Linearized spectrum correlation analysis for line emission measurements
NASA Astrophysics Data System (ADS)
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.
2017-08-01
A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. Lance; Fleischer, Van Tran
2009-01-01
The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.
Differentiating defects in red oak lumber by discriminant analysis using color, shape, and density
B. H. Bond; D. Earl Kline; Philip A. Araman
2002-01-01
Defect color, shape, and density measures aid in the differentiation of knots, bark pockets, stain/mineral streak, and clearwood in red oak, (Quercus rubra). Various color, shape, and density measures were extracted for defects present in color and X-ray images captured using a color line scan camera and an X-ray line scan detector. Analysis of variance was used to...
Application of the Hartmann-Tran profile to analysis of H2O spectra
NASA Astrophysics Data System (ADS)
Lisak, D.; Cygan, A.; Bermejo, D.; Domenech, J. L.; Hodges, J. T.; Tran, H.
2015-10-01
The Hartmann-Tran profile (HTP), which has been recently recommended as a new standard in spectroscopic databases, is used to analyze spectra of several lines of H2O diluted in N2, SF6, and in pure H2O. This profile accounts for various mechanisms affecting the line-shape and can be easily computed in terms of combinations of the complex Voigt profile. A multi-spectrum fitting procedure is implemented to simultaneously analyze spectra of H2O transitions acquired at different pressures. Multi-spectrum fitting of the HTP to a theoretical model confirms that this profile provides an accurate description of H2O line-shapes in terms of residuals and accuracy of fitted parameters. This profile and its limiting cases are also fit to measured spectra for three H2O lines in different vibrational bands. The results show that it is possible to obtain accurate HTP line-shape parameters when measured spectra have a sufficiently high signal-to-noise ratio and span a broad range of collisional-to-Doppler line widths. Systematic errors in the line area and differences in retrieved line-shape parameters caused by the overly simplistic line-shape models are quantified. Also limitations of the quadratic speed-dependence model used in the HTP are demonstrated in the case of an SF6 broadened H2O line, which leads to a strongly asymmetric line-shape.
NASA Technical Reports Server (NTRS)
Shaw, J. H.
1979-01-01
Four papers are presented which discuss the following: information measures in nonlinear experimental design; information in spectra of collision broadened absorption lines; band analysis by spectral curve fitting; and least squares analysis of Voight shaped lines. Abstracts of five research papers on which the author collaborated and which were delivered at the 34th Symposium of Molecular Spectroscopy (Ohio State University, June 1979) are included along with a subroutine for use with BMDP3R to retrieve the parameters of 10 Voight shaped lines.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi
2010-03-01
In this work the self-broadening coefficients and the integrated line intensities for a number of ro-vibrational transitions of vinyl fluoride have been determined for the first time by means of TDL spectroscopy. The spectra recorded in the atmospheric window around 8.7 µm appear very crowded with a density of about 90 lines per cm-1. In order to fit these spectral features a new fitting software has been implemented. The program, which is designed for laser spectroscopy, can fit many lines simultaneously on the basis of different theoretical profiles (Doppler, Lorentz, Voigt, Galatry and Nelkin-Ghatak). Details of the object oriented implementation of the application are given. The reliability of the program is demonstrated by determining the line parameters of some ro-vibrational lines of sulphur dioxide in the ν1 band region around 9 µm. Then the software is used for the line profile analysis of vinyl fluoride. The experimental line shapes show deviations from the Voigt profile, which can be well modelled by using a Dicke narrowed line shape function. This leads to the determination of the self-narrowing coefficient within the framework of the strong collision model.
[The application of Doppler broadening and Doppler shift to spectral analysis].
Xu, Wei; Fang, Zi-shen
2002-08-01
The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.
NASA Astrophysics Data System (ADS)
Rueda, Sylvia; Udupa, Jayaram K.
2011-03-01
Landmark based statistical object modeling techniques, such as Active Shape Model (ASM), have proven useful in medical image analysis. Identification of the same homologous set of points in a training set of object shapes is the most crucial step in ASM, which has encountered challenges such as (C1) defining and characterizing landmarks; (C2) ensuring homology; (C3) generalizing to n > 2 dimensions; (C4) achieving practical computations. In this paper, we propose a novel global-to-local strategy that attempts to address C3 and C4 directly and works in Rn. The 2D version starts from two initial corresponding points determined in all training shapes via a method α, and subsequently by subdividing the shapes into connected boundary segments by a line determined by these points. A shape analysis method β is applied on each segment to determine a landmark on the segment. This point introduces more pairs of points, the lines defined by which are used to further subdivide the boundary segments. This recursive boundary subdivision (RBS) process continues simultaneously on all training shapes, maintaining synchrony of the level of recursion, and thereby keeping correspondence among generated points automatically by the correspondence of the homologous shape segments in all training shapes. The process terminates when no subdividing lines are left to be considered that indicate (as per method β) that a point can be selected on the associated segment. Examples of α and β are presented based on (a) distance; (b) Principal Component Analysis (PCA); and (c) the novel concept of virtual landmarks.
Xue, Zhaoguo; Sun, Mei; Dong, Taige; Tang, Zhiqiang; Zhao, Yaolong; Wang, Junzhuan; Wei, Xianlong; Yu, Linwei; Chen, Qing; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere
2017-12-13
Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.
First observation of the Λ(1405) line shape in electroproduction
NASA Astrophysics Data System (ADS)
Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.
2013-10-01
We report the first observation of the line shape of the Λ(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K+Λ(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0
Verzhbitskiy, I A; Kouzov, A P; Rachet, F; Chrysos, M
2011-06-14
A line-mixing shape analysis of the isotropic remnant Raman spectrum of the 2ν(3) overtone of CO(2) is reported at room temperature and for densities, ρ, rising up to tens of amagats. The analysis, experimental and theoretical, employs tools of non-resonant light scattering spectroscopy and uses the extended strong collision model (ESCM) to simulate the strong line mixing effects and to evidence motional narrowing. Excellent agreement at any pressure is observed between the calculated spectra and our experiment, which, along with the easy numerical implementation of the ESCM, makes this model stand out clearly above other semiempirical models for band shape calculations. The hitherto undefined, explicit ρ-dependence of the vibrational relaxation rate is given. Our study intends to improve the understanding of pressure-induced phenomena in a gas that is still in the forefront of the news.
