Sample records for line scan system

  1. Development of online lines-scan imaging system for chicken inspection and differentiation

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Chan, Diane E.; Chao, Kuanglin; Chen, Yud-Ren; Kim, Moon S.

    2006-10-01

    An online line-scan imaging system was developed for differentiation of wholesome and systemically diseased chickens. The hyperspectral imaging system used in this research can be directly converted to multispectral operation and would provide the ideal implementation of essential features for data-efficient high-speed multispectral classification algorithms. The imaging system consisted of an electron-multiplying charge-coupled-device (EMCCD) camera and an imaging spectrograph for line-scan images. The system scanned the surfaces of chicken carcasses on an eviscerating line at a poultry processing plant in December 2005. A method was created to recognize birds entering and exiting the field of view, and to locate a Region of Interest on the chicken images from which useful spectra were extracted for analysis. From analysis of the difference spectra between wholesome and systemically diseased chickens, four wavelengths of 468 nm, 501 nm, 582 nm and 629 nm were selected as key wavelengths for differentiation. The method of locating the Region of Interest will also have practical application in multispectral operation of the line-scan imaging system for online chicken inspection. This line-scan imaging system makes possible the implementation of multispectral inspection using the key wavelengths determined in this study with minimal software adaptations and without the need for cross-system calibration.

  2. Scan-Line Methods in Spatial Data Systems

    DTIC Science & Technology

    1990-09-04

    algorithms in detail to show some of the implementation issues. Data Compression Storage and transmission times can be reduced by using compression ...goes through the data . Luckily, there are good one-directional compression algorithms , such as run-length coding 13 in which each scan line can be...independently compressed . These are the algorithms to use in a parallel scan-line system. Data compression is usually only used for long-term storage of

  3. A system for simulating aerial or orbital TV observations of geographic patterns

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    A system which simulates observation of the earth surface by aerial or orbiting television devices has been developed. By projecting color slides of photographs taken by aircraft and orbiting sensors upon a rear screen system, and altering scale of projected image, screen position, or TV camera position, it is possible to simulate alternatives of altitude, or optical systems. By altering scan line patterns in COHU 3200 series camera from 525 to 945 scan lines, it is possible to study implications of scan line resolution upon the detection and analysis of geographic patterns observed by orbiting TV systems.

  4. The fast and accurate 3D-face scanning technology based on laser triangle sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Chen, Yang; Kong, Bin

    2013-08-01

    A laser triangle scanning method and the structure of 3D-face measurement system were introduced. In presented system, a liner laser source was selected as an optical indicated signal in order to scanning a line one times. The CCD image sensor was used to capture image of the laser line modulated by human face. The system parameters were obtained by system calibrated calculated. The lens parameters of image part of were calibrated with machine visual image method and the triangle structure parameters were calibrated with fine wire paralleled arranged. The CCD image part and line laser indicator were set with a linear motor carry which can achieve the line laser scanning form top of the head to neck. For the nose is ledge part and the eyes are sunk part, one CCD image sensor can not obtain the completed image of laser line. In this system, two CCD image sensors were set symmetric at two sides of the laser indicator. In fact, this structure includes two laser triangle measure units. Another novel design is there laser indicators were arranged in order to reduce the scanning time for it is difficult for human to keep static for longer time. The 3D data were calculated after scanning. And further data processing include 3D coordinate refine, mesh calculate and surface show. Experiments show that this system has simply structure, high scanning speed and accurate. The scanning range covers the whole head of adult, the typical resolution is 0.5mm.

  5. Digital adaptive optics line-scanning confocal imaging system.

    PubMed

    Liu, Changgeng; Kim, Myung K

    2015-01-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack–Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  6. Wide-field reflective scanning optical systems

    NASA Technical Reports Server (NTRS)

    Abel, I. R.

    1973-01-01

    Catoptric optical scanning system provides relatively fast line-scan rate for two-dimensional coverage. Rapid scan rates require low focal ratios between components and smallest possible masses. System is relatively free from monochromatic defects and chromatic aberrations.

  7. Screening of adulterants in powdered foods and ingredients using line-scan Raman chemical imaging.

    USDA-ARS?s Scientific Manuscript database

    A newly developed line-scan Raman imaging system using a 785 nm line laser was used to authenticate powdered foods and ingredients. The system was used to collect hyperspectral Raman images in the range of 102–2865 wavenumber from three representative food powders mixed with selected adulterants eac...

  8. High speed parallel spectral-domain OCT using spectrally encoded line-field illumination

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo

    2018-01-01

    We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.

  9. Dynamic deformation inspection of a human arm by using a line-scan imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Eryi

    2009-11-01

    A line-scan imaging system is used in the dynamic deformation measurement of a human arm when the muscle is contracting and relaxing. The measurement principle is based on the projection grating profilometry, and the measuring system is consisted of a line-scan CCD camera, a projector, optical lens and a personal computer. The detected human arm is put upon a reference plane, and a sinusoidal grating is projected onto the object surface and reference plane at an incidence angle, respectively. The deformed fringe pattern in the same line of the dynamic detected arm is captured by the line-scan CCD camera with free trigger model, and the deformed fringe pattern is recorded in the personal computer for processing. A fast Fourier transform combining with a filtering and spectrum shifting method is used to extract the phase information caused by the profile of the detected object. Thus, the object surface profile can be obtained following the geometric relationship between the fringe deformation and the object surface height. Furthermore, the deformation procedure can be obtained line by line. Some experimental results are presented to prove the feasibility of the inspection system.

  10. Point Cloud Analysis for Uav-Borne Laser Scanning with Horizontally and Vertically Oriented Line Scanners - Concept and First Results

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.

    2017-08-01

    In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

  11. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients

    USDA-ARS?s Scientific Manuscript database

    Adulteration and fraud for powdered foods and ingredients are rising food safety risks that threaten consumers’ health. In this study, a newly developed line-scan macro-scale Raman imaging system using a 5 W 785 nm line laser as excitation source was used to authenticate the food powders. The system...

  12. Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector.

    PubMed

    Han, Sang-Pil; Ko, Hyunsung; Kim, Namje; Lee, Won-Hui; Moon, Kiwon; Lee, Il-Min; Lee, Eui Su; Lee, Dong Hun; Lee, Wangjoo; Han, Seong-Tae; Choi, Sung-Wook; Park, Kyung Hyun

    2014-11-17

    We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced.

  13. Biological sample evaluation using a line-scan based SWIR hyperspectral imaging system

    USDA-ARS?s Scientific Manuscript database

    A new line-scan hyperspectral imaging system was developed to enable short wavelength infrared (SWIR) imagery for biological sample evaluation. Critical sensing components include a SWIR imaging spectrograph and an HgCdTe (MCT) focal plane array detector. To date, agricultural applications of infra...

  14. Line scanning time-of-flight laser sensor for intelligent transport systems, combining wide field-of-view optics of 30 deg, high scanning speed of 0.9 ms/line, and simple sensor configuration

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kameyama, Shumpei; Ishimura, Eitaro; Nakaji, Masaharu; Yoshinaga, Hideo; Hirano, Yoshihito

    2017-03-01

    We developed a line scanning time-of-flight (TOF) laser sensor for an intelligent transport system (ITS), which combines wide field-of-view (FOV) receiving optics of 30 deg and a high-speed microelectro mechanical system scanner of 0.9 ms/line with a simple sensor configuration. The newly developed high-aspect ratio photodiode realizes the scanless and wide FOV receiver. The sinusoidal wave intensity modulation method is used for the TOF measurement. This enables the noise reduction of the trans-impedance amplifier by applying the LC-resonant method. The vehicle detection and axle counting, which are the important functions in ITS, are also demonstrated.

  15. The development of a line-scan imaging algorithm for the detection of fecal contamination on leafy geens

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung

    2013-05-01

    This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.

  16. Stochastic nature of Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J.

    1987-01-01

    A multiple series generalization of the ARIMA models is used to model Landsat MSS scan lines as sequences of vectors, each vector having four elements (bands). The purpose of this work is to investigate if Landsat scan lines can be described by a general multiple series linear stochastic model and if the coefficients of such a model vary as a function of satellite system and target attributes. To accomplish this objective, an exploratory experimental design was set up incorporating six factors, four representing target attributes - location, cloud cover, row (within location), and column (within location) - and two factors representing system attributes - satellite number and detector bank. Each factor was included in the design at two levels and, with two replicates per treatment, 128 scan lines were analyzed. The results of the analysis suggests that a multiple AR(4) model is an adequate representation across all scan lines. Furthermore, the coefficients of the AR(4) model vary with location, particularly changes in physiography (slope regimes), and with percent cloud cover, but are insensitive to changes in system attributes.

  17. Line-scanning Raman imaging spectroscopy for detection of fingerprints.

    PubMed

    Deng, Sunan; Liu, Le; Liu, Zhiyi; Shen, Zhiyuan; Li, Guohua; He, Yonghong

    2012-06-10

    Fingerprints are the best form of personal identification for criminal investigation purposes. We present a line-scanning Raman imaging system and use it to detect fingerprints composed of β-carotene and fish oil on different substrates. Although the line-scanning Raman system has been used to map the distribution of materials such as polystyrene spheres and minerals within geological samples, this is the first time to our knowledge that the method is used in imaging fingerprints. Two Raman peaks of β-carotene (501.2, 510.3 nm) are detected and the results demonstrate that both peaks can generate excellent images with little difference between them. The system operates at a spectra resolution of about 0.4 nm and can detect β-carotene signals in petroleum ether solution with the limit of detection of 3.4×10(-9) mol/L. The results show that the line-scanning Raman imaging spectroscopy we have built has a high accuracy and can be used in the detection of latent fingerprints in the future.

  18. Infrared zone-scanning system.

    PubMed

    Belousov, Aleksandr; Popov, Gennady

    2006-03-20

    Challenges encountered in designing an infrared viewing optical system that uses a small linear detector array based on a zone-scanning approach are discussed. Scanning is performed by a rotating refractive polygon prism with tilted facets, which, along with high-speed line scanning, makes the scanning gear as simple as possible. A method of calculation of a practical optical system to compensate for aberrations during prism rotation is described.

  19. Imaging system design for improved information capacity

    NASA Technical Reports Server (NTRS)

    Fales, C. L.; Huck, F. O.; Samms, R. W.

    1984-01-01

    Shannon's theory of information for communication channels is used to assess the performance of line-scan and sensor-array imaging systems and to optimize the design trade-offs involving sensitivity, spatial response, and sampling intervals. Formulations and computational evaluations account for spatial responses typical of line-scan and sensor-array mechanisms, lens diffraction and transmittance shading, defocus blur, and square and hexagonal sampling lattices.

  20. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1995-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  1. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1993-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  2. Research and application on imaging technology of line structure light based on confocal microscopy

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  3. Line-scan hyperspectral imaging platform for agro-food safety and quality evaluation: System enhancement and characterization

    USDA-ARS?s Scientific Manuscript database

    Line-scan-based hyperspectral imaging techniques have often served as a research tool to develop rapid multispectral methods based on only a few spectral bands for rapid online applications. With continuing technological advances and greater accessibility to and availability of optoelectronic imagin...

  4. Red to far-red multispectral fluorescence image fusion for detection of fecal contamination on apples

    USDA-ARS?s Scientific Manuscript database

    This research developed a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet/blue LED excitation for detection of fecal contamination on Golden Delicious apples. Using a hyperspectral line-scan imaging system consisting of an EMCCD camera, spectrograph, an...

  5. Space Shuttle Orbiter Digital Outer Mold Line Scanning

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen

    2012-01-01

    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to produce post-flight configuration outer mold line surfaces. Very detailed scans of the windward side of these vehicles provide resolution of the detailed tile step and gap geometry, as well as the reinforced carbon carbon nose cap and leading edges. Lower resolution scans of the upper surface provide definition of the crew cabin windows, wing upper surfaces, payload bay doors, orbital maneuvering system pods and the vertical tail. The process for acquisition of these digital scans as well as post-processing of the very large data set will be described.

  6. Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2012-01-01

    Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept.

  7. Crackscope : automatic pavement cracking inspection system.

    DOT National Transportation Integrated Search

    2008-08-01

    The CrackScope system is an automated pavement crack rating system consisting of a : digital line scan camera, laser-line illuminator, and proprietary crack detection and classification : software. CrackScope is able to perform real-time pavement ins...

  8. [Comparative analysis of 3D data visibility of the prepared tooth finishing line on a synthetic jaw model, captured by international scanners in a laboratory conditions].

    PubMed

    Ryakhovskiy, A N; Kostyukova, V V

    The aim of the study was to compare accuracy of digital impression's finishing line and the zone under it taken by different intraoral scanning systems. Parameters of comparison were: different level of the finishing line to the gingiva and width of sulcus after retraction. For this purpose two synthetic jaw models with prepared teeth were scanned using intraoral scanning systems: 3D Progress (MHT S.P.A., IT - MHT Optic Research AG, CH); True Definition (3M ESPE, USA); Trios (3Shape A/S, DNK); CEREC AC Bluecam, CEREC Omnicam (Sirona Dental System GmbH, DE); Planscan (Planmeca, FIN) (each n=10). Reference-scanning was done by ATOS Core (GOM mbH, DE). The resulting digital impressions were superimposed with the master-scan. The lowest measured deviations (trueness) for intraoral scanners, where the finishing line was 0.5 mm above gingiva were with scanner True Definition - 18.8±6.63 (on the finishing line) and 51.0±14.33 µm (0.3 mm under the finishing line). In conditions where finishing line was on the same level with gingiva, scanner Trios showed the best results: 17.0±3.96 and 52.7±6.52 µm. When the finishing line was 0.5 mm under gingiva, none of the testing scanners could visualize the zone 0.3 mm lower the finishing line. The best results for accuracy o the finishing line in that circumstances showed Trios: 15.1±5.05 µm. The optimum visualization of the finishing line and the zone under it was reached when the sulcus was 0.3 mm after retraction. Thus, the best accuracy was obtained with Trios: 10.3±2.69 (on the finishing line) and 57.2±13.58 µm (0.3 mm under finishing line). The results show that intraoral scanners also provide enough accuracy for indicating finishing line and the zone under it in different conditions of preparation and gingiva retraction. However, not all of the testing scanners can properly indicate finishing line and the zone under it when shoulder is below gingiva and the width of sulcus is less than 0.2 mm.

  9. Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karger, A.E.; Weiss, R.; Gesteland, R.F.

    A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less

  10. Development of NIRS pencil beam scanning system for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Saraya, Y.; Inaniwa, T.; Mori, S.; Iwata, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At Heavy Ion Medical Accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences (NIRS), more than 9000 patients have been successfully treated by carbon ion beams since 1994. The successful results of treatments have led us to construct a new treatment facility equipped with a three-dimensional pencil beam scanning irradiation system, which is one of sophisticated techniques for cancer therapy with high energetic ion beam. This new facility comprises two treatment rooms having fixed beam lines and one treatment room having rotating gantry line. The challenge of this project is to realize treatment of a moving target by scanning irradiation. Thus, to realize this, the development of the fast scanning system is one of the most important issues in this project. After intense commissioning and quality assurance tests, the treatment with scanned ion beam was started in May 2011. After treatment of static target starts, we have developed related technologies. As a result, we can start treatment of moving target and treatment without range shifter plates since 2015. In this paper, the developments of the scanning irradiation system are described.

  11. Surface and subsurface inspection of food safety and quality using a line-scan Raman system

    USDA-ARS?s Scientific Manuscript database

    This paper presents a line-scan Raman platform for food safety and quality research, which can be configured for Raman chemical imaging (RCI) mode for surface inspection and spatially offset Raman spectroscopy (SORS) mode for subsurface inspection. In the RCI mode, macro-scale imaging was achieved u...

  12. NASA Astrophysics Data System's New Data

    NASA Astrophysics Data System (ADS)

    Eichhorn, G.; Accomazzi, A.; Demleitner, M.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    2000-05-01

    The NASA Astrophysics Data System has greatly increased its data holdings. The Physics database now contains almost 900,000 references and the Astronomy database almost 550,000 references. The Instrumentation database has almost 600,000 references. The scanned articles in the ADS Article Service are increasing in number continuously. Almost 1 million pages have been scanned so far. Recently the abstracts books from the Lunar and Planetary Science Conference have been scanned and put on-line. The Monthly Notices of the Royal Astronomical Society are currently being scanned back to Volume 1. This is the last major journal to be completely scanned and on-line. In cooperation with a conservation project of the Harvard libraries, microfilms of historical observatory literature are currently being scanned. This will provide access to an important part of the historical literature. The ADS can be accessed at: http://adswww.harvard.edu This project is funded by NASA under grant NCC5-189.

  13. A simple way to higher speed atomic force microscopy by retrofitting with a novel high-speed flexure-guided scanner

    NASA Astrophysics Data System (ADS)

    Ouma Alunda, Bernard; Lee, Yong Joong; Park, Soyeun

    2018-06-01

    A typical line-scan rate for a commercial atomic force microscope (AFM) is about 1 Hz. At such a rate, more than four minutes of scanning time is required to obtain an image of 256 × 256 pixels. Despite control electronics of most commercial AFMs permit faster scan rates, default piezoelectric X–Y scanners limit the overall speed of the system. This is a direct consequence of manufacturers choosing a large scan range over the maximum operating speed for a X–Y scanner. Although some AFM manufacturers offer reduced-scan area scanners as an option, the speed improvement is not significant because such scanners do not have large enough reduction in the scan range and are mainly targeted to reducing the overall cost of the AFM systems. In this article, we present a simple parallel-kinematic substitute scanner for a commercial atomic force microscope to afford a higher scanning speed with no other hardware or software upgrade to the original system. Although the scan area reduction is unavoidable, our modified commercial XE-70 AFM from Park Systems has achieved a line scan rate of over 50 Hz, more than 10 times faster than the original, unmodified system. Our flexure-guided X–Y scanner can be a simple drop-in replacement option for enhancing the speed of various aging atomic force microscopes.

  14. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second

    PubMed Central

    An, Lin; Li, Peng; Shen, Tueng T.; Wang, Ruikang

    2011-01-01

    We present a new development of ultrahigh speed spectral domain optical coherence tomography (SDOCT) for human retinal imaging at 850 nm central wavelength by employing two high-speed line scan CMOS cameras, each running at 250 kHz. Through precisely controlling the recording and reading time periods of the two cameras, the SDOCT system realizes an imaging speed at 500,000 A-lines per second, while maintaining both high axial resolution (~8 μm) and acceptable depth ranging (~2.5 mm). With this system, we propose two scanning protocols for human retinal imaging. The first is aimed to achieve isotropic dense sampling and fast scanning speed, enabling a 3D imaging within 0.72 sec for a region covering 4x4 mm2. In this case, the B-frame rate is 700 Hz and the isotropic dense sampling is 500 A-lines along both the fast and slow axes. This scanning protocol minimizes the motion artifacts, thus making it possible to perform two directional averaging so that the signal to noise ratio of the system is enhanced while the degradation of its resolution is minimized. The second protocol is designed to scan the retina in a large field of view, in which 1200 A-lines are captured along both the fast and slow axes, covering 10 mm2, to provide overall information about the retinal status. Because of relatively long imaging time (4 seconds for a 3D scan), the motion artifact is inevitable, making it difficult to interpret the 3D data set, particularly in a way of depth-resolved en-face fundus images. To mitigate this difficulty, we propose to use the relatively high reflecting retinal pigmented epithelium layer as the reference to flatten the original 3D data set along both the fast and slow axes. We show that the proposed system delivers superb performance for human retina imaging. PMID:22025983

  15. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second.

    PubMed

    An, Lin; Li, Peng; Shen, Tueng T; Wang, Ruikang

    2011-10-01

    We present a new development of ultrahigh speed spectral domain optical coherence tomography (SDOCT) for human retinal imaging at 850 nm central wavelength by employing two high-speed line scan CMOS cameras, each running at 250 kHz. Through precisely controlling the recording and reading time periods of the two cameras, the SDOCT system realizes an imaging speed at 500,000 A-lines per second, while maintaining both high axial resolution (~8 μm) and acceptable depth ranging (~2.5 mm). With this system, we propose two scanning protocols for human retinal imaging. The first is aimed to achieve isotropic dense sampling and fast scanning speed, enabling a 3D imaging within 0.72 sec for a region covering 4x4 mm(2). In this case, the B-frame rate is 700 Hz and the isotropic dense sampling is 500 A-lines along both the fast and slow axes. This scanning protocol minimizes the motion artifacts, thus making it possible to perform two directional averaging so that the signal to noise ratio of the system is enhanced while the degradation of its resolution is minimized. The second protocol is designed to scan the retina in a large field of view, in which 1200 A-lines are captured along both the fast and slow axes, covering 10 mm(2), to provide overall information about the retinal status. Because of relatively long imaging time (4 seconds for a 3D scan), the motion artifact is inevitable, making it difficult to interpret the 3D data set, particularly in a way of depth-resolved en-face fundus images. To mitigate this difficulty, we propose to use the relatively high reflecting retinal pigmented epithelium layer as the reference to flatten the original 3D data set along both the fast and slow axes. We show that the proposed system delivers superb performance for human retina imaging.

  16. High-throughput Raman chemical imaging for evaluating food safety and quality

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2014-05-01

    A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line-laser based on a scanning mirror serves as an excitation source. A 45° dichroic beamsplitter reflects the laser light to form a 24 cm x 1 mm excitation line normally incident on the sample surface. Raman signals along the laser line are collected by a detection module consisting of a dispersive imaging spectrograph and a CCD camera. A hypercube is accumulated line by line as a motorized table moves the samples transversely through the laser line. The system covers a Raman shift range of -648.7-2889.0 cm-1 and a 23 cm wide area. An example application, for authenticating milk powder, was presented to demonstrate the system performance. In four minutes, the system acquired a 512x110x1024 hypercube (56,320 spectra) from four 47-mm-diameter Petri dishes containing four powder samples. Chemical images were created for detecting two adulterants (melamine and dicyandiamide) that had been mixed into the milk powder.

  17. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  18. Application of information theory to the design of line-scan imaging systems

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Park, S. K.; Halyo, N.; Stallman, S.

    1981-01-01

    Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems.

  19. Camera Systems Rapidly Scan Large Structures

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  20. Effects of pupil filter patterns in line-scan focal modulation microscopy

    NASA Astrophysics Data System (ADS)

    Shen, Shuhao; Pant, Shilpa; Chen, Rui; Chen, Nanguang

    2018-03-01

    Line-scan focal modulation microscopy (LSFMM) is an emerging imaging technique that affords high imaging speed and good optical sectioning at the same time. We present a systematic investigation into optimal design of the pupil filter for LSFMM in an attempt to achieve the best performance in terms of spatial resolutions, optical sectioning, and modulation depth. Scalar diffraction theory was used to compute light propagation and distribution in the system and theoretical predictions on system performance, which were then compared with experimental results.

  1. Line-scan system for continuous hand authentication

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Kong, Lingsheng; Diao, Zhihui; Jia, Ping

    2017-03-01

    An increasing number of heavy machinery and vehicles have come into service, giving rise to a significant concern over protecting these high-security systems from misuse. Conventionally, authentication performed merely at the initial login may not be sufficient for detecting intruders throughout the operating session. To address this critical security flaw, a line-scan continuous hand authentication system with the appearance of an operating rod is proposed. Given that the operating rod is occupied throughout the operating period, it can be a possible solution for unobtrusively recording the personal characteristics for continuous monitoring. The ergonomics in the physiological and psychological aspects are fully considered. Under the shape constraints, a highly integrated line-scan sensor, a controller unit, and a gear motor with encoder are utilized. This system is suitable for both the desktop and embedded platforms with a universal serial bus interface. The volume of the proposed system is smaller than 15% of current multispectral area-based camera systems. Based on experiments on a database with 4000 images from 200 volunteers, a competitive equal error rate of 0.1179% is achieved, which is far more accurate than the state-of-the-art continuous authentication systems using other modalities.

  2. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  3. High-performance sub-terahertz transmission imaging system for food inspection

    PubMed Central

    Ok, Gyeongsik; Park, Kisang; Chun, Hyang Sook; Chang, Hyun-Joo; Lee, Nari; Choi, Sung-Wook

    2015-01-01

    Unlike X-ray systems, a terahertz imaging system can distinguish low-density materials in a food matrix. For applying this technique to food inspection, imaging resolution and acquisition speed ought to be simultaneously enhanced. Therefore, we have developed the first continuous-wave sub-terahertz transmission imaging system with a polygonal mirror. Using an f-theta lens and a polygonal mirror, beam scanning is performed over a range of 150 mm. For obtaining transmission images, the line-beam is incorporated with sample translation. The imaging system demonstrates that a pattern with 2.83 mm line-width at 210 GHz can be identified with a scanning speed of 80 mm/s. PMID:26137392

  4. SU-E-T-594: Preliminary Active Scanning Results of KHIMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, C; Yang, T; Chang, S

    Purpose: To verify the design criteria on heavy ion beam irradiation, developing a proto type active scanning system was purposed. The active scanning system consists of scanning magnet, power supplies, beam monitors, energy modulation system, and irradiation control system. Methods: Each components of the active scanning system was designed for carbon beam first. For the fast ramping a laminated yoke was purposed. To measure incoming dose and profile, a plate and strip type of ion chambers were designed. Also, ridge filter and range shifter was manufactured. And, the scanning system was modified to adopt 45 MeV of proton beam becausemore » of the absence of carbon ion beam in Korea. The system was installed in a beam line at MC-50, KIRAMS. Also, the irradiation control system and planning software was provided. Results: The scanning experiment was performed by drawing KHIMA logo on GaF film. The logo was scanned by 237 scanning points through time normalized intensity modulation. Also, a grid points scanning was performed to measure the scanning resolution and intensity resolution. Conclusion: A prototype active scanning system was successfully designed and manufactured. Also, an initial experiment to print out a drawing on GaF film through the scanning system was completed. More experiments would be required to specify the system performance.« less

  5. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.

    2003-07-01

    We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

  6. No scanning depth imaging system based on TOF

    NASA Astrophysics Data System (ADS)

    Sun, Rongchun; Piao, Yan; Wang, Yu; Liu, Shuo

    2016-03-01

    To quickly obtain a 3D model of real world objects, multi-point ranging is very important. However, the traditional measuring method usually adopts the principle of point by point or line by line measurement, which is too slow and of poor efficiency. In the paper, a no scanning depth imaging system based on TOF (time of flight) was proposed. The system is composed of light source circuit, special infrared image sensor module, processor and controller of image data, data cache circuit, communication circuit, and so on. According to the working principle of the TOF measurement, image sequence was collected by the high-speed CMOS sensor, and the distance information was obtained by identifying phase difference, and the amplitude image was also calculated. Experiments were conducted and the experimental results show that the depth imaging system can achieve no scanning depth imaging function with good performance.

  7. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina

    NASA Astrophysics Data System (ADS)

    An, Lin; Shen, Tueng T.; Wang, Ruikang K.

    2011-10-01

    This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm2 with single scan and 7 × 8 mm2 for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm2 with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasemir, Kay; Pearson, Matthew R

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to themore » Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.« less

  9. High-sensitivity supercontinuum-based parallel line-field optical coherence tomography with 1 million A-lines/s (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barrick, Jessica; Doblas, Ana; Sears, Patrick R.; Ostrowski, Lawrence E.; Oldenburg, Amy L.

    2017-02-01

    While traditional, flying-spot, spectral domain OCT systems can achieve MHz linerates, they are limited by the need for mechanical scanning to produce a B-mode image. Line-field OCT (LF OCT) removes the need for mechanical scanning by simultaneously recording all A-lines on a 2D CMOS sensor. Our LF OCT system operates at the highest A-line rate of any spectral domain (SD) LF OCT system reported to date (1,024,000 A-lines/s). This is comparable with the fastest flying-spot SDOCT system reported. Additionally, all OCT systems face a tradeoff between imaging speed and sensitivity. Long exposure times improve sensitivity but can lead to undesirable motion artifacts. LF OCT has the potential to relax this tradeoff between sensitivity and imaging speed because all A-lines are exposed during the entire frame acquisition time. However, this advantage has not yet been realized due to the loss of power-per-A-line by spreading the illumination light across all A-lines on the sample. Here we use a supercontinuum source to illuminate the sample with 500mW of light in the 605-950 nm wavelength band, effectively providing 480 µW of power-per-A-line, with axial and lateral resolutions of 1.8 µm and 14 µm, respectively. With this system we achieve the highest reported sensitivity (113 dB) of any LF OCT system. We then demonstrate the capability of this system by capturing the rapidly beating cilia of human bronchial-epithelial cells in vitro. The combination of high speed and high sensitivity offered by supercontinuum-based LF SD OCT offers new opportunities for studying cell and tissue dynamics.

  10. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  11. On-Line Fringe Tracking and Prediction at IOTA

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Mah, Robert; Lau, Sonie (Technical Monitor)

    1999-01-01

    The Infrared/Optical Telescope Array (IOTA) is a multi-aperture Michelson interferometer located on Mt. Hopkins near Tucson, Arizona. To enable viewing of fainter targets, an on-line fringe tracking system is presently under development at NASA Ames Research Center. The system has been developed off-line using actual data from IOTA, and is presently undergoing on-line implementation at IOTA. The system has two parts: (1) a fringe tracking system that identifies the center of a fringe packet by fitting a parametric model to the data; and (2) a fringe packet motion prediction system that uses characteristics of past fringe packets to predict fringe packet motion. Combined, this information will be used to optimize on-line the scanning trajectory, resulting in improved visibility of faint targets. Fringe packet identification is highly accurate and robust (99% of the 4000 fringe packets were identified correctly, the remaining 1% were either out of the scan range or too noisy to be seen) and is performed in 30-90 milliseconds on a Pentium II-based computer. Fringe packet prediction, currently performed using an adaptive linear predictor, delivers a 10% improvement over the baseline of predicting no motion.

  12. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection.

    PubMed

    Lopes, Gil; Ribeiro, A Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-04-19

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills-Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels' image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  13. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection

    PubMed Central

    Lopes, Gil; Ribeiro, A. Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-01-01

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills—Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels’ image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians. PMID:27104535

  14. A novel scanning system using an industrial robot and the workspace measurement and positioning system

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyue; Zhu, Jigui; Yang, Linghui; Lin, Jiarui

    2015-10-01

    The present scanning system consists of an industrial robot and a line-structured laser sensor which uses the industrial robot as a position instrument to guarantee the accuracy. However, the absolute accuracy of an industrial robot is relatively poor compared with the good repeatability in the manufacturing industry. This paper proposes a novel method using the workspace measurement and positioning system (wMPS) to remedy the lack of accuracy of the industrial robot. In order to guarantee the positioning accuracy of the system, the wMPS which is a laser-based measurement technology designed for large-volume metrology applications is brought in. Benefitting from the wMPS, this system can measure different cell-areas by the line-structured laser sensor and fuse the measurement data of different cell-areas by using the wMPS accurately. The system calibration which is the procedure to acquire and optimize the structure parameters of the scanning system is also stated in detail in this paper. In order to verify the feasibility of the system for scanning the large free-form surface, an experiment is designed to scan the internal surface of the door of a car-body in white. The final results show that the measurement data of the whole measuring areas have been jointed perfectly and there is no mismatch in the figure especially in the hole measuring areas. This experiment has verified the rationality of the system scheme, the correctness and effectiveness of the relevant methods.

  15. Automated eye blink detection and correction method for clinical MR eye imaging.

    PubMed

    Wezel, Joep; Garpebring, Anders; Webb, Andrew G; van Osch, Matthias J P; Beenakker, Jan-Willem M

    2017-07-01

    To implement an on-line monitoring system to detect eye blinks during ocular MRI using field probes, and to reacquire corrupted k-space lines by means of an automatic feedback system integrated with the MR scanner. Six healthy subjects were scanned on a 7 Tesla MRI whole-body system using a custom-built receive coil. Subjects were asked to blink multiple times during the MR-scan. The local magnetic field changes were detected with an external fluorine-based field probe which was positioned close to the eye. The eye blink produces a field shift greater than a threshold level, this was communicated in real-time to the MR system which immediately reacquired the motion-corrupted k-space lines. The uncorrected images, using the original motion-corrupted data, showed severe artifacts, whereas the corrected images, using the reacquired data, provided an image quality similar to images acquired without blinks. Field probes can successfully detect eye blinks during MRI scans. By automatically reacquiring the eye blink-corrupted data, high quality MR-images of the eye can be acquired. Magn Reson Med 78:165-171, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Boresight alignment method for mobile laser scanning systems

    NASA Astrophysics Data System (ADS)

    Rieger, P.; Studnicka, N.; Pfennigbauer, M.; Zach, G.

    2010-06-01

    Mobile laser scanning (MLS) is the latest approach towards fast and cost-efficient acquisition of 3-dimensional spatial data. Accurately evaluating the boresight alignment in MLS systems is an obvious necessity. However, recent systems available on the market may lack of suitable and efficient practical workflows on how to perform this calibration. This paper discusses an innovative method for accurately determining the boresight alignment of MLS systems by employing 3D laser scanners. Scanning objects using a 3D laser scanner operating in a 2D line-scan mode from various different runs and scan directions provides valuable scan data for determining the angular alignment between inertial measurement unit and laser scanner. Field data is presented demonstrating the final accuracy of the calibration and the high quality of the point cloud acquired during an MLS campaign.

  17. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds.

    PubMed

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-06-17

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data.

  18. Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds†

    PubMed Central

    Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun

    2016-01-01

    Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data. PMID:27322279

  19. A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies.

    PubMed

    Parker, I; Callamaras, N; Wier, W G

    1997-06-01

    We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.

  20. On universality of scaling law describing roughness of triple line.

    PubMed

    Bormashenko, Edward; Musin, Albina; Whyman, Gene; Barkay, Zahava; Zinigrad, Michael

    2015-01-01

    The fine structure of the three-phase (triple) line was studied for different liquids, various topographies of micro-rough substrates and various wetting regimes. Wetting of porous and pillar-based micro-scaled polymer surfaces was investigated. The triple line was visualized with the environmental scanning electron microscope and scanning electron microscope for the "frozen" triple lines. The value of the roughness exponent ζ for water (ice)/rough polymer systems was located within 0.55-0.63. For epoxy glue/rough polymer systems somewhat lower values of the exponent, 0.42 < ζ < 0.54, were established. The obtained values of ζ were close for the Cassie and Wenzel wetting regimes, different liquids, and different substrates' topographies. Thus, the above values of the exponent are to a great extent universal. The switch of the exponent, when the roughness size approaches to the correlation length of the defects, is also universal.

  1. Online Multitasking Line-Scan Imaging Techniques for Simultaneous Safety and Quality Evaluation of Apples

    NASA Astrophysics Data System (ADS)

    Kim, Moon Sung; Lee, Kangjin; Chao, Kaunglin; Lefcourt, Alan; Cho, Byung-Kwan; Jun, Won

    We developed a push-broom, line-scan imaging system capable of simultaneous measurements of reflectance and fluorescence. The system allows multitasking inspections for quality and safety attributes of apples due to its dynamic capabilities in simultaneously capturing fluorescence and reflectance, and selectivity in multispectral bands. A multitasking image-based inspection system for online applications has been suggested in that a single imaging device that could perform a multitude of both safety and quality inspection needs. The presented multitask inspection approach in online applications may provide an economically viable means for a number of food processing industries being able to adapt to operate and meet the dynamic and specific inspection and sorting needs.

  2. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    NASA Astrophysics Data System (ADS)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  3. Plans for future on-line access to the historical astronomical literature through the Astrophysics Data System.

    NASA Astrophysics Data System (ADS)

    Eichhorn, G.; Kurtz, M. J.; Coletti, D.

    1997-09-01

    The NASA Astrophysics Data System provides access to about 1 million abstracts and 50,000 journal articles. This service is funded by NASA and is accessible world-wide through the World Wide Web free without restrictions at: http://adswww.harvard.edu We currently have on-line journals starting with 1975. We plan to extend the coverage for the journals and also include scans from observatory publications in our database. Eventually we plan to provide access to scans of the complete journal literature and as much observatory literature as possible. In order to accomplish this, we have started discussions with the preservation group at the Harvard University Library. Harvard University Library, together with the Library at the Center for Astrophysics is in the process of microfilming their collection of observatory publications. We are working together with this project to prepare for scanning the microfilms and make these scans available through the ADS. We are also collecting older journals and preparing them for scanning. We already have the Monthly Notices of the Royal Astronomical Society in hand from Volume 1, and have been promised a large part of the Astronomische Nachrichten prior to 1945. We will start scanning these volumes soon. All volumes that can be fed automatically through the scanning machine should be scanned and put on-line within the next 6 - 12 months. In order to scan volumes that are too brittle, we need additional funding. We hope to obtain additional funding to cover such scanning for 1998. In order to cover more of the astronomical literature, we need donations of astronomical literature. We have a web page that lists the volumes that we need so we can scan them. If you have any of these journals (or other astronomical literature), please contact us. the web page is at: http://adshome.harvard.edu/pubs/missing_journals.html We would appreciate any contributions, even smaller sets, since it will be more and more difficult to find complete sets.

  4. Hyperspectral reflectance and fluorescence line-scan imaging system for online detection of fecal contamination on apples

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Cho, Byoung-Kwan; Yang, Chun-Chieh; Chao, Kaunglin; Lefcourt, Alan M.; Chen, Yud-Ren

    2006-10-01

    We have developed nondestructive opto-electronic imaging techniques for rapid assessment of safety and wholesomeness of foods. A recently developed fast hyperspectral line-scan imaging system integrated with a commercial apple-sorting machine was evaluated for rapid detection of animal feces matter on apples. Apples obtained from a local orchard were artificially contaminated with cow feces. For the online trial, hyperspectral images with 60 spectral channels, reflectance in the visible to near infrared regions and fluorescence emissions with UV-A excitation, were acquired from apples moving at a processing sorting-line speed of three apples per second. Reflectance and fluorescence imaging required a passive light source, and each method used independent continuous wave (CW) light sources. In this paper, integration of the hyperspectral imaging system with the commercial applesorting machine and preliminary results for detection of fecal contamination on apples, mainly based on the fluorescence method, are presented.

  5. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  6. Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites

    NASA Astrophysics Data System (ADS)

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-01

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  7. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng

    2013-07-01

    Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.

  8. Accuracy improvement of laser line scanning for feature measurements on CMM

    NASA Astrophysics Data System (ADS)

    Bešić, Igor; Van Gestel, Nick; Kruth, Jean-Pierre; Bleys, Philip; Hodolič, Janko

    2011-11-01

    Because of its high speed and high detail output, laser line scanning is increasingly included in coordinate metrology applications where its performance can satisfy specified tolerances. Increasing its accuracy will open the possibility to use it in other areas where contact methods are still dominant. Multi-sensor systems allow to select discrete probing or scanning methods to measure part elements. Decision is often based on the principle that tight toleranced elements should be measured by contact methods, while other more loose toleranced elements can be laser scanned. This paper aims to introduce a method for improving the output of a CMM mounted laser line scanner for metrology applications. This improvement is achieved by filtering of the scanner's random error and by combination with widely spread and reliable but slow touch trigger probing. The filtered point cloud is used to estimate the form deviation of the inspected element while few tactile obtained points were used to effectively compensate for errors in the point cloud position.

  9. Microwave Landing System. Phase II. Tracker Error Study.

    DTIC Science & Technology

    1974-12-01

    the runways and environs. The geographical locations of the four phototheodolite towers are indicated on Figure 1-1. A Contraves Model C phototheodolite...temperature 400 K above 500 elevation (dark sky) Side lobe location 1.720 (Ist) Type of scan Monopulse R-f transmission line Rectangular waveguide Line loss ...receiving 1.3 db Line loss transmitting 2.3 db System Facts Azimuth coverage 3600 Elevation coverage -10* to 190* (tracking -10* to 85*) Range accuracy

  10. A new linear structured light module based on the MEMS micromirror

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Shen, Wenjiang; Yu, Huijun

    2017-10-01

    A new linear structured light module based on the Micro-Electro-Mechanical System (MEMS) two-dimensional scanning micromirror was designed and created. This module consists of a laser diode, a convex lens, and the MEMS micromirror. The laser diode generates the light and the convex lens control the laser beam to converge on a single point with large depth of focus. The fast scan in horizontal direction of the micromirror will turn the laser spot into a homogenous laser line. Meanwhile, the slow scan in vertical direction of the micromirror will move the laser line in the vertical direction. The width of the line generated by this module is 300μm and the length is 120mm and the moving distance is 100mm at 30cm away from the module. It will promote the development of industrial detection.

  11. Pupil engineering for a confocal reflectance line-scanning microscope

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.

  12. Optical instruments

    NASA Technical Reports Server (NTRS)

    Abel, I. R. (Inventor)

    1974-01-01

    A wide angle, low focal ratio, high resolution, catoptric, image plane scanner is described. The scanner includes the following features: (1) a reflective improvement on the Schmidt principle, (2) a polar line scanner in which all field elements are brought to and corrected on axis, and (3) a scanner arrangement in which the aperture stop of the system is imaged at the center of curvature of a spherical primary mirror. The system scans are a large radial angle and an extremely high rate of speed with relatively small scanning mirrors. Because the system is symmetrical about the optical axis, the obscuration is independent of the scan angle.

  13. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  14. Extended ellipse-line-ellipse trajectory for long-object cone-beam imaging with a mounted C-arm system

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Lauritsch, Günter; Dennerlein, Frank; Mao, Yanfei; Hornegger, Joachim; Noo, Frédéric

    2016-02-01

    Recent reports show that three-dimensional cone-beam (CB) imaging with a floor-mounted (or ceiling-mounted) C-arm system has become a valuable tool in interventional radiology. Currently, a circular short scan is used for data acquisition, which inevitably yields CB artifacts and a short coverage in the direction of the patient table. To overcome these two limitations, a more sophisticated data acquisition geometry is needed. This geometry should be complete in terms of Tuy’s condition and should allow continuous scanning, while being compatible with the mechanical constraints of mounted C-arm systems. Additionally, the geometry should allow accurate image reconstruction from truncated data. One way to ensure such a feature is to adopt a trajectory that provides full R-line coverage within the field-of-view (FOV). An R-line is any segment of line that connects two points on a source trajectory, and the R-line coverage is the set of points that belong to an R-line. In this work, we propose a novel geometry called the extended ellipse-line-ellipse (ELE) for long-object imaging with a mounted C-arm system. This trajectory is built from modules consisting of two elliptical arcs connected by a line. We demonstrate that the extended ELE can be configured in many ways so that full R-line coverage is guaranteed. Both tight and relaxed parametric settings are presented. All results are supported by extensive mathematical proofs provided in appendices. Our findings make the extended ELE trajectory attractive for axially-extended FOV imaging in interventional radiology.

  15. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    NASA Astrophysics Data System (ADS)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  16. Real time, TV-based, point-image quantizer and sorter

    DOEpatents

    Case, Arthur L.; Davidson, Jackson B.

