched transcription factor TTF-1 is able to bind in vitro and in vivo the Pax8 far upstream element, and is capable to activate transcription from it. Conclusions Results of this study reveal the presence of a thyroid-specific regulatory element in the 5' upstream region of the Pax8 gene. The

  2. Deep Sequencing Reveals Low Incidence of Endogenous LINE-1 Retrotransposition in Human Induced Pluripotent Stem Cells

    PubMed Central

    Arokium, Hubert; Kim, Namshin; Liang, Min; Presson, Angela P.; Chen, Irvin S.

    2014-01-01

    Long interspersed element-1 (LINE-1 or L1) retrotransposition induces insertional mutations that can result in diseases. It was recently shown that the copy number of L1 and other retroelements is stable in induced pluripotent stem cells (iPSCs). However, by using an engineered reporter construct over-expressing L1, another study suggests that reprogramming activates L1 mobility in iPSCs. Given the potential of human iPSCs in therapeutic applications, it is important to clarify whether these cells harbor somatic insertions resulting from endogenous L1 retrotransposition. Here, we verified L1 expression during and after reprogramming as well as potential somatic insertions driven by the most active human endogenous L1 subfamily (L1Hs). Our results indicate that L1 over-expression is initiated during the reprogramming process and is subsequently sustained in isolated clones. To detect potential somatic insertions in iPSCs caused by L1Hs retotransposition, we used a novel sequencing strategy. As opposed to conventional sequencing direction, we sequenced from the 3′ end of L1Hs to the genomic DNA, thus enabling the direct detection of the polyA tail signature of retrotransposition for verification of true insertions. Deep coverage sequencing thus allowed us to detect seven potential somatic insertions with low read counts from two iPSC clones. Negative PCR amplification in parental cells, presence of a polyA tail and absence from seven L1 germline insertion databases highly suggested true somatic insertions in iPSCs. Furthermore, these insertions could not be detected in iPSCs by PCR, likely due to low abundance. We conclude that L1Hs retrotransposes at low levels in iPSCs and therefore warrants careful analyses for genotoxic effects. PMID:25289675

  3. Gene and microRNA expression reveals sensitivity to paclitaxel in laryngeal cancer cell line

    PubMed Central

    Xu, Cheng-Zhi; Xie, Jin; Jin, Bin; Chen, Xin-Wei; Sun, Zhen-Feng; Wang, Bao-Xing; Dong, Pin

    2013-01-01

    Paclitaxel is a widely used chemotherapy drug for advanced laryngeal cancer patients. However, the fact that there are 20-40% of advanced laryngeal cancer patients do not response to paclitaxel makes it necessary to figure out potential biomarkers for paclitaxel sensitivity prediction. In this work, Hep2, a laryngeal cancer cell line, untreated or treated with lower dose of paclitaxel for 24 h, was applied to DNA microarray chips for gene and miR expression profile analysis. Expression of eight genes altered significantly following paclitaxel treatment, which was further validated by quantitative real-time PCR. Four up-regulated genes were ID2, BMP4, CCL4 and ACTG2, in which ID2 and BMP4 were implicated to be involved in several drugs sensitivity. While the down-regulated four genes, MAPK4, FASN, INSIG1 and SCD, were mainly linked to the endoplasmic reticulum and fatty acid biosynthesis, these two cell processes that are associated with drug sensitivity by increasing evidences. After paclitaxel treatment, expression of 49 miRs was significantly altered. Within these miRs, the most markedly expression-changed were miR-31-star, miR-1264, miR-3150b-5p and miR-210. While the miRs putatively modulated the mRNA expression of the most significantly expression-altered genes were miR-1264, miR-130a, miR-27b, miR-195, miR-1291, miR-214, miR-1277 and miR-1265, which were obtained by miR target prediction and miRNA target correlation. Collectively, our study might provide potential biomarkers for paclitaxel sensitivity prediction and drug resistance targets in laryngeal cancer patients. PMID:23826416

  4. Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies

    PubMed Central

    Amin, Mohammed N.; McLellan, Jason S.; Huang, Wei; Orwenyo, Jared; Burton, Dennis R.; Koff, Wayne C.; Kwong, Peter D.

    2013-01-01

    A new class of glycan-reactive HIV-neutralizing antibodies, including PG9 and PG16, has been recently discovered that appear to recognize novel glycopeptide epitopes on HIV-1 gp120. However, further characterization and reconstitution of the precise neutralizing epitopes are complicated by the heterogeneity of glycosylation. We report here the design, synthesis, and antigenic evaluation of novel cyclic V1V2 glycopeptides carrying defined N-linked glycans at the conserved glycosylation sites (N160 and N156/N173) derived from gp120 of two HIV-1 isolates. Antibody binding studies confirmed the necessity of a Man5GlcNAc2 glycan at N160 for recognition by PG9 and PG16, and further revealed a critical role of a sialylated N-glycan at the secondary site (N156/N173) in the context of glycopeptides for antibody binding. In addition to defining the glycan specificities of PG9 and PG16, the identified synthetic glycopeptides provide a valuable template for HIV-1 vaccine design. PMID:23831758

  5. Comparative Transcriptome Analysis Reveals Early Pregnancy-Specific Genes Expressed in Peripheral Blood of Pregnant Sows

    PubMed Central

    Zhu, Shien; Shi, Wenqing; Hu, Maishun; Fu, Xiangwei; Wang, Chuduan; Wang, Yachun; Zhang, Qin; Yu, Ying

    2014-01-01

    Early and accurate diagnosis of pregnancy is important for effective management of an economical pig farm. Besides the currently available methods used in early diagnosis of sows, circulating nucleic acids in peripheral blood may contain some early pregnancy-specific molecular markers. For the first time, microarray analysis of peripheral blood from pregnant sows versus non-pregnant sows identified 127 up-regulated and 56 down-regulated genes at day 14 post-insemination. Gene Ontology annotation grouped the total differently expressed genes into 3 significantly enriched terms, cell surface receptor linked signal transduction, G-protein coupled receptor protein signaling pathway and regulation of vesicle-mediated transport. Signaling pathway analysis revealed the only one significantly changed pathway was arachidonic acid metabolism. Of the differently expressed genes, nine (including LPAR3, RXFP4, GALP, CBR1, CBR2, GPX6, USP18, LHB and NR5A1) were found to exert function related to early pregnancy processes. This study provides a clue that differentially abundant RNAs in maternal peripheral blood can help to identify the molecular markers of early pregnancy in pigs. PMID:25479131

  6. Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides.

    PubMed

    Dallas, David C; Guerrero, Andres; Khaldi, Nora; Castillo, Patricia A; Martin, William F; Smilowitz, Jennifer T; Bevins, Charles L; Barile, Daniela; German, J Bruce; Lebrilla, Carlito B

    2013-05-03

    Milk is traditionally considered an ideal source of the basic elemental nutrients required by infants. More detailed examination is revealing that milk represents a more functional ensemble of components with benefits to both infants and mothers. A comprehensive peptidomics method was developed and used to analyze human milk yielding an extensive array of protein products present in the fluid. Over 300 milk peptides were identified originating from major and many minor protein components of milk. As expected, the majority of peptides derived from β-casein, however no peptide fragments from the major milk proteins lactoferrin, α-lactalbumin, and secretory immunoglobulin A were identified. Proteolysis in the mammary gland is selective-released peptides were drawn only from specific proteins and typically from only select parts of the parent sequence. A large number of the peptides showed significant sequence overlap with peptides with known antimicrobial or immunomodulatory functions. Antibacterial assays showed the milk peptide mixtures inhibited the growth of Escherichia coli and Staphylococcus aureus . The predigestion of milk proteins and the consequent release of antibacterial peptides may provide a selective advantage through evolution by protecting both the mother's mammary gland and her nursing offspring from infection.

  7. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures.

    PubMed

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Skerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-10-16

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the 'water retention site', suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG.

  8. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures

    PubMed Central

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-01-01

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG. PMID:25216680

  9. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers.

    PubMed

    Agirre, Xabier; Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C; Beekman, Renée; Rodríguez-Madoz, Juan R; San José-Enériz, Edurne; Fang, Fang; Gutiérrez, Norma C; García-Verdugo, José M; Robson, Michael I; Schirmer, Eric C; Guruceaga, Elisabeth; Martens, Joost H A; Gut, Marta; Calasanz, Maria J; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F San; Melnick, Ari; Stunnenberg, Hendrik G; Gut, Ivo G; Prosper, Felipe; Martín-Subero, José I

    2015-04-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.

  10. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

    PubMed Central

    Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C.; Beekman, Renée; Rodríguez-Madoz, Juan R.; José-Enériz, Edurne San; Fang, Fang; Gutiérrez, Norma C.; García-Verdugo, José M.; Robson, Michael I.; Schirmer, Eric C.; Guruceaga, Elisabeth; Martens, Joost H.A.; Gut, Marta; Calasanz, Maria J.; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F. San; Melnick, Ari; Stunnenberg, Hendrik G.; Gut, Ivo G.

    2015-01-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM. PMID:25644835

  11. Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding

    SciTech Connect

    Aller, Stephen G.; Yu, Jodie; Ward, Andrew; Weng, Yue; Chittaboina, Srinivas; Zhuo, Rupeng; Harrell, Patina M.; Trinh, Yenphuong T.; Zhang, Qinghai; Urbatsch, Ina L.; Chang, Geoffrey

    2009-04-22

    P-glycoprotein (P-gp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance (MDR) in the treatment of cancers. Substrate promiscuity is a hallmark of P-gp activity, thus a structural description of poly-specific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo P-gp at 3.8 angstroms reveals an internal cavity of -6000 angstroms cubed with a 30 angstrom separation of the two nucleotide-binding domains. Two additional P-gp structures with cyclic peptide inhibitors demonstrate distinct drug-binding sites in the internal cavity capable of stereoselectivity that is based on hydrophobic and aromatic interactions. Apo and drug-bound P-gp structures have portals open to the cytoplasm and the inner leaflet of the lipid bilayer for drug entry. The inward-facing conformation represents an initial stage of the transport cycle that is competent for drug binding.

  12. Comparative Proteomics of Human and Macaque Milk Reveals Species-Specific Nutrition during Postnatal Development.

    PubMed

    Beck, Kristen L; Weber, Darren; Phinney, Brett S; Smilowitz, Jennifer T; Hinde, Katie; Lönnerdal, Bo; Korf, Ian; Lemay, Danielle G

    2015-05-01

    Milk has been well established as the optimal nutrition source for infants, yet there is still much to be understood about its molecular composition. Therefore, our objective was to develop and compare comprehensive milk proteomes for human and rhesus macaques to highlight differences in neonatal nutrition. We developed a milk proteomics technique that overcomes previous technical barriers including pervasive post-translational modifications and limited sample volume. We identified 1606 and 518 proteins in human and macaque milk, respectively. During analysis of detected protein orthologs, we identified 88 differentially abundant proteins. Of these, 93% exhibited increased abundance in human milk relative to macaque and include lactoferrin, polymeric immunoglobulin receptor, alpha-1 antichymotrypsin, vitamin D-binding protein, and haptocorrin. Furthermore, proteins more abundant in human milk compared with macaque are associated with development of the gastrointestinal tract, the immune system, and the brain. Overall, our novel proteomics method reveals the first comprehensive macaque milk proteome and 524 newly identified human milk proteins. The differentially abundant proteins observed are consistent with the perspective that human infants, compared with nonhuman primates, are born at a slightly earlier stage of somatic development and require additional support through higher quantities of specific proteins to nurture human infant maturation.

  13. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses

    PubMed Central

    Cabili, Moran N.; Trapnell, Cole; Goff, Loyal; Koziol, Magdalena; Tazon-Vega, Barbara; Regev, Aviv; Rinn, John L.

    2011-01-01

    Large intergenic noncoding RNAs (lincRNAs) are emerging as key regulators of diverse cellular processes. Determining the function of individual lincRNAs remains a challenge. Recent advances in RNA sequencing (RNA-seq) and computational methods allow for an unprecedented analysis of such transcripts. Here, we present an integrative approach to define a reference catalog of >8000 human lincRNAs. Our catalog unifies previously existing annotation sources with transcripts we assembled from RNA-seq data collected from ∼4 billion RNA-seq reads across 24 tissues and cell types. We characterize each lincRNA by a panorama of >30 properties, including sequence, structural, transcriptional, and orthology features. We found that lincRNA expression is strikingly tissue-specific compared with coding genes, and that lincRNAs are typically coexpressed with their neighboring genes, albeit to an extent similar to that of pairs of neighboring protein-coding genes. We distinguish an additional subset of transcripts that have high evolutionary conservation but may include short ORFs and may serve as either lincRNAs or small peptides. Our integrated, comprehensive, yet conservative reference catalog of human lincRNAs reveals the global properties of lincRNAs and will facilitate experimental studies and further functional classification of these genes. PMID:21890647

  14. Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle.

    PubMed

    Bushel, Pierre R; Heard, Nicholas A; Gutman, Roee; Liu, Liwen; Peddada, Shyamal D; Pyne, Saumyadipta

    2009-09-16

    Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast. By integrating genome-wide data from multiple time course cell cycle microarray experiments we reconstructed a gene regulatory network. Based on the network, we discovered in addition to previously known regulatory hubs in M phase, a new putative regulatory hub in the form of the HMG box transcription factor SPBC19G7.04. Further, we inferred periodic activities of several less known transcription factors over the course of the cell cycle, identified over 500 putative regulatory targets and detected many new phase-specific and conserved cis-regulatory motifs. In particular, we show that SPBC19G7.04 has highly significant periodic activity that peaks in early M phase, which is coordinated with the late G2 activity of the forkhead transcription factor fkh2. Finally, using an enhanced Bayesian algorithm to co-cluster the expression data, we obtained 31 clusters of co-regulated genes 1) which constitute regulatory modules from different phases of the cell cycle, 2) whose phase order is coherent across the 10 time course experiments, and 3) which lead to identification of phase-specific control elements at both the transcriptional and post-transcriptional levels in S. pombe. In particular, the ribosome biogenesis clusters expressed in G2 phase reveal new, highly conserved RNA motifs. Using a systems-level analysis of the phase-specific nature of the S. pombe cell cycle gene regulation, we have provided new testable evidence for post-transcriptional regulation in the G2 phase of the fission yeast cell cycle. Based on this comprehensive gene regulatory network, we

  15. Human 21T breast epithelial cell lines mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression patterns.

    PubMed

    Souter, Lesley H; Andrews, Joseph D; Zhang, Guihua; Cook, Amy C; Postenka, Carl O; Al-Katib, Waleed; Leong, Hon S; Rodenhiser, David I; Chambers, Ann F; Tuck, Alan B

    2010-08-01

    Early breast cancer progression involves advancement through specific morphological stages including atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive mammary carcinoma (IMC), although not necessarily always in a linear fashion. Observational studies have examined genetic, epigenetic and gene expression differences in breast tissues representing these stages of progression, but model systems which would allow for experimental testing of specific factors influencing transition through these stages are scarce. The 21T series cell lines, all originally derived from the same patient with metastatic breast cancer, have been proposed to represent a mammary tumor progression series. We report here that three of the 21T cell lines indeed mimic specific stages of human breast cancer progression (21PT-derived cells, ADH; 21NT-derived cells, DCIS; 21MT-1 cells, IMC) when grown in the mammary fat pad of nude mice, albeit after a year. To develop a more rapid, readily manipulatable in vitro assay for examining the biological differences between these cell lines, we have used a 3D Matrigel system. When the three cell lines were grown in 3D Matrigel, they showed characteristic morphologies, in which quantifiable aspects of stage-specific in vivo behaviors (ie, differences in acinar structure formation, cell polarization, colony morphology, cell proliferation, cell invasion) were recapitulated in a reproducible fashion. Gene expression profiling revealed a characteristic pattern for each of the three cell lines. Interestingly, Wnt pathway alterations are particularly predominant in the early transition from 21PTci (ADH) to 21NTci (DCIS), whereas alterations in expression of genes associated with control of cell motility and invasion phenomena are more prominent in the later transition of 21NTci (DCIS) to 21MT-1 (IMC). This system thus reveals potential therapeutic targets and will provide a means of testing the influences of identified genes on

  16. Tumor-specific delivery of biologics by a novel T-cell line HOZOT.

    PubMed

    Onishi, Teppei; Tazawa, Hiroshi; Hashimoto, Yuuri; Takeuchi, Makoto; Otani, Takeshi; Nakamura, Shuji; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kishimoto, Hiroyuki; Umeda, Yuzo; Shirakawa, Yasuhiro; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2016-11-30

    "Cell-in-cell" denotes an invasive phenotype in which one cell actively internalizes in another. The novel human T-cell line HOZOT, established from human umbilical cord blood, was shown to penetrate a variety of human cancer cells but not normal cells. Oncolytic viruses are emerging as biological therapies for human cancers; however, efficient viral delivery is limited by a lack of tumor-specific homing and presence of pre-existing or therapy-induced neutralizing antibodies. Here, we report a new, intriguing approach using HOZOT cells to transmit biologics such as oncolytic viruses into human cancer cells by cell-in-cell invasion. HOZOT cells were successfully loaded via human CD46 antigen with an attenuated adenovirus containing the fiber protein of adenovirus serotype 35 (OBP-401/F35), in which the telomerase promoter regulates viral replication. OBP-401/F35-loaded HOZOT cells were efficiently internalized into human cancer cells and exhibited tumor-specific killing by release of viruses, even in the presence of anti-viral neutralizing antibodies. Moreover, intraperitoneal administration of HOZOT cells loaded with OBP-401/F35 significantly suppressed peritoneally disseminated tumor growth in mice. This unique cell-in-cell property provides a platform for selective delivery of biologics into human cancer cells, which has important implications for the treatment of human cancers.

  17. Tissue- and stage-specific modulation of Wingless signaling by the segment polarity gene lines

    PubMed Central

    Hatini, Victor; Bokor, Peter; Goto-Mandeville, Ryoko; DiNardo, Stephen

    2000-01-01

    Wnt signaling controls a variety of developmental programs but the mechanisms by which the same signal leads to distinct outputs remain unclear. To address this question, we identified stage-specific modulators of Wingless (Wg) signaling in the Drosophila embryonic epidermis. We show that lines (lin) is essential for Wg-dependent patterning in dorsal epidermis. lin encodes a novel protein that acts cell-autonomously, downstream or in parallel to Armadillo (Arm) and upstream of Wg-dependent target genes. Lin can accumulate in nuclei of cells signaled by Wg, suggesting that signaling promotes entry of Lin into the nucleus, where it cooperates with Arm and Pangolin. Thus, a stage-specific modulator is used to mediate Wg signaling activity in dorsal patterning. Hedgehog (Hh) controls half of the parasegmental pattern dorsally and antagonizes Wg function to do so. Lin can accumulate in the cytoplasm of cells signaled by Hh, suggesting that Hh antagonizes Wg function by prohibiting Lin from entering the nucleus. PMID:10837029

  18. Nucleotide-sequence-specific de novo methylation in a somatic murine cell line.

    PubMed Central

    Szyf, M; Schimmer, B P; Seidman, J G

    1989-01-01

    DNA fragments encoding the mouse steroid 21-hydroxylase (C21 or Cyp21A1) gene are de novo methylated when introduced into the mouse adrenocortical tumor cell line Y1 by DNA-mediated gene transfer. Although CCGG sequences within the C21 gene are de novo methylated, CCGG sites within flanking vector sequences, other mammalian gene sequences driven by the C21 promoter, and the neomycin-resistance gene, which was cotransfected with the C21 gene, do not become methylated. At least two separate signals for de novo methylation are encoded within the gene since three fragments derived from the C21 gene were methylated de novo. Specific de novo methylation of C21-derived sequences does not occur in L cells or Y1 kin8 cells; this suggests that the cellular factors needed for de novo methylation of the C21 gene are not ubiquitous. Most DNA sequences are not de novo methylated when introduced into somatic cells and DNA sequences other than the C21 gene are not de novo methylated when introduced into Y1 cells. Several groups have suggested that de novo methylation occurs in early embryonic cells and that somatic cells strictly maintain their methylation pattern by a semiconservative methyltransferase. Our results suggest that de novo methylation of specific nucleotide sequences can occur in some mammalian somatic cells. Images PMID:2789380

  19. Tumor-specific delivery of biologics by a novel T-cell line HOZOT

    PubMed Central

    Onishi, Teppei; Tazawa, Hiroshi; Hashimoto, Yuuri; Takeuchi, Makoto; Otani, Takeshi; Nakamura, Shuji; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kishimoto, Hiroyuki; Umeda, Yuzo; Shirakawa, Yasuhiro; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2016-01-01

    “Cell-in-cell” denotes an invasive phenotype in which one cell actively internalizes in another. The novel human T-cell line HOZOT, established from human umbilical cord blood, was shown to penetrate a variety of human cancer cells but not normal cells. Oncolytic viruses are emerging as biological therapies for human cancers; however, efficient viral delivery is limited by a lack of tumor-specific homing and presence of pre-existing or therapy-induced neutralizing antibodies. Here, we report a new, intriguing approach using HOZOT cells to transmit biologics such as oncolytic viruses into human cancer cells by cell-in-cell invasion. HOZOT cells were successfully loaded via human CD46 antigen with an attenuated adenovirus containing the fiber protein of adenovirus serotype 35 (OBP-401/F35), in which the telomerase promoter regulates viral replication. OBP-401/F35–loaded HOZOT cells were efficiently internalized into human cancer cells and exhibited tumor-specific killing by release of viruses, even in the presence of anti-viral neutralizing antibodies. Moreover, intraperitoneal administration of HOZOT cells loaded with OBP-401/F35 significantly suppressed peritoneally disseminated tumor growth in mice. This unique cell-in-cell property provides a platform for selective delivery of biologics into human cancer cells, which has important implications for the treatment of human cancers. PMID:27901098

  20. [Glycoprotein D (5-23) specific Th2-T-cell line induces HSV-1 keratitis].

    PubMed

    Heiligenhaus, A; Jayaraman, S; Soukiasian, S; Dorf, M; Foster, C S

    1995-08-01

    BALB/c inbred Igh-1-disparate mice exhibit different susceptibility to the development of HSV-1 stromal keratitis (HSK), which may be due to the differential immune regulation. CD4+ T lymphocytes may be critical for the disease induction. A T-cell line (CD4+, T-cell receptor V beta 8+, interleukin-4+) specific for the N-terminal amino acids 5-23 of glycoprotein D from HSV-1 [gD(5-23)] was established from HSK susceptible C.AL-20 mice. HSK-resistant C.B-17 mice, and HSK-susceptible BALB/c mice were injected intraperitoneally with cells (5 x 10(5)/mouse) alone or combined with HSV-1 corneal inoculation (10(5) PFU, KOS strain). Control groups were injected with HSV-antigen-unrelated cells (PPD specific), or were only HSV-1 infected. Migration of the adoptively transferred gD(5-23) Th2 cells was analyzed by histology, by immunohistochemistry and by cell membrane labelling (PKH26). The transfer of gD(5-23) cells accelerated the disease onset (day 2, compared to day 7 without cells). The transfer of gD(5-23) cells increased the incidence of HSK (BALB/c 100%, C.B-17 20%) compared to mice that were only infected with HSV-1 (BALB/c 75%, C.B-17 0%). Keratitis was more severe in mice injected with gD(5-23) cells. In contrast, the transfer of PPD-specific cells did not influence the disease patterns. Mice injected with gD(5-23) cells and not inoculated with HSV-1 did not develop keratitis. The results suggest that CD4+ MHC class II, V beta 8+, IL-4 expressing T-cells (T helper 2) may be important for the induction of HSK.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Germ-line deletion of p53 reveals a multistage tumor progression in spi-1/PU.1 transgenic proerythroblasts.

    PubMed

    Scolan, E L; Wendling, F; Barnache, S; Denis, N; Tulliez, M; Vainchenker, W; Moreau-Gachelin, F

    2001-09-06

    Activation of the spi-1/PU.1 proto-oncogene and loss of p53 function are genetic alterations associated with the emergence of Friend malignant erythroleukemic cells. To address the role of p53 during erythroleukemogenesis, spi-1 transgenic mice (spi-1-Tg) which develop erythroleukemia were bred with p53-deficient mice. Three classes of spi-1 transgenic mice differing in their p53 functional status (p53(+/+), p53(+/-) and p53(-/-)) were generated. These mice developed a unique pattern of erythroleukemia. In wild-type p53 spi-1-Tg mice, none of the primary erythroleukemic spleen cells displayed autonomous growth in vitro and in vivo. In contrast, in p53(+/-) spi-1-Tg mice, erythroleukemic cells gave rise to growth factor-independent cell lines and generated tumors in vivo. Malignancy was associated with loss of the wild-type p53 allele. The p53(-/-) spi-1-Tg mice developed erythroleukemia with a total incidence and a reduced latency compared to the two other genotypes. Unexpectedly, 50% of p53(-/-) spi-1-Tg erythroleukemic spleens generated cell lines that were strictly dependent upon erythropoietin (Epo) for proliferation, whereas the remainder proliferated independently of cytokines. Moreover, only 70% of these spleen cells were tumorigenic. These findings indicate that p53 germ-line deletion did not confer malignancy to spi-1-transgenic proerythroblasts. Moreover Epo independence and tumorigenicity appear as separable phenotypic characteristics revealing that the spi-1-Tg proerythroblasts progress towards malignancy through multiple oncogenic events.

  2. Specificity profiling of dual specificity phosphatase vaccinia VH1-related (VHR) reveals two distinct substrate binding modes.

    PubMed

    Luechapanichkul, Rinrada; Chen, Xianwen; Taha, Hashem A; Vyas, Shubham; Guan, Xiaoyan; Freitas, Michael A; Hadad, Christopher M; Pei, Dehua

    2013-03-01

    Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/ϕ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/ϕ)(T/S)(D/E)pY(G/A/S/Q) (where ϕ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1-6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp(164), which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo.

  3. Diffusion tensor imaging profiles reveal specific neural tract distortion in normal pressure hydrocephalus

    PubMed Central

    Pena, Alonso; Price, Stephen J.; Czosnyka, Marek; Czosnyka, Zofia; DeVito, Elise E.; Housden, Charlotte R.; Sahakian, Barbara J.; Pickard, John D.

    2017-01-01

    Background The pathogenesis of normal pressure hydrocephalus (NPH) remains unclear which limits both early diagnosis and prognostication. The responsiveness to intervention of differing, complex and concurrent injury patterns on imaging have not been well-characterized. We used diffusion tensor imaging (DTI) to explore the topography and reversibility of white matter injury in NPH pre- and early after shunting. Methods Twenty-five participants (sixteen NPH patients and nine healthy controls) underwent DTI, pre-operatively and at two weeks post-intervention in patients. We interrogated 40 datasets to generate a full panel of DTI measures and corroborated findings with plots of isotropy (p) vs. anisotropy (q). Results Concurrent examination of DTI measures revealed distinct profiles for NPH patients vs. controls. PQ plots demonstrated that patterns of injury occupied discrete white matter districts. DTI profiles for different white matter tracts showed changes consistent with i) predominant transependymal diffusion with stretch/ compression, ii) oedema with or without stretch/ compression and iii) predominant stretch/ compression. Findings were specific to individual tracts and dependent upon their proximity to the ventricles. At two weeks post-intervention, there was a 6·7% drop in axial diffusivity (p = 0·022) in the posterior limb of the internal capsule, compatible with improvement in stretch/ compression, that preceded any discernible changes in clinical outcome. On PQ plots, the trajectories of the posterior limb of the internal capsule and inferior longitudinal fasciculus suggested attempted ‘round trips’. i.e. return to normality. Conclusion DTI profiling with p:q correlation may offer a non-invasive biomarker of the characteristics of potentially reversible white matter injury. PMID:28817574

  4. Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations.

    PubMed

    Bedhomme, Stéphanie; Lafforgue, Guillaume; Elena, Santiago F

    2012-05-01

    For multihost pathogens, adaptation to multiple hosts has important implications for both applied and basic research. At the applied level, it is one of the main factors determining the probability and the severity of emerging disease outbreaks. At the basic level, it is thought to be a key mechanism for the maintenance of genetic diversity both in host and pathogen species. Using Tobacco etch potyvirus (TEV) and four natural hosts, we have designed an evolution experiment whose strength and novelty are the use of complex multicellular host organism as hosts and a high level of replication of different evolutionary histories and lineages. A pattern of local adaptation, characterized by a higher infectivity and virulence on host(s) encountered during the experimental evolution was found. Local adaptation only had a cost in terms of performance on other hosts in some cases. We could not verify the existence of a cost for generalists, as expected to arise from antagonistic pleiotropy and other genetic mechanisms generating a fitness trade-off between hosts. This observation confirms that this classical theoretical prediction lacks empirical support. We discuss the reasons for this discrepancy between theory and experiment in the light of our results. The analysis of full genome consensus sequences of the evolved lineages established that all mutations shared between lineages were host specific. A low degree of parallel evolution was observed, possibly reflecting the various adaptive pathways available for TEV in each host. Altogether, these results reveal a strong adaptive potential of TEV to new hosts without severe evolutionary constraints.

  5. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease

    PubMed Central

    Lewis, Wesley R.; Malarkey, Erik B.; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C.; Porath, Jonathan D.; Birket, Susan E.; Saunier, Sophie; Antignac, Corinne; Leigh, Margaret W.; Zariwala, Maimoona A.; Drummond, Iain A.; Parant, John M.; Hildebrandt, Friedhelm; Yoder, Bradley K.

    2016-01-01

    Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or ‘primary’ cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants

  6. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification

    PubMed Central

    2008-01-01

    Background Globin isoforms with variant properties and functions have been found in the pseudocoel, body wall and cuticle of various nematode species and even in the eyespots of the insect-parasite Mermis nigrescens. In fact, much higher levels of complexity exist, as shown by recent whole genome analysis studies. In silico analysis of the genome of Caenorhabditis elegans revealed an unexpectedly high number of globin genes featuring a remarkable diversity in gene structure, amino acid sequence and expression profiles. Results In the present study we have analyzed whole genomic data from C. briggsae, C. remanei, Pristionchus pacificus and Brugia malayi and EST data from several other nematode species to study the evolutionary history of the nematode globin gene family. We find a high level of conservation of the C. elegans globin complement, with even distantly related nematodes harboring orthologs to many Caenorhabditis globins. Bayesian phylogenetic analysis resolves all nematode globins into two distinct globin classes. Analysis of the globin intron-exon structures suggests extensive loss of ancestral introns and gain of new positions in deep nematode ancestors, and mainly loss in the Caenorhabditis lineage. We also show that the Caenorhabditis globin genes are expressed in distinct, mostly non-overlapping, sets of cells and that they are all under strong purifying selection. Conclusion Our results enable reconstruction of the evolutionary history of the globin gene family in the nematode phylum. A duplication of an ancestral globin gene occurred before the divergence of the Platyhelminthes and the Nematoda and one of the duplicated genes radiated further in the nematode phylum before the split of the Spirurina and Rhabditina and was followed by further radiation in the lineage leading to Caenorhabditis. The resulting globin genes were subject to processes of subfunctionalization and diversification leading to cell-specific expression patterns. Strong purifying

  7. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification.