NASA Astrophysics Data System (ADS)
Fairchild, A. J.; Chirayath, V. A.; Chrysler, M. D.; Gladen, R. W.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.
We report a detailed line shape analysis of the positron induced C KVV Auger line shape from highly oriented pyrolytic graphite (HOPG) and a single layer of graphene grown on polycrystalline Cu. A model consisting of the self-fold of the one-electron density of states including terms for hole-hole interactions, charge screening effects, and intrinsic loss mechanisms is compared to experimental C KVV line shapes measured using a positron induced Auger electron spectrometer (PAES). In traditional Auger spectroscopies which use an electron or photon to initiate the Auger process, extracting the relatively small Auger signal from the large secondary background can be quite difficult. Using a very low energy positron beam to create the core hole through an anti-matter matter annihilation entirely eliminates this background. Additionally, PAES has sensitivity to the top most atomic layer since the positron becomes trapped in an image potential well at the surface before annihilation. Therefore, the PAES signal from a single layer of graphene on polycrystalline Cu is primarily from the graphene overlayer with small contributions from the Cu substrate while the PAES signal from HOPG can be viewed as a single graphene layer with a graphite substrate. The influence of these two substrates on C KVV line shape is discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.
NASA Astrophysics Data System (ADS)
Li, Peng-fei; Zhou, Xiao-jun
2015-12-01
Subsea tunnel lining structures should be designed to sustain the loads transmitted from surrounding ground and groundwater during excavation. Extremely high pore-water pressure reduces the effective strength of the country rock that surrounds a tunnel, thereby lowering the arching effect and stratum stability of the structure. In this paper, the mechanical behavior and shape optimization of the lining structure for the Xiang'an tunnel excavated in weathered slots are examined. Eight cross sections with different geometric parameters are adopted to study the mechanical behavior and shape optimization of the lining structure. The hyperstatic reaction method is used through finite element analysis software ANSYS. The mechanical behavior of the lining structure is evidently affected by the geometric parameters of crosssectional shape. The minimum safety factor of the lining structure elements is set to be the objective function. The efficient tunnel shape to maximize the minimum safety factor is identified. The minimum safety factor increases significantly after optimization. The optimized cross section significantly improves the mechanical characteristics of the lining structure and effectively reduces its deformation. Force analyses of optimization process and program are conducted parametrically so that the method can be applied to the optimization design of other similar structures. The results obtained from this study enhance our understanding of the mechanical behavior of the lining structure for subsea tunnels. These results are also beneficial to the optimal design of lining structures in general.
Broadband, high-resolution investigation of advanced absorption line shapes at high temperature
NASA Astrophysics Data System (ADS)
Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.
2017-08-01
Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of <3.3 ×10-6c m-1 . Using a multispectral fitting analysis, we show that only the speed-dependent Voigt accurately models this temperature range with a single power-law temperature-scaling exponent for the broadening coefficients. Only the data from the analysis using this profile fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.
Markin, Craig J; Spyracopoulos, Leo
2012-12-01
NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements from NMR-monitored chemical shift titrations, for which the dependence of K ( D ) on the chemical shift difference (Δω) between free and bound states is extrapolated to Δω = 0. The demonstrated accuracy and precision for k ( off ) will be valuable for the interpretation of biological kinetics in weakly interacting protein-protein networks, where a small change in the magnitude of the underlying kinetics of a given pathway may lead to large changes in the associated downstream signaling cascade.
Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction
NASA Astrophysics Data System (ADS)
Gao, S. Q.; Zhang, X. Y.; Zhou, Y. H.
2018-06-01
The capillary interaction induced by a tilted cylinder and interface is the basic configuration of many complex systems, such as micro-pillar arrays clustering, super-hydrophobicity of hairy surface, water-walking insects, and fiber aggregation. We systematically analyzed the scaling laws of tilt angle, contact angle, and cylinder radius on the contact line shape by SE simulation and experiment. The following in-depth analysis of the characteristic parameters (shift, stretch and distortion) of the deformed contact lines reveals the self-similar shape of contact line. Then a general capillary force scaling law is proposed to incredibly grasp all the simulated and experimental data by a quite straightforward ellipse approximation approach.
First Observation of the {Lambda}(1405) Line Shape in Electroproduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Haiyun; Schumacher, Reinhard A.
2013-10-01
We report the first observation of the line shape of the {Lambda}(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K{sup +}{Lambda}(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0
Instrumentation and Metrology for Nanotechnology
2004-01-29
dimension measurements of 3D structures, overlay, defect detection, and analysis . Critical dimension ( CD ) measurement must account for sidewall shape and...critical dimension measurements of 3D structures, overlay, defect detection, and analysis . CD measurement must account for sidewall shape and line...energy dispersive X-ray (EDX) analysis on films containing as-prepared FePt nanoparticles revealed a distribution of particle compositions. Although
Brewer, Amandaa K; Striegel, André M
2011-04-15
The string-of-pearls-type morphology is ubiquitous, manifesting itself variously in proteins, vesicles, bacteria, synthetic polymers, and biopolymers. Characterizing the size and shape of analytes with such morphology, however, presents a challenge, due chiefly to the ease with which the "strings" can be broken during chromatographic analysis or to the paucity of information obtained from the benchmark microscopy and off-line light scattering methods. Here, we address this challenge with multidetector hydrodynamic chromatography (HDC), which has the ability to determine, simultaneously, the size, shape, and compactness and their distributions of string-of-pearls samples. We present the quadruple-detector HDC analysis of colloidal string-of-pearls silica, employing static multiangle and quasielastic light scattering, differential viscometry, and differential refractometry as detection methods. The multidetector approach shows a sample that is broadly polydisperse in both molar mass and size, with strings ranging from two to five particles, but which also contains a high concentration of single, unattached "pearls". Synergistic combination of the various size parameters obtained from the multiplicity of detectors employed shows that the strings with higher degrees of polymerization have a shape similar to the theory-predicted shape of a Gaussian random coil chain of nonoverlapping beads, while the strings with lower degrees of polymerization have a prolate ellipsoidal shape. The HDC technique is contrasted experimentally with multidetector size-exclusion chromatography, where, even under extremely gentle conditions, the strings still degraded during analysis. Such degradation is shown to be absent in HDC, as evidenced by the fact that the molar mass and radius of gyration obtained by HDC with multiangle static light scattering detection (HDC/MALS) compare quite favorably to those determined by off-line MALS analysis under otherwise identical conditions. The multidetector HDC results were also comparable to those obtained by transmission electron microscopy (TEM). Unlike off-line MALS or TEM, however, multidetector HDC is able to provide complete particle analysis based on the molar mass, size, shape, and compactness and their distributions for the entire sample population in less than 20 min. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Ivković, M.; Konjević, N.