    1976-01-01

    A device is provided for improving the vertical resolution in a television-based, two-dimensional readout for radiation detection systems such as are used to determine the location of light or nuclear radiation impinging a target area viewed by a television camera, where it is desired to store the data indicative of the centroid location of such images. In the example embodiment, impinging nuclear radiation detected in the form of a scintillation occurring in a crystal is stored as a charge image on a television camera tube target. The target is scanned in a raster and the image position is stored according to a corresponding vertical scan number and horizontal position number along the scan. To determine the centroid location of an image that may overlap a number of horizontal scan lines along the vertical axis of the raster, digital logic circuits are provided with at least four series-connected shift registers, each having 512 bit positions according to a selected 512 horizontal increment of resolutions along a scan line. The registers are shifted by clock pulses at a rate of 512 pulses per scan line. When an image or portion thereof is detected along a scan, its horizontal center location is determined and the present front bit is set in the first shift register and shifted through the registers one at a time for each horizontal scan. Each register is compared bit-by-bit with the preceding register to detect coincident set bit positions until the last scan line detecting a portion of the image is determined. Depending on the number of shift registers through which the first detection of the image is shifted, circuitry is provided to store the vertical center position of the event according to the number of shift registers through which the first detection of the event is shifted. Interpolation circuitry is provided to determine if the event centroid is between adjacent scan lines and stored in a vertical address accordingly. The horizontal location of the event is stored in a separate address memory.

  17. Detecting adulterants in milk powder using high-throughput Raman chemical imaging

    USDA-ARS?s Scientific Manuscript database

    This study used a line-scan high-throughput Raman imaging system to authenticate milk powder. A 5 W 785 nm line laser (240 mm long and 1 mm wide) was used as a Raman excitation source. The system was used to acquire hyperspectral Raman images in a wavenumber range of 103–2881 cm-1 from the skim milk...

  18. Detection and quantification of adulterants in milk powder using high-throughput Raman chemical imaging technique

    USDA-ARS?s Scientific Manuscript database

    Milk is a vulnerable target for economically motivated adulteration. In this study, a line-scan high-throughput Raman imaging system was used to authenticate milk powder. A 5 W 785 nm line laser (240 mm long and 1 mm wide) was used as a Raman excitation source. The system was used to acquire hypersp...

  19. Examination of a carton sealing line using a thermographic scanner

    NASA Astrophysics Data System (ADS)

    Kleinfeld, Jack M.

    1999-03-01

    The study of the operation and performance of natural gas fired sealing lines for polyethylene coated beverage containers was performed. Both thermal and geometric data was abstracted from the thermal scans and used to characterize the performance of the sealing line. The impact of process operating variables such as line speed and carton to carton spacing was studied. Recommendations for system improvements, instrumentation and process control were made.

  20. Braille Reading Systems

    NASA Technical Reports Server (NTRS)

    Garner, H. D.

    1986-01-01

    Two proposed electromechanical systems for making braille characters produced relatively inexpensively. Similar in operating principle to dotmatrix printers, two methods use electronically actuated pins to reproduce characters from information stored on magnetic tape. First, one or more pins scanned over blank page and energized at intervals to emboss text on paper, one or more dots at time. Second, handheld device containing one or more character-generator cells used by reader to scan lines of text manually.

  1. Ultrasonic thickness measuring and imaging system and method

    DOEpatents

    Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.

    1992-08-04

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  2. Ultrasonic thickness measuring and imaging system and method

    DOEpatents

    Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.

    1992-01-01

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  3. High-throughput microfluidic line scan imaging for cytological characterization

    NASA Astrophysics Data System (ADS)

    Hutcheson, Joshua A.; Powless, Amy J.; Majid, Aneeka A.; Claycomb, Adair; Fritsch, Ingrid; Balachandran, Kartik; Muldoon, Timothy J.

    2015-03-01

    Imaging cells in a microfluidic chamber with an area scan camera is difficult due to motion blur and data loss during frame readout causing discontinuity of data acquisition as cells move at relatively high speeds through the chamber. We have developed a method to continuously acquire high-resolution images of cells in motion through a microfluidics chamber using a high-speed line scan camera. The sensor acquires images in a line-by-line fashion in order to continuously image moving objects without motion blur. The optical setup comprises an epi-illuminated microscope with a 40X oil immersion, 1.4 NA objective and a 150 mm tube lens focused on a microfluidic channel. Samples containing suspended cells fluorescently stained with 0.01% (w/v) proflavine in saline are introduced into the microfluidics chamber via a syringe pump; illumination is provided by a blue LED (455 nm). Images were taken of samples at the focal plane using an ELiiXA+ 8k/4k monochrome line-scan camera at a line rate of up to 40 kHz. The system's line rate and fluid velocity are tightly controlled to reduce image distortion and are validated using fluorescent microspheres. Image acquisition was controlled via MATLAB's Image Acquisition toolbox. Data sets comprise discrete images of every detectable cell which may be subsequently mined for morphological statistics and definable features by a custom texture analysis algorithm. This high-throughput screening method, comparable to cell counting by flow cytometry, provided efficient examination including counting, classification, and differentiation of saliva, blood, and cultured human cancer cells.

  4. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    NASA Astrophysics Data System (ADS)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  5. Position and orientation tracking system

    DOEpatents

    Burks, Barry L.; DePiero, Fred W.; Armstrong, Gary A.; Jansen, John F.; Muller, Richard C.; Gee, Timothy F.

    1998-01-01

    A position and orientation tracking system presents a laser scanning appaus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle.

  6. Position and orientation tracking system

    DOEpatents

    Burks, B.L.; DePiero, F.W.; Armstrong, G.A.; Jansen, J.F.; Muller, R.C.; Gee, T.F.

    1998-05-05

    A position and orientation tracking system presents a laser scanning apparatus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle. 14 figs.

  7. Development of a written music-recognition system using Java and open source technologies

    NASA Astrophysics Data System (ADS)

    Loibner, Gernot; Schwarzl, Andreas; Kovač, Matthias; Paulus, Dietmar; Pölzleitner, Wolfgang

    2005-10-01

    We report on the development of a software system to recognize and interpret printed music. The overall goal is to scan printed music sheets, analyze and recognize the notes, timing, and written text, and derive the all necessary information to use the computers MIDI sound system to play the music. This function is primarily useful for musicians who want to digitize printed music for editing purposes. There exist a number of commercial systems that offer such a functionality. However, on testing these systems, we were astonished on how weak they behave in their pattern recognition parts. Although we submitted very clear and rather flawless scanning input, none of these systems was able to e.g. recognize all notes, staff lines, and systems. They all require a high degree of interaction, post-processing, and editing to get a decent digital version of the hard copy material. In this paper we focus on the pattern recognition area. In a first approach we tested more or less standard methods of adaptive thresholding, blob detection, line detection, and corner detection to find the notes, staff lines, and candidate objects subject to OCR. Many of the objects on this type of material can be learned in a training phase. None of the commercial systems we saw offers the option to train special characters or unusual signatures. A second goal in this project is to use a modern software engineering platform. We were interested in how well Java and open source technologies are suitable for pattern recognition and machine vision. The scanning of music served as a case-study.

  8. SU-D-204-06: Dose and Image Quality Evaluation of a Low-Dose Slot-Scanning X-Ray System for Pediatric Orthopedic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z; Hoerner, M; Lamoureux, R

    Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulatedmore » luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison shows that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations.« less

  9. Point target detection utilizing super-resolution strategy for infrared scanning oversampling system

    NASA Astrophysics Data System (ADS)

    Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei

    2017-11-01

    To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.

  10. Two Dimensional Positioning and Heading Solution for Flying Vehicles using a Line-Scanning Laser Radar (LADAR)

    DTIC Science & Technology

    2011-03-24

    6 2.4.1 Reference Frames . . . . . . . . . . . . . . . . . 6 2.4.2 Line and Feature Extraction . . . . . . . . . . . 7 2.4.3 SLAM ...Positioning System . . . . . . . . . . . . . . . . . . 1 LADAR Laser Radar . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LiDAR Light Detection and...Ranging . . . . . . . . . . . . . . . . 2 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 2 ANT Advanced Navigation Technology

  11. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    NASA Astrophysics Data System (ADS)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  12. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ophus, Colin; Ciston, Jim; Nelson, Chris T.

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

  13. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Nelson, Chris T.

    2015-12-10

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

  14. Eye point-of-regard system

    NASA Technical Reports Server (NTRS)

    Jex, H. R.

    1971-01-01

    System measures intersection of line of sight and eye point of regard /EPR/ for a human operator in visual scanning system. Device measures two head to reference angles with EPR system and adds them with eye to head angles, yielding a dc signal proportional to picture plane coordinates.

  15. Single transmission line data acquisition system

    DOEpatents

    Fasching, George E.

    1984-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.

  16. SOIMUMPs micromirror scanner and its application in laser line generator

    NASA Astrophysics Data System (ADS)

    Zuo, Hui; Nia, Farzad Hossein; He, Siyuan

    2017-01-01

    A SOIMUMPs 1-D rotation micromirror is presented. The micromirror is driven by electrostatic vertical comb-drive actuators to work at resonant mode to scan a laser beam. The residual stress in the metal film coated on the SOI device layer is used to generate vertical offset in the comb-drive actuators with the combs located far from the rotation axis to increase the torque. A concave lens is designed to put after the micromirror to amplify the laser beam scanning angle, as well as to compensate for the curvature of the micromirror. A micromirror-based scanning system is used to build a laser line generator with a continuously adjustable fan angle, which solves the limitation of a fixed fan angle in conventional laser line generators. Prototypes of the micromirror and the laser line generator are fabricated and measured. A driving circuit that can generate a high-voltage square wave driving signal with adjustable amplitude and frequency is designed. All the parts are integrated in a 44 mm×88 mm×44 mm box and powered with a single 5-V power supply. The optical scanning angle under 100 V with or without the concave lens is 27 deg and 12 deg, respectively, at a resonant frequency of 900 Hz.

  17. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates.

    PubMed

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Park, Jewook; Li, An-Ping; Zhang, X-G

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a "rubber band" model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  18. Dexter: Data Extractor for scanned graphs

    NASA Astrophysics Data System (ADS)

    Demleitner, Markus

    2011-12-01

    The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

  19. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  20. A system to geometrically rectify and map airborne scanner imagery and to estimate ground area. [by computer

    NASA Technical Reports Server (NTRS)

    Spencer, M. M.; Wolf, J. M.; Schall, M. A.

    1974-01-01

    A system of computer programs were developed which performs geometric rectification and line-by-line mapping of airborne multispectral scanner data to ground coordinates and estimates ground area. The system requires aircraft attitude and positional information furnished by ancillary aircraft equipment, as well as ground control points. The geometric correction and mapping procedure locates the scan lines, or the pixels on each line, in terms of map grid coordinates. The area estimation procedure gives ground area for each pixel or for a predesignated parcel specified in map grid coordinates. The results of exercising the system with simulated data showed the uncorrected video and corrected imagery and produced area estimates accurate to better than 99.7%.

  1. Scanner. [photography from a spin stabilized synchronous satellite

    NASA Technical Reports Server (NTRS)

    Hummer, R. F.; Upton, D. T. (Inventor)

    1981-01-01

    An aerial vehicle rotating in gyroscopic fashion about one of its axes has an optical system which scans an area below the vehicle in determined relation to vehicle rotation. A sensing device is provided to sense the physical condition of the area of scan and optical means are associated to direct the physical intelligence received from the scan area to the sensing means. Means are provided to incrementally move the optical means through a series of steps to effect sequential line scan of the area being viewed keyed to the rotational rate of the vehicle.

  2. Application of remote thermal scanning to the NASA energy conservation program

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1977-01-01

    Airborne thermal scans of all NASA centers were made during 1975 and 1976. The remotely sensed data were used to identify a variety of heat losses, including those from building roofs and central heating system distribution lines. Thermal imagery from several NASA centers is presented to demonstrate the capability of detecting these heat losses remotely. Many heat loss areas located by the scan data were verified by ground surveys. At this point, at least for such energy-intensive areas, thermal scanning is an excellent means of detecting many possible energy losses.

  3. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that amore » complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.« less

  4. Control and acquisition systems for new scanning transmission x-ray microscopes at Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.

    2002-03-01

    Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope and integration with visual light microscopy indexing of the samples. The beam line 7.0 microscope upgrade is a new design which will replace the existing microscope. The design is similar to that of beam line 5.3.2, including interferometric position encoding. However the acquisition and control is based on VXI systems, a Sun computer, and LABVIEW™ software. The main objective of the BL 7.0 microscope upgrade is to achieve precise image scans at very high speed (pixel dwells as short as 10 μs) to take full advantage of the high brightness of the 7.0 undulator beamline. Results of tests and a discussion of the benefits of our scanning microscope designs will be presented.

  5. Line-scanning, stage scanning confocal microscope

    NASA Astrophysics Data System (ADS)

    Carucci, John A.; Stevenson, Mary; Gareau, Daniel

    2016-03-01

    We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.

  6. Angiography with a multifunctional line scanning ophthalmoscope

    PubMed Central

    Ferguson, R. Daniel; Patel, Ankit H.; Vazquez, Vanessa; Husain, Deeba

    2012-01-01

    Abstract. A multifunctional line scanning ophthalmoscope (mLSO) was designed, constructed, and tested on human subjects. The mLSO could sequentially acquire wide-field, confocal, near-infrared reflectance, fluorescein angiography (FA), and indocyanine green angiography (ICGA) retinal images. The system also included a retinal tracker (RT) and a photodynamic therapy laser treatment port. The mLSO was tested in a pilot clinical study on human subjects with and without retinal disease. The instrument exhibited robust retinal tracking and high-contrast line scanning imaging. The FA and ICGA angiograms showed a similar appearance of hyper- and hypo-pigmented disease features and a nearly equivalent resolution of fine capillaries compared to a commercial flood-illumination fundus imager. An mLSO-based platform will enable researchers and clinicians to image human and animal eyes with a variety of modalities and deliver therapeutic beams from a single automated interface. This approach has the potential to improve patient comfort and reduce imaging session times, allowing clinicians to better diagnose, plan, and conduct patient procedures with improved outcomes. PMID:22463040

  7. Development of New Low Temperature Systems at Janis Research

    NASA Astrophysics Data System (ADS)

    Shvarts, V.; Jirmanus, M. N.; Zhao, Z.

    2006-09-01

    A new line of ultra low loss He-3 and He-4 superconducting magnet systems and UHV compatible He-3 systems for scanning tunneling microscopy studies have been developed during the past year. This paper discusses the details of the design and performance for the various systems.

  8. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates

    PubMed Central

    Zhang, Hao; Li, Xianqi; Park, Jewook; Li, An-Ping

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data. PMID:29362664

  9. Multi-view line-scan inspection system using planar mirrors

    NASA Astrophysics Data System (ADS)

    Holländer, Bransilav; Štolc, Svorad; Huber-Mörk, Reinhold

    2013-04-01

    We demonstrate the design, setup, and results for a line-scan stereo image acquisition system using a single area- scan sensor, single lens and two planar mirrors attached to the acquisition device. The acquired object is moving relatively to the acquisition device and is observed under three different angles at the same time. Depending on the specific configuration it is possible to observe the object under a straight view (i.e., looking along the optical axis) and two skewed views. The relative motion between an object and the acquisition device automatically fulfills the epipolar constraint in stereo vision. The choice of lines to be extracted from the CMOS sensor depends on various factors such as the number, position and size of the mirrors, the optical and sensor configuration, or other application-specific parameters like desired depth resolution. The acquisition setup presented in this paper is suitable for the inspection of a printed matter, small parts or security features such as optical variable devices and holograms. The image processing pipeline applied to the extracted sensor lines is explained in detail. The effective depth resolution achieved by the presented system, assembled from only off-the-shelf components, is approximately equal to the spatial resolution and can be smoothly controlled by changing positions and angles of the mirrors. Actual performance of the device is demonstrated on a 3D-printed ground-truth object as well as two real-world examples: (i) the EUR-100 banknote - a high-quality printed matter and (ii) the hologram at the EUR-50 banknote { an optical variable device.

  10. New method for scanning spacecraft and balloon-borne/space-based experiments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1991-01-01

    A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in X-ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.

  11. 3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion

    PubMed Central

    Dou, Qingxu; Wei, Lijun; Magee, Derek R.; Atkins, Phil R.; Chapman, David N.; Curioni, Giulio; Goddard, Kevin F.; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R.; Rustighi, Emiliano; Swingler, Steven G.; Rogers, Christopher D. F.; Cohn, Anthony G.

    2016-01-01

    We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation. PMID:27827836

  12. 3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion.

    PubMed

    Dou, Qingxu; Wei, Lijun; Magee, Derek R; Atkins, Phil R; Chapman, David N; Curioni, Giulio; Goddard, Kevin F; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R; Rustighi, Emiliano; Swingler, Steven G; Rogers, Christopher D F; Cohn, Anthony G

    2016-11-02

    We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed "multi-utility multi-sensor" system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.

  13. Using parallel computing methods to improve log surface defect detection methods

    Treesearch

    R. Edward Thomas; Liya Thomas

    2013-01-01

    Determining the size and location of surface defects is crucial to evaluating the potential yield and value of hardwood logs. Recently a surface defect detection algorithm was developed using the Java language. This algorithm was developed around an earlier laser scanning system that had poor resolution along the length of the log (15 scan lines per foot). A newer...

  14. Document Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The charters of Freedom Monitoring System will periodically assess the physical condition of the U.S. Constitution, Declaration of Independence and Bill of Rights. Although protected in helium filled glass cases, the documents are subject to damage from light vibration and humidity. The photometer is a CCD detector used as the electronic film for the camera system's scanning camera which mechanically scans the document line by line and acquires a series of images, each representing a one square inch portion of the document. Perkin-Elmer Corporation's photometer is capable of detecting changes in contrast, shape or other indicators of degradation with 5 to 10 times the sensitivity of the human eye. A Vicom image processing computer receives the data from the photometer stores it and manipulates it, allowing comparison of electronic images over time to detect changes.

  15. Microstructure characterization of a food-grade U-type microemulsion system by differential scanning calorimetry and electrical conductivity techniques.

    PubMed

    Zhang, Hui; Taxipalati, Maierhaba; Que, Fei; Feng, Fengqin

    2013-12-01

    The microstructure transitions of a food-grade U-type microemulsion system containing glycerol monolaurate and propionic acid at a 1:1 mass ratio as oil phase and Tween 80 as surfactant were investigated along a water dilution line at a ratio of 80:20 mass% surfactant/oil phase, based on a previously studied phase diagram. From the water thermal behaviours detected by differential scanning calorimetry, three structural regions are identified along the dilution line. In the first region, all water molecules are confined to the water core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, transforms into bicontinuous in the second region, and finally the microemulsion become o/w in the third region. The thermal transition points coincide with the structural phase transitions by electrical conductivity measurements, indicating that the structural transitions occur at 35 and 65 mass% of water along the dilution line. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. High-speed spectral domain polarization-sensitive OCT using a single InGaAs line-scan camera and an optical switch

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Won; Jeong, Hyun-Woo; Kim, Beop-Min

    2010-02-01

    We demonstrated high-speed spectral domain polarization-sensitive optical coherence tomography (SD-PSOCT) using a single InGaAs line-scan camera and an optical switch at 1.3-μm region. The polarization-sensitive low coherence interferometer in the system was based on the original free-space PS-OCT system published by Hee et al. The horizontal and vertical polarization light rays split by polarization beam splitter were delivered and detected via an optical switch to a single spectrometer by turns instead of dual spectrometers. The SD-PSOCT system had an axial resolution of 8.2 μm, a sensitivity of 101.5 dB, and an acquisition speed of 23,496 Alines/s. We obtained the intensity, phase retardation, and fast axis orientation images of a biological tissue. In addition, we calculated the averaged axial profiles of the phase retardation in human skin.

  17. Ultrafast web inspection with hybrid dispersion laser scanner.

    PubMed

    Chen, Hongwei; Wang, Chao; Yazaki, Akio; Kim, Chanju; Goda, Keisuke; Jalali, Bahram

    2013-06-10

    We report an ultrafast web inspector that operates at a 1000 times higher scan rate than conventional methods. This system is based on a hybrid dispersion laser scanner that performs line scans at nearly 100 MHz. Specifically, we demonstrate web inspection with detectable resolution of 48.6 μm/pixel (scan direction) × 23 μm (web flow direction) within a width of view of 6 mm at a record high scan rate of 90.9 MHz. We demonstrate the identification and evaluation of particles on silicon wafers. This method holds great promise for speeding up quality control and hence reducing manufacturing costs.

  18. Sub-0.1 μm optical track width measurement

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew

    2005-08-01

    In this paper, we will describe a technique that combines a common path scanning optical interferometer with artificial neural networks (ANN), to perform track width measurements that are significantly beyond the capability of conventional optical systems. Artificial neural networks have been used for many different applications. In the present case, ANNs are trained using profiles of known samples obtained from the scanning interferometer. They are then applied to tracks that have not previously been exposed to the networks. This paper will discuss the impacts of various ANN configurations, and the processing of the input signal on the training of the network. The profiles of the samples, which are used as the inputs to the ANNs, are obtained with a common path scanning optical interferometer. It provides extremely repeatable measurements, with very high signal to noise ratio, both are essential for the working of the ANNs. The characteristics of the system will be described. A number of samples with line widths ranging from 60nm-3μm have been measured to test the system. The system can measure line widths down to 60nm with a standard deviation of 3nm using optical wavelength of 633nm and a system numerical aperture of 0.3. These results will be presented in detail along with a discussion of the potential of this technique.

  19. SU-E-T-510: Interplay Between Spots Sizes, Spot / Line Spacing and Motion in Spot Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, TK

    Purpose In proton beam configuration for spot scanning proton therapy (SSPT), one can define the spacing between spots and lines of scanning as a ratio of given spot size. If the spacing increases, the number of spots decreases which can potentially decrease scan time, and so can whole treatment time, and vice versa. However, if the spacing is too large, the uniformity of scanned field decreases. Also, the field uniformity can be affected by motion during SSPT beam delivery. In the present study, the interplay between spot/ line spacing and motion is investigated. Methods We used four Gaussian-shape spot sizesmore » with 0.5cm, 1.0cm, 1.5cm, and 2.0cm FWHM, three spot/line spacing that creates uniform field profile which are 1/3*FWHM, σ/3*FWHM and 2/3*FWHM, and three random motion amplitudes within, +/−0.3mm, +/−0.5mm, and +/−1.0mm. We planned with 2Gy uniform single layer of 10×10cm2 and 20×20cm2 fields. Then, mean dose within 80% area of given field size, contrubuting MU per each spot assuming 1cGy/MU calibration for all spot sizes, number of spots and uniformity were calculated. Results The plans with spot/line spacing equal to or smaller than 2/3*FWHM without motion create ∼100% uniformity. However, it was found that the uniformity decreases with increased spacing, and it is more pronounced with smaller spot sizes, but is not affected by scanned field sizes. Conclusion It was found that the motion during proton beam delivery can alter the dose uniformity and the amount of alteration changes with spot size which changes with energy and spot/line spacing. Currently, robust evaluation in TPS (e.g. Eclipse system) performs range uncertainty evaluation using isocenter shift and CT calibration error. Based on presented study, it is recommended to add interplay effect evaluation to robust evaluation process. For future study, the additional interplay between the energy layers and motion is expected to present volumetric effect.« less

  20. Solid State Mini-RPV Color Imaging System

    DTIC Science & Technology

    1975-09-12

    completed in the design and construction phase . Con- siderations are now in progress for conducting field tests of the equipment against "real world...Simplified Parallel Injection Configuration 2-21 CID Parallel Injection Configuration 2-23 Element Rate Timing 2-25 Horizontal Input and Phase Line...Timing 2-26 Line Reset /Injection Timing 2-27 Line Rate Timing (Start of Readout) 2-28 Driver A4 Block Diagram 2-31 Element Scan Time Base

  1. SAFARI, an On-Line Text-Processing System User's Manual.

    ERIC Educational Resources Information Center

    Chapin, P.G.; And Others.

    This report describes for the potential user a set of procedures for processing textual materials on-line. In this preliminary model an information analyst can scan through messages, reports, and other documents on a display scope and select relevant facts, which are processed linguistically and then stored in the computer in the form of logical…

  2. MCT-based SWIR hyperspectral imaging system for evaluation of biological samples

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging has been shown to be a powerful tool for nondestructive evaluation of biological samples. We recently developed a new line-scan-based shortwave infrared (SWIR) hyperspectral imaging system. Critical sensing components of the system include a SWIR spectrograph, an MCT (HgCdTe) a...

  3. The Nimbus 6 data catalog. Volume 6: Data orbits 4339 through 5155. [from May through June 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Satellite operations from launch through 14 July (orbit 425) consisted of engineering evaluation of all spacecraft systems. As a result of that effort, data reception, accountability and processing were intermittent during that period. During orbit 4905 (12 June), Nimbus 6 successfully completed one year operations. A summary of the documentation for each Nimbus 6 Data Catalog volume is presented. The pitch of the Nimbus 6 satellite has been made to alternate between +2.0 degrees, +0.6 degrees, and 0.0 degrees since launch. A positive pitch angle of 0.6 degrees moves the nadir-looking position 11.5 kilometers ahead of the subsatellite point. A positive pitch angle of 2.0 degrees moves the nadir-looking position 38.3 kilometers ahead of the subsatellite point. At these pitch angles, a scanner-type instrument no longer scans the earth along a great circle arc through the subpoint, but scans along the small circle formed by the intersection of the scan plane with the earth. Since the plane of the small circle is tilted with respect to the nominal scan plane, points on the arc are displaced farther from the great circle as the scan angle increases. As noted above, a pitch angle of 0.6 degrees causes a displacement of 11.5 kilometers at nadir, but when the scanner turns 45 degrees away from nadir the displacement increases slightly to 12.8 kilometers. Similarly, for a 2.0 degree pitch the displacement is 38.3 kilometers at nadir and increases to 42.6 kilometers at a 45 degree scan angle. Thus, although the instrument records in lines normal to the orbit plane (in the absence of yaw) the perpendicular displacement from the perfect-attitude scan line is not uniform across the scan line.

  4. The Los Alamos National Laboratory precision double crystal spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, D.V.; Stevens, C.J.; Liefield, R.J.

    1994-03-01

    This report discusses the following topics on the LANL precision double crystal X-ray spectrometer: Motivation for construction of the instrument; a brief history of the instrument; mechanical systems; motion control systems; computer control system; vacuum system; alignment program; scan programs; observations of the copper K{alpha} lines; and characteristics and specifications.

  5. Design and application of a small size SAFT imaging system for concrete structure

    NASA Astrophysics Data System (ADS)

    Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian

    2011-07-01

    A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.

  6. Method of composing two-dimensional scanned spectra observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cai, Yun-Fang; Xu, Zhi; Chen, Yu-Chao; Xu, Jun; Li, Zheng-Gang; Fu, Yu; Ji, Kai-Fan

    2018-04-01

    In this paper we illustrate the technique used by the New Vacuum Solar Telescope (NVST) to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observations involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude can reach 1.3″ due to the Earth’s atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with scanned spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Hα line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sampling and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. A physical quantity, such as the line-of-sight velocities in multiple layers of the solar atmosphere, is also inferred from the re-arranged spectrum, demonstrating the advantage of this technique.

  7. Rotating-unbalanced-mass Devices for Scanning Balloon-borne Experiments, Free-flying Spacecraft, and Space Shuttle/space Station Experiments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1990-01-01

    A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in x ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.

  8. Slit scan radiographic system for intermediate size rocket motors

    NASA Astrophysics Data System (ADS)

    Bernardi, Richard T.; Waters, David D.

    1992-12-01

    The development of slit-scan radiography capability for the NASA Advanced Computed Tomography Inspection System (ACTIS) computed tomography (CT) scanner at MSFC is discussed. This allows for tangential case interface (bondline) inspection at 2 MeV of intermediate-size rocket motors like the Hawk. Motorized mounting fixture hardware was designed, fabricated, installed, and tested on ACTIS. The ACTIS linear array of x-ray detectors was aligned parallel to the tangent line of a horizontal Hawk motor case. A 5 mm thick x-ray fan beam was used. Slit-scan images were produced with continuous rotation of a horizontal Hawk motor. Image features along Hawk motor case interfaces were indicated. A motorized exit cone fixture for ACTIS slit-scan inspection was also provided. The results of this SBIR have shown that slit scanning is an alternative imaging technique for case interface inspection. More data is required to qualify the technique for bondline inspection.

  9. Characterization of a new generation of computed radiography system based on line scanning and phosphor needles

    NASA Astrophysics Data System (ADS)

    Dragusin, Octavian; Rogge, Frank; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2006-03-01

    A new generation CR system that is based on phosphor needles and that uses a digitizer with line scan technology was compared to a clinically used CR system. Purely technical and more clinically related tests were run on both systems. This included the calculation of the DQE, signal-to-noise and contrast to noise ratios from Aluminum inserts, contrast detail analysis with the CDRAD phantom and the use of anthropomorphic phantoms (wrist, chest and skull) with scoring by a radiologist. X-ray exposures with various dose levels and 50kV, 70kV and 125kV were acquired. For detector doses above 0.8 μGy, all noise related measurements showed the superiority of the new technology. The MTF confirmed the improvement in sharpness: between 1 and 3 lp/mm increases ranged from 20 to 50%. Further work should be devoted to the determination of the required dose levels in the plate for the different radiological applications.

  10. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm

    PubMed Central

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory. PMID:26389906

  11. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  12. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    PubMed

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  13. Choice of range-energy relationship for the analysis of electron-beam-induced-current line scans

    NASA Astrophysics Data System (ADS)

    Luke, Keung, L.

    1994-07-01

    The electron range in a material is an important parameter in the analysis of electron-beam-induced-current (EBIC) line scans. Both the Kanaya-Okayama (KO) and Everhart-Hoff (EH) range-energy relationships have been widely used by investigators for this purpose. Although the KO range is significantly larer than the EH range, no study has been done to examine the effect of choosing one range over the other on the values of the surface recombination velocity S(sub T) and minority-carrier diffusion length L evaluated from EBICF line scans. Such a study has been carried out, focusing on two major questions: (1) When the KO range is used in different reported methods to evaluate either or both S(sub T) and L from EBIC line scans, how different are their values thus determined in comparison to those using the EH range?; (2) from EBIC line scans of a given material, is there a way to discriminate between the KO and the EH ranges which should be used to analyze these scans? Answers to these questions are presented to assist investigators in extracting more reliable values of either or both S(sub T) and L and in finding the right range to use in the analysis of these line scans.

  14. Ultrasound Picture Archiving And Communication Systems

    NASA Astrophysics Data System (ADS)

    Koestner, Ken; Hottinger, C. F.

    1982-01-01

    The ideal ultrasonic image communication and storage system must be flexible in order to optimize speed and minimize storage requirements. Various ultrasonic imaging modalities are quite different in data volume and speed requirements. Static imaging, for example B-Scanning, involves acquisition of a large amount of data that is averaged or accumulated in a desired manner. The image is then frozen in image memory before transfer and storage. Images are commonly a 512 x 512 point array, each point 6 bits deep. Transfer of such an image over a serial line at 9600 baud would require about three minutes. Faster transfer times are possible; for example, we have developed a parallel image transfer system using direct memory access (DMA) that reduces the time to 16 seconds. Data in this format requires 256K bytes for storage. Data compression can be utilized to reduce these requirements. Real-time imaging has much more stringent requirements for speed and storage. The amount of actual data per frame in real-time imaging is reduced due to physical limitations on ultrasound. For example, 100 scan lines (480 points long, 6 bits deep) can be acquired during a frame at a 30 per second rate. In order to transmit and save this data at a real-time rate requires a transfer rate of 8.6 Megabaud. A real-time archiving system would be complicated by the necessity of specialized hardware to interpolate between scan lines and perform desirable greyscale manipulation on recall. Image archiving for cardiology and radiology would require data transfer at this high rate to preserve temporal (cardiology) and spatial (radiology) information.

  15. Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH.

    PubMed

    Kostka, Stanislav; Roy, Sukesh; Lakusta, Patrick J; Meyer, Terrence R; Renfro, Michael W; Gord, James R; Branam, Richard

    2009-11-10

    Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a well-calibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and quantifying the differences between peak-intensity and spectrally integrated line ratios. Investigated are the effects of collisional quenching, laser absorption, and the integration width for partial scanning of closely spaced lines on the measured temperatures. Data from excitation scans are compared with theoretical line shapes, and experimentally derived temperatures are compared with numerical predictions that were previously validated using coherent anti-Stokes-Raman scattering. Ratios of four pairs of transitions in the A2Sigma+<--X2Pi (1,0) band of OH are collected in an atmospheric-pressure, near-adiabatic hydrogen-air flame over a wide range of equivalence ratios--from 0.4 to 1.4. It is observed that measured temperatures based on the ratio of Q1(14)/Q1(5) transition lines result in the best accuracy and that line scanning improves the measurement accuracy by as much as threefold at low-equivalence-ratio, low-temperature conditions. These results provide a comprehensive analysis of the procedures required to ensure accurate two-line LIF measurements in reacting flows over a wide range of conditions.

  16. A Deep-towed Digital Multichannel Seismic Streamer For Very High-resolution Studies Of Marine Subsurface Structures

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bialas, J.; Inggas Working Group

    A deep-towed digital multichannel seismic streamer and side scan sonar system has been developed to collect marine seismic data with a very high lateral in- and cross- line resolution particularly in regions of special interest for gas hydrate research. As marine seismic sources conventional air-, GI or waterguns will be shot close to the sea surface. A depressor of about 2 tons weight ensures the slightly buoyant deep-towed system to keep in depth. The streamer is a modular digital system which can be operated in water depths up to 6000 m. At this stage of development, it consists of a 50 m lead-in cable towed behind the side scan sonar fish and 26 single nodes for each channel. Each node houses a sin- gle hydrophone, low- and high-cut filter, preamplifier and 24-bit AD converter. Three special engineering nodes additionally include a pressure sensor and compass which provide information on the depth of the node and on its geographical position relative to the ship. Nodes are interchangeable and can arbitrarily be connected by cables of 1 or 6.5 m length. A minimum sample interval of 0.25 ms allows to use sufficiently high- frequency seismic sources to guarantee both a very high vertical and lateral resolution. Data are stored both underwater on a linux-based PC with 120 GB storage capacity installed in a pressure vessel mounted on the side scan sonar fish, and onboard on a PC running a data acquisition program and a DLT device. Data are transferred between underwater and onboard systems via telemetry controlled by a second linux-based PC onboard, using coaxial cable or fibre optic technology. The exact position of the side scan sonar fish is determined by the ultra-short base line (USBL) Posidonia system. It mainly consists of a hull-mounted acoustic unit (antenna) and a responder mounted on the side scan sonar fish. Additionally, the three engineering nodes measure the depth and heading of the streamer at three positions relative to the side scan sonar fish. All deep-towed and laboratory components are synchronized by DGPS time based trigger signals. This deep-towed system will first be tested during the SO162 cruise of RV Sonne (21.2. - 12.3.02) off Peru and Ecuador along profile lines where conventional multi- channel seismic reflection data have already been collected during a fomer cruise.

  17. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  18. Quantitative detection of benzoyl peroxide in wheat flour by line-scan macro-scale Raman chemical imaging

    USDA-ARS?s Scientific Manuscript database

    A high-throughput Raman chemical imaging method was developed for direct inspection of benzoyl peroxide (BPO) mixed in wheat flour. A 5 W 785 nm line laser (240 mm long and 1 mm wide) was used as a Raman excitation source in a push-broom Raman imaging system. Hyperspectral Raman images were collecte...

  19. Defect detection in slab surface: a novel dual Charge-coupled Device imaging-based fuzzy connectedness strategy.

    PubMed

    Zhao, Liming; Ouyang, Qi; Chen, Dengfu; Udupa, Jayaram K; Wang, Huiqian; Zeng, Yuebin

    2014-11-01

    To provide an accurate surface defects inspection system and make the automation of robust image segmentation method a reality in routine production line, a general approach is presented for continuous casting slab (CC-slab) surface defects extraction and delineation. The applicability of the system is not tied to CC-slab exclusively. We combined the line array CCD (Charge-coupled Device) traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging) strategies in designing the system. Its aim is to suppress the respective imaging system's limitations. In the system, the images acquired from the two CCD sensors are carefully aligned in space and in time by maximum mutual information-based full-fledged registration schema. Subsequently, the image information is fused from these two subsystems such as the unbroken 2D information in LS-imaging and 3D depressed information in AL-imaging. Finally, on the basis of the established dual scanning imaging system the region of interest (ROI) localization by seed specification was designed, and the delineation for ROI by iterative relative fuzzy connectedness (IRFC) algorithm was utilized to get a precise inspection result. Our method takes into account the complementary advantages in the two common machine vision (MV) systems and it performs competitively with the state-of-the-art as seen from the comparison of experimental results. For the first time, a joint imaging scanning strategy is proposed for CC-slab surface defect inspection that allows a feasible way of powerful ROI delineation strategies to be applied to the MV inspection field. Multi-ROI delineation by using IRFC in this research field may further improve the results.

  20. Towards Robust Self-Calibration for Handheld 3d Line Laser Scanning

    NASA Astrophysics Data System (ADS)

    Bleier, M.; Nüchter, A.

    2017-11-01

    This paper studies self-calibration of a structured light system, which reconstructs 3D information using video from a static consumer camera and a handheld cross line laser projector. Intersections between the individual laser curves and geometric constraints on the relative position of the laser planes are exploited to achieve dense 3D reconstruction. This is possible without any prior knowledge of the movement of the projector. However, inaccurrately extracted laser lines introduce noise in the detected intersection positions and therefore distort the reconstruction result. Furthermore, when scanning objects with specular reflections, such as glossy painted or metalic surfaces, the reflections are often extracted from the camera image as erroneous laser curves. In this paper we investiagte how robust estimates of the parameters of the laser planes can be obtained despite of noisy detections.

  1. Easy performance of 6-color confocal immunofluorescence with 4-laser line microscopes.

    PubMed

    Eissing, Nathalie; Heger, Lukas; Baranska, Anna; Cesnjevar, Robert; Büttner-Herold, Maike; Söder, Stephan; Hartmann, Arndt; Heidkamp, Gordon F; Dudziak, Diana

    2014-09-01

    Confocal laser scanning microscopy is an advanced technique for imaging tissue samples in vitro and in vivo at high optical resolution. The development of new fluorochrome variants do not only make it possible to perform multicolor flow cytometry of single cells, but in combination with high resolution laser scanning systems also to investigate the distribution of cells in lymphoid tissues by confocal immunofluorescence analyses, thus allowing the distinction of various cell populations directly in the tissue. Here, we provide a protocol for the visualization of at least six differently fluorochrome-labeled antibodies at the same time using a conventional confocal laser scanning microscope with four laser lines (405 nm, 488 nm, 555 nm, and 639 nm laser wavelength) in both murine and human tissue samples. We further demonstrate that compensation correction algorithms are not necessary to reduce spillover of fluorochromes into other channels when the used fluorochromes are combined according to their specific emission bands and the varying Stokes shift for co-excited fluorochromes with the same laser line. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 3D scan line method for identifying void fabric of granular materials

    NASA Astrophysics Data System (ADS)

    Theocharis, Alexandros I.; Vairaktaris, Emmanouil; Dafalias, Yannis F.

    2017-06-01

    Among other processes measuring the void phase of porous or fractured media, scan line approach is a simplified "graphical" method, mainly used in image processing related procedures. In soil mechanics, the application of scan line method is related to the soil fabric, which is important in characterizing the anisotropic mechanical response of soils. Void fabric is of particular interest, since graphical approaches are well defined experimentally and most of them can also be easily used in numerical experiments, like the scan line method. This is in contrast to the definition of fabric based on contact normal vectors that are extremely difficult to determine, especially considering physical experiments. The scan line method has been proposed by Oda et al [1] and implemented again by Ghedia and O'Sullivan [2]. A modified method based on DEM analysis instead of image measurements of fabric has been previously proposed and implemented by the authors in a 2D scheme [3-4]. In this work, a 3D extension of the modified scan line definition is presented using PFC 3D®. The results show clearly similar trends with the 2D case and the same behaviour of fabric anisotropy is presented.

  3. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.

    PubMed

    Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X

    2007-05-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.

  4. An experimental system for spectral line ratio measurements in the TJ-II stellarator.

    PubMed

    Zurro, B; Baciero, A; Fontdecaba, J M; Peláez, R; Jiménez-Rey, D

    2008-10-01

    The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C(5+) 5290 A and C(4+) 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.

  5. Full cycle rapid scan EPR deconvolution algorithm.

    PubMed

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Full cycle rapid scan EPR deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan.

  7. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    DOE PAGES

    Rupnowski, Przemyslaw; Ulsh, Michael J.; Sopori, Bhushan; ...

    2017-08-18

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min -1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends onmore » both coating porosity (or area loading) and thickness. Here, it is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.« less

  8. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupnowski, Przemyslaw; Ulsh, Michael J.; Sopori, Bhushan

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min -1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends onmore » both coating porosity (or area loading) and thickness. Here, it is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.« less

  9. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    NASA Astrophysics Data System (ADS)

    Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping

    2018-01-01

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.

  10. [Evaluating the accuracy of three-dimensional reconstruction of the intercuspal position for dentition casts aided by a mechanical appliance].

    PubMed

    Hu, Z W; Li, W W; Zhang, X Y; Fan, B L; Wang, Y; Sun, Y C

    2016-08-01

    To develop a aided mechanical appliance for rapid reconstruction of three-dimensional(3D)relationship of dentition model after scanning and evaluation of its accuracy. The appliance was designed by forward engineering software and fabricated by a high precision computer numerical control(CNC)system. It contained upper and lower body, magnetic pedestal and three pillars. Nine 3 mm diameter hemispheres were distributed equally on the axial surface of each pedestal. Faro Edge 1.8m was used to directly obtain center of each hemisphere(contact method), defined as known center. A pair of die-stone standard dentition model were fixed in intercuspal position and then fixed on the magnetic pedestals with low expansion ratio plaster. Activity 880 dental scanner was used to scan casts after the plaster was completely set. In Geomagic 2012, the centers of each hemisphere were fitted and defined as scanning centers. Scanning centers were aligned to known centers by reference point system to finish the 3D reconstruction of the intercuspal occlusion for the dentition casts. An observation coordinate system was interactively established. The straight-line distances in the X(coronal), Y(saggital), and Z(vertical)between the remaining 6 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. The differences of the straight-line distances of the remaining 6 pairs of center points between the two methods were X:(-0.05±0.10)mm, Y:(0.02±0.06)mm, and Z:(0.01 ± 0.05)mm. The results of paired t-test showed no significant differences(P>0.05). The mechanical appliance can help to reconstruct 3D jaw relation by scanning single upper and lower dentition model with usual commercial available dental cast scanning system.