    PubMed

    Hoogewijs, David; De Henau, Sasha; Dewilde, Sylvia; Moens, Luc; Couvreur, Marjolein; Borgonie, Gaetan; Vinogradov, Serge N; Roy, Scott W; Vanfleteren, Jacques R

    2008-10-09

    Globin isoforms with variant properties and functions have been found in the pseudocoel, body wall and cuticle of various nematode species and even in the eyespots of the insect-parasite Mermis nigrescens. In fact, much higher levels of complexity exist, as shown by recent whole genome analysis studies. In silico analysis of the genome of Caenorhabditis elegans revealed an unexpectedly high number of globin genes featuring a remarkable diversity in gene structure, amino acid sequence and expression profiles. In the present study we have analyzed whole genomic data from C. briggsae, C. remanei, Pristionchus pacificus and Brugia malayi and EST data from several other nematode species to study the evolutionary history of the nematode globin gene family. We find a high level of conservation of the C. elegans globin complement, with even distantly related nematodes harboring orthologs to many Caenorhabditis globins. Bayesian phylogenetic analysis resolves all nematode globins into two distinct globin classes. Analysis of the globin intron-exon structures suggests extensive loss of ancestral introns and gain of new positions in deep nematode ancestors, and mainly loss in the Caenorhabditis lineage. We also show that the Caenorhabditis globin genes are expressed in distinct, mostly non-overlapping, sets of cells and that they are all under strong purifying selection. Our results enable reconstruction of the evolutionary history of the globin gene family in the nematode phylum. A duplication of an ancestral globin gene occurred before the divergence of the Platyhelminthes and the Nematoda and one of the duplicated genes radiated further in the nematode phylum before the split of the Spirurina and Rhabditina and was followed by further radiation in the lineage leading to Caenorhabditis. The resulting globin genes were subject to processes of subfunctionalization and diversification leading to cell-specific expression patterns. Strong purifying selection subsequently

  8. Specific MRI Abnormalities Reveal Severe Perrault Syndrome due to CLPP Defects

    PubMed Central

    Theunissen, Tom E. J.; Szklarczyk, Radek; Gerards, Mike; Hellebrekers, Debby M. E. I.; Mulder-Den Hartog, Elvira N. M.; Vanoevelen, Jo; Kamps, Rick; de Koning, Bart; Rutledge, S. Lane; Schmitt-Mechelke, Thomas; van Berkel, Carola G. M.; van der Knaap, Marjo S.; de Coo, Irenaeus F. M.; Smeets, Hubert J. M.

    2016-01-01

    In establishing a genetic diagnosis in heterogeneous neurological disease, clinical characterization and whole exome sequencing (WES) go hand-in-hand. Clinical data are essential, not only to guide WES variant selection and define the clinical severity of a genetic defect but also to identify other patients with defects in the same gene. In an infant patient with sensorineural hearing loss, psychomotor retardation, and epilepsy, WES resulted in identification of a novel homozygous CLPP frameshift mutation (c.21delA). Based on the gene defect and clinical symptoms, the diagnosis Perrault syndrome type 3 (PRLTS3) was established. The patient’s brain-MRI revealed specific abnormalities of the subcortical and deep cerebral white matter and the middle blade of the corpus callosum, which was used to identify similar patients in the Amsterdam brain-MRI database, containing over 3000 unclassified leukoencephalopathy cases. In three unrelated patients with similar MRI abnormalities the CLPP gene was sequenced, and in two of them novel missense mutations were identified together with a large deletion that covered part of the CLPP gene on the other allele. The severe neurological and MRI abnormalities in these young patients were due to the drastic impact of the CLPP mutations, correlating with the variation in clinical manifestations among previously reported patients. Our data show that similarity in brain-MRI patterns can be used to identify novel PRLTS3 patients, especially during early disease stages, when only part of the disease manifestations are present. This seems especially applicable to the severely affected cases in which CLPP function is drastically affected and MRI abnormalities are pronounced. PMID:27899912

  9. Transcriptomics reveals tissue/organ-specific differences in gene expression in the starfish Patiria pectinifera.

    PubMed

    Kim, Chan-Hee; Go, Hye-Jin; Oh, Hye Young; Jo, Yong Hun; Elphick, Maurice R; Park, Nam Gyu

    2017-09-09

    Starfish (Phylum Echinodermata) are of interest from an evolutionary perspective because as deuterostomian invertebrates they occupy an "intermediate" phylogenetic position with respect to chordates (e.g. vertebrates) and protostomian invertebrates (e.g. Drosophila). Furthermore, starfish are model organisms for research on fertilization, embryonic development, innate immunity and tissue regeneration. However, large-scale molecular data for starfish tissues/organs are limited. To provide a comprehensive genetic resource for the starfish Patiria pectinifera, we report de novo transcriptome assemblies and global gene expression analysis for six P. pectinifera tissues/organs - body wall (BW), coelomic epithelium (CE), tube feet (TF), stomach (SM), pyloric caeca (PC) and gonad (GN). A total of 408 million high-quality reads obtained from six cDNA libraries were assembled de novo using Trinity, resulting in a total of 549,598 contigs with a mean length of 835 nucleotides (nt), an N50 of 1473nt, and GC ratio of 42.5%. A total of 126,136 contigs (22.9%) were obtained as predicted open reading frames (ORFs) by TransDecoder, of which 102,187 were annotated with NCBI non-redundant (NR) hits, and 51,075 and 10,963 were annotated with Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) using the Blast2GO program, respectively. Gene expression analysis revealed that tissues/organs are grouped into three clusters: BW/CE/TF, SM/PC, and GN, which likely reflect functional relationships. 2408, 8560, 2687, 1727, 3321, and 2667 specifically expressed genes were identified for BW, GN, PC, CE, SM and TF, respectively, using the ROKU method. This study provides a valuable transcriptome resource and novel molecular insights into the functional biology of different tissues/organs in starfish as a model organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Different levels of food restriction reveal genotype-specific differences in learning a visual discrimination task.

    PubMed

    Makowiecki, Kalina; Hammond, Geoff; Rodger, Jennifer

    2012-01-01

    In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80-90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW). We used adult wildtype (WT; C57Bl/6j) and knockout (ephrin-A2⁻/⁻) mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets) they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2⁻/⁻ mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies.

  11. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Xiao, Xueqiong; Peng, Deliang; Wang, Gaofeng; Xiao, Yannong

    2016-01-01

    Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs. PMID:27486440

  12. New insights on shallow and deep crustal geological structures of BABEL line 7 marine reflection seismic data revealed from reprocessing

    NASA Astrophysics Data System (ADS)

    Shahrokhi, H.; Malehmir, A.; Sopher, D.

    2012-04-01

    data, we have managed to reveal reflections as shallow as 1s in the data. Some of these reflections appear to be a continuation of deeper reflections but now they appear to reach to the surface, allowing correlation with the near-surface geology. At least two major moderately dipping shear zones are visible in the reprocessed data in comparison with the previous results. Deeper reflections are also improved which together with the improvements in the shallow parts of the data should allow small-scale geological structures encounter along the BABEL line 7 to be refined.

  13. Molecular Detection and Genotyping of Male-Specific Coliphages by Reverse Transcription-PCR and Reverse Line Blot Hybridization

    PubMed Central

    Vinjé, Jan; Oudejans, Sjon J. G.; Stewart, Jill R.; Sobsey, Mark D.; Long, Sharon C.

    2004-01-01

    In recent years, there has been increased interest in the use of male-specific or F+ coliphages as indicators of microbial inputs to source waters. Sero- or genotyping of these coliphages can also be used for microbial source tracking (MST). Among the male-specific coliphages, the F+ RNA (FRNA) viruses are well studied, while little is known about the F+ DNA (FDNA) viruses. We have developed a reverse line blot hybridization (RLB) assay which allows for the simultaneous detection and genotyping of both FRNA as well as FDNA coliphages. These assays included a novel generic duplex reverse transcription-PCR (RT-PCR) assay for FRNA viruses as well as a generic PCR for FDNA viruses. The RT-PCR assays were validated by using 190 field and prototype strains. Subsequent DNA sequencing and phylogenetic analyses of RT-PCR products revealed the classification of six different FRNA clusters, including the well-established subgroups I through IV, and three different FDNA clusters, including one (CH) not previously described. Within the leviviruses, a potentially new subgroup (called JS) including strains having more than 40% nucleotide sequence diversity with the known levivirus subgroups (MS2 and GA) was identified. We designed subgroup-specific oligonucleotides that were able to genotype all nine (six FRNA, three FDNA) different clusters. Application of the method to a panel of 351 enriched phage samples from animal feces and wastewater, including known prototype strains (MS2, GA, Qβ, M11, FI, and SP for FRNA and M13, f1, and fd for FDNA), resulted in successful genotyping of 348 (99%) of the samples. In summary, we developed a novel method for standardized genotyping of F+ coliphages as a useful tool for large-scale MST studies. PMID:15466543

  14. Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F₁ interspecies hybrids.

    PubMed

    Shen, Yingjia; Catchen, Julian; Garcia, Tzintzuni; Amores, Angel; Beldorth, Ion; Wagner, Jonathan; Zhang, Ziping; Postlethwait, John; Warren, Wes; Schartl, Manfred; Walter, Ronald B

    2012-01-01

    Variations in gene expression are essential for the evolution of novel phenotypes and for speciation. Studying allelic specific gene expression (ASGE) within interspecies hybrids provides a unique opportunity to reveal underlying mechanisms of genetic variation. Using Xiphophorus interspecies hybrid fishes and high-throughput next generation sequencing technology, we were able to assess variations between two closely related vertebrate species, Xiphophorus maculatus and Xiphophorus couchianus, and their F(1) interspecies hybrids. We constructed transcriptome-wide SNP polymorphism sets between two highly inbred X. maculatus lines (JP 163 A and B), and between X. maculatus and a second species, X. couchianus. The X. maculatus JP 163 A and B parental lines have been separated in the laboratory for ≈70 years and we were able to identify SNPs at a resolution of 1 SNP per 49 kb of transcriptome. In contrast, SNP polymorphisms between X. couchianus and X. maculatus species, which diverged ≈5-10 million years ago, were identified about every 700 bp. Using 6524 transcripts with identified SNPs between the two parental species (X. maculatus and X. couchianus), we mapped RNA-seq reads to determine ASGE within F(1) interspecies hybrids. We developed an in silico X. couchianus transcriptome by replacing 90,788 SNP bases for X. maculatus transcriptome with the consensus X. couchianus SNP bases and provide evidence that this procedure overcomes read mapping biases. Employment of the in silico reference transcriptome and tolerating 5 mismatches during read mapping allow direct assessment of ASGE in the F(1) interspecies hybrids. Overall, these results show that Xiphophorus is a tractable vertebrate experimental model to investigate how genetic variations that occur during speciation may affect gene interactions and the regulation of gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Evaluating Tissue-Specific Recombination in a Pdgfrα-CreERT2 Transgenic Mouse Line

    PubMed Central

    O’Rourke, Megan; Cullen, Carlie L.; Auderset, Loic; Pitman, Kimberley A.; Achatz, Daniela; Gasperini, Robert; Young, Kaylene M.

    2016-01-01

    In the central nervous system (CNS) platelet derived growth factor receptor alpha (PDGFRα) is expressed exclusively by oligodendrocyte progenitor cells (OPCs), making the Pdgfrα promoter an ideal tool for directing transgene expression in this cell type. Two Pdgfrα-CreERT2 mouse lines have been generated for this purpose which, when crossed with cre-sensitive reporter mice, allow the temporally restricted labelling of OPCs for lineage-tracing studies. These mice have also been used to achieve the deletion of CNS-specific genes from OPCs. However the ability of Pdgfrα-CreERT2 mice to induce cre-mediated recombination in PDGFRα+ cell populations located outside of the CNS has not been examined. Herein we quantify the proportion of PDGFRα+ cells that become YFP-labelled following Tamoxifen administration to adult Pdgfrα-CreERT2::Rosa26-YFP transgenic mice. We report that the vast majority (>90%) of PDGFRα+ OPCs in the CNS, and a significant proportion of PDGFRα+ stromal cells within the bone marrow (~38%) undergo recombination and become YFP-labelled. However, only a small proportion of the PDGFRα+ cell populations found in the sciatic nerve, adrenal gland, pituitary gland, heart, gastrocnemius muscle, kidney, lung, liver or intestine become YFP-labelled. These data suggest that Pdgfrα-CreERT2 transgenic mice can be used to achieve robust recombination in OPCs, while having a minimal effect on most PDGFRα+ cell populations outside of the CNS. PMID:27626928

  16. A view of bivalent epigenetic marks in two human embryonic stem cell lines reveals a different cardiogenic potential.

    PubMed

    Leschik, Julia; Caron, Leslie; Yang, Henry; Cowan, Chad; Pucéat, Michel

    2015-02-01

    Human embryonic stem (HUES) cells are derived from early individual embryos with unique genetic printing. However, how their epigenetic status might affect their potential to differentiate toward specific lineages remains a puzzling question. Using chromatin immunoprecipitation (ChIP)-polymerase chain reaction and ChIP-on-chip, the status of bivalent domains on gene promoters (ie, histone 3 on lysine 4 and histone 3 on lysine 27 trimethylation) was monitored for both undifferentiated and bone morphogenetic protein 2 (BMP2)-induced cardiac-committed cells. A marked difference in the epigenetic profile of HUES cell lines was observed and this was correlated to the pattern of gene expression induced by BMP2 as well as to their potential to generate cardiac progenitors and differentiated myocytes. Thus, the epigenetic H3trimeK4 and H3trimeK27 prints generating bivalent domains on promoters, could be used to predict a preference in their differentiation toward a specific lineage.

  17. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells.

    PubMed

    Toshner, Mark; Dunmore, Benjamin J; McKinney, Eoin F; Southwood, Mark; Caruso, Paola; Upton, Paul D; Waters, John P; Ormiston, Mark L; Skepper, Jeremy N; Nash, Gerard; Rana, Amer A; Morrell, Nicholas W

    2014-01-01

    The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole "HOX transcriptome" of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity.

  18. Transcript Analysis Reveals a Specific HOX Signature Associated with Positional Identity of Human Endothelial Cells

    PubMed Central

    Toshner, Mark; Dunmore, Benjamin J.; McKinney, Eoin F.; Southwood, Mark; Caruso, Paola; Upton, Paul D.; Waters, John P.; Ormiston, Mark L.; Skepper, Jeremy N.; Nash, Gerard; Rana, Amer A.; Morrell, Nicholas W.

    2014-01-01

    The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole “HOX transcriptome” of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity. PMID:24651450

  19. Cell-type specific posttranslational processing of peptides by different pituitary cell lines.

    PubMed

    Dickerson, I M; Mains, R E

    1990-07-01

    In order to compare prohormone processing in two distinct pituitary cell types, somatomammotrope cells (GH3) and corticotrope cells (AtT-20) were stably transfected with vectors encoding preproneuropeptide Y (preproNPY) containing four different pairs of basic amino acids at the single endoproteolytic cleavage site: wildtype or KR (lysine-arginine), RR, RK, and KK. The GH-NPY cell lines cleaved proNPY to a similar extent, regardless of the sequence of the basic amino acids at the cleavage site (KR = RR = RK = KK). AtT-20-NPY cells are known to exhibit a strong hierarchy of cleavage site preference when processing wildtype and mutated proNPY forms (KR = RR greater than RK much greater than KK). All four types of GH-NPY and AtT-NPY cells faithfully produced NPY (1-36) NH2 from proNPY (1-69), regardless of the amino acid sequence at the cleavage site. All four types of GH-NPY cells produced some of the expected proNPY-COOH-terminal peptide with Ser40 at its NH2-terminal [proNPY (40-69)]. GH3 cells expressing the RR, RK, and KK forms of proNPY yielded in addition some proNPY-COOH-terminal peptide retaining the amino terminals Lys39 or Arg39 residue. In contrast, AtT-NPY-RK cells produced only the Lys39 form of proNPY-COOH-terminal peptide while the other three AtT-NPY lines (KR, RR, and KK) produced only the Ser40 form of proNPY-COOH-terminal peptide. The residence time of proNPY and NPY in GH3 cells was dramatically increased by treatment with insulin, estradiol, and epidermal growth factor, in concert with the expected increase in PRL synthesis and decrease in GH synthesis; increased residence time in the cells did not result in an increase in the extent of cleavage of proNPY to NPY. AtT-20 cells did not respond to the somatomammotrope-specific set of hormones. Thus, there are several important differences in the posttranslational processing and storage of peptide hormones in corticotropes and somatomammotropes.

  20. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation

    PubMed Central

    Sau, Soumitra; Conrad, Michael N.; Lee, Chih-Ying; Kaback, David B.; Dresser, Michael E.

    2014-01-01

    The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis. PMID:24914236

  1. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation.

    PubMed

    Sau, Soumitra; Conrad, Michael N; Lee, Chih-Ying; Kaback, David B; Dresser, Michael E; Jayaram, Makkuni

    2014-06-09

    The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid-telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.

  2. Genome-wide interaction studies reveal sex-specific asthma risk alleles

    PubMed Central

    Myers, Rachel A.; Scott, Nicole M.; Gauderman, W. James; Qiu, Weiliang; Mathias, Rasika A.; Romieu, Isabelle; Levin, Albert M.; Pino-Yanes, Maria; Graves, Penelope E.; Villarreal, Albino Barraza; Beaty, Terri H.; Carey, Vincent J.; Croteau-Chonka, Damien C.; del Rio Navarro, Blanca; Edlund, Christopher; Hernandez-Cadena, Leticia; Navarro-Olivos, Efrain; Padhukasahasram, Badri; Salam, Muhammad T.; Torgerson, Dara G.; Van den Berg, David J.; Vora, Hita; Bleecker, Eugene R.; Meyers, Deborah A.; Williams, L. Keoki; Martinez, Fernando D.; Burchard, Esteban G.; Barnes, Kathleen C.; Gilliland, Frank D.; Weiss, Scott T.; London, Stephanie J.; Raby, Benjamin A.; Ober, Carole; Nicolae, Dan L.

    2014-01-01

    Asthma is a complex disease with sex-specific differences in prevalence. Candidate gene studies have suggested that genotype-by-sex interaction effects on asthma risk exist, but this has not yet been explored at a genome-wide level. We aimed to identify sex-specific asthma risk alleles by performing a genome-wide scan for genotype-by-sex interactions in the ethnically diverse participants in the EVE Asthma Genetics Consortium. We performed male- and female-specific genome-wide association studies in 2653 male asthma cases, 2566 female asthma cases and 3830 non-asthma controls from European American, African American, African Caribbean and Latino populations. Association tests were conducted in each study sample, and the results were combined in ancestry-specific and cross-ancestry meta-analyses. Six sex-specific asthma risk loci had P-values < 1 × 10−6, of which two were male specific and four were female specific; all were ancestry specific. The most significant sex-specific association in European Americans was at the interferon regulatory factor 1 (IRF1) locus on 5q31.1. We also identify a Latino female-specific association in RAP1GAP2. Both of these loci included single-nucleotide polymorphisms that are known expression quantitative trait loci and have been associated with asthma in independent studies. The IRF1 locus is a strong candidate region for male-specific asthma susceptibility due to the association and validation we demonstrate here, the known role of IRF1 in asthma-relevant immune pathways and prior reports of sex-specific differences in interferon responses. PMID:24824216

  3. The Swift-BAT monitoring reveals a long-term decay of the cyclotron line energy in Vela X-1

    NASA Astrophysics Data System (ADS)

    La Parola, V.; Cusumano, G.; Segreto, A.; D'Aì, A.

    2016-11-01

    We study the behaviour of the cyclotron resonant scattering feature (CRSF) of the high-mass X-ray binary Vela X-1 using the long-term hard X-ray monitoring performed by the Burst Alert Telescope (BAT) on board Swift. High-statistics, intensity-selected spectra were built along 11 years of BAT survey. While the fundamental line is not revealed, the second harmonic of the CRSF can be clearly detected in all the spectra, at an energy varying between ˜53 and ˜58 keV, directly correlated with the luminosity. We have further investigated the evolution of the CRSF in time, by studying the intensity-selected spectra built along four 33-month time intervals along the survey. For the first time, we find in this source a secular variation in the CRSF energy: independent of the source luminosity, the CRSF second harmonic energy decreases by ˜0.36 keV yr-1 between the first and the third time intervals, corresponding to an apparent decay of the magnetic field of ˜3 × 1010 G yr-1. The intensity-cyclotron energy pattern is consistent between the third and the last time intervals. A possible interpretation for this decay could be the settling of an accreted mound that produces either a distortion of the poloidal magnetic field on the polar cap or a geometrical displacement of the line forming region. This hypothesis seems supported by the correspondence between the rate of the line shift per unit accreted mass and the mass accreted on the polar cap per unit area in Vela X-1 and Her X-1, respectively.

  4. Data Mining of NCI’s Anticancer Screening Database Reveals Mitochondrial Complex I Inhibitors Cytotoxic to Leukemia Cell Lines

    PubMed Central

    Glover, Constance J.; Rabow, Alfred A.; Isgor, Yasemin G.; Shoemaker, Robert H.; Covell, David G.

    2007-01-01

    Mitochondria are principal mediators of apoptosis and thus can be considered molecular targets for new chemotherapeutic agents in the treatment of cancer. Inhibitors of mitochondrial complex I of the electron transport chain have been shown to induce apoptosis and exhibit antitumor activity. In an effort to find novel complex I inhibitors which exhibited anti-cancer activity in the NCI’s tumor cell line screen, we examined organized tumor cytotoxicity screening data available as SOM (self-organized maps) (http://spheroid.ncifcrf.gov) at the Developmental Therapeutics Program (DTP) of the National Cancer Institute (NCI). Our analysis focused on an SOM cluster comprised of compounds which included a number of known mitochondrial complex I (NADH:CoQ oxidoreductase) inhibitors. From these clusters ten compounds whose mechanism of action was unknown were tested for inhibition of complex I activity in bovine heart submitochondrial particles (SMP) resulting in the discovery that five of the ten compounds demonstrated significant inhibition with IC50's in the nM range for three of the five. Examination of screening profiles of the five inhibitors toward the NCI’s tumor cell lines revealed that they were cytotoxic to the leukemia subpanel (particularly K562 cells). Oxygen consumption experiments with permeabilized K562 cells revealed that the five most active compounds inhibited complex I activity in these cells in the same rank order and similar potency as determined with bovine heart SMP. Our findings thus fortify the appeal of mitochondrial Complex I as a possible anti-cancer molecular target and provide a data mining strategy for selecting candidate inhibitors for further testing. PMID:17109823

  5. Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs.

    PubMed

    Amin, Viren; Harris, R Alan; Onuchic, Vitor; Jackson, Andrew R; Charnecki, Tim; Paithankar, Sameer; Lakshmi Subramanian, Sai; Riehle, Kevin; Coarfa, Cristian; Milosavljevic, Aleksandar

    2015-02-18

    Tissue-specific expression of lincRNAs suggests developmental and cell-type-specific functions, yet tissue specificity was established for only a small fraction of lincRNAs. Here, by analysing 111 reference epigenomes from the NIH Roadmap Epigenomics project, we determine tissue-specific epigenetic regulation for 3,753 (69% examined) lincRNAs, with 54% active in one of the 14 cell/tissue clusters and an additional 15% in two or three clusters. A larger fraction of lincRNA TSSs is marked in a tissue-specific manner by H3K4me1 than by H3K4me3. The tissue-specific lincRNAs are strongly linked to tissue-specific pathways and undergo distinct chromatin state transitions during cellular differentiation. Polycomb-regulated lincRNAs reside in the bivalent state in embryonic stem cells and many of them undergo H3K27me3-mediated silencing at early stages of differentiation. The exquisitely tissue-specific epigenetic regulation of lincRNAs and the assignment of a majority of them to specific tissue types will inform future studies of this newly discovered class of genes.

  6. The Direct Inhibitory Effect of Dutasteride or Finasteride on Androgen Receptor Activity is Cell Line Specific

    PubMed Central

    Chhipa, Rishi Raj; Halim, Danny; Cheng, Jinrong; Zhang, Huan Yi; Mohler, James L.; Ip, Clement; Wu, Yue

    2014-01-01

    BACKGROUND Finasteride and dutasteride were developed originally as 5α-reductase inhibitors to block the conversion of testosterone to dihydrotestosterone (DHT). These drugs may possess off-target effects on the androgen receptor (AR) due to their structural similarity to DHT. METHODS A total of 4 human prostate cancer cell models were examined: LNCaP (T877A mutant AR), 22Rv1 (H874Y mutant AR), LAPC4 (wild type AR) and VCaP (wild type AR). Cells were cultured in 10% charcoal-stripped fetal bovine serum, either with or without DHT added to the medium. AR activity was evaluated using the ARE-luciferase assay or the expression of AR regulated genes. RESULTS Dutasteride was more potent than finasteride in interfering with DHT-stimulated AR signaling. Disruption of AR function was accompanied by decreased cell growth. Cells that rely on DHT for protection against death were particularly vulnerable to dutasteride. Different prostate cancer cell models exhibited different sensitivities to dutasteride and finasteride. LNCaP was most sensitive, LAPC4 and VCaP were intermediate, while 22Rv1 was least sensitive. Regardless of the AR genotype, if AR was transfected into drug-sensitive cells, AR was inhibited by drug treatment; and if AR was transfected into drug-resistant cells, AR was not inhibited. CONCLUSIONS The direct inhibitory effect of dutasteride or finasteride on AR signaling is cell line specific. Mutations in the ligand binding domain of AR do not appear to play a significant role in influencing the AR antagonistic effect of these drugs. Subcellular constituent is an important factor in determining the drug effect on AR function. PMID:23813737

  7. The direct inhibitory effect of dutasteride or finasteride on androgen receptor activity is cell line specific.

    PubMed

    Chhipa, Rishi Raj; Halim, Danny; Cheng, Jinrong; Zhang, Huan Yi; Mohler, James L; Ip, Clement; Wu, Yue

    2013-10-01

    Finasteride and dutasteride were developed originally as 5α-reductase inhibitors to block the conversion of testosterone to dihydrotestosterone (DHT). These drugs may possess off-target effects on the androgen receptor (AR) due to their structural similarity to DHT. A total of four human prostate cancer cell models were examined: LNCaP (T877A mutant AR), 22Rv1 (H874Y mutant AR), LAPC4 (wild-type AR), and VCaP (wild-type AR). Cells were cultured in 10% charcoal-stripped fetal bovine serum, either with or without DHT added to the medium. AR activity was evaluated using the ARE-luciferase assay or the expression of AR regulated genes. Dutasteride was more potent than finasteride in interfering with DHT-stimulated AR signaling. Disruption of AR function was accompanied by decreased cell growth. Cells that rely on DHT for protection against death were particularly vulnerable to dutasteride. Different prostate cancer cell models exhibited different sensitivities to dutasteride and finasteride. LNCaP was most sensitive, LAPC4 and VCaP were intermediate, while 22Rv1 was least sensitive. Regardless of the AR genotype, if AR was transfected into drug-sensitive cells, AR was inhibited by drug treatment; and if AR was transfected into drug-resistant cells, AR was not inhibited. The direct inhibitory effect of dutasteride or finasteride on AR signaling is cell line specific. Mutations in the ligand binding domain of AR do not appear to play a significant role in influencing the AR antagonistic effect of these drugs. Subcellular constituent is an important factor in determining the drug effect on AR function. Copyright © 2013 Wiley Periodicals, Inc.

  8. Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing

    PubMed Central

    Somasundaram, Kumaravel

    2015-01-01

    Cell lines derived from tumor tissues have been used as a valuable system to study gene regulation and cancer development. Comprehensive characterization of the genetic background of cell lines could provide clues on novel genes responsible for carcinogenesis and help in choosing cell lines for particular studies. Here, we have carried out whole exome and RNA sequencing of commonly used glioblastoma (GBM) cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotide variations (SNVs), indels, differential gene expression, gene fusions and RNA editing events. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) were potentially cancer-specific. The cell lines showed frequent SNVs and indels in some of the genes that are known to be altered in GBM- EGFR, TP53, PTEN, SPTA1 and NF1. Chromatin modifying genes- ATRX, MLL3, MLL4, SETD2 and SRCAP also showed alterations. While no cell line carried IDH1 mutations, five cell lines showed hTERT promoter activating mutations with a concomitant increase in hTERT transcript levels. Five significant gene fusions were found of which NUP93-CYB5B was validated. An average of 18,949 RNA editing events was also obtained. Thus we have generated a comprehensive catalogue of genetic alterations for six GBM cell lines. PMID:26496030

  9. Spatially-localized bench-top X-ray scattering reveals tissue-specific microfibril orientation in Moso bamboo.

    PubMed

    Ahvenainen, Patrik; Dixon, Patrick G; Kallonen, Aki; Suhonen, Heikki; Gibson, Lorna J; Svedström, Kirsi

    2017-01-01

    Biological materials have a complex, hierarchical structure, with vital structural features present at all size scales, from the nanoscale to the macroscale. A method that can connect information at multiple length scales has great potential to reveal novel information. This article presents one such method with an application to the bamboo culm wall. Moso (Phyllostachys edulis) bamboo is a commercially important bamboo species. At the cellular level, bamboo culm wall consists of vascular bundles embedded in a parenchyma cell tissue matrix. The microfibril angle (MFA) in the bamboo cell wall is related to its macroscopic longitudinal stiffness and strength and can be determined at the nanoscale with wide-angle X-ray scattering (WAXS). Combining WAXS with X-ray microtomography (XMT) allows tissue-specific study of the bamboo culm without invasive chemical treatment. The scattering contribution of the fiber and parenchyma cells were separated with spatially-localized WAXS. The fiber component was dominated by a high degree of orientation corresponding to small MFAs (mean MFA 11°). The parenchyma component showed significantly lower degree of orientation with a maximum at larger angles (mean MFA 65°). The fiber ratio, the volume of cell wall in the fibers relative to the overall volume of cell wall, was determined by fitting the scattering intensities with these two components. The fiber ratio was also determined from the XMT data and similar fiber ratios were obtained from the two methods, one connected to the cellular level and one to the nanoscale. X-ray diffraction tomography was also done to study the differences in microfibril orientation between fibers and the parenchyma and further connect the microscale to the nanoscale. The spatially-localized WAXS yields biologically relevant, tissue-specific information. With the custom-made bench-top set-up presented, diffraction contrast information can be obtained from plant tissue (1) from regions-of-interest, (2) as

  10. DNAM-1 mediates epithelial cell-specific cytotoxicity of aberrant intraepithelial lymphocyte lines from refractory celiac disease type II patients.