2017-05-01
In this work we summarize, analyze and critically evaluate experimental procedures and results of LIBS electron number density plasma characterization using as examples Stark broadened Si I and Si II line profiles. Selected publications are covering the time period from very beginning of silicon LIBS studies until the end of the year 2015. To perform the analysis of experimental LIBS data, the testing of available semiclassical theoretical Stark broadening parameters for Si I and Si II lines was accomplished first. This is followed by the description of experimental setups, results and details of experimental procedure relevant for the line shape analysis of spectral lines used for plasma characterization. Although most of results and conclusions of this analysis are related to the application of silicon lines for LIBS characterization they are of general importance and may be applied to other elements and different low-temperature plasma sources. The analysis of experimental procedures used for LIBS diagnostics from emission profiles of non-hydrogenic spectral lines is carried out in the following order: the influence of laser ablation and crater formation, spatial and temporal plasma observation, line self-absorption and experimental profile deconvolution, the contribution of ion broadening in comparison with electron impacts contributions to the line width in case of neutral atom line and some other aspects of line shape analysis are considered. The application of Stark shift for LIBS diagnostics is demonstrated and discussed. Finally, the recommendations for an improvement of experimental procedures for LIBS electron number density plasma characterization are offered.
SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis.
Tanabata, Takanari; Shibaya, Taeko; Hori, Kiyosumi; Ebana, Kaworu; Yano, Masahiro
2012-12-01
Seed shape and size are among the most important agronomic traits because they affect yield and market price. To obtain accurate seed size data, a large number of measurements are needed because there is little difference in size among seeds from one plant. To promote genetic analysis and selection for seed shape in plant breeding, efficient, reliable, high-throughput seed phenotyping methods are required. We developed SmartGrain software for high-throughput measurement of seed shape. This software uses a new image analysis method to reduce the time taken in the preparation of seeds and in image capture. Outlines of seeds are automatically recognized from digital images, and several shape parameters, such as seed length, width, area, and perimeter length, are calculated. To validate the software, we performed a quantitative trait locus (QTL) analysis for rice (Oryza sativa) seed shape using backcrossed inbred lines derived from a cross between japonica cultivars Koshihikari and Nipponbare, which showed small differences in seed shape. SmartGrain removed areas of awns and pedicels automatically, and several QTLs were detected for six shape parameters. The allelic effect of a QTL for seed length detected on chromosome 11 was confirmed in advanced backcross progeny; the cv Nipponbare allele increased seed length and, thus, seed weight. High-throughput measurement with SmartGrain reduced sampling error and made it possible to distinguish between lines with small differences in seed shape. SmartGrain could accurately recognize seed not only of rice but also of several other species, including Arabidopsis (Arabidopsis thaliana). The software is free to researchers.
The Design and Analysis of Electrically Large Custom-Shaped Reflector Antennas
2013-06-01
GEO) satellite data are imported into STK and plotted to visualize the regions of the sky that the spherical reflector must have line of sight for...Magnetic Conductor PO Physical Optics STK Systems Tool Kit TE Transverse Electric xvii Acronym Definition TLE Two Line Element TM Transverse Magnetic...study for the spherical reflector, Systems Tool Kit ( STK ) software from Analytical Graphics Inc. (AGI) is used. In completing the cross-shaped
Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw
2013-09-01
We propose and demonstrate a highly sensitive in-line photonic crystal fiber (PCF) microfluidic refractometer. Ultrathin C-shaped fibers are spliced in-between the PCF and standard single-mode fibers. The C-shaped fibers provide openings for liquid to flow in and out of the PCF. Based on a Sagnac interferometer, the refractive index (RI) response of the device is investigated theoretically and experimentally. A high sensitivity of 6621 nm/RIU for liquid RI from 1.330 to 1.333 is achieved in the experiment, which agrees well with the theoretical analysis.
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications
NASA Astrophysics Data System (ADS)
Koshelev, M. A.; Golubiatnikov, G. Yu.; Vilkov, I. N.; Tretyakov, M. Yu.
2018-01-01
The paper concerns refining parameters of one of the major atmospheric diagnostic lines of water vapor at 22 GHz. Two high resolution microwave spectrometers based on different principles of operation covering together the pressure range from a few milliTorr up to a few Torr were used. Special efforts were made to minimize possible sources of systematic measurement errors. Satisfactory self-consistency of the obtained data was achieved ensuring reliability of the obtained parameters. Collisional broadening and shifting parameters of the line in pure water vapor and in its mixture with air were determined at room temperature. Comparative analysis of the obtained parameters with previous data is given. The speed dependence effect impact on the line shape was evaluated.
Cell Motility and Jamming across the EMT
NASA Astrophysics Data System (ADS)
Grosser, Steffen; Oswald, Linda; Lippoldt, Jürgen; Heine, Paul; Kaes, Josef A.
We use single-cell tracking and cell shape analysis to highlight the different roles that cell jamming plays in the behaviour of epithelial vs. mesenchymal mammary breast cell lines (MCF-10A, MDA-MB-231) in 2D adherent culture. An automatic segmentation allows for the evaluation of cell shapes, which we compare to predictions made by the self-propelled vertex (SPV) model. On top of that, we employ co-cultures to study the emerging demixing behaviour of these cell lines, demonstrating that the mesenchymal MDA-MB-231 cell line forms unjammed islands within the jammed collective.
Comprehensive analysis of NMR data using advanced line shape fitting.