  11. TU-CD-207-05: A Novel Digital Tomosynthesis System Using Orthogonal Scanning Technique: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Park, C; Kauweloa, K

    2015-06-15

    Purpose: As an alternative to full tomographic imaging technique such as cone-beam computed tomography (CBCT), there is growing interest to adopt digital tomosynthesis (DTS) for the use of diagnostic as well as therapeutic applications. The aim of this study is to propose a new DTS system using novel orthogonal scanning technique, which can provide superior image quality DTS images compared to the conventional DTS scanning system. Methods: Unlike conventional DTS scanning system, the proposed DTS is reconstructed with two sets of orthogonal patient scans. 1) X-ray projections that are acquired along transverse trajectory and 2) an additional sets of X-raymore » projections acquired along the vertical direction at the mid angle of the previous transverse scan. To reconstruct DTS, we have used modified filtered backprojection technique to account for the different scanning directions of each projection set. We have evaluated the performance of our method using numerical planning CT data of liver cancer patient and a physical pelvis phantom experiment. The results were compared with conventional DTS techniques with single transverse and vertical scanning. Results: The experiments on both numerical simulation as well as physical experiment showed that the resolution as well as contrast of anatomical structures was much clearer using our method. Specifically, the image quality comparing with transversely scanned DTS showed that the edge and contrast of anatomical structures along Left-Right (LR) directions was comparable however, considerable discrepancy and enhancement could be observed along Superior-Inferior (SI) direction using our method. The opposite was observed when vertically scanned DTS was compared. Conclusion: In this study, we propose a novel DTS system using orthogonal scanning technique. The results indicated that the image quality of our novel DTS system was superior compared to conventional DTS system. This makes our DTS system potentially useful in various on-line clinical applications.« less

  12. Charge collection microscopy of in-situ switchable PRAM line cells in a scanning electron microscope: Technique development and unique observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oosthoek, J. L. M.; Schuitema, R. W.; Brink, G. H. ten

    2015-03-15

    An imaging method has been developed based on charge collection in a scanning electron microscope (SEM) that allows discrimination between the amorphous and crystalline states of Phase-change Random Access Memory (PRAM) line cells. During imaging, the cells are electrically connected and can be switched between the states and the resistance can be measured. This allows for electrical characterization of the line cells in-situ in the SEM. Details on sample and measurement system requirements are provided which turned out to be crucial for the successful development of this method. Results show that the amorphous or crystalline state of the line cellsmore » can be readily discerned, but the spatial resolution is relatively poor. Nevertheless, it is still possible to estimate the length of the amorphous mark, and also for the first time, we could directly observe the shift of the amorphous mark from one side of the line cell to the other side when the polarity of the applied (50 ns) RESET pulse was reversed.« less

  13. Rapid age determination of oysters using LA-ICP-MS line scans of shell Mg/Ca ratios

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Durham, S. R.; Goodwin, D. H.

    2016-02-01

    Magnesium to calcium (Mg/Ca) ratios exhibit a strong temperature dependence in foraminifera and corals, but not in bivalve mollusks. Various studies have reported Mg/Ca-temperature relationships with R2 values ranging from 0.3 to 0.8 and significantly different relationships for bivalves growing at different salinities. However, this poor temperature correlation does not render Mg/Ca data useless. A weak temperature dependence would allow time (seasons and years) to be determined along the growth axis of shells. This would provide information about age, growth rate and also allow other proxies to be aligned with time. Typically, oxygen isotopes (δ18O) are used to age shells without clear periodic growth lines, which is time consuming and expensive. Line scans using laser ablation systems can cover several centimeters of shell in a few minutes. We test this method on the resilifer of two oyster species (Crassostrea gigas and C. virginica) using a 193 nm Laser-Ablation-ICP-MS. Living oysters were collected from San Francisco Bay, North Carolina, South Carolina, and the Gulf of Mexico; fossil shells (Pleistocene) were also collected in South Carolina. Shells were sampled for δ18O values and Mg/Ca ratios. We use annual cycles in δ18O values to confidently determine age, then apply the Mg/Ca technique. Shells of both species exhibit annual cyclicity in Mg/Ca ratios using spot and line scan laser sampling, which matche the seasonal cyclicity determined using δ18O values. Results show a good correlation between ages determined using the different methods. We conclude that LA-ICP-MS line scans offer a rapid and inexpensive technique for determining age, growth rate, and timing of shell growth in oyster reslifers.

  14. RF MEMS and Their Applications in NASA's Space Communication Systems

    NASA Technical Reports Server (NTRS)

    Williams, W. Daniel; Ponchak, George E.; Simons, Rainee N.; Zaman, Afroz; Kory, Carol; Wintucky, Edwin; Wilson, Jeffrey D.; Scardelletti, Maximilian; Lee, Richard; Nguyen, Hung

    2001-01-01

    Radio frequency (RF) and microwave communication systems rely on frequency, amplitude, and phase control circuits to efficiently use the available spectrum. Phase control circuits are required for electronically scanning phase array antennas that enable radiation pattern shaping, scanning, and hopping. Two types of phase shifters, which are the phase control circuits, are most often used. The first is comprised of two circuits with different phase characteristics such as two transmission lines of different lengths or a high pass and low pass filter and a switch that directs the RF power through one of the two circuits. Alternatively, a variable capacitor, or varactor, is used to change the effective electrical path length of a transmission line, which changes the phase characteristics. Filter banks are required for the diplexer at the front end of wide band communication satellites. These filters greatly increase the size and mass of the RF/microwave systems, but smaller diplexers may be made with a low loss varactor or a group of capacitors, a switch and an inductor.

  15. The DC-SQUID-based Magnetocardiographic Systems for Clinical Use

    NASA Astrophysics Data System (ADS)

    Maslennikov, Yu. V.; Primin, M. A.; Slobodchikov, V. Yu.; Khanin, V. V.; Nedayvoda, I. V.; Krymov, V. A.; Okunev, A. V.; Moiseenko, E. A.; Beljaev, A. V.; Rybkin, V. S.; Tolcheev, A. V.; Gapelyuk, A. V.

    The new line of dc-SQUID-based magnetocardiographic (MCG) systems (named as the "MAG-SCAN"-family) is designed, fabricated and tested. These systems are intended for routine MCG investigations of patients at conditions of real clinical electrophysiological labs. The "MAG-SCAN"-family includes the line of MCG devices compatible in terms of hardware and software with number of measuring channels from 1 to 36. Experimental prototypes of 7- and 9-channel MCG-systems (the models "MAG-SCAN-07" and "MAG-SCAN-09" fabricated at CRYOTON Co. Ltd.) were installed in a few hospitals of Moscow city and operated in an unshielded environment of usual clinical labs. Well balanced second-order gradiometers have been used for MCG data recording. They demonstrated an intrinsic noise level better than 5 fT/√Hz. The total noise level of about 20-40 fT/√Hz was measured at urban conditions of Moscow city. The package of special software (named as the "SOFTMAG") was developed as two autonomous subsystems that allow the preprocessing of the heart magnetic signals and the spatio-temporal analysis of the field characteristics and the field sources. The software employs the algorithms for the analysis and estimation of the spatio-temporal characteristics of the heart magnetic field and the correspondent electrical currents distributions. More than 2000 investigations of different volunteers including healthy persons, patients with high blood-pressure, ischemic disease (IHD), chronic obstructive pulmonary disease (COPD) and bronchial asthma (BA) were carried out and sets of MCG-parameters specific for each group were found.

  16. Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope

    PubMed Central

    Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.

    2007-01-01

    We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477

  17. Correlation of scanning microwave interferometry and digital X-ray images for damage detection in ceramic composite armor

    NASA Astrophysics Data System (ADS)

    Schmidt, Karl F.; Goitia, Ryan M.; Ellingson, William A.; Green, William

    2012-05-01

    Application of non-contact, scanning, microwave interferometry for inspection of ceramic-based composite armor facilitates detection of defects which may occur in manufacturing or in service. Non-contact, one-side access permits inspection of panels while on the vehicle. The method was applied as a base line inspection and post-damage inspection of composite ceramic armor containing artificial defects, fiduciaries, and actual damage. Detection, sizing, and depth location capabilities were compared using microwave interferometry system and micro-focus digital x-ray imaging. The data demonstrates corroboration of microwave interference scanning detection of cracks and laminar features. The authors present details of the system operation, descriptions of the test samples used, and recent results obtained.

  18. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.

  19. Design and fabrication of an angle-scanning based platform for the construction of surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Hu, Jiandong; Cao, Baiqiong; Wang, Shun; Li, Jianwei; Wei, Wensong; Zhao, Yuanyuan; Hu, Xinran; Zhu, Juanhua; Jiang, Min; Sun, Xiaohui; Chen, Ruipeng; Ma, Liuzheng

    2016-03-01

    A sensing system for an angle-scanning optical surface-plasmon-resonance (SPR) based biosensor has been designed with a laser line generator in which a P polarizer is embedded to utilize as an excitation source for producing the surface plasmon wave. In this system, the emitting beam from the laser line generator is controlled to realize the angle-scanning using a variable speed direct current (DC) motor. The light beam reflected from the prism deposited with a 50 nm Au film is then captured using the area CCD array which was controlled by a personal computer (PC) via a universal serial bus (USB) interface. The photoelectric signals from the high speed digital camera (an area CCD array) were converted by a 16 bit A/D converter before it transferred to the PC. One of the advantages of this SPR biosensing platform is greatly demonstrated by the label-free and real-time bio-molecular analysis without moving the area CCD array by following the laser line generator. It also could provide a low-cost surface plasmon resonance platform to improve the detection range in the measurement of bioanalytes. The SPR curve displayed on the PC screen promptly is formed by the effective data from the image on the area CCD array and the sensing responses of the platform to bulk refractive indices were calibrated using various concentrations of ethanol solution. These ethanol concentrations indicated with volumetric fraction of 5%, 10%, 15%, 20%, and 25%, respectively, were experimented to validate the performance of the angle-scanning optic SPR biosensing platform. As a result, the SPR sensor was capable to detect a change in the refractive index of the ethanol solution with the relative high linearity at the correlation coefficient of 0.9842. This greatly enhanced detection range is obtained from the position relationship between the laser line generator and the right-angle prism to allow direct quantification of the samples over a wide range of concentrations.

  20. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  1. Structured-Light Based 3d Laser Scanning of Semi-Submerged Structures

    NASA Astrophysics Data System (ADS)

    van der Lucht, J.; Bleier, M.; Leutert, F.; Schilling, K.; Nüchter, A.

    2018-05-01

    In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  2. Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope.

    PubMed

    Chen, Ye; Wang, Danni; Khan, Altaz; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C

    2015-10-01

    Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.

  3. Video-rate in vivo fluorescence imaging with a line-scanned dual-axis confocal microscope

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Wang, Danni; Khan, Altaz; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2015-10-01

    Video-rate optical-sectioning microscopy of living organisms would allow for the investigation of dynamic biological processes and would also reduce motion artifacts, especially for in vivo imaging applications. Previous feasibility studies, with a slow stage-scanned line-scanned dual-axis confocal (LS-DAC) microscope, have demonstrated that LS-DAC microscopy is capable of imaging tissues with subcellular resolution and high contrast at moderate depths of up to several hundred microns. However, the sensitivity and performance of a video-rate LS-DAC imaging system, with low-numerical aperture optics, have yet to be demonstrated. Here, we report on the construction and validation of a video-rate LS-DAC system that possesses sufficient sensitivity to visualize fluorescent contrast agents that are topically applied or systemically delivered in animal and human tissues. We present images of murine oral mucosa that are topically stained with methylene blue, and images of protoporphyrin IX-expressing brain tumor from glioma patients that have been administered 5-aminolevulinic acid prior to surgery. In addition, we demonstrate in vivo fluorescence imaging of red blood cells trafficking within the capillaries of a mouse ear, at frame rates of up to 30 fps. These results can serve as a benchmark for miniature in vivo microscopy devices under development.

  4. Prism-assembly for dual-band short-wave infrared region line-scan camera

    NASA Astrophysics Data System (ADS)

    Chassagne, Bruno; de Laulanié, Lucie; Pommiès, Matthieu

    2018-02-01

    A simple dichroic splitter for dual-band line scanning is described. It comprises prisms elements that enable cheapness of the whole prototype by using only one linear detector. Validity of the design is demonstrated via in-line moisture measurement.

  5. Two-dimensional simulation and modeling in scanning electron microscope imaging and metrology research.

    PubMed

    Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J

    2002-01-01

    Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.

  6. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    NASA Astrophysics Data System (ADS)

    Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.

    2016-11-01

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  7. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, G., E-mail: gsdunha@sandia.gov; Harding, E. C.; Loisel, G. P.

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity appliedmore » to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.« less

  8. Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope

    NASA Astrophysics Data System (ADS)

    You, Lin; Ahn, Jung-Joon; Obeng, Yaw S.; Kopanski, Joseph J.

    2016-02-01

    We demonstrate the ability of the scanning microwave microscope (SMM) to detect subsurface metal lines embedded in a dielectric film with sub-micrometer resolution. The SMM was used to image 1.2 μm-wide Al-Si-Cu metal lines encapsulated with either 800 nm or 2300 nm of plasma deposited silicon dioxide. Both the reflected microwave (S 11) amplitude and phase shifted near resonance frequency while the tip scanned across these buried lines. The shallower line edge could be resolved within 900 nm  ±  70 nm, while the deeper line was resolved within 1200 nm  ±  260 nm. The spatial resolution obtained in this work is substantially better that the 50 μm previously reported in the literature. Our observations agree very well with the calculated change in peak frequency and phase using a simple lumped element model for an SMM with a resonant transmission line. By conducting experiments at various eigenmodes, different contrast levels and signal-to-noise ratios have been compared. With detailed sensitivity studies, centered around 9.3 GHz, it has been revealed that the highest amplitude contrast is obtained when the probe microwave frequency matches the exact resonance frequency of the experimental setup. By RLC equivalent circuit modeling of the tip-sample system, two competing effects have been identified to account for the positive and negative S 11 amplitude and phase contrasts, which can be leveraged to further improve the contrast and resolution. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  9. Post-fatigue fracture resistance of metal core crowns: press-on metal ceramic versus a conventional veneering system

    PubMed Central

    Agustín-Panadero, Rubén; Campos-Estellés, Carlos; Labaig-Rueda, Carlos

    2015-01-01

    Background The aim of this in vitro study was to compare the mechanical failure behavior and to analyze fracture characteristics of metal ceramic crowns with two veneering systems – press-on metal (PoM) ceramic versus a conventional veneering system – subjected to static compressive loading. Material and Methods Forty-six crowns were constructed and divided into two groups according to porcelain veneer manufacture. Group A: 23 metal copings with porcelain IPS-InLine veneering (conventional metal ceramic). Group B: 23 metal copings with IPS-InLine PoM veneering porcelain. After 120,000 fatigue cycles, the crowns were axially loaded to the moment of fracture with a universal testing machine. The fractured specimens were examined under optical stereomicroscopy and scanning electron microscope. Results Fracture resistance values showed statistically significant differences (Student’s t-test) regarding the type of ceramic veneering technique (p=0.001): Group A (conventional metal ceramics) obtained a mean fracture resistance of 1933.17 N, and Group B 1325.74N (Press-on metal ceramics). The most common type of fracture was adhesive failure (with metal exposure) (p=0.000). Veneer porcelain fractured on the occlusal surface following a radial pattern. Conclusions Metal ceramic crowns made of IPS InLine or IPS InLine PoM ceramics with different laboratory techniques all achieved above-average values for clinical survival in the oral environment according to ISO 6872. Crowns made with IPS InLine by conventional technique resisted fracture an average of 45% more than IPS InLine PoM fabricated with the press-on technique. Key words:Mechanical failure, conventional feldspathic, pressable ceramic, chewing simulator, thermocycling, compressive testing, fracture types, scanning electron microscope. PMID:26155346

  10. Quantifying the movement of multiple insects using an optical insect counter

    USDA-ARS?s Scientific Manuscript database

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...

  11. The Heinz Electronic Library Interactive On-line System (HELIOS): An Update.

    ERIC Educational Resources Information Center

    Galloway, Edward A.; Michalek, Gabrielle V.

    1998-01-01

    Describes a project at Carnegie Mellon University libraries to convert the congressional papers of the late Senator John Heinz to digital format and to create an online system to search and retrieve these papers. Highlights include scanning, optical character recognition, and a search engine utilizing natural language processing. (Author/LRW)

  12. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison.

    PubMed

    Nedelcu, Robert; Olsson, Pontus; Nyström, Ingela; Thor, Andreas

    2018-02-23

    Several studies have evaluated accuracy of intraoral scanners (IOS), but data is lacking regarding variations between IOS systems in the depiction of the critical finish line and the finish line accuracy. The aim of this study was to analyze the level of finish line distinctness (FLD), and finish line accuracy (FLA), in 7 intraoral scanners (IOS) and one conventional impression (IMPR). Furthermore, to assess parameters of resolution, tessellation, topography, and color. A dental model with a crown preparation including supra and subgingival finish line was reference-scanned with an industrial scanner (ATOS), and scanned with seven IOS: 3M, CS3500 and CS3600, DWIO, Omnicam, Planscan and Trios. An IMPR was taken and poured, and the model was scanned with a laboratory scanner. The ATOS scan was cropped at finish line and best-fit aligned for 3D Compare Analysis (Geomagic). Accuracy was visualized, and descriptive analysis was performed. All IOS, except Planscan, had comparable overall accuracy, however, FLD and FLA varied substantially. Trios presented the highest FLD, and with CS3600, the highest FLA. 3M, and DWIO had low overall FLD and low FLA in subgingival areas, whilst Planscan had overall low FLD and FLA, as well as lower general accuracy. IMPR presented high FLD, except in subgingival areas, and high FLA. Trios had the highest resolution by factor 1.6 to 3.1 among IOS, followed by IMPR, DWIO, Omnicam, CS3500, 3M, CS3600 and Planscan. Tessellation was found to be non-uniform except in 3M and DWIO. Topographic variation was found for 3M and Trios, with deviations below +/- 25 μm for Trios. Inclusion of color enhanced the identification of the finish line in Trios, Omnicam and CS3600, but not in Planscan. There were sizeable variations between IOS with both higher and lower FLD and FLA than IMPR. High FLD was more related to high localized finish line resolution and non-uniform tessellation, than to high overall resolution. Topography variations were low. Color improved finish line identification in some IOS. It is imperative that clinicians critically evaluate the digital impression, being aware of varying technical limitations among IOS, in particular when challenging subgingival conditions apply.

  13. Development of online NIR urine analyzing system based on AOTF

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Sun, Zhendong; Li, Xiaoxia

    2006-09-01

    In this paper, some key techniques on development of on-line MR urine analyzing system based on AOTF (Acousto - Optics Tunable Filter) are introduced. Problems about designing the optical system including collimation of incident light and working distance (the shortest distance for separating incident light and diffracted light) are analyzed and researched. DDS (Direct Digital Synthesizer) controlled by microprocessor is used to realize the wavelength scan. The experiment results show that this MR urine analyzing system based on. AOTF has 10000 - 4000cm -1 wavelength range and O.3ms wavelength transfer rate. Compare with the conventional Fourier Transform NIP. spectrophotometer for analyzing multi-components in urine, this system features low cost, small volume and on-line measurement function. Unscrambler software (multivariate statistical software by CAMO Inc. Norway) is selected as the software for processing the data. This system can realize on line quantitative analysis of protein, urea and creatinine in urine.

  14. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors.

    PubMed

    Chen, H; Li, H; Sun, Yc; Wang, Y; Lü, Pj

    2016-02-11

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  15. Page layout analysis and classification for complex scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2011-09-01

    A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.

  16. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  17. Electro-optical imaging systems integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, R.

    1987-01-01

    Since the advent of high resolution, high data rate electronic sensors for military aircraft, the demands on their counterpart, the image generator hard copy output system, have increased dramatically. This has included support of direct overflight and standoff reconnaissance systems and often has required operation within a military shelter or van. The Tactical Laser Beam Recorder (TLBR) design has met the challenge each time. A third generation (TLBR) was designed and two units delivered to rapidly produce high quality wet process imagery on 5-inch film from a 5-sensor digital image signal input. A modular, in-line wet film processor is includedmore » in the total TLBR (W) system. The system features a rugged optical and transport package that requires virtually no alignment or maintenance. It has a ''Scan FIX'' capability which corrects for scanner fault errors and ''Scan LOC'' system which provides for complete phase synchronism isolation between scanner and digital image data input via strobed, 2-line digital buffers. Electronic gamma adjustment automatically compensates for variable film processing time as the film speed changes to track the sensor. This paper describes the fourth meeting of that challenge, the High Resolution Laser Beam Recorder (HRLBR) for Reconnaissance/Tactical applications.« less

  18. Evaluation of Retinal and Choroidal Thickness by Swept-Source Optical Coherence Tomography: Repeatability and Assessment of Artifacts

    PubMed Central

    Mansouri, Kaweh; Medeiros, Felipe A.; Tatham, Andrew J.; Marchase, Nicholas; Weinreb, Robert N.

    2017-01-01

    PURPOSE To determine the repeatability of automated retinal and choroidal thickness measurements with swept-source optical coherence tomography (SS OCT) and the frequency and type of scan artifacts. DESIGN Prospective evaluation of new diagnostic technology. METHODS Thirty healthy subjects were recruited prospectively and underwent imaging with a prototype SS OCT instrument. Undilated scans of 54 eyes of 27 subjects (mean age, 35.1 ± 9.3 years) were obtained. Each subject had 4 SS OCT protocols repeated 3 times: 3-dimensional (3D) 6 × 6-mm raster scan of the optic disc and macula, radial, and line scan. Automated measurements were obtained through segmentation software. Interscan repeatability was assessed by intraclass correlation coefficients (ICCs). RESULTS ICCs for choroidal measurements were 0.92, 0.98, 0.80, and 0.91, respectively, for 3D macula, 3D optic disc, radial, and line scans. ICCs for retinal measurements were 0.39, 0.49, 0.71, and 0.69, respectively. Artifacts were present in up to 9% scans. Signal loss because of blinking was the most common artifact on 3D scans (optic disc scan, 7%; macula scan, 9%), whereas segmentation failure occurred in 4% of radial and 3% of line scans. When scans with image artifacts were excluded, ICCs for choroidal thickness increased to 0.95, 0.99, 0.87, and 0.93 for 3D macula, 3D optic disc, radial, and line scans, respectively. ICCs for retinal thickness increased to 0.88, 0.83, 0.89, and 0.76, respectively. CONCLUSIONS Improved repeatability of automated choroidal and retinal thickness measurements was found with the SS OCT after correction of scan artifacts. Recognition of scan artifacts is important for correct interpretation of SS OCT measurements. PMID:24531020

  19. Thematic mapper critical elements breadboard program

    NASA Technical Reports Server (NTRS)

    Dale, C. H., Jr.; Engel, J. L.; Harney, E. D.

    1976-01-01

    A 40.6 cm bidirectional scan mirror assembly, a scan line corrector and a silicon photodiode array with integral preamplifier input stages were designed, fabricated, and tested to demonstrate performance consistent with requirements of the Hughes thematic mapper system. The measured performance met or exceeded the original design goals in all cases with the qualification that well defined and well understood deficiencies in the design of the photodiode array package will require the prescribed corrections before flight use.

  20. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates

  1. Improved Real-Time Scan Matching Using Corner Features

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Moussa, A. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, Abu B.

    2016-06-01

    The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS) are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP), Iterative Matching Range Point (IMRP), Iterative Dual Correspondence (IDC), and Polar Scan Matching (PSM) handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters between the successive scan using least squares. These estimated transformation parameters are used to calculate an adjusted initialization for scan matching process. The presented method can be employed solely to match the successive scans and also can be used to aid other accustomed iterative methods to achieve more effective and faster converge. The performance and time consumption of the proposed approach is compared with ICP algorithm alone without initialization in different scenarios such as static period, fast straight movement, and sharp manoeuvers.

  2. A Method to Determine Angular Orientation of a Projectile Using a Polarization Scanning Reference Source

    NASA Astrophysics Data System (ADS)

    Kankipati, Venkata Varun

    This thesis presents a method to determine the angular orientation of a projectile in flight, by mechanically scanning a linearly polarized, microwave reference source. In particular, the research focuses on real time measurement of the roll angle. A 10 GHz, linearly polarized electromagnetic wave is radiated toward the projectile by means of a 10 dB horn antenna. The projectile is equipped with a backward facing 10 dB horn antenna, which has orientation, namely roll angle, sensitivity. The response of the received signal follows a cosine law, producing a maximum when the receiver orientation is aligned with the transmitting polarization. As expected, the peak response shifts in response to the roll-angle, however, unambiguous recovery of the angle requires synchronization with the polarization orientation of the source. This has been achieved through the use of a unique transmitter power sequence, which includes a start-of-scan and end-of-scan time stamp. Based on the above concept, a complete system comprising a polarization scanning reference source, the receiving antenna mounted on a vehicle, and pertinent electronic components, has been tested for both line of sight and non-line of sight applications. The transmitter antenna, mounted on a computer controlled stepper motor allowed source polarization to be scanned from -90° to 90° in 0.3 seconds. The receiving antenna continuously samples the received electromagnetic background at the source frequency and uses a RF detector and a data acquisition system to record the subsequent time-varying voltage signal, which is processed to recover the roll-angle. Measurements in an anechoic chamber were used to confirm the efficacy of the system and field trials, using a transmitter power of 2 W, were successfully demonstrated over a distance of 0.15 miles. The distance limit can be extended by increasing the transmitter power, receiver sensitivity and increase source frequency.

  3. Development of a fast temperature sensor for combustion gases using a single tunable diode laser

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Jeffries, J. B.; Hanson, R. K.

    2005-09-01

    The 12 best NIR water transition line pairs for temperature measurements with a single DFB laser in flames are determined by systematic analysis of the HITRAN simulation of the water spectra in the 1-2 μm spectral region. A specific line pair near 1.4 μm was targeted for non-intrusive measurements of gas temperature in combustion systems using a scanned-wavelength technique with wavelength modulation and 2f detection. This sensor uses a single diode laser (distributed-feedback), operating near 1.4 μm and is wavelength scanned over a pair of H2O absorption transitions (7154.354 cm-1 & 7153.748 cm-1) at a 2 kHz repetition rate. The wavelength is modulated (f=500 kHz) with modulation amplitude a=0.056 cm-1. Gas temperature is inferred from the ratio of the second harmonic signals of the two selected H2O transitions. The fiber-coupled-single-laser design makes the system compact, rugged, low cost and simple to assemble. As part of the sensor development effort, design rules were applied to optimize the line selection, and fundamental spectroscopic parameters of the selected transitions were determined via laboratory measurements including the temperature-dependent line strength, self-broadening coefficients, and air-broadening coefficients. The new sensor design includes considerations of hardware and software to enable fast data acquisition and analysis; a temperature readout rate of 2 kHz was demonstrated for measurements in a laboratory flame at atmospheric pressure. The combination of scanned-wavelength and wavelength-modulation minimizes interference from emission and beam steering, resulting in a robust temperature sensor that is promising for combustion control applications.

  4. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses.

    PubMed

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J

    2015-08-01

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.

  5. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J.

    2015-08-01

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.

  6. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  7. Quality Assurance By Laser Scanning And Imaging Techniques

    NASA Astrophysics Data System (ADS)

    SchmalfuB, Harald J.; Schinner, Karl Ludwig

    1989-03-01

    Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.

  8. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  9. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE PAGES

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin; ...

    2016-10-25

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  10. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. © 2012 American Institute of Physics

  11. Benefits And Humanisation Of The Working Environment By Using Laser Inspection Systems In The Industry

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Pietzsch, Karl; Feige, Christian

    1989-02-01

    At a time of rapid development, introduction of new technologies, and increasing world-wide competition, the quality specifications for products and materials becoming even more demanding. This also applies with regard to the avoidance of defects in the surfaces of materials. Consequently there is a need for systems which allow 100% in-line testing of materials and surfaces during the production of, e.g. textiles, data storage media, papers, films and metals. Thanks to its optical and electronical precision, its unlimited applications - even under the most severe conditions-and its absolutely constant acuity, compared with visual inspection, the Sick-Scan-System is an excellent means for improving quality and profits in industrial manufacture, reducing rejects production and thus providing even more customer satisfaction. Here we describe briefly our laser scanner technology. It will set new standards in the area of automatic inspection, and the term laser tested will stablish itself as a mark of quality. In the last few years laser scanning inspection systems have been further developed in collaboration with a large number of materials manufacturers. These systems have been adopted in modern production lines and demonstrate their economy.

  12. Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner

    NASA Astrophysics Data System (ADS)

    Jaeggi, Beat; Neuenschwander, Beat; Zimmermann, Markus; Zecherle, Markus; Boeckler, Ernst W.

    2016-03-01

    High accuracy, quality and throughput are key factors in laser micro machining. To obtain these goals the ablation process, the machining strategy and the scanning device have to be optimized. The precision is influenced by the accuracy of the galvo scanner and can further be enhanced by synchronizing the movement of the mirrors with the laser pulse train. To maintain a high machining quality i.e. minimum surface roughness, the pulse-to-pulse distance has also to be optimized. Highest ablation efficiency is obtained by choosing the proper laser peak fluence together with highest specific removal rate. The throughput can now be enhanced by simultaneously increasing the average power, the repetition rate as well as the scanning speed to preserve the fluence and the pulse-to-pulse distance. Therefore a high scanning speed is of essential importance. To guarantee the required excellent accuracy even at high scanning speeds a new interferometry based encoder technology was used, that provides a high quality signal for closed-loop control of the galvo scanner position. Low inertia encoder design enables a very dynamic scanner system, which can be driven to very high line speeds by a specially adapted control solution. We will present results with marking speeds up to 25 m/s using a f = 100 mm objective obtained with a new scanning system and scanner tuning maintaining a precision of about 5 μm. Further it will be shown that, especially for short line lengths, the machining time can be minimized by choosing the proper speed which has not to be the maximum one.

  13. Properties of the ellipse-line-ellipse trajectory with asymmetrical variations

    NASA Astrophysics Data System (ADS)

    Guo, Zijia; Noo, Frédéric; Maier, Andreas; Lauritsch, Guenter

    2016-03-01

    Three-dimensional cone-beam (CB) imaging using a multi-axis floor-mounted (or ceiling-mounted) C-arm system has become an important tool in interventional radiology. This success motivates new developments to improve image quality. One direction in which advancement is sought is the data acquisition geometry and related CB artifacts. Currently, data acquisition is performed using the circular short-scan trajectory, which yields limited axial coverage and also provides incomplete data for accurate reconstruction. To improve the image quality, as well as to increase the coverage in the longitudinal direction of the patient, we recently introduced the ellipse- line-ellipse trajectory and showed that this trajectory provides full R-line coverage within the field-of-view, which is a key property for accurate reconstruction from truncated data. An R-line is any segment of line that connects two source positions. Here, we examine how the application of asymmetrical variations to the definition of the ELE trajectory impacts the R-line coverage. This question is significant to understand how much flexibility can be used in the implementation of the ELE trajectory, particularly to adapt the scan to patient anatomy and imaging task of interest. Two types of asymmetrical variations, called axial and angular variations, are investigated.

  14. Pixel Dynamics Analysis of Photospheric Spectral Data

    DTIC Science & Technology

    2014-11-13

    absorption lines centered at 6301.5 Å and 6302.5 Å. The two smaller absorption lines are telluric lines. The analysis is carried out for a range of...cadence and consist of 251 scan lines. These two new sets of SOLIS VSM data also revealed more inconsistent instrument movements between scans, forcing us...SOLIS VSM instrument. The wavelength range shows two photospheric absorption lines, Fe I 6301.5 Å and Fe I 6302.5 Å ), and two smaller telluric

  15. SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W; Hua, C; Farr, J

    Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module ismore » located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.« less

  16. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  17. Maximum permissible exposure of the retina in the human eye in optical coherence tomography systems using a confocal scanning laser ophthalmoscopy platform

    NASA Astrophysics Data System (ADS)

    Rees, Sian; Dobre, George

    2014-01-01

    When using scanning laser ophthalmoscopy to produce images of the eye fundus, maximum permissible exposure (MPE) limits must be considered. These limits are set out in international standards such as the National Standards Institute ANSI Z136.1 Safe Use of Lasers (USA) and BS EN 60825-1: 1994 (UK) and corresponding Euro norms but these documents do not explicitly consider the case of scanned beams. Our study aims to show how MPE values can be calculated for the specific case of retinal scanning by taking into account an array of parameters, such as wavelength, exposure duration, type of scanning, line rate and field size, and how each set of initial parameters results in MPE values that correspond to thermal or photochemical damage to the retina.

  18. High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Wieser, Wolfgang; Draxinger, Wolfgang; Huber, Robert

    2015-07-01

    We present full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan with volume rates varying between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.

  19. Development of the scanning system to detect the concentration of oxy- and deoxy-hemoglobin by tracking the head

    NASA Astrophysics Data System (ADS)

    Ko, Woo Seok; Darwish, Naser; Gratton, Enrico; Kim, Soo Hyun

    2005-04-01

    We measure the concentration of oxy-, deoxy- and total hemoglobin by using the frequency-domain, near-infrared spectroscopy(NIRS) scanner. It is a non-invasive instrument that can provide real-time measurements of the changes in concentration. It can provide a diagnostic tool for the study of the brain in infants and children. However, it is difficult to apply it to the baby's head because of the contact of the probe on the soft baby's head. Therefore, we suggest the NIRS scanning system that can track the baby' head movement and detect NIRS parameters on the same position of the head. This system has three key components. The vision system performs the pattern matching for tracking the head by using the normalized cross correlation method with the target as a cross-line on the head during the diagnostic experiment. We can use the change of the position of the baby's head to re-target the light by the scanning system that uses four laser sources, a wavelength selector, and an x-y scanner. The detector system analyzes the resulting signal from the head using the diffusion model. Therefore, NIRS scanning system can provide a diagnostic tool to measure the changes of the NIRS parameters for the study of the baby's brain.

  20. Printing line/space patterns on nonplanar substrates using a digital micromirror device-based point-array scanning technique

    NASA Astrophysics Data System (ADS)

    Kuo, Hung-Fei; Kao, Guan-Hsuan; Zhu, Liang-Xiu; Hung, Kuo-Shu; Lin, Yu-Hsin

    2018-02-01

    This study used a digital micromirror device (DMD) to produce point-array patterns and employed a self-developed optical system to define line-and-space patterns on nonplanar substrates. First, field tracing was employed to analyze the aerial images of the lithographic system, which comprised an optical system and the DMD. Multiobjective particle swarm optimization was then applied to determine the spot overlapping rate used. The objective functions were set to minimize linewidth and maximize image log slope, through which the dose of the exposure agent could be effectively controlled and the quality of the nonplanar lithography could be enhanced. Laser beams with 405-nm wavelength were employed as the light source. Silicon substrates coated with photoresist were placed on a nonplanar translation stage. The DMD was used to produce lithographic patterns, during which the parameters were analyzed and optimized. The optimal delay time-sequence combinations were used to scan images of the patterns. Finally, an exposure linewidth of less than 10 μm was successfully achieved using the nonplanar lithographic process.

  1. Wireless multipoint communication for optical sensors in the industrial environment using the new Bluetooth standard

    NASA Astrophysics Data System (ADS)

    Hussmann, Stephan; Lau, Wing Y.; Chu, Terry; Grothof, Markus

    2003-07-01

    Traditionally, the measuring or monitoring system of manufacturing industries uses sensors, computers and screens for their quality control (Q.C.). The acquired information is fed back to the control room by wires, which - for obvious reason - are not suitable in many environments. This paper describes a method to solve this problem by employing the new Bluetooth technology to set up a complete new system, where a total wireless solution is made feasible. This new Q.C. system allows several line scan cameras to be connected at once to a graphical user interface (GUI) that can monitor the production process. There are many Bluetooth devices available on the market such as cell-phones, headsets, printers, PDA etc. However, the detailed application is a novel implementation in the industrial Q.C. area. This paper will contain more details about the Bluetooth standard and why it is used (nework topologies, host controller interface, data rates, etc.), the Bluetooth implemetation in the microcontroller of the line scan camera, and the GUI and its features.

  2. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  3. Intensity measurements for the /2, O/ gamma-band of O2, b 1Sigma-g/+/ - X 3Sigma-g/-/

    NASA Technical Reports Server (NTRS)

    Miller, J. H.; Giver, L. P.; Boese, R. W.

    1976-01-01

    Line intensities for the P sub P and P sub Q branches of the (2-O) vibrational band of the magnetic dipole electronic transition for the oxygen red system at 6280 A were measured, and the sum of the R sub R and R sub Q branch intensities was taken. A large number of repetitive spectral scans were required for accuracy, because of low absorption values even at optical path lengths from 300 to 600 m. A total of 557 individual measurements of P-branch lines yielded an intensity value for the P-branches, and equivalent widths for 24 spectral scans yielded an intensity value for the R-branch. R-branch to P-branch intensity ratios were taken for the A-band, B-band, and gamma-band (respectively, O-O at 7620 A, 1-O at 6880 A, and 2-O at 6280 A). Intensities for some rotational lines are found, and effects of combined rotation-vibration interaction are probed.

  4. Novel automatic detection of pleura and B-lines (comet-tail artifacts) on in vivo lung ultrasound scans

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Hansen, Kristoffer Lindskov; Møller Sørensen, Hasse; Hemmsen, Martin Christian; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a novel automatic method for detection of B-lines (comet-tail artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for analyzing the pulmonary edema. They appear as laser-like vertical beams, which arise from the pleural line and spread down without fading to the edge of the screen. An increase in their number is associated with presence of edema. All the scans used in this study were acquired using a BK3000 ultrasound scanner (BK Ultrasound, Denmark) driving a 192-element 5:5 MHz wide linear transducer (10L2W, BK Ultrasound). The dynamic received focus technique was employed to generate the sequences. Six subjects, among those three patients after major surgery and three normal subjects, were scanned once and Six ultrasound sequences each containing 50 frames were acquired. The proposed algorithm was applied to all 300 in-vivo lung ultrasound images. The pleural line is first segmented on each image and then the B-line artifacts spreading down from the pleural line are detected and overlayed on the image. The resulting 300 images showed that the mean lateral distance between B-lines detected on images acquired from patients decreased by 20% in compare with that of normal subjects. Therefore, the method can be used as the basis of a method of automatically and qualitatively characterizing the distribution of B-lines.

  5. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, C; Seduk, J; Yang, T

    Purpose: A prototype actives scanning beam delivery system was designed, manufactured and installed as a part of the Korea Heavy Ion Medical Accelerator Project. The prototype system includes the most components for steering, modulating, detecting incident beam to patient. The system was installed in MC-50 cyclotron beam line and tested to extract the normal operation conditions. Methods: The commissioning process was completed by using 45 MeV of proton beam. To measure the beam position accuracy along the scanning magnet power supply current, 25 different spots were scanning and measured. The scanning results on GaF film were compared with the irradiationmore » plan. Also, the beam size variation and the intensity reduction using range shifter were measured and analyzed. The results will be used for creating a conversion factors for asymmetric behavior of scanning magnets and a dose compensation factor for longitudinal direction. Results: The results show asymmetry operations on both scanning × and y magnet. In case of scanning magnet × operation, the current to position conversion factors were measured 1.69 mm/A for positive direction and 1.74 mm/A for negative direction. The scanning magnet y operation shows 1.38mm/A and 1.48 mm/A for both directions. The size of incoming beam which was 18 mm as sigma becomes larger up to 55 mm as sigma while using 10 mm of the range shifter plate. As the beam size becomes large, the maximum intensity of the was decreased. In case of using 10 mm of range shifter, the maximum intensity was only 52% compared with no range shifter insertion. Conclusion: For the appropriate operation of the prototype active scanning system, the commissioning process were performed to measure the beam characteristics variation. The obtained results would be applied on the irradiation planning software for more precise dose delivery using the active scanning system.« less

  7. Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús, E-mail: jesus.garduno@ccadet.unam.mx

    2015-08-15

    In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low powermore » consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.« less

  8. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    USDA-ARS?s Scientific Manuscript database

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0–2815 cm-1 using a detection mod...

  9. High-speed line-scan camera with digital time delay integration

    NASA Astrophysics Data System (ADS)

    Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert

    2007-02-01

    Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.

  10. Low Cost Beam-Steering Approach for a Series-Fed Array

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex and costly. This paper presents a concept which overcomes these detrimental attributes by eliminating all of the phased array backend (including phase shifters). Instead, a propagation constant reconfigurable transmission line in a series fed array arrangement is used to allow phase shifting with one small (less than or equal to 100mil) linear mechanical motion. A novel slotted coplanar stripline design improves on previous transmission lines by demonstrating a greater control of propagation constant, thus allowing practical prototypes to be built. Also, beam steering pattern control is explored. We show that with correct choice of line impedance, pattern control is possible for all scan angles. A 20 element array scanning from -25 deg less than or equal to theta less than or equal to 21 deg. with mostly uniform gain at 13GHz is presented. Measured patterns show a reduced scan range of 12 deg. less than or equal to theta less than or equal to 25 deg. due to a correctable manufacturing error as verified by simulation. Beam squint is measured to be plus or minus 2.5 deg for a 600MHz bandwidth and cross-pol is measured to be at least -15dB.

  11. Structure Line Detection from LIDAR Point Clouds Using Topological Elevation Analysis

    NASA Astrophysics Data System (ADS)

    Lo, C. Y.; Chen, L. C.

    2012-07-01

    Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and modeldriven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis (TEA) to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original threedimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds.

  12. Design and verification of the miniature optical system for small object surface profile fast scanning

    NASA Astrophysics Data System (ADS)

    Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi

    2016-04-01

    As the progress of optical technologies, different commercial 3D surface contour scanners are on the market nowadays. Most of them are used for reconstructing the surface profile of mold or mechanical objects which are larger than 50 mm×50 mm× 50 mm, and the scanning system size is about 300 mm×300 mm×100 mm. There are seldom optical systems commercialized for surface profile fast scanning for small object size less than 10 mm×10 mm×10 mm. Therefore, a miniature optical system has been designed and developed in this research work for this purpose. Since the most used scanning method of such system is line scan technology, we have developed pseudo-phase shifting digital projection technology by adopting projecting fringes and phase reconstruction method. A projector was used to project a digital fringe patterns on the object, and the fringes intensity images of the reference plane and of the sample object were recorded by a CMOS camera. The phase difference between the plane and object can be calculated from the fringes images, and the surface profile of the object was reconstructed by using the phase differences. The traditional phase shifting method was accomplished by using PZT actuator or precisely controlled motor to adjust the light source or grating and this is one of the limitations for high speed scanning. Compared with the traditional optical setup, we utilized a micro projector to project the digital fringe patterns on the sample. This diminished the phase shifting processing time and the controlled phase differences between the shifted phases become more precise. Besides, the optical path design based on a portable device scanning system was used to minimize the size and reduce the number of the system components. A screwdriver section about 7mm×5mm×5mm has been scanned and its surface profile was successfully restored. The experimental results showed that the measurement area of our system can be smaller than 10mm×10mm, the precision reached to +/-10μm, and the scanning time for each surface of an object was less than 15 seconds. This has proved that our system own the potential to be a fast scanning scanner for small object surface profile scanning.