    PubMed

    Tjon, Jennifer M-L; Kooy-Winkelaar, Yvonne M C; Tack, Greetje J; Mommaas, A Mieke; Schreurs, Marco W J; Schilham, Marco W; Mulder, Chris J; van Bergen, Jeroen; Koning, Frits

    2011-06-01

    In refractory celiac disease (RCD), intestinal epithelial damage persists despite a gluten-free diet. Characteristic for RCD type II (RCD II) is the presence of aberrant surface TCR-CD3(-) intraepithelial lymphocytes (IELs) that can progressively replace normal IELs and eventually give rise to overt lymphoma. Therefore, RCD II is considered a malignant condition that forms an intermediate stage between celiac disease (CD) and overt lymphoma. We demonstrate in this study that surface TCR-CD3(-) IEL lines isolated from three RCD II patients preferentially lyse epithelial cell lines. FACS analysis revealed that DNAM-1 was strongly expressed on the three RCD cell lines, whereas other activating NK cell receptors were not expressed on all three RCD cell lines. Consistent with this finding, cytotoxicity of the RCD cell lines was mediated mainly by DNAM-1 with only a minor role for other activating NK cell receptors. Furthermore, enterocytes isolated from duodenal biopsies expressed DNAM-1 ligands and were lysed by the RCD cell lines ex vivo. Although DNAM-1 on CD8(+) T cells and NK cells is known to mediate lysis of tumor cells, this study provides, to our knowledge, the first evidence that (pre)malignant cells themselves can acquire the ability to lyse epithelial cells via DNAM-1. This study confirms previous work on epithelial lysis by RCD cell lines and identifies a novel mechanism that potentially contributes to the gluten-independent tissue damage in RCD II and RCD-associated lymphoma.

  11. Site-Specific Acetyl Lysine Antibodies Reveal Differential Regulation of Histone Acetylation upon Kinase Inhibition.

    PubMed

    Chen, Shi; Chen, Suping; Duan, Qianqian; Xu, Guoqiang

    2017-03-01

    Lysine acetylation regulates diverse biological functions for the modified proteins. Mass spectrometry-based proteomic approaches have identified thousands of lysine acetylation sites in cells and tissues. However, functional studies of these acetylation sites were limited by the lack of antibodies recognizing the specific modification sites. Here, we generated 55 site-specific acetyl lysine antibodies for the detection of this modification in cell lysates and evaluated the quality of these antibodies. Based on the immunoblotting analyses, we found that the nature of amino acid sequences adjacent to the modification sites affected the specificity of the site-specific acetyl lysine antibodies. Amino acids with charged, hydrophilic, small, or flexible side chains adjacent to the modification sites increase the likelihood of obtaining high quality site-specific acetyl lysine antibodies. This result may provide valuable insights in fine-tuning the amino acid sequences of the epitopes for the generation of site-specific acetyl lysine antibodies. Using the site-specific acetyl lysine antibodies, we further discovered that acetylation of histone 3 at four lysine residues was differentially regulated by kinase inhibitors. This result demonstrates the potential application of these antibodies in the study of new signaling pathways that lysine acetylation may participate in.

  12. Mouse thymic epithelial cell lines expressing "Aire" and peripheral tissue-specific antigens reproduce in vitro negative selection of T cells.

    PubMed

    Yamaguchi, Yoshitaka; Takayanagi, Atsushi; Chen, Jiabing; Sakai, Kosuke; Kudoh, Jun; Shimizu, Nobuyoshi

    2011-08-15

    In the human thymus, AIRE (autoimmune regulator) gene is expressed in a very limited type of medullary thymic epithelial cells (mTECs) and no cognate cell lines are available, hence the molecular analysis of AIRE gene function has been difficult. To improve this situation, we attempted to isolate Aire-expressing cells and established three cell lines (Aire⁺TEC1, Aire⁺TEC2, Aire⁺DC) from the abnormally enlarged thymus, which was developed in the transgenic mice expressing SV40 T-antigen driven by the mouse Aire gene promoter. When these Aire⁺ cell lines were co-cultured with fresh thymocytes, they adhered to the majority of thymocytes and induced apoptosis as if negative selection of T-cells in the thymus is occurring in vitro. Further analysis revealed that these Aire⁺ cell lines are derived from mTECs and exhibit characteristic natures of "antigen presenting cells" including several distinct abilities: to express a variety of peripheral tissue-specific antigens, to produce immunoproteasome and immunological synapse, and to express some of TNFSFs (tumor necrosis factor super families). Thus, the newly established Aire⁺ cell lines will be invaluable for the further detailed analysis of AIRE gene function in the central tolerance of immunity and autoimmune disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Two-gap features revealed by specific heat measurements in FeSe

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Sun, Y.; Yamada, T.; Pyon, S.; Tamegai, T.

    2017-07-01

    The symmetry of superconducting gap is a key to understand the mechanism of superconductivity. FeSe, which has the simplest structure among iron-based superconductors, is most suitable for the understanding of the superconducting mechanism. Specific heat measurements have been performed on a high-quality FeSe single crystal with T c ∼ 8.8 K and ΔC/γn T c = 1.62. A sharp jump of specific heat at T c and the second drop around 1.2 K are observed, suggesting the presence of two superconducting gaps in FeSe. Furthermore, the electronic specific heat under zero field can be well fitted by the two-gap model. Besides, the kink structure observed in the magnetic-field dependence of the electronic specific heat coefficient γ(H) at low temperatures also support the two-gap nature of FeSe.

  14. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    PubMed

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  15. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    PubMed Central

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  16. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines

    PubMed Central

    Tosar, Juan Pablo; Gámbaro, Fabiana; Sanguinetti, Julia; Bonilla, Braulio; Witwer, Kenneth W.; Cayota, Alfonso

    2015-01-01

    Intercellular communication can be mediated by extracellular small regulatory RNAs (sRNAs). Circulating sRNAs are being intensively studied for their promising use as minimally invasive disease biomarkers. To date, most attention is centered on exosomes and microRNAs as the vectors and the secreted species, respectively. However, this field would benefit from an increased understanding of the plethora of sRNAs secreted by different cell types in different extracellular fractions. It is still not clear if specific sRNAs are selected for secretion, or if sRNA secretion is mostly passive. We sequenced the intracellular sRNA content (19–60 nt) of breast epithelial cell lines (MCF-7 and MCF-10A) and compared it with extracellular fractions enriched in microvesicles, exosomes and ribonucleoprotein complexes. Our results are consistent with a non-selective secretion model for most microRNAs, although a few showed secretion patterns consistent with preferential secretion. On the contrary, 5′ tRNA halves and 5′ RNA Y4-derived fragments of 31–33 were greatly and significantly enriched in the extracellular space (even in non-mammary cell lines), where tRNA halves were detected as part of ∼45 kDa ribonucleoprotein complexes. Overall, we show that different sRNA families have characteristic secretion patterns and open the question of the role of these sRNAs in the extracellular space. PMID:25940616

  17. Identification of line-specific strategies for improving carotenoid production in synthetic maize through data-driven mathematical modeling.

    PubMed

    Comas, Jorge; Benfeitas, Rui; Vilaprinyo, Ester; Sorribas, Albert; Solsona, Francesc; Farré, Gemma; Berman, Judit; Zorrilla, Uxue; Capell, Teresa; Sandmann, Gerhard; Zhu, Changfu; Christou, Paul; Alves, Rui

    2016-09-01

    Plant synthetic biology is still in its infancy. However, synthetic biology approaches have been used to manipulate and improve the nutritional and health value of staple food crops such as rice, potato and maize. With current technologies, production yields of the synthetic nutrients are a result of trial and error, and systematic rational strategies to optimize those yields are still lacking. Here, we present a workflow that combines gene expression and quantitative metabolomics with mathematical modeling to identify strategies for increasing production yields of nutritionally important carotenoids in the seed endosperm synthesized through alternative biosynthetic pathways in synthetic lines of white maize, which is normally devoid of carotenoids. Quantitative metabolomics and gene expression data are used to create and fit parameters of mathematical models that are specific to four independent maize lines. Sensitivity analysis and simulation of each model is used to predict which gene activities should be further engineered in order to increase production yields for carotenoid accumulation in each line. Some of these predictions (e.g. increasing Zmlycb/Gllycb will increase accumulated β-carotenes) are valid across the four maize lines and consistent with experimental observations in other systems. Other predictions are line specific. The workflow is adaptable to any other biological system for which appropriate quantitative information is available. Furthermore, we validate some of the predictions using experimental data from additional synthetic maize lines for which no models were developed.

  18. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression

    PubMed Central

    Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J

    2017-01-01

    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI: http://dx.doi.org/10.7554/eLife.25125.001 PMID:28806168

  19. Early Category-Specific Cortical Activation Revealed by Visual Stimulus Inversion

    PubMed Central

    Meeren, Hanneke K. M.; Hadjikhani, Nouchine; Ahlfors, Seppo P.; Hämäläinen, Matti S.; de Gelder, Beatrice

    2008-01-01

    Visual categorization may already start within the first 100-ms after stimulus onset, in contrast with the long-held view that during this early stage all complex stimuli are processed equally and that category-specific cortical activation occurs only at later stages. The neural basis of this proposed early stage of high-level analysis is however poorly understood. To address this question we used magnetoencephalography and anatomically-constrained distributed source modeling to monitor brain activity with millisecond-resolution while subjects performed an orientation task on the upright and upside-down presented images of three different stimulus categories: faces, houses and bodies. Significant inversion effects were found for all three stimulus categories between 70–100-ms after picture onset with a highly category-specific cortical distribution. Differential responses between upright and inverted faces were found in well-established face-selective areas of the inferior occipital cortex and right fusiform gyrus. In addition, early category-specific inversion effects were found well beyond visual areas. Our results provide the first direct evidence that category-specific processing in high-level category-sensitive cortical areas already takes place within the first 100-ms of visual processing, significantly earlier than previously thought, and suggests the existence of fast category-specific neocortical routes in the human brain. PMID:18946504

  20. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression.

    PubMed

    Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J

    2017-08-14

    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta.

  1. Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements

    PubMed Central

    Poran, S.; Nguyen-Duc, T.; Auerbach, A.; Dupuis, N.; Frydman, A.; Bourgeois, Olivier

    2017-01-01

    The superconductor–insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, cp, measurements. Here we use a unique highly sensitive experiment to measure cp of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition. PMID:28224994

  2. Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity.

    PubMed

    Jacques, Isabelle B; Moutiez, Mireille; Witwinowski, Jerzy; Darbon, Emmanuelle; Martel, Cécile; Seguin, Jérôme; Favry, Emmanuel; Thai, Robert; Lecoq, Alain; Dubois, Steven; Pernodet, Jean-Luc; Gondry, Muriel; Belin, Pascal

    2015-09-01

    Cyclodipeptide synthases (CDPSs) constitute a family of peptide bond-forming enzymes that use aminoacyl-tRNAs for the synthesis of cyclodipeptides. Here, we describe the activity of 41 new CDPSs. We also show that CDPSs can be classified into two main phylogenetically distinct subfamilies characterized by specific functional subsequence signatures, named NYH and XYP. All 11 previously characterized CDPSs belong to the NYH subfamily, suggesting that further special features may be yet to be discovered in the other subfamily. CDPSs synthesize a large diversity of cyclodipeptides made up of 17 proteinogenic amino acids. The identification of several CDPSs having the same specificity led us to determine specificity sequence motifs that, in combination with the phylogenetic distribution of CDPSs, provide a first step toward being able to predict the cyclodipeptides synthesized by newly discovered CDPSs. The determination of the activity of ten more CDPSs with predicted functions constitutes a first experimental validation of this predictive approach.

  3. Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing

    PubMed Central

    2011-01-01

    Background Understanding animal development and physiology at a molecular-biological level has been advanced by the ability to determine at high resolution the repertoire of mRNA molecules by whole transcriptome resequencing. This includes the ability to detect and quantify rare abundance transcripts and isoform-specific mRNA variants produced from a gene. The sex hierarchy consists of a pre-mRNA splicing cascade that directs the production of sex-specific transcription factors that specify nearly all sexual dimorphism. We have used deep RNA sequencing to gain insight into how the Drosophila sex hierarchy generates somatic sex differences, by examining gene and transcript isoform expression differences between the sexes in adult head tissues. Results Here we find 1,381 genes that differ in overall expression levels and 1,370 isoform-specific transcripts that differ between males and females. Additionally, we find 512 genes not regulated downstream of transformer that are significantly more highly expressed in males than females. These 512 genes are enriched on the × chromosome and reside adjacent to dosage compensation complex entry sites, which taken together suggests that their residence on the × chromosome might be sufficient to confer male-biased expression. There are no transcription unit structural features, from a set of features, that are robustly significantly different in the genes with significant sex differences in the ratio of isoform-specific transcripts, as compared to random isoform-specific transcripts, suggesting that there is no single molecular mechanism that generates isoform-specific transcript differences between the sexes, even though the sex hierarchy is known to include three pre-mRNA splicing factors. Conclusions We identify thousands of genes that show sex-specific differences in overall gene expression levels, and identify hundreds of additional genes that have differences in the abundance of isoform-specific transcripts. No

  4. Effect of Transmission Line Measurement (TLM) Geometry on Specific Contact Resistivity Determination

    NASA Astrophysics Data System (ADS)

    Grover, Sidhant

    Ohmic metal semiconductor contacts are indispensable part of a semiconductor device. These are characterized by their specific contact resistivity (rho c) in expressed in Ω-cm2, defined as the inverse slope of current density versus voltage curve at origin. Engineering and measurement of specific contact resistivity (rhoc) is becoming of increasing importance in the semiconductor industry. Devices ranging from integrated circuits to solar cells use contact resistivity as a measure of device performance. Novel methods such as contact silicidation, doped-metal contacts, dipole inserted contacts etc. are continually being developed to reduce specific contact resistivity and improve device performance. The Transmission Line Measurement (TLM) method is most commonly used to extract the specific contact resistivity for such applications. This method is, however, not fully understood and modeled to understand the flow of current and behavior of charge carriers for contacts of different dimensions. It has often been observed in literature that applications that involve smaller TLM geometries most often than not, show low values of rho c and applications that involve rhoc extraction through larger TLM geometries show significantly larger values. A perfect example of this would be the inconsistencies observed in extracted rhoc's from integrated circuit applications where TLM geometries range from 0.1 mum to 10 mum and extracted rhoc is of the order of 10-8 to 10-6 Ω-cm2 and photovoltaic applications where geometries are around 50 mum to 1000 mum and rho c is of the order of 10-5 to 10-2 Ω-cm 2. The transfer length or LT which is the characteristic length that the charge carriers travel beneath the contact before flowing up into the contact. It has also been seen that in certain cases of TLM device dimensions, the extracted LT is greater than the actual length of the contact. This occurence cannot be effectively explained through the conventional TLM analysis. In this

  5. Spontaneous resting-state BOLD fluctuations reveal persistent domain-specific neural networks

    PubMed Central

    Martin, Alex

    2012-01-01

    Resting-state functional connectivity MRI (rs-fcMRI) analyses have identified intrinsic neural networks supporting domain-general cognitive functions including language, attention, executive control and memory. The brain, however, also has a domain-specific organization, including regions that contribute to perceiving and knowing about others (the ‘social’ system) or manipulable objects designed to perform specific functions (the ‘tool’ system). These ‘social’ and ‘tool’ systems, however, might not constitute intrinsic neural networks per se, but rather only come online as needed to support retrieval of domain-specific information during social- or tool-related cognitive tasks. To address this issue, we functionally localized two regions in lateral temporal cortex activated when subjects perform social- and tool conceptual tasks. We then compared the strength of the correlations with these seed regions during rs-fcMRI. Here, we show that the ‘social’ and ‘tool’ neural networks are maintained even when subjects are not engaged in social- and tool-related information processing, and so constitute intrinsic domain-specific neural networks. PMID:21586527

  6. Independent component analysis of localized resting-state functional magnetic resonance imaging reveals specific motor subnetworks.

    PubMed

    Sohn, William Seunghyun; Yoo, Kwangsun; Jeong, Yong

    2012-01-01

    Recent studies have shown that blood oxygen level-dependent low-frequency (<0.1 Hz) fluctuations (LFFs) during a resting-state exhibit a high degree of correlation with other regions that share cognitive function. Initial studies of resting-state network mapping have focused primarily on major networks such as the default mode network, primary motor, somatosensory, visual, and auditory networks. However, more specific or subnetworks, including those associated with specific motor functions, have yet to be properly addressed. We performed independent component analysis (ICA) in a specific target region of the brain, a process we name, "localized ICA." We demonstrated that when ICA is applied to localized fMRI data, it can be used to distinguish resting-state LFFs associated with specific motor functions (e.g., finger tapping, foot movement, or bilateral lip pulsing) in the primary motor cortex. These ICA components generated from localized data can then be used as functional regions of interest to map whole-brain connectivity. In addition, this method can be used to visualize inter-regional connectivity by expanding the localized region and identifying components that show connectivity between the two regions.

  7. Sterol targeting drugs reveal life cycle stage-specific differences in trypanosome lipid rafts.

    PubMed

    Sharma, Aabha I; Olson, Cheryl L; Mamede, João I; Gazos-Lopes, Felipe; Epting, Conrad L; Almeida, Igor C; Engman, David M

    2017-08-22

    Cilia play important roles in cell signaling, facilitated by the unique lipid environment of a ciliary membrane containing high concentrations of sterol-rich lipid rafts. The African trypanosome Trypanosoma brucei is a single-celled eukaryote with a single cilium/flagellum. We tested whether flagellar sterol enrichment results from selective flagellar partitioning of specific sterol species or from general enrichment of all sterols. While all sterols are enriched in the flagellum, cholesterol is especially enriched. T. brucei cycles between its mammalian host (bloodstream cell), in which it scavenges cholesterol, and its tsetse fly host (procyclic cell), in which it both scavenges cholesterol and synthesizes ergosterol. We wondered whether the insect and mammalian life cycle stages possess chemically different lipid rafts due to different sterol utilization. Treatment of bloodstream parasites with cholesterol-specific methyl-β-cyclodextrin disrupts both membrane liquid order and localization of a raft-associated ciliary membrane calcium sensor. Treatment with ergosterol-specific amphotericin B does not. The opposite results were observed with ergosterol-rich procyclic cells. Further, these agents have opposite effects on flagellar sterol enrichment and cell metabolism in the two life cycle stages. These findings illuminate differences in the lipid rafts of an organism employing life cycle-specific sterols and have implications for treatment.

  8. Single-Cell mRNA Profiling Reveals Cell-Type Specific Expression of Neurexin Isoforms

    PubMed Central

    Fuccillo, Marc V.; Földy, Csaba; Gökce, Özgün; Rothwell, Patrick E.; Sun, Gordon L.; Malenka, Robert C.; Südhof, Thomas C.

    2016-01-01

    Summary Neurexins are considered central organizers of synapse architecture that are implicated in neuropsychiatric disorders. Expression of neurexins in hundreds of alternatively spliced isoforms suggested that individual neurons might exhibit a cell type-specific neurexin expression pattern (a neurexin code). To test this hypothesis, we quantified the single-cell levels of neurexin isoforms and other trans-synaptic cell-adhesion molecules by microfluidics-based RT-PCR. We show that the neurexin repertoire displays pronounced cell-type specificity that is remarkably consistent within each type of neuron. Furthermore, we uncovered region-specific regulation of neurexin transcription and splice-site usage. Finally, we demonstrate that the transcriptional profiles of neurexins can be altered in an experience-dependent fashion by exposure to a drug of abuse. Our data provide evidence of cell type-specific expression patterns of multiple neurexins at the single-cell level, and suggest that expression of synaptic cell-adhesion molecules overlaps with other key features of cellular identity and diversity. PMID:26182417

  9. The Attentional Blink Reveals Sluggish Attentional Shifting in Adolescents with Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Conti-Ramsden, Gina; Lindell, Annukka K.

    2007-01-01

    Rapid processing deficits have been the subject of much debate in the literature on specific language impairment (SLI). Hari and Renvall (2001) [Hari, R. & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. "Trends in cognitive sciences", 5, 525-532.] proposed that the source of this deficit can be attributed to…

  10. Proline Isomer-Specific Antibodies Reveal the Early Pathogenic Tau Conformation in Alzheimer's Disease

    PubMed Central

    Nakamura, Kazuhiro; Greenwood, Alex; Binder, Lester; Bigio, Eileen H.; Denial, Sarah; Nicholson, Linda; Zhou, Xiao Zhen; Lu, Kun Ping

    2013-01-01

    Cis-trans isomerization of proteins phosphorylated by proline-directed kinases is proposed to control numerous signaling molecules, and is implicated in the pathogenesis of Alzheimer’s and other diseases. However, there is no direct evidence for the existence of cis-trans protein isomers in vivo, or for their conformation-specific function or regulation. Here we develop peptide chemistries that allow the generation of cis and trans-specific antibodies, and use them to raise antibodies specific for isomers of phosphorylated tau. Cis, but not trans, p-tau appears early in the brains of humans with mild cognitive impairment, and accumulates exclusively in degenerated neurons and localizes to dystrophic neurites during Alzheimer’s progression. Unlike trans p-tau, the cis isomer cannot promote microtubule assembly, is more resistant to dephosphorylation and degradation, and is more prone to aggregation. Pin1 converts cis to trans p-tau to prevent Alzheimer’s tau pathology. Isomer-specific antibodies and vaccines may therefore have value for the early diagnosis and treatment of Alzheimer’s disease PMID:22464332

  11. In Vivo Analysis of Importin α Proteins Reveals Cellular Proliferation Inhibition and Substrate Specificity

    PubMed Central

    Quensel, Christina; Friedrich, Beate; Sommer, Thomas; Hartmann, Enno; Kohler, Matthias

    2004-01-01

    The “classical” nuclear import pathway depends on importins α and β. Humans have only one importin β, while six α importins have been described. Whether or not distinct α importins are essential for specific import pathways in living human cells is unclear. We used RNA interference technology to specifically down-regulate the expression of ubiquitously expressed human α importins in HeLa cells. Down-regulation of importins α3, α5, α7, and β strongly inhibited HeLa cell proliferation, while down-regulation of importins α1 and α4 had only a minor effect or no effect. Nucleoplasmin import was not prevented by down-regulation of any α importin, indicating that the importin α/β pathway was generally not affected. In contrast, importin α3 or α5 down-regulation specifically inhibited the nuclear import of the Ran guanine nucleotide exchange factor, RCC1. Coinjection of recombinant α importins and RCC1 into down-regulated cells demonstrated that these transport defects were specifically caused by the limited availability of importin α3 in both cases. Thus, importin α3 is the only α importin responsible for the classical nuclear import of RCC1 in living cells. PMID:15542834

  12. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes

    NASA Astrophysics Data System (ADS)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M.; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-10-01

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti

  13. Molecular basis of substrate recognition and specificity revealed in family 12 glycoside hydrolases.

    PubMed

    Calzado, Felipe; Prates, Erica T; Gonçalves, Thiago A; Rubio, Marcelo V; Zubieta, Mariane P; Squina, Fabio M; Skaf, Munir S; Damásio, André R L

    2016-12-01

    Fungal GH12 enzymes are classified as xyloglucanases when they specifically target xyloglucans, or promiscuous endoglucanases when they exhibit catalytic activity against xyloglucan and β-glucan chains. Several structural and functional studies involving GH12 enzymes tried to explain the main patterns of xyloglucan activity, but what really determines xyloglucanase specificity remains elusive. Here, three fungal GH12 enzymes from Aspergillus clavatus (AclaXegA), A. zonatus (AspzoGH12), and A. terreus (AtEglD) were studied to unveil the molecular basis for substrate specificity. Using functional assays, site-directed mutagenesis, and molecular dynamics simulations, we demonstrated that three main regions are responsible for substrate selectivity: (i) the YSG group in loop 1; (ii) the SST group in loop 2; and (iii) loop A3-B3 and neighboring residues. Functional assays and sequence alignment showed that while AclaXegA is specific to xyloglucan, AtEglD cleaves β-glucan, and xyloglucan. However, AspzoGH12 was also shown to be promiscuous contrarily to a sequence alignment-based prediction. We find that residues Y111 and R93 in AtEglD harbor the substrate in an adequate orientation for hydrolysis in the catalytic cleft entrance and that residues Y19 in AclaXegA and Y30 in AspzoGH12 partially compensate the absence of the YSG segment, typically found in promiscuous enzymes. The results point out the multiple structural factors underlying the substrate specificity of GH12 enzymes. Biotechnol. Bioeng. 2016;113: 2577-2586. © 2016 Wiley Periodicals, Inc.

  14. Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects.

    PubMed

    Yang, Guochun; Nan, Weizhi; Zheng, Ya; Wu, Haiyan; Li, Qi; Liu, Xun

    2017-04-01

    Cognitive control is essential to resolve conflict in stimulus-response compatibility (SRC) tasks. The SRC effect in the current trial is reduced after an incongruent trial as compared with a congruent trial, a phenomenon being termed conflict adaptation (CA). The CA effect is found to be domain-specific, such that it occurs when adjacent trials contain the same type of conflict, but disappears when the conflicts are of different types. Similar patterns have been observed when tasks involve different modalities, but the modality-specific effect may have been confounded by task switching. In the current study, we investigated whether or not cognitive control could transfer across auditory and visual conflicts when task-switching was controlled. Participants were asked to respond to a visual or auditory (Experiments 1A/B) stimulus, with conflict coming from either the same or a different modality. CA effects showed modality-specific patterns. To account for potential confounding effects caused by differences in task-irrelevant properties, we specifically examined the influence of task-irrelevant properties on CA effects within the visual modality (Experiments 2A/B). Significant CA effects were observed across different conflicts from distinct task-irrelevant properties, ruling out that the lack of cross-modal CA effects in Experiments 1A/B resulted from differences in task-irrelevant information. Task-irrelevant properties were further matched in Experiments 3A/B to examine the pure effect of modality. Results replicated Experiments 1A/B showing robust modality-specific CA effects. Taken together, we provide supporting evidences that modality affects cognitive control in conflict resolution, which should be taken into account in theories of cognitive control. (PsycINFO Database Record

  15. Transcriptional profiling reveals ductus arteriosus-specific genes that regulate vascular tone

    PubMed Central

    Ector, Gerren; Galindo, Cristi L.; Hooper, Christopher W.; Brown, Naoko; Wilkerson, Irene; Pfaltzgraff, Elise R.; Paria, Bibhash C.; Cotton, Robert B.; Stoller, Jason Z.; Reese, Jeff

    2014-01-01

    Failure of the ductus arteriosus (DA) to close at birth can lead to serious complications. Conversely, certain profound congenital cardiac malformations require the DA to be patent until corrective surgery can be performed. In each instance, clinicians have a very limited repertoire of therapeutic options at their disposal - indomethacin or ibuprofen to close a patent DA (PDA) and prostaglandin E1 to maintain patency of the DA. Neither treatment is specific to the DA and both may have deleterious off-target effects. Therefore, more therapeutic options specifically targeted to the DA should be considered. We hypothesized the DA possesses a unique genetic signature that would set it apart from other vessels. A microarray was used to compare the genetic profiles of the murine DA and ascending aorta (AO). Over 4,000 genes were differentially expressed between these vessels including a subset of ion channel-related genes. Specifically, the alpha and beta subunits of large-conductance calcium-activated potassium (BKCa) channels are enriched in the DA. Gain- and loss-of-function studies showed inhibition of BKCa channels caused the DA to constrict, while activation caused DA relaxation even in the presence of O2. This study identifies subsets of genes that are enriched in the DA that may be used to develop DA-specific drugs. Ion channels that regulate DA tone, including BKCa channels, are promising targets. Specifically, BKCa channel agonists like NS1619 maintain DA patency even in the presence of O2 and may be clinically useful. PMID:24790087

  16. RNAseq reveals hypervirulence-specific host responses to M. tuberculosis infection.

    PubMed

    Leisching, Gina; Pietersen, Ray-Dean; van Heerden, Carel; van Helden, Paul; Wiid, Ian; Baker, Bienyameen

    2017-08-18

    The distinguishing factors that characterize the host response to infection with virulent Mycobacterium tuberculosis (M.tb) are largely confounding. We present an infection study with 2 genetically closely related M.tb strains that have vastly different pathogenic characteristics. The early host response to infection with these detergent-free cultured strains was analyzed through RNAseq in an attempt to provide information on the subtleties which may ultimately contribute to the virulent phenotype. Murine bone marrow derived macrophages (BMDMs) were infected with either a hyper- (R5527) or hypovirulent (R1507) Beijing M. tuberculosis clinical isolate. RNAseq revealed 69 differentially expressed host genes in BMDMs during comparison of these 2 transcriptomes. Pathway analysis revealed activation of the stress-induced and growth inhibitory Gadd45 signaling pathway in hypervirulent infected BMDMs. Upstream regulators of interferon activation such as and IRF3 and IRF7 were predicted to be upregulated in hypovirulent-infected BMDMs. Additional analysis of the host immune response through ELISA and qPCR included the use of human THP-1 macrophages where a robust proinflammatory response was observed after infection with the hypervirulent strain. RNAseq revealed 2 early-response genes (ier3 and saa3) and 2 host-defense genes (oasl1 and slpi) that were significantly upregulated by the hypervirulent strain. The role of these genes under M.tb infection conditions are largely unknown but here we provide validation of their presence with use of qPCR and Western blot. Further analysis into their biological role during infection with virulent M.tb is required.