Niklasson, Markus; Otten, Renee; Ahlner, Alexandra; Andresen, Cecilia; Schlagnitweit, Judith; Petzold, Katja; Lundström, Patrik
2017-10-01
NMR spectroscopy is uniquely suited for atomic resolution studies of biomolecules such as proteins, nucleic acids and metabolites, since detailed information on structure and dynamics are encoded in positions and line shapes of peaks in NMR spectra. Unfortunately, accurate determination of these parameters is often complicated and time consuming, in part due to the need for different software at the various analysis steps and for validating the results. Here, we present an integrated, cross-platform and open-source software that is significantly more versatile than the typical line shape fitting application. The software is a completely redesigned version of PINT ( https://pint-nmr.github.io/PINT/ ). It features a graphical user interface and includes functionality for peak picking, editing of peak lists and line shape fitting. In addition, the obtained peak intensities can be used directly to extract, for instance, relaxation rates, heteronuclear NOE values and exchange parameters. In contrast to most available software the entire process from spectral visualization to preparation of publication-ready figures is done solely using PINT and often within minutes, thereby, increasing productivity for users of all experience levels. Unique to the software are also the outstanding tools for evaluating the quality of the fitting results and extensive, but easy-to-use, customization of the fitting protocol and graphical output. In this communication, we describe the features of the new version of PINT and benchmark its performance.
The implementation of non-Voigt line profiles in the HITRAN database: H2 case study
NASA Astrophysics Data System (ADS)
Wcisło, P.; Gordon, I. E.; Tran, H.; Tan, Y.; Hu, S.-M.; Campargue, A.; Kassi, S.; Romanini, D.; Hill, C.; Kochanov, R. V.; Rothman, L. S.
2016-07-01
Experimental capabilities of molecular spectroscopy and its applications nowadays require a sub-percent or even sub-per mille accuracy of the representation of the shapes of molecular transitions. This implies the necessity of using more advanced line-shape models which are characterized by many more parameters than a simple Voigt profile. It is a great challenge for modern molecular spectral databases to store and maintain the extended set of line-shape parameters as well as their temperature dependences. It is even more challenging to reliably retrieve these parameters from experimental spectra over a large range of pressures and temperatures. In this paper we address this problem starting from the case of the H2 molecule for which the non-Voigt line-shape effects are exceptionally pronounced. For this purpose we reanalyzed the experimental data reported in the literature. In particular, we performed detailed line-shape analysis of high-quality spectra obtained with cavity-enhanced techniques. We also report the first high-quality cavity-enhanced measurement of the H2 fundamental vibrational mode. We develop a correction to the Hartmann-Tran profile (HTP) which adjusts the HTP to the particular model of the velocity-changing collisions. This allows the measured spectra to be better represented over a wide range of pressures. The problem of storing the HTP parameters in the HITRAN database together with their temperature dependences is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larcher, G.; Tran, H., E-mail: ha.tran@lisa.u-pec.fr; Schwell, M.
2014-02-28
Room temperature absorption spectra of various transitions of pure CO{sub 2} have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO{sub 2} lines, in terms of both themore » Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO{sub 2} transitions are almost independent of the rotational quantum number of the considered lines.« less
Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M
1986-01-01
The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)
The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.
Zhang, Chunmin; He, Jian
2006-12-25
The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II
NASA Astrophysics Data System (ADS)
Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan
2018-05-01
The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Buhl, D.; Chin, G.; Deming, D.; Espenak, F.; Kostiuk, T.; Zipoy, D.
1981-01-01
Fully resolved intensity profiles of various lines in the carbon dioxide band at 10.4 micrometers have been measured on Mars with an infrared heterodyne spectrometer. Analysis of the line shapes shows that the Mars atmosphere exhibits positive gain in these lines. The detection of natural optical gain amplification enables identification of these lines as a definite natural laser.
Anomalous optogalvanic line shapes of argon metastable transitions in a hollow cathode lamp
NASA Technical Reports Server (NTRS)
Ruyten, W. M.
1993-01-01
Anomalous optogalvanic line shapes were observed in a commercial hollow cathode lamp containing argon buffer gas. Deviations from Gaussian line shapes were particularly strong for transitions originating from the 3P2 metastable level of argon. The anomalous line shapes can be described reasonably well by the assumption that two regions in the discharge are excited simultaneously, each giving rise to a purely Gaussian line shape, but with different polarities, amplitudes, and linewidths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanon-Willette, Thomas; Clercq, Emeric de; Arimondo, Ennio
2011-12-15
Exact and asymptotic line shape expressions are derived from the semiclassical density matrix representation describing a set of closed three-level {Lambda} atomic or molecular states including decoherences, relaxation rates, and light shifts. An accurate analysis of the exact steady-state dark-resonance profile describing the Autler-Townes doublet, the electromagnetically induced transparency or coherent population trapping resonance, and the Fano-Feshbach line shape leads to the linewidth expression of the two-photon Raman transition and frequency shifts associated to the clock transition. From an adiabatic analysis of the dynamical optical Bloch equations in the weak field limit, a pumping time required to efficiently trap amore » large number of atoms into a coherent superposition of long-lived states is established. For a highly asymmetrical configuration with different decay channels, a strong two-photon resonance based on a lower states population inversion is established when the driving continuous-wave laser fields are greatly unbalanced. When time separated resonant two-photon pulses are applied in the adiabatic pulsed regime for atomic or molecular clock engineering, where the first pulse is long enough to reach a coherent steady-state preparation and the second pulse is very short to avoid repumping into a new dark state, dark-resonance fringes mixing continuous-wave line shape properties and coherent Ramsey oscillations are created. Those fringes allow interrogation schemes bypassing the power broadening effect. Frequency shifts affecting the central clock fringe computed from asymptotic profiles and related to the Raman decoherence process exhibit nonlinear shapes with the three-level observable used for quantum measurement. We point out that different observables experience different shifts on the lower-state clock transition.« less
Miyake, Masahiro; Yamashiro, Kenji; Akagi-Kurashige, Yumiko; Oishi, Akio; Tsujikawa, Akitaka; Hangai, Masanori; Yoshimura, Nagahisa
2014-01-01
Purpose To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT) image analysis. Methods We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch’s membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. Results The color maps allowed staphyloma visualization as a ring of green color at the edge and as that of orange-red color at the bottom. Analyses of mean and variance of curvature revealed that eyes with myopic choroidal neovascularization tended to have relatively flat posterior poles with smooth surfaces, while eyes with chorioretinal atrophy exhibited a steep, curved shape with an undulated surface (P<0.001). Furthermore, eyes with staphylomas and those without clearly differed in terms of mean curvature and the variance of curvature: 98.4% of eyes with staphylomas had mean curvature ≥7.8×10−5 [1/µm] and variance of curvature ≥0.26×10−8 [1/µm]. Conclusions We established a novel method to analyze posterior pole shape by using OCT images to construct curvature maps. Our quantitative analysis revealed that fundus shape is associated with myopic complications. These values were also effective in distinguishing eyes with staphylomas from those without. This tool for the quantitative evaluation of eye shape should facilitate future research of myopic complications. PMID:25259853
NASA Astrophysics Data System (ADS)
Löhner-Böttcher, J.; Schmidt, W.; Stief, F.; Steinmetz, T.; Holzwarth, R.