  13. A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Conventional methods of spatially offset Raman spectroscopy (SORS) typically use single-fiber optical measurement probes to slowly and incrementally collect a series of spatially offset point measurements moving away from the laser excitation point on the sample surface, or arrays of multiple fiber ...

  14. Scanner imaging systems, aircraft

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.

    1982-01-01

    The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.

  15. Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology

    NASA Astrophysics Data System (ADS)

    Kim, Yonghoon; Lee, Hang W.; Cha, Seungnam; Lee, Jin-Ho; Park, Youngjun; Park, Jungho; Hong, Sung S.; Hwang, Young M.

    1997-07-01

    Full color laser projection display is realized on the large screen using a krypton-argon laser (white laser) as a light source, and acousto-optic devices as light modulators. The main wavelengths of red, green and blue color are 647, 515, and 488 nm separated by dichroic mirrors which are designed to obtain the best performance for the s-polarized beam with the 45 degree incident angle. The separated beams are modulated by three acousto-optic modulators driven by rf drivers which has energy level of 1 watt at 144 MHz and recombined by dichroic mirrors again. Acousto-optic modulators (AOM) are fabricated to satisfy high diffraction efficiency over 80% and fast rising time less than 50 ns at the video bandwidth of 5 MHz. The recombined three beams (RGB) are scanned by polygonal mirrors for horizontal lines and a galvanometer for vertical lines. The photodiode detection for monitoring of rotary polygonal mirrors is adopted in this system for the compensation of the tolerance in the mechanical scanning to prevent the image joggling in the horizontal direction. The laser projection display system described in this paper is expected to apply HDTV from the exploitation of the acousto- optic modulator with the video bandwidth of 30 MHz.

  16. All-optical laser spectral narrowing and line fixing at atomic absorption transition by injection competition and gain knock-down techniques

    NASA Astrophysics Data System (ADS)

    Gacheva, Lazarina I.; Deneva, Margarita A.; Kalbanov, Mihail H.; Nenchev, Marin N.

    2008-12-01

    We present two original, all optical techniques, to produce a narrowline laser light, fixed at the frequency of a chosen reference atomic absorption transition. The first type of systems is an essential improvement of our method 3,4 for laser spectral locking using a control by two frequency scanned, competitive injections with disturbed power ratio by the absorption at the reference line. The new development eliminates the narrowing limiting problem, related with the fixed laser longitudinal mode structure. We have proposed an original new technique for continuously tunable single mode laser operation in combination with synchronously and equal continuous tuning of the modes of the amplifier. By adapting the laser differential rate equations, the system is analyzed theoretically in details and is shown its feasibility. The results are in agreement with previous our experiments. The essential advantage, except simplicity of realization, is that the laser line can be of order of magnitude and more narrowed than the absorption linewidth. The second system is based of the laser amplifier arrangement with a gain knock-down from the competitive frequency scanned pulse, except at the wavelength of the desired absorption reference line. The essential advantages of the last system are that the problem of fixing laser mode presence is naturally avoided. The theoretical modeling and the numerical investigations show the peculiarity and advantages of the system proposed. The developed approaches are of interest for applications in spectroscopy, in DIAL monitoring of the atmospheric pollutants, in isotope separation system and potentially - for creation of simple, all optical, frequency standards for optical communications. Also, the continuously tunable single mode laser (and the combination with the simultaneously tunable amplifier) presents itself the interest for many practical applications in spectroscopy, metrology, and holography. We compare the action and the advantages of the two systems proposed.

  17. Real-Time Noise Removal for Line-Scanning Hyperspectral Devices Using a Minimum Noise Fraction-Based Approach

    PubMed Central

    Bjorgan, Asgeir; Randeberg, Lise Lyngsnes

    2015-01-01

    Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717

  18. Using the scanning electron microscope on the production line to assure quality semiconductors

    NASA Technical Reports Server (NTRS)

    Adolphsen, J. W.; Anstead, R. J.

    1972-01-01

    The use of the scanning electron microscope to detect metallization defects introduced during batch processing of semiconductor devices is discussed. A method of determining metallization integrity was developed which culminates in a procurement specification using the scanning microscope on the production line as a quality control tool. Batch process control of the metallization operation is monitored early in the manufacturing cycle.

  19. Laser scanning system for object monitoring

    DOEpatents

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  20. Study to Expand Simulation Cockpit Displays of Advanced Sensors

    DTIC Science & Technology

    1981-03-01

    common source is being used for multiple sensor types). If inde- pendent displays and controls are desired then two independent video sources or sensor...line is inserted in each gap, the result is the familiar 211 in- terlace. If two lines are inserted, the result is 31l interlace, and so on. The total...symbol generators. If these systems are oper- ating at various scan rates and if a common display device, such as a multifunction display (MFD) is to

  1. Design and evaluation of an intraocular B-scan OCT-guided 36-gauge needle

    NASA Astrophysics Data System (ADS)

    Shen, Jin H.; Joos, Karen M.

    2015-03-01

    Optical coherence tomography imaging is widely used in ophthalmology and optometry clinics for diagnosing retinal disorders. External microscope-mounted OCT operating room systems have imaged retinal changes immediately following surgical manipulations. However, the goal is to image critical surgical maneuvers in real time. External microscope-mounted OCT systems have some limitations with problems tracking constantly moving intraocular surgical instruments, and formation of absolute shadows by the metallic surgical instruments upon the underlying tissues of interest. An intraocular OCT-imaging probe was developed to resolve these problems. A disposable 25-gauge probe tip extended beyond the handpiece, with a 36-gauge needle welded to a disposable tip with its end extending an additional 3.5 mm. A sealed 0.35 mm diameter GRIN lens protected the fiber scanner and focused the scanning beam at a 3 to 4 mm distance. The OCT engine was a very high-resolution spectral-domain optical coherence tomography (SDOCT) system (870 nm, Bioptigen, Inc. Durham, NC) which produced 2000 A-scan lines per B-scan image at a frequency of 5 Hz with the fiber optic oscillations matched to this frequency. Real-time imaging of the needle tip as it touched infrared paper was performed. The B-scan OCT-needle was capable of real-time performance and imaging of the phantom material. In the future, the B-scan OCT-guided needle will be used to perform sub-retinal injections.

  2. A line fiducial method for geometric calibration of cone-beam CT systems with diverse scan trajectories

    NASA Astrophysics Data System (ADS)

    Jacobson, M. W.; Ketcha, M. D.; Capostagno, S.; Martin, A.; Uneri, A.; Goerres, J.; De Silva, T.; Reaungamornrat, S.; Han, R.; Manbachi, A.; Stayman, J. W.; Vogt, S.; Kleinszig, G.; Siewerdsen, J. H.

    2018-01-01

    Modern cone-beam CT systems, especially C-arms, are capable of diverse source-detector orbits. However, geometric calibration of these systems using conventional configurations of spherical fiducials (BBs) may be challenged for novel source-detector orbits and system geometries. In part, this is because the BB configurations are designed with careful forethought regarding the intended orbit so that BB marker projections do not overlap in projection views. Examples include helical arrangements of BBs (Rougee et al 1993 Proc. SPIE 1897 161-9) such that markers do not overlap in projections acquired from a circular orbit and circular arrangements of BBs (Cho et al 2005 Med. Phys. 32 968-83). As a more general alternative, this work proposes a calibration method based on an array of line-shaped, radio-opaque wire segments. With this method, geometric parameter estimation is accomplished by relating the 3D line equations representing the wires to the 2D line equations of their projections. The use of line fiducials simplifies many challenges with fiducial recognition and extraction in an orbit-independent manner. For example, their projections can overlap only mildly, for any gantry pose, as long as the wires are mutually non-coplanar in 3D. The method was tested in application to circular and non-circular trajectories in simulation and in real orbits executed using a mobile C-arm prototype for cone-beam CT. Results indicated high calibration accuracy, as measured by forward and backprojection/triangulation error metrics. Triangulation errors on the order of microns and backprojected ray deviations uniformly less than 0.2 mm were observed in both real and simulated orbits. Mean forward projection errors less than 0.1 mm were observed in a comprehensive sweep of different C-arm gantry angulations. Finally, successful integration of the method into a CT imaging chain was demonstrated in head phantom scans.

  3. High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina

    PubMed Central

    Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng

    2010-01-01

    A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743

  4. Multidirectional Scanning Model, MUSCLE, to Vectorize Raster Images with Straight Lines

    PubMed Central

    Karas, Ismail Rakip; Bayram, Bulent; Batuk, Fatmagul; Akay, Abdullah Emin; Baz, Ibrahim

    2008-01-01

    This paper presents a new model, MUSCLE (Multidirectional Scanning for Line Extraction), for automatic vectorization of raster images with straight lines. The algorithm of the model implements the line thinning and the simple neighborhood methods to perform vectorization. The model allows users to define specified criteria which are crucial for acquiring the vectorization process. In this model, various raster images can be vectorized such as township plans, maps, architectural drawings, and machine plans. The algorithm of the model was developed by implementing an appropriate computer programming and tested on a basic application. Results, verified by using two well known vectorization programs (WinTopo and Scan2CAD), indicated that the model can successfully vectorize the specified raster data quickly and accurately. PMID:27879843

  5. Multidirectional Scanning Model, MUSCLE, to Vectorize Raster Images with Straight Lines.

    PubMed

    Karas, Ismail Rakip; Bayram, Bulent; Batuk, Fatmagul; Akay, Abdullah Emin; Baz, Ibrahim

    2008-04-15

    This paper presents a new model, MUSCLE (Multidirectional Scanning for Line Extraction), for automatic vectorization of raster images with straight lines. The algorithm of the model implements the line thinning and the simple neighborhood methods to perform vectorization. The model allows users to define specified criteria which are crucial for acquiring the vectorization process. In this model, various raster images can be vectorized such as township plans, maps, architectural drawings, and machine plans. The algorithm of the model was developed by implementing an appropriate computer programming and tested on a basic application. Results, verified by using two well known vectorization programs (WinTopo and Scan2CAD), indicated that the model can successfully vectorize the specified raster data quickly and accurately.

  6. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    USDA-ARS?s Scientific Manuscript database

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  7. Whole-surface round object imaging method using line-scan hyperspectral imaging system

    USDA-ARS?s Scientific Manuscript database

    To achieve comprehensive online quality and safety inspection of fruits, whole-surface sample presentation and imaging regimes must be considered. Specifically, a round object sample presentation method is under development to achieve effective whole-surface sample evaluation based on the use of a s...

  8. Edge-following algorithm for tracking geological features

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.

    1977-01-01

    Sequential edge-tracking algorithm employs circular scanning to point permit effective real-time tracking of coastlines and rivers from earth resources satellites. Technique eliminates expensive high-resolution cameras. System might also be adaptable for application in monitoring automated assembly lines, inspecting conveyor belts, or analyzing thermographs, or x ray images.

  9. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    NASA Astrophysics Data System (ADS)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  10. A High Performance Micro Channel Interface for Real-Time Industrial Image Processing

    Treesearch

    Thomas H. Drayer; Joseph G. Tront; Richard W. Conners

    1995-01-01

    Data collection and transfer devices are critical to the performance of any machine vision system. The interface described in this paper collects image data from a color line scan camera and transfers the data obtained into the system memory of a Micro Channel-based host computer. A maximum data transfer rate of 20 Mbytes/sec can be achieved using the DMA capabilities...

  11. OCT-based angiography in real time with hand-held probe

    NASA Astrophysics Data System (ADS)

    Gelikonov, Grigory V.; Moiseev, Alexander A.; Ksenofontov, Sergey Y.; Terpelov, Dmitry A.; Gelikonov, Valentine M.

    2018-03-01

    This work is dedicated to development of the OCT system capable to visualize blood vessel network for everyday clinical use. Following problems were solved during the development: compensation of specific natural tissue displacements, induced by contact scanning mode and physiological motion of patients (e.g. respiratory and cardiac motions) and on-line visualization of vessel net to provide the feedback for system operator.

  12. Phase-locked-loop-based delay-line-free picosecond electro-optic sampling system

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2003-04-01

    A delay-line-free, high-speed electro-optic sampling (EOS) system is proposed by employing a delay-time-controlled ultrafast laser diode as the optical probe. Versatile optoelectronic delay-time controllers (ODTCs) based on modified voltage-controlled phase-locked-loop phase-shifting technologies are designed for the laser. The integration of the ODTC circuit and the pulsed laser diode has replaced the traditional optomechanical delay-line module used in the conventional EOS system. This design essentially prevents sampling distortion from misalignment of the probe beam, and overcomes the difficulty in sampling free-running high-speed transients. The maximum tuning range, error, scanning speed, tuning responsivity, and resolution of the ODTC are 3.9π (700°), <5% deviation, 25-2405 ns/s, 0.557 ps/mV, and ˜1 ps, respectively. Free-running wave forms from the analog, digital, and pulsed microwave signals are sampled and compared with those measured by the commercial apparatus.

  13. Computerized literature reference system: use of an optical scanner and optical character recognition software.

    PubMed

    Lossef, S V; Schwartz, L H

    1990-09-01

    A computerized reference system for radiology journal articles was developed by using an IBM-compatible personal computer with a hand-held optical scanner and optical character recognition software. This allows direct entry of scanned text from printed material into word processing or data-base files. Additionally, line diagrams and photographs of radiographs can be incorporated into these files. A text search and retrieval software program enables rapid searching for keywords in scanned documents. The hand scanner and software programs are commercially available, relatively inexpensive, and easily used. This permits construction of a personalized radiology literature file of readily accessible text and images requiring minimal typing or keystroke entry.

  14. Wide-field high-performance geosynchronous imaging

    NASA Astrophysics Data System (ADS)

    Wood, H. John; Jenstrom, Del; Wilson, Mark; Hinkal, Sanford; Kirchman, Frank

    1998-01-01

    The NASA Mission to Planet Earth (MTPE) Program and the National Oceanographic and Atmospheric Administration (NOAA) are sponsoring the Advanced Geosynchronous Studies (AGS) to develop technologies and system concepts for Earth observation from geosynchronous orbit. This series of studies is intended to benefit both MTPE science and the NOAA GOES Program. Within the AGS program, advanced imager trade studies have investigated two candidate concepts for near-term advanced geosynchronous imagers. One concept uses a scan mirror to direct the line of sight from a 3-axis stabilized platform. Another eliminates the need for a scan mirror by using an agile spacecraft bus to scan the entire instrument. The purpose of this paper is to discuss the optical design trades and system issues encountered in evaluating the two scanning approaches. The imager design started with a look at first principles: what is the most efficient way to image the Earth in those numerous spectral bands of interest to MTPE scientists and NOAA weather forecasters. Optical design trades included rotating filter wheels and dispersive grating instruments. The design converged on a bandpass filter instrument using four focal planes to cover the spectral range 0.45 to 13.0 micrometers. The first imager design uses a small agile spacecraft supporting an afocal optical telescope. Dichroic beamsplitters feed refractive objectives to four focal planes. The detectors are a series of long linear and rectangular arrays which are scanned in a raster fashion over the 17 degree Earth image. The use of the spacecraft attitude control system to raster the imager field-of-view (FOV) back and forth over the Earth eliminates the need for a scan mirror. However, the price paid is significant energy and time required to reverse the spacecraft slew motions at the end of each scan line. Hence, it is desired to minimize the number of scan lines needed to cover the full Earth disk. This desire, coupled with the ground coverage requirements, drives the telescope design to a 1.6 degree square FOV to provide full Earth disk coverage in less than 12 swaths. The telescope design to accommodate the FOV and image quality requirements is a 30 cm aperture three-element off-axis anastigmat. The size and mass of the imager instrument that result from this optical configuration are larger than desired. But spacecraft reaction wheel torque and power requirements to raster the imager FOV are achievable using existing spacecraft technology. However, launch mass and cost are higher than desired. In the second high-level trade study, the AGS imager team is looking at incorporating a scan mirror and having the satellite three-axis stabilized. The use of the scan mirror eliminates the long turn-around times of the spacecraft scanning approach, allowing for faster Earth coverage. Thus the field of view of the afocal telescope can be reduced by half while still satisfying ground coverage requirements. The optical design of the reduced field afocal telescope is being studied to shrink its size and improve its performance. Both a three-mirror Cassegrain afocal and a two-mirror pair of confocal paraboloids are being considered. With either telescope, the size, mass, and power requirements of this imager are significantly less than those of the first imager design. Both imager designs appear to be feasible and both meet envisioned MTPE and NOAA geosynchronous imaging needs. The AGS imager team is continuing to explore the optical trade space to further optimize imager designs.

  15. Optical detection of metastatic cancer cells using a scanned laser pico-projection system

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Ling; Chiu, Wen-Tai; Lo, Yu-Lung; Chuang, Chin-Ho; Chen, Yu-Bin; Chang, Shu-Jing; Ke, Tung-Ting; Cheng, Hung-Chi; Wu, Hua-Lin

    2015-03-01

    Metastasis is responsible for 90% of all cancer-related deaths in humans. As a result, reliable techniques for detecting metastatic cells are urgently required. Although various techniques have been proposed for metastasis detection, they are generally capable of detecting metastatic cells only once migration has already occurred. Accordingly, the present study proposes an optical method for physical characterization of metastatic cancer cells using a scanned laser pico-projection system (SLPP). The validity of the proposed method is demonstrated using five pairs of cancer cell lines and two pairs of non-cancer cell lines treated by IPTG induction in order to mimic normal cells with an overexpression of oncogene. The results show that for all of the considered cell lines, the SLPP speckle contrast of the high-metastatic cells is significantly higher than that of the low-metastatic cells. As a result, the speckle contrast measurement provides a reliable means of distinguishing quantitatively between low- and high-metastatic cells of the same origin. Compared to existing metastasis detection methods, the proposed SLPP approach has many advantages, including a higher throughput, a lower cost, a larger sample size and a more reliable diagnostic performance. As a result, it provides a highly promising solution for physical characterization of metastatic cancer cells in vitro.

  16. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  17. Use of scan overlap redundancy to enhance multispectral aircraft scanner data

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Keat, J.

    1973-01-01

    Two criteria were suggested for optimizing the resolution error versus signal-to-noise-ratio tradeoff. The first criterion uses equal weighting coefficients and chooses n, the number of lines averaged, so as to make the average resolution error equal to the noise error. The second criterion adjusts both the number and relative sizes of the weighting coefficients so as to minimize the total error (resolution error plus noise error). The optimum set of coefficients depends upon the geometry of the resolution element, the number of redundant scan lines, the scan line increment, and the original signal-to-noise ratio of the channel. Programs were developed to find the optimum number and relative weights of the averaging coefficients. A working definition of signal-to-noise ratio was given and used to try line averaging on a typical set of data. Line averaging was evaluated only with respect to its effect on classification accuracy.

  18. Non-contact single shot elastography using line field low coherence holography

    PubMed Central

    Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V.

    2016-01-01

    Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694

  19. Flat Terahertz Reflective Focusing Metasurface with Scanning Ability.

    PubMed

    Yi, Huan; Qu, Shi-Wei; Chen, Bao-Jie; Bai, Xue; Ng, Kung Bo; Chan, Chi Hou

    2017-06-14

    The ability to manipulate the propagation properties of electromagnetic waves, e.g., divergence, focusing, holography or deflection, is very significant in terahertz applications. Metasurfaces with flat structures are attractive for achieving such manipulations in terahertz band, as they feature low profile, lightweight, and ease of design and installation. Several types of terahertz reflective or transmitting metasurfaces with focusing function have been implemented recently, but none of them can provide scanning ability with controllable focus. Here, a flat reflective metasurface featuring controllable focal shift is proposed and experimentally demonstrated. Furthermore, the principle of designing a focus scanning reflective metasurface is presented and the focusing characteristics are discussed, including focus scanning along a line parallel or orthogonal to the metasurface with a large bandwidth. These interesting properties indicate that this flat reflective metasurface could play a key role in many terahertz imaging and detection systems.

  20. A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Rhodes, D. B.

    1980-01-01

    A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

  1. Agent-based station for on-line diagnostics by self-adaptive laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Serafini, S.; Paone, N.; Castellini, P.

    2013-12-01

    A self-adaptive diagnostic system based on laser vibrometry is proposed for quality control of mechanical defects by vibration testing; it is developed for appliances at the end of an assembly line, but its characteristics are generally suited for testing most types of electromechanical products. It consists of a laser Doppler vibrometer, equipped with scanning mirrors and a camera, which implements self-adaptive bahaviour for optimizing the measurement. The system is conceived as a Quality Control Agent (QCA) and it is part of a Multi Agent System that supervises all the production line. The QCA behaviour is defined so to minimize measurement uncertainty during the on-line tests and to compensate target mis-positioning under guidance of a vision system. Best measurement conditions are reached by maximizing the amplitude of the optical Doppler beat signal (signal quality) and consequently minimize uncertainty. In this paper, the optimization strategy for measurement enhancement achieved by the down-hill algorithm (Nelder-Mead algorithm) and its effect on signal quality improvement is discussed. Tests on a washing machine in controlled operating conditions allow to evaluate the efficacy of the method; significant reduction of noise on vibration velocity spectra is observed. Results from on-line tests are presented, which demonstrate the potential of the system for industrial quality control.

  2. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device.

    PubMed

    Park, Jong Kang; Rowlands, Christopher J; So, Peter T C

    2017-01-01

    Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.

  3. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device

    PubMed Central

    Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.

    2017-01-01

    Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484

  4. Sensor for In-Motion Continuous 3D Shape Measurement Based on Dual Line-Scan Cameras

    PubMed Central

    Sun, Bo; Zhu, Jigui; Yang, Linghui; Yang, Shourui; Guo, Yin

    2016-01-01

    The acquisition of three-dimensional surface data plays an increasingly important role in the industrial sector. Numerous 3D shape measurement techniques have been developed. However, there are still limitations and challenges in fast measurement of large-scale objects or high-speed moving objects. The innovative line scan technology opens up new potentialities owing to the ultra-high resolution and line rate. To this end, a sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras is presented. In this paper, the principle and structure of the sensor are investigated. The image matching strategy is addressed and the matching error is analyzed. The sensor has been verified by experiments and high-quality results are obtained. PMID:27869731

  5. The effectiveness of incorporating a real-time oculometer system in a commercial flight training program

    NASA Technical Reports Server (NTRS)

    Jones, D. H.; Coates, G. D.; Kirby, R. H.

    1983-01-01

    The effectiveness of incroporating a real-time oculometer system into a Boeing 737 commercial flight training program was studied. The study combined a specialized oculometer system with sophisticated video equipment that would allow instructor pilots (IPs) to monitor pilot and copilot trainees' instrument scan behavior in real-time, and provide each trainee with video tapes of his/her instrument scanning behavior for each training session. The IPs' performance ratings and trainees' self-ratings were compared to the performance ratings by IPs and trainees in a control group. The results indicate no difference in IP ratings or trainees' self-ratings for the control and experimental groups. The results indicated that the major beneficial role of a real-time oculometer system for pilots and copilots having a significant amount of flight experience would be for problem solving or refinement of instrument scanning behavior rather than a general instructional scheme. It is suggested that this line of research be continued with the incorporation of objective data (e.g., state of the aircraft data), measures of cost effectiveness and with trainees having less flight experience.

  6. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    PubMed

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  7. Clinical recommendation for treatment planning of sinus augmentation procedures by using presurgical CAT scan images: a preliminary report.

    PubMed

    Kutkut, Ahmad M; Andreana, Sebastiano; Kim, Hyeong-Ll; Monaco, Edward

    2011-12-01

    To propose a clinical recommendation based on anatomy of maxillary sinus before sinus augmentation procedure using presurgical computerized axial tomography (CAT) scan images. CAT scan images were randomly selected from previous completed implant cases. Proposed area for the lateral window osteotomy was outlined on the panorex image of the CAT scan. Sagittal section on the CAT scan that was in the center of the outlined window was selected for sinus measurement analysis. On CAT scan, 2 lines were drawn to measure the dimensions of sinus. One line measured the horizontal width and the other line measured the vertical height. Based on the measurement data, a classification of the maxillary sinus anatomy was proposed. Narrow sinus cavity indicates favorable type anatomy in terms of bone regeneration healing and wide sinus cavity as less favorable anatomy for patient treatment planning. A narrow sinus and greater exposure to the blood supply should require shorter healing times after grafting. Conversely, wider sinus cavities and less exposure to the blood supply would require a longer healing time before implant placement.

  8. Line-scan hyperspectral imaging techniques for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging technologies in the food and agricultural area have been evolved rapidly during the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed in diffe...

  9. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  10. Modulation transfer function cascade model for a sampled IR imaging system.

    PubMed

    de Luca, L; Cardone, G

    1991-05-01

    The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.

  11. A design of a high speed dual spectrometer by single line scan camera

    NASA Astrophysics Data System (ADS)

    Palawong, Kunakorn; Meemon, Panomsak

    2018-03-01

    A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.

  12. Backside illuminated CMOS-TDI line scan sensor for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  13. Building a Case for Conducting Technology Surveys On-Line.

    ERIC Educational Resources Information Center

    Denton, Jon J.; Strader, Arlen

    A Technology in Texas Public Schools 1998 Survey instrument was integrated into a Web-based response system enabling the instrument to be accessed, completed, submitted, and instantaneously analyzed over the Internet. A mark-sense or optical scan paper version of the instrument was also developed for mail-out distribution to each school district…

  14. Transmittance of MCF-7 breast tumor cell line through visible and near infrared spectrum

    NASA Astrophysics Data System (ADS)

    Tabakoǧlu, H. Ã.-zgür

    2016-03-01

    In this study, light transmittance of MCF-7 tumor cells from 450 nm to 1100 nm has been measured in their growing medium and evaluated. Transmittance differences have been tried to be put forward in cancer cell line on visible (VIS) and near infrared (NIR) spectrum as well as in between different numbers of cells in medium. An absorption-reflection spectrophotometer was used in the experiments. System has a tungsten light source, optical chopper, a monochromator, sample chamber, silicon detectors, lock-in amplifier and computer. System was controlled by software in order to adjust scan range, scan steps and grating configuration. Cells were grown in medium, and measurements were taken from cells while they were in 5 ml medium. According to our findings, there are significant differences between VIS and NIR regions for the same number of cells. There were found no statistical difference among different numbers of cells. Increasing number of cells has not affected the transmittance. Transmittance of medium is not significantly different from different concentration of cells.

  15. NIKOS II - A System For Non-Invasive Imaging Of Coronary Arteries With Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Dix, Wolf-Rainer; Engelke, Klaus; Heuer, Joachim; Graeff, Walter; Kupper, Wolfram; Lohmann, Michael; Makin, I.; Moechel, Thomas; Reumann, Reinhold

    1989-10-01

    Aim of the work is the visualization of coronary arteries down to 1 mm diameter with an iodine mass density of 1 mg/cm , thus allowing non-invasive investigations by intravenous injection of the contrast agent. Digital Subtraction Angiography (DSA) in energy subtraction mode (dichromography) is employed for this purpose. The two images Cor subtraction are taken at photon energies just below and above the iodine K-edge (33.17 keV). After subtraction the background contrast - such as bone and soft tissue - is suppressed and the iodinated structures are strongly enhanced because of the abrupt change of absorption at the edge. The two monoenergetic beams (bandwidth about 250 eV) with high intensity (about 1011 photons/mm /s) are only available if synchrotron radiation is used. In HASYLAB at DESY (Hamburg, FRG) the system NIKOS was developed for dichromography. It consists of six main parts: A wiggler beam line, a monochromator which filters the two 12 cm wide beams out of the white synchrotron radiation beam, a fast scanning device, a fast low-noise two-line detector, a safety system and a computer system. At present, one scan (two images) lasts 1 s. The images from the in-vivo investigations of dogs have been promising. The right coronary artery (diameter 1.5 mm) was clearly visible.

  16. In-line interferometer for broadband near-field scanning optical spectroscopy.

    PubMed

    Brauer, Jens; Zhan, Jinxin; Chimeh, Abbas; Korte, Anke; Lienau, Christoph; Gross, Petra

    2017-06-26

    We present and investigate a novel approach towards broad-bandwidth near-field scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the near field and a reference field. In scattering-type scanning near-field optical spectroscopy, the near-field signal is usually obscured by a large amount of unwanted background scattering from the probe shaft and the sample. Here we increase the light reflected from the sample by a semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to amplify the near-field signal in the visible and near-infrared spectral range. We experimentally demonstrate that this efficiently suppresses the unwanted background signal in monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth spectra we employ a monochromator and a fast line camera. Using this fast acquisition of spectra and the in-line interferometer we demonstrate the measurement of pure near-field spectra. The experimental observations are quantitatively explained by analytical expressions for the measured optical signals, based on Fourier decomposition of background and near field. The theoretical model and in-line interferometer together form an important step towards broad-bandwidth near-field scanning optical spectroscopy.

  17. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping.

    PubMed

    Jaakkola, Anttoni; Hyyppä, Juha; Hyyppä, Hannu; Kukko, Antero

    2008-09-01

    Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  18. Application of the high resolution return beam vidicon

    NASA Technical Reports Server (NTRS)

    Cantella, M. J.

    1977-01-01

    The Return Beam Vidicon (RBV) is a high-performance electronic image sensor and electrical storage component. It can accept continuous or discrete exposures. Information can be read out with a single scan or with many repetitive scans for either signal processing or display. Resolution capability is 10,000 TV lines/height, and at 100 lp/mm, performance matches or exceeds that of film, particularly with low-contrast imagery. Electronic zoom can be employed effectively for image magnification and data compression. The high performance and flexibility of the RBV permit wide application in systems for reconnaissance, scan conversion, information storage and retrieval, and automatic inspection and test. This paper summarizes the characteristics and performance parameters of the RBV and cites examples of feasible applications.

  19. Line-scan spectrum-encoded imaging by dual-comb interferometry.

    PubMed

    Wang, Chao; Deng, Zejiang; Gu, Chenglin; Liu, Yang; Luo, Daping; Zhu, Zhiwei; Li, Wenxue; Zeng, Heping

    2018-04-01

    Herein, the method of spectrum-encoded dual-comb interferometry is introduced to measure a three-dimensional (3-D) profile with absolute distance information. By combining spectral encoding for wavelength-to-space mapping, dual-comb interferometry for decoding and optical reference for calibration, this system can obtain a 3-D profile of an object at a stand-off distance of 114 mm with a depth precision of 12 μm. With the help of the reference arm, the absolute distance, reflectivity distribution, and depth information are simultaneously measured at a 5 kHz line-scan rate with free-running carrier-envelope offset frequencies. To verify the concept, experiments are conducted with multiple objects, including a resolution test chart, a three-stair structure, and a designed "ECNU" letter chain. The results show a horizontal resolution of ∼22  μm and a measurement range of 1.93 mm.

  20. Two-dimensional laser servoing for precision motion control of an ODV robotic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Moore, Kevin L.; Chen, YangQuan; Bahl, Vikas

    2003-09-01

    As an outgrowth of series of projects focused on mobility of unmanned ground vehicles (UGV), an omni-directional (ODV), multi-robot, autonomous mobile parking security system has been developed. The system has two types of robots: the low-profile Omni-Directional Inspection System (ODIS), which can be used for under-vehicle inspections, and the mid-sized T4 robot, which serves as a ``marsupial mothership'' for the ODIS vehicles and performs coarse resolution inspection. A key task for the T4 robot is license plate recognition (LPR). For a successful LPR task without compromising the recognition rate, the robot must be able to identify the bumper locations of vehicles in the parking area and then precisely position the LPR camera relative to the bumper. This paper describes a 2D-laser scanner based approach to bumper identification and laser servoing for the T4 robot. The system uses a gimbal-mounted scanning laser. As the T4 robot travels down a row of parking stalls, data is collected from the laser every 100ms. For each parking stall in the range of the laser during the scan, the data is matched to a ``bumper box'' corresponding to where a car bumper is expected, resulting in a point cloud of data corresponding to a vehicle bumper for each stall. Next, recursive line-fitting algorithms are used to determine a line for the data in each stall's ``bumper box.'' The fitting technique uses Hough based transforms, which are robust against segmentation problems and fast enough for real-time line fitting. Once a bumper line is fitted with an acceptable confidence, the bumper location is passed to the T4 motion controller, which moves to position the LPR camera properly relative to the bumper. The paper includes examples and results that show the effectiveness of the technique, including its ability to work in real-time.

  1. Simulating Various Terrestrial and Uav LIDAR Scanning Configurations for Understory Forest Structure Modelling

    NASA Astrophysics Data System (ADS)

    Hämmerle, M.; Lukač, N.; Chen, K.-C.; Koma, Zs.; Wang, C.-K.; Anders, K.; Höfle, B.

    2017-09-01

    Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations). However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS) or laser scanning from unmanned aerial vehicle platforms (ULS). A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1) the height of individual understory trees and (2) understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height) for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %). Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %). The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  2. Comparison of divided and full pupil configurations for line-scanning confocal microscopy in human skin and oral mucosa

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg; Abeytunge, Sanjeewa; Glazowski, Chris; Rajadhyaksha, Milind

    2012-02-01

    Confocal point-scanning microscopy has been showing promise in the detection, diagnosing and mapping of skin lesions in clinical settings. The noninvasive technique allows provides optical sectioning and cellular resolution for in vivo diagnosis of melanoma and basal cell carcinoma and pre-operative and intra-operative mapping of margins. The imaging has also enabled more accurate "guided" biopsies while minimizing the otherwise large number of "blind" biopsies. Despite these translational advances, however, point-scanning technology remains relatively complex and expensive. Line-scanning technology may offer an alternative approach to accelerate translation to the clinic. Line-scanning, using fewer optical components, inexpensive linear-array detectors and custom electronics, may enable smaller, simpler and lower-cost confocal microscopes. A line is formed using a cylindrical lens and scanned through the back focal plane of the objective with a galvanometric scanner. A linear CCD is used for detection. Two pupil configurations were compared for performance in imaging human tissue. In the full-pupil configuration, illumination and detection is made through the full objective pupil. In the divided pupil approach, half the pupil is illuminated and the other half is used for detection. The divided pupil configuration loses spatial and axial resolution due to a diminished NA, but the sectioning capability and rejection of background is improved. Imaging in skin and oral mucosa illustrate the performance of the two configurations.

  3. The external scanning proton microprobe of Firenze: A comprehensive description

    NASA Astrophysics Data System (ADS)

    Giuntini, L.; Massi, M.; Calusi, S.

    2007-06-01

    An external proton scanning microbeam setup is installed on the -30° line of the new 3 MV tandem accelerator in Firenze; the most relevant features of the line, such as detection setup for IBA measurements, target viewing system, beam diagnostic and transport are described here. With our facility we can work with a beam spot on sample better than 10 μm full-width half-maximum (FWHM) and an intensity of some nanoamperes. Standard beam exit windows are silicon nitride (Si 3N 4) TEM membranes, 100 nm thick and 0.5×0.5 mm 2 wide; we also successfully performed measurements using membranes 1×1 mm 2 wide, 100 nm thick, and 2×2 mm 2 wide, 200 and 500 nm thick. Exploiting the yield of Si X-rays produced by the beam in the exit window as an indirect measurement of the charge, a beam charge monitor system was implemented. The analytical capabilities of the microbeam have been extended by integrating a two-detector PIXE setup with BS and PIGE detectors; the external scanning proton microprobe in Firenze is thus a powerful instrument to fully characterize samples by ion beam analysis, through the simultaneous collection of PIXE, PIGE and BS elemental maps. Its characteristics can make it often competitive with traditional in vacuum microbeam for measurements of thick targets.

  4. Cable and Line Inspection Mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  5. Cable and line inspection mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  6. PINPIN a-Si:H based structures for X-ray image detection using the laser scanning technique

    NASA Astrophysics Data System (ADS)

    Fernandes, M.; Vygranenko, Y.; Vieira, M.

    2015-05-01

    Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented.

  7. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  8. Methods for destriping Landsat Thematic Mapper images - A feasibility study for an online destriping process in the Thematic Mapper Image Processing System (TIPS)

    NASA Technical Reports Server (NTRS)

    Poros, D. J.; Peterson, C. J.

    1985-01-01

    Methods for destriping TM images and results of the application of these methods to selected TM scenes with sensor and scan striping, which was not removed by the radiometric correction during the TM Archive Generation Phase in TIPS, are presented. These methods correct only for gain and offset differences between detectors over many image lines and do not consider within-line effects. The feasibility of implementing a destriping process online in TIPS is also described.

  9. A scan-angle correction for thermal infrared multispectral data using side lapping images

    USGS Publications Warehouse

    Watson, K.

    1996-01-01

    Thermal infrared multispectral scanner (TIMS) images, acquired with side lapping flight lines, provide dual angle observations of the same area on the ground and can thus be used to estimate variations in the atmospheric transmission with scan angle. The method was tested using TIMS aircraft data for six flight lines with about 30% sidelap for an area within Joshua Tree National Park, California. Generally the results correspond to predictions for the transmission scan-angle coefficient based on a standard atmospheric model although some differences were observed at the longer wavelength channels. A change was detected for the last pair of lines that may indicate either spatial or temporal atmospheric variation. The results demonstrate that the method provides information for correcting regional survey data (requiring multiple adjacent flight lines) that can be important in detecting subtle changes in lithology.

  10. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ChemScan UV-6100 is a spectrometry system originally developed by Biotronics Technologies, Inc. under a Small Business Innovation Research (SBIR) contract. It is marketed to the water and wastewater treatment industries, replacing "grab sampling" with on-line data collection. It analyzes the light absorbance characteristics of a water sample, simultaneously detects hundreds of individual wavelengths absorbed by chemical substances in a process solution, and quantifies the information. Spectral data is then processed by ChemScan analyzer and compared with calibration files in the system's memory in order to calculate concentrations of chemical substances that cause UV light absorbance in specific patterns. Monitored substances can be analyzed for quality and quantity. Applications include detection of a variety of substances, and the information provided enables an operator to control a process more efficiently.

  11. ADS's Dexter Data Extraction Applet

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Accomazzi, A.; Eichhorn, G.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template. This contribution both describes the operation of Dexter from a user's point of view and discusses some of the architectural issues we faced during implementation.

  12. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  13. Advanced sensor-simulation capability

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.

    1990-09-01

    This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.

  14. System and process for ultrasonic characterization of deformed structures

    DOEpatents

    Panetta, Paul D [Williamsburg, VA; Morra, Marino [Richland, WA; Johnson, Kenneth I [Richland, WA

    2011-11-22

    Generally speaking, the method of the present invention is performed by making various ultrasonic scans at preselected orientations along the length of a material being tested. Data from the scans are then plotted together with various calculated parameters that are calculated from this data. Lines or curves are then fitted to the respective plotted points. Review of these plotted curves allows the location and severity of defects within these sections to be determined and quantified. With this information various other decisions related to how, when or whether repair or replacement of a particular portion of a structure can be made.

  15. Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning.

    PubMed

    Domingue, S R; Winters, D G; Bartels, R A

    2014-07-15

    Using a spinning window pump-probe delay scanner, we demonstrate a means of acquiring time-resolved vibrational spectra at rates up to 700 Hz. The time-dependent phase shift accumulated by the probe pulse in the presence of a coherently vibrating sample gives rise to a Raman-induced frequency shifting readily detectable in a balanced detector. This rapid delay scanning system represents a 23-fold increase in averaging speed and is >10× faster than state-of-the-art voice coil delay lines. These advancements make pump-probe spectroscopy a more practical means of imaging complex media.

  16. Astrometric properties of the Tautenburg Plate Scanner

    NASA Astrophysics Data System (ADS)

    Brunzendorf, Jens; Meusinger, Helmut

    The Tautenburg Plate Scanner (TPS) is an advanced plate-measuring machine run by the Thüringer Landessternwarte Tautenburg (Karl Schwarzschild Observatory), where the machine is housed. It is capable of digitising photographic plates up to 30 cm × 30 cm in size. In our poster, we reported on tests and preliminary results of its astrometric properties. The essential components of the TPS consist of an x-y table movable between an illumination system and a direct imaging system. A telecentric lens images the light transmitted through the photographic emulsion onto a CCD line of 6000 pixels of 10 µm square size each. All components are mounted on a massive air-bearing table. Scanning is performed in lanes of up to 55 mm width by moving the x-y table in a continuous drift-scan mode perpendicular to the CCD line. The analogue output from the CCD is digitised to 12 bit with a total signal/noise ratio of 1000 : 1, corresponding to a photographic density range of three. The pixel map is produced as a series of optionally overlapping lane scans. The pixel data are stored onto CD-ROM or DAT. A Tautenburg Schmidt plate 24 cm × 24 cm in size is digitised within 2.5 hours resulting in 1.3 GB of data. Subsequent high-level data processing is performed off-line on other computers. During the scanning process, the geometry of the optical components is kept fixed. The optimal focussing of the optics is performed prior to the scan. Due to the telecentric lens refocussing is not required. Therefore, the main source of astrometric errors (beside the emulsion itself) are mechanical imperfections in the drive system, which have to be divided into random and systematic ones. The r.m.s. repeatability over the whole plate as measured by repeated scans of the same plate is about 0.5 µm for each axis. The mean plate-to-plate accuracy of the object positions on two plates with the same epoch and the same plate centre has been determined to be about 1 µm. This accuracy is comparable to results obtained with established measuring machines used for astrometric purposes and is mainly limited by the emulsion itself. The mechanical design of the x-y table introduces low-frequency systematic errors of up to 5 µm on both axes. Because of the high stability of the machine it is expected that these deviations from a perfectly uniform coordinate system will remain systematic on a long timescale. Such systematic errors can be corrected either directly once they have been determined or in the course of the general astrometric reduction process. The TPS is well suited for accurate relative measurements like proper motions on plates with the same scale and plate centre. The systematic errors of the x-y table can be determined by interferometric means, and there are plans for this in the next future.

  17. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  18. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  19. The development of line-scan image recognition algorithms for the detection of frass on mature tomatoes

    USDA-ARS?s Scientific Manuscript database

    In this research, a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet LED excitation was developed for the detection of frass contamination on mature tomatoes. The algorithm utilized the fluorescence intensities at two wavebands, 664 nm and 690 nm, for co...

  20. Line-scan Raman imaging and spectroscopy platform for surface and subsurface evaluation of food safety and quality

    USDA-ARS?s Scientific Manuscript database

    Both surface and subsurface food inspection is important since interesting safety and quality attributes can be at different sample locations. This paper presents a multipurpose line-scan Raman platform for food safety and quality research, which can be configured for Raman chemical imaging (RCI) mo...