  17. Vertebrate host specificity of wild-caught blackflies revealed by mitochondrial DNA in blood.

    PubMed

    Malmqvist, Björn; Strasevicius, Darius; Hellgren, Olof; Adler, Peter H; Bensch, Staffan

    2004-05-07

    Blood-feeding blackflies (Diptera: Simuliidae) transmit pathogens, harass vertebrate hosts and may cause lethal injuries in attacked victims, but with traditional methods it has proved difficult to identify their hosts. By matching mitochondrial DNA (mtDNA) sequences in blood collected from engorged blackflies with stored sequences in the GenBank database, relationships between 17 blackfly species and 25 species of vertebrate hosts were revealed. Our results demonstrate a predominance of large hosts and marked discrimination between blackflies using either avian or mammalian hosts. Such information is of vital interest in studies of disease transmission, coevolutionary relationships, population ecology and wildlife management.

  18. [Identification of a specific protein in flat revertant cell lines derived from ras oncogene-transformed cells].

    PubMed

    Fujita, H

    1990-03-01

    Total proteins from a mouse embryo fibroblast cell line NIH/3T3, NIH/3T3 cells transformed by human activated c-Ha-ras (EJ-ras) oncogene (EJ-NIH/3T3), and the two flat revertant cell lines, R1 and R2 were analyzed by two-dimensional gel electrophoresis (IEF and NEPHGE). Several hundred polypeptides were resolved as seen by silver staining. Common alterations in four polypeptide spots were observed in the revertants when compared with NIH/3T3 and EJ-NIH/3T3 cells. In these alterations, a new polypeptide spot p92-5.7 (designated by molecular weight X 10(-3) and pI) was detected only in the revertants, but not in NIH/3T3 and EJ-NIH/3T3 cells. Furthermore, the expression level of p92-5.7 seemed to be associated with the flat morphology and the reduced tumorigenicity of the revertants. The polypeptide p92-5.7 was also not detected in the total proteins extracted from BALB/3T3 cells, NIH Swiss mouse primary embryo fibroblasts. Subcellular fractionation of total protein from R1 cells revealed that the p92-5.7 was present in the cytosol. The p92-5.7 was not phosphorylated in the steady state of R1 cells. Western blot analysis using an anti-gelsolin antibody demonstrated that the p92-5.7 might be a variant form of gelsolin which is thought to be an actin regulatory protein or a gelsolin-like polypeptide. The expressions of gelsolin mRNA in the revertants were higher than in the EJ-NIH/3T3 cells. These results may suggest that the expression of p92-5.7 detected only in the revertants is associated, at least in part, with the reversion. This may be the first demonstration of the specific protein expression in the flat revertants.

  19. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases

    PubMed Central

    Marbach, Daniel; Lamparter, David; Quon, Gerald; Kellis, Manolis; Kutalik, Zoltán; Bergmann, Sven

    2016-01-01

    Mapping the molecular circuits that are perturbed by genetic variants underlying complex traits and diseases remains a great challenge. We present a comprehensive resource of 394 cell type and tissue-specific gene regulatory networks for human, each specifying the genome-wide connectivity between transcription factors, enhancers, promoters and genes. Integration with 37 genome-wide association studies (GWASs) shows that disease-associated genetic variants — including variants that do not reach genome-wide significance — often perturb regulatory modules that are highly specific to disease-relevant cell types or tissues. Our resource opens the door to systematic analysis of regulatory programs across hundreds of human cell types and tissues. PMID:26950747

  20. Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice

    PubMed Central

    Garg, Rohini; Tyagi, Akhilesh K.; Jain, Mukesh

    2012-01-01

    Hormones exert pleiotropic effects on plant growth and development throughout the life cycle. Many of these effects are mediated at molecular level via altering gene expression. In this study, we investigated the exogenous effect of plant hormones, including auxin, cytokinin, abscisic acid, ethylene, salicylic acid and jasmonic acid, on the transcription of rice genes at whole genome level using microarray. Our analysis identified a total of 4171 genes involved in several biological processes, whose expression was altered significantly in the presence of different hormones. Further, 28% of these genes exhibited overlapping transcriptional responses in the presence of any two hormones, indicating crosstalk among plant hormones. In addition, we identified genes showing only a particular hormone-specific response, which can be used as hormone-specific markers. The results of this study will facilitate further studies in hormone biology in rice. PMID:22827941

  1. The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity.

    PubMed

    Tang, Wai-Kwan; Wong, Kam-Bo; Lam, Yuk-Man; Cha, Sun-Shin; Cheng, Christopher H K; Fong, Wing-Ping

    2008-09-03

    The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8A resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specific interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation.

  2. Robust substrate profiling method reveals striking differences in specificities of serum and lung fluid proteases.

    PubMed

    Watson, Douglas S; Jambunathan, Kalyani; Askew, David S; Kodukula, Krishna; Galande, Amit K

    2011-08-01

    Proteases are candidate biomarkers and therapeutic targets for many diseases. Sensitive and robust techniques are needed to quantify proteolytic activities within the complex biological milieu. We hypothesized that a combinatorial protease substrate library could be used effectively to identify similarities and differences between serum and bronchoalveolar lavage fluid (BALF), two body fluids that are clinically important for developing targeted therapies and diagnostics. We used a concise library of fluorogenic probes to map the protease substrate specificities of serum and BALF from guinea pigs. Differences in the proteolytic fingerprints of the two fluids were striking: serum proteases cleaved substrates containing cationic residues and proline, whereas BALF proteases cleaved substrates containing aliphatic and aromatic residues. Notably, cleavage of proline-containing substrates dominated all other protease activities in both human and guinea pig serum. This substrate profiling approach provides a foundation for quantitative comparisons of protease specificities between complex biological samples.

  3. A new bioassay reveals mollusc-specific toxicity in molluscivorous Conus venoms.

    PubMed

    Fainzilber, M; Zlotkin, E

    1992-04-01

    Contraction of the foot pedal of a limpet snail is described as a new and quantifiable bioassay for mollusc paralysis. This bioassay was used for screening the venoms of seven different species of Conus snails. Comparison of the results of the limpet assay with those obtained from fish and blowflies shows a correlation between the feeding specificities and venom toxicities of these Conidae. The limpet bioassay should be useful for identification and monitoring of the purification of new toxins active on molluscan systems.

  4. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence

    PubMed Central

    Zheng, Ting; Hou, Yingzi; Zhang, Pingjing; Zhang, Zhenxi; Xu, Ying; Zhang, Letian; Niu, Leilei; Yang, Yi; Liang, Da; Yi, Fan; Peng, Wei; Feng, Wenjian; Yang, Ying; Chen, Jianxin; Zhu, York Yuanyuan; Zhang, Li-He; Du, Quan

    2017-01-01

    Targeting specificity is an essential issue in the development of CRISPR-Cas technology. Using a luciferase activation assay, off-target cleavage activity of sgRNA was systematically investigated on single nucleotide-mismatched targets. In addition to confirming that PAM-proximal mismatches are less tolerated than PAM-distal mismatches, our study further identified a “core” sequence that is highly sensitive to target-mismatch. This sequence is of 4-nucleotide long, located at +4 to +7 position upstream of PAM, and positioned in a steric restriction region when assembled into Cas9 endonuclease. Our study also found that, single or multiple target mismatches at this region abolished off-target cleavage mediated by active sgRNAs, thus proposing a principle for gene-specific sgRNA design. Characterization of a mismatch sensitive “core” sequence not only enhances our understanding of how this elegant system functions, but also facilitates our efforts to improve targeting specificity of a sgRNA. PMID:28098181

  5. Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling

    PubMed Central

    Szabó, Szilárd I.; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G.; Henstridge, Christopher M.; Balla, Gyula Y.; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2014-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically-projecting GABAergic interneurons possess increased CB1 receptor number, active-zone complexity, and receptor/effector ratio compared to dendritically-projecting interneurons, in agreement with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ9-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked dramatic CB1-downregulation in a dose-dependent manner. Full receptor recovery required several weeks after cessation of Δ9-tetrahydrocannabinol treatment. These findings demonstrate that cell-type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits, and identify novel molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction. PMID:25485758

  6. 267 Spanish Exomes Reveal Population-Specific Differences in Disease-Related Genetic Variation.

    PubMed

    Dopazo, Joaquín; Amadoz, Alicia; Bleda, Marta; Garcia-Alonso, Luz; Alemán, Alejandro; García-García, Francisco; Rodriguez, Juan A; Daub, Josephine T; Muntané, Gerard; Rueda, Antonio; Vela-Boza, Alicia; López-Domingo, Francisco J; Florido, Javier P; Arce, Pablo; Ruiz-Ferrer, Macarena; Méndez-Vidal, Cristina; Arnold, Todd E; Spleiss, Olivia; Alvarez-Tejado, Miguel; Navarro, Arcadi; Bhattacharya, Shomi S; Borrego, Salud; Santoyo-López, Javier; Antiñolo, Guillermo

    2016-05-01

    Recent results from large-scale genomic projects suggest that allele frequencies, which are highly relevant for medical purposes, differ considerably across different populations. The need for a detailed catalog of local variability motivated the whole-exome sequencing of 267 unrelated individuals, representative of the healthy Spanish population. Like in other studies, a considerable number of rare variants were found (almost one-third of the described variants). There were also relevant differences in allelic frequencies in polymorphic variants, including ∼10,000 polymorphisms private to the Spanish population. The allelic frequencies of variants conferring susceptibility to complex diseases (including cancer, schizophrenia, Alzheimer disease, type 2 diabetes, and other pathologies) were overall similar to those of other populations. However, the trend is the opposite for variants linked to Mendelian and rare diseases (including several retinal degenerative dystrophies and cardiomyopathies) that show marked frequency differences between populations. Interestingly, a correspondence between differences in allelic frequencies and disease prevalence was found, highlighting the relevance of frequency differences in disease risk. These differences are also observed in variants that disrupt known drug binding sites, suggesting an important role for local variability in population-specific drug resistances or adverse effects. We have made the Spanish population variant server web page that contains population frequency information for the complete list of 170,888 variant positions we found publicly available (http://spv.babelomics.org/), We show that it if fundamental to determine population-specific variant frequencies to distinguish real disease associations from population-specific polymorphisms.

  7. Orientation-tuned suppression in binocular rivalry reveals general and specific components of rivalry suppression.

    PubMed

    Stuit, Sjoerd M; Cass, John; Paffen, Chris L E; Alais, David

    2009-10-16

    During binocular rivalry (BR), conflicting monocular images are alternately suppressed from awareness. During suppression of an image, contrast sensitivity for probes is reduced by approximately 0.3-0.5 log units relative to when the image is in perceptual dominance. Previous studies on rivalry suppression have led to controversies concerning the nature and extent of suppression during BR. We tested for feature-specific suppression using orthogonal rivaling gratings and measuring contrast sensitivity to small grating probes at a range of orientations in a 2AFC orientation discrimination task. Results indicate that suppression is not uniform across orientations: suppression was much greater for orientations close to that of the suppressed grating. The higher suppression was specific to a narrow range around the suppressed rival grating, with a tuning similar to V1 orientation bandwidths. A similar experiment tested for spatial frequency tuning and found that suppression was stronger for frequencies close to that of the suppressed grating. Interestingly, no tuned suppression was observed when a flicker-and-swap paradigm was used, suggesting that tuned suppression occurs only for lower-level, interocular rivalry. Together, the results suggest there are two components to rivalry suppression: a general feature-invariant component and an additional component specifically tuned to the rivaling features.

  8. Theta dynamics reveal domain-specific control over stimulus and response conflict.

    PubMed

    Nigbur, Roland; Cohen, Michael X; Ridderinkhof, K Richard; Stürmer, Birgit

    2012-05-01

    Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.

  9. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae

    PubMed Central

    Shin, HyeonSeok; Hong, Seong-Joo; Yoo, Chan; Han, Mi-Ae; Lee, Hookeun; Choi, Hyung-Kyoon; Cho, Suhyung; Lee, Choul-Gyun; Cho, Byung-Kwan

    2016-01-01

    Temperature is a critical environmental factor that affects microalgal growth. However, microalgal coping mechanisms for temperature variations are unclear. Here, we determined changes in transcriptome, total carbohydrate, total fatty acid methyl ester, and fatty acid composition of Tetraselmis sp. KCTC12432BP, a strain with a broad temperature tolerance range, to elucidate the tolerance mechanisms in response to large temperature variations. Owing to unavailability of genome sequence information, de novo transcriptome assembly coupled with BLAST analysis was performed using strand specific RNA-seq data. This resulted in 26,245 protein-coding transcripts, of which 83.7% could be annotated to putative functions. We identified more than 681 genes differentially expressed, suggesting an organelle-specific response to temperature variation. Among these, the genes related to the photosynthetic electron transfer chain, which are localized in the plastid thylakoid membrane, were upregulated at low temperature. However, the transcripts related to the electron transport chain and biosynthesis of phosphatidylethanolamine localized in mitochondria were upregulated at high temperature. These results show that the low energy uptake by repressed photosynthesis under low and high temperature conditions is compensated by different mechanisms, including photosystem I and mitochondrial oxidative phosphorylation, respectively. This study illustrates that microalgae tolerate different temperature conditions through organelle specific mechanisms. PMID:27883062

  10. Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein

    PubMed Central

    Wang, Yanfang; Zhu, Sha; Hodgkinson, Victoria; Prohaska, Joseph R.; Weisman, Gary A.; Gitlin, Jonathan D.

    2012-01-01

    The essential requirement for copper in early development is dramatically illustrated by Menkes disease, a fatal neurodegenerative disorder of early childhood caused by loss-of-function mutations in the gene encoding the copper transporting ATPase ATP7A. In this study, we generated mice with enterocyte-specific knockout of the murine ATP7A gene (Atp7a) to test its importance in dietary copper acquisition. Although mice lacking Atp7a protein within intestinal enterocytes appeared normal at birth, they exhibited profound growth impairment and neurological deterioration as a consequence of copper deficiency, resulting in excessive mortality prior to weaning. Copper supplementation of lactating females or parenteral copper injection of the affected offspring markedly attenuated this rapid demise. Enterocyte-specific deletion of Atp7a in rescued pregnant females did not restrict embryogenesis; however, copper accumulation in the late-term fetus was severely reduced, resulting in early postnatal mortality. Taken together, these data demonstrate unique and specific requirements for enterocyte Atp7a in neonatal and maternofetal copper acquisition that are dependent on dietary copper availability, thus providing new insights into the mechanisms of gene-nutrient interaction essential for early human development. PMID:23064757

  11. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling.

    PubMed

    Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2015-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.

  12. lines and bowl affect the specification of cyst stem cells and niche cells in the Drosophila testis

    PubMed Central

    DiNardo, Stephen; Okegbe, Tishina; Wingert, Lindsey; Freilich, Sarah; Terry, Natalie

    2011-01-01

    To function properly, tissue-specific stem cells must reside in a niche. The Drosophila testis niche is one of few niches studied in vivo. Here, a single niche, comprising ten hub cells, maintains both germline stem cells (GSC) and somatic stem cells (CySC). Here, we show that lines is an essential CySC factor. Surprisingly, lines-depleted CySCs adopted several characteristics of hub cells, including the recruitment of new CySCs. This led us to examine the developmental relationship between CySCs and hub cells. In contrast to a previous report, we did not observe significant conversion of steady-state CySC progeny to hub fate. However, we found that these two cell types derive from a common precursor pool during gonadogenesis. Furthermore, lines mutant embryos exhibited gonads containing excess hub cells, indicating that lines represses hub cell fate during gonadogenesis. In many tissues, lines acts antagonistically to bowl, and we found that this is true for hub specification, establishing bowl as a positively acting factor in the development of the testis niche. PMID:21486923

  13. lines and bowl affect the specification of cyst stem cells and niche cells in the Drosophila testis.

    PubMed

    Dinardo, Stephen; Okegbe, Tishina; Wingert, Lindsey; Freilich, Sarah; Terry, Natalie

    2011-05-01

    To function properly, tissue-specific stem cells must reside in a niche. The Drosophila testis niche is one of few niches studied in vivo. Here, a single niche, comprising ten hub cells, maintains both germline stem cells (GSC) and somatic stem cells (CySC). Here, we show that lines is an essential CySC factor. Surprisingly, lines-depleted CySCs adopted several characteristics of hub cells, including the recruitment of new CySCs. This led us to examine the developmental relationship between CySCs and hub cells. In contrast to a previous report, we did not observe significant conversion of steady-state CySC progeny to hub fate. However, we found that these two cell types derive from a common precursor pool during gonadogenesis. Furthermore, lines mutant embryos exhibited gonads containing excess hub cells, indicating that lines represses hub cell fate during gonadogenesis. In many tissues, lines acts antagonistically to bowl, and we found that this is true for hub specification, establishing bowl as a positively acting factor in the development of the testis niche.

  14. Neuroaffective processing in criminal psychopaths: brain event-related potentials reveal task-specific anomalies.

    PubMed

    Howard, Rick; McCullagh, Paul

    2007-06-01

    This study aimed to confirm neuroaffective processing deficits in psychopaths by measuring late brain event-related potential (ERP) components and behavior in groups of psychopathic and nonpsychopathic inmates of a Singaporean prison while they performed two tasks. In a Categorization task, affective stimuli were task-relevant and required focused attention, while in a Vigilance task, affective pictures were presented in the background while participants discriminated vertical from oblique lines. Psychopaths showed differences in late positive ERPs that were sensitive to affective stimulus properties (valence and arousal) in the Categorization, but not in the Vigilance task, suggesting that only under conditions of focused attention did psychopaths show a neuroaffective processing deficit. In the Categorization task, psychopaths also showed a significantly larger prefrontal negative ERP (N350) whose amplitude correlated positively with the behavioral facet of psychopathy. In the Vigilance task, psychopaths both missed more targets and showed significantly smaller target-evoked parietal ERPs when viewing arousing pictures, suggesting their attentional focus was disrupted by the affective background.

  15. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction

    PubMed Central

    Tiwari, Prabhat; Malhotra, Vivek; VijayRaghavan, K.

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  16. Building Specific Signals from Frequency Chaos Game and Revealing Periodicities Using a Smoothed Fourier Analysis.

    PubMed

    Messaoudi, Imen; Elloumi-Oueslati, Afef; Lachiri, Zied

    2014-01-01

    Investigating the roles and functions of DNA within genomes is becoming a primary focus of genomic research. Thus, the research works are moving towards cooperation between different scientific disciplines which aims at facilitating the interpretation of genetic information. In order to characterize the DNA of living organisms, signal processing tools appear to be very suitable for such study. However, a DNA sequence must be converted into a numerical sequence before processing; which defines the concept of DNA coding. In line with this, we propose a new one dimensional model based on the chaos game representation theory called Frequency Chaos Game Signal: FCGS. Then, we perform a Smoothed Fourier Transform to enhance hidden periodicities in the C.elegans DNA sequences. Through this study, we demonstrate the performance of our coding approach in highlighting characteristic periodicities. Indeed, several periodicities are shown to be involved in the 1D spectra and the 2D spectrograms of FCGSs. To investigate further about the contribution of our method in the enhancement of characteristic spectral attributes, a comparison with a range of binary indicators is established.

  17. On-line monitoring of Soxhlet extraction by chromatography and mass spectrometry to reveal temporal extract profiles.

    PubMed

    Chen, Ssu-Ying; Urban, Pawel L

    2015-06-30

    Soxhlet extraction is a popular sample preparation technique used in chemical analysis. It enables liberation of molecules embedded in complex matrices (for example, plant tissues, foodstuffs). In most protocols, samples are analyzed after the extraction process is complete. However, in order to optimize extraction conditions and enable comparisons between different types of extraction, it would be desirable to monitor it in real time. The main development of this work is the design and construction of the interface between Soxhlet extractor and GC-MS as well as ESI-MS system. The temporal extract profiles, obtained in the course of real-time GC-MS monitoring, have been fitted with mathematical functions to analyze extraction kinetics of different analytes. For example, the mass transfer coefficients of pinene, limonene and terpinene in lemon sample, estimated using the first-order kinetic model, are 0.540h(-1), 0.507h(-1) and 0.722h(-1), respectively. On the other hand, the Peleg model provides the following extraction rates of pinene, limonene and terpinene: 0.370nMh(-1), 0.216nMh(-1) and 0.596nMh(-1), respectively. The results suggest that both first-order kinetic and Peleg equations can be used to describe the progress of Soxhlet extraction. On-line monitoring of Soxhlet extraction reveals extractability of various analytes present in natural samples (plant tissue), and can potentially facilitate optimization of the extraction process.

  18. Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX Cell Lines with Increased Sensitivity and Responsiveness

    PubMed Central

    Brennan, Jennifer C.; He, Guochun; Tsutsumi, Tomoaki; Zhao, Jing; Wirth, Ed; Fulton, Michael H.; Denison, Michael S.

    2016-01-01

    The Ah receptor (AhR)-responsive CALUX (chemically-activated luciferase expression) cell bioassay is commonly used for rapid screening of samples for the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), dioxin-like compounds, and AhR agonists/antagonists. By increasing the number of AhR DNA recognition sites (dioxin responsive elements), we previously generated a novel third generation (G3) recombinant AhR-responsive mouse CALUX cell line (H1L7.5c3) with significantly enhanced sensitivity and response to DLCs compared to existing AhR-CALUX cell bioassays. However, the elevated background luciferase activity of these cells and the absence of comparable G3 cell lines derived from other species have limited their utility for screening purposes. Here, we describe the development and characterization of species-specific G3 recombinant AhR-responsive CALUX cell lines (rat, human, and guinea pig) that exhibit significantly improved sensitivity and dramatically increased TCDD induction response. The low background luciferase activity, low minimal detection limit (0.1 pM TCDD) and enhanced induction response of the rat G3 cell line (H4L7.5c2) over the H1L7.5c3 mouse G3 cells, identifies them as a more optimal cell line for screening purposes. The utility of the new G3 CALUX cell lines were demonstrated by screening sediment extracts and a small chemical compound library for the presence of AhR agonists. The increased sensitivity and response of these new G3 CALUX cell lines will facilitate species-specific analysis of DLCs and AhR agonists in samples with low levels of contamination and/or in small sample volumes. PMID:26366531

  19. Distinction of two different classes of small-cell lung cancer cell lines by enzymatically inactive neuron-specific enolase.

    PubMed Central

    Splinter, T. A.; Verkoelen, C. F.; Vlastuin, M.; Kok, T. C.; Rijksen, G.; Haglid, K. G.; Boomsma, F.; van de Gaast, A.

    1992-01-01

    Neuron specific enolase (NSE) is widely used as a neuro-endocrine marker. However the presence of NSE in many non-neuroendocrine tissues has raised questions on the specificity of NSE. We have investigated NSE immunoreactivity (NSA-ag), gamma-enolase activity and total enolase activity in small cell lung cancer (SCLC) cell lines. During well-controlled exponential growth comparison of NSE-ag content and gamma-enolase activity with the doubling-time (Td) and NSE-ag content with gamma-enolase and total enolase activity led to a clear distinction of two types of cell line: variant cell lines plus part of the classic cell lines (type I) and the remaining classic cell lines (type II). The distinction was based upon both an abrupt 6-fold increase of gamma-enolase activity and an 18-fold increase of NSE-ag, which for the larger part was enzymatically inactive. Within each group the increase of NSE-ag content was significantly correlated with the increase of gamma-enolase activity and both NSE-ag content and gamma-enolase activity increased linearly with Td. It is concluded that gamma-enolase seems to be associated with the regulation of growth rate and that a compound with the gamma-enolase antigen but without enzyme activity can distinguish two different classes of SCLC cell lines. Furthermore the demonstration that NSE-ag can represent the active enzyme as well as an enzymatically inactive compound may explain why a controversy about neuron- or non-specificity of NSE exists. PMID:1333786

  20. Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility

    PubMed Central

    Bagot, Rosemary C.; Cates, Hannah M.; Purushothaman, Immanuel; Lorsch, Zachary S.; Walker, Deena M.; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M.; Maze, Ian; Peña, Catherine J.; Heller, Elizabeth A.; Issler, Orna; Wang, Minghui; Song, Won-min; Stein, Jason. L.; Liu, Xiaochuan; Doyle, Marie A.; Scobie, Kimberly N.; Sun, Hao Sheng; Neve, Rachael L.; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J.

    2016-01-01

    Summary Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here we performed RNA-sequencing on 4 brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  1. Cross-contamination of cell lines as revealed by DNA fingerprinting in the IFO animal cell bank.

    PubMed

    Satoh, M; Takeuchi, M

    1993-01-01

    For quality control of cell lines, the Institute for Fermentation, Osaka (IFO) animal cell bank recently introduced DNA fingerprinting analysis, which enables verification of cell lines at the individual level, to detect cross-culture contamination. By using this analysis, we found two cases of cross-contamination of cell lines.

  2. High-throughput sequencing reveals differing immune responses in the intestinal mucosa of two inbred lines afflicted with Necrotic enteritis

    USDA-ARS?s Scientific Manuscript database

    We investigated the necrotic enteritis (NE)-induced transcripts of immune-related genes in the intestinal mucosa of two highly inbred White Leghorn chicken lines, line 6.3 and line 7.2, which share the same MHC haplotype and show different levels of NE susceptibility using high-throughput RNA sequen...

  3. RISK ASSESSMENT ANALYSES USING EPA'S ON-LINE SITE-SPECIFIC TRANSPORT MODELS AND FIELD DATA

    EPA Science Inventory

    EPA has developed a suite of on-line calculators and transport models to aid in risk assessment for subsurface contamination. The calculators (www.epa.gov/athens/onsite) provide several levels of tools and data. These include tools for generating commonly-used model input param...

  4. RISK ASSESSMENT ANALYSES USING EPA'S ON-LINE SITE-SPECIFIC TRANSPORT MODELS AND FIELD DATA

    EPA Science Inventory

    EPA has developed a suite of on-line calculators and transport models to aid in risk assessment for subsurface contamination. The calculators (www.epa.gov/athens/onsite) provide several levels of tools and data. These include tools for generating commonly-used model input param...

  5. Brain-Specific Rescue of Clock Reveals System-Driven Transcriptional Rhythms in Peripheral Tissue

    PubMed Central

    Hughes, Michael E.; Hong, Hee-Kyung; Chong, Jason L.; Indacochea, Alejandra A.; Lee, Samuel S.; Han, Michael; Takahashi, Joseph S.; Hogenesch, John B.

    2012-01-01

    The circadian regulatory network is organized in a hierarchical fashion, with a central oscillator in the suprachiasmatic nuclei (SCN) orchestrating circadian oscillations in peripheral tissues. The nature of the relationship between central and peripheral oscillators, however, is poorly understood. We used the tetOFF expression system to specifically restore Clock function in the brains of ClockΔ19 mice, which have compromised circadian clocks. Rescued mice showed normal locomotor rhythms in constant darkness, with activity period lengths approximating wildtype controls. We used microarray analysis to assess whether brain-specific rescue of circadian rhythmicity was sufficient to restore circadian transcriptional output in the liver. Compared to Clock mutants, Clock-rescue mice showed significantly larger numbers of cycling transcripts with appropriate phase and period lengths, including many components of the core circadian oscillator. This indicates that the SCN oscillator overcomes local circadian defects and signals directly to the molecular clock. Interestingly, the vast majority of core clock genes in liver were responsive to Clock expression in the SCN, suggesting that core clock genes in peripheral tissues are intrinsically sensitive to SCN cues. Nevertheless, most circadian output in the liver was absent or severely low-amplitude in Clock-rescue animals, demonstrating that the majority of peripheral transcriptional rhythms depend on a fully functional local circadian oscillator. We identified several new system-driven rhythmic genes in the liver, including Alas1 and Mfsd2. Finally, we show that 12-hour transcriptional rhythms (i.e., circadian “harmonics") are disrupted by Clock loss-of-function. Brain-specific rescue of Clock converted 12-hour rhythms into 24-hour rhythms, suggesting that signaling via the central circadian oscillator is required to generate one of the two daily peaks of expression. Based on these data, we conclude that 12-hour rhythms

  6. 267 Spanish Exomes Reveal Population-Specific Differences in Disease-Related Genetic Variation

    PubMed Central

    Dopazo, Joaquín; Amadoz, Alicia; Bleda, Marta; Garcia-Alonso, Luz; Alemán, Alejandro; García-García, Francisco; Rodriguez, Juan A.; Daub, Josephine T.; Muntané, Gerard; Rueda, Antonio; Vela-Boza, Alicia; López-Domingo, Francisco J.; Florido, Javier P.; Arce, Pablo; Ruiz-Ferrer, Macarena; Méndez-Vidal, Cristina; Arnold, Todd E.; Spleiss, Olivia; Alvarez-Tejado, Miguel; Navarro, Arcadi; Bhattacharya, Shomi S.; Borrego, Salud; Santoyo-López, Javier; Antiñolo, Guillermo

    2016-01-01

    Recent results from large-scale genomic projects suggest that allele frequencies, which are highly relevant for medical purposes, differ considerably across different populations. The need for a detailed catalog of local variability motivated the whole-exome sequencing of 267 unrelated individuals, representative of the healthy Spanish population. Like in other studies, a considerable number of rare variants were found (almost one-third of the described variants). There were also relevant differences in allelic frequencies in polymorphic variants, including ∼10,000 polymorphisms private to the Spanish population. The allelic frequencies of variants conferring susceptibility to complex diseases (including cancer, schizophrenia, Alzheimer disease, type 2 diabetes, and other pathologies) were overall similar to those of other populations. However, the trend is the opposite for variants linked to Mendelian and rare diseases (including several retinal degenerative dystrophies and cardiomyopathies) that show marked frequency differences between populations. Interestingly, a correspondence between differences in allelic frequencies and disease prevalence was found, highlighting the relevance of frequency differences in disease risk. These differences are also observed in variants that disrupt known drug binding sites, suggesting an important role for local variability in population-specific drug resistances or adverse effects. We have made the Spanish population variant server web page that contains population frequency information for the complete list of 170,888 variant positions we found publicly available (http://spv.babelomics.org/), We show that it if fundamental to determine population-specific variant frequencies to distinguish real disease associations from population-specific polymorphisms. PMID:26764160

  7. Phase noise reveals early category-specific modulation of the event-related potentials.

    PubMed

    Németh, Kornél; Kovács, Petra; Vakli, Pál; Kovács, Gyula; Zimmer, Márta

    2014-01-01

    Previous studies have found that the amplitude of the early event-related potential (ERP) components evoked by faces, such as N170 and P2, changes systematically as a function of noise added to the stimuli. This change has been linked to an increased perceptual processing demand and to enhanced difficulty in perceptual decision making about faces. However, to date it has not yet been tested whether noise manipulation affects the neural correlates of decisions about face and non-face stimuli similarly. To this end, we measured the ERPs for faces and cars at three different phase noise levels. Subjects performed the same two-alternative age-discrimination task on stimuli chosen from young-old morphing continua that were created from faces as well as cars and were calibrated to lead to similar performances at each noise-level. Adding phase noise to the stimuli reduced performance and enhanced response latency for the two categories to the same extent. Parallel to that, phase noise reduced the amplitude and prolonged the latency of the face-specific N170 component. The amplitude of the P1 showed category-specific noise dependence: it was enhanced over the right hemisphere for cars and over the left hemisphere for faces as a result of adding phase noise to the stimuli, but remained stable across noise levels for cars over the left and for faces over the right hemisphere. Moreover, noise modulation altered the category-selectivity of the N170, while the P2 ERP component, typically associated with task decision difficulty, was larger for the more noisy stimuli regardless of stimulus category. Our results suggest that the category-specificity of noise-induced modulations of ERP responses starts at around 100 ms post-stimulus.