2018-03-01
Context. The solar convection manifests as granulation and intergranulation at the solar surface. In the photosphere, convective motions induce differential Doppler shifts to spectral lines. The observed convective blueshift varies across the solar disk. Aim. We focus on the impact of solar convection on the atmosphere and aim to resolve its velocity stratification in the photosphere. Methods: We performed high-resolution spectroscopic observations of the solar spectrum in the 6302 Å range with the Laser Absolute Reference Spectrograph at the Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the spectra to an absolute wavelength scale with an accuracy of 1 m s-1. We systematically scanned the quiet Sun from the disk center to the limb at ten selected heliocentric positions. The analysis included 99 time sequences of up to 20 min in length. By means of ephemeris and reference corrections, we translated wavelength shifts into absolute line-of-sight velocities. A bisector analysis on the line profiles yielded the shapes and convective shifts of seven photospheric lines. Results: At the disk center, the bisector profiles of the iron lines feature a pronounced C-shape with maximum convective blueshifts of up to -450 m s-1 in the spectral line wings. Toward the solar limb, the bisectors change into a "\\"-shape with a saturation in the line core at a redshift of +100 m s-1. The center-to-limb variation of the line core velocities shows a slight increase in blueshift when departing the disk center for larger heliocentric angles. This increase in blueshift is more pronounced for the magnetically less active meridian than for the equator. Toward the solar limb, the blueshift decreases and can turn into a redshift. In general, weaker lines exhibit stronger blueshifts. Conclusions: Best spectroscopic measurements enabled the accurate determination of absolute convective shifts in the solar photosphere. We convolved the results to lower spectral resolution to permit a comparison with observations from other instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinfeng, E-mail: jfzhang@xidian.edu.cn; Li, Yao; Yan, Ran
In a semiconductor hetero-junction, the stripe/line-shaped scatters located at the hetero-interface lead to the anisotropic transport of two-dimensional electron gas (2DEG). The elastic scattering of infinitely long and uniform stripe/line-shaped scatters to 2DEG is theoretically investigated based on a general theory of anisotropic 2DEG transport [J. Schliemann and D. Loss, Phys. Rev. B 68(16), 165311 (2003)], and the resulting 2DEG mobility along the applied electrical field is modeled to be a function of the angle between the field and the scatters. The anisotropy of the scattering and the mobility originate in essence from that the stripe/line-shaped scatters act upon themore » injecting two-dimensional wave vector by changing only its component perpendicular to the scatters. Three related scattering mechanisms in a nonpolar AlGaN/GaN hetero-junction are discussed as illustrations, including the striated morphology caused interface roughness scattering, and the polarization induced line charge dipole scattering and the misfit dislocation scattering at the AlGaN/GaN interface. Different anisotropic behaviors of the mobility limited by these scattering mechanisms are demonstrated, but analysis shows that all of them are determined by the combined effects of the anisotropic bare scattering potential and the anisotropic dielectric response of the 2DEG.« less
Saturation spectroscopy of an optically opaque argon plasma
NASA Astrophysics Data System (ADS)
Eshel, Ben; Rice, Christopher A.; Perram, Glen P.
2018-02-01
A pure argon (Ar) plasma formed by a capacitively coupled radio-frequency discharge was analyzed using Doppler-free saturation spectroscopy. The expected line shape was a characteristic of sub-Doppler spectra in the presence of velocity-changing collisions, a narrow Lorentzian centered on a Doppler pedestal, but the observed line shapes contain a multi-peak structure, attributed to opacity of the medium. Laser absorption and inter-modulated fluorescence spectroscopy measurements were made to validate opacity as a driving factor of the observed line shapes. Spectral line shapes are further complicated by the spatial dependence of the pump laser, probe laser and of the absorbing medium, as well as the large absorbance of the transition under investigation. A numerical line shape was derived by accounting for the spatial variation of the pump and probe with a saturated line shape obtained from the rate equations for an equivalent two-level system. This simulated line shape shows good qualitative agreement with the trends observed in the data.
Skeldon, Mark D.; Letzring, Samuel A.
1999-03-23
Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.
Skeldon, M.D.; Letzring, S.A.
1999-03-23
Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.
Huang, Kuo-Chen; Chiu, Tsai-Lan
2007-04-01
This study investigated the effects of color combinations for the figure/icon background, icon shape, and line width of the icon border on visual search performance on a liquid crystal display screen. In a circular stimulus array, subjects had to search for a target item which had a diameter of 20 cm and included one target and 19 distractors. Analysis showed that the icon shape significantly affected search performance. The correct response time was significantly shorter for circular icons than for triangular icons, for icon borders with a line width of 3 pixels than for 1 or 2 pixels, and for 2 pixels than for 1 pixel. The color combination also significantly affected the visual search performance: white/yellow, white/blue, black-red, and black/ yellow color combinations for the figure/icon background had shorter correct response times compared to yellow/blue, red/green, yellow/green, and blue/red. However, no effects were found for the line width of the icon border or the icon shape on the error rate. Results have implications for graphics-based design of interfaces, such as for mobile phones, Web sites, and PDAs, as well as complex industrial processes.
Characterization of a highly efficient chevron-shaped anti-contamination device
NASA Astrophysics Data System (ADS)
Fiore, M.; Vermeersch, O.; Forte, M.; Casalis, G.; François, C.