  1. Improved spatial resolution of luminescence images acquired with a silicon line scanning camera

    NASA Astrophysics Data System (ADS)

    Teal, Anthony; Mitchell, Bernhard; Juhl, Mattias K.

    2018-04-01

    Luminescence imaging is currently being used to provide spatially resolved defect in high volume silicon solar cell production. One option to obtain the high throughput required for on the fly detection is the use a silicon line scan cameras. However, when using a silicon based camera, the spatial resolution is reduced as a result of the weakly absorbed light scattering within the camera's chip. This paper address this issue by applying deconvolution from a measured point spread function. This paper extends the methods for determining the point spread function of a silicon area camera to a line scan camera with charge transfer. The improvement in resolution is quantified in the Fourier domain and in spatial domain on an image of a multicrystalline silicon brick. It is found that light spreading beyond the active sensor area is significant in line scan sensors, but can be corrected for through normalization of the point spread function. The application of this method improves the raw data, allowing effective detection of the spatial resolution of defects in manufacturing.

  2. Geometry-constraint-scan imaging for in-line phase contrast micro-CT.

    PubMed

    Fu, Jian; Yu, Guangyuan; Fan, Dekai

    2014-01-01

    X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.

  3. Pilot climate data system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A usable data base, the Pilot climate Data System (PCDS) is described. The PCDS is designed to be an interactive, easy-to-use, on-line generalized scientific information system. It efficiently provides uniform data catalogs; inventories, and access method, as well as manipulation and display tools for a large assortment of Earth, ocean and atmospheric data for the climate-related research community. Researchers can employ the PCDS to scan, manipulate, compare, display, and study climate parameters from diverse data sets. Software features, and applications of the PCDS are highlighted.

  4. Low-cost compact MEMS scanning ladar system for robotic applications

    NASA Astrophysics Data System (ADS)

    Moss, Robert; Yuan, Ping; Bai, Xiaogang; Quesada, Emilio; Sudharsanan, Rengarajan; Stann, Barry L.; Dammann, John F.; Giza, Mark M.; Lawler, William B.

    2012-06-01

    Future robots and autonomous vehicles require compact low-cost Laser Detection and Ranging (LADAR) systems for autonomous navigation. Army Research Laboratory (ARL) had recently demonstrated a brass-board short-range eye-safe MEMS scanning LADAR system for robotic applications. Boeing Spectrolab is doing a tech-transfer (CRADA) of this system and has built a compact MEMS scanning LADAR system with additional improvements in receiver sensitivity, laser system, and data processing system. Improved system sensitivity, low-cost, miniaturization, and low power consumption are the main goals for the commercialization of this LADAR system. The receiver sensitivity has been improved by 2x using large-area InGaAs PIN detectors with low-noise amplifiers. The FPGA code has been updated to extend the range to 50 meters and detect up to 3 targets per pixel. Range accuracy has been improved through the implementation of an optical T-Zero input line. A compact commercially available erbium fiber laser operating at 1550 nm wavelength is used as a transmitter, thus reducing the size of the LADAR system considerably from the ARL brassboard system. The computer interface has been consolidated to allow image data and configuration data (configuration settings and system status) to pass through a single Ethernet port. In this presentation we will discuss the system architecture and future improvements to receiver sensitivity using avalanche photodiodes.

  5. Formation of conductive copper lines by femtosecond laser irradiation of copper nitride film on plastic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaodong; Yuan, Ningyi, E-mail: nyyuan@cczu.edu.cn; Center for Low-Dimensional Materials, Micro-Nano Devices and Systems, Changzhou University, Changzhou 213164, Jiangsu

    2015-05-15

    In this paper, we report a simple method to form conductive copper lines by scanning a single-beam femtosecond pulse laser on a plastic substrate covered with copper nitride (Cu{sub 3}N) film. The Cu{sub 3}N films were prepared by DC magnetron sputtering in the presence of an Ar + N{sub 2} atmosphere at 100 °C. The influence of the laser power and scanning speed on the formed copper line width, surface features, and morphology was analyzed by means of optical microscopy, X-ray diffraction, non-contact 3D profilometer, and scanning electron microscopy. The experimental results demonstrate that low laser power and low scanningmore » speed favor the formation of uniform and flat Cu lines. After process optimization, copper lines with a width less than 5 μm were obtained, which provides an attractive application prospect in the field of flexible electronic devices.« less

  6. Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.

    2015-01-01

    Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.

  7. Fully digital programmable optical frequency comb generation and application.

    PubMed

    Yan, Xianglei; Zou, Xihua; Pan, Wei; Yan, Lianshan; Azaña, José

    2018-01-15

    We propose a fully digital programmable optical frequency comb (OFC) generation scheme based on binary phase-sampling modulation, wherein an optimized bit sequence is applied to phase modulate a narrow-linewidth light wave. Programming the bit sequence enables us to tune both the comb spacing and comb-line number (i.e., number of comb lines). The programmable OFCs are also characterized by ultra-flat spectral envelope, uniform temporal envelope, and stable bias-free setup. Target OFCs are digitally programmed to have 19, 39, 61, 81, 101, or 201 comb lines and to have a 100, 50, 20, 10, 5, or 1 MHz comb spacing. As a demonstration, a scanning-free temperature sensing system using a proposed OFC with 1001 comb lines was also implemented with a sensitivity of 0.89°C/MHz.

  8. Development of critical dimension measurement scanning electron microscope for ULSI (S-8000 series)

    NASA Astrophysics Data System (ADS)

    Ezumi, Makoto; Otaka, Tadashi; Mori, Hiroyoshi; Todokoro, Hideo; Ose, Yoichi

    1996-05-01

    The semiconductor industry is moving from half-micron to quarter-micron design rules. To support this evolution, Hitachi has developed a new critical dimension measurement scanning electron microscope (CD-SEM), the model S-8800 series, for quality control of quarter- micron process lines. The new CD-SEM provides detailed examination of process conditions with 5 nm resolution and 5 nm repeatability (3 sigma) at accelerating voltage 800 V using secondary electron imaging. In addition, a newly developed load-lock system has a capability of achieving a high sample throughput of 20 wafers/hour (5 point measurements per wafer) under continuous operation. To support user friendliness, the system incorporates a graphical user interface (GUI), an automated pattern recognition system which helps locating measurement points, both manual and semi-automated operation, and user-programmable operating parameters.

  9. Development of a Simple Multispectral Algorithm Using a Hyperspectral Line-Scan Imaging System for Detection of Fecal Contamination on Apples

    USDA-ARS?s Scientific Manuscript database

    Foodborne diseases are of serious concern for public health. It is necessary to develop fast and reliable non-destructive detection methods to improve food product monitoring for the food industry. This research was conducted to investigate hyperspectral fluorescence imaging using violet/blue LED ex...

  10. 19 CFR 142.46 - Presentation of invoice and assignment of entry number.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... transportation, the appropriate manifest document. (b) Verification of data. If after scanning the bar code at the Line Release site, the Customs officer verifies the data on the bar code with the information on... assigned to the transaction. If there are any differences between the system data and the invoice and bar...

  11. 19 CFR 142.46 - Presentation of invoice and assignment of entry number.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... transportation, the appropriate manifest document. (b) Verification of data. If after scanning the bar code at the Line Release site, the Customs officer verifies the data on the bar code with the information on... assigned to the transaction. If there are any differences between the system data and the invoice and bar...

  12. 19 CFR 142.46 - Presentation of invoice and assignment of entry number.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... transportation, the appropriate manifest document. (b) Verification of data. If after scanning the bar code at the Line Release site, the Customs officer verifies the data on the bar code with the information on... assigned to the transaction. If there are any differences between the system data and the invoice and bar...

  13. 19 CFR 142.46 - Presentation of invoice and assignment of entry number.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... transportation, the appropriate manifest document. (b) Verification of data. If after scanning the bar code at the Line Release site, the Customs officer verifies the data on the bar code with the information on... assigned to the transaction. If there are any differences between the system data and the invoice and bar...

  14. 19 CFR 142.46 - Presentation of invoice and assignment of entry number.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... transportation, the appropriate manifest document. (b) Verification of data. If after scanning the bar code at the Line Release site, the Customs officer verifies the data on the bar code with the information on... assigned to the transaction. If there are any differences between the system data and the invoice and bar...

  15. Diode-Laser Absorption Sensor for Line-of-Sight Gas Temperature Distributions

    NASA Astrophysics Data System (ADS)

    Sanders, Scott T.; Wang, Jian; Jeffries, Jay B.; Hanson, Ronald K.

    2001-08-01

    Line-of-sight diode-laser absorption techniques have been extended to enable temperature measurements in nonuniform-property flows. The sensing strategy for such flows exploits the broad wavelength-scanning abilities ( >1.7 nm ~ 30 cm-1 ) of a vertical cavity surface-emitting laser (VCSEL) to interrogate multiple absorption transitions along a single line of sight. To demonstrate the strategy, a VCSEL-based sensor for oxygen gas temperature distributions was developed. A VCSEL beam was directed through paths containing atmospheric-pressure air with known (and relatively simple) temperature distributions in the 200 -700 K range. The VCSEL was scanned over ten transitions in the R branch of the oxygen A band near 760 nm and optionally over six transitions in the P branch. Temperature distribution information can be inferred from these scans because the line strength of each probed transition has a unique temperature dependence; the measurement accuracy and resolution depend on the details of this temperature dependence and on the total number of lines scanned. The performance of the sensing strategy can be optimized and predicted theoretically. Because the sensor exhibits a fast time response ( ~30 ms) and can be adapted to probe a variety of species over a range of temperatures and pressures, it shows promise for industrial application.

  16. Two-dimensional displacement measurement based on two parallel gratings

    NASA Astrophysics Data System (ADS)

    Wei, Peipei; Lu, Xi; Qiao, Decheng; Zou, Limin; Huang, Xiangdong; Tan, Jiubin; Lu, Zhengang

    2018-06-01

    In this paper, a two-dimensional (2-D) planar encoder based on two parallel gratings, which includes a scanning grating and scale grating, is presented. The scanning grating is a combined transmission rectangular grating comprised of a 2-D grating located at the center and two one-dimensional (1-D) gratings located at the sides. The grating lines of the two 1-D gratings are perpendicular to each other and parallel with the 2-D grating lines. The scale grating is a 2-D reflective-type rectangular grating placed in parallel with the scanning grating, and there is an angular difference of 45° between the grating lines of the two 2-D gratings. With the special structural design of the scanning grating, the encoder can measure the 2-D displacement in the grating plane simultaneously, and the measured interference signals in the two directions are uncoupled. Moreover, by utilizing the scanning grating to modulate the phase of the interference signals instead of the prisms, the structure of the encoder is compact. Experiments were implemented, and the results demonstrate the validity of the 2-D planar grating encoder.

  17. A mercury arc lamp-based multi-color confocal real time imaging system for cellular structure and function.

    PubMed

    Saito, Kenta; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu

    2008-01-01

    Multi-point scanning confocal microscopy using a Nipkow disk enables the acquisition of fluorescent images with high spatial and temporal resolutions. Like other single-point scanning confocal systems that use Galvano meter mirrors, a commercially available Nipkow spinning disk confocal unit, Yokogawa CSU10, requires lasers as the excitation light source. The choice of fluorescent dyes is strongly restricted, however, because only a limited number of laser lines can be introduced into a single confocal system. To overcome this problem, we developed an illumination system in which light from a mercury arc lamp is scrambled to make homogeneous light by passing it through a multi-mode optical fiber. This illumination system provides incoherent light with continuous wavelengths, enabling the observation of a wide range of fluorophores. Using this optical system, we demonstrate both the high-speed imaging (up to 100 Hz) of intracellular Ca(2+) propagation, and the multi-color imaging of Ca(2+) and PKC-gamma dynamics in living cells.

  18. Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; Zhu, Liang; Ma, Hui

    2015-05-19

    We presented a decoding method of quantum dots encoded microbeads with its fluorescence spectra using line scan hyperspectral fluorescence imaging (HFI) method. A HFI method was developed to attain both the spectra of fluorescence signal and the spatial information of the encoded microbeads. A decoding scheme was adopted to decode the spectra of multicolor microbeads acquired by the HFI system. Comparison experiments between the HFI system and the flow cytometer were conducted. The results showed that the HFI system has higher spectrum resolution; thus, more channels in spectral dimension can be used. The HFI system detection and decoding experiment with the single-stranded DNA (ssDNA) immobilized multicolor beads was done, and the result showed the efficiency of the HFI system. Surface modification of the microbeads by use of the polydopamine was characterized by the scanning electron microscopy and ssDNA immobilization was characterized by the laser confocal microscope. These results indicate that the designed HFI system can be applied to practical biological and medical applications.

  19. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  20. Complementary equipment for controlling multiple laser beams on single scanner MPLSM systems

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Nase, Gabriele; Heggelund, Paul; Reppen, Trond

    2010-02-01

    Multi-Photon-Laser-Scanning-Microscopy (MPLSM) now stands as one of the most powerful experimental tools in biology. Specifically, MPLSM based in-vivo studies of structures and processes in the brains of small rodents and imaging in brain-slices have led to considerable progress in the field of neuroscience. Equipment allowing for independent control of two laser-beams, one for imaging and one for photochemical manipulation, strongly enhances any MPLSM platform. Some industrial MPLSM producers have introduced double scanner options in MPLSM systems. Here, we describe the upgrade of a single scanner MPLSM system with equipment that is suitable for independently controlling the beams of two Titanium Sapphire lasers. The upgrade is compatible with any actual MPLSM system and can be combined with any commercial or self assembled system. Making use of the pixel-clock, frame-active and line-active signals provided by the scanner-electronics of the MPLSM, the user can, by means of an external unit, select individual pixels or rectangular ROIs within the field of view of an overview-scan to be exposed, or not exposed, to the beam(s) of one or two lasers during subsequent scans. The switching processes of the laser-beams during the subsequent scans are performed by means of Electro-Optical-Modulators (EOMs). While this system does not provide the flexibility of two-scanner modules, it strongly enhances the experimental possibilities of one-scanner systems provided a second laser and two independent EOMs are available. Even multi-scanner-systems can profit from this development, which can be used to independently control any number of laser beams.

  1. Aircraft path planning for optimal imaging using dynamic cost functions

    NASA Astrophysics Data System (ADS)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  2. In vivo flow cytometry for blood cell analysis using differential epi-detection of forward scattered light

    NASA Astrophysics Data System (ADS)

    Paudel, Hari P.; Jung, Yookyung; Raphael, Anthony; Alt, Clemens; Wu, Juwell; Runnels, Judith; Lin, Charles P.

    2018-02-01

    The present standard of blood cell analysis is an invasive procedure requiring the extraction of patient's blood, followed by ex-vivo analysis using a flow cytometer or a hemocytometer. We are developing a noninvasive optical technique that alleviates the need for blood extraction. For in-vivo blood analysis we need a high speed, high resolution and high contrast label-free imaging technique. In this proceeding report, we reported a label-free method based on differential epi-detection of forward scattered light, a method inspired by Jerome Mertz's oblique back-illumination microscopy (OBM) (Ford et al, Nat. Meth. 9(12) 2012). The differential epi-detection of forward light gives phase contrast image at diffraction-limited resolution. Unlike reflection confocal microscopy (RCM), which detects only sharp refractive index variation and suffers from speckle noise, this technique is suitable for detection of subtle variation of refractive index in biological tissue and it provides the shape and the size of cells. A custom built high speed electronic detection circuit board produces a real-time differential signal which yields image contrast based on phase gradient in the sample. We recorded blood flow in-vivo at 17.2k lines per second in line scan mode, or 30 frames per second (full frame), or 120 frame per second (quarter frame) in frame scan mode. The image contrast and speed of line scan data recording show the potential of the system for noninvasive blood cell analysis.

  3. The 3D scanner prototype utilize object profile imaging using line laser and octave software

    NASA Astrophysics Data System (ADS)

    Nurdini, Mugi; Manunggal, Trikarsa Tirtadwipa; Samsi, Agus

    2016-11-01

    Three-dimensional scanner or 3D Scanner is a device to reconstruct the real object into digital form on a computer. 3D Scanner is a technology that is being developed, especially in developed countries, where the current 3D Scanner devices is the advanced version with a very expensive prices. This study is basically a simple prototype of 3D Scanner with a very low investment costs. 3D Scanner prototype device consists of a webcam, a rotating desk system controlled by a stepper motor and Arduino UNO, and a line laser. Objects that limit the research is the object with same radius from its center point (object pivot). Scanning is performed by using object profile imaging by line laser which is then captured by the camera and processed by a computer (image processing) using Octave software. On each image acquisition, the scanned object on a rotating desk rotated by a certain degree, so for one full turn multiple images of a number of existing side are finally obtained. Then, the profile of the entire images is extracted in order to obtain digital object dimension. Digital dimension is calibrated by length standard, called gage block. Overall dimensions are then digitally reconstructed into a three-dimensional object. Validation of the scanned object reconstruction of the original object dimensions expressed as a percentage error. Based on the results of data validation, horizontal dimension error is about 5% to 23% and vertical dimension error is about +/- 3%.

  4. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  5. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of pixels. By using a modular assembly of the detector, the width can be chosen as multiples of 512 pixels. With a frame rate of up to 300 frames/s (full resolution) or 1200 frame/s (analog binning to 400 μ m pixel pitch) time-resolved 3D CT applications become possible. Two versions of the detector are in development, one with a high resolution scintillator and one with a thick, structured and very efficient scintillator (pitch 400 μ m). This way the detector can even work with X-ray energies up to 450 kVp.

  6. Space-based infrared scanning sensor LOS determination and calibration using star observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang

    2015-10-01

    This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.

  7. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    PubMed

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Hyperspectral imaging for food processing automation

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Smith, Doug P.; Feldner, Peggy W.

    2002-11-01

    This paper presents the research results that demonstrates hyperspectral imaging could be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses, and potential application for real-time, on-line processing of poultry for automatic safety inspection. The hyperspectral imaging system included a line scan camera with prism-grating-prism spectrograph, fiber optic line lighting, motorized lens control, and hyperspectral image processing software. Hyperspectral image processing algorithms, specifically band ratio of dual-wavelength (565/517) images and thresholding were effective on the identification of fecal and ingesta contamination of poultry carcasses. A multispectral imaging system including a common aperture camera with three optical trim filters (515.4 nm with 8.6- nm FWHM), 566.4 nm with 8.8-nm FWHM, and 631 nm with 10.2-nm FWHM), which were selected and validated by a hyperspectral imaging system, was developed for a real-time, on-line application. A total image processing time required to perform the current multispectral images captured by a common aperture camera was approximately 251 msec or 3.99 frames/sec. A preliminary test shows that the accuracy of real-time multispectral imaging system to detect feces and ingesta on corn/soybean fed poultry carcasses was 96%. However, many false positive spots that cause system errors were also detected.

  9. SU-F-T-138: Commissioning and Evaluating Dose Computation Models for a Dedicated Proton Line Scanning Beam Nozzle in Eclipse Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, P; Chang Gung University, Taoyuan, Taiwan; Huang, H

    Purpose: In this study, we present an effective method to derive low dose envelope of the proton in-air spot fluence at beam positions other than the isocenter to reduce amount of measurements required for planning commission. Also, we demonstrate commissioning and validation results of this method to the Eclipse treatment planning system (version 13.0.29) for a Sumitomo dedicated proton line scanning beam nozzle. Methods: The in-air spot profiles at five beam-axis positions (±200, ±100 and 0 mm) were obtained in trigger mode using a MP3 Water tank (PTW-Freiburg) and a pinpoint ionization chamber (model 31014, PTW-Freiburg). Low dose envelope (belowmore » 1% of the center dose) of the spot profile at isocenter was obtained by repeated point measurements to minimize dosimetry uncertainty. The double Gaussian (DG) model was used to fit and obtain optimal σ1, σ2 and their corresponding weightings through our in-house MATLAB (Mathworks) program. σ1, σ2 were assumed to expand linearly along the beam axis from a virtual source position calculated by back projecting fitted sigmas from the single Gaussian (SG) model. Absolute doses in water were validated using an Advanced Markus chamber at the depth of 2cm with Pristine Peak (BP) R90d ranging from 5–32 cm for 10×10 cm2 scanned fields. The field size factors were verified with square fields from 2 to 20 cm at 2cm and before BP depth. Results: The absolute dose outputs were found to be within ±3%. For field size factor, the agreement between calculated and measurement were within ±2% at 2cm and ±3% before BP, except for the field size below 2×2 cm2. Conclusion: The double Gaussian model was found to be sufficient for characterizing the Sumitomo dedicated proton line scanning nozzle. With our effective double Gaussian fitting method, we are able to save significant proton beam time with acceptable output accuracy.« less

  10. Fast, Automated, Scalable Generation of Textured 3D Models of Indoor Environments

    DTIC Science & Technology

    2014-12-18

    expensive travel and on-site visits. Different applications require models of different complexities, both with and without furniture geometry. The...environment and to localize the system in the environment over time. The datasets shown in this paper were generated by a backpack -mounted system that uses 2D...voxel is found to intersect the line segment from a scanner to a corresponding scan point. If a laser passes through a voxel, that voxel is considered

  11. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

    DOE PAGES

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao; ...

    2016-07-18

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH 4) and ethane (C 2H 6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0–3001.5 cm –1 was used to simultaneously target two absorption lines, C 2H 6 at 2996.88 cm –1 and CH 4 at 2999.06 cm –1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH 4 and 1.86 ppbv for Cmore » 2H 6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH 4 and C 2H 6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH 4 and 2.4 ppbv for C 2H 6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH 4 and C 2H 6 were conducted. As a result, the reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.« less

  12. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH 4) and ethane (C 2H 6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0–3001.5 cm –1 was used to simultaneously target two absorption lines, C 2H 6 at 2996.88 cm –1 and CH 4 at 2999.06 cm –1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH 4 and 1.86 ppbv for Cmore » 2H 6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH 4 and C 2H 6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH 4 and 2.4 ppbv for C 2H 6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH 4 and C 2H 6 were conducted. As a result, the reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.« less

  13. Compositions of maple sap microflora and collection system biofilms evaluated by scanning electron microscopy and denaturing gradient gel electrophoresis.

    PubMed

    Lagacé, L; Jacques, M; Mafu, A A; Roy, D

    2006-05-25

    The bacterial microflora of maple sap and biofilms in collection system tubing were studied through the use of bacterial counts, scanning electron microscopy (SEM) of surfaces and the analysis of 16S rRNA gene by denaturing gradient gel electrophoresis (DGGE). Samples were taken at five times during the 2002 and 2003 seasons in order to follow the changes in the microflora of this complex ecosystem. Bacterial counts showed the growth of bacterial populations as the season advanced. These populations were mainly composed of psychrotrophic bacteria and Pseudomonas spp. SEM results confirmed the suspected presence of biofilms on the inner surfaces of tubing samples. Bacterial colonization and biofilm formation progressively increased during the season for both lateral and main line surfaces, and biofilms were mainly composed of rod shape bacteria. The bacterial microflora profiles obtained for sap and corresponding biofilm by DGGE showed up to 12 major bands. The Shannon-Weaver index of diversity (H) calculated from DGGE bands were statistically higher for sap samples compared to biofilm. The diversity index was relatively stable or increasing for lateral line sap and biofilm samples during the season while the diversity index for sap and biofilm samples of the main line showed a decreasing profile as the season progressed. Sequence analysis of major DGGE bands revealed the predominance of bacteria from the genera Pseudomonas, Rahnella and another, unidentified genus. The results describe the composition of sap collection system microflora as well as the formation of biofilms and will be useful for further studies on factors affecting maple product quality.

  14. Fabrication of cylindrical micro-parts using synchronous rotary scan-projection lithography and chemical etching

    NASA Astrophysics Data System (ADS)

    Ito, Kaiki; Suzuki, Yuta; Horiuchi, Toshiyuki

    2017-07-01

    Lithographical patterning on the surface of a fine pipe with a thin wall is required for fabricating three-dimensional micro-parts. For this reason, a new exposure system for printing patterns on a cylindrical pipe by synchronous rotary scan-projection exposure was developed. Using the exposure system, stent-like resist patterns with a width of 251 μm were printed on a surface of stainless-steel pipe with an outer diameter of 2 mm. The exposure time was 30 s. Next, the patterned pipe was chemically etched. As a result, a stent-like mesh pipe with a line width of 230 μm was fabricated. It was demonstrated that the new method had a potential to be applied to fabrications of stent and other cylindrical micro-parts.

  15. Detecting benzoyl peroxide in wheat flour by line-scan macro-scale Raman chemical imaging

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Kim, Moon S.; Chao, Kuanglin; Gonzalez, Maria; Cho, Byoung-Kwan

    2017-05-01

    Excessive use of benzoyl peroxide (BPO, a bleaching agent) in wheat flour can destroy flour nutrients and cause diseases to consumers. A macro-scale Raman chemical imaging method was developed for direct detection of BPO mixed in the wheat flour. A 785 nm line laser was used in a line-scan Hyperspectral Raman imaging system. Raman images were collected from wheat flour mixed with BPO at eight concentrations (w/w) from 50 to 6,400 ppm. A sample holder (150×100×2 mm3) was used to present a thin layer (2 mm thick) of the powdered sample for image acquisition. A baseline correction method was used to correct the fluctuating fluorescence signals from the wheat flour. To isolate BPO particles from the flour background, a simple thresholding method was applied to the single-band fluorescence-free images at a unique Raman peak wavenumber (i.e., 1001 cm-1) preselected for the BPO detection. Chemical images were created to detect and map the BPO particles. Limit of detection for the BPO was estimated in the order of 50 ppm, which is on the same level with regulatory standards.

  16. Use of an airborne Fraunhofer line discriminator for the detection of solar stimulated luminescence

    USGS Publications Warehouse

    Watson, Robert D.; Hemphill, William R.

    1976-01-01

    Future work will include the integration of the FLO with a line scan imaging system in order to assess the contribution of two-dimensional spatial resolution to the interpretability and usefulness of luminescence data. It should also include 1) investigation of luminescence polarization of some materials, particularly metal stressed plants, 2) an assessment of the use of pulsed lasers to stimulate phosphorescence decay time in the nanosecond and microsecond ranges; and 3) a study to determine the feasibility of conducting an FLO experiment from the Space Shuttle or other spacecraft.

  17. Reflectance confocal microscope for imaging oral tissues in vivo, potentially with line scanning as a low-cost approach for clinical use

    NASA Astrophysics Data System (ADS)

    Peterson, Gary; Abeytunge, Sanjeewa; Eastman, Zachary; Rajadhyaksha, Milind

    2012-02-01

    Reflectance confocal microscopy with a line scanning approach potentially offers a smaller, simpler and less expensive approach than traditional methods of point scanning for imaging in living tissues. With one moving mechanical element (galvanometric scanner), a linear array detector and off-the-shelf optics, we designed a compact (102x102x76mm) line scanning confocal reflectance microscope (LSCRM) for imaging human tissues in vivo in a clinical setting. Custom-designed electronics, based on field programmable gate array (FPGA) logic has been developed. With 405 nm illumination and a custom objective lens of numerical aperture 0.5, lateral resolution was measured to be 0.8 um (calculated 0.64 um). The calculated optical sectioning is 3.2 um. Preliminary imaging shows nuclear and cellular detail in human skin and oral epithelium in vivo. Blood flow is also visualized in the deeper connective tissue (lamina propria) in oral mucosa. Since a line is confocal only in one dimension (parallel) but not in the other, the detection is more sensitive to multiply scattered out of focus background noise than in the traditional point scanning configuration. Based on the results of our translational studies thus far, a simpler, smaller and lower-cost approach based on a LSCRM appears to be promising for clinical imaging.

  18. Color machine vision in industrial process control: case limestone mine

    NASA Astrophysics Data System (ADS)

    Paernaenen, Pekka H. T.; Lemstrom, Guy F.; Koskinen, Seppo

    1994-11-01

    An optical sorter technology has been developed to improve profitability of a mine by using color line scan machine vision technology. The new technology adapted longers the expected life time of the limestone mine and improves its efficiency. Also the project has proved that color line scan technology of today can successfully be applied to industrial use in harsh environments.

  19. Design and development of a very high resolution thermal imager

    NASA Astrophysics Data System (ADS)

    Kuerbitz, Gunther; Duchateau, Ruediger

    1998-10-01

    The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.

  20. The research on calibration methods of dual-CCD laser three-dimensional human face scanning system

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong

    2013-09-01

    In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.

  1. Automated image-based colon cleansing for laxative-free CT colonography computer-aided polyp detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linguraru, Marius George; Panjwani, Neil; Fletcher, Joel G.

    2011-12-15

    Purpose: To evaluate the performance of a computer-aided detection (CAD) system for detecting colonic polyps at noncathartic computed tomography colonography (CTC) in conjunction with an automated image-based colon cleansing algorithm. Methods: An automated colon cleansing algorithm was designed to detect and subtract tagged-stool, accounting for heterogeneity and poor tagging, to be used in conjunction with a colon CAD system. The method is locally adaptive and combines intensity, shape, and texture analysis with probabilistic optimization. CTC data from cathartic-free bowel preparation were acquired for testing and training the parameters. Patients underwent various colonic preparations with barium or Gastroview in divided dosesmore » over 48 h before scanning. No laxatives were administered and no dietary modifications were required. Cases were selected from a polyp-enriched cohort and included scans in which at least 90% of the solid stool was visually estimated to be tagged and each colonic segment was distended in either the prone or supine view. The CAD system was run comparatively with and without the stool subtraction algorithm. Results: The dataset comprised 38 CTC scans from prone and/or supine scans of 19 patients containing 44 polyps larger than 10 mm (22 unique polyps, if matched between prone and supine scans). The results are robust on fine details around folds, thin-stool linings on the colonic wall, near polyps and in large fluid/stool pools. The sensitivity of the CAD system is 70.5% per polyp at a rate of 5.75 false positives/scan without using the stool subtraction module. This detection improved significantly (p = 0.009) after automated colon cleansing on cathartic-free data to 86.4% true positive rate at 5.75 false positives/scan. Conclusions: An automated image-based colon cleansing algorithm designed to overcome the challenges of the noncathartic colon significantly improves the sensitivity of colon CAD by approximately 15%.« less

  2. Tri-linear color multi-linescan sensor with 200 kHz line rate

    NASA Astrophysics Data System (ADS)

    Schrey, Olaf; Brockherde, Werner; Nitta, Christian; Bechen, Benjamin; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.

    2016-11-01

    In this paper we present a newly developed linear CMOS high-speed line-scanning sensor realized in a 0.35 μm CMOS OPTO process for line-scan with 200 kHz true RGB and 600 kHz monochrome line rate, respectively. In total, 60 lines are integrated in the sensor allowing for electronic position adjustment. The lines are read out in rolling shutter manner. The high readout speed is achieved by a column-wise organization of the readout chain. At full speed, the sensor provides RGB color images with a spatial resolution down to 50 μm. This feature enables a variety of applications like quality assurance in print inspection, real-time surveillance of railroad tracks, in-line monitoring in flat panel fabrication lines and many more. The sensor has a fill-factor close to 100%, preventing aliasing and color artefacts. Hence the tri-linear technology is robust against aliasing ensuring better inspection quality and thus less waste in production lines.

  3. Shear wave speed and dispersion measurements using crawling wave chirps.

    PubMed

    Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J

    2014-10-01

    This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. © The Author(s) 2014.

  4. A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting

    NASA Astrophysics Data System (ADS)

    Jan, Chia-Ming; Lin, Ying-Chieh

    2016-03-01

    This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.

  5. Whole-Body Single-Bed Time-of-Flight RPC-PET: Simulation of Axial and Planar Sensitivities With NEMA and Anthropomorphic Phantoms

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Reis, João; Couceiro, Miguel; Blanco, Alberto; Ferreira, Nuno C.; Marques, Rui Ferreira; Martins, Paulo; Fonte, Paulo

    2012-06-01

    A single-bed, whole-body positron emission tomograph based on resistive plate chambers has been proposed (RPC-PET). An RPC-PET system with an axial field-of-view (AFOV) of 2.4 m has been shown in simulation to have higher system sensitivity using the NEMA NU2-1994 protocol than commercial PET scanners. However, that protocol does not correlate directly with lesion detectability. The latter is better correlated with the planar (slice) sensitivity, obtained with a NEMA NU2-2001 line-source phantom. After validation with published data for the GE Advance, Siemens TruePoint and TrueV, we study by simulation their axial sensitivity profiles, comparing results with RPC-PET. Planar sensitivities indicate that RPC-PET is expected to outperform 16-cm (22-cm) AFOV scanners by a factor 5.8 (3.0) for 70-cm-long scans. For 1.5-m scans (head to mid-legs), the sensitivity gain increases to 11.7 (6.7). Yet, PET systems with large AFOV provide larger coverage but also larger attenuation in the object. We studied these competing effects with both spherical- and line-sources immersed in a 27-cm-diameter water cylinder. For 1.5-m-long scans, the planar sensitivity drops one order of magnitude in all scanners, with RPC-PET outperforming 16-cm (22-cm) AFOV scanners by a factor 9.2 (5.3) without considering the TOF benefit. A gain in the effective sensitivity is expected with TOF iterative reconstruction. Finally, object scatter in an anthropomorphic phantom is similar for RPC-PET and modern, scintillator-based scanners, although RPC-PET benefits further if its TOF information is utilized to exclude scatter events occurring outside the anthropomorphic phantom.

  6. Differentiating defects in red oak lumber by discriminant analysis using color, shape, and density

    Treesearch

    B. H. Bond; D. Earl Kline; Philip A. Araman

    2002-01-01

    Defect color, shape, and density measures aid in the differentiation of knots, bark pockets, stain/mineral streak, and clearwood in red oak, (Quercus rubra). Various color, shape, and density measures were extracted for defects present in color and X-ray images captured using a color line scan camera and an X-ray line scan detector. Analysis of variance was used to...

  7. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2016-05-01

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0-2815 cm-1 using a detection module consisting of an imaging spectrograph and a CCD camera. A layered sample, which was created by placing a plastic sheet cut from the original container on top of cane sugar, was used to test the capability for subsurface food inspection. A whole set of SORS data was acquired in an offset range of 0-36 mm (two sides of the laser) with a spatial interval of 0.07 mm. Raman spectrum from the cane sugar under the plastic sheet was resolved using self-modeling mixture analysis algorithms, demonstrating the potential of the technique for authenticating foods and ingredients through packaging. The line-scan SORS measurement technique provides a new method for subsurface inspection of food safety and quality.

  8. An automatic gore panel mapping system

    NASA Technical Reports Server (NTRS)

    Shiver, John D.; Phelps, Norman N.

    1990-01-01

    The Automatic Gore Mapping System is being developed to reduce the time and labor costs associated with manufacturing the External Tank. The present chem-milling processes and procedures are discussed. The down loading of the simulation of the system has to be performed to verify that the simulation package will translate the simulation code into robot code. Also a simulation of this system has to be programmed for a gantry robot instead of the articulating robot that is presently in the system. It was discovered using the simulation package that the articulation robot cannot reach all the point on some of the panels, therefore when the system is ready for production, a gantry robot will be used. Also a hydrosensor system is being developed to replace the point-to-point contact probe. The hydrosensor will allow the robot to perform a non-contact continuous scan of the panel. It will also provide a faster scan of the panel because it will eliminate the in-and-out movement required for the present end effector. The system software is currently being modified so that the hydrosensor will work with the system. The hydrosensor consists of a Krautkramer-Branson transducer encased in a plexiglass nozzle. The water stream pumped through the nozzle is the couplant for the probe. Also, software is being written so that the robot will have the ability to draw the contour lines on the panel displaying the out-of-tolerance regions. Presently the contour lines can only be displayed on the computer screens. Research is also being performed on improving and automating the method of scribing the panels. Presently the panels are manually scribed with a sharp knife. The use of a low power laser or water jet is being studied as a method of scribing the panels. The contour drawing pen will be replaced with scribing tool and the robot will then move along the contour lines. With these developments the Automatic Gore Mapping Systems will provide a reduction in time and labor costs associated with manufacturing the External Task. The system also has the potential of inspecting other manufactured parts.

  9. Earth resources data systems design: S192 instrument measurements and characteristics

    NASA Technical Reports Server (NTRS)

    Goldstein, A. S.

    1972-01-01

    The design, development, and characteristics of the S192 instrument for use with the earth resources data systems are discussed. Subjects presented are: (1) multispectral scanner measurements, (2) measurement characteristics, (3) calibration and aligment, (4) operating modes, and (5) time tagging and references. The S192 will obtain high spatial resolution, quantitative line scan imagery data of the radiation reflected and emitted by selected test sites in up to 13 spectral bands of visible, near infrared, and thermal infrared regions of the electromagnetic spectrum.

  10. Metamaterial-inspired reconfigurable series-fed arrays

    NASA Astrophysics Data System (ADS)

    Ijaz, Bilal

    One of the biggest challenges in modern day wireless communication systems is to attain agility and provide more degrees of freedom in parameters such as frequency, radiation pattern and polarization. Existing phased array antenna technology has limitations in frequency bandwidth and scan angle. So it is important to design frequency reconfigurable antenna arrays which can provide two different frequency bandwidths with a broadside radiation pattern having a lower sidelobe and reduced frequency scanning. The reconfigurable antenna array inspired by the properties of metamaterials presented here provides a solution to attain frequency agility in a wireless communication system. The adaptive change in operating frequency is attained by using RF p-i-n diodes on the antenna array. The artificially made materials having properties of negative permeability and negative permittivity have antiparallel group and phase velocities, and, in consequence of that, they support backward wave propagation. The key idea of this work is to demonstrate that the properties of metamaterial non-radiating phase shifting transmission lines can be utilized to design a series-fed antenna array to operate at two different frequency bands with a broadside radiation pattern in both configurations. In this research, first, a design of a series-fed microstrip array with composite right/left-handed transmission lines (CRLH-TLs) is proposed. To ensure that each element in the array is driven with the same voltage phase, dual-band CRLH-TLs are adopted instead of meander-line microstrip lines to provide a compact interconnect with a zero phase-constant at the frequency of operation. Next, the work is extended to design a reconfigurable series-fed antenna array with reconfigurable metamaterial interconnects, and the expressions for array factor are derived for both switching bands.

  11. Atmospheric corrections for TIMS estimated emittance

    NASA Technical Reports Server (NTRS)

    Warner, T. A.; Levandowski, D. W.

    1992-01-01

    The estimated temperature of the average of 500 lines of Thermal Infrared Multispectral Scanner (TIMS) data of the Pacific Ocean, from flight line 94, collected on 30 Sep. 1988, at 1931 GMT is shown. With no atmospheric corrections, estimated temperature decreases away from nadir (the center of the scan line). A LOWTRAN modeled correction, using local radiosonde data and instrument scan angle information, results in reversed limb darkening effects for most bands, and does not adequately correct all bands to the same temperature. The atmosphere tends to re-radiate energy at the wavelengths at which it most absorbs, and thus the overall difference between corrected and uncorrected temperatures is approximately 40 C, despite the average LOWTRAN calculated transmittance of only 60 percent between 8.1 and 11.6 microns. An alternative approach to atmospheric correction is a black body normalization. This is done by calculating a normalization factor for each pixel position and wavelength, which when applied results in a single calculated temperature, as would be expected for a gray body with near uniform emittance. The black body adjustment is based on the atmospheric conditions over the sea. The ground elevation profile along the remaining 3520 scan lines (approximately 10 km) of flight line 94, up the slopes of Kilauea, determined from aircraft pressure and laser altimeter data is shown. This flight line includes a large amount of vegetation that is clearly discernible on the radiance image, being much cooler than the surrounding rocks. For each of the 3520 scan lines, pixels were classified as vegetation or 'other'. A moving average of 51 lines was applied to the composite vegetation emittance for each scan line, to reduce noise. Assuming vegetation to be like water, and to act as gray body with an emittance of 0.986 across the spectrum, it is shown that that the LOWTRAN induced artifacts are severe, and other than for the 0.9.9 micron channel, not significantly different from applying no corrections at all. As expected, with increasing elevation atmospheric effects are slightly reduced, because moisture tends to be concentrated in the lowermost part of the atmosphere. The black body adjustment is highly robust, and even at elevations nearly 600 meters above the sea, remains an alternative procedure for use in calculating emittance.

  12. Fluorescent x-ray computed tomography to visualize specific material distribution

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1997-10-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.

  13. Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)←(00001) near-infrared carbon dioxide band

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Wójtewicz, S.; Miller, C. E.; Hodges, J. T.

    2015-08-01

    We present new high accuracy measurements of the (30012)←(00001) CO2 band near 1575 nm recorded with a frequency-agile, rapid scanning cavity ring-down spectrometer. The resulting spectra were fit with the partially correlated, quadratic-speed-dependent Nelkin-Ghatak profile with line mixing. Significant differences were observed between the fitted line shape parameters and those found in existing databases, which are based upon more simplistic line profiles. Absolute transition frequencies, which were referenced to an optical frequency comb, are given, as well as the other line shape parameters needed to model this line profile. These high accuracy measurements should allow for improved atmospheric retrievals of greenhouse gas concentrations by current and future remote sensing missions.

  14. In-line inspection of unpiggable buried live gas pipes using circumferential EMAT guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Xin, Junjun

    2018-04-01

    Unpiggable buried gas pipes need to be inspected to ensure their structural integrity and safe operation. The CIRRIS XITM robot, developed and operated by ULC Robotics, conducts in-line nondestructive inspection of live gas pipes. With the no-blow launching system, the inspection operation has reduced disruption to the public and by eliminating the need to dig trenches, has minimized the site footprint. This provides a highly time and cost effective solution for gas pipe maintenance. However, the current sensor on the robot performs a point-by-point measurement of the pipe wall thickness which cannot cover the whole volume of the pipe in a reasonable timeframe. The study of ultrasonic guided wave technique is discussed to improve the volume coverage as well as the scanning speed. Circumferential guided wave is employed to perform axial scanning. Mode selection is discussed in terms of sensitivity to different defects and defect characterization capability. To assist with the mode selection, finite element analysis is performed to evaluate the wave-defect interaction and to identify potential defect features. Pulse-echo and through-transmission mode are evaluated and compared for their pros and cons in axial scanning. Experiments are also conducted to verify the mode selection and detect and characterize artificial defects introduced into pipe samples.

  15. Developing processing techniques for Skylab data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Morgenstern, J. P.