  8. 2D IR cross peaks reveal hydrogen-deuterium exchange with single residue specificity.

    PubMed

    Dunkelberger, Emily B; Woys, Ann Marie; Zanni, Martin T

    2013-12-12

    A form of chemical exchange, hydrogen-deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using two-dimensional infrared (2D IR) spectroscopy, we resolve cross peaks between the amide II band and a (13)C(18)O isotope-labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide ovispirin bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 ± 0.02 and 0.12 ± 0.01 min(-1), which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10-labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 ± 0.1 min(-1). Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known α-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements.

  9. 2D IR Cross Peaks Reveal Hydrogen-Deuterium Exchange with Single Residue Specificity

    PubMed Central

    Dunkelberger, Emily B.; Woys, Ann Marie; Zanni, Martin T.

    2013-01-01

    A form of chemical exchange, hydrogen-deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using 2D IR (two dimensional infrared) spectroscopy, we resolve cross peaks between the amide II band and a 13C18O isotope labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide, ovispirin, bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 ± 0.02 and 0.12 ± 0.01 min−1, which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10 labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 ± 0.1 min−1. Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known α-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements. PMID:23659731

  10. Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers

    PubMed Central

    Burian, Alfred; Kainz, Martin J; Schagerl, Michael; Yasindi, Andrew

    2014-01-01

    1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, Brachionus plicatilis and Brachionus dimidiatus, were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δ13C and 1.5‰ in δ15N). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles <2 μm and underlined the importance of species-specific sampling of smaller plankton compartments. 4. A main difference was that the filamentous cyanobacterium Arthrospira fusiformis, which frequently forms blooms in African soda lakes, was an important food source for the larger-sized B. plicatilis (48%), whereas it was hardly ingested by B. dimidiatus. Overall, A. fusiformis was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first in situ demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria. PMID:25866422

  11. Specific and Nonspecific Interactions in Ultraweak Protein–Protein Associations Revealed by Solvent Paramagnetic Relaxation Enhancements

    PubMed Central

    2015-01-01

    Weak and transient protein–protein interactions underlie numerous biological processes. However, the location of the interaction sites of the specific complexes and the effect of transient, nonspecific protein–protein interactions often remain elusive. We have investigated the weak self-association of human growth hormone (hGH, KD = 0.90 ± 0.03 mM) at neutral pH by the paramagnetic relaxation enhancement (PRE) of the amide protons induced by the soluble paramagnetic relaxation agent, gadodiamide (Gd(DTPA-BMA)). Primarily, it was found that the PREs are in agreement with the general Hwang-Freed model for relaxation by translational diffusion (J. Chem. Phys.1975, 63, 4017–4025), only if crowding effects on the diffusion in the protein solution are taken into account. Second, by measuring the PREs of the amide protons at increasing hGH concentrations and a constant concentration of the relaxation agent, it is shown that a distinction can be made between residues that are affected only by transient, nonspecific protein–protein interactions and residues that are involved in specific protein–protein associations. Thus, the PREs of the former residues increase linearly with the hGH concentration in the entire concentration range because of a reduction of the diffusion caused by the transient, nonspecific protein–protein interactions, while the PREs of the latter residues increase only at the lower hGH concentrations but decrease at the higher concentrations because of specific protein–protein associations that impede the access of gadodiamide to the residues of the interaction surface. Finally, it is found that the ultraweak aggregation of hGH involves several interaction sites that are located in patches covering a large part of the protein surface. PMID:24969589

  12. Depth-specific distribution of the SAR116 phages revealed by virome binning.

    PubMed

    Kang, Ilnam; Cho, Jang-Cheon

    2014-05-01

    HMO-2011, a recently isolated lytic phage that infects the SAR116 bacterial clade, represents one of the most abundant phage types in the oceans. In this study, the HMO-2011 genome sequence was compared with virome sequences obtained from various depths of the Pacific Ocean regions using metagenome binning. HMO-2011 was confirmed to be one of the most highly assigned viruses, with a maximum of 7.6% of total reads assigned. The HMO-2011-type phages demonstrated a depth-specific distribution, showing more abundance in the euphotic zone of coastal, transition, and open ocean regions as compared with the dark ocean.

  13. Bacterial Associates of Two Caribbean Coral Species Reveal Species-Specific Distribution and Geographic Variability

    PubMed Central

    Moss, Anthony G.; Chadwick, Nanette E.; Liles, Mark R.

    2012-01-01

    Scleractinian corals harbor microorganisms that form dynamic associations with the coral host and exhibit substantial genetic and ecological diversity. Microbial associates may provide defense against pathogens and serve as bioindicators of changing environmental conditions. Here we describe the bacterial assemblages associated with two of the most common and phylogenetically divergent reef-building corals in the Caribbean, Montastraea faveolata and Porites astreoides. Contrasting life history strategies and disease susceptibilities indicate potential differences in their microbiota and immune function that may in part drive changes in the composition of coral reef communities. The ribotype structure and diversity of coral-associated bacteria within the surface mucosal layer (SML) of healthy corals were assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting and 454 bar-coded pyrosequencing. Corals were sampled at disparate Caribbean locations representing various levels of anthropogenic impact. We demonstrate here that M. faveolata and P. astreoides harbor distinct, host-specific bacteria but that specificity varies by species and site. P. astreoides generally hosts a bacterial assemblage of low diversity that is largely dominated by one bacterial genus, Endozoicomonas, within the order Oceanospirillales. The bacterial assemblages associated with M. faveolata are significantly more diverse and exhibit higher specificity at the family level than P. astreoides assemblages. Both corals have more bacterial diversity and higher abundances of disease-related bacteria at sites closer to the mainland than at those furthest away. The most diverse bacterial taxa and highest relative abundance of disease-associated bacteria were seen for corals near St. Thomas, U.S. Virgin Islands (USVI) (2.5 km from shore), and the least diverse taxa and lowest relative abundance were seen for corals near our most pristine site in Belize (20 km from shore). We conclude

  14. Adjuvant-induced Human Monocyte Secretome Profiles Reveal Adjuvant- and Age-specific Protein Signatures*

    PubMed Central

    Oh, Djin-Ye; Dowling, David J.; Ahmed, Saima; Choi, Hyungwon; Brightman, Spencer; Bergelson, Ilana; Berger, Sebastian T.; Sauld, John F.; Pettengill, Matthew; Kho, Alvin T.; Pollack, Henry J.; Steen, Hanno; Levy, Ofer

    2016-01-01

    Adjuvants boost vaccine responses, enhancing protective immunity against infections that are most common among the very young. Many adjuvants activate innate immunity, some via Toll-Like Receptors (TLRs), whose activities varies with age. Accordingly, characterization of age-specific adjuvant-induced immune responses may inform rational adjuvant design targeting vulnerable populations. In this study, we employed proteomics to characterize the adjuvant-induced changes of secretomes from human newborn and adult monocytes in response to Alum, the most commonly used adjuvant in licensed vaccines; Monophosphoryl Lipid A (MPLA), a TLR4-activating adjuvant component of a licensed Human Papilloma Virus vaccine; and R848 an imidazoquinoline TLR7/8 agonist that is a candidate adjuvant for early life vaccines. Monocytes were incubated in vitro for 24 h with vehicle, Alum, MPLA, or R848 and supernatants collected for proteomic analysis employing liquid chromatography-mass spectrometry (LC-MS) (data available via ProteomeXchange, ID PXD003534). 1894 non-redundant proteins were identified, of which ∼30 - 40% were common to all treatment conditions and ∼5% were treatment-specific. Adjuvant-stimulated secretome profiles, as identified by cluster analyses of over-represented proteins, varied with age and adjuvant type. Adjuvants, especially Alum, activated multiple innate immune pathways as assessed by functional enrichment analyses. Release of lactoferrin, pentraxin 3, and matrix metalloproteinase-9 was confirmed in newborn and adult whole blood and blood monocytes stimulated with adjuvants alone or adjuvanted licensed vaccines with distinct clinical reactogenicity profiles. MPLA-induced adult monocyte secretome profiles correlated in silico with transcriptome profiles induced in adults immunized with the MPLA-adjuvanted RTS,S malaria vaccine (Mosquirix™). Overall, adjuvants such as Alum, MPLA and R848 give rise to distinct and age-specific monocyte secretome profiles

  15. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator

    PubMed Central

    Severinov, Konstantin; Minakhin, Leonid; Sekine, Shun-ichi; Lopatina, Anna; Yokoyama, Shigeyuki

    2014-01-01

    Transcription initiation is the central point of gene expression regulation. Understanding of molecular mechanism of transcription regulation requires, ultimately, the structural understanding of consequences of transcription factors binding to DNA-dependent RNA polymerase (RNAP), the enzyme of transcription. We recently determined a structure of a complex between transcription factor gp39 encoded by a Thermus bacteriophage and Thermus RNAP holoenzyme. In this addendum to the original publication, we highlight structural insights that explain the ability of gp39 to act as an RNAP specificity switch which inhibits transcription initiation from a major class of bacterial promoters, while allowing transcription from a minor promoter class to continue. PMID:25105059

  16. Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability.

    PubMed

    Morrow, Kathleen M; Moss, Anthony G; Chadwick, Nanette E; Liles, Mark R

    2012-09-01

    Scleractinian corals harbor microorganisms that form dynamic associations with the coral host and exhibit substantial genetic and ecological diversity. Microbial associates may provide defense against pathogens and serve as bioindicators of changing environmental conditions. Here we describe the bacterial assemblages associated with two of the most common and phylogenetically divergent reef-building corals in the Caribbean, Montastraea faveolata and Porites astreoides. Contrasting life history strategies and disease susceptibilities indicate potential differences in their microbiota and immune function that may in part drive changes in the composition of coral reef communities. The ribotype structure and diversity of coral-associated bacteria within the surface mucosal layer (SML) of healthy corals were assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting and 454 bar-coded pyrosequencing. Corals were sampled at disparate Caribbean locations representing various levels of anthropogenic impact. We demonstrate here that M. faveolata and P. astreoides harbor distinct, host-specific bacteria but that specificity varies by species and site. P. astreoides generally hosts a bacterial assemblage of low diversity that is largely dominated by one bacterial genus, Endozoicomonas, within the order Oceanospirillales. The bacterial assemblages associated with M. faveolata are significantly more diverse and exhibit higher specificity at the family level than P. astreoides assemblages. Both corals have more bacterial diversity and higher abundances of disease-related bacteria at sites closer to the mainland than at those furthest away. The most diverse bacterial taxa and highest relative abundance of disease-associated bacteria were seen for corals near St. Thomas, U.S. Virgin Islands (USVI) (2.5 km from shore), and the least diverse taxa and lowest relative abundance were seen for corals near our most pristine site in Belize (20 km from shore). We conclude

  17. Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat-Triticum militinae introgression line.

    PubMed

    Jakobson, Irena; Reis, Diana; Tiidema, Anu; Peusha, Hilma; Timofejeva, Ljudmilla; Valárik, Miroslav; Kladivová, Monika; Simková, Hana; Doležel, Jaroslav; Järve, Kadri

    2012-08-01

    Introgression of several genomic loci from tetraploid Triticum militinae into bread wheat cv. Tähti has increased resistance of introgression line 8.1 to powdery mildew in seedlings and adult plants. In our previous work, only a major quantitative trait locus (QTL) on chromosome 4AL of the line 8.1 contributed significantly to resistance, whereas QTL on chromosomes 1A, 1B, 2A, 5A and 5B were detected merely on a suggestive level. To verify and characterize all QTLs in the line 8.1, a mapping population of double haploid lines was established. Testing for seedling resistance to 16 different races/mixtures of Blumeria graminis f. sp. tritici revealed four highly significant non-race-specific resistance QTL including the main QTL on chromosome 4AL, and a race-specific QTL on chromosome 5B. The major QTL on chromosome 4AL (QPm.tut-4A) as well as QTL on chromosome 5AL and a newly detected QTL on 7AL were highly effective at the adult stage. The QPm.tut-4A QTL accounts on average for 33-49 % of the variation in resistance in the double haploid population. Interactions between the main QTL QPm.tut-4A and the minor QTL were evaluated and discussed. A population of 98 F(2) plants from a cross of susceptible cv. Chinese Spring and the line 8.1 was created that allowed mapping the QPm.tut-4A locus to the proximal 2.5-cM region of the introgressed segment on chromosome 4AL. The results obtained in this work make it feasible to use QPm.tut-4A in resistance breeding and provide a solid basis for positional cloning of the major QTL.

  18. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  19. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements12

    PubMed Central

    Paulo, Paula; Ribeiro, Franclim R; Santos, Joana; Mesquita, Diana; Almeida, Mafalda; Barros-Silva, João D; Itkonen, Harri; Henrique, Rui; Jerónimo, Carmen; Sveen, Anita; Mills, Ian G; Skotheim, Rolf I; Lothe, Ragnhild A; Teixeira, Manuel R

    2012-01-01

    This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements. PMID:22904677

  20. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity

    PubMed Central

    Chang, Matthew T.; Asthana, Saurabh; Gao, Sizhi Paul; Lee, Byron H.; Chapman, Jocelyn S.; Kandoth, Cyriac; Gao, JianJiong; Socci, Nicholas D.; Solit, David B.; Olshen, Adam B.; Schultz, Nikolaus; Taylor, Barry S.

    2015-01-01

    Mutational hotspots indicate selective pressure across a population of tumor samples, but their prevalence within and across cancer types is incompletely characterized. An approach to detect significantly mutated residues, rather than methods that identify recurrently mutated genes, may uncover new biologically and therapeutically relevant driver mutations. Here we developed a statistical algorithm to identify recurrently mutated residues in tumour samples. We applied the algorithm to 11,119 human tumors, spanning 41 cancer types, and identified 470 hotspot somatic substitutions in 275 genes. We find that half of all human tumors possess one or more mutational hotspots with widespread lineage-, position-, and mutant allele-specific differences, many of which are likely functional. In total, 243 hotspots were novel and appeared to affect a broad spectrum of molecular function, including hotspots at paralogous residues of Ras-related small GTPases RAC1 and RRAS2. Redefining hotspots at mutant amino acid resolution will help elucidate the allele-specific differences in their function and could have important therapeutic implications. PMID:26619011

  1. Comprehensive profiling reveals mechanisms of SOX2-mediated cell fate specification in human ESCs and NPCs.

    PubMed

    Zhou, Chenlin; Yang, Xiaoqin; Sun, Yiyang; Yu, Hongyao; Zhang, Yong; Jin, Ying

    2016-02-01

    SOX2 is a key regulator of multiple types of stem cells, especially embryonic stem cells (ESCs) and neural progenitor cells (NPCs). Understanding the mechanism underlying the function of SOX2 is of great importance for realizing the full potential of ESCs and NPCs. Here, through genome-wide comparative studies, we show that SOX2 executes its distinct functions in human ESCs (hESCs) and hESC-derived NPCs (hNPCs) through cell type- and stage-dependent transcription programs. Importantly, SOX2 suppresses non-neural lineages in hESCs and regulates neurogenesis from hNPCs by inhibiting canonical Wnt signaling. In hESCs, SOX2 achieves such inhibition by direct transcriptional regulation of important Wnt signaling modulators, WLS and SFRP2. Moreover, SOX2 ensures pluripotent epigenetic landscapes via interacting with histone variant H2A.Z and recruiting polycomb repressor complex 2 to poise developmental genes in hESCs. Together, our results advance our understanding of the mechanism by which cell type-specific transcription factors control lineage-specific gene expression programs and specify cell fate.

  2. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE PAGES

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto; ...

    2015-12-29

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  3. Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway

    PubMed Central

    Ptitsyn, Andrey A; Gimble, Jeffrey M

    2007-01-01

    Background It has been previously reported that most mammalian genes display a circadian oscillation in their baseline expression. Consequently, the phase and amplitude of each component of a signal transduction cascade has downstream consequences. Results Here, we report our analysis of alternative transcripts in the leptin signaling pathway which is responsible for the systemic regulation of macronutrient storage and energy balance. We focused on the circadian expression pattern of a critical component of the leptin signaling system, suppressor of cytokine signaling 3 (SOCS3). On an Affymetrix GeneChip 430A2 microarray, this gene is represented by three probe sets targeting different regions within the 3' end of the last exon. We demonstrate that in murine brown adipose tissue two downstream 3' probe sets experience circadian baseline oscillation in counter-phase to the upstream probe set. Such differences in expression patterns are a telltale sign of alternative splicing within the last exon of SOCS3. In contrast, all three probe sets oscillated in a common phase in murine liver and white adipose tissue. This suggests that the regulation of SOCS3 expression in brown fat is tissue specific. Another component of the signaling pathway, Janus kinase (JAK), is directly regulated by SOCS and has alternative transcript probe sets oscillating in counter-phase in a white adipose tissue specific manner. Conclusion We hypothesize that differential oscillation of alternative transcripts may provide a mechanism to maintain steady levels of expression in spite of circadian baseline variation. PMID:18047714

  4. Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis.

    PubMed

    Liu, Shijia; Shao, Shangjin; Li, Linlin; Cheng, Zhi; Tian, Li; Gao, Peiji; Wang, Lushan

    2015-12-11

    Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases.

  5. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways

    PubMed Central

    Mitsche, Matthew A; McDonald, Jeffrey G; Hobbs, Helen H; Cohen, Jonathan C

    2015-01-01

    Two parallel pathways produce cholesterol: the Bloch and Kandutsch-Russell pathways. Here we used stable isotope labeling and isotopomer analysis to trace sterol flux through the two pathways in mice. Surprisingly, no tissue used the canonical K–R pathway. Rather, a hybrid pathway was identified that we call the modified K–R (MK–R) pathway. Proportional flux through the Bloch pathway varied from 8% in preputial gland to 97% in testes, and the tissue-specificity observed in vivo was retained in cultured cells. The distribution of sterol isotopomers in plasma mirrored that of liver. Sterol depletion in cultured cells increased flux through the Bloch pathway, whereas overexpression of 24-dehydrocholesterol reductase (DHCR24) enhanced usage of the MK–R pathway. Thus, relative use of the Bloch and MK–R pathways is highly variable, tissue-specific, flux dependent, and epigenetically fixed. Maintenance of two interdigitated pathways permits production of diverse bioactive sterols that can be regulated independently of cholesterol. DOI: http://dx.doi.org/10.7554/eLife.07999.001 PMID:26114596

  6. Neuron-specific protein interactions of Drosophila CASK-β are revealed by mass spectrometry

    PubMed Central

    Mukherjee, Konark; Slawson, Justin B.; Christmann, Bethany L.; Griffith, Leslie C.

    2014-01-01

    Modular scaffolding proteins are designed to have multiple interactors. CASK, a member of the membrane-associated guanylate kinase (MAGUK) superfamily, has been shown to have roles in many tissues, including neurons and epithelia. It is likely that the set of proteins it interacts with is different in each of these diverse tissues. In this study we asked if within the Drosophila central nervous system, there were neuron-specific sets of CASK-interacting proteins. A YFP-tagged CASK-β transgene was expressed in genetically defined subsets of neurons in the Drosophila brain known to be important for CASK function, and proteins present in an anti-GFP immunoprecipitation were identified by mass spectrometry. Each subset of neurons had a distinct set of interacting proteins, suggesting that CASK participates in multiple protein networks and that these networks may be different in different neuronal circuits. One common set of proteins was associated with mitochondria, and we show here that endogenous CASK-β co-purifies with mitochondria. We also determined CASK-β posttranslational modifications for one cell type, supporting the idea that this technique can be used to assess cell- and circuit-specific protein modifications as well as protein interaction networks. PMID:25071438

  7. Transcriptome profile analysis reveals specific signatures of pollutants in Atlantic eels.

    PubMed

    Baillon, Lucie; Pierron, Fabien; Coudret, Raphaël; Normendeau, Eric; Caron, Antoine; Peluhet, Laurent; Labadie, Pierre; Budzinski, Hélène; Durrieu, Gilles; Sarraco, Jérôme; Elie, Pierre; Couture, Patrice; Baudrimont, Magalie; Bernatchez, Louis

    2015-01-01

    Identifying specific effects of contaminants in a multi-stress field context remain a challenge in ecotoxicology. In this context, "omics" technologies, by allowing the simultaneous measurement of numerous biological endpoints, could help unravel the in situ toxicity of contaminants. In this study, wild Atlantic eels were sampled in 8 sites presenting a broad contamination gradient in France and Canada. The global hepatic transcriptome of animals was determined by RNA-Seq. In parallel, the contamination level of fish to 8 metals and 25 organic pollutants was determined. Factor analysis for multiple testing was used to identify genes that are most likely to be related to a single factor. Among the variables analyzed, arsenic (As), cadmium (Cd), lindane (γ-HCH) and the hepato-somatic index (HSI) were found to be the main factors affecting eel's transcriptome. Genes associated with As exposure were involved in the mechanisms that have been described during As vasculotoxicity in mammals. Genes correlated with Cd were involved in cell cycle and energy metabolism. For γ-HCH, genes were involved in lipolysis and cell growth. Genes associated with HSI were involved in protein, lipid and iron metabolisms. Our study proposes specific gene signatures of pollutants and their impacts in fish exposed to multi-stress conditions.

  8. Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance

    PubMed Central

    Spies, Annika; Korzun, Viktor; Bayles, Rosemary; Rajaraman, Jeyaraman; Himmelbach, Axel; Hedley, Pete E.; Schweizer, Patrick

    2012-01-01

    Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants. PMID:22629270

  9. Modified inoculation and disease assessment methods reveal host specificity in Erwinia tracheiphila-Cucurbitaceae interactions.

    PubMed

    Nazareno, Eric S; Dumenyo, C Korsi

    2015-12-01

    We conducted a greenhouse trial to determine specific compatible interactions between Erwinia tracheiphila strains and cucurbit host species. Using a modified inoculation system, E. tracheiphila strains HCa1-5N, UnisCu1-1N, and MISpSq-N were inoculated to cucumber (Cucumis sativus) cv. 'Sweet Burpless', melon (Cucumis melo) cv. 'Athena Hybrid', and squash (Cucubita pepo) cv. 'Early Summer Crookneck'. We observed symptoms and disease progression for 30 days; recorded the number of days to wilting of the inoculated leaf (DWIL), days to wilting of the whole plant (DWWP), and days to death of the plant (DDP). We found significant interactions between host cultivar and pathogen strains, which imply host specificity. Pathogen strains HCa1-5N and UnisCu1-1N isolated from Cucumis species exhibited more virulence in cucumber and melon than in squash, while the reverse was true for strain MISpSq-N, an isolate from Cucurbita spp. Our observations confirm a previous finding that E. tracheiphila strains isolated from Cucumis species were more virulent on Cucumis hosts and those from Cucubita were more virulent on Cucubita hosts. This confirmation helps in better understanding the pathosystem and provides baseline information for the subsequent development of new disease management strategies for bacterial wilt. We also demonstrated the efficiency of our modified inoculation and disease scoring methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Host specificity of Symbiodinium variants revealed by an ITS2 metahaplotype approach.

    PubMed

    Smith, Edward G; Ketchum, Remi N; Burt, John A

    2017-02-17

    Analysis of the widely used ITS region is confounded by the presence of intragenomic variants (IGVs). In Symbiodinium, the algal symbionts of reef building corals, deep-sequencing analyses are used to characterise communities within corals, yet these analyses largely overlook IGVs. Here we consider that distinct ITS2 sequences could represent IGVs rather than distinct symbiont types and argue that symbionts can be distinguished by their proportional composition of IGVs, described as their ITS2 metahaplotype. Using our metahaplotype approach on Minimum Entropy Decomposition (MED) analysis of ITS2 sequences from the corals Acropora downingi, Cyphastrea microphthalma and Playgyra daedalea, we show the dominance of a single species-specific Symbiodinium C3 variant within each coral species. We confirm the presence of these species-specific symbionts using the psbA non-coding region. Our findings highlight the importance of accounting for IGVs in ITS2 analyses and demonstrate their capacity to resolve biological patterns that would otherwise be overlooked.The ISME Journal advance online publication, 17 February 2017; doi:10.1038/ismej.2016.206.

  11. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  12. Comprehensive profiling reveals mechanisms of SOX2-mediated cell fate specification in human ESCs and NPCs

    PubMed Central

    Zhou, Chenlin; Yang, Xiaoqin; Sun, Yiyang; Yu, Hongyao; Zhang, Yong; Jin, Ying

    2016-01-01

    SOX2 is a key regulator of multiple types of stem cells, especially embryonic stem cells (ESCs) and neural progenitor cells (NPCs). Understanding the mechanism underlying the function of SOX2 is of great importance for realizing the full potential of ESCs and NPCs. Here, through genome-wide comparative studies, we show that SOX2 executes its distinct functions in human ESCs (hESCs) and hESC-derived NPCs (hNPCs) through cell type- and stage-dependent transcription programs. Importantly, SOX2 suppresses non-neural lineages in hESCs and regulates neurogenesis from hNPCs by inhibiting canonical Wnt signaling. In hESCs, SOX2 achieves such inhibition by direct transcriptional regulation of important Wnt signaling modulators, WLS and SFRP2. Moreover, SOX2 ensures pluripotent epigenetic landscapes via interacting with histone variant H2A.Z and recruiting polycomb repressor complex 2 to poise developmental genes in hESCs. Together, our results advance our understanding of the mechanism by which cell type-specific transcription factors control lineage-specific gene expression programs and specify cell fate. PMID:26809499

  13. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways.

    PubMed

    Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-08-07

    Glycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle. Despite occurrence of tissue-specific isoenzymes bearing different kinetic properties, the enzyme titers often correlated well with the Amax values. To provide a more general picture of energy metabolism, we analyzed titers of the enzymes in additional 7 mouse organs and in human cells. Across the analyzed samples, we identified two basic profiles: a "fast glucose uptake" one in brain and heart, and a "gluconeogenic rich" one occurring in liver. In skeletal muscles and other organs, we found intermediate profiles. Obtained data highlighted the glucose-flux-limiting role of hexokinase which activity was always 10- to 100-fold lower than the average activity of all other glycolytic enzymes. A parallel determination of enzyme titers and maximal enzymatic activities allowed determination of kcat values without enzyme purification. Results of our in-depth proteomic analysis of the mouse organs did not support the concepts of regulation of glycolysis by lysine acetylation.

  14. Acetohydroxyacid synthase activity and transcripts profiling reveal tissue-specific regulation of ahas genes in sunflower.

    PubMed

    Ochogavía, Ana C; Breccia, Gabriela; Vega, Tatiana; Felitti, Silvina A; Picardi, Liliana A; Nestares, Graciela

    2014-07-01

    Acetohydroxyacid synthase (AHAS) is the target site of several herbicides and catalyses the first step in the biosynthesis of branched chain amino acid. Three genes coding for AHAS catalytic subunit (ahas1, ahas2 and ahas3) have been reported for sunflower. The aim of this work was to study the expression pattern of ahas genes family and AHAS activity in sunflower (Helianthus annuus L.). Different organs (leaves, hypocotyls, roots, flowers and embryos) were evaluated at several developmental stages. The transcriptional profile was studied through RT-qPCR. The highest expression for ahas1 was shown in leaves, where all the induced and natural gene mutations conferring herbicide resistance were found. The maximal expression of ahas2 and ahas3 occurred in immature flowers and embryos. The highest AHAS activity was found in leaves and immature embryos. Correlation analysis among ahas gene expression and AHAS activity was discussed. Our results show that differences in ahas genes expression are tissue-specific and temporally regulated. Moreover, the conservation of multiple AHAS isoforms in sunflower seems to result from different expression requirements controlled by tissue-specific regulatory mechanisms at different developmental stages. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat

    PubMed Central

    Liu, Miao; Stiller, Jiri; Holušová, Kateřina; Vrána, Jan; Liu, Dengcai; Doležel, Jaroslav; Liu, Chunji

    2016-01-01

    The hexaploid wheat genotype Chinese Spring (CS) has been used worldwide as the reference base for wheat genetics and genomics, and significant resources have been used by the international community to generate a reference wheat genome based on this genotype. By sequencing flow-sorted 3B chromosome from a hexaploid wheat genotype CRNIL1A and comparing the obtained sequences with those available for CS, we detected that a large number of sequences in the former were missing in the latter. If the distribution of such sequences in the hexaploid wheat genome is random, CRNILA sequences missing in CS could be as much as 159.3 Mb even if only fragments of 50 bp or longer were considered. Analysing RNA sequences available in the public domains also revealed that dispensable genes are common in hexaploid wheat. Together with those extensive intra- and interchromosomal rearrangements in CS, the existence of such dispensable genes is another factor highlighting potential issues with the use of reference genomes in various studies. Strong deviation in distributions of these dispensable sequences among genotypes with different geographical origins provided the first evidence indicating that they could be associated with adaptation in wheat. PMID:27821854

  16. A specific indel marker for the Philippines Schistosoma japonicum revealed by analysis of mitochondrial genome sequences.

    PubMed

    Li, Juan; Chen, Fen; Sugiyama, Hiromu; Blair, David; Lin, Rui-Qing; Zhu, Xing-Quan

    2015-07-01

    In the present study, near-complete mitochondrial (mt) genome sequences for Schistosoma japonicum from different regions in the Philippines and Japan were amplified and sequenced. Comparisons among S. japonicum from the Philippines, Japan, and China revealed a geographically based length difference in mt genomes, but the mt genomic organization and gene arrangement were the same. Sequence differences among samples from the Philippines and all samples from the three endemic areas were 0.57-2.12 and 0.76-3.85 %, respectively. The most variable part of the mt genome was the non-coding region. In the coding portion of the genome, protein-coding genes varied more than rRNA genes and tRNAs. The near-complete mt genome sequences for Philippine specimens were identical in length (14,091 bp) which was 4 bp longer than those of S. japonicum samples from Japan and China. This indel provides a unique genetic marker for S. japonicum samples from the Philippines. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes showed that samples of S. japonicum clustered according to their geographical origins. The identified mitochondrial indel marker will be useful for tracing the source of S. japonicum infection in humans and animals in Southeast Asia.