2016-04-01
This paper is devoted to the characterization of an optimized chevron-shaped anti-contamination device (ACD). This device can prevent efficiently the propagation of turbulence from the fuselage along the attachment line (hypothetical streamline that spreads the flow going to suction side and the one going to pressure side) of swept wings and enables the development of a new laminar boundary layer downstream. More specifically, the aim is to prevent boundary-layer transition along the attachment line by a contamination process. This process is characterized by the typical Reynolds number overline{R} and the associated Poll's criterion. Thus, ACD efficiency will be expressed in terms of overline{R} values. Some experiments performed on a new numerically optimized ACD have shown its ability to prevent leading-edge contamination up to overline{R} values close to the natural transition process of the laminar boundary layer along the attachment line. The corresponding stability analysis of the laminar boundary layer is made using the Görtler-Hämmerlin stability approach. The study is completed with the different transition processes that can occur downstream the attachment line, around the airfoil, especially with crossflow analysis.
Shape classification of wear particles by image boundary analysis using machine learning algorithms
NASA Astrophysics Data System (ADS)
Yuan, Wei; Chin, K. S.; Hua, Meng; Dong, Guangneng; Wang, Chunhui
2016-05-01
The shape features of wear particles generated from wear track usually contain plenty of information about the wear states of a machinery operational condition. Techniques to quickly identify types of wear particles quickly to respond to the machine operation and prolong the machine's life appear to be lacking and are yet to be established. To bridge rapid off-line feature recognition with on-line wear mode identification, this paper presents a new radial concave deviation (RCD) method that mainly involves the use of the particle boundary signal to analyze wear particle features. Signal output from the RCDs subsequently facilitates the determination of several other feature parameters, typically relevant to the shape and size of the wear particle. Debris feature and type are identified through the use of various classification methods, such as linear discriminant analysis, quadratic discriminant analysis, naïve Bayesian method, and classification and regression tree method (CART). The average errors of the training and test via ten-fold cross validation suggest CART is a highly suitable approach for classifying and analyzing particle features. Furthermore, the results of the wear debris analysis enable the maintenance team to diagnose faults appropriately.
Simulation of stochastic wind action on transmission power lines
NASA Astrophysics Data System (ADS)
Wielgos, Piotr; Lipecki, Tomasz; Flaga, Andrzej
2018-01-01
The paper presents FEM analysis of the wind action on overhead transmission power lines. The wind action is based on a stochastic simulation of the wind field in several points of the structure and on the wind tunnel tests on aerodynamic coefficients of the single conductor consisting of three wires. In FEM calculations the section of the transmission power line composed of three spans is considered. Non-linear analysis with deadweight of the structure is performed first to obtain the deformed shape of conductors. Next, time-dependent wind forces are applied to respective points of conductors and non-linear dynamic analysis is carried out.
1991-12-01
9 2.6.1 Multi-Shape Detection. .. .. .. .. .. .. ...... 9 Page 2.6.2 Line Segment Extraction and Re-Combination.. 9 2.6.3 Planimetric Feature... Extraction ............... 10 2.6.4 Line Segment Extraction From Statistical Texture Analysis .............................. 11 2.6.5 Edge Following as Graph...image after image, could benefit clue to the fact that major spatial characteristics of subregions could be extracted , and minor spatial changes could be
Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres
NASA Astrophysics Data System (ADS)
Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.
2013-07-01
New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.
A Solar-flux Line-broadening Analysis
NASA Astrophysics Data System (ADS)
Gray, David F.
2018-04-01
The Fourier technique of extracting rotation rates and macroturbulence-velocity dispersions from the shapes and broadening of stellar spectral lines is applied to the solar-flux spectrum. Lines with equivalent widths less than ∼0.055 Å are shown to have the advantage over stronger lines by allowing the residual transform to be followed to higher frequencies. The standard radial-tangential macroturbulence formulation fits the observations well and yields an equatorial velocity that is within a few percent of the correct rate.
NASA Technical Reports Server (NTRS)
Mumma, M.; Buhl, D.; Chin, G.; Deming, D.; Espenak, F.; Kostiuk, T.; Zipoy, D.
1980-01-01
Fully resolved intensity profiles of various lines in the CO2 bands at 9.4 micrometers and 10.4 micrometers were measured on Mars using an infrared heterodyne spectrometer. Analysis of the line shapes shows that the Mars atmosphere exhibits positive gain on these lines, providing the first definite detection of natural optical gain amplification and enabling identification of these lines as the first definite natural laser ever discovered.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
Pulse shaping with transmission lines
Wilcox, Russell B.
1987-01-01
A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.
Pulse shaping with transmission lines
Wilcox, R.B.
1985-08-15
A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.
A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.
Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L
2016-02-27
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction
NASA Astrophysics Data System (ADS)
Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.
2016-03-01
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.
2018-02-01
X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.
NASA Astrophysics Data System (ADS)
Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-03-01
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.
Slip-mediated dewetting of polymer microdroplets
McGraw, Joshua D.; Chan, Tak Shing; Maurer, Simon; Salez, Thomas; Benzaquen, Michael; Raphaël, Elie; Brinkmann, Martin; Jacobs, Karin
2016-01-01
Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slides against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap-shaped polystyrene microdroplets, with nonequilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using in situ atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient nonspherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition. PMID:26787903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Sanat K.; Das, Prasanta K., E-mail: pkd@mech.iitkgp.ernet.in; Maiti, Biswajit
2015-03-14
A rigorous thermodynamic formulation of the geometric model for heterogeneous nucleation including line tension effect is missing till date due to the associated mathematical hurdles. In this work, we develop a novel thermodynamic formulation based on Classical Nucleation Theory (CNT), which is supposed to illustrate a systematic and a more plausible analysis for the heterogeneous nucleation on a planar surface including the line tension effect. The appreciable range of the critical microscopic contact angle (θ{sub c}), obtained from the generalized Young’s equation and the stability analysis, is θ{sub ∞} < θ{sub c} < θ′ for positive line tension and ismore » θ{sub M} < θ{sub c} < θ{sub ∞} for negative line tension. θ{sub ∞} is the macroscopic contact angle, θ′ is the contact angle for which the Helmholtz free energy has the minimum value for the positive line tension, and θ{sub M} is the local minima of the nondimensional line tension effect for the negative line tension. The shape factor f, which is basically the dimensionless critical free energy barrier, becomes higher for lower values of θ{sub ∞} and higher values of θ{sub c} for positive line tension. The combined effect due to the presence of the triple line and the interfacial areas (f{sup L} + f{sup S}) in shape factor is always within (0, 3.2), resulting f in the range of (0, 1.7) for positive line tension. A formerly presumed appreciable range for θ{sub c}(0 < θ{sub c} < θ{sub ∞}) is found not to be true when the effect of negative line tension is considered for CNT. Estimation based on the property values of some real fluids confirms the relevance of the present analysis.« less
An Interactive System For Fourier Analysis Of Artichoke Flower Shape.