    1975-01-01

    The author has identified the following significant results. The effects of misregistration and the scan-line-straightening algorithm on multispectral data were found to be: (1) there is greatly increased misregistration in scan-line-straightening data over conic data; (2) scanner caused misregistration between any pairs of channels may not be corrected for in scan-line-straightened data; and (3) this data will have few pure field center pixels than will conic data. A program SIMSIG was developed implementing the signature simulation model. Data processing stages of the experiment were carried out, and an analysis was made of the effects of spatial misregistration on field center classification accuracy. Fifteen signatures originally used for classifying the data were analyzed, showing the following breakdown: corn (4 signatures), trees (2), brush (1), grasses, weeds, etc. (5), bare soil (1), soybeans (1), and alfalfa (1).

  16. A Preliminary Investigation of Systematic Noise in Data Acquired with the Airborne Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Masuoka, E.

    1985-01-01

    Systematic noise is present in Airborne Imaging Spectrometer (AIS) data collected on October 26, 1983 and May 5, 1984 in grating position 0 (1.2 to 1.5 microns). In the October data set the noise occurs as 135 scan lines of low DN's every 270 scan lines. The noise is particularly bad in bands nine through thirty, restricting effective analysis to at best ten of the 32 bands. In the May data the regions of severe noise have been eliminated, but systematic noise is present with three frequencies (3, 106 and 200 scan lines) in all thirty two bands. The periodic nature of the noise in both data sets suggests that it could be removed as part of routine processing. This is necessary before classification routines or statistical analyses are used with these data.

  17. A search for artificial signals from the newly discovered planetary systems

    NASA Astrophysics Data System (ADS)

    Biraud, Francois; Heidmann, Jean; Tarter, Jill C.; Airieau, Sabine

    1997-01-01

    We conducted a search for narrowband artificial signals from the regions of stars around which planetary companions have been recently found: 51 Pegasi, Gliese 229, 70 Virginis, and 47 Ursae Majoris. We used the large Nangay decimetric telescope, with a frequency resolution of 50 Hz, and we scanned over 0.64 and 2.24 MHz respectively around the hydrogen and hydroxyl lines.

  18. Laser Line Scan System for UXO Characterization

    DTIC Science & Technology

    2012-04-01

    they geometrically rectified. The Year 2 survey collected LLSS images from seven passes over two separate calibration strings and six passes over two...Microsoft DOS-based software tool. According to the side- by-side comparisons shown in Figure 9, the morphometrics were relatively equal between...survey. Note: The imagery in this figure is not presented at full resolution nor geometrically rectified. LLSS Targets, Pass One 1. Danforth

  19. Wider horizons, wiser choices: horizon scanning for public health protection and improvement.

    PubMed

    Urquhart, Graham J; Saunders, Patrick

    2017-06-01

    Systematic continuous thinking about the future helps organizations, professions and communities to both prepare for, and shape, the future. This becomes ever more critical given the accelerating rate at which new data emerge, and in some cases uncertainties around their reliability and interpretation. Businesses with the capability to filter and analyse vast volumes of data to create knowledge and insights requiring action have a competitive advantage. Similarly Government and the public sector, including public health can be more effective and efficient through the early identification of emerging issues (both threats and opportunities). Horizon scanning approaches, and the use of resulting intelligence related to health protection and improvement were reviewed. Public health horizon scanning systems have to date focussed on health technologies and infectious diseases. While these have been successful there is a major gap in terms of non-infectious hazards and health improvement. Any system to meet this need must recognize the changed environment for delivering front line public health services and the critical role of local authorities and the local democratic process. This presents opportunities and challenges and this paper explores those dynamics describing an existing environment and health horizon scanning system which could readily and rapidly be re-engineered to provide a national service. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Microfabrication technology by femtosecond laser direct scanning using two-photon photo-polymerization

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Liu, Li-Peng; Dai, Qi-Xun; Pan, Chuan-Peng

    2005-01-01

    Two-photon absorption (TPA) is confined at the focus under tight-focusing conditions, which provides a novel concept for micro-fabrication using two-photon photo-polymerization in resin. The development of three-dimensional micro-fabrication by femtosecond laser was introduced at first, then the merits of femtosecond two-photon photo-polymerization was expatiated. Femtosecond laser direct scanning three-dimensional (3D) micro-fabrication system was set up and corresponding controlling software was developed. We demonstrated a fabrication of three-dimensional microstructures using photo-polymerization of resin by two-photon absorption. The precision of micro-machining and the spatial resolution reached 1um because of TPA. The dependence of fabricated line width to the micro-fabrication speed was investigated. Benzene ring, CHINA and layer-by-layer of log structures were fabricated in this 3D- micro-fabrication system as examples.

  1. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement

    NASA Astrophysics Data System (ADS)

    Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun

    2018-05-01

    We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.

  2. The most distant, luminous, dusty star-forming galaxies: redshifts from NOEMA and ALMA spectral scans

    NASA Astrophysics Data System (ADS)

    Fudamoto, Y.; Ivison, R. J.; Oteo, I.; Krips, M.; Zhang, Z.-Y.; Weiss, A.; Dannerbauer, H.; Omont, A.; Chapman, S. C.; Christensen, L.; Arumugam, V.; Bertoldi, F.; Bremer, M.; Clements, D. L.; Dunne, L.; Eales, S. A.; Greenslade, J.; Maddox, S.; Martinez-Navajas, P.; Michalowski, M.; Pérez-Fournon, I.; Riechers, D.; Simpson, J. M.; Stalder, B.; Valiante, E.; van der Werf, P.

    2017-12-01

    We present 1.3- and/or 3-mm continuum images and 3-mm spectral scans, obtained using Northern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter Array (ALMA), of 21 distant, dusty, star-forming galaxies. Our sample is a subset of the galaxies selected by Ivison et al. on the basis of their extremely red far-infrared (far-IR) colours and low Herschel flux densities; most are thus expected to be unlensed, extraordinarily luminous starbursts at z ≳ 4, modulo the considerable cross-section to gravitational lensing implied by their redshift. We observed 17 of these galaxies with NOEMA and four with ALMA, scanning through the 3-mm atmospheric window. We have obtained secure redshifts for seven galaxies via detection of multiple CO lines, one of them a lensed system at z = 6.027 (two others are also found to be lensed); a single emission line was detected in another four galaxies, one of which has been shown elsewhere to lie at z = 4.002. Where we find no spectroscopic redshifts, the galaxies are generally less luminous by 0.3-0.4 dex, which goes some way to explaining our failure to detect line emission. We show that this sample contains the most luminous known star-forming galaxies. Due to their extreme star-formation activity, these galaxies will consume their molecular gas in ≲ 100 Myr, despite their high molecular gas masses, and are therefore plausible progenitors of the massive, 'red-and-dead' elliptical galaxies at z ≈ 3.

  3. SR-XFA of uranium-containing materials. A case of Bazhenov formation rocks exploration

    NASA Astrophysics Data System (ADS)

    Phedorin, M. A.; Bobrov, V. A.; Tchebykin, Ye. P.; Melgunov, M. S.

    2000-06-01

    When an X-ray fluorescent analysis (XFA) is carried out, errors are possible because fluorescent K-lines of "light" elements and L-lines of some "dark" elements can overlap in energy domain. With certain contents of these elements and insufficient resolution of the spectrometer, this leads to considerable errors of determination. An example is the overlapping of a large number of uranium (U) L-lines and Rb, Nb, Mo K-lines. In this paper a procedure is suggested to correct such overlapping. It was tested on uranium-containing rock samples. These samples represent the oil-producing Bazhenov rock formation, which is characterized by organic matter accumulated in abundance and accompanied by "organophile" elements, including U. The procedure is based on scanning the energy of initial exciting X-radiation. This may be regarded advisable only in the XFA versions that use synchrotron radiation — SR-XFA. As a result of this investigation, geochemical characteristics of the Bazhenov formation rocks are demonstrated and the efficiency of energy scanning procedure in determining both Rb, Nb, Mo and U contents is revealed (using comparison with other methods). The energy scanning procedure also works in the presence of L-lines of some other dark elements (Pb, Th, etc.) in the energy domain of K-lines of As-Mo.

  4. A User’s Manual for Fiber Diffraction: The Automated Picker and Huber Diffractometers

    DTIC Science & Technology

    1990-07-01

    17 3. Layer line scan of degummed silk ( Bombyx mori ) ................................. 18...index (arbitrary units) Figure 3. Layer line scan of degummed silk ( Bombyx mori ) showing layers 0 through 6. If the fit is rejected, new values for... originally made at intervals larger than 0.010. The smoothing and interpolation is done by a least-squares polynomial fit to segments of the data. The number

  5. An atlas of Copernicus ultraviolet spectra of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1978-01-01

    An atlas of Copernicus UV scans is presented, and line identifications are tabulated, for the Wolf-Rayet stars Gamma-2 Vel (WC 8 + O7), HD 50896 (= EZ CMa; WN 5), and HD 92740 (WN 7). The atlas covers the wavelength ranges from 946.8 to 3182 A for Gamma-2 Vel, from 1012 to 1294 A for HD 50896, and from 1051 to 1243 A for HD 92740. The wavelengths include corrections for components of satellite velocity, earth velocity, and stellar heliocentric velocity; each spectral feature is classified as interstellar, photospheric, emission, UV-displaced P Cygni line absorption, or P Cygni line emission. UV-edge velocities of the P Cygni profiles are estimated, P Cygni profile types are discussed, and the results are compared with Copernicus scans of OB stars exhibiting UV P Cygni profiles. It is noted that: (1) the line-strength ratio of molecular hydrogen to atomic species appears to be substantially greater in the scans of the WN stars than in the Gamma-2 Vel scans; (2) some of the P Cygni profiles in Gamma-2 Vel differ significantly from the corresponding profiles in OB stars; and (3) there may be a slight inverse correlation between ejection velocities and excitation potentials in Gamma-2 Vel.

  6. Late Holocene glacial history of Petermann Fjord, Northwest Greenland: Non-destructive CT, XRF, and magnetic results from OD1507 sediment cores

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.; Cheseby, M.; Albert, S. W.; Wiest, J.

    2016-12-01

    An international and interdisciplinary expedition to Nares Strait and Petermann Fjord, Northwest Greenland, onboard the Swedish Icebreaker Oden July-September 2015 (OD1507) sought to understand the Holocene history of the Petermann glacial system among other research objectives. Petermann Glacier, which terminates as a floating ice-tongue in Petermann Fjord, is thought to be especially sensitive to ice-ocean interactions. While limited historical observations dating back to 1876 suggest the Petermann Ice Tongue extends about 70-90 km from the grounding-line, large calving events in 2010 and 2012 reduced the ice-tongue extent to about 45 km from the grounding-line. A suite of 14 marine sediment cores recovered a range of glacio-marine facies that form an along fjord (15-80 km from the grounding-line) and an across fjord depth (473-1041 meters water depth) transect. CT scans clearly identify four primary fjord facies, including bioturbated, IRD-rich, laminated and mud with stratified graded sand layers. The latter of these occurs near the modern grounding-line. Additionally, a new MATLAB routine is used to quantify clasts >2 mm in size from the CT scans. XRF sediment geochemical changes mirror magnetic mineral concentrations and are driven by varying contribution of Ca-rich and Ca-poor sources, which we interpret as a reflection of the mixing of the local carbonate rocks and crystalline basement excavated by the ice sheet. Initial paleomagnetic results isolate a strong and stable characteristic remanent magnetization which show remarkable similarity to paleosecular variation (PSV) recorded in nearby mid-late Holocene varved lakes on Ellesmere Island. This non-destructive dataset provides robust correlations, indicating a coherent and dynamic record of changes in the Petermann glacial system during the late Holocene, including evidence for a significant grounding-line retreat followed by the growth and relative paleo-extent of the modern Petermann Ice Tongue.

  7. Evaluating Mass Analyzers as Candidates for Small, Portable, Rugged Single Point Mass Spectrometers for Analysis of Permanent Gases

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Ottens, Andrew K.; Diaz, Jorge A.; Griffin, Timothy P.; Follestein, Duke; Adams, Fredrick; Steinrock, T. (Technical Monitor)

    2001-01-01

    For Space Shuttle launch safety, there is a need to monitor the concentration of H2, He, O2 and Ar around the launch vehicle. Currently a large mass spectrometry system performs this task, using long transport lines to draw in samples. There is great interest in replacing this stationary system with several miniature, portable, rugged mass spectrometers which act as point sensors which can be placed at the sampling point. Five commercial and two non-commercial analyzers are evaluated. The five commercial systems include the Leybold Inficon XPR-2 linear quadrupole, the Stanford Research (SRS-100) linear quadrupole, the Ferran linear quadrupole array, the ThermoQuest Polaris-Q quadrupole ion trap, and the IonWerks Time-of-Flight (TOF). The non-commercial systems include a compact double focusing sector (CDFMS) developed at the University of Minnesota, and a quadrupole ion trap (UF-IT) developed at the University of Florida. The System Volume is determined by measuring the entire system volume including the mass analyzer, its associated electronics, the associated vacuum system, the high vacuum pump and rough pump. Also measured are any ion gauge controllers or other required equipment. Computers are not included. Scan Time is the time required for one scan to be acquired and the data to be transferred. It is determined by measuring the time required acquiring a known number of scans and dividing by said number of scans. Limit of Detection is determined first by performing a zero-span calibration (using a 10-point data set). Then the limit of detection (LOD) is defined as 3 times the standard deviation of the zero data set. (An LOD of 10 ppm or less is considered acceptable.)

  8. Real-time line-width measurements: a new feature for reticle inspection systems

    NASA Astrophysics Data System (ADS)

    Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal

    1997-07-01

    The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3, the basic concept of the new approach is introduced together with a description of the new detector and its characteristics. In section 4, the calibration process that took place in order to achieve reliable and repeatable line width measurements is presented. The description of an experiments conducted in order to evaluate the sensitivity of the new detector is given in section 5, followed by a report of the results of this evaluation. The conclusions are presented in section 6.

  9. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser.

    PubMed

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao; Sanchez, Nancy P; Gluszek, Aleksander K; Hudzikowski, Arkadiusz J; Dong, Lei; Griffin, Robert J; Tittel, Frank K

    2016-07-25

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH4) and ethane (C2H6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0-3001.5 cm-1 was used to simultaneously target two absorption lines, C2H6 at 2996.88 cm-1 and CH4 at 2999.06 cm-1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH4 and 1.86 ppbv for C2H6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH4 and C2H6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH4 and 2.4 ppbv for C2H6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH4 and C2H6 were conducted. The reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.

  10. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    PubMed

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  11. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less

  12. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems

    NASA Astrophysics Data System (ADS)

    Williams, George M.

    2017-03-01

    Newly emerging accident-reducing, driver-assistance, and autonomous-navigation technology for automobiles is based on real-time three-dimensional mapping and object detection, tracking, and classification using lidar sensors. Yet, the lack of lidar sensors suitable for meeting application requirements appreciably limits practical widespread use of lidar in trucking, public livery, consumer cars, and fleet automobiles. To address this need, a system-engineering perspective to eyesafe lidar-system design for high-level advanced driver-assistance sensor systems and a design trade study including 1.5-μm spot-scanned, line-scanned, and flash-lidar systems are presented. A cost-effective lidar instrument design is then proposed based on high-repetition-rate diode-pumped solid-state lasers and high-gain, low-excess-noise InGaAs avalanche photodiode receivers and focal plane arrays. Using probabilistic receiver-operating-characteristic analysis, derived from measured component performance, a compact lidar system is proposed that is capable of 220 m ranging with 5-cm accuracy, which can be readily scaled to a 360-deg field of regard.

  13. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines.

    PubMed

    Speck, Stephanie; Kern, Tanja; Aistleitner, Karin; Dilcher, Meik; Dobler, Gerhard; Essbauer, Sandra

    2018-02-01

    Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.

  14. Muscle tension line concept in nasolabial muscle complex--based on 3-dimensional reconstruction of nasolabial muscle fibers.

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Song, Tao; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di

    2015-03-01

    Plastic surgeons have attempted various ways to rebuild the aesthetic subunits of the upper lip in patients with cleft lip with less than perfect results in most cases. We propose that repairing the 3 muscle tension line groups in the nasolabial complex will have improved aesthetic results. Micro-computed tomographic scans were performed on the nasolabial tissues of 5 normal aborted fetuses and used to construct a 3-dimensional model to study the nasolabial muscle complex structure. The micro-computed tomographic (CT) scans showed the close relationship and interaction between the muscle fibers of nasalis, pars peripheralis, levator labii superioris, and pars marginalis. Based on the 2-dimensional images obtained from the micro-computed tomographic scans, we suggest the concept of nasolabial muscle complex and muscle tension line group theory: there is a close relationship among the alar part of the nasalis, depressor septi muscle, orbicularis oris muscle, and levator labii superioris alaeque nasi. The tension line groups are 3 tension line structures in the nasolabial muscle complex that interlock with each other at the intersections and maintain the specific shape and aesthetics of the lip and nose.

  15. Quasiparticle interference mapping of ZrSiS

    NASA Astrophysics Data System (ADS)

    Lodge, Michael; Hosen, Md Mofazzle; Neupane, Madhab; Ishigami, Masa; Chang, Guoqing; Singh, Bahadur; Lin, Hsin; Weber, Bent; Hellerstedt, Jack; Edmonds, Mark; Fuhrer, Michael; Kaczorowski, Dariusz

    The emergent class of 3D Dirac semimetals presents intriguing new systems in which to study the rich physics of the robust, topologically-protected quasiparticles hosted within their bulk. For example, in nodal-line Dirac semimetals, the conductance and valence bands meet along a closed loop in momentum space and disperse linearly in the vicinity of the resultant line node. This results in novel scattering phenomena, owing to the unique Fermi surfaces and scattering selection rules of these systems. Here, we have performed scanning tunneling microscopy and spectroscopy of ZrSiS, one such nodal-line Dirac semimetal,at 4.5 K. We have visualized quasiparticle scattering using differential conductance mapping. In conjunction with numerical modeling, we identify at least six allowed scattering vectors in the material, which gives insight into the scattering selection rules of these novel materials. This work is based upon research supported by the National Science Foundation under Grant No. 0955625 (MSL and MI) and Fellowship No. 1614303 (MSL), and by the Australian Research Council under DECRA Fellowship No. DE160101334 (BW).

  16. Mjollnir Rotational Line Scan Diagnostics.

    DTIC Science & Technology

    1981-05-19

    using long cavity. M8 Removable Pellicle Beam Splitter for He-Ne Lineup Beam. Removed before HF or DF laser is turned on. 27 A 27 * A r of the chopper...three probe laser lines, however three lines were sequentially measured to verify the diagnostic equipment. Two of the three lines have been monitored

  17. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography

    PubMed Central

    Shirazi, Muhammad Faizan; Park, Kibeom; Wijesinghe, Ruchire Eranga; Jeong, Hyosang; Han, Sangyeob; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun

    2016-01-01

    An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products. PMID:27690043

  18. Cytocompatibility and uptake of halloysite clay nanotubes.

    PubMed

    Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano

    2010-03-08

    Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.

  19. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  20. The helium 10830 A line in early-type stars - An atlas of Fabry-Perot scans

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.; Frank, Z. A.; Packard, M. L.; Saunders, B. A.

    1982-01-01

    Representative profiles of He I 10830 A in 65 early-type (O6-A1) stars over a wide range of luminosity are presented. The atlas scans were obtained using the Vaughan Fabry-Perot interferometer on the C. E. K. Mees 0.6 m and KPNO 0.9 m telescopes and usually cover a range of plus or minus 15 A at 1 A resolution with sampling distances between 0.5 A and 2 A depending on the photometer integration time required to reach reasonable Poisson counting statistics. The majority of the scans show very shallow, broad features which do not agree with plane-parallel NLTE model atmosphere calculations of the 10830 line by Auer and Mihalas (1972). Difficulties connected with previous theoretical studies of this line are briefly discussed, and suggestions for possible future modifications to the theory are made.

  1. Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.

    PubMed

    Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian

    2018-06-19

    The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.

  2. A CT scan protocol for the detection of radiographic loosening of the glenoid component after total shoulder arthroplasty

    PubMed Central

    2014-01-01

    Background and purpose It is difficult to evaluate glenoid component periprosthetic radiolucencies in total shoulder arthroplasties (TSAs) using plain radiographs. This study was performed to evaluate whether computed tomography (CT) using a specific patient position in the CT scanner provides a better method for assessing radiolucencies in TSA. Methods Following TSA, 11 patients were CT scanned in a lateral decubitus position with maximum forward flexion, which aligns the glenoid orientation with the axis of the CT scanner. Follow-up CT scanning is part of our routine patient care. Glenoid component periprosthetic lucency was assessed according to the Molé score and it was compared to routine plain radiographs by 5 observers. Results The protocol almost completely eliminated metal artifacts in the CT images and allowed accurate assessment of periprosthetic lucency of the glenoid fixation. Positioning of the patient within the CT scanner as described was possible for all 11 patients. A radiolucent line was identified in 54 of the 55 observed CT scans and osteolysis was identified in 25 observations. The average radiolucent line Molé score was 3.4 (SD 2.7) points with plain radiographs and 9.5 (SD 0.8) points with CT scans (p = 0.001). The mean intra-observer variance was lower in the CT scan group than in the plain radiograph group (p = 0.001). Interpretation The CT scan protocol we used is of clinical value in routine assessment of glenoid periprosthetic lucency after TSA. The technique improves the ability to detect and monitor radiolucent lines and, therefore, possibly implant loosening also. PMID:24286563

  3. Applications and challenges of digital pathology and whole slide imaging.

    PubMed

    Higgins, C

    2015-07-01

    Virtual microscopy is a method for digitizing images of tissue on glass slides and using a computer to view, navigate, change magnification, focus and mark areas of interest. Virtual microscope systems (also called digital pathology or whole slide imaging systems) offer several advantages for biological scientists who use slides as part of their general, pharmaceutical, biotechnology or clinical research. The systems usually are based on one of two methodologies: area scanning or line scanning. Virtual microscope systems enable automatic sample detection, virtual-Z acquisition and creation of focal maps. Virtual slides are layered with multiple resolutions at each location, including the highest resolution needed to allow more detailed review of specific regions of interest. Scans may be acquired at 2, 10, 20, 40, 60 and 100 × or a combination of magnifications to highlight important detail. Digital microscopy starts when a slide collection is put into an automated or manual scanning system. The original slides are archived, then a server allows users to review multilayer digital images of the captured slides either by a closed network or by the internet. One challenge for adopting the technology is the lack of a universally accepted file format for virtual slides. Additional challenges include maintaining focus in an uneven sample, detecting specimens accurately, maximizing color fidelity with optimal brightness and contrast, optimizing resolution and keeping the images artifact-free. There are several manufacturers in the field and each has not only its own approach to these issues, but also its own image analysis software, which provides many options for users to enhance the speed, quality and accuracy of their process through virtual microscopy. Virtual microscope systems are widely used and are trusted to provide high quality solutions for teleconsultation, education, quality control, archiving, veterinary medicine, research and other fields.

  4. Versatile optical coherence tomography for imaging the human eye

    PubMed Central

    Tao, Aizhu; Shao, Yilei; Zhong, Jianguang; Jiang, Hong; Shen, Meixiao; Wang, Jianhua

    2013-01-01

    We demonstrated the feasibility of a CMOS-based spectral domain OCT (SD-OCT) for versatile ophthalmic applications of imaging the corneal epithelium, limbus, ocular surface, contact lens, crystalline lens, retina, and full eye in vivo. The system was based on a single spectrometer and an alternating reference arm with four mirrors. A galvanometer scanner was used to switch the reference beam among the four mirrors, depending on the imaging application. An axial resolution of 7.7 μm in air, a scan depth of up to 37.7 mm in air, and a scan speed of up to 70,000 A-lines per second were achieved. The approach has the capability to provide high-resolution imaging of the corneal epithelium, contact lens, ocular surface, and tear meniscus. Using two reference mirrors, the zero delay lines were alternatively placed on the front cornea or on the back lens. The entire ocular anterior segment was imaged by registering and overlapping the two images. The full eye through the pupil was measured when the reference arm was switched among the four reference mirrors. After mounting a 60 D lens in the sample arm, this SD-OCT was used to image the retina, including the macula and optical nerve head. This system demonstrates versatility and simplicity for multi-purpose ophthalmic applications. PMID:23847729

  5. Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction.

    PubMed

    Pircher, Michael; Baumann, Bernhard; Götzinger, Erich; Sattmann, Harald; Hitzenberger, Christoph K

    2007-12-10

    It has been shown that transversal scanning (or en-face) optical coherence tomography (TS-OCT) represents an imaging modality capable to record high isotropic resolution images of the human retina in vivo. However, axial eye motion still remains a challenging problem of this technique. In this paper we introduce a novel method to compensate for this eye motion. An auxiliary spectral domain partial coherence interferometer (SD-PCI) was integrated into an existing TS-OCT system and used to measure accurately the position of the cornea. A light source emitting at 1310nm was used in the additional interferometer which enabled a nearly loss free coupling of the two measurement beams via a dichroic mirror. The recorded corneal position was used to drive an additional voice coil translation stage in the reference arm of the TS-OCT system to correct for axial eye motion. Currently, the correction can be performed with an update rate of ~200Hz. The TS-OCT instrument is operated with a line scan rate of 4000 transversal lines per second which enables simultaneous SLO/OCT imaging at a frame rate of 40fps. 3D data of the human retina with isotropic high resolution, that was sufficient to visualize the human cone mosaic in vivo, is presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, Stefan; Lein, Sebastian

    A revised scientific instrument to measure simultaneously kinetic temperatures of different atoms from their optical emission profile is reported. Emission lines are simultaneously detected using one single scanning Fabry-Perot-interferometer (FPI) for a combined spectroscopic setup to acquire different emission lines simultaneously. The setup consists in a commercial Czerny-Turner spectrometer configuration which is combined with a scanning Fabry-Perot interferometer. The fast image acquisition mode of an intensified charge coupled device camera allows the detection of a wavelength interval of interest continuously while acquiring the highly resolved line during the scan of the FPI ramp. Results using this new setup are presentedmore » for the simultaneous detection of atomic nitrogen and oxygen in a high enthalpy air plasma flow as used for atmospheric re-entry research and their respective kinetic temperatures derived from the measured line profiles. The paper presents the experimental setup, the calibration procedure, and an exemplary result. The determined temperatures are different, a finding that has been published so far as due to a drawback of the experimental setup of sequential measurements, and which has now to be investigated in more detail.« less

  7. GPR studies at the Nuvuk burial site at Point Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Herman, R. B.; Palmer, J.

    2011-12-01

    Ground penetrating radar was used to study a portion of the Nuvuk (Thule people) prehistoric burial site and to search for a buried prehistoric strand line at Point Barrow. GPR operating at 500MHz resolved features up to 2.5m deep in this area and were used to aid in search and recovery efforts. These scans imaged areas of recent disturbance that required shovel testing to confirm the lack of burials. This survey was able to rule out burials in several areas. Scans determined at least one area where a burial was found that would have been too deep for normal shovel tests to detect. A nearby area was scanned to trace the path of a prehistoric strand line whose initial presence had been revealed by exposure on the bluff adjacent to the Beaufort Sea. The GPR data revealed the path of that strand line along with a number of others. Final GPR images and GPS maps of the survey areas and the strand lines will be presented. The results of follow-up excavations will be discussed, along with the GPR parameters that gave the best results.

  8. Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system.

    PubMed

    Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Masaru; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2012-03-01

    In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.

  9. Overcoming the detection bandwidth limit in precision spectroscopy: The analytical apparatus function for a stepped frequency scan

    NASA Astrophysics Data System (ADS)

    Rohart, François

    2017-01-01

    In a previous paper [Rohart et al., Phys Rev A 2014;90(042506)], the influence of detection-bandwidth properties on observed line-shapes in precision spectroscopy was theoretically modeled for the first time using the basic model of a continuous sweeping of the laser frequency. Specific experiments confirmed general theoretical trends but also revealed several insufficiencies of the model in case of stepped frequency scans. As a consequence in as much as up-to-date experiments use step-by-step frequency-swept lasers, a new model of the influence of the detection-bandwidth is developed, including a realistic timing of signal sampling and frequency changes. Using Fourier transform techniques, the resulting time domain apparatus function gets a simple analytical form that can be easily implemented in line-shape fitting codes without any significant increase of computation durations. This new model is then considered in details for detection systems characterized by 1st and 2nd order bandwidths, underlining the importance of the ratio of detection time constant to frequency step duration, namely for the measurement of line frequencies. It also allows a straightforward analysis of corresponding systematic deviations on retrieved line frequencies and broadenings. Finally, a special attention is paid to consequences of a finite detection-bandwidth in Doppler Broadening Thermometry, namely to experimental adjustments required for a spectroscopic determination of the Boltzmann constant at the 1-ppm level of accuracy. In this respect, the interest of implementing a Butterworth 2nd order filter is emphasized.

  10. Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Moghadas, Amin

    2011-12-01

    A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  11. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    PubMed Central

    Moghadas, Amin A.; Shadaram, Mehdi

    2010-01-01

    In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416

  12. 3D surface scan of biological samples with a Push-broom Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2013-08-01

    The food industry is always on the lookout for sensing technologies for rapid and nondestructive inspection of food products. Hyperspectral imaging technology integrates both imaging and spectroscopy into unique imaging sensors. Its application for food safety and quality inspection has made significant progress in recent years. Specifically, hyperspectral imaging has shown its potential for surface contamination detection in many food related applications. Most existing hyperspectral imaging systems use pushbroom scanning which is generally used for flat surface inspection. In some applications it is desirable to be able to acquire hyperspectral images on circular objects such as corn ears, apples, and cucumbers. Past research describes inspection systems that examine all surfaces of individual objects. Most of these systems did not employ hyperspectral imaging. These systems typically utilized a roller to rotate an object, such as an apple. During apple rotation, the camera took multiple images in order to cover the complete surface of the apple. The acquired image data lacked the spectral component present in a hyperspectral image. This paper discusses the development of a hyperspectral imaging system for a 3-D surface scan of biological samples. The new instrument is based on a pushbroom hyperspectral line scanner using a rotational stage to turn the sample. The system is suitable for whole surface hyperspectral imaging of circular objects. In addition to its value to the food industry, the system could be useful for other applications involving 3-D surface inspection.

  13. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Aron; Jeff Jia; Bruce Vance

    2005-02-01

    This report describes prototypes, measurements, and results for a project to develop a prototype pipeline in-line inspection (ILI) tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). The introduction briefly provides motivation and describes SCC, gives some background on EMATs and guided ultrasonic waves, and reviews promising results of a previous project using EMATs for SCC. The experimental section then describes lab measurement techniques and equipment, the lab mouse and prototypes for a mule, and scan measurements made on SCC. The mouse was a moveable and compact EMAT setup. The prototypes were even moremore » compact circuits intended to be pulled or used in an ILI tool. The purpose of the measurements was to determine the best modes, transduction, and processing to use, to characterize the transducers, and to prove EMATs and mule components could produce useful results. Next, the results section summarizes the measurements and describes the mouse scans, processing, prototype circuit operating parameters, and performance for SH0 scans. Results are given in terms of specifications--like SNR, power, insertion loss--and parametric curves--such as signal amplitude versus magnetic bias or standoff, reflection or transmission coefficients versus crack depth. Initially, lab results indicated magnetostrictive transducers using both SH0 and SV1 modes would be worthwhile to pursue in a practical ILI system. However, work with mule components showed that SV1 would be too dispersive, so SV1 was abandoned. The results showed that reflection measurements, when normalized by the direct arrival are sensitive to and correlated with SCC. This was not true for transmission measurements. Processing yields a high data reduction, almost 60 to 1, and permits A and C scan display techniques and software already in use for pipeline inspection. An analysis of actual SH0 scan results for SCC of known dimensions showed that length and depth could be determined for deep enough cracks. Defect shadow and short length effects were apparent but may be taken into account. The SH0 scan was done with the mule prototype circuits and permanent magnet EMATs. These gave good enough results that this hardware and the processing techniques are very encouraging for use in a practical ILI tool.« less

  14. Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Leisser, Christoph; Leitgeb, Rainer; Pircher, Michael; Fercher, Adolf F.

    2003-10-01

    We built an optical coherence tomography (OCT) system with a rapid scanning optical delay (RSOD) line, which allows probing full axial eye length. The system produces Three-dimensional (3D) data sets that are used to generate 3D tomograms of the model eye. The raw tomographic data were processed by an algorithm, which is based on Snell"s law to correct the interface positions. The Zernike polynomials representation of the interfaces allows quantitative wave aberration measurements. 3D images of our results are presented to illustrate the capabilities of the system and the algorithm performance. The system allows us to measure intra-ocular distances.

  15. The application of pentaprism scanning technology on the manufacturing of M3MP

    NASA Astrophysics Data System (ADS)

    Qi, Erhui; Hu, Haixiang; Hu, Haifei; Cole, Glen; Luo, Xiao; Ford, Virginia; Zhang, Xuejun

    2016-10-01

    The PSS (pentaprism scanning system) has advantages of simple structure, needless of reference flat, be able of on-site testing, etc, it plays an important role in large flat reflective mirror's manufacturing, especially the high accuracy testing of low order aberrations. The PSS system measures directly the slope information of the tested flat surface. Aimed at the unique requirement of M3MP, which is the prototype mirror of the tertiary mirror in TMT (Thirty Meter Telescope) project, this paper analyzed the slope distribution of low order aberrations, power and astigmatism, which is very important in the manufacturing process of M3MP. Then the sample route lines of PSS are reorganized and new data process algorism is implemented. All this work is done to improve PSS's measure sensitivity of power and astigmatism, for guiding the manufacturing process of M3MP.

  16. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  17. Line patterning of anisotropic spin chains by polarized laser for application in micro-thermal management

    NASA Astrophysics Data System (ADS)

    Terakado, Nobuaki; Takahashi, Ryosuke; Takahashi, Yoshihiro; Fujiwara, Takumi

    2017-05-01

    The control of heat flow has become increasingly important in energy saving and harvesting. Among various thermal management materials, spinon thermal conductivity materials are promising for heat flow control at microscales because they exhibit high, anisotropic thermal conductivity resulting from spin chains. However, there has been only little development of the materials for controlling heat flow. Here, we present the line patterning of the spin chain structure on a SrCuO2 nanocrystalline film by laser scanning. When the polarization direction of laser light was orthogonal to the scanning direction, we found that the spin-chain structure anisotropically grew on the patterned line.

  18. Conductivity map from scanning tunneling potentiometry.

    PubMed

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X-G

    2016-08-01

    We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.

  19. Technical Directions In High Resolution Non-Impact Printers

    NASA Astrophysics Data System (ADS)

    Dunn, S. Thomas; Dunn, Patrice M.

    1987-04-01

    There are several factors to consider when addressing the issue of non-impact printer resolution. One will find differences between the imaging resolution and the final output resolution, and most assuradly differences exist between the advertised and actual resolution of many of these systems. Beyond that some of the technical factors that effect the resolution of a system in-clude: . Scan Line Density . Overlap . Spot Size . Energy Profile . Symmetry of Imaging Generally speaking, the user of graphic arts equipment, is best advised to view output to determine the degree of acceptable quality.

  20. Angular on-line tube current modulation in multidetector CT examinations of children and adults: The influence of different scanning parameters on dose reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadakis, Antonios E.; Perisinakis, Kostas; Damilakis, John

    2007-07-15

    The purpose of this study was to assess the potential of angular on-line tube current modulation on dose reduction in pediatric and adult patients undergoing multidetector computed tomography (MDCT) examinations. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-year-old, 5-year-old, 10-year-old, and adult were employed in the current study. Phantoms were scanned with the use of on-line tube current modulation (TCM). Percent dose reduction (%DR) factors achieved by applying TCM, were determined for standard protocols used for head and neck, shoulder, thorax, thorax and abdomen, abdomen, abdomen and pelvis, pelvis, and whole body examinations. A preliminary studymore » on the application of TCM in MDCT examinations of adult patients was performed to validate the results obtained in anthropomorphic phantoms. Dose reduction was estimated as the percentage difference of the modulated milliamperes for each scan and the preset milliamperes prescribed by the scan protocol. The dose reduction in children was found to be much lower than the corresponding reduction achieved for adults. For helical scans the %DR factors, ranged between 1.6% and 7.4% for the neonate, 2.9% and 8.7% for the 1-year old, 2% and 6% for the 5-year-old, 5% and 10.9% for the 10-year-old, and 10.4% and 20.7% for the adult individual. For sequential scans the corresponding %DR factors ranged between 1.3% and 6.7%, 4.5% and 11%, 4.2% and 6.6%, 6.4% and 12.3%, and 8.9% and 23.3%, respectively. Broader beam collimations are associated with decreased %DR factors, when other scanning parameters are held constant. TCM did not impair image noise. In adult patients, the %DR values were found to be in good agreement with the corresponding results obtained in the anthropomorphic adult phantom. In conclusion, on-line TCM may be considered as a valuable tool for reducing dose in routine CT examinations of pediatric and adult patients. However, the dose reduction achieved with TCM in neonates and young children was found to be lower than that obtained for adults. Therefore, on-line TCM should work as an additional means to reduce dose and should not replace other conventional means of reducing dose, especially in neonates and young children.« less

  1. A Study of the Correlation Between Dislocations and Diffusion Length in In(49)Ga(51)P Solar Cells

    DTIC Science & Technology

    2008-12-01

    method of depositing a monocrystalline film on a monocrystalline substrate, the variation in lattice constant is a measure of the structural...charge transport results in greater power generation, reducing the number of cells per panel , thereby reducing weight and volume requirements while... panel . 39 The line scan mode with a horizontal rotation imaged across the dislocation bands was seen in Figure 15, where as the line scan mode

  2. Scan line graphics generation on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1988-01-01

    Described here is how researchers implemented a scan line graphics generation algorithm on the Massively Parallel Processor (MPP). Pixels are computed in parallel and their results are applied to the Z buffer in large groups. To perform pixel value calculations, facilitate load balancing across the processors and apply the results to the Z buffer efficiently in parallel requires special virtual routing (sort computation) techniques developed by the author especially for use on single-instruction multiple-data (SIMD) architectures.

  3. Inversions of synthetic umbral flashes: Effects of scanning time on the inferred atmospheres

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Socas-Navarro, H.; Przybylski, D.

    2018-06-01

    Context. The use of instruments that record narrowband images at selected wavelengths is a common approach in solar observations. They allow scanning of a spectral line by sampling the Stokes profiles with two-dimensional images at each line position, but require a compromise between spectral resolution and temporal cadence. The interpretation and inversion of spectropolarimetric data generally neglect changes in the solar atmosphere during the scanning of line profiles. Aims: We evaluate the impact of the time-dependent acquisition of various wavelengths on the inversion of spectropolarimetric profiles from chromospheric lines during umbral flashes. Methods: Numerical simulations of nonlinear wave propagation in a sunspot model were performed with the code MANCHA. Synthetic Stokes parameters in the Ca II 8542 Å line in NLTE were computed for an umbral flash event using the code NICOLE. Artificial profiles with the same wavelength coverage and temporal cadence from reported observations were constructed and inverted. The inferred atmospheric stratifications were compared with the original simulated models. Results: The inferred atmospheres provide a reasonable characterization of the thermodynamic properties of the atmosphere during most of the phases of the umbral flash. The Stokes profiles present apparent wavelength shifts and other spurious deformations at the early stages of the flash, when the shock wave reaches the formation height of the Ca II 8542 Å line. These features are misinterpreted by the inversion code, which can return unrealistic atmospheric models from a good fit of the Stokes profiles. The misguided results include flashed atmospheres with strong downflows, even though the simulation exhibits upflows during the umbral flash, and large variations in the magnetic field strength. Conclusions: Our analyses validate the inversion of Stokes profiles acquired by sequentially scanning certain selected wavelengths of a line profile, even in the case of rapidly changing chromospheric events such as umbral flashes. However, the inversion results are unreliable during a short period at the development phase of the flash.

  4. Optimal pupil design for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2010-02-01

    Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.

  5. Design and cold test of S-BAND cavity BPM for HLS

    NASA Astrophysics Data System (ADS)

    Luo, Qing; Sun, BaoGen; Jia, QiKa; He, DuoHui; Fang, Jia

    2011-12-01

    An S-band cavity BPM is designed for a new injector in National Synchrotron Radiation Laboratory. A re-entrant position cavity is tuned to the TM110 mode as position cavity. Cut-through waveguides are used as pickups to suppress the monopole signal. Theoretical resolution of this design is 31 nm. A prototype cavity BPM system is manufactured for off-line cold tests. The wire scanning method is used to calibrate the BPM and estimate the performance of the on-line BPM system. A cross-talk problem has been detected during the cold test. Racetrack cavity BPM design can be used to suppress the cross-talk. With the nonlinear effect being ignored, transform matrix can be used to correct cross-talk. Analysis of cold test results shows that the position resolution of prototype BPM is better than 3 μm.

  6. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer.

    PubMed

    Dandawate, Prasad R; Vyas, Alok; Ahmad, Aamir; Banerjee, Sanjeev; Deshpande, Jyoti; Swamy, K Venkateswara; Jamadar, Abeda; Dumhe-Klaire, Anne Catherine; Padhye, Subhash; Sarkar, Fazlul H

    2012-07-01

    Several formulations have been proposed to improve the systemic delivery of novel cancer therapeutic compounds, including cyclodextrin derivatives. We aimed to synthesize and characterize of CDF-β-cyclodextrin inclusion complex (1:2) (CDFCD). The compound was characterized by Fourier transform infrared, differential scanning calorimetry, powder X-ray diffraction studies, H1 & C13 NMR studies and scanning electron microscopic analysis. Its activity was tested against multiple cancer cell lines, and in vivo bioavailability was checked. CDF-β-cyclodextrin was found to lower IC(50) value by half when tested against multiple cancer cell lines. It preferentially accumulated in the pancreas, where levels of CDF-β-cyclodextrin in mice were 10 times higher than in serum, following intravenous administration of an aqueous CDF-β-cyclodextrin preparation. Novel curcumin analog CDF preferentially accumulates in the pancreas, leading to its potent anticancer activity against pancreatic cancer cells. Synthesis of such CDF-β-cyclodextrin self-assembly is an effective strategy to enhance its bioavailability and tissue distribution, warranting further evaluation for CDF delivery in clinical settings for treatment of human malignancies.

  7. Toward Routine Automatic Pathway Discovery from On-line Scientific Text Abstracts.

    PubMed

    Ng; Wong

    1999-01-01

    We are entering a new era of research where the latest scientific discoveries are often first reported online and are readily accessible by scientists worldwide. This rapid electronic dissemination of research breakthroughs has greatly accelerated the current pace in genomics and proteomics research. The race to the discovery of a gene or a drug has now become increasingly dependent on how quickly a scientist can scan through voluminous amount of information available online to construct the relevant picture (such as protein-protein interaction pathways) as it takes shape amongst the rapidly expanding pool of globally accessible biological data (e.g. GENBANK) and scientific literature (e.g. MEDLINE). We describe a prototype system for automatic pathway discovery from on-line text abstracts, combining technologies that (1) retrieve research abstracts from online sources, (2) extract relevant information from the free texts, and (3) present the extracted information graphically and intuitively. Our work demonstrates that this framework allows us to routinely scan online scientific literature for automatic discovery of knowledge, giving modern scientists the necessary competitive edge in managing the information explosion in this electronic age.