  17. Cell Type-Specific Epigenomic Analysis Reveals a Uniquely Closed Chromatin Architecture in Mouse Rod Photoreceptors

    PubMed Central

    Hughes, Andrew E. O.; Enright, Jennifer M.; Myers, Connie A.; Shen, Susan Q.; Corbo, Joseph C.

    2017-01-01

    Rod photoreceptors are specialized neurons that mediate vision in dim light and are the predominant photoreceptor type in nocturnal mammals. The rods of nocturnal mammals are unique among vertebrate cell types in having an ‘inverted’ nuclear architecture, with a dense mass of heterochromatin in the center of the nucleus rather than dispersed clumps at the periphery. To test if this unique nuclear architecture is correlated with a unique epigenomic landscape, we performed ATAC-seq on mouse rods and their most closely related cell type, cone photoreceptors. We find that thousands of loci are selectively closed in rods relative to cones as well as >60 additional cell types. Furthermore, we find that the open chromatin profile of photoreceptors lacking the rod master regulator Nrl is nearly indistinguishable from that of native cones, indicating that Nrl is required for selective chromatin closure in rods. Finally, we identified distinct enrichments of transcription factor binding sites in rods and cones, revealing key differences in the cis-regulatory grammar of these cell types. Taken together, these data provide insight into the development and maintenance of photoreceptor identity, and highlight rods as an attractive system for studying the relationship between nuclear organization and local changes in gene regulation. PMID:28256534

  18. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity

    PubMed Central

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-01-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π–cation motif of stacked residues KWRWRH, a NAG–W–NAG sandwich (where NAG stands for N-acetyl-d-glucosamine) and finally a helix formed by residues 78–85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  19. Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa).

    PubMed

    Bass, David; Cavalier-Smith, Thomas

    2004-11-01

    This study presents the first 18S rRNA multi-library environmental PCR survey of a single protozoan phylum, Cercozoa Cavalier-Smith 1998, from a range of different habitats. Phylogenetic analysis reveals at least nine novel clades within the phylum, several possibly at the level of order or above. Further experiments are described to ascertain the true ecological and geographical distributions of some clades that might be inferred from the tree to be restricted in either or both ways. These results suggest that the diversity of cercozoan taxa may run into thousands of lineages, making it comparable in diversity to the largest better-characterized protozoan phyla, e.g. Ciliophora (ciliates and suctorians) and Foraminifera. New sequences of cultured Spongomonas, Metromonas and Metopion are also presented. In the light of these additions, and the increased taxon sampling from the environmental libraries, some revisions of cercozoan classification are made: the transfer of Spongomonadea from Reticulofilosa to Monadofilosa; the removal of Metopiida from Sarcomonadea; and the creation of the new order Metromonadida, currently containing the single genus Metromonas. Although Metromonas groups with weak to moderate support with Chlorarachnea, it is here placed in superclass Monadofilosa, to which it is morphologically more similar.

  20. A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium.

    PubMed

    Torres-Puig, Sergi; Broto, Alicia; Querol, Enrique; Piñol, Jaume; Pich, Oscar Q

    2015-05-26

    The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N(18/19)-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved -10 and -35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence.

  1. Multilocus sequence typing of Mycoplasma bovis reveals host-specific genotypes in cattle versus bison.

    PubMed

    Register, Karen B; Thole, Luke; Rosenbush, Ricardo F; Minion, F Chris

    2015-01-30

    Mycoplasma bovis is a primary agent of mastitis, pneumonia and arthritis in cattle and the bacterium most frequently isolated from the polymicrobial syndrome known as bovine respiratory disease complex. Recently, M. bovis has emerged as a significant health problem in bison, causing necrotic pharyngitis, pneumonia, dystocia and abortion. Whether isolates from cattle and bison comprise genetically distinct populations is unknown. This study describes the development of a highly discriminatory multilocus sequencing typing (MLST) method for M. bovis and its use to investigate the population structure of the bacterium. Genome sequences from six M. bovis isolates were used for selection of gene targets. Seven of 44 housekeeping genes initially evaluated were selected as targets on the basis of sequence variability and distribution within the genome. For each gene target sequence, four to seven alleles could be distinguished that collectively define 32 sequence types (STs) from a collection of 94 cattle isolates and 42 bison isolates. A phylogeny based on concatenated target gene sequences of each isolate revealed that bison isolates are genetically distinct from strains that infect cattle, suggesting recent disease outbreaks in bison may be due to the emergence of unique genetic variants. No correlation was found between ST and disease presentation or geographic origin. MLST data reported here were used to populate a newly created and publicly available, curated database to which researchers can contribute. The MLST scheme and database provide novel tools for exploring the population structure of M. bovis and tracking the evolution and spread of strains.

  2. An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks.

    PubMed

    Salehi, Mehraveh; Karbasi, Amin; Shen, Xilin; Scheinost, Dustin; Constable, R Todd

    2017-09-04

    Recent work with functional connectivity data has led to significant progress in understanding the functional organization of the brain. While the majority of the literature has focused on group-level parcellation approaches, there is ample evidence that the brain varies in both structure and function across individuals. In this work, we introduce a parcellation technique that incorporates delineation of functional networks both at the individual- and group-level. The proposed technique deploys the notion of "submodularity" to jointly parcellate the cerebral cortex while establishing an inclusive correspondence between the individualized functional networks. Using this parcellation technique, we successfully established a cross-validated predictive model that predicts individuals' sex, solely based on the parcellation schemes (i.e. the node-to-network assignment vectors). The sex prediction finding illustrates that individual parcellation of functional networks can reveal subgroups in a population and suggests that the use of a global network parcellation may overlook fundamental differences in network organization. This is a particularly important point to consider in studies comparing patients versus controls for example or even patient subgroups. Network organization may differ between individuals and global configurations should not be assumed. This approach to the individualized study of functional organization in the brain has many implications for both neuroscience and clinical applications. Copyright © 2017. Published by Elsevier Inc.

  3. Neural Specificity for Grammatical Operations is Revealed by Content-Independent fMR Adaptation

    PubMed Central

    Shapiro, Kevin A.; Moo, Lauren R.; Caramazza, Alfonso

    2012-01-01

    The ability to generate novel sentences depends on cognitive operations that specify the syntactic function of nouns, verbs, and other words retrieved from the mental lexicon. Although neuropsychological studies suggest that such operations rely on neural circuits distinct from those encoding word form and meaning, it has not been possible to characterize this distinction definitively with neuroimaging. We used functional magnetic resonance imaging (fMRI) to show that a brain area engaged in a given grammatical operation can be identified uniquely by a monotonic decrease in activation as that operation is repeated. We applied this methodology to identify areas involved selectively in the operation of inflection of nouns or verbs. By contrast, areas involved in processing word meaning do not show this monotonic adaptation across stimuli. These results are the first to demonstrate adaptation in the fMR signal evoked not by specific stimuli, but by well-defined cognitive linguistic operations. PMID:22347206

  4. Word–specific repetition effects revealed by MEG and the implications for lexical access

    PubMed Central

    Almeida, Diogo; Poeppel, David

    2013-01-01

    This magnetoencephalography (MEG) study investigated the early stages of lexical access in reading, with the goal of establishing when initial contact with lexical information takes place. We identified two candidate evoked responses that could reflect this processing stage: the occipitotemporal N170/M170 and the frontocentral P2. Using a repetition priming paradigm in which long and variable lags were used to reduce the predictability of each repetition, we found that (i) repetition of words, but not pseudowords, evoked a differential bilateral frontal response in the 150-250 ms window, (ii) a differential repetition N400m effect was observed between words and pseudowords. We argue that this frontal response, an MEG correlate of the P2 identified in ERP studies, reflects early access to long-term memory representations, which we tentatively characterize as being modality-specific. PMID:24182838

  5. Species specific exome probes reveal new insights in positively selected genes in nonhuman primates

    PubMed Central

    Su, Zheng; Zhang, Junjie; Kumar, Chanchal; Molony, Cliona; Lu, Hongchao; Chen, Ronghua; Stone, David J.; Ling, Fei; Liu, Xiao

    2016-01-01

    Nonhuman primates (NHP) are important biomedical animal models for the study of human disease. Of these, the most widely used models in biomedical research currently are from the genus Macaca. However, evolutionary genetic divergence between human and NHP species makes human-based probes inefficient for the capture of genomic regions of NHP for sequencing and study. Here we introduce a new method to resequence the exome of NHP species by a designed capture approach specifically targeted to the NHP, and demonstrate its superior performance on four NHP species or subspecies. Detailed investigation on biomedically relevant genes demonstrated superior capture by the new approach. We identified 28 genes that appeared to be pseudogenized and inactivated in macaque. Finally, we identified 187 genes showing strong evidence for positive selection across all branches of the primate phylogeny including many novel findings. PMID:27659771

  6. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors.

    PubMed

    Kemmeren, Patrick; Sameith, Katrin; van de Pasch, Loes A L; Benschop, Joris J; Lenstra, Tineke L; Margaritis, Thanasis; O'Duibhir, Eoghan; Apweiler, Eva; van Wageningen, Sake; Ko, Cheuk W; van Heesch, Sebastiaan; Kashani, Mehdi M; Ampatziadis-Michailidis, Giannis; Brok, Mariel O; Brabers, Nathalie A C H; Miles, Anthony J; Bouwmeester, Diane; van Hooff, Sander R; van Bakel, Harm; Sluiters, Erik; Bakker, Linda V; Snel, Berend; Lijnzaad, Philip; van Leenen, Dik; Groot Koerkamp, Marian J A; Holstege, Frank C P

    2014-04-24

    To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system.

  7. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling.

    PubMed

    Jan, Calvin H; Williams, Christopher C; Weissman, Jonathan S

    2014-11-07

    Localized protein synthesis is a fundamental mechanism for creating distinct subcellular environments. Here we developed a generalizable proximity-specific ribosome profiling strategy that enables global analysis of translation in defined subcellular locations. We applied this approach to the endoplasmic reticulum (ER) in yeast and mammals. We observed the large majority of secretory proteins to be cotranslationally translocated, including substrates capable of posttranslational insertion in vitro. Distinct translocon complexes engaged nascent chains at different points during synthesis. Whereas most proteins engaged the ER immediately after or even before signal sequence (SS) emergence, a class of Sec66-dependent proteins entered with a looped SS conformation. Finally, we observed rapid ribosome exchange into the cytosol after translation termination. These data provide insights into how distinct translocation mechanisms act in concert to promote efficient cotranslational recruitment. Copyright © 2014, American Association for the Advancement of Science.

  8. Web placement in sympatric linyphiid spiders ( Arachnida, Araneae): Individual foraging decisions reveal inter-specific competition

    NASA Astrophysics Data System (ADS)

    Herberstein, Marie Elisabeth

    1998-02-01

    The distribution of two sympatric web spiders, Frontinellina frutetorum (C. L. Koch) and Neriene radiata (Walckenaer) (Araneae: Linyphiidae) was studied on an area of forest regrowth in eastern Austria. Both species utilised significantly different heights on young conifer trees to construct their webs. F. frutetorum selected higher vegetation layers, whereas N. radiata constructed its webs, closer to the ground. This distribution may either be evidence of competition for web space or it may reflect specific distribution patterns unrelated to spider density. An experiment showed that when spiders of either species were released onto vacant trees they selected similar vegetation heights for web construction. On trees already occupied by a heterospecific individual however, F. frutetorum placed its webs significantly higher and N. radiata significantly lower compared to web placement on vacant trees suggesting that F. frutetorum and N. radiata compete for web space.

  9. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts

    PubMed Central

    Overath, Tobias; McDermott, Josh H; Zarate, Jean Mary; Poeppel, David

    2016-01-01

    Speech contains temporal structure that the brain must analyze to enable linguistic processing. To investigate the neural basis of this analysis, we used sound quilts, stimuli constructed by shuffling segments of a natural sound, approximately preserving its properties on short timescales while disrupting them on longer scales. We generated quilts from foreign speech to eliminate language cues and manipulated the extent of natural acoustic structure by varying the segment length. Using functional magnetic resonance imaging, we identified bilateral regions of the superior temporal sulcus (STS) whose responses varied with segment length. This effect was absent in primary auditory cortex and did not occur for quilts made from other natural sounds or acoustically matched synthetic sounds, suggesting tuning to speech-specific spectrotemporal structure. When examined parametrically, the STS response increased with segment length up to ~500 ms. Our results identify a locus of speech analysis in human auditory cortex that is distinct from lexical, semantic or syntactic processes. PMID:25984889

  10. Revealing region-specific biofilm viscoelastic properties by means of a micro-rheological approach.

    PubMed

    Cao, Huayu; Habimana, Olivier; Safari, Ashkan; Heffernan, Rory; Dai, Yihong; Casey, Eoin

    2016-01-01

    Particle-tracking microrheology is an in situ technique that allows quantification of biofilm material properties. It overcomes the limitations of alternative techniques such as bulk rheology or force spectroscopy by providing data on region specific material properties at any required biofilm location and can be combined with confocal microscopy and associated structural analysis. This article describes single particle tracking microrheology combined with confocal laser scanning microscopy to resolve the biofilm structure in 3 dimensions and calculate the creep compliances locally. Samples were analysed from Pseudomonas fluorescens biofilms that were cultivated over two timescales (24 h and 48 h) and alternate ionic conditions (with and without calcium chloride supplementation). The region-based creep compliance analysis showed that the creep compliance of biofilm void zones is the primary contributor to biofilm mechanical properties, contributing to the overall viscoelastic character.

  11. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins

    PubMed Central

    Borgia, Madeleine B.; Borgia, Alessandro; Best, Robert B.; Steward, Annette; Nettels, Daniel; Wunderlich, Bengt; Schuler, Benjamin; Clarke, Jane

    2011-01-01

    A large range of debilitating medical conditions1 are linked to protein misfolding, which may compete with productive folding particularly in proteins containing multiple domains2. With 75% of the eukaryotic proteome consisting of multidomain proteins, how is inter-domain misfolding avoided? It has been proposed that maintaining low sequence identity between covalently linked domains is a mechanism to avoid misfolding3. Here we use single-molecule Förster Resonance Energy Transfer (FRET) experiments4,5 to detect and quantify rare misfolding events in tandem Ig domains from the I-band of titin under native conditions. About 5.5% of molecules with identical domains misfold during refolding in vitro and form a surprisingly stable state with an unfolding half time of several days. Tandem arrays of immunoglobulin-like (Ig-like) domains in humans exhibit significantly lower sequence identity between neighbouring domains than between non-adjacent domains3. In particular, the sequence identity of neighbouring domains has been found to be preferentially below 40%3. Interestingly we observe no misfolding for a tandem of naturally neighbouring domains with low sequence identity (24%), whereas misfolding occurs between domains which are 42% identical. Coarse-grained molecular simulations predict the formation of domain-swapped structures, which are in excellent agreement with the observed transfer efficiency of the misfolded species. We infer that the interactions underlying misfolding are very specific and result in a sequence-specific domain swapping mechanism. Diversifying the sequence between neighbouring domains appears to be a successful evolutionary strategy to avoid misfolding in multidomain proteins. PMID:21623368

  12. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins.

    PubMed

    Borgia, Madeleine B; Borgia, Alessandro; Best, Robert B; Steward, Annette; Nettels, Daniel; Wunderlich, Bengt; Schuler, Benjamin; Clarke, Jane

    2011-05-29

    A large range of debilitating medical conditions is linked to protein misfolding, which may compete with productive folding particularly in proteins containing multiple domains. Seventy-five per cent of the eukaryotic proteome consists of multidomain proteins, yet it is not understood how interdomain misfolding is avoided. It has been proposed that maintaining low sequence identity between covalently linked domains is a mechanism to avoid misfolding. Here we use single-molecule Förster resonance energy transfer to detect and quantify rare misfolding events in tandem immunoglobulin domains from the I band of titin under native conditions. About 5.5 per cent of molecules with identical domains misfold during refolding in vitro and form an unexpectedly stable state with an unfolding half-time of several days. Tandem arrays of immunoglobulin-like domains in humans show significantly lower sequence identity between neighbouring domains than between non-adjacent domains. In particular, the sequence identity of neighbouring domains has been found to be preferentially below 40 per cent. We observe no misfolding for a tandem of naturally neighbouring domains with low sequence identity (24 per cent), whereas misfolding occurs between domains that are 42 per cent identical. Coarse-grained molecular simulations predict the formation of domain-swapped structures that are in excellent agreement with the observed transfer efficiency of the misfolded species. We infer that the interactions underlying misfolding are very specific and result in a sequence-specific domain-swapping mechanism. Diversifying the sequence between neighbouring domains seems to be a successful evolutionary strategy to avoid misfolding in multidomain proteins.

  13. Lineage-specific biology revealed by a finished genome assembly of the mouse.

    PubMed

    Church, Deanna M; Goodstadt, Leo; Hillier, Ladeana W; Zody, Michael C; Goldstein, Steve; She, Xinwe; Bult, Carol J; Agarwala, Richa; Cherry, Joshua L; DiCuccio, Michael; Hlavina, Wratko; Kapustin, Yuri; Meric, Peter; Maglott, Donna; Birtle, Zoë; Marques, Ana C; Graves, Tina; Zhou, Shiguo; Teague, Brian; Potamousis, Konstantinos; Churas, Christopher; Place, Michael; Herschleb, Jill; Runnheim, Ron; Forrest, Daniel; Amos-Landgraf, James; Schwartz, David C; Cheng, Ze; Lindblad-Toh, Kerstin; Eichler, Evan E; Ponting, Chris P

    2009-05-05

    The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.

  14. Deep analysis of wild Vitis flower transcriptome reveals unexplored genome regions associated with sex specification.

    PubMed

    Ramos, Miguel Jesus Nunes; Coito, João Lucas; Fino, Joana; Cunha, Jorge; Silva, Helena; de Almeida, Patrícia Gomes; Costa, Maria Manuela Ribeiro; Amâncio, Sara; Paulo, Octávio S; Rocheta, Margarida

    2017-01-01

    RNA-seq of Vitis during early stages of bud development, in male, female and hermaphrodite flowers, identified new loci outside of annotated gene models, suggesting their involvement in sex establishment. The molecular mechanisms responsible for flower sex specification remain unclear for most plant species. In the case of V. vinifera ssp. vinifera, it is not fully understood what determines hermaphroditism in the domesticated subspecies and male or female flowers in wild dioecious relatives (Vitis vinifera ssp. sylvestris). Here, we describe a de novo assembly of the transcriptome of three flower developmental stages from the three Vitis vinifera flower types. The validation of de novo assembly showed a correlation of 0.825. The main goals of this work were the identification of V. v. sylvestris exclusive transcripts and the characterization of differential gene expression during flower development. RNA from several flower developmental stages was used previously to generate Illumina sequence reads. Through a sequential de novo assembly strategy one comprehensive transcriptome comprising 95,516 non-redundant transcripts was assembled. From this dataset 81,064 transcripts were annotated to V. v. vinifera reference transcriptome and 11,084 were annotated against V. v. vinifera reference genome. Moreover, we found 3368 transcripts that could not be mapped to Vitis reference genome. From all the non-redundant transcripts that were assembled, bioinformatics analysis identified 133 specific of V. v. sylvestris and 516 transcripts differentially expressed among the three flower types. The detection of transcription from areas of the genome not currently annotated suggests active transcription of previously unannotated genomic loci during early stages of bud development.

  15. Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy.

    PubMed

    Furukawa, Jun-ichi; Tsuda, Masumi; Okada, Kazue; Kimura, Taichi; Piao, Jinhua; Tanaka, Shinya; Shinohara, Yasuro

    2015-01-01

    Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response.

  16. Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse

    PubMed Central

    Hillier, LaDeana W.; Zody, Michael C.; Goldstein, Steve; She, Xinwe; Bult, Carol J.; Agarwala, Richa; Cherry, Joshua L.; DiCuccio, Michael; Hlavina, Wratko; Kapustin, Yuri; Meric, Peter; Maglott, Donna; Birtle, Zoë; Marques, Ana C.; Graves, Tina; Zhou, Shiguo; Teague, Brian; Potamousis, Konstantinos; Churas, Christopher; Place, Michael; Herschleb, Jill; Runnheim, Ron; Forrest, Daniel; Amos-Landgraf, James; Schwartz, David C.; Cheng, Ze; Lindblad-Toh, Kerstin; Eichler, Evan E.; Ponting, Chris P.

    2009-01-01

    The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non–protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not. PMID:19468303

  17. Specificity of afferent synapses onto plane-polarized hair cells in the posterior lateral line of the zebrafish

    PubMed Central

    Nagiel, Aaron; Andor-Ardó, Daniel

    2009-01-01

    The proper wiring of the vertebrate brain represents an extraordinary developmental challenge, requiring billions of neurons to select their appropriate synaptic targets. In view of this complexity, simple vertebrate systems provide necessary models for understanding how synaptic specificity arises. The posterior lateral-line organ of larval zebrafish consists of polarized hair cells organized in discrete clusters known as neuromasts. Here we show that each afferent neuron of the posterior lateral line establishes specific contacts with hair cells of the same hair-bundle polarity. We quantify this specificity by modeling the neuron as a biased selector of hair-cell polarity and find evidence for bias from as early as 2.5 days post-fertilization. More than half of the neurons form contacts on multiple neuromasts, but the innervated organs are spatially consecutive and the polarity preference is consistent. Using a novel reagent for correlative electron microscopy, HRP-mCherry, we show that these contacts are indeed afferent synapses bearing vesicle-loaded synaptic ribbons. Moreover, afferent neurons reassume their biased innervation pattern after hair-cell ablation and regeneration. By documenting specificity in the pattern of neuronal connectivity during development and in the context of organ regeneration, these results establish the posterior lateral-line organ as a vertebrate system for the in vivo study of synaptic target selection. PMID:18716202

  18. An integrative and comparative study of pan-cancer transcriptomes reveals distinct cancer common and specific signatures

    PubMed Central

    Cao, Zhen; Zhang, Shihua

    2016-01-01

    To investigate the commonalities and specificities across tumor lineages, we perform a systematic pan-cancer transcriptomic study across 6744 specimens. We find six pan-cancer subnetwork signatures which relate to cell cycle, immune response, Sp1 regulation, collagen, muscle system and angiogenesis. Moreover, four pan-cancer subnetwork signatures demonstrate strong prognostic potential. We also characterize 16 cancer type-specific subnetwork signatures which show diverse implications to somatic mutations, somatic copy number aberrations, DNA methylation alterations and clinical outcomes. Furthermore, some of them are strongly correlated with histological or molecular subtypes, indicating their implications with tumor heterogeneity. In summary, we systematically explore the pan-cancer common and cancer type-specific gene subnetwork signatures across multiple cancers, and reveal distinct commonalities and specificities among cancers at transcriptomic level. PMID:27633916

  19. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    SciTech Connect

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.; Gan, Wei; Wang, Hong-Fei

    2016-11-10

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group has been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.

  20. Specific heat flow rate: an on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy.

    PubMed

    Guan, Y; Evans, P M; Kemp, R B

    1998-06-05

    One of the requirements for enhanced productivity by the animal culture systems used in biotechnology is the direct assessment of the metabolic rate by on-line biosensors. Based on the fact that cell growth is associated with an enthalpy change, it is shown that the specific heat flow rate is stoichiometrically related to the net specific rates of substrates, products, and indeed to specific growth rate, and therefore a direct reflection of metabolic rate. Heat flow rate measured by conduction calorimetry has a technical advantage over estimates for many material flows which require assays at a minimum of two discrete times to give the rate. In order to make heat flow rate specific to the amount of the living cellular system, it would be advantageous to divide it by viable biomass. This requirement has been fulfilled by combining a continuous flow microcalorimeter ex situ with a dielectric spectroscope in situ, the latter measuring the viable cell mass volume fraction. The quality of the resulting biosensor for specific heat flow rate was illustrated using batch cultures of Chinese hamster ovary cells (CHO 320) producing recombinant human interferon-gamma (IFN-gamma) during growth in a stirred tank bioreactor under fully aerobic conditions. The measuring scatter of the probe was decreased significantly by applying the moving average technique to the two participant signals. It was demonstrated that the total metabolic rate of the cells, as indicated by the specific heat flow rate sensor, decreased with increasing time in batch culture, coincident with the decline in the two major substrates, glucose and glutamine, and the accumulation of the by-products, ammonia and lactate. Furthermore, the specific heat flow rate was an earlier indicator of substrate depletion than the flow rate alone. The calorimetric-respirometric ratio showed the intensive participation of anaerobic processes during growth and the related IFN-gamma production. Specific heat flow rate was

  1. Proteomics profiling of urine reveals specific titin fragments as biomarkers of Duchenne muscular dystrophy.

    PubMed

    Rouillon, Jeremy; Zocevic, Aleksandar; Leger, Thibaut; Garcia, Camille; Camadro, Jean-Michel; Udd, Bjarne; Wong, Brenda; Servais, Laurent; Voit, Thomas; Svinartchouk, Fedor

    2014-07-01

    Diagnosis of muscular dystrophies is currently based on invasive methods requiring muscle biopsies or blood tests. The aim of the present study was to identify urinary biomarkers as a diagnostic tool for muscular dystrophies. Here, the urinary proteomes of Duchenne muscular dystrophy (DMD) patients and healthy donors were compared with a bottom-up proteomic approach. Label-free analysis of more than 1100 identified proteins revealed that 32 of them were differentially expressed between healthy controls and DMD patients. Among these 32 proteins, titin showed the highest fold change between healthy subjects and DMD patients. Interestingly, most of the sequenced peptides belong to the N-terminal and C-terminal parts of titin, and the presence of the corresponding fragments in the urine of DMD patients was confirmed by Western blot analysis. Analysis of a large cohort of DMD patients and age-matched controls (a total of 104 individuals aged from 3 to 20 years) confirmed presence of the N-ter fragment in all but two patients. In two DMD patients aged 16 and 20 years this fragment was undetectable and two healthy controls of 16 and 19 years with serum CK >800 IU/L demonstrated a low level of the fragment. N- and C-terminal titin fragments were also detected in urine from patients with other muscular dystrophies such as Becker muscular dystrophy and Limb-girdle muscular dystrophy (type 1D, 2D and 2J) but not in neurogenic spinal muscular atrophy. They were also present in urine of dystrophin-deficient animal models (GRMD dogs and mdx mice). Titin is the first urinary biomarker that offers the possibility to develop a simple, non-invasive and easy-to-use test for pre-screening of muscular dystrophies, and may also prove to be useful for the non-invasive follow up of DMD patients under treatment.

  2. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots.

    PubMed

    Manter, Daniel K; Delgado, Jorge A; Holm, David G; Stong, Rachel A

    2010-07-01

    In this study, we examined the bacterial endophyte community of potato (Solanum tuberosum) cultivar/clones using two different molecular-based techniques (bacterial automated ribosomal intergenic spacer analysis (B-ARISA) and pyrosequencing). B-ARISA profiles revealed a significant difference in the endophytic community between cultivars (perMANOVA, p < 0.001), and canonical correspondence analysis showed a significant correlation between the community structure and plant biomass (p = 0.001). Pyrosequencing detected, on average, 477 +/- 71 bacterial operational taxonomic units (OTUs, 97% genetic similarity) residing within the roots of each cultivar, with a Chao estimated total OTU richness of 1,265 +/- 313. Across all cultivars, a total of 238 known genera from 15 phyla were identified. Interestingly, five of the ten most common genera (Rheinheimera, Dyadobacter, Devosia, Pedobacter, and Pseudoxanthomonas) have not, to our knowledge, been previously reported as endophytes of potato. Like the B-ARISA analysis, the endophytic communities differed between cultivar/clones (integral-libshuff, p < 0.001) and exhibited low similarities on both a presence/absence (0.145 +/- 0.019) and abundance (0.420 +/- 0.081) basis. Seventeen OTUs showed a strong positive (r > 0.600) or negative (r < -0.600) correlation with plant biomass, suggesting a possible link between plant production and endophyte abundance. This study represents one of the most comprehensive assessments of the bacterial endophytic communities to date, and similar analyses in other plant species, cultivars, or tissues could be utilized to further elucidate the potential contribution(s) of endophytic communities to plant physiology and production.

  3. First-line urological evaluation in multiple sclerosis: validation of a specific decision-making algorithm.

    PubMed

    Amarenco, Gérard; Chartier-Kastler, Emmanuel; Denys, Pierre; Jean, Jacques Labat; de Sèze, Marianne; Lubetzski, Catherine

    2013-12-01

    Urinary disorders that lead to urological complications are frequent in multiple sclerosis, resulting in diminished quality of life. Urinary management guidelines are scarce and targeted to neuro-urology specialists. This study aimed to construct and validate an algorithm dedicated to neurologists and general practitioners to facilitate first-line evaluation and treatment of urinary disorders associated with multiple sclerosis. 49 items concerning urological symptom evaluation and therapeutic strategies were derived from literature analysis and evaluated by an expert panel. The Delphi method established consensus between the experts and allowed development of the First-Line Urological Evaluation in Multiple Sclerosis (FLUE-MS) algorithm. Two questions from the Urinary Bothersome Questionnaire in Multiple Sclerosis were included and their validation to verify comprehensiveness and acceptability was also conducted. Three rounds of expert review obtained consensus of all 49 items and allowed finalisation of the algorithm. Comprehension and acceptability of two Urinary Bothersome Questionnaire in Multiple Sclerosis questions were verified (mean comprehensiveness score: 1.99/2 [99.7% total comprehensiveness], mean acceptability score: 1.99/2 [99.1% complete acceptability]). The FLUE-MS algorithm was designed for neurologists and general practitioners, enabling identification of 'red flags', timely patient referral to specialist neuro-urology units, and appropriate first-line therapy.

  4. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture.

    PubMed

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw

    2015-08-01

    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles.