NASA Astrophysics Data System (ADS)
Impedovo, Sebastiano; Fanelli, Anna M.; Ligouras, Panagiotis
1984-06-01
In this paper we present an interactive system which allows the Fourier analysis of the artichoke flower-head profile. The system consistsof a DEC pdp 11/34 computer with both a a track-following device and a Tektronix 4010/1 graphic and alpha numeric display on-line. Some experiments have been carried out taking into account some different parental types of artichoke flower-head samples. It is shown here that a narrow band of only eight harmonics is sufficient to classify different artichoke flower shapes.
NASA Technical Reports Server (NTRS)
Boulet, C.; Ma, Q.
2016-01-01
Line mixing effects have been calculated in the ?1 parallel band of self-broadened NH3. The theoretical approach is an extension of a semi-classical model to symmetric-top molecules with inversion symmetry developed in the companion paper [Q. Ma and C. Boulet, J. Chem. Phys. 144, 224303 (2016)]. This model takes into account line coupling effects and hence enables the calculation of the entire relaxation matrix. A detailed analysis of the various coupling mechanisms is carried out for Q and R inversion doublets. The model has been applied to the calculation of the shape of the Q branch and of some R manifolds for which an obvious signature of line mixing effects has been experimentally demonstrated. Comparisons with measurements show that the present formalism leads to an accurate prediction of the available experimental line shapes. Discrepancies between the experimental and theoretical sets of first order mixing parameters are discussed as well as some extensions of both theory and experiment.
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2004-01-01
We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.
Kurra, Swamy; Metkar, Umesh; Yirenkyi, Henaku; Tallarico, Richard A; Lavelle, William F
Retrospectively reviewed surgeries between 2011 and 2015 of patients who underwent posterior spinal deformity instrumentation with constructs involving fusions to pelvis and encompassing at least five levels. Measure the radiographic outcomes of coronal malalignment (CM) after use of an intraoperative T square shaped instrument in posterior spinal deformity surgeries with at least five levels of fusion and extension to pelvis. Neuromuscular children found to benefit from intraoperative T square technique to help achieve proper coronal spinal balance with extensive fusions. This intraoperative technique used in our posterior spine deformity instrumentation surgeries with the aforementioned parameters. There were 50 patients: n = 16 with intraoperative T square and n = 34 no-T square shaped device. Subgroups divided based on greater than 20 mm displacement and greater than 40 mm displacement of the C7 plumb line to the central sacral vertical line on either side in preoperative radiographs. We analyzed the demographics and the pre- and postoperative radiographic parameters of standing films: standing CM (displacement of C7 plumb line to central sacral vertical line), and major coronal Cobb angles in total sample and subgroups and compared T square shaped device with no-T square shaped device use by analysis of variance. A p value ≤.05 is statistically significant. In the total sample, though postoperative CM mean was not statistically different, we observed greater CM corrections in patients where a T square shaped device was used (70%) versus no-T square shaped device used (18%). In >20 mm and >40 mm subgroups, the postoperative mean CM values were statistically lower for the patients where a T square shaped device was used, p = .016 and p = .003, respectively. Cobb corrections were statistically higher for T square shaped device use in both >20 mm and >40 mm subgroups, 68%, respectively. The intraoperative T square shaped device technique had a positive effect on the amount of spine coronal malalignment correction after its use and for lumbar and thoracic coronal Cobb angles. Level III. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Malathy Devi, V.; Benner, D. Chris; Kleiner, Isabelle; Sams, Robert L.; Fletcher, Leigh N.
2014-08-01
Accurate knowledge of spectroscopic line parameters of PH3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν4, ν2 + ν4, ν1 and ν3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH3 pressures (∼2-50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν4, ν1 and ν3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν1 and ν3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν2 and ν4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C3v symmetry in general, and of PH3 in particular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathy Devi, V.; Benner, D. C.; Kleiner, Isabelle
2014-08-01
Accurate knowledge of spectroscopic line parameters of PH 3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH 3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν 4, ν 2 + ν 4, ν 1 andmore » ν 3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH 3 pressures (~2–50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν 4, ν 1 and ν 3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν 1 and ν 3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν 2 and ν 4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C 3v symmetry in general, and of PH 3 in particular.« less
Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.
2017-03-09
Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less
Contour matching for a fish recognition and migration-monitoring system
NASA Astrophysics Data System (ADS)
Lee, Dah-Jye; Schoenberger, Robert B.; Shiozawa, Dennis; Xu, Xiaoqian; Zhan, Pengcheng
2004-12-01
Fish migration is being monitored year round to provide valuable information for the study of behavioral responses of fish to environmental variations. However, currently all monitoring is done by human observers. An automatic fish recognition and migration monitoring system is more efficient and can provide more accurate data. Such a system includes automatic fish image acquisition, contour extraction, fish categorization, and data storage. Shape is a very important characteristic and shape analysis and shape matching are studied for fish recognition. Previous work focused on finding critical landmark points on fish shape using curvature function analysis. Fish recognition based on landmark points has shown satisfying results. However, the main difficulty of this approach is that landmark points sometimes cannot be located very accurately. Whole shape matching is used for fish recognition in this paper. Several shape descriptors, such as Fourier descriptors, polygon approximation and line segments, are tested. A power cepstrum technique has been developed in order to improve the categorization speed using contours represented in tangent space with normalized length. Design and integration including image acquisition, contour extraction and fish categorization are discussed in this paper. Fish categorization results based on shape analysis and shape matching are also included.
Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons
NASA Astrophysics Data System (ADS)
Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.
2008-10-01
We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.
Spatial resolution of a hard x-ray CCD detector.
Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott
2010-08-10
The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.
Application of the Hartmann–Tran profile to precise experimental data sets of 12C 2H 2
Forthomme, D.; Cich, M. J.; Twagirayezu, S.; ...
2015-06-25
Self- and nitrogen-broadened line shape data for the P e(11) line of the ν₁ + ν₃ band of acetylene, recorded using a frequency comb-stabilized laser spectrometer, have been analyzed using the Hartmann–Tran profile (HTP) line shape model in a multispectrum fitting. In total, the data included measurements recorded at temperatures between 125 K and 296 K and at pressures between 4 and 760 Torr. New, sub-Doppler, frequency comb-referenced measurements of the positions of multiple underlying hot band lines have also been made. These underlying lines significantly affect the P e(11) line profile at temperatures above 240 K and poorly knownmore » frequencies previously introduced errors into the line shape analyses. Thus, the behavior of the HTP model was compared to the quadratic speed dependent Voigt profile (QSDVP) expressed in the frequency and time domains. A parameter uncertainty analysis was carried out using a Monte Carlo method based on the estimated pressure, transmittance and frequency measurement errors. From the analyses, the P e(11) line strength was estimated to be 1.2014(50) × 10 -20 in cm.molecules⁻¹ units at 296 K with the standard deviation in parenthesis. For analyzing these data, we found that a reduced form of the HTP, equivalent to the QSDVP, was most appropriate because the additional parameters included in the full HTP were not well determined. As a supplement to this work, expressions for analytic derivatives and a lineshape fitting code written in Matlab for the HTP are available.« less
Application of the Hartmann-Tran profile to precise experimental data sets of 12C2H2
NASA Astrophysics Data System (ADS)
Forthomme, D.; Cich, M. J.; Twagirayezu, S.; Hall, G. E.; Sears, T. J.
2015-11-01
Self- and nitrogen-broadened line shape data for the Pe(11) line of the ν1 +ν3 band of acetylene, recorded using a frequency comb-stabilized laser spectrometer, have been analyzed using the Hartmann-Tran profile (HTP) line shape model in a multispectrum fitting. In total, the data included measurements recorded at temperatures between 125 K and 296 K and at pressures between 4 and 760 Torr. New, sub-Doppler, frequency comb-referenced measurements of the positions of multiple underlying hot band lines have also been made. These underlying lines significantly affect the Pe(11) line profile at temperatures above 240 K and poorly known frequencies previously introduced errors into the line shape analyses. The behavior of the HTP model was compared to the quadratic speed dependent Voigt profile (QSDVP) expressed in the frequency and time domains. A parameter uncertainty analysis was carried out using a Monte Carlo method based on the estimated pressure, transmittance and frequency measurement errors. From the analyses, the Pe(11) line strength was estimated to be 1.2014(50) ×10-20 in cmmolecule-1 units at 296 K with the standard deviation in parenthesis. For analyzing these data, we found that a reduced form of the HTP, equivalent to the QSDVP, was most appropriate because the additional parameters included in the full HTP were not well determined. As a supplement to this work, expressions for analytic derivatives and a lineshape fitting code written in Matlab for the HTP are available.
In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging
Ibrahim, Mohd Firdaus; Ahmad Sa’ad, Fathinul Syahir; Zakaria, Ammar; Md Shakaff, Ali Yeon
2016-01-01
The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass. PMID:27801799
In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging.
Ibrahim, Mohd Firdaus; Ahmad Sa'ad, Fathinul Syahir; Zakaria, Ammar; Md Shakaff, Ali Yeon
2016-10-27
The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t -test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.
Krieger, Jonathan D
2014-08-01
I present a protocol for creating geometric leaf shape metrics to facilitate widespread application of geometric morphometric methods to leaf shape measurement. • To quantify circularity, I created a novel shape metric in the form of the vector between a circle and a line, termed geometric circularity. Using leaves from 17 fern taxa, I performed a coordinate-point eigenshape analysis to empirically identify patterns of shape covariation. I then compared the geometric circularity metric to the empirically derived shape space and the standard metric, circularity shape factor. • The geometric circularity metric was consistent with empirical patterns of shape covariation and appeared more biologically meaningful than the standard approach, the circularity shape factor. The protocol described here has the potential to make geometric morphometrics more accessible to plant biologists by generalizing the approach to developing synthetic shape metrics based on classic, qualitative shape descriptors.
Reminiscences and Reflections on the History of International Conferences on Spectral Line Shapes
NASA Astrophysics Data System (ADS)
Szudy, J.
2017-02-01
A brief account of the history of International Conferences on Spectral Line Shapes (ICSLS) is given. Although in common use the “Europhysics Study Conference on Spectral Line Broadening and Related Topics” held in Meudon in 1973 is referred to as the first in the current sequence of ICSLS meetings, it is noted that five conferences dealing with line shape topics were organized before 1973 both in the USA and in Europe. Some details are given about their format and program. In particular, “The First International Conference on Spectral Lines” held in 1972 at the University of Tennessee at Knoxville is remembered as a meeting fully devoted to line shape problems, and as such should be regarded, in addition to the Meudon conference, as one of the roots of the line-shape community. Some of the highlights of particular ICSLS conferences as well as characteristics of their proceedings are briefly reviewed.
On the fourth Diadema species (Diadema-sp) from Japan.
Chow, Seinen; Kajigaya, Yoshikazu; Kurogi, Hiroaki; Niwa, Kentaro; Shibuno, Takuro; Nanami, Atsushi; Kiyomoto, Setuo
2014-01-01
Four long-spined sea urchin species in the genus Diadema are known to occur around the Japanese Archipelago. Three species (D. savignyi, D. setosum, and D. paucispinum) are widely distributed in the Indo-Pacific Ocean. The fourth species was detected by DNA analysis among samples originally collected as D. savignyi or D. setosum in Japan and the Marshall Islands and tentatively designated as Diadema-sp, remaining an undescribed species. We analyzed nucleotide sequences of the cytochrome oxidase I (COI) gene in the "D. savignyi-like" samples, and found all 17 individuals collected in the mainland of Japan (Sagami Bay and Kyushu) to be Diadema-sp, but all nine in the Ryukyu Archipelago (Okinawa and Ishigaki Islands) to be D. savignyi