  8. Theoretical simulation of solar spectra in the middle ultraviolet and visible for atmospheric trace constituent measurements

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    1978-01-01

    Two balloon flights reaching float altitudes of approximately 30 and 40 km respectively, were used to obtain scans of the ultraviolet and visible solar spectra. Both flights covered the UV (2800-3500A) at approximately 0.3A resolution and the visible at approximately 0.6A. Numerous scans were obtained during ascent and from float for both flights. All spectral scans obtained at float, from high sun to low sun, were calibrated in wavelength by using several standard solar spectra for line position references. Comparisons of low sun scans and high sun scans show significant atmospheric continuum extinction and have the potential of being used to identify atmospheric lines superimposed on the attenuated solar spectrum. The resolution was mathematically degraded to approximately 5A to better see the broad band atmospheric extinction. This low resolution is also appropriate for the available low resolution absorption coefficients of NO2 and O3, allowing the identification of NO2 and O3 features on the sunset spectra.

  9. The comparative morphology of pit organs in elasmobranchs.

    PubMed

    Peach, M B; Marshall, N J

    2009-06-01

    The pit organs of elasmobranchs (sharks, skates and rays) are free neuromasts of the mechanosensory lateral line system. Pit organs, however, appear to have some structural differences from the free neuromasts of bony fishes and amphibians. In this study, the morphology of pit organs was investigated by scanning electron microscopy in six shark and three ray species. In each species, pit organs contained typical lateral line hair cells with apical stereovilli of different lengths arranged in an "organ-pipe" configuration. Supporting cells also bore numerous apical microvilli taller than those observed in other vertebrate lateral line organs. Pit organs were either covered by overlapping denticles, located in open grooves bordered by denticles, or in grooves without associated denticles. The possible functional implications of these morphological features, including modification of water flow and sensory filtering properties, are discussed.

  10. Confocal non-line-of-sight imaging based on the light-cone transform

    NASA Astrophysics Data System (ADS)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  11. Confocal non-line-of-sight imaging based on the light-cone transform.

    PubMed

    O'Toole, Matthew; Lindell, David B; Wetzstein, Gordon

    2018-03-15

    How to image objects that are hidden from a camera's view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  12. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity

    PubMed Central

    Boudreau, Colton; Wee, Tse-Luen (Erika); Duh, Yan-Rung (Silvia); Couto, Melissa P.; Ardakani, Kimya H.; Brown, Claire M.

    2016-01-01

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity. PMID:27485088

  13. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.

    PubMed

    Boudreau, Colton; Wee, Tse-Luen Erika; Duh, Yan-Rung Silvia; Couto, Melissa P; Ardakani, Kimya H; Brown, Claire M

    2016-08-03

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity.

  14. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 27. Distributed Request Supervisor Product Specification.

    DTIC Science & Technology

    1985-11-01

    McAuto) Transaction Manager Subsystem during 1984/1985 period. On-Line Software Responsible for programming the International (OSI) Communications...Network Transaction Manager (NTM) in 1981/1984 period. Software Performance Responsible for directing the Engineering (SPE) work on performance...computer software Contained herein are theoretical and/or SCAN Project 1prierity sao referenoes that In so way reflect Air Forceowmed or -developed $62 LO

  15. Noninvasive Localization of Prostate Cancer via Diffusion Sensitive MRI

    DTIC Science & Technology

    2008-03-01

    sequence, Haker et al and Roebuck et al using a line-scan diffusion sequence, and Vigneron et al using a fast spin-echo diffusion sequence (33,35-37...Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CM. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted...36. Haker SJ, Szot Barnes A, Maier SE, Tempany CM, Mulkern RV. Diffusion Tensor Imaging for Prostate Cancer Detection: Preliminary Results from a

  16. Automatic drawing for traffic marking with MMS LIDAR intensity

    NASA Astrophysics Data System (ADS)

    Takahashi, G.; Takeda, H.; Shimano, Y.

    2014-05-01

    Upgrading the database of CYBER JAPAN has been strategically promoted because the "Basic Act on Promotion of Utilization of Geographical Information", was enacted in May 2007. In particular, there is a high demand for road information that comprises a framework in this database. Therefore, road inventory mapping work has to be accurate and eliminate variation caused by individual human operators. Further, the large number of traffic markings that are periodically maintained and possibly changed require an efficient method for updating spatial data. Currently, we apply manual photogrammetry drawing for mapping traffic markings. However, this method is not sufficiently efficient in terms of the required productivity, and data variation can arise from individual operators. In contrast, Mobile Mapping Systems (MMS) and high-density Laser Imaging Detection and Ranging (LIDAR) scanners are rapidly gaining popularity. The aim in this study is to build an efficient method for automatically drawing traffic markings using MMS LIDAR data. The key idea in this method is extracting lines using a Hough transform strategically focused on changes in local reflection intensity along scan lines. However, also note that this method processes every traffic marking. In this paper, we discuss a highly accurate and non-human-operator-dependent method that applies the following steps: (1) Binarizing LIDAR points by intensity and extracting higher intensity points; (2) Generating a Triangulated Irregular Network (TIN) from higher intensity points; (3) Deleting arcs by length and generating outline polygons on the TIN; (4) Generating buffers from the outline polygons; (5) Extracting points from the buffers using the original LIDAR points; (6) Extracting local-intensity-changing points along scan lines using the extracted points; (7) Extracting lines from intensity-changing points through a Hough transform; and (8) Connecting lines to generate automated traffic marking mapping data.

  17. Radial scanning diagnostics of bremsstrahlung and line emission in T-10 plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemets, A. R., E-mail: Nemets-AR@nrcki.ru; Krupin, V. A.; Klyuchnikov, L. A., E-mail: lklyuchnikov@list.ru

    2016-12-15

    The paper describes the scanning spectroscopic diagnostics designed for measurement of line integrated plasma radiation in two visible spectral ranges. This diagnostic system is aimed at measuring the bremsstrahlung absolute values and profile with high spatial resolution. The bremsstrahlung absolute values are used to determine the value and radial distribution of effective plasma ion charge Z{sub eff}(r) in T-10 discharges. The importance of Z{sub eff} measurement is due to its strong influence on plasma heating, confinement, and stability. The spatial distribution of emission for one of the chosen spectral lines is measured simultaneously with bremsstrahlung. The spatial resolution of measurementsmore » is ~1 cm, and the temporal resolution is up to 10 ms. The spectral equipment and methods for its calibration are described. Examples of line integrated brightness distribution in a “continuum window” of 5236 ± 6 Å and brightness of the lines C{sup 5+} (5291 Å), He{sup 1+} (4686 Å), and D{sub β} (4861 Å) are given. Flattening of the bremsstrahlung brightness profile in the central region of the plasma column in some discharges with sawtooth oscillations in the T-10 is observed. The measured effective ion charge profiles in ohmic discharges with high plasma density and low discharge currents demonstrate accumulation of light impurities at the column axis; as a consequence, quenching of sawtooth oscillations in some discharges is observed. The developed diagnostics provides necessary data for investigation of heat, particle, and current transport in the plasma of the T-10. Successful application of the obtained data on Z{sub eff}(r) for investigation of geodesic acoustic modes of plasma oscillations in the T-10 should be specially noted.« less

  18. Image Intensifier Modules For Use With Commercially Available Solid State Cameras

    NASA Astrophysics Data System (ADS)

    Murphy, Howard; Tyler, Al; Lake, Donald W.

    1989-04-01

    A modular approach to design has contributed greatly to the success of the family of machine vision video equipment produced by EG&G Reticon during the past several years. Internal modularity allows high-performance area (matrix) and line scan cameras to be assembled with two or three electronic subassemblies with very low labor costs, and permits camera control and interface circuitry to be realized by assemblages of various modules suiting the needs of specific applications. Product modularity benefits equipment users in several ways. Modular matrix and line scan cameras are available in identical enclosures (Fig. 1), which allows enclosure components to be purchased in volume for economies of scale and allows field replacement or exchange of cameras within a customer-designed system to be easily accomplished. The cameras are optically aligned (boresighted) at final test; modularity permits optical adjustments to be made with the same precise test equipment for all camera varieties. The modular cameras contain two, or sometimes three, hybrid microelectronic packages (Fig. 2). These rugged and reliable "submodules" perform all of the electronic operations internal to the camera except for the job of image acquisition performed by the monolithic image sensor. Heat produced by electrical power dissipation in the electronic modules is conducted through low resistance paths to the camera case by the metal plates, which results in a thermally efficient and environmentally tolerant camera with low manufacturing costs. A modular approach has also been followed in design of the camera control, video processor, and computer interface accessory called the Formatter (Fig. 3). This unit can be attached directly onto either a line scan or matrix modular camera to form a self-contained units, or connected via a cable to retain the advantages inherent to a small, light weight, and rugged image sensing component. Available modules permit the bus-structured Formatter to be configured as required by a specific camera application. Modular line and matrix scan cameras incorporating sensors with fiber optic faceplates (Fig 4) are also available. These units retain the advantages of interchangeability, simple construction, ruggedness, and optical precision offered by the more common lens input units. Fiber optic faceplate cameras are used for a wide variety of applications. A common usage involves mating of the Reticon-supplied camera to a customer-supplied intensifier tube for low light level and/or short exposure time situations.

  19. Nondestructive inspection of a composite missile launcher

    NASA Astrophysics Data System (ADS)

    Ley, O.; Chung, S.; Butera, M.; Valatka, T.; Triplett, M. H.; Godinez, V.

    2012-05-01

    Lighter weight alternatives are being sought to replace metallic components currently used in high performance aviation and missile systems. Benefits of lightweight, high strength carbon fiber reinforced composites in missile launchers and rocket motor cases include improved fuel economy, increased flight times, enhanced lethality and/or increased velocity. In this work, various nondestructive inspection techniques are investigated for the damage assessment of a composite missile launcher system for use in U.S. Army attack helicopters. The launcher system, which includes rails and a hardback, can be subject to impact damage from accidental tool drops, routine operation, and/or ballistic threats. The composite hardback and the launch rails both have complex geometries that can challenge the inspection process. Scanning techniques such as line scanning thermography, ultrasonic, and acousto-ultrasonics will be used and compared to determine damage detection accuracy, reliability, and efficiency. Results will also be compared with visual observations to determine if there is a correlation. The goal is to establish an inspection method that quickly and accurately assesses damage extent in order to minimize service time and return the missile system back into the field [1].

  20. Fluorescence molecular imaging system with a novel mouse surface extraction method and a rotary scanning scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-03-01

    We have developed a new fluorescence molecular tomography (FMT) imaging system, in which we utilized a phase shifting method to extract the mouse surface geometry optically and a rotary laser scanning approach to excite fluorescence molecules and acquire fluorescent measurements on the whole mouse body. Nine fringe patterns with a phase shifting of 2π/9 are projected onto the mouse surface by a projector. The fringe patterns are captured using a webcam to calculate a phase map that is converted to the geometry of the mouse surface with our algorithms. We used a DigiWarp approach to warp a finite element mesh of a standard digital mouse to the measured mouse surface thus the tedious and time-consuming procedure from a point cloud to mesh is avoided. Experimental results indicated that the proposed method is accurate with errors less than 0.5 mm. In the FMT imaging system, the mouse is placed inside a conical mirror and scanned with a line pattern laser that is mounted on a rotation stage. After being reflected by the conical mirror, the emitted fluorescence photons travel through central hole of the rotation stage and the band pass filters in a motorized filter wheel, and are collected by a CCD camera. Phantom experimental results of the proposed new FMT imaging system can reconstruct the target accurately.

  1. Laser scanning endoscope for diagnostic medicine

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald R.; Nudelman, Sol; Spackman, Thomas; Zaccheo, Scott

    1990-07-01

    A new type of endoscope is being developed which utilizes an optical raster scanning system for imaging through an endoscope. The optical raster scanner utilizes a high speed, multifaceted, rotating polygon mirror system for horizontal deflection, and a slower speed galvanometer driven mirror as the vertical deflection system. When used in combination, the optical raster scanner traces out a raster similar to an electron beam raster used in television systems. This flying spot of light can then be detected by various types of photosensitive detectors to generate a video image of the surface or scene being illuminated by the scanning beam. The optical raster scanner has been coupled to an endoscope. The raster is projected down the endoscope, thereby illuminating the object to be imaged at the distal end of the endoscope. Elemental photodetectors are placed at the distal or proximal end of the endoscope to detect the reflected illumination from the flying spot of light. This time sequenced signal is captured by an image processor for display and processing. This technique offers the possibility for very small diameter endoscopes since illumination channel requirements are eliminated. Using various lasers, very specific spectral selectivity can be achieved to optimum contrast of specific lesions of interest. Using several laser lines, or a white light source, with detectors of specific spectral response, multiple spectrally selected images can be acquired simultaneously. The potential for co-linear therapy delivery while imaging is also possible.

  2. Automated inspection of gaps on the free-form shape parts by laser scanning technologies

    NASA Astrophysics Data System (ADS)

    Zhou, Sen; Xu, Jian; Tao, Lei; An, Lu; Yu, Yan

    2018-01-01

    In industrial manufacturing processes, the dimensional inspection of the gaps on the free-form shape parts is critical and challenging, and is directly associated with subsequent assembly and terminal product quality. In this paper, a fast measuring method for automated gap inspection based on laser scanning technologies is presented. The proposed measuring method consists of three steps: firstly, the relative position is determined according to the geometric feature of measuring gap, which considers constraints existing in a laser scanning operation. Secondly, in order to acquire a complete gap profile, a fast and effective scanning path is designed. Finally, the range dimension of the gaps on the free-form shape parts including width, depth and flush, correspondingly, is described in a virtual environment. In the future, an appliance machine based on the proposed method will be developed for the on-line dimensional inspection of gaps on the automobile or aerospace production line.

  3. Optical coherence tomography characteristics of different types of big bubbles seen in deep anterior lamellar keratoplasty by the big bubble technique

    PubMed Central

    AlTaan, S L; Termote, K; Elalfy, M S; Hogan, E; Werkmeister, R; Schmetterer, L; Holland, S; Dua, H S

    2016-01-01

    Purpose To define optical coherence tomography (OCT) characteristics of type-1, type-2, and mixed big bubbles (BB) seen in deep anterior lamellar keratoplasty. Methods Human sclero-corneal discs were obtained from UK (30) and Canada (16) eye banks. Air was injected into corneal stroma until a BB formed. UK samples were fixed in formalin before scanning with Fourier-domain (FD-OCT). One pair of each type of BB was scanned fresh. All BB obtained from Canada were scanned fresh with time-domain (TD-OCT). For each OCT machine used, type-1 BB from which Descemets membrane (DM) was partially peeled, were also scanned. The morphological characteristics of the scans were studied. Results FD-OCT of the posterior wall of type-1 (Dua's layer (DL) with DM) and type-2 BB (DM alone) both revealed a double-contour hyper-reflective curvilinear image with a hypo-reflective zone in between. The anterior line of type-2 BB was thinner than that seen with type-1 BB. In mixed BB, FD-OCT showed two separate curvilinear images. The anterior image was a single hyper-reflective line (DL), whereas the posterior image, representing the posterior wall of type-2 BB (DM) was made of two hyper-reflective lines with a dark space in between. TD-OCT images were similar with less defined component lines, but the entire extent of the BB could be visualised. Conclusion On OCT examination the DM and DL present distinct features, which can help identify type-1, type-2, and mixed BB. These characteristics will help corneal surgeons interpret intraoperative OCT during lamellar corneal surgery. PMID:27472215

  4. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Despres, Philippe; Beaudoin, Gilles; Gravel, Pierre

    2005-04-01

    A new scanning slit gas detector dedicated to orthopedic x-ray imaging is presented and evaluated in terms of its fundamental imaging characteristics. The system is based on the micromesh gaseous structure detector and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for imaging at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of imaging an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected bymore » the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the images contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm{sup -1}) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 {mu}Gy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal detectors is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in sensitive clientele undergoing intensive x-ray procedures, like young scoliotic women.« less

  5. Plasma rotation measurement in small tokamaks using an optical spectrometer and a single photomultiplier as detector.

    PubMed

    Severo, J H F; Nascimento, I C; Kuznetov, Yu K; Tsypin, V S; Galvão, R M O; Tendler, M

    2007-04-01

    The method for plasma rotation measurement in the tokamak TCABR is reported in this article. During a discharge, an optical spectrometer is used to scan sequentially spectral lines of plasma impurities and spectral lines of a calibration lamp. Knowing the scanning velocity of the diffraction grating of the spectrometer with adequate precision, the Doppler shifts of impurity lines are determined. The photomultiplier output voltage signals are recorded with adequate sampling rate. With this method the residual poloidal and toroidal plasma rotation velocities were determined, assuming that they are the same as those of the impurity ions. The results show reasonable agreement with the neoclassical theory and with results from similar tokamaks.

  6. Reducing flicker due to ambient illumination in camera captured images

    NASA Astrophysics Data System (ADS)

    Kim, Minwoong; Bengtson, Kurt; Li, Lisa; Allebach, Jan P.

    2013-02-01

    The flicker artifact dealt with in this paper is the scanning distortion arising when an image is captured by a digital camera using a CMOS imaging sensor with an electronic rolling shutter under strong ambient light sources powered by AC. This type of camera scans a target line-by-line in a frame. Therefore, time differences exist between the lines. This mechanism causes a captured image to be corrupted by the change of illumination. This phenomenon is called the flicker artifact. The non-content area of the captured image is used to estimate a flicker signal that is a key to being able to compensate the flicker artifact. The average signal of the non-content area taken along the scan direction has local extrema where the peaks of flicker exist. The locations of the extrema are very useful information to estimate the desired distribution of pixel intensities assuming that the flicker artifact does not exist. The flicker-reduced images compensated by our approach clearly demonstrate the reduced flicker artifact, based on visual observation.

  7. Managing vulvovaginal hematoma by arterial embolization as first-line hemostatic therapy.

    PubMed

    Takagi, Kenjiro; Akashi, Keiko; Horiuchi, Isao; Nakamura, Eishin; Samejima, Koki; Ushijima, Junko; Okochi, Tomohisa; Hamamoto, Kohei; Tanno, Keisuke

    2017-04-01

    A puerperal vulvovaginal hematoma may continue to grow after a surgical procedure and may require blood transfusion. Thus, we selected arterial embolization for hemostasis as the first-line management in two cases of large vulvovaginal hematoma. Case 1 was a 32-year-old pregnant woman. After delivery, a 10-cm vulvar hematoma developed. An enhanced computed tomography (CT) scan revealed active bleeding. Arterial embolization was performed and complete hemostasis was obtained. Case 2 was a 34-year-old woman with a recurring hematoma after delivery. An enhanced CT scan revealed extravasation in the hematoma. Gelatin sponges were applied and complete hemostasis was obtained. In both cases, arterial embolization was successful without requiring blood transfusions. We successfully managed two cases of puerperal vulvovaginal hematoma by arterial embolization based on the evaluation of an enhanced CT scan. In conclusion, we suggest arterial embolization to be a viable option for first-line treatment in the management of vulvovaginal hematomas. Copyright © 2017. Published by Elsevier B.V.

  8. A direct method of extracting surface recombination velocity from an electron beam induced current line scan

    NASA Astrophysics Data System (ADS)

    Ong, Vincent K. S.

    1998-04-01

    The extraction of diffusion length and surface recombination velocity in a semiconductor with the use of an electron beam induced current line scan has traditionally been done by fitting the line scan into complicated theoretical equations. It was recently shown that a much simpler equation is sufficient for the extraction of diffusion length. The linearization coefficient is the only variable that is needed to be adjusted in the curve fitting process. However, complicated equations are still necessary for the extraction of surface recombination velocity. It is shown in this article that it is indeed possible to extract surface recombination velocity with a simple equation, using only one variable, the linearization coefficient. An intuitive feel for the reason behind the method was discussed. The accuracy of the method was verified with the use of three-dimensional computer simulation, and was found to be even slightly better than that of the best existing method.

  9. Snapshot imaging Fraunhofer line discriminator for detection of plant fluorescence

    NASA Astrophysics Data System (ADS)

    Gupta Roy, S.; Kudenov, M. W.

    2015-05-01

    Non-invasive quantification of plant health is traditionally accomplished using reflectance based metrics, such as the normalized difference vegetative index (NDVI). However, measuring plant fluorescence (both active and passive) to determine photochemistry of plants has gained importance. Due to better cost efficiency, lower power requirements, and simpler scanning synchronization, detecting passive fluorescence is preferred over active fluorescence. In this paper, we propose a high speed imaging approach for measuring passive plant fluorescence, within the hydrogen alpha Fraunhofer line at ~656 nm, using a Snapshot Imaging Fraunhofer Line Discriminator (SIFOLD). For the first time, the advantage of snapshot imaging for high throughput Fraunhofer Line Discrimination (FLD) is cultivated by our system, which is based on a multiple-image Fourier transform spectrometer and a spatial heterodyne interferometer (SHI). The SHI is a Sagnac interferometer, which is dispersion compensated using blazed diffraction gratings. We present data and techniques for calibrating the SIFOLD to any particular wavelength. This technique can be applied to quantify plant fluorescence at low cost and reduced complexity of data collection.

  10. X-ray BodySearch eliminates strip search in Montana prison

    NASA Astrophysics Data System (ADS)

    de Moulpied, David S.; Rothschild, Peter J.; Smith, Gerald J.

    1998-12-01

    Work release details at prisons have been a continuing source of inspection problems for prison wardens. At the Montana State Prison in deer Lodge 400 prisoners leave the prison in the morning to work outside the walls. They return at lunch and again in the evening. Past practice has been to do a 100% pat search and selective strip searches. These procedures are an irritant to both prisoners and prison personnel involved. However, they were felt to be essential based on the quantity of contraband materials being brought into the prison by these work release inmates. BodySearch is an x-ray scanning system which uses backscatter x-ray to form an image of prisoners as they stand next to the system. Typically prisoners are scanned two at a time, with one scan being taken from the back and the second from the front. Although privacy was considered to be an issue, the prisoners have been relived not to have to go through full pat searches and periodic strip searches. The automatic equipment has also sped up the inspection process and eliminated some of the waiting lines. The problem was so bad that one warden was contemplating having all prisoners issued two sets of clothing (a several hundred thousand dollar investment), which they would change on the way in and out of the prison facility. The new system has all but eliminated any attempt by prisoners to smuggle contraband into the prison by concealing it on their person as they return from work detail. Operationally, a pencil beam is generated by a rotating chopper, which scans horizontally as it is moved vertically. Scintillator detectors mounted adjacent and parallel to the direction of the scanning beam collect the scattered radiation. The result is a photo-like image of the body surface facing the system. The use of a scanning pencil beam in a backscatter geometry with a 140 kV x-ray source eliminates any issue of radiation safety. In fact, the dose delivered by the system (under 10 micro rem for a two-scan inspection) is less than 1% of the dose a person standing outside at sea level receives from background radiation in a day.

  11. Line plus arc source trajectories and their R-line coverage for long-object cone-beam imaging with a C-arm system

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Wunderlich, Adam; Dennerlein, Frank; Lauritsch, Günter; Noo, Frédéric

    2011-06-01

    Cone-beam imaging with C-arm systems has become a valuable tool in interventional radiology. Currently, a simple circular trajectory is used, but future applications should use more sophisticated source trajectories, not only to avoid cone-beam artifacts but also to allow extended volume imaging. One attractive strategy to achieve these two goals is to use a source trajectory that consists of two parallel circular arcs connected by a line segment, possibly with repetition. In this work, we address the question of R-line coverage for such a trajectory. More specifically, we examine to what extent R-lines for such a trajectory cover a central cylindrical region of interest (ROI). An R-line is a line segment connecting any two points on the source trajectory. Knowledge of R-line coverage is crucial because a general theory for theoretically exact and stable image reconstruction from axially truncated data is only known for the points in the scanned object that lie on R-lines. Our analysis starts by examining the R-line coverage for the elemental trajectories consisting of (i) two parallel circular arcs and (ii) a circular arc connected orthogonally to a line segment. Next, we utilize our understanding of the R-lines for the aforementioned elemental trajectories to determine the R-line coverage for the trajectory consisting of two parallel circular arcs connected by a tightly fit line segment. For this trajectory, we find that the R-line coverage is insufficient to completely cover any central ROI. Because extension of the line segment beyond the circular arcs helps to increase the R-line coverage, we subsequently propose a trajectory composed of two parallel circular arcs connected by an extended line. We show that the R-lines for this trajectory can fully cover a central ROI if the line extension is long enough. Our presentation includes a formula for the minimum line extension needed to achieve full R-line coverage of an ROI with a specified size, and also includes a preliminary study on the required detector size, showing that the R-lines added by the line extension are not constraining.

  12. X ray based displacement measurement for hostile environments

    NASA Technical Reports Server (NTRS)

    Canistraro, Howard A.; Jordon, Eric H.; Pease, Douglas M.; Fralick, Gustave C.

    1992-01-01

    A new method on noncontacting, high temperature extensometry based on the focus and scanning of x rays is currently under development and shows great promise of overcoming limitations associated with available techniques. The chief advantage is the ability to make undisturbed measurements through stratified or flowing gases, smoke, and flame. The system is based on the ability to focus and scan low energy, hard x rays such as those emanating from copper or molybdenum sources. The x rays are focused into a narrow and intense line image which can be scanned onto targets that fluoresce secondary x ray radiation. The final goal of the system is the ability to conduct macroscopic strain measurements in hostile environments by utilizing two or more fluorescing targets. Current work is limited to displacement measurement of a single target with a resolution of 1.25 micro-m and a target temperature of 1200 C, directly through an open flame. The main advantage of the technique lies in the penetrating nature of x rays which are not affected by the presence of refracting gas layers, smoke, flame, or intense thermal radiation, all of which could render conventional extensometry methods inoperative or greatly compromise their performance.

  13. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  14. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy.

    PubMed

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  15. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    PubMed

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.

  16. Airborne LIDAR point cloud tower inclination judgment

    NASA Astrophysics Data System (ADS)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  17. A New Generation of Micro Satellite Radiometers for Atmospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    He, jieying

    2017-04-01

    The need for low-cost, mission-flexible, and rapidly deployable space borne sensors that meet stringent performance requirements pervades the extreme weather monitoring programs, including especially the strong rainfall and typhoon. New technologies have enabled a novel approach toward this science observational goal, and in this paper we describe recent technology develop efforts to address the challenges above through the use of radiometers on a Micro-sized Microwave Atmospheric Satellite (Microsat), which operates in the type of constellation, and enable the capabilities of rapidly progressing. Recent work has involved the design and development of highly integrated radiometer component technologies that would enable the realization of a high-performance, multi-band sounder that would conform to the 3U CubeSat size (10 x 10 x 30 cm), weight, and power requirements. This paper partly focuses on the constellation to realize a scalable CubeSat-based system that will pave the path towards improved revisit rates over critical earth regions, and achieve state-of-the-art performance relative to current systems with respect to spatial, spectral, and radiometric resolution. As one of the important payloads on the platform, sub-millimeter radiometer is advised to house for providing atmospheric and oceanographic information all weather and all day. The first portion of the radiometer comprises a horn-fed reflector antenna, with a full-width at half-maximum (FWHM) beamwidth of 1.2°. Hence, the scanned beam has an approximate footprint diameter of 9.6 km at nadir incidence from a nominal altitude of 500 km. The antenna system is designed for a minimum 95% beam efficiency. Approximately 98 pixels are sampled for every scanning line, which covers a range of 1500km. The period of a round is about 94.47 minutes and re-visit period is four days. For the radiometer, which is a passive cross-track-scanning microwave spectrometer operating near the 118.75-GHz oxygen absorption line and 183 water vapor line for more than 100 channels based on high-speed digital processing technique, with a calibration accuracy of 0.5K for each channel to ensure the capability of temperature and ice-cloud retrievals. To meet the requirements of spatial and temporal specifications, a primarily concept of 41 Microsats in constellation are considered to achieve the retrievals in the resolution of 10km and 10 minutes.

  18. High-speed adaptive optics line scan confocal retinal imaging for human eye

    PubMed Central

    Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458

  19. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanehira, T; Sutherland, K; Matsuura, T

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generatedmore » and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.« less

  1. Control Measurements of Crane Rails Performed by Terrestrial Laser Scanning

    PubMed Central

    Kregar, Klemen; Možina, Jan; Ambrožič, Tomaž; Kogoj, Dušan; Marjetič, Aleš; Štebe, Gašper; Savšek, Simona

    2017-01-01

    This article presents a method for measuring the geometry of crane rails with terrestrial laser scanning (TLS). Two sets of crane rails were divided into segments, their planes were adjusted, and the characteristic rail lines were defined. We used their profiles to define the positional and altitude deviations of the rails, the span and height difference between the two rails, and we also verified that they complied with the Eurocode 3 standard. We tested the method on crane rails at the hydroelectric power plant in Krško and the thermal power plant in Brestanica. We used two scanning techniques: “pure” TLS (Riegel VZ-400) and “hybrid” TLS (Leica MS50) scanning. This article’s original contribution lies in the detailed presentation of the computations used to define the characteristic lines of the rails without using the numeric procedures from existing software packages. We also analysed the influence of segment length and point density on the rail geometry results, and compared the two laser scanning techniques. We also compared the results obtained by terrestrial laser scanning with the results obtained from the classic polar method, which served as a reference point for its precision. PMID:28726755

  2. Electrochemical etching technique of platinum-iridium tips for scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Herrera, Oscar

    The scanning tunneling microscope (STM) allows researchers to investigate atomic and molecular structures and properties of nanomaterials. Through the quantum tunneling effect a charge is transferred between the surface of the material and a Platinum-Iridium (Pt-Ir) tip. The production of Pt-Ir tips by electrochemical etching (ECE) has been developed as an alternative technique, to achieve enhanced scanned images of samples, in contrast to the standard mechanical method (SMM). The sharpness apex structure is an essential feature during scanning in order to provide reliable data. We generated a control group of tips by the SMM technique and another group by the ECE technique to investigate the resolution effectiveness in scanning of graphite. The etching of the tips was produced using an auto-variable transformer running a 30 V AC in a 1.5 and 4.0 M CaCl2 solution. The scanning of the graphite surface was conducted at 7x7 nm image width, 0.2 seconds time/line, 256 points/line and 0.05 V for tip voltage. ECE etched tips displayed consistent image resolution, and the sharpness of the tip apex was generally uniform.

  3. Multiple-hypothesis multiple-model line tracking

    NASA Astrophysics Data System (ADS)

    Pace, Donald W.; Owen, Mark W.; Cox, Henry

    2000-07-01

    Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.

  4. SCD's uncooled detectors and video engines for a wide-range of applications

    NASA Astrophysics Data System (ADS)

    Fraenkel, A.; Mizrahi, U.; Bikov, L.; Giladi, A.; Shiloah, N.; Elkind, S.; Kogan, I.; Maayani, S.; Amsterdam, A.; Vaserman, I.; Duman, O.; Hirsh, Y.; Schapiro, F.; Tuito, A.; Ben-Ezra, M.

    2011-06-01

    Over the last decade SCD has established a state of the art VOx μ-Bolometer product line. Due to its overall advantages this technology is penetrating a large range of systems. In addition to a large variety of detectors, SCD has also recently introduced modular video engines with an open architecture. In this paper we will describe the versatile applications supported by the products based on 17μm pitch: Low SWaP short range systems, mid range systems based on VGA arrays and high-end systems that will utilize the XGA format. These latter systems have the potential to compete with cooled 2nd Gen scanning LWIR arrays, as will be demonstrated by TRM3 system level calculations.

  5. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  6. Monitoring proton radiation therapy with in-room PET imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R.; El Fakhri, Georges

    2011-07-01

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of 15O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  7. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    NASA Astrophysics Data System (ADS)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  8. Fabrication of single crystal architecture in Sb-S-I glass: Transition from dot to line

    DOE PAGES

    Savytskii, Dmytro; Dierolf, Volkmar; Tamura, Nobumichi; ...

    2017-12-08

    We have investigated the occurrence of the sometimes observed grain boundaries, as initial seed is extended to form line in laser-fabricated single-crystal architecture in glass (SCAG). In particular, for Sb 2S 3 SCAG in Sb-S-I glass as a model system, grain boundaries are formed during the transition from laser-written initial seed dot to crystal line. Such grain boundaries during the growth of Sb 2S 3 crystals occur in 16SbI 3-84Sb 2S 3glass, whereas they are absent in Sb 2S 3 glass. We correlate this difference in tendency to form multiple grains with the relative glass forming ability i.e. the dynamicsmore » of nucleation and crystal growth as determined by differential scanning calorimetry (DSC). On the basis of this understanding, methods to minimize the appearance of grain boundaries in the transition region are suggested.« less

  9. Fabrication of single crystal architecture in Sb-S-I glass: Transition from dot to line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savytskii, Dmytro; Dierolf, Volkmar; Tamura, Nobumichi

    We have investigated the occurrence of the sometimes observed grain boundaries, as initial seed is extended to form line in laser-fabricated single-crystal architecture in glass (SCAG). In particular, for Sb 2S 3 SCAG in Sb-S-I glass as a model system, grain boundaries are formed during the transition from laser-written initial seed dot to crystal line. Such grain boundaries during the growth of Sb 2S 3 crystals occur in 16SbI 3-84Sb 2S 3glass, whereas they are absent in Sb 2S 3 glass. We correlate this difference in tendency to form multiple grains with the relative glass forming ability i.e. the dynamicsmore » of nucleation and crystal growth as determined by differential scanning calorimetry (DSC). On the basis of this understanding, methods to minimize the appearance of grain boundaries in the transition region are suggested.« less

  10. Fine pattern replication on 10 x 10-mm exposure area using ETS-1 laboratory tool in HIT

    NASA Astrophysics Data System (ADS)

    Hamamoto, K.; Watanabe, Takeo; Hada, Hideo; Komano, Hiroshi; Kishimura, Shinji; Okazaki, Shinji; Kinoshita, Hiroo

    2002-07-01

    Utilizing ETS-1 laboratory tool in Himeji Institute of Technology (HIT), as for the fine pattern replicated by using the Cr mask in static exposure, it is replicated in the exposure area of 10 mm by 2 mm in size that the line and space pattern width of 60 nm, the isolated line pattern width of 40 nm, and hole pattern width of 150 nm. According to the synchronous scanning of the mass and wafer with EUVL laboratory tool with reduction optical system which consisted of three-aspherical-mirror in the NewSUBARU facilities succeeded in the line of 60 nm and the space pattern formation in the exposure region of 10mm by 10mm. From the result of exposure characteristics for positive- tone resist for KrF and EB, KrF chemically amplified resist has better characteristics than EB chemically amplified resist.

  11. Copernicus observations of interstellar matter in the direction of HR 1099

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Weiler, E. J.

    1978-01-01

    Results are reported for high-resolution Copernicus U1 and V2 scans of the bright RS CVn spectroscopic binary HR 1099. The observations reveal strong UV emission lines at L-alpha and Mg II h and k from the stars as well as interstellar H I and D I L-alpha absorption lines and interstellar Mg II h and k absorption in the direction of the binary system. Column densities, bulk velocities, and temperatures are derived for the interstellar features. A comparison of the derived number density of interstellar H I with data for the nearby star Epsilon Eri indicates an inhomogeneous distribution of interstellar hydrogen along the line of sight. The range of values obtained for the D/H ratio is shown to be consistent with results of other studies. A depletion factor of at least 5 with respect to the solar abundance is estimated for the interstellar magnesium.

  12. Automatic microscopy for mitotic cell location.

    NASA Technical Reports Server (NTRS)

    Herron, J.; Ranshaw, R.; Castle, J.; Wald, N.

    1972-01-01

    Advances are reported in the development of an automatic microscope with which to locate hematologic or other cells in mitosis for subsequent chromosome analysis. The system under development is designed to perform the functions of: slide scanning to locate metaphase cells; conversion of images of selected cells into binary form; and on-line computer analysis of the digitized image for significant cytogenetic data. Cell detection criteria are evaluated using a test sample of 100 mitotic cells and 100 artifacts.

  13. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut

    2003-10-01

    A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.

  14. A High Resolution Genome-Wide Scan for Significant Selective Sweeps: An Application to Pooled Sequence Data in Laying Chickens

    PubMed Central

    Qanbari, Saber; Strom, Tim M.; Haberer, Georg; Weigend, Steffen; Gheyas, Almas A.; Turner, Frances; Burt, David W.; Preisinger, Rudolf; Gianola, Daniel; Simianer, Henner

    2012-01-01

    In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving the overlapping windows by steps of one SNP only, and suggest to call this a “creeping window” strategy. The approach confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1, and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of selection (genome-wide p-value<0.001), including genes known to be associated with eggshell structure and immune system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes. PMID:23209582

  15. Use of scanning electron microscopy to confirm the identity of lice infesting communally grazed goat herds.

    PubMed

    Sebei, P J; McCrindle, C M E; Green, E D; Turner, M L

    2004-06-01

    Lice have been described on goats in commercial farming systems in South Africa but not from flocks on communal grazing. During a longitudinal survey on the causes of goat kid mortality, conducted in Jericho district, North West Province, lice were collected from communally grazed indigenous goats. These lice were prepared for and viewed by scanning electron microscopy, and micro-morphological taxonomic details are described. Three species of lice were found in the study area and identified as Bovicola caprae, Bovicola limbatus and Linognathus africanus. Sucking and biting lice were found in ten of the 12 herds of goats examined. Lice were found on both mature goats and kids. Bovicola caprae and L. africanus were the most common biting and sucking lice respectively in all herds examined. Scanning electron microscopy revealed additional features which aided in the identification of the louse species. Photomicrographs were more accurate aids to identification than the line drawings in the literature and facilitated identification using dissecting microscope.

  16. Turboprop+: enhanced Turboprop diffusion-weighted imaging with a new phase correction.

    PubMed

    Lee, Chu-Yu; Li, Zhiqiang; Pipe, James G; Debbins, Josef P

    2013-08-01

    Faster periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor (number of gradient echoes between each pair of radiofrequency refocusing pulses) and, thus, scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance-related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate and short scan time can be achieved in Turboprop+ using a high turbo factor, whereas off-resonance related artifacts are minimized. © 2012 Wiley Periodicals, Inc.

  17. Design of a handheld optical coherence microscopy endoscope

    NASA Astrophysics Data System (ADS)

    Korde, Vrushali R.; Liebmann, Erica; Barton, Jennifer K.

    2011-06-01

    Optical coherence microscopy (OCM) combines coherence gating, high numerical aperture optics, and a fiber-core pinhole to provide high axial and lateral resolution with relatively large depth of imaging. We present a handheld rigid OCM endoscope designed for small animal surgical imaging, with a 6-mm diam tip, 1-mm scan width, and 1-mm imaging depth. X-Y scanning is performed distally with mirrors mounted to micro galvonometer scanners incorporated into the endoscope handle. The endoscope optical design consists of scanning doublets, an afocal Hopkins relay lens system, a 0.4 numerical aperture water immersion objective, and a cover glass. This endoscope can resolve laterally a 1.4-μm line pair feature and has an axial resolution (full width half maximum) of 5.4 μm. Images taken with this endoscope of fresh ex-vivo mouse ovaries show structural features, such as corpus luteum, primary follicles, growing follicles, and fallopian tubes. This rigid handheld OCM endoscope can be useful for a variety of minimally invasive and surgical imaging applications.

  18. Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.

    2000-03-01

    The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.

  19. Biocompatibility of bio based calcium carbonate nanocrystals aragonite polymorph on NIH 3T3 fibroblast cell line.

    PubMed

    Kamba, Abdullahi Shafiu; Ismail, Maznah; Ibrahim, Tengku Azmi Tengku; Zakaria, Zuki Abu Bakar

    2014-01-01

    Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line. Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope. The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed. The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.

  20. Effect of scanning velocity on femtosecond laser-induced periodic surface structures on HgCdTe crystal

    NASA Astrophysics Data System (ADS)

    Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong

    2017-12-01

    In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.

  1. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans.

    PubMed

    Bai, Chuanyong; Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-06-01

    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 muSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 +/- .003/cm in the uniform region of the ACR phantom, .151 +/- .003/cm and .151 +/- .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 +/- 6.5 before and 87.9 +/- 3.3 after AC (average +/- standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC.

  2. Dynamic "Scanning-Mode" Meniscus Confined Electrodepositing and Micropatterning of Individually Addressable Ultraconductive Copper Line Arrays.

    PubMed

    Lei, Yu; Zhang, Xianyun; Xu, Dingding; Yu, Minfeng; Yi, Zhiran; Li, Zhixiang; Sun, Aihua; Xu, Gaojie; Cui, Ping; Guo, Jianjun

    2018-05-03

    Micro- and nanopatterning of cost-effective addressable metallic nanostructures has been a long endeavor in terms of both scientific understanding and industrial needs. Herein, a simple and efficient dynamic meniscus-confined electrodeposition (MCED) technique for precisely positioned copper line micropatterns with superior electrical conductivity (greater than 1.57 × 10 4 S/cm) on glass, silicon, and gold substrates is reported. An unexpected higher printing speed in the evaporative regime is realized for precisely positioned copper lines patterns with uniform width and height under horizontal scanning-mode. The final line height and width depend on the typical behavior of traditional flow coating process, while the surface morphologies and roughness are mainly governed by evaporation-driven electrocrystallization dynamics near the receding moving contact line. Integrated 3D structures and a rapid prototyping of 3D hot-wire anemometer are further demonstrated, which is very important for the freedom integration applications in advanced conceptual devices, such as miniaturized electronics and biomedical sensors and actuators.