    PubMed

    Blazie, Stephen M; Babb, Cody; Wilky, Henry; Rawls, Alan; Park, Jin G; Mangone, Marco

    2015-01-20

    Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis elegans intestine, pharynx and body muscle tissues and study changes in their tissue-specific transcriptomes and 3'UTRomes. We have identified thousands of novel genes and isoforms differentially expressed between these three tissues. The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs, while muscle transcriptomes are smaller but contain characteristic unique gene signatures. Active promoter regions in all three tissues reveal both known and novel enriched tissue-specific elements, along with putative transcription factors, suggesting novel tissue-specific modes of transcription initiation. We have precisely mapped approximately 20,000 tissue-specific polyadenylation sites and discovered that about 30% of transcripts in somatic cells use alternative polyadenylation in a tissue-specific manner, with their 3'UTR isoforms significantly enriched with microRNA targets. For the first time, PAT-Seq allowed us to directly study tissue specific gene expression changes in an in vivo setting and compare these changes between three somatic tissues from the same organism at single-base resolution within the same experiment. We pinpoint precise tissue-specific transcriptome rearrangements and for the first time link tissue-specific alternative polyadenylation to miRNA regulation, suggesting novel and unexplored tissue-specific post-transcriptional regulatory networks in somatic cells.

  6. Specifications for a Computerized Library Circulation Management Data and On-Line Catalog System.

    ERIC Educational Resources Information Center

    Schwarz, Philip J.

    This manual is intended primarily for libraries that wish to purchase a turnkey automated circulation system and online catalog, but lack the staff, time, and expertise to develop a set of specifications, or the money to hire consultants. Specifications are provided to assist in the selection from several options: (1) development of an in-house…

  7. Rapid establishment of a HEK 293 cell line expressing FVIII-BDD using AAV site-specific integration plasmids.

    PubMed

    Liu, Xiaomei; Ping, Han; Zhang, Chun

    2014-09-10

    Stable human cell lines have gradually become the preferred system for large scale production of recombinant proteins for clinical applications because of their capacity of proper protein post-translational modification and low immunogenicity. However, human cell line development technologies are commonly based on random genome integration of protein expressing genes. It is required to screen large numbers of cell clones to identify stable high producer cell clones and the cell line development process usually takes 6 to 12 months. Adeno-associated virus type 2 (AAV2) Rep protein is known to induce rAAV DNA integration into a specific site (AAVS1) of the human chromosome 19 and integrated transgenes can stably express proteins. We take advantage of this AAV unique feature to develop a rapid protocol to clone a stable recombinant protein expression human cell line. We have constructed two plasmids. One plasmid, pSVAV2, contains the AAV rep gene for the synthesis of integrase; the second plasmid, pTRP5GFPFVIII-BDD, contains B-domain-deleted factor VIII (FVIII-BDD) and GFP gene flanked by AAV ITRs. Human embryonic kidney (HEK) 293 cells were co-transfected with the two plasmids and the cells were screened by green fluorescence to establish the recombinant FVIII-BDD cell line. PCR analysis showed that the FVIII-BDD gene has been integrated into the AAVS1 site of human chromosome 19. The FVIII-BDD protein secreted into the extracellular media exhibited coagulant activity. We developed a method of rapid establishment of human HEK 293 cell line expressing recombinant FVIII-BDD protein with AAV site-specific integration plasmids.

  8. Experimental evolution reveals habitat-specific fitness dynamics among Wolbachia clades in Drosophila melanogaster.

    PubMed

    Versace, Elisabetta; Nolte, Viola; Pandey, Ram Vinay; Tobler, Ray; Schlötterer, Christian

    2014-02-01

    The diversity and infection dynamics of the endosymbiont Wolbachia can be influenced by many factors, such as transmission rate, cytoplasmic incompatibility, environment, selection and genetic drift. The interplay of these factors in natural populations can result in heterogeneous infection patterns with substantial differences between populations and strains. The causes of these heterogeneities are not yet understood, partly due to the complexity of natural environments. We present experimental evolution as a new approach to study Wolbachia infection dynamics in replicate populations exposed to a controlled environment. A natural Drosophila melanogaster population infected with strains of Wolbachia belonging to different clades evolved in two laboratory environments (hot and cold) for 1.5 years. In both treatments, the rate of Wolbachia infection increased until fixation. In the hot environment, the relative frequency of different Wolbachia clades remained stable over 37 generations. In the cold environment, however, we observed marked changes in the composition of the Wolbachia population: within 15 generations, one Wolbachia clade increased more than 50% in frequency, whereas the other two clades decreased in frequency, resulting in the loss of one clade. The frequency change was highly reproducible not only among replicates, but also when flies that evolved for 42 generations in the hot environment were transferred to the cold environment. These results document how environmental factors can affect the composition of Wolbachia in D. melanogaster. The high reproducibility of the pattern suggests that experimental evolution studies can efficiently determine the functional basis of habitat-specific fitness among Wolbachia strains.

  9. Specific populations of the yeast Geotrichum candidum revealed by molecular typing.

    PubMed

    Jacques, Noémie; Mallet, Sandrine; Laaghouiti, Fatima; Tinsley, Colin R; Casaregola, Serge

    2017-04-01

    Geotrichum candidum is a ubiquitous yeast and an essential component in the production of many soft cheeses. We developed a multilocus sequence typing (MLST) scheme with five retained loci (NUP116, URA1, URA3, SAPT4 and PLB3) which were sufficiently divergent to distinguish 40 sequence types (STs) among the 67 G. candidum strains tested. Phylogenetic analyses defined five main clades; one clade was restricted to environmental isolates, three other clades included distinct environmental isolates and dairy strains, while the fifth clade comprised 34 strains (13 STs), among which all but two were isolated from milk, cheese or the dairy environment. These findings suggest an adaptation to the dairy ecosystems by a group of specialized European G. candidum strains. In addition, we developed a polymerase chain reaction inter-long terminal repeat scheme, a fast and reproducible random amplification of polymorphic DNA-like method for G. candidum, to type the closely related dairy strains, which could not be distinguished by MLST. Overall, our findings distinguished two types of dairy strains, one forming a homogeneous group with little genetic diversity, and the other more closely related to environmental isolates. Neither regional nor cheese specificity was observed in the dairy G. candidum strains analysed. This present study sheds light on the genetic diversity of both dairy and environmental strains of G. candidum and thus extends previous characterizations that have focused on the cheese isolates of this species. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Extensive screen for bacterial endosymbionts reveals taxon-specific distribution patterns among bees (Hymenoptera, Anthophila).

    PubMed

    Gerth, Michael; Saeed, Abiya; White, Jennifer A; Bleidorn, Christoph

    2015-06-01

    Bacterial endosymbionts play key roles in arthropod biology, ranging from beneficial mutualists to parasitic sex ratio manipulators. The number of described endosymbiotic bacterial taxa has accumulated continuously in recent years. While the understanding of arthropod-microbe interactions has advanced significantly, especially in model organisms, relatively little is known about symbiont distribution and effects in non-model organisms. As a first step to alleviate this gap in understanding, we performed an endosymbiont survey in bees (Anthophila), an ecologically and economically important group of hymenopterans. To this end, we sampled 170 bee species and screened by PCR for the presence of Wolbachia, Rickettsia, Arsenophonus and Cardinium. Detected strains were then further diagnosed by additional markers. Additionally, we tested if certain ecological traits, bee phylogeny or geographic origin of bees explain endosymbiont distribution. Our results indicate that supergroup A Wolbachia are very common in bees and that their distribution can be significantly correlated to both host ecology and phylogeny, although a distinction of these factors is not possible. Furthermore, bees from the same region (Old World or New World) are more likely to harbour identical Wolbachia strains than expected by chance. Other endosymbionts (Rickettsia, Arsenophonus) were less common, and specific to particular host taxa, suggesting that host phylogeny is a major predictor for endosymbiont distribution in bees.

  11. Laminarinase from Flavobacterium sp. reveals the structural basis of thermostability and substrate specificity.

    PubMed

    Qin, Hui-Min; Miyakawa, Takuya; Inoue, Akira; Nakamura, Akira; Nishiyama, Ryuji; Ojima, Takao; Tanokura, Masaru

    2017-09-12

    Laminarinase from Flavobacterium sp. strain UMI-01, a new member of the glycosyl hydrolase 16 family of a marine bacterium associated with seaweeds, mainly degrades β-1,3-glucosyl linkages of β-glucan (such as laminarin) through the hydrolysis of glycosidic bonds. We determined the crystal structure of ULam111 at 1.60-Å resolution to understand the structural basis for its thermostability and substrate specificity. A calcium-binding motif located on the opposite side of the β-sheet from catalytic cleft increased its degrading activity and thermostability. The disulfide bridge Cys31-Cys34, located on the β2-β3 loop near the substrate-binding site, is responsible for the thermostability of ULam111. The substrates of β-1,3-linked laminarin and β-1,3-1,4-linked glucan bound to the catalytic cleft in a completely different mode at subsite -3. Asn33 and Trp113, together with Phe212, formed hydrogen bonds with preferred substrates to degrade β-1,3-linked laminarin based on the structural comparisons. Our structural information provides new insights concerning thermostability and substrate recognition that will enable the design of industrial biocatalysts.

  12. Deregulation upon DNA damage revealed by joint analysis of context-specific perturbation data

    PubMed Central

    2011-01-01

    Background Deregulation between two different cell populations manifests itself in changing gene expression patterns and changing regulatory interactions. Accumulating knowledge about biological networks creates an opportunity to study these changes in their cellular context. Results We analyze re-wiring of regulatory networks based on cell population-specific perturbation data and knowledge about signaling pathways and their target genes. We quantify deregulation by merging regulatory signal from the two cell populations into one score. This joint approach, called JODA, proves advantageous over separate analysis of the cell populations and analysis without incorporation of knowledge. JODA is implemented and freely available in a Bioconductor package 'joda'. Conclusions Using JODA, we show wide-spread re-wiring of gene regulatory networks upon neocarzinostatin-induced DNA damage in Human cells. We recover 645 deregulated genes in thirteen functional clusters performing the rich program of response to damage. We find that the clusters contain many previously characterized neocarzinostatin target genes. We investigate connectivity between those genes, explaining their cooperation in performing the common functions. We review genes with the most extreme deregulation scores, reporting their involvement in response to DNA damage. Finally, we investigate the indirect impact of the ATM pathway on the deregulated genes, and build a hypothetical hierarchy of direct regulation. These results prove that JODA is a step forward to a systems level, mechanistic understanding of changes in gene regulation between different cell populations. PMID:21693013

  13. Conformational changes in intact dengue virus reveal serotype-specific expansion

    PubMed Central

    Lim, Xin-Xiang; Chandramohan, Arun; Lim, Xin Ying Elisa; Bag, Nirmalya; Sharma, Kamal Kant; Wirawan, Melissa; Wohland, Thorsten; Lok, Shee-Mei; Anand, Ganesh S.

    2017-01-01

    Dengue virus serotype 2 (DENV2) alone undergoes structural expansion at 37 °C (associated with host entry), despite high sequence and structural homology among the four known serotypes. The basis for this differential expansion across strains and serotypes is unknown and necessitates mapping of the dynamics of dengue whole viral particles to describe their coordinated motions and conformational changes when exposed to host-like environments. Here we capture the dynamics of intact viral particles of two serotypes, DENV1 and DENV2, by amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and time resolved Förster Resonance Energy Transfer. Our results show temperature-dependent dynamics hotspots on DENV2 and DENV1 particles with DENV1 showing expansion at 40 °C but not at 37 °C. HDXMS measurement of virion dynamics in solution offers a powerful approach to identify potential epitopes, map virus-antibody complex structure and dynamics, and test effects of multiple host-specific perturbations on viruses and virus-antibody complexes. PMID:28186093

  14. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging.

    PubMed

    Murgia, Marta; Toniolo, Luana; Nagaraj, Nagarjuna; Ciciliot, Stefano; Vindigni, Vincenzo; Schiaffino, Stefano; Reggiani, Carlo; Mann, Matthias

    2017-06-13

    Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Seawater Incursion Events in a Cretaceous Paleo-lake Revealed by Specific Marine Biological Markers

    PubMed Central

    Hu, J. F.; Peng, P. A.; Liu, M. Y.; Xi, D. P.; Song, J. Z.; Wan, X. Q.; Wang, C. S.

    2015-01-01

    Many large paleo-lakes in North China were formed after the Triassic Era. Seawater incursion events (SWIEs) in these lakes have been extensively discussed in the literature, yet lack reliable methodology and solid evidence, which are essential for reconstructing and confirming SWIEs. The present study employs specific marine biological markers (24-n-propyl and 24-isopropyl cholestanes) to trace SWIEs in a dated core taken from the Songliao Basin (SLB). Two SWIEs were identified. The first SWIE from 91.37 to 89.00 Ma, was continuous and variable but not strong, while the second SWIE from 84.72 to 83.72 Ma was episodic and strong. SWIEs caused high total organic carbon (TOC) and negative δ13Corg values in the sediments, which were interpreted as an indication of high productivity in the lake, due to the enhancement of nutrient supplies as well as high levels of aqueous CO2, due to the mixing of alkaline seawater and acidic lake water. The SWIEs in SLB were controlled by regional tectonic activity and eustatic variation. Movement direction changes of the Izanagi/Kula Plate in 90 Ma and 84 Ma created faults and triggered SWIEs. A high sea level, from 90 to 84 Ma, also facilitated the occurrence of SWIEs in SLB. PMID:25946976

  16. Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in C. elegans

    PubMed Central

    Izrayelit, Yevgeniy; Srinivasan, Jagan; Campbell, Sydney L.; Jo, Yeara; von Reuss, Stephan H.; Genoff, Margaux C.; Sternberg, Paul W.; Schroeder, Frank C.

    2012-01-01

    In the model organism Caenorhabditis elegans, a class of small molecule signals called ascarosides regulate development, mating and social behaviors. Ascaroside production has been studied in the predominant sex, the hermaphrodite, but not in males, which account for less than 1% of wild-type worms grown under typical laboratory conditions. Using HPLC-MS-based targeted metabolomics, we show that males also produce ascarosides and that their ascaroside profile differs markedly from that of hermaphrodites. Whereas hermaphrodite ascaroside profiles are dominated by ascr#3, containing an α,β-unsaturated fatty acid, males predominantly produce the corresponding dihydro-derivative ascr#10. This small structural modification profoundly affects signaling properties: hermaphrodites are retained by attomole-amounts of male-produced ascr#10, whereas hermaphrodite-produced ascr#3 repels hermaphrodites and attracts males. Male production of ascr#10 is population density-dependent, indicating sensory regulation of ascaroside biosynthesis. Analysis of gene expression data supports a model in which sex-specific regulation of peroxisomal β-oxidation produces functionally different ascaroside profiles. PMID:22662967

  17. Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in Caenorhabditis elegans.

    PubMed

    Izrayelit, Yevgeniy; Srinivasan, Jagan; Campbell, Sydney L; Jo, Yeara; von Reuss, Stephan H; Genoff, Margaux C; Sternberg, Paul W; Schroeder, Frank C

    2012-08-17

    In the model organism Caenorhabditis elegans, a class of small molecule signals called ascarosides regulate development, mating, and social behaviors. Ascaroside production has been studied in the predominant sex, the hermaphrodite, but not in males, which account for less than 1% of wild-type worms grown under typical laboratory conditions. Using HPLC-MS-based targeted metabolomics, we show that males also produce ascarosides and that their ascaroside profile differs markedly from that of hermaphrodites. Whereas hermaphrodite ascaroside profiles are dominated by ascr#3, containing an α,β-unsaturated fatty acid, males predominantly produce the corresponding dihydro-derivative ascr#10. This small structural modification profoundly affects signaling properties: hermaphrodites are retained by attomole-amounts of male-produced ascr#10, whereas hermaphrodite-produced ascr#3 repels hermaphrodites and attracts males. Male production of ascr#10 is population density-dependent, indicating sensory regulation of ascaroside biosynthesis. Analysis of gene expression data supports a model in which sex-specific regulation of peroxisomal β-oxidation produces functionally different ascaroside profiles.

  18. Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles.

    PubMed

    Cejas, Paloma; Li, Lewyn; O'Neill, Nicholas K; Duarte, Melissa; Rao, Prakash; Bowden, Michaela; Zhou, Chensheng W; Mendiola, Marta; Burgos, Emilio; Feliu, Jaime; Moreno-Rubio, Juan; Guadalajara, Héctor; Moreno, Víctor; García-Olmo, Damián; Bellmunt, Joaquim; Mullane, Stephanie; Hirsch, Michelle; Sweeney, Christopher J; Richardson, Andrea; Liu, X Shirley; Brown, Myles; Shivdasani, Ramesh A; Long, Henry W

    2016-06-01

    Extensive cross-linking introduced during routine tissue fixation of clinical pathology specimens severely hampers chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) analysis from archived tissue samples. This limits the ability to study the epigenomes of valuable, clinically annotated tissue resources. Here we describe fixed-tissue chromatin immunoprecipitation sequencing (FiT-seq), a method that enables reliable extraction of soluble chromatin from formalin-fixed paraffin-embedded (FFPE) tissue samples for accurate detection of histone marks. We demonstrate that FiT-seq data from FFPE specimens are concordant with ChIP-seq data from fresh-frozen samples of the same tumors. By using multiple histone marks, we generate chromatin-state maps and identify cis-regulatory elements in clinical samples from various tumor types that can readily allow us to distinguish between cancers by the tissue of origin. Tumor-specific enhancers and superenhancers that are elucidated by FiT-seq analysis correlate with known oncogenic drivers in different tissues and can assist in the understanding of how chromatin states affect gene regulation.

  19. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1.

    PubMed

    Dewitte, Griet; Walmagh, Maarten; Diricks, Margo; Lepak, Alexander; Gutmann, Alexander; Nidetzky, Bernd; Desmet, Tom

    2016-09-10

    UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin β-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates

    PubMed Central

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination. PMID:26716699

  1. DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics.

    PubMed

    Giri, Anil K; Bharadwaj, Soham; Banerjee, Priyanka; Chakraborty, Shraddha; Parekatt, Vaisak; Rajashekar, Donaka; Tomar, Abhishek; Ravindran, Aarthi; Basu, Analabha; Tandon, Nikhil; Bharadwaj, Dwaipayan

    2017-06-01

    Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.

  2. X-ray structure of human aromatase reveals an androgen-specific active site.

    PubMed

    Ghosh, Debashis; Griswold, Jennifer; Erman, Mary; Pangborn, Walter

    2010-02-28

    Aromatase is a unique cytochrome P450 that catalyzes the removal of the 19-methyl group and aromatization of the A-ring of androgens for the synthesis of estrogens. All human estrogens are synthesized via this enzymatic aromatization pathway. Aromatase inhibitors thus constitute a frontline therapy for estrogen-dependent breast cancer. Despite decades of intense investigation, this enzyme of the endoplasmic reticulum membrane has eluded all structure determination efforts. We have determined the crystal structure of the highly active aromatase purified from human placenta, in complex with its natural substrate androstenedione. The structure shows the binding mode of androstenedione in the catalytically active oxidized high-spin ferric state of the enzyme. Hydrogen bond-forming interactions and tight packing hydrophobic side chains that complement the puckering of the steroid backbone provide the molecular basis for the exclusive androgenic specificity of aromatase. Locations of catalytic residues and water molecules shed new light on the mechanism of the aromatization step. The structure also suggests a membrane integration model indicative of the passage of steroids through the lipid bilayer.

  3. Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema.

    PubMed

    Quaranta, Maria; Knapp, Bettina; Garzorz, Natalie; Mattii, Martina; Pullabhatla, Venu; Pennino, Davide; Andres, Christian; Traidl-Hoffmann, Claudia; Cavani, Andrea; Theis, Fabian J; Ring, Johannes; Schmidt-Weber, Carsten B; Eyerich, Stefanie; Eyerich, Kilian

    2014-07-09

    Previous attempts to gain insight into the pathogenesis of psoriasis and eczema by comparing their molecular signatures were hampered by the high interindividual variability of those complex diseases. In patients affected by both psoriasis and nonatopic or atopic eczema simultaneously (n = 24), an intraindividual comparison of the molecular signatures of psoriasis and eczema identified genes and signaling pathways regulated in common and exclusive for each disease across all patients. Psoriasis-specific genes were important regulators of glucose and lipid metabolism, epidermal differentiation, as well as immune mediators of T helper 17 (TH17) responses, interleukin-10 (IL-10) family cytokines, and IL-36. Genes in eczema related to epidermal barrier, reduced innate immunity, increased IL-6, and a TH2 signature. Within eczema subtypes, a mutually exclusive regulation of epidermal differentiation genes was observed. Furthermore, only contact eczema was driven by inflammasome activation, apoptosis, and cellular adhesion. On the basis of this comprehensive picture of the pathogenesis of psoriasis and eczema, a disease classifier consisting of NOS2 and CCL27 was created. In an independent cohort of eczema (n = 28) and psoriasis patients (n = 25), respectively, this classifier diagnosed all patients correctly and also identified initially misdiagnosed or clinically undifferentiated patients.

  4. Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity.

    PubMed

    Ailloud, Florent; Lowe, Tiffany; Cellier, Gilles; Roche, David; Allen, Caitilyn; Prior, Philippe

    2015-04-08

    Ralstonia solanacearum is a vascular soil-borne plant pathogen with an unusually broad host range. This economically destructive and globally distributed bacterium has thousands of distinct lineages within a heterogeneous and taxonomically disputed species complex. Some lineages include highly host-adapted strains (ecotypes), such as the banana Moko disease-causing strains, the cold-tolerant potato brown rot strains (also known as R3bv2) and the recently emerged Not Pathogenic to Banana (NPB) strains. These distinct ecotypes offer a robust model to study host adaptation and the emergence of ecotypes because the polyphyletic Moko strains include lineages that are phylogenetically close to the monophyletic brown rot and NPB strains. Draft genomes of eight new strains belonging to these three model ecotypes were produced to complement the eleven publicly available R. solanacearum genomes. Using a suite of bioinformatics methods, we searched for genetic and evolutionary features that distinguish ecotypes and propose specific hypotheses concerning mechanisms of host adaptation in the R. solanacearum species complex. Genome-wide, few differences were identified, but gene loss events, non-synonymous polymorphisms, and horizontal gene transfer were identified among type III effectors and were associated with host range differences. This extensive comparative genomics analysis uncovered relatively few divergent features among closely related strains with contrasting biological characteristics; however, several virulence factors were associated with the emergence of Moko, NPB and brown rot and could explain host adaptation.

  5. X-ray Structure of Human Aromatase Reveals An Androgen-Specific Active Site

    PubMed Central

    Ghosh, Debashis; Griswold, Jennifer; Erman, Mary; Pangborn, Walter

    2009-01-01

    Aromatase is a unique cytochrome P450 that catalyzes the removal of the 19-methyl group and aromatization of the A-ring of androgens for the synthesis of estrogens. All human estrogens are synthesized via this enzymatic aromatization pathway. Aromatase inhibitors thus constitute a frontline therapy for estrogen-dependent breast cancer. Despite decades of intense investigation, this enzyme of the endoplasmic reticulum membrane has eluded all structure determination efforts. We have determined the crystal structure of the highly active aromatase purified from human placenta, in complex with its natural substrate androstenedione. The structure shows the binding mode of androstenedione in the catalytically active oxidized high-spin ferric state of the enzyme. Hydrogen bond forming interactions and tight packing hydrophobic side chains that complement the puckering of the steroid backbone provide the molecular basis for the exclusive androgenic specificity of aromatase. Locations of catalytic residues and water molecules shed new light on the mechanism of the aromatization step. The structure also suggests a membrane integration model indicative of the passage of steroids through the lipid bilayer. PMID:19808095

  6. Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats

    PubMed Central

    Ori, Alessandro; Toyama, Brandon H.; Harris, Michael S.; Bock, Thomas; Iskar, Murat; Bork, Peer; Ingolia, Nicholas T.; Hetzer, Martin W.; Beck, Martin

    2015-01-01

    Summary Aging is associated with the decline of protein, cell, and organ function. Here, we use an integrated approach to characterize gene expression, bulk translation, and cell biology in the brains and livers of young and old rats. We identify 468 differences in protein abundance between young and old animals. The majority are a consequence of altered translation output, that is, the combined effect of changes in transcript abundance and translation efficiency. In addition, we identify 130 proteins whose overall abundance remains unchanged but whose sub-cellular localization, phosphorylation state, or splice-form varies. While some protein-level differences appear to be a generic property of the rats’ chronological age, the majority are specific to one organ. These may be a consequence of the organ’s physiology or the chronological age of the cells within the tissue. Taken together, our study provides an initial view of the proteome at the molecular, sub-cellular, and organ level in young and old rats. PMID:27135913

  7. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    PubMed

    Picq, Jean-Luc; Villain, Nicolas; Gary, Charlotte; Pifferi, Fabien; Dhenain, Marc

    2015-01-01

    The mouse lemur (Microcebus murinus) is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12) and aged (n = 8) adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination.

  8. A Novel Line Immunoassay Based on Recombinant Virulence Factors Enables Highly Specific and Sensitive Serologic Diagnosis of Helicobacter pylori Infection

    PubMed Central

    Formichella, Luca; Romberg, Laura; Bolz, Christian; Vieth, Michael; Geppert, Michael; Göttner, Gereon; Nölting, Christina; Walter, Dirk; Schepp, Wolfgang; Schneider, Arne; Ulm, Kurt; Wolf, Petra; Busch, Dirk H.; Soutschek, Erwin

    2013-01-01

    Helicobacter pylori colonizes half of the world's population, and infection can lead to ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Serology is the only test applicable for large-scale, population-based screening, but current tests are hampered by a lack of sensitivity and/or specificity. Also, no serologic test allows the differentiation of type I and type II strains, which is important for predicting the clinical outcome. H. pylori virulence factors have been associated with disease, but direct assessment of virulence factors requires invasive methods to obtain gastric biopsy specimens. Our work aimed at the development of a highly sensitive and specific, noninvasive serologic test to detect immune responses to important H. pylori virulence factors. This line immunoassay system (recomLine) is based on recombinant proteins. For this assay, six highly immunogenic virulence factors (CagA, VacA, GroEL, gGT, HcpC, and UreA) were expressed in Escherichia coli, purified, and immobilized to nitrocellulose membranes to detect serological immune responses in patient's sera. For the validation of the line assay, a cohort of 500 patients was screened, of which 290 (58.0%) were H. pylori negative and 210 (42.0%) were positive by histology. The assay showed sensitivity and specificity of 97.6% and 96.2%, respectively, compared to histology. In direct comparison to lysate blotting and enzyme-linked immunosorbent assay (ELISA), the recomLine assay had increased discriminatory power. For the assessment of individual risk for gastrointestinal disease, the test must be validated in a larger and defined patient cohort. Taking the data together, the recomLine assay provides a valuable tool for the diagnosis of H. pylori infection. PMID:24006137

  9. A novel line immunoassay based on recombinant virulence factors enables highly specific and sensitive serologic diagnosis of Helicobacter pylori infection.

    PubMed

    Formichella, Luca; Romberg, Laura; Bolz, Christian; Vieth, Michael; Geppert, Michael; Göttner, Gereon; Nölting, Christina; Walter, Dirk; Schepp, Wolfgang; Schneider, Arne; Ulm, Kurt; Wolf, Petra; Busch, Dirk H; Soutschek, Erwin; Gerhard, Markus

    2013-11-01

    Helicobacter pylori colonizes half of the world's population, and infection can lead to ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Serology is the only test applicable for large-scale, population-based screening, but current tests are hampered by a lack of sensitivity and/or specificity. Also, no serologic test allows the differentiation of type I and type II strains, which is important for predicting the clinical outcome. H. pylori virulence factors have been associated with disease, but direct assessment of virulence factors requires invasive methods to obtain gastric biopsy specimens. Our work aimed at the development of a highly sensitive and specific, noninvasive serologic test to detect immune responses to important H. pylori virulence factors. This line immunoassay system (recomLine) is based on recombinant proteins. For this assay, six highly immunogenic virulence factors (CagA, VacA, GroEL, gGT, HcpC, and UreA) were expressed in Escherichia coli, purified, and immobilized to nitrocellulose membranes to detect serological immune responses in patient's sera. For the validation of the line assay, a cohort of 500 patients was screened, of which 290 (58.0%) were H. pylori negative and 210 (42.0%) were positive by histology. The assay showed sensitivity and specificity of 97.6% and 96.2%, respectively, compared to histology. In direct comparison to lysate blotting and enzyme-linked immunosorbent assay (ELISA), the recomLine assay had increased discriminatory power. For the assessment of individual risk for gastrointestinal disease, the test must be validated in a larger and defined patient cohort. Taking the data together, the recomLine assay provides a valuable tool for the diagnosis of H. pylori infection.

  10. High-resolution Bio-Argo and Argo Measurements to Reveal Specific Oceanic Processes.

    NASA Astrophysics Data System (ADS)

    Poteau, A.; Claustre, H.; Briggs, N.; D'Ortenzio, F.; Schmechtig, C.; Prieur, L. M.; Boss, E.

    2016-02-01

    Together with temperature and salinity measurements, Bio-Argo profiling floats now measure a significant range of biogeochemical (e.g. O2, NO3) and bio-optical variables (Chla, backscattering coefficient and radiometry). To transmit the very large amount of data acquired by this new generation of floats, it was required to substitute the Argos telemetry (Argo program) with iridium telemetry. The obvious consequence is not only a much greater flexibly on data transmission but also on data acquisition thanks to the two-way communication allowed by iridium. Our group has now deployed and managed over 100 Bio-Argo floats of this type. In particular we have set up high-resolution mode of acquisition for certain periods of time or for dedicated portions of the water column. Here we illustrate with three examples the potential of conducting high-resolution measurement to identify and explore certain oceanic processes. (1) High resolution measurements of pressure, temperature and salinity (every 2 s) when the float is finishing its ascent (without any pump action) in the upper 10 m layer are analyzed with respect to sea state. We particularly focus on the study of the speed anomaly as compared to a nominal speed expected for a calm sea state. By comparison between speed anomaly of a float in the Mediterranean Sea and concurrent sea state measurements by a weather buoy in the same area, we suggest that float behaviour can be an indicator of sea state. (2) Each year, in response to springtime phytoplankton blooms, the resolution of bio-optical variables (backscattering and Chla) in the top 1000 m was increased to at least 1 m (every 10 s) for all floats in the North Atlantic and Southern Ocean. This resolution allowed accurate estimation of the concentration of large phytoplankton aggregates and revealed systematic differences in bulk aggregate sinking rate between ocean basins. (3) Finally we continuously record all the variables at a 10 min resolution during the float

  11. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum.

    PubMed

    Hong, Yan; Tang, Xingjiao; Huang, He; Zhang, Yuan; Dai, Silan

    2015-03-17

    The flower colour of agricultural products is very important for their commercial value, which is mainly attributed to the accumulation of anthocyanins. Light is one of the key environmental factors that affect the anthocyanin biosynthesis. However, the deep molecular mechanism remains elusive, and many problems regarding the phenotypic change and the corresponding gene regulation are still unclear. In the present study, Chrysanthemum × morifolium 'Purple Reagan', a light-responding pigmentation cultivar, was selected to investigate the mechanism of light-induced anthocyanin biosynthesis using transcriptomic analyses. Only cyanidin derivatives were identified based on the analyses of the pigmentation in ray florets. Shading experiments revealed that the capitulum was the key organ and that its bud stage was the key phase responding to light. These results were used to design five libraries for transcriptomic analyses, including three capitulum developmental stages and two light conditions. RNA sequences were de novo assembled into 103,517 unigenes, of which 60,712 were annotated against four public protein databases. As many as 2,135 unigenes were differentially expressed between the light and dark libraries with 923 up-regulated and 1,212 down-regulated unigenes in response to shading. Next, interactive pathway analysis showed that the anthocyanin biosynthetic pathway was the only complete metabolic pathway both modulated in response to light and related to capitulum development. Following the shading treatment, nearly all structural genes involved in the anthocyanin biosynthetic pathway were down-regulated. Moreover, three CmMYB genes and one CmbHLH gene were identified as key transcription factors that might participate in the regulation of anthocyanin biosynthesis under light conditions based on clustering analysis and validation by RT-qPCR. Finally, a light-induced anthocyanin biosynthesis pathway in chrysanthemums was inferred. The pigmentation of the ray

  12. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics.

    PubMed

    Lin, Feng; Zhao, Meixia; Baumann, Douglas D; Ping, Jieqing; Sun, Lianjun; Liu, Yunfeng; Zhang, Biao; Tang, Zongxiang; Hughes, Elisa; Doerge, Rebecca W; Hughes, Teresa J; Ma, Jianxin

    2014-01-10

    Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen. A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters. This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional "fingerprints" of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be

  13. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses

    PubMed Central

    2011-01-01

    Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways. PMID:21261979

  14. Colony-specific investigations reveal highly variable responses among individual corals to ocean acidification and warming.

    PubMed

    Kavousi, Javid; Reimer, James Davis; Tanaka, Yasuaki; Nakamura, Takashi

    2015-08-01

    As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 μatm-28 °C, 400 μatm-31 °C, 1000 μatm-28 °C and 1000 μatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations.

  15. Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids.

    PubMed

    Svahn, Sara L; Väremo, Leif; Gabrielsson, Britt G; Peris, Eduard; Nookaew, Intawat; Grahnemo, Louise; Sandberg, Ann-Sofie; Wernstedt Asterholm, Ingrid; Jansson, John-Olov; Nielsen, Jens; Johansson, Maria E

    2016-01-01

    Dietary polyunsaturated fatty acids (PUFA) are suggested to modulate immune function, but the effects of dietary fatty acids composition on gene expression patterns in immune organs have not been fully characterized. In the current study we investigated how dietary fatty acids composition affects the total transcriptome profile, and especially, immune related genes in two immune organs, spleen (SPL) and bone marrow cells (BMC). Four tissues with metabolic function, skeletal muscle (SKM), white adipose tissue (WAT), brown adipose tissue (BAT), and liver (LIV), were investigated as a comparison. Following 8 weeks on low fat diet (LFD), high fat diet (HFD) rich in saturated fatty acids (HFD-S), or HFD rich in PUFA (HFD-P), tissue transcriptomics were analyzed by microarray and metabolic health assessed by fasting blood glucose level, HOMA-IR index, oral glucose tolerance test as well as quantification of crown-like structures in WAT. HFD-P corrected the metabolic phenotype induced by HFD-S. Interestingly, SKM and BMC were relatively inert to the diets, whereas the two adipose tissues (WAT and BAT) were mainly affected by HFD per se (both HFD-S and HFD-P). In particular, WAT gene expression was driven closer to that of the immune organs SPL and BMC by HFDs. The LIV exhibited different responses to both of the HFDs. Surprisingly, the spleen showed a major response to HFD-P (82 genes differed from LFD, mostly immune genes), while it was not affected at all by HFD-S (0 genes differed from LFD). In conclusion, the quantity and composition of dietary fatty acids affected the transcriptome in distinct manners in different organs. Remarkably, dietary PUFA, but not saturated fat, prompted a specific regulation of immune related genes in the spleen, opening the possibility that PUFA can regulate immune function by influencing gene expression in this organ.

  16. RNA-Seq Reveals Activation of Both Common and Cytokine-Specific Pathways following Neutrophil Priming

    PubMed Central

    Moots, Robert J.; Edwards, Steven W.

    2013-01-01

    Neutrophils are central to the pathology of inflammatory diseases, where they can damage host tissue through release of reactive oxygen metabolites and proteases, and drive inflammation via secretion of cytokines and chemokines. Many cytokines, such as those generated during inflammation, can induce a similar “primed” phenotype in neutrophils, but it is unknown if different cytokines utilise common or cytokine-specific pathways to induce these functional changes. Here, we describe the transcriptomic changes induced in control human neutrophils during priming in vitro with pro-inflammatory cytokines (TNF-α and GM-CSF) using RNA-seq. Priming led to the rapid expression of a common set of transcripts for cytokines, chemokines and cell surface receptors (CXCL1, CXCL2, IL1A, IL1B, IL1RA, ICAM1). However, 580 genes were differentially regulated by TNF-α and GM-CSF treatment, and of these 58 were directly implicated in the control of apoptosis. While these two cytokines both delayed apoptosis, they induced changes in expression of different pro- and anti-apoptotic genes. Bioinformatics analysis predicted that these genes were regulated via differential activation of transcription factors by TNF-α and GM-CSF and these predictions were confirmed using functional assays: inhibition of NF-κB signalling abrogated the protective effect of TNF-α (but not that of GM-CSF) on neutrophil apoptosis, whereas inhibition of JAK/STAT signalling abrogated the anti-apoptotic effect of GM-CSF, but not that of TNF-α (p<0.05). These data provide the first characterisation of the human neutrophil transcriptome following GM-CSF and TNF-α priming, and demonstrate the utility of this approach to define functional changes in neutrophils following cytokine exposure. This may provide an important, new approach to define the molecular properties of neutrophils after in vivo activation during inflammation. PMID:23554905

  17. Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats.

    PubMed

    Garvey, Sean M; Dugle, Janis E; Kennedy, Adam D; McDunn, Jonathan E; Kline, William; Guo, Lining; Guttridge, Denis C; Pereira, Suzette L; Edens, Neile K

    2014-06-01

    Mammalian skeletal muscles exhibit age-related adaptive and pathological remodeling. Several muscles in particular undergo progressive atrophy and degeneration beyond median lifespan. To better understand myocellular responses to aging, we used semi-quantitative global metabolomic profiling to characterize trends in metabolic changes between 15-month-old adult and 32-month-old aged Fischer 344 × Brown Norway (FBN) male rats. The FBN rat gastrocnemius muscle exhibits age-dependent atrophy, whereas the soleus muscle, up until 32 months, exhibits markedly fewer signs of atrophy. Both gastrocnemius and soleus muscles were analyzed, as well as plasma and urine. Compared to adult gastrocnemius, aged gastrocnemius showed evidence of reduced glycolytic metabolism, including accumulation of glycolytic, glycogenolytic, and pentose phosphate pathway intermediates. Pyruvate was elevated with age, yet levels of citrate and nicotinamide adenine dinucleotide were reduced, consistent with mitochondrial abnormalities. Indicative of muscle atrophy, 3-methylhistidine and free amino acids were elevated in aged gastrocnemius. The monounsaturated fatty acids oleate, cis-vaccenate, and palmitoleate also increased in aged gastrocnemius, suggesting altered lipid metabolism. Compared to gastrocnemius, aged soleus exhibited far fewer changes in carbohydrate metabolism, but did show reductions in several glycolytic intermediates, fumarate, malate, and flavin adenine dinucleotide. Plasma biochemicals showing the largest age-related increases included glycocholate, heme, 1,5-anhydroglucitol, 1-palmitoleoyl-glycerophosphocholine, palmitoleate, and creatine. These changes suggest reduced insulin sensitivity in aged FBN rats. Altogether, these data highlight skeletal muscle group-specific perturbations of glucose and lipid metabolism consistent with mitochondrial dysfunction in aged FBN rats.

  18. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    PubMed

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

  19. Regulation network of serum cytokines induced by tuberculosis-specific antigens reveals biomarkers for tuberculosis diagnosis.

    PubMed

    Wei, M; Wu, Z Y; Lin, J H; Li, Y; Qian, Z X; Xie, Y Q; Su, H; Zhou, W

    2015-12-17

    In this study, we identified potential serum biomarkers for the diagnosis of active tuberculosis (TB) and screening for latent TB infections (LTBIs). Peripheral blood samples from 40 healthy individuals, 40 patients with TB, and 40 LTBI individuals were stimulated with the TB-specific antigens ESAT-6 and CFP-10. Human inflammatory cytokine arrays were used to detect the expression of inflammatory cytokines. Cytokines with significant changes were screened to construct a cytokine regulation network. The levels of the cytokines CCL1 (I-309), CXCL9 (MIG), IL-10, IL-6, CSF2, CSF3, IL-8, IL-1α, IL-7, TGF-β1, CCL2, IL-2, IL-13, and TNFα were significantly upregulated in the active TB group. The levels of CCL3, IL-1β, CCL8, IFNγ, and CXCL10 were significantly increased in the TB groups compared to those in the healthy control group. sTNF RII was upregulated in the LTBI group. CCL4 and MIP1d were significantly increased in all groups.The upregulated cytokines were mainly found in the IFNγ and IL-1α regulatory networks. Importantly, we found that CXCL10 (IP-10), CCL3, CCL8, and IL-1β may be more suitable than IFNγ for active or latent TB infection screening. Furthermore, we found that levels of CCL1 (I-309), CXCL9 (MIG), IL-10, IL-6, CSF2, CSF3, IL-8, IL-1α, IL-7, TGF-β1, CCL2, IL-2, and IL-13 after TB antigen stimulation may help distinguish between active and latent TB.

  20. Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids

    PubMed Central

    Gabrielsson, Britt G.; Peris, Eduard; Nookaew, Intawat; Grahnemo, Louise; Sandberg, Ann-Sofie; Wernstedt Asterholm, Ingrid; Jansson, John-Olov; Nielsen, Jens

    2016-01-01

    Dietary polyunsaturated fatty acids (PUFA) are suggested to modulate immune function, but the effects of dietary fatty acids composition on gene expression patterns in immune organs have not been fully characterized. In the current study we investigated how dietary fatty acids composition affects the total transcriptome profile, and especially, immune related genes in two immune organs, spleen (SPL) and bone marrow cells (BMC). Four tissues with metabolic function, skeletal muscle (SKM), white adipose tissue (WAT), brown adipose tissue (BAT), and liver (LIV), were investigated as a comparison. Following 8 weeks on low fat diet (LFD), high fat diet (HFD) rich in saturated fatty acids (HFD-S), or HFD rich in PUFA (HFD-P), tissue transcriptomics were analyzed by microarray and metabolic health assessed by fasting blood glucose level, HOMA-IR index, oral glucose tolerance test as well as quantification of crown-like structures in WAT. HFD-P corrected the metabolic phenotype induced by HFD-S. Interestingly, SKM and BMC were relatively inert to the diets, whereas the two adipose tissues (WAT and BAT) were mainly affected by HFD per se (both HFD-S and HFD-P). In particular, WAT gene expression was driven closer to that of the immune organs SPL and BMC by HFDs. The LIV exhibited different responses to both of the HFDs. Surprisingly, the spleen showed a major response to HFD-P (82 genes differed from LFD, mostly immune genes), while it was not affected at all by HFD-S (0 genes differed from LFD). In conclusion, the quantity and composition of dietary fatty acids affected the transcriptome in distinct manners in different organs. Remarkably, dietary PUFA, but not saturated fat, prompted a specific regulation of immune related genes in the spleen, opening the possibility that PUFA can regulate immune function by influencing gene expression in this organ. PMID:27166587

  1. Spatial analysis of plant metabolism: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns.

    PubMed

    Borisjuk, Ljudmilla; Walenta, Stefan; Rolletschek, Hardy; Mueller-Klieser, Wolfgang; Wobus, Ulrich; Weber, Hans

    2002-02-01

    During legume embryogenesis the differentiation of the cotyledons proceeds gradually in a wave-like manner. The process is metabolically and genetically controlled and regulated by sugars. In order to perform a spatial and temporal analysis of the sugar distribution pattern a new method was developed to specifically measure sucrose directly in tissues via bioluminescence and single photon counting. This enabled a quantitative sucrose imaging with a resolution close to the single cell level. The procedure was applied on sections of Vicia faba cotyledons covering the main stages of histodifferentiation. Young embryos before the storage phase contained moderate levels of sucrose, which were evenly distributed. At the onset of maturation high concentrations were present within a tissue layer covering the outward half of the coytledons. This layer was directly underneath the epidermis expressing a sucrose transporter gene indicating that epidermal transporters caused the high sucrose accumulation in the underlying tissue. At that stage the sucrose gradient was inversely oriented compared with cell size and the starch content. Cells within the interior were larger, contained starch but low sucrose. Thus, the sucrose pattern is controlled by uptake activity and permeability within the parenchyma. However, during the main storage phase actively elongating and starch accumulating cells contain highest sucrose concentrations indicating that differences in growth and starch accumulation also affect intracotyledonary sugar distribution. High sucrose concentrations were correlated with transcript levels of sucrose synthase and ADP-Glc pyrophosphorylase indicating a signaling function for sucrose to induce starch biosynthesis on the gene expression level. Carbon flux through the sucrose synthase pathway towards starch increased when hexoses levels decreased.

  2. Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities.

    PubMed

    Men, Yujie; Seth, Erica C; Yi, Shan; Crofts, Terence S; Allen, Robert H; Taga, Michiko E; Alvarez-Cohen, Lisa

    2015-12-01

    Cobalamin and other corrinoids are essential cofactors for many organisms. The majority of microbes with corrinoid-dependent enzymes do not produce corrinoids de novo, and instead must acquire corrinoids produced by other organisms in their environment. However, the profile of corrinoids produced in corrinoid-dependent microbial communities, as well as the exchange and modification of corrinoids among community members have not been well studied. In this study, we applied a newly developed liquid chromatography tandem mass spectrometry-based corrinoid detection method to examine relationships among corrinoids, their lower ligand bases and specific microbial groups in microbial communities containing Dehalococcoides mccartyi that has an obligate requirement for benzimidazole-containing corrinoids for trichloroethene respiration. We found that p-cresolylcobamide ([p-Cre]Cba) and cobalamin were the most abundant corrinoids in the communities. It suggests that members of the family Veillonellaceae are associated with the production of [p-Cre]Cba. The decrease of supernatant-associated [p-Cre]Cba and the increase of biomass-associated cobalamin were correlated with the growth of D. mccartyi by dechlorination. This supports the hypothesis that D. mccartyi is capable of fulfilling its corrinoid requirements in a community through corrinoid remodelling, in this case, by importing extracellular [p-Cre]Cba and 5,6-dimethylbenzimidazole (DMB) (the lower ligand of cobalamin), to produce cobalamin as a cofactor for dechlorination. This study also highlights the role of DMB, the lower ligand produced in all of the studied communities, in corrinoid remodelling. These findings provide novel insights on roles played by different phylogenetic groups in corrinoid production and corrinoid exchange within microbial communities. This study may also have implications for optimizing chlorinated solvent bioremediation.

  3. Structures of 5-Methylthioribose Kinase Reveal Substrate Specificity and Unusual Mode of Nucleotide Binding

    SciTech Connect

    Ku,S.; Yip, P.; Cornell, K.; Riscoe, M.; Behr, J.; Guillerm, G.; Howell, P.

    2007-01-01

    The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp{sup 250}-Glu{sup 252}). In addition, the glycine-rich loop of the protein, analogous to the 'Gly triad' in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp{sup 233} of the catalytic HGD motif, a novel twin arginine motif (Arg{sup 340}/Arg{sup 341}), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.

  4. Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities

    PubMed Central

    Men, Yujie; Seth, Erica C.; Yi, Shan; Crofts, Terence S.; Allen, Robert H.; Taga, Michiko E.; Alvarez-Cohen, Lisa

    2015-01-01

    Cobalamin and other corrinoids are essential cofactors for many organisms. The majority of microbes with corrinoid-dependent enzymes do not produce corrinoids de novo, and instead must acquire corrinoids produced by other organisms in their environment. However, the profile of corrinoids produced in corrinoid-dependent microbial communities, as well as the exchange and modification of corrinoids among community members have not been well studied. In this study, we applied a newly developed LC/MS/MS–based corrinoid detection method to examine relationships between corrinoids, their lower ligand bases, and specific microbial groups in microbial communities containing Dehalococcoides mccartyi that has an obligate requirement for benzimidazole-containing corrinoids for trichloroethene-respiration. We found that p-cresolylcobamide ([p-Cre]Cba) and cobalamin were the most abundant corrinoids in the communities. It suggests that members of the family Veillonellaceae are associated with the production of [p-Cre]Cba. The decrease of supernatant-associated [p-Cre]Cba and the increase of biomass-associated cobalamin were correlated with the growth of D. mccartyi by dechlorination. This supports the hypothesis that D. mccartyi is capable of fulfilling its corrinoid requirements in community through corrinoid remodeling, in this case, by importing extracellular [p-Cre]Cba and 5,6-dimethylbenzimidazole (DMB) (the lower ligand of cobalamin), to produce cobalamin as a cofactor for dechlorination. This study also highlights the role of DMB, the lower ligand produced in all of the studied communities, in corrinoid remodeling. These findings provide novel insights on roles played by different phylogenetic groups in corrinoid production and corrinoid exchange within microbial communities. This study may also have implications for optimizing chlorinated solvent bioremediation. PMID:24803319

  5. Experimental evolution reveals habitat-specific fitness dynamics among Wolbachia clades in Drosophila melanogaster

    PubMed Central

    Versace, Elisabetta; Nolte, Viola; Pandey, Ram Vinay; Tobler, Ray; Schlötterer, Christian

    2014-01-01

    The diversity and infection dynamics of the endosymbiont Wolbachia can be influenced by many factors, such as transmission rate, cytoplasmic incompatibility, environment, selection and genetic drift. The interplay of these factors in natural populations can result in heterogeneous infection patterns with substantial differences between populations and strains. The causes of these heterogeneities are not yet understood, partly due to the complexity of natural environments. We present experimental evolution as a new approach to study Wolbachia infection dynamics in replicate populations exposed to a controlled environment. A natural Drosophila melanogaster population infected with strains of Wolbachia belonging to different clades evolved in two laboratory environments (hot and cold) for 1.5 years. In both treatments, the rate of Wolbachia infection increased until fixation. In the hot environment, the relative frequency of different Wolbachia clades remained stable over 37 generations. In the cold environment, however, we observed marked changes in the composition of the Wolbachia population: within 15 generations, one Wolbachia clade increased more than 50% in frequency, whereas the other two clades decreased in frequency, resulting in the loss of one clade. The frequency change was highly reproducible not only among replicates, but also when flies that evolved for 42 generations in the hot environment were transferred to the cold environment. These results document how environmental factors can affect the composition of Wolbachia in D. melanogaster. The high reproducibility of the pattern suggests that experimental evolution studies can efficiently determine the functional basis of habitat-specific fitness among Wolbachia strains. PMID:24387805

  6. A cytoplasmic activator of DNA replication is involved in signal transduction in antigen-specific T cell lines.

    PubMed

    Wong, R L; Clark, R B; Gutowski, J K; Katz, M E; Fresa, K L; Cohen, S

    1990-05-01

    Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes.

  7. Structures of human DPP7 reveal the molecular basis of specific inhibition and the architectural diversity of proline-specific peptidases.

    PubMed

    Bezerra, Gustavo Arruda; Dobrovetsky, Elena; Dong, Aiping; Seitova, Almagul; Crombett, Lissete; Shewchuk, Lisa M; Hassell, Annie M; Sweitzer, Sharon M; Sweitzer, Thomas D; McDevitt, Patrick J; Johanson, Kyung O; Kennedy-Wilson, Karen M; Cossar, Doug; Bochkarev, Alexey; Gruber, Karl; Dhe-Paganon, Sirano

    2012-01-01

    Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/β-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The "specificity domains" are structurally also completely different exhibiting a β-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.

  8. Gene expression analyses reveal metabolic specifications in acute O2 -sensing chemoreceptor cells.

    PubMed

    Gao, Lin; Bonilla-Henao, Victoria; García-Flores, Paula; Arias-Mayenco, Ignacio; Ortega-Sáenz, Patricia; López-Barneo, José

    2017-09-15

    Glomus cells in the carotid body (CB) and chromaffin cells in the adrenal medulla (AM) are essential for reflex cardiorespiratory adaptation to hypoxia. However, the mechanisms whereby these cells detect changes in O2 tension are poorly understood. The metabolic properties of acute O2 -sensing cells have been investigated by comparing the transcriptomes of CB and AM cells, which are O2 -sensitive, with superior cervical ganglion neurons, which are practically O2 -insensitive. In O2 -sensitive cells, we found a characteristic prolyl hydroxylase 3 down-regulation and hypoxia inducible factor 2α up-regulation, as well as overexpression of genes coding for three atypical mitochondrial electron transport subunits and pyruvate carboxylase, an enzyme that replenishes tricarboxylic acid cycle intermediates. In agreement with this observation, the inhibition of succinate dehydrogenase impairs CB acute O2 sensing. The responsiveness of peripheral chemoreceptor cells to acute hypoxia depends on a 'signature metabolic profile'. Acute O2 sensing is a fundamental property of cells in the peripheral chemoreceptors, e.g. glomus cells in the carotid body (CB) and chromaffin cells in the adrenal medulla (AM), and is necessary for adaptation to hypoxia. These cells contain O2 -sensitive ion channels, which mediate membrane depolarization and transmitter release upon exposure to hypoxia. However, the mechanisms underlying the detection of changes in O2 tension by cells are still poorly understood. Recently, we suggested that CB glomus cells have specific metabolic features that favour the accumulation of reduced quinone and the production of mitochondrial NADH and reactive oxygen species during hypoxia. These signals alter membrane ion channel activity. To investigate the metabolic profile characteristic of acute O2 -sensing cells, we used adult mice to compare the transcriptomes of three cell types derived from common sympathoadrenal progenitors, but exhibiting variable

  9. Systematic Analyses of the Cytotoxic Effects of Compound 11a, a Putative Synthetic Agonist of Photoreceptor-Specific Nuclear Receptor (PNR), in Cancer Cell Lines

    PubMed Central

    Zhao, Zibo; Wang, Lu; Wen, Zhi; Ayaz-guner, Serife; Wang, Yidan; Ahlquist, Paul; Xu, Wei

    2013-01-01

    Photoreceptor cell-specific receptor (PNR/NR2E3) is an orphan nuclear receptor that plays a critical role in retinal development and photoreceptor maintenance. The disease-causing mutations in PNR have a pleiotropic effect resulting in varying retinal diseases. Recently, PNR has been implicated in control of cellular functions in cancer cells. PNR was reported to be a novel regulator of ERα expression in breast cancer cells, and high PNR expression correlates with favorable response to tamoxifen treatment. Moreover, PNR was shown to increase p53 stability in HeLa cells, implying that PNR may be a therapeutic target in this and other cancers that retain a wild type p53 gene. To facilitate further understanding of PNR functions in cancer, we characterized compound 11a, a synthetic, putative PNR agonist in several cell-based assays. Interestingly, we showed that 11a failed to activate PNR and its cytotoxicity was independent of PNR expression, excluding PNR as a mediator for 11a cytotoxicity. Systematic analyses of the cytotoxic effects of 11a in NCI-60 cell lines revealed a strong positive correlation of cytotoxicity with p53 status, i.e., p53 wild type cell lines were significantly more sensitive to 11a than p53 mutated or null cell lines. Furthermore, using HCT116 p53+/+ and p53-/- isogenic cell lines we revealed that the mechanism of 11a-induced cytotoxicity occurred through G1/S phase cell cycle arrest rather than apoptosis. In conclusion, we observed a correlation of 11a sensitivity with p53 status but not with PNR expression, suggesting that tumors expressing wild type p53 might be responsive to this compound. PMID:24066170

  10. Implications of image plane line-edge roughness requirements on extreme ultraviolet mask specifications

    SciTech Connect

    Naulleau, P. P.; George, Simi A.

    2009-02-13

    Line-edge roughness (LER) and the related effect of contact size variation remain as significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. LER is typically viewed as a resist problem; however, recent simulation results have shown that the mask can indeed be an important contributor. Problems arise from both mask absorber LER as well as mask multilayer roughness leading to random phase variations in the reflected beam (see Fig. 1). The latter effect is especially important as higher coherence off-axis illumination conditions are used and defocus is considered. Here we describe these effect in detail and explore how they will impact EUV mask requirements for the 22-nm half-pitch node and beyond. Figure 2 shows modeling results for 22-nm lines printed in a 0.32-numerical aperture system with 100-nm defocus assuming a mask with 0.24-nm rms multilayer roughness and no absorber edge roughness (unlike the example in Fig. 1). The impact of the phase roughness on the printed line-edge roughness is clearly evident and demonstrates the basic problem with mask roughness. The more detailed modeling-based analysis to be presented will account for performance throughout the process window as well as non-stochastic resist effects. We note that the mean-field resist effect is important to consider because, in practice, the resist is the limiting resolution element in the system and therefore dominates the mask-error enhancement factor (MEEF). As is typically the case with projection-optic-induced MEEF, the resist-induced MEEF will lead to even tighter mask requirements. Note that we do not consider resist stochastic effects since the purpose of this study is isolate mask-induced sources of image-plane roughness.

  11. Plasma Proteomic Profiling in Hereditary Breast Cancer Reveals a BRCA1-Specific Signature: Diagnostic and Functional Implications.

    PubMed

    Scumaci, Domenica; Tammè, Laura; Fiumara, Claudia Vincenza; Pappaianni, Giusi; Concolino, Antonio; Leone, Emanuela; Faniello, Maria Concetta; Quaresima, Barbara; Ricevuto, Enrico; Costanzo, Francesco Saverio; Cuda, Giovanni

    2015-01-01

    Breast cancer (BC) is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are correlated with quantitative changes of proteins in body fluids. Plasma potentially carries important information whose knowledge could help to improve early disease detection, prognosis, and response to therapeutic treatments. The aim of this study was to develop a comprehensive approach finalized to improve the recovery of specific biomarkers from plasma samples of subjects affected by hereditary BC. To perform this analysis, we used samples from patients belonging to highly homogeneous population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were used into an integrated approach to investigate tumor-specific changes in the plasma proteome of BC patients and healthy family members sharing the same BRCA1 gene founder mutation (5083del19), previously reported by our group, with the aim to identify specific signatures. The comparative analysis of the experimental results led to the identification of gelsolin as the most promising biomarker. Further analyses, performed using a panel of breast cancer cell lines, allowed us to further elucidate the signaling network that might modulate the expression of gelsolin in breast cancer.

  12. Long Noncoding RNA Expression Profiling in Normal B-Cell Subsets and Hodgkin Lymphoma Reveals Hodgkin and Reed-Sternberg Cell-Specific Long Noncoding RNAs.

    PubMed

    Tayari, Mina Masoumeh; Winkle, Melanie; Kortman, Gertrud; Sietzema, Jantine; de Jong, Debora; Terpstra, Martijn; Mestdagh, Pieter; Kroese, Frans G M; Visser, Lydia; Diepstra, Arjan; Kok, Klaas; van den Berg, Anke; Kluiver, Joost

    2016-09-01

    Hodgkin lymphoma (HL) is a malignancy of germinal center (GC) B-cell origin. To explore the role of long noncoding RNAs (lncRNAs) in HL, we studied lncRNA expression patterns in normal B-cell subsets, HL cell lines, and tissues. Naive and memory B cells showed a highly similar lncRNA expression pattern, distinct from GC-B cells. Significant differential expression between HL and normal GC-B cells was observed for 475 lncRNA loci. For two validated lncRNAs, an enhanced expression was observed in HL, diffuse large B-cell lymphoma, and lymphoblastoid cell lines. For a third lncRNA, increased expression levels were observed in HL and part of Burkitt lymphoma cell lines. RNA fluorescence in situ hybridization on primary HL tissues revealed a tumor cell-specific expression pattern for all three lncRNAs. A potential cis-regulatory role was observed for 107 differentially expressed lncRNA-mRNA pairs localizing within a 60-kb region. Consistent with a cis-acting role, we showed a preferential nuclear localization for two selected candidates. Thus, we showed dynamic lncRNA expression changes during the transit of normal B cells through the GC reaction and widely deregulated lncRNA expression patterns in HL. Three lncRNAs showed a tumor cell-specific expression pattern in HL tissues and might therefore be of value as a biomarker. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Peroxisome proliferator-activated receptor gamma-mediated differentiation: a mutation in colon cancer cells reveals divergent and cell type-specific mechanisms.

    PubMed

    Gupta, Rajnish A; Sarraf, Pasha; Mueller, Elisabetta; Brockman, Jeffrey A; Prusakiewicz, Jeffery J; Eng, Charis; Willson, Timothy M; DuBois, Raymond N

    2003-06-20

    Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits cell growth and induces differentiation in both adipocyte and epithelial cell lineages, although it is unclear whether this occurs through common or cell-type specific mechanisms. We have identified four human colon cancer cell lines that do no undergo growth inhibition or induce markers of differentiation after exposure to PPARgamma agonists. Sequence analysis of the PPARgamma gene revealed that all four cell lines contain a previously unidentified point mutation in the ninth alpha-helix of the ligand binding domain at codon 422 (K422Q). The mutant receptor did not exhibit any defects in DNA binding or retinoid X receptor heterodimerization and was transcriptionally active in an artificial reporter assay. However, only retroviral transduction of the wild-type (WT), but not mutant, receptor could restore PPARgamma ligand-induced growth inhibition and differentiation in resistant colon cancer cell lines. In contrast, there was no difference in the ability of fibroblast cells expressing WT or K422Q mutant receptor to undergo growth inhibition, express adipocyte differentiation markers, or uptake lipid after treatment with a PPARgamma agonist. Finally, analysis of direct PPARgamma target genes in colon cancer cells expressing the WT or K422Q mutant allele suggests that the mutation may disrupt the ability of PPARgamma to repress the basal expression of a subset of genes in the absence of exogenous ligand. Collectively, these data argue that codon 422 may be a part of a co-factor(s) interaction domain necessary for PPARgamma to induce terminal differentiation in epithelial, but not adipocyte, cell lineages and argues that the receptor induces growth inhibition and differe