  3. Utility of Magnetic Resonance Imaging for the Diagnosis of Appendicitis During Pregnancy: A Canadian Experience.

    PubMed

    Burns, Michael; Hague, Cameron J; Vos, Patrick; Tiwari, Pari; Wiseman, Sam M

    2017-11-01

    The objective of the study was to evaluate the performance of magnetic resonance imaging (MRI) for the diagnosis of appendicitis during pregnancy. We conducted a retrospective review of all MRI scans performed at our institution, between 2006 and 2012, for the evaluation of suspected appendicitis in pregnant women. Details of the MRI scans performed were obtained from the radiology information system as well as details of any ultrasounds carried out for the same indication. Clinical and pathological data were obtained by retrospective chart review. The study population comprised 63 patients, and 8 patients underwent a second MRI scan during the same pregnancy. A total of 71 MRI scans were reviewed. The appendix was identified on 40 scans (56.3%). Sensitivity of MRI was 75% and specificity was 100% for the diagnosis of appendicitis in pregnant women. When cases with right lower quadrant inflammatory fat stranding or focal fluid, without appendix visualization, were classified as positive for appendicitis, MRI sensitivity increased to 81.3% but specificity decreased to 96.4%. MRI is sensitive and highly specific for the diagnosis of appendicitis during pregnancy and should be considered as a first line imaging study for this clinical presentation. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  4. Multi-band infrared camera systems

    NASA Astrophysics Data System (ADS)

    Davis, Tim; Lang, Frank; Sinneger, Joe; Stabile, Paul; Tower, John

    1994-12-01

    The program resulted in an IR camera system that utilizes a unique MOS addressable focal plane array (FPA) with full TV resolution, electronic control capability, and windowing capability. Two systems were delivered, each with two different camera heads: a Stirling-cooled 3-5 micron band head and a liquid nitrogen-cooled, filter-wheel-based, 1.5-5 micron band head. Signal processing features include averaging up to 16 frames, flexible compensation modes, gain and offset control, and real-time dither. The primary digital interface is a Hewlett-Packard standard GPID (IEEE-488) port that is used to upload and download data. The FPA employs an X-Y addressed PtSi photodiode array, CMOS horizontal and vertical scan registers, horizontal signal line (HSL) buffers followed by a high-gain preamplifier and a depletion NMOS output amplifier. The 640 x 480 MOS X-Y addressed FPA has a high degree of flexibility in operational modes. By changing the digital data pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or noninterlaced format. The thermal sensitivity performance of the second system's Stirling-cooled head was the best of the systems produced.

  5. Single shot laser speckle based 3D acquisition system for medical applications

    NASA Astrophysics Data System (ADS)

    Khan, Danish; Shirazi, Muhammad Ayaz; Kim, Min Young

    2018-06-01

    The state of the art techniques used by medical practitioners to extract the three-dimensional (3D) geometry of different body parts requires a series of images/frames such as laser line profiling or structured light scanning. Movement of the patients during scanning process often leads to inaccurate measurements due to sequential image acquisition. Single shot structured techniques are robust to motion but the prevalent challenges in single shot structured light methods are the low density and algorithm complexity. In this research, a single shot 3D measurement system is presented that extracts the 3D point cloud of human skin by projecting a laser speckle pattern using a single pair of images captured by two synchronized cameras. In contrast to conventional laser speckle 3D measurement systems that realize stereo correspondence by digital correlation of projected speckle patterns, the proposed system employs KLT tracking method to locate the corresponding points. The 3D point cloud contains no outliers and sufficient quality of 3D reconstruction is achieved. The 3D shape acquisition of human body parts validates the potential application of the proposed system in the medical industry.

  6. Onboard shuttle on-line software requirements system: Prototype

    NASA Technical Reports Server (NTRS)

    Kolkhorst, Barbara; Ogletree, Barry

    1989-01-01

    The prototype discussed here was developed as proof of a concept for a system which could support high volumes of requirements documents with integrated text and graphics; the solution proposed here could be extended to other projects whose goal is to place paper documents in an electronic system for viewing and printing purposes. The technical problems (such as conversion of documentation between word processors, management of a variety of graphics file formats, and difficulties involved in scanning integrated text and graphics) would be very similar for other systems of this type. Indeed, technological advances in areas such as scanning hardware and software and display terminals insure that some of the problems encountered here will be solved in the near-term (less than five years). Examples of these solvable problems include automated input of integrated text and graphics, errors in the recognition process, and the loss of image information which results from the digitization process. The solution developed for the Online Software Requirements System is modular and allows hardware and software components to be upgraded or replaced as industry solutions mature. The extensive commercial software content allows the NASA customer to apply resources to solving the problem and maintaining documents.

  7. On-Line Literature Search and Full Articles in the NASA ADS

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.; Accomazzi, A.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    2001-01-01

    The ADS provides free world-wide on-line access to over 2.2 million abstracts and over 1 million scanned pages of the astronomical and planetary literature plus over 4 million links to other relevant on-line information at http://ads.harvard.edu. Additional information is contained in the original extended abstract.

  8. The soft X-ray polychromator for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Finch, M. L.; Gilbreth, C. W.; Culhane, J. L.; Bentley, R. D.; Bowles, J. A.; Guttridge, P.; Gabriel, A. H.; Firth, J. G.; Hayes, R. W.

    1980-01-01

    The paper considers the soft X-ray polychromator (XRP) operating in the 1.4-22.4 A range of the soft X-ray spectrum which includes many emission lines important for the diagnosis of plasmas in the 1.5-50 million deg temperature range. The flat crystal scanning spectrometer provides for a channel polychromatic mapping of flares and active regions in the resonance lines of O VIII, Ne IX, and Mg XI; in its spectral scanning mode it covers essentially the entire 1.4-22.5 A region.

  9. The soft X-ray polychromator for the Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Acton, L. W.; Culhane, J. L.; Gabriel, A. H.; Bentley, R. D.; Bowles, J. A.; Firth, J. G.; Finch, M. L.; Gilbreth, C. W.; Guttridge, P.; Hayes, R. W.; Joki, E. G.; Jones, B. B.; Kent, B. J.; Leibacher, J. W.; Nobles, R. A.; Patrick, T. J.; Phillips, K. J. H.; Rapley, C. G.; Sheather, P. H.; Sherman, J. C.; Stark, J. P.; Springer, L. A.; Turner, R. F.; Wolfson, C. J.

    1980-02-01

    The paper considers the soft X-ray polychromator (XRP) operating in the 1.4-22.4 A range of the soft X-ray spectrum which includes many emission lines important for the diagnosis of plasmas in the 1.5-50 million deg temperature range. The flat crystal scanning spectrometer provides for a channel polychromatic mapping of flares and active regions in the resonance lines of O VIII, Ne IX, and Mg XI; in its spectral scanning mode it covers essentially the entire 1.4-22.5 A region.

  10. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  11. Implementation of a Novel Low-Cost Low-Profile Ku-Band Antenna Array for Single Beam Steering from Space

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs.

  12. Surface study of graphene ink for fine solid lines printed on BOPP Substrate in micro-flexographic printing using XPS analysis technique

    NASA Astrophysics Data System (ADS)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Ding, S.; Maksud, M. I.

    2018-01-01

    Micro-flexographic printing is a combination of flexography and micro-contact printing technique. It is a new printing method for fine solid lines printing purpose. Graphene material has been used as depositing agent or printing ink in other printing technique like inkjet printing. This graphene ink is printed on biaxially oriented polypropylene (BOPP) by using Micro-flexographic printing technique. The choose of graphene as a printing ink is due to its wide application in producing electronic and micro-electronic devices such as Radio-frequency identification (RFID) and printed circuit board. The graphene printed on the surface of BOPP substrate was analyzed using X-Ray Photoelectron Spectroscopy (XPS). The positions for each synthetic component in the narrow scan are referred to the electron binding energy (eV). This research is focused on two narrow scan regions which are C 1s and O 1s. Further discussion of the narrow scan spectrum will be explained in detail. From the narrow scan analysis, it is proposed that from the surface adhesive properties of graphene, it is suitable as an alternative printing ink medium for Micro-flexographic printing technique in printing multiple fine solid lines at micro to nano scale feature.

  13. Subatomic electronic feature from dynamic motion of Si dimer defects in Bi nanolines on Si(001)

    NASA Astrophysics Data System (ADS)

    Kirkham, C. J.; Longobardi, M.; Köster, S. A.; Renner, Ch.; Bowler, D. R.

    2017-08-01

    Scanning tunneling microscopy (STM) reveals unusual sharp features in otherwise defect-free Bi nanolines self-assembled on Si(001). They appear as subatomic thin lines perpendicular to the Bi nanoline at positive biases and as atomic size beads at negative biases. Density functional theory (DFT) simulations show that these features can be attributed to buckled Si dimers substituting for Bi dimers in the nanoline, where the sharp feature is the counterintuitive signature of these dimers flipping during scanning. The perfect correspondence between the STM data and the DFT simulation demonstrated in this paper highlights the detailed understanding we have of the complex Bi-Si(001) Haiku system. This discovery has applications in the patterning of Si dangling bonds for nanoscale electronics.

  14. Determination of the sequence of intersecting lines using Focused Ion Beam/Scanning Electron Microscope.

    PubMed

    Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje

    2016-05-01

    The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. © 2016 American Academy of Forensic Sciences.

  15. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)

  16. Lidar - ND Halo Scanning Doppler, Boardman - Derived Data

    DOE Data Explorer

    Leo, Laura

    2018-01-26

    The University of Notre Dame (ND) scanning LiDAR dataset used for the WFIP2 Campaign is provided. The LiDAR is a Halo Photonics Stream Line Scanning Doppler LiDAR. **It is highly recommended to discuss any planned use of these data with University of Notre Dame scientists**. For more information refer to the attached "WFIP2 Project (lidar.z07)" Readme file.

  17. Scanning Tunneling Microscopy Study on Dirac Nodal-line Semimetal ZrSiS

    NASA Astrophysics Data System (ADS)

    Su, Chih-Chuan; Guan, Syu-You; Wang, Tzu-Cheng; Sankar, Raman; Guo, Guang-Yu; Chou, Fangcheng; Chang, Chia-Seng; Chuang, Tien-Ming

    The discovery of 3D Dirac nodal-line protected by non-symmophic symmetry in ZrSiS family has been reported by angle resolved photoemission spectroscopy (ARPES) and quantum oscillation measurements. ZrSiS also exhibits a butterfly shaped titanic angular magnetoresistance and strong Zeeman splitting in quantum oscillation. These observations with its layered crystal structure make the ZrSiS family an interesting candidate to understand the novel properties of the nodal-line semimetals. Here, we study the electronic structures of the single crystal ZrSiS by using spectroscopic-imaging scanning tunneling microscope at T= 4.2K. Our quasiparticle scattering interference imaging reveals the characteristic wave vectors with linear dispersion from Dirac line nodes in the bulk and its surface states. Our results are in excellent agreement with the first principle calculation, and also in consistent with ARPES and quantum oscillation measurements.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Sungnam, E-mail: blueden@postech.ac.kr; Hwang, Woonbong, E-mail: whwang@postech.ac.kr

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the widthmore » of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.« less

  19. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells.

    PubMed

    Iwata, Hiromitsu; Ogino, Hiroyuki; Hashimoto, Shingo; Yamada, Maho; Shibata, Hiroki; Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Tatekawa, Kotoha; Manabe, Yoshihiko; Mizoe, Jun-etsu; Shibamoto, Yuta

    2016-05-01

    To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (P<.05 for both cells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Fracture overprinting history using Markov chain analysis: Windsor-Kennetcook subbasin, Maritimes Basin, Canada

    NASA Astrophysics Data System (ADS)

    Snyder, Morgan E.; Waldron, John W. F.

    2018-03-01

    The deformation history of the Upper Paleozoic Maritimes Basin, Atlantic Canada, can be partially unraveled by examining fractures (joints, veins, and faults) that are well exposed on the shorelines of the macrotidal Bay of Fundy, in subsurface core, and on image logs. Data were collected from coastal outcrops and well core across the Windsor-Kennetcook subbasin, a subbasin in the Maritimes Basin, using the circular scan-line and vertical scan-line methods in outcrop, and FMI Image log analysis of core. We use cross-cutting and abutting relationships between fractures to understand relative timing of fracturing, followed by a statistical test (Markov chain analysis) to separate groups of fractures. This analysis, previously used in sedimentology, was modified to statistically test the randomness of fracture timing relationships. The results of the Markov chain analysis suggest that fracture initiation can be attributed to movement along the Minas Fault Zone, an E-W fault system that bounds the Windsor-Kennetcook subbasin to the north. Four sets of fractures are related to dextral strike slip along the Minas Fault Zone in the late Paleozoic, and four sets are related to sinistral reactivation of the same boundary in the Mesozoic.

  1. Mobile Laser Scanning Systems for Measuring the Clearance Gauge of Railways: State of Play, Testing and Outlook

    PubMed Central

    Mikrut, Sławomir; Kohut, Piotr; Pyka, Krystian; Tokarczyk, Regina; Barszcz, Tomasz; Uhl, Tadeusz

    2016-01-01

    The paper contains a survey of mobile scanning systems for measuring the railway clearance gauge. The research was completed as part of the project carried out for the PKP (PKP Polish Railway Lines S.A., Warsaw, Poland) in 2011–2013. The authors conducted experiments, including a search for the latest solutions relating to mobile measurement systems that meet the basic requirement. At the very least, these solutions needed to be accurate and have the ability for quick retrieval of data. In the paper, specifications and the characteristics of the component devices of the scanning systems are described. Based on experiments, the authors did some examination of the selected mobile systems to be applied for measuring the clearance gauge. The Riegl (VMX-250) and Z+F (Zoller + Fröhlich) Solution were tested. Additional test measurements were carried out within a 30-kilometer section of the Warsaw-Kraków route. These measurements were designed so as to provide various elements of the railway infrastructure, the track geometry and the installed geodetic control network. This ultimately made it possible to reduce the time for the preparation of geodetic reference measurements for the testing of the accuracy of the selected systems. Reference measurements included the use of the polar method to select profiles perpendicular to the axis of the track. In addition, the coordinates selected were well defined as measuring points of the objects of the infrastructure of the clearance gauge. All of the tested systems meet the accuracy requirements initially established (within the range of 2 cm as required by the PKP). The tested systems have shown their advantages and disadvantages. PMID:27187400

  2. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.

    PubMed Central

    Fan, G Y; Fujisaki, H; Miyawaki, A; Tsay, R K; Tsien, R Y; Ellisman, M H

    1999-01-01

    A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. PMID:10233058

  3. Deposition of high quality YBa2Cu3O(7-delta) thin films over large areas by pulsed laser ablation with substrate scanning

    NASA Technical Reports Server (NTRS)

    Davis, M. F.; Wosik, J.; Forster, K.; Deshmukh, S. C.; Rampersad, H. R.

    1991-01-01

    The paper describes thin films deposited in a system where substrates are scanned over areas up to 3.5 x 3.5 cm through the stationary plume of an ablated material defined by an aperture. These YBCO films are deposited on LaAlO3 and SrTiO3 substrates with the thickness of 90 and 160 nm. Attention is focused on the main features of the deposition system: line focusing of the laser beam on the target; an aperture defining the area of the plume; computerized stepper motor-driven X-Y stage translating the heated sampler holder behind the plume-defining aperture in programmed patterns; and substrate mounting block with uniform heating at high temperatures over large areas. It is noted that the high degree of uniformity of the properties in each film batch illustrates that the technique of pulsed laser deposition can be applied to produce large YBCO films of high quality.

  4. In Vivo Fluorescence Correlation and Cross-Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mütze, Jörg; Ohrt, Thomas; Petrášek, Zdeněk; Schwille, Petra

    In this manuscript, we describe the application of Fluorescence Correlation Spectroscopy (FCS), Fluorescence Cross-Correlation Spectroscopy (FCCS), and scanning FCS (sFCS) to two in vivo systems. In the first part, we describe the application of two-photon standard and scanning FCS in Caenorhabditis elegans embryos. The differentiation of a single fertilized egg into a complex organism in C. elegans is regulated by a number of protein-dependent processes. The oocyte divides asymmetrically into two daughter cells of different developmental fate. Two of the involved proteins, PAR-2 and NMY-2, are studied. The second investigated system is the mechanism of RNA interference in human cells. An EGFP based cell line that allows to study the dynamics and localization of the RNA-induced silencing complex (RISC) with FCS in vivo is created, which has so far been inaccessible with other experimental methods. Furthermore, Fluorescence Cross-Correlation Spectroscopy is employed to highlight the asymmetric incorporation of labeled siRNAs into RISC.

  5. Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks

    NASA Astrophysics Data System (ADS)

    Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy

    2014-06-01

    Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.

  6. Iodine filter imaging system for subtraction angiography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Ueda, K.; Takeda, T.; Itai, Y.; Akisada, M.; Nakajima, T.

    1993-11-01

    A new type of real-time imaging system was developed for transvenous coronary angiography. A combination of an iodine filter and a single energy broad-bandwidth X-ray produces two-energy images for the iodine K-edge subtraction technique. X-ray images are sequentially converted to visible images by an X-ray image intensifier. By synchronizing the timing of the movement of the iodine filter into and out of the X-ray beam, two output images of the image intensifier are focused side by side on the photoconductive layer of a camera tube by an oscillating mirror. Both images are read out by electron beam scanning of a 1050-scanning-line video camera within a camera frame time of 66.7 ms. One hundred ninety two pairs of iodine-filtered and non-iodine-filtered images are stored in the frame memory at a rate of 15 pairs/s. In vivo subtracted images of coronary arteries in dogs were obtained in the form of motion pictures.

  7. New Research by CCD Scanning for Comets and Asteroids

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1997-01-01

    Spacewatch was begun in 1980; its purpose is to explore the various populations of small objects within the solar system. Spacewatch provides data for studies of comets and asteroids, finds potential targets for space missions, and provides information on the environmental problem of possible impacts. Moving objects are discovered by scanning the sky with charge-coupled devices (CCDS) on the 0.9-meter Spacewatch Telescope of the University of Arizona on Kitt Peak. Each Spacewatch scan consists of three drift scan passes over an area of sky using a CCD filtered to a bandpass of 0.5-1.0 pm (approximately V+R+I with peak sensitivity at 0.7 pm). The effective exposure time for each pass is 143 seconds multiplied by the secant of the declination. The area covered by each scan is 32 arcminutes in declination by about 28 minutes of time in right ascension. The image scale is 1.05 arcseconds per pixel. Three passes take about 1.5 hours to complete and show motions of individual objects over a one hour time baseline. The limiting magnitude is about 21.5 in single scans. CCD scanning was developed by Spacewatch in the early 1980s, with improvements still being made - particularly by bringing a new 1.8-m Spacewatch Telescope on line. In the meantime, we have been finding some 30,000 new asteroids per year and applying their statistics to the study of the collisional history of the solar system. Spacewatch had found a total of 150 Near-Earth Asteroids (NEAS) and 8 new comets, and had recovered one lost comet (P/Spitaler in 1993). Spacewatch is also efficient in recovery of known comets and has detected and reported positions for more than 137,000 asteroids, mostly new ones in the main belt, including more than 10,882 asteroids designated by the Minor Planet Center (MPC).

  8. Research on the effect of coverage rate on the surface quality in laser direct writing process

    NASA Astrophysics Data System (ADS)

    Pan, Xuetao; Tu, Dawei

    2017-07-01

    Direct writing technique is usually used in femtosecond laser two-photon micromachining. The size of the scanning step is an important factor affecting the surface quality and machining efficiency of micro devices. According to the mechanism of two-photon polymerization, combining the distribution function of light intensity and the free radical concentration theory, we establish the mathematical model of coverage of solidification unit, then analyze the effect of coverage on the machining quality and efficiency. Using the principle of exposure equivalence, we also obtained the analytic expressions of the relationship among the surface quality characteristic parameters of microdevices and the scanning step, and carried out the numerical simulation and experiment. The results show that the scanning step has little influence on the surface quality of the line when it is much smaller than the size of the solidification unit. However, with increasing scanning step, the smoothness of line surface is reduced rapidly, and the surface quality becomes much worse.

  9. Interaction of phosphine with Si(100) from core-level photoemission and real-time scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Deng-Sung; Ku, Tsai-Shuan; Chen, Ru-Ping

    2000-01-01

    In this paper, we investigate the interaction of phosphine (PH3) on the Si(100)-2×1 surface at temperatures between 635 and 900 K. The hydrogen desorption, growth mode, surface morphology, and chemical composition and ordering of the surface layer are examined by synchrotron radiation core-level photoemission and real-time high-temperature scanning tunneling microscopy. The P 2p core-level spectra indicate that decomposition of PHn is complete above ~550 K and the maximum P coverage is strongly influenced by the growth temperature, which governs the coverage of H-terminated sites. The scanning tunneling microscopy (STM) images taken at real time during PH3 exposure indicate that a surface phosphorus atom readily and randomly displaces one Si atom from the substrate. The ejected Si diffuses, nucleates, and incorporates itself into islands or step edges, leading to similar growth behavior as that found in Si chemical vapor deposition. Line defects both perpendicular and parallel to the dimer rows are observed on the nearly P-saturated surface. Perpendicular line defects act as a strain relief mechanism. Parallel line defects result from growth kinetics. STM images also indicate that incorporating a small amount of phosphorus eliminates the line defects in the Si(100)-2×n surface.

  10. Multi-MHz retinal OCT.

    PubMed

    Klein, Thomas; Wieser, Wolfgang; Reznicek, Lukas; Neubauer, Aljoscha; Kampik, Anselm; Huber, Robert

    2013-01-01

    We analyze the benefits and problems of in vivo optical coherence tomography (OCT) imaging of the human retina at A-scan rates in excess of 1 MHz, using a 1050 nm Fourier-domain mode-locked (FDML) laser. Different scanning strategies enabled by MHz OCT line rates are investigated, and a simple multi-volume data processing approach is presented. In-vivo OCT of the human ocular fundus is performed at different axial scan rates of up to 6.7 MHz. High quality non-mydriatic retinal imaging over an ultra-wide field is achieved by a combination of several key improvements compared to previous setups. For the FDML laser, long coherence lengths and 72 nm wavelength tuning range are achieved using a chirped fiber Bragg grating in a laser cavity at 419.1 kHz fundamental tuning rate. Very large data sets can be acquired with sustained data transfer from the data acquisition card to host computer memory, enabling high-quality averaging of many frames and of multiple aligned data sets. Three imaging modes are investigated: Alignment and averaging of 24 data sets at 1.68 MHz axial line rate, ultra-dense transverse sampling at 3.35 MHz line rate, and dual-beam imaging with two laser spots on the retina at an effective line rate of 6.7 MHz.

  11. Multi-MHz retinal OCT

    PubMed Central

    Klein, Thomas; Wieser, Wolfgang; Reznicek, Lukas; Neubauer, Aljoscha; Kampik, Anselm; Huber, Robert

    2013-01-01

    We analyze the benefits and problems of in vivo optical coherence tomography (OCT) imaging of the human retina at A-scan rates in excess of 1 MHz, using a 1050 nm Fourier-domain mode-locked (FDML) laser. Different scanning strategies enabled by MHz OCT line rates are investigated, and a simple multi-volume data processing approach is presented. In-vivo OCT of the human ocular fundus is performed at different axial scan rates of up to 6.7 MHz. High quality non-mydriatic retinal imaging over an ultra-wide field is achieved by a combination of several key improvements compared to previous setups. For the FDML laser, long coherence lengths and 72 nm wavelength tuning range are achieved using a chirped fiber Bragg grating in a laser cavity at 419.1 kHz fundamental tuning rate. Very large data sets can be acquired with sustained data transfer from the data acquisition card to host computer memory, enabling high-quality averaging of many frames and of multiple aligned data sets. Three imaging modes are investigated: Alignment and averaging of 24 data sets at 1.68 MHz axial line rate, ultra-dense transverse sampling at 3.35 MHz line rate, and dual-beam imaging with two laser spots on the retina at an effective line rate of 6.7 MHz. PMID:24156052

  12. New prospective 4D-CT for mitigating the effects of irregular respiratory motion

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu; Martin, Rachael M.; Luo, Dershan

    2017-08-01

    Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.

  13. Causes of visual impairment in patients with ocular toxoplasmosis.

    PubMed

    Şahinoğlu Keşkek, Nedime; Ünal, Fikret; Cevher, Selim; Keşkek, Şakir Özgür

    2017-02-28

    The aim of this study was to report the causes of visual impairment in patients with the classic clinical presentation of ocular toxoplasmosis (OT). Eight patients with OT underwent standardized ophthalmologic examination and fundus imaging. Macula and the lesions that could be visualized were evaluated by spectral domain optical coherence tomography (SOCT) at presentation. The scan acquisition protocols for SOCT included a radial line scan through the retinochoroiditis lesion, radial line macular scan, and horizontal volume scans at the macula. The mean age of the five (62.5%) women and three (37.5%) men was 25.7±7.6 years. The mean logMAR ETDRS best-corrected visual acuity was 0.45 (Snellen equivalent, 20/50). SOCT findings of macula were normal in seven patients, and one patient had decreased retinal thickness from a healed chorioretinitis at the fovea. Of eight patients, two had 3+ vitreous haze, four had 2+ vitreous haze, and two had 1+ vitreous haze at presentation. OCT scans revealed vitreous hyperreflective dots in all patients with different densities in different radial scans. Hyperreflective dots were denser in macular scans of eyes in which the active lesion was closer to the fovea. In this study, visual impairment in majority of the patients was found to be related to vitreous cells and flare. Dense vitritis on macula scans and visual impairment were seen in the patients who had an active lesion closer to the fovea. SOCT may provide objective data of the cellular load of the eyes with posterior segment inflammation.

  14. Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs

    NASA Astrophysics Data System (ADS)

    De Vylder, Jonas; Philips, Wilfried

    2011-02-01

    This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.

  15. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  16. Identification and Characterization of Genomic Amplifications in Ovarian Serous Carcinoma

    DTIC Science & Technology

    2006-01-01

    Wang (2005) Exploring cancer genome using innovative technologies. Curr Opin Oncol, 17:33-38. • G Singer, R Stohr, L Cope, R Dehari, A Hartmann, D -F...tions/plate × 6 plates/ d ). This high-throughput platform permits a systemic scan of cancer genome at the nucleo- tide level in a short time [35]. This...Carter D , Foellmer HG, et al.: Neu proto-oncogene amplification and expression in ovarian adenocarcinoma cell lines. Am J Pathol 1992, 140:23–31. 12

  17. Research and Simulation in Support of Near Real Time/Real Time Reconnaissance RPV Systems

    DTIC Science & Technology

    1977-06-01

    Image 4,5.2 Raster Lines Across Image 4.5.3 Angle Projected by Displayed Image 4.6 Optical Defocusing SIMULATION CONSIDERATIONS PAGE 162 162 162...television and infrared, there are a finite number of resolution elements across the format. As a consequence, selection of a shorter optical focal...light that is scanned across and down the CRT to form a raster similar to that seen in a standard television tube. The light is optically projected

  18. Automating data analysis during the inspection of boiler tubes using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Momeni, Sepand; Ostroff, Jason; Godinez, Valery

    2012-05-01

    Failures in boiler waterwalls can occur when a relatively small amount of corrosion and loss of metal have been experienced. This study presents our efforts towards the application of Line Scanning Thermography (LST) for the analysis of thinning in boiler waterwall tubing. LST utilizes a line heat source to thermally excite the surface to be inspected and an infrared detector to record the transient surface temperature increase observed due to the presence of voids, thinning or other defects. In waterwall boiler tubes the defects that can be detected using LST correspond to corrosion pitting, hydrogen damage and wall thinning produced by inadequate burner heating or problems with the water chemistry. In this paper we discuss how the LST technique is implemented to determine thickness from the surface temperature data, and we describe our efforts towards developing a semiautomatic analysis tool to speed up the time between scanning, reporting and implementing repairs. We compare the density of data produced by the common techniques used to assess wall thickness and the data produced by LST.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fattori, G; Klimpki, G; Safai, S

    Purpose: We aim to compare the performance of discrete spot- or continuous line scanning combined with rescanning in mitigating residual organ motion during gated proton therapy treatments. Methods: The Quasar respiratory phantom was used to move a 2D scintillation detector on a linear trajectory with sinusoidal motion pattern (sin{sup 4}), 20 mm peak-to-peak amplitude and 5 sec period. Its motion was monitored using a customized solution based on optical tracking technology. We compared spot and line scanning plans for a monoenergetic 150 MeV circular field, 50.4 mm radius at isocenter. Transverse dose distributions at 13 cm depth in PMMA (15.47more » mm water equivalent) were measured to compare three options for motion mitigation: rescanning (10× factor), gating and their combination. The gating window was centered in the trajectory plateau to simulate end-exhale gated treatment in presence of 2 mm and 4 mm residual motion, parallel or perpendicular to the primary scanning direction. Results: When the target moves perpendicular to the primary scanning direction, large dose deviations are measured (γ3%/3mm=47%) without mitigation techniques. Beam gating combined with rescanning restores target coverage (γ3%/3mm=91%). For parallel target motion, observed dose distortions in the non-compensated irradiation are smaller (γ3%/3mm=77%). Beam gating alone recovers the 100% gamma pass-rate at 3%/3mm. Continuous line scanning reduces delivery time by up to 60% with respect to discrete spot scanning in presence of motion mitigation, and improves homogeneity when rescanning is applied (up to 20%, perpendicular motion, 4 mm residual motion). Conclusion: The direction of motion has a large impact on the target dose coverage. Nevertheless, even in the worst case scenario, gating combined with rescanning could mitigate the impact of motion on dose deposition. Moreover, continuous line rescanning improves the robustness against residual motion in the gating window. This study has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n.290605 (PSI-FELLOW/COFUND) and ‘Giuliana and Giorgio Stefanini Foundation’.« less

  20. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  1. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  2. Systems analysis identifies miR-29b regulation of invasiveness in melanoma.

    PubMed

    Andrews, Miles C; Cursons, Joseph; Hurley, Daniel G; Anaka, Matthew; Cebon, Jonathan S; Behren, Andreas; Crampin, Edmund J

    2016-11-16

    In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs. However, it remains a challenge to identify which miR-mRNA interactions are active at endogenous expression levels, and of biological consequence. We developed a workflow to integrate TargetScan and DIANA-microT predictions into the analysis of data-driven associations calculated from transcript abundance (RNASeq) data, specifically the mutual information and Pearson's correlation metrics. We use this workflow to identify putative relationships of miR-mediated mRNA repression with strong support from both lines of evidence. Applying this approach systematically to a large, published collection of unique melanoma cell lines - the Ludwig Melbourne melanoma (LM-MEL) cell line panel - we identified putative miR-mRNA interactions that may contribute to invasiveness. This guided the selection of interactions of interest for further in vitro validation studies. Several miR-mRNA regulatory relationships supported by TargetScan and DIANA-microT demonstrated differential activity across cell lines of varying matrigel invasiveness. Strong negative statistical associations for these putative regulatory relationships were consistent with target mRNA inhibition by the miR, and suggest that differential activity of such miR-mRNA relationships contribute to differences in melanoma invasiveness. Many of these relationships were reflected across the skin cutaneous melanoma TCGA dataset, indicating that these observations also show graded activity across clinical samples. Several of these miRs are implicated in cancer progression (miR-211, -340, -125b, -221, and -29b). The specific role for miR-29b-3p in melanoma has not been well studied. We experimentally validated the predicted miR-29b-3p regulation of LAMC1 and PPIC and LASP1, and show that dysregulation of miR-29b-3p or these mRNA targets can influence cellular invasiveness in vitro. This analytic strategy provides a comprehensive, systems-level approach to identify miR-mRNA regulation in high-throughput cancer data, identifies novel putative interactions with functional phenotypic relevance, and can be used to direct experimental resources for subsequent experimental validation. Computational scripts are available: http://github.com/uomsystemsbiology/LMMEL-miR-miner.

  3. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The measurements showed 1 ppm random errors for 8-10 km altitudes and 30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2lidar on the NASA DC-8 and added an 02lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. We demonstrated measurements over the California Central Valley, to stratus cloud tops over the Pacific Ocean, over mountain regions with snow, and over several areas with broken clouds. Details of the lidar measurements and their analysis will be described in the presentation.

  4. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The measurements showed -1 ppm random errors for 8-10 km altitudes and -30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2 lidar on the NASA DC-8 and added an O2 lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected -linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. The seven flights in the 2011 Ascends campaign were flown over a wide variety of surface and cloud conditions in the US, which produced a wide variety of lidar signal conditions. Details of the lidar measurements and their analysis will be described in the presentation.

  5. SU-F-T-149: Development of the Monte Carlo Simulation Platform Using Geant4 for Designing Heavy Ion Therapy Beam Nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jae-ik; Yoo, SeungHoon; Cho, Sungho

    Purpose: The significant issue of particle therapy such as proton and carbon ion was a accurate dose delivery from beam line to patient. For designing the complex delivery system, Monte Carlo simulation can be used for the simulation of various physical interaction in scatters and filters. In this report, we present the development of Monte Carlo simulation platform to help design the prototype of particle therapy nozzle and performed the Monte Carlo simulation using Geant4. Also we show the prototype design of particle therapy beam nozzle for Korea Heavy Ion Medical Accelerator (KHIMA) project in Korea Institute of Radiological andmore » Medical Science(KIRAMS) at Republic of Korea. Methods: We developed a simulation platform for particle therapy beam nozzle using Geant4. In this platform, the prototype nozzle design of Scanning system for carbon was simply designed. For comparison with theoretic beam optics, the beam profile on lateral distribution at isocenter is compared with Mont Carlo simulation result. From the result of this analysis, we can expected the beam spot property of KHIMA system and implement the spot size optimization for our spot scanning system. Results: For characteristics study of scanning system, various combination of the spot size from accerlator with ridge filter and beam monitor was tested as simple design for KHIMA dose delivery system. Conclusion: In this report, we presented the part of simulation platform and the characteristics study. This study is now on-going in order to develop the simulation platform including the beam nozzle and the dose verification tool with treatment planning system. This will be presented as soon as it is become available.« less

  6. Heterodyne Interferometry with a Scanning Optical Microscope.

    NASA Astrophysics Data System (ADS)

    Hobbs, Philip Charles Danby

    The design and implementation of a confocal optical microscope which functions as an electronically scanned heterodyne interferometer are described. Theoretical models based on Fourier optics for general samples and on exact series solution of the scalar Helmholtz equation for a class of trench structures are developed and compared with experimental data. Good agreement is obtained. The associated data acquisition system, also described, enables the system to measure both the amplitude (to 12 bits) and the phase (to 0.1^circ) of a returned optical beam, at a continuous rate of 30,000 points per second. The microscope system uses a wide-band tellurium dioxide acousto-optic cell for electronic scanning, frequency shifting, and beam splitting/combining. It uses a stationary reference beam on the sample for vibration cancellation, which results in a system of great vibration immunity. It can measure relief ranging from a few tenths of a micron down to a few Angstroms, and line widths down to well below 0.4 micron, using light of 0.5 micron wavelength. Angstrom resolution can be achieved in a single full-speed scan, without special vibration isolation equipment, providing that folding mirrors are avoided. A signal processing algorithm based on Fourier deconvolution is presented; it takes advantage of the extra bandwidth of a confocal system and the availability of both amplitude and phase, to improve the lateral resolution by approximately a factor of two. Experimental results are shown, which demonstrate phase edge resolution (10%-90%) of 0.45 lambda (raw data), and 0.18 lambda (after filtering), in excellent agreement with the Fourier optics prediction. The exact scalar theory calculates the response of the microscope as it scans over an infinitely long rectangular trench in a plane boundary on which Dirichlet boundary conditions apply. An expansion in cavity modes inside the trench is used to match the field and its derivatives across the mouth of the trench to get the self-consistent solution. A listing is appended of a program for an HP personal computer which performs the simulation in 1 to 5 minutes' running time for most cases. The trench theory is compared with the Fourier theory and with experimental results for actual metal trenches, with good results.

  7. Rapidly moving contact lines and damping contributions

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Daniel, Susan; Steen, Paul

    2017-11-01

    Contact angle varies dynamically with contact line (CL) speed when a liquid moves across a solid support, as when a liquid spreads rapidly. For sufficiently rapid spreading, inertia competes with capillarity to influence the interface shape near the support. We use resonant-mode plane-normal support oscillations of droplets to drive lateral contact-line motion. Reynolds numbers based on CL speeds are high and capillary numbers are low. These are inertial-capillary motions. By scanning the driving frequency, we locate the frequency at peak amplification (resonance), obtain the scaled peak height (amplification factor) and a measure of band-width (damping ratio). We report how a parameter for CL mobility depends on these scanning metrics, with the goal of distinguishing contributions from the bulk- and CL-dissipation to overall damping.

  8. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  9. Automatic lesion tracking for a PET/CT based computer aided cancer therapy monitoring system

    NASA Astrophysics Data System (ADS)

    Opfer, Roland; Brenner, Winfried; Carlsen, Ingwer; Renisch, Steffen; Sabczynski, Jörg; Wiemker, Rafael

    2008-03-01

    Response assessment of cancer therapy is a crucial component towards a more effective and patient individualized cancer therapy. Integrated PET/CT systems provide the opportunity to combine morphologic with functional information. However, dealing simultaneously with several PET/CT scans poses a serious workflow problem. It can be a difficult and tedious task to extract response criteria based upon an integrated analysis of PET and CT images and to track these criteria over time. In order to improve the workflow for serial analysis of PET/CT scans we introduce in this paper a fast lesion tracking algorithm. We combine a global multi-resolution rigid registration algorithm with a local block matching and a local region growing algorithm. Whenever the user clicks on a lesion in the base-line PET scan the course of standardized uptake values (SUV) is automatically identified and shown to the user as a graph plot. We have validated our method by a data collection from 7 patients. Each patient underwent two or three PET/CT scans during the course of a cancer therapy. An experienced nuclear medicine physician manually measured the courses of the maximum SUVs for altogether 18 lesions. As a result we obtained that the automatic detection of the corresponding lesions resulted in SUV measurements which are nearly identical to the manually measured SUVs. Between 38 measured maximum SUVs derived from manual and automatic detected lesions we observed a correlation of 0.9994 and a average error of 0.4 SUV units.

  10. Characterization of the LANDSAT sensors' spatial responses

    NASA Technical Reports Server (NTRS)

    Markham, B. L.

    1984-01-01

    The characteristics of the thematic mapper (TM) and multispectral scanner (MSS) sensors on LANDSATs 4 and 5 affecting their spatial responses are described, and functions defining the response of the system to an arbitrary input spatial pattern are derived, i.e., transfer functions (TF) and line spread functions (LSF). These design LSF's and TF's were modified based on prelaunch component and system measurements to provide improved estimates. Prelaunch estimates of LSF/FT's are compared to in-orbit estimates. For the MSS instruments, only limited prelaunch scan direction square-wave response (SWR) data were available. Design estimates were modified by convolving in Gaussian blur till the derived LSF/TF's produced SWR's comparable to the measurements. The two MSS instruments were comparable at their temperatures of best focus; separate calculations were performed for bands 1 and 3, band 2 and band 4. The pre-sample nadir effective instantaneous field's of view (EIFOV's) based on the .5 modulation transfer function (MTF) criteria vary from 70 to 75 meters in the track direction and 79 to 82 meters in the scan direction. For the TM instruments more extensive prelaunch measurements were available. Bands 1 to 4, 5 and 7, and 6 were handled separately as were the two instruments. Derived MTF's indicate nadir pre-sample EIFOV's of 32 to 33 meter track (bands 1 to 5, 7) and 36 meter scan (bands 1 to 5, 7) and 1245 meter track (band 6) and 141 meter scan (band 6) for both TM's.

  11. Determination of the line shapes of atomic nitrogen resonance lines by magnetic scans

    NASA Technical Reports Server (NTRS)

    Lawrence, G. M.; Stone, E. J.; Kley, D.

    1976-01-01

    A technique is given for calibrating an atomic nitrogen resonance lamp for use in determining column densities of atoms in specific states. A discharge lamp emitting the NI multiplets at 1200 A and 1493 A is studied by obtaining absorption by atoms in a magnetic field (0-2.5 T). This magnetic scanning technique enables the determination of the absorbing atom column density, and an empirical curve of growth is obtained because the atomic f-value is known. Thus, the calibrated lamp can be used in the determination of atomic column densities.

  12. LANDSAT-4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The radiometric integrity of the LANDSAT-D thematic mapper (TM) thermal infrared channel (band 6) data was evaluated to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Primary data analysis was spent in evaluating the line to line and detector to detector variation in the thermal infrared data. The data studied was in the core area of Lake Ontario where very stable temperatures were expected. The detectors and the scan direction were taken as separate parameters and an analysis of variance was conducted. The data indicate that significant variability exists both between detectors and between scan directions.

  13. Compact divided-pupil line-scanning confocal microscope for investigation of human tissues

    NASA Astrophysics Data System (ADS)

    Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind

    2013-03-01

    Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.

  14. Development of a two-parameter slit-scan flow cytometer for screening of normal and aberrant chromosomes: application to a karyotype of Sus scrofa domestica (pig)

    NASA Astrophysics Data System (ADS)

    Hausmann, Michael; Doelle, Juergen; Arnold, Armin; Stepanow, Boris; Wickert, Burkhard; Boscher, Jeannine; Popescu, Paul C.; Cremer, Christoph

    1992-07-01

    Laser fluorescence activated slit-scan flow cytometry offers an approach to a fast, quantitative characterization of chromosomes due to morphological features. It can be applied for screening of chromosomal abnormalities. We give a preliminary report on the development of the Heidelberg slit-scan flow cytometer. Time-resolved measurement of the fluorescence intensity along the chromosome axis can be registered simultaneously for two parameters when the chromosome axis can be registered simultaneously for two parameters when the chromosome passes perpendicularly through a narrowly focused laser beam combined by a detection slit in the image plane. So far automated data analysis has been performed off-line on a PC. In its final performance, the Heidelberg slit-scan flow cytometer will achieve on-line data analysis that allows an electro-acoustical sorting of chromosomes of interest. Interest is high in the agriculture field to study chromosome aberrations that influence the size of litters in pig (Sus scrofa domestica) breeding. Slit-scan measurements have been performed to characterize chromosomes of pigs; we present results for chromosome 1 and a translocation chromosome 6/15.

  15. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    PubMed

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  16. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  17. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  18. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications

    PubMed Central

    Xu, Jingjiang; Wei, Wei; Song, Shaozhen; Qi, Xiaoli; Wang, Ruikang K.

    2016-01-01

    Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm2), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm2. Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications. PMID:27231630

  19. REAP (raster e-beam advanced process) using 50-kV raster e-beam system for sub-100-nm node mask technology

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Dean, Robert L.; Mueller, Mark; Lu, Maiying; Lem, Homer Y.; Osborne, Stephen; Abboud, Frank E.

    2002-07-01

    A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.

  20. Text-image alignment for historical handwritten documents

    NASA Astrophysics Data System (ADS)

    Zinger, S.; Nerbonne, J.; Schomaker, L.

    2009-01-01

    We describe our work on text-image alignment in context of building a historical document retrieval system. We aim at aligning images of words in handwritten lines with their text transcriptions. The images of handwritten lines are automatically segmented from the scanned pages of historical documents and then manually transcribed. To train automatic routines to detect words in an image of handwritten text, we need a training set - images of words with their transcriptions. We present our results on aligning words from the images of handwritten lines and their corresponding text transcriptions. Alignment based on the longest spaces between portions of handwriting is a baseline. We then show that relative lengths, i.e. proportions of words in their lines, can be used to improve the alignment results considerably. To take into account the relative word length, we define the expressions for the cost function that has to be minimized for aligning text words with their images. We apply right to left alignment as well as alignment based on exhaustive search. The quality assessment of these alignments shows correct results for 69% of words from 100 lines, or 90% of partially correct and correct alignments combined.

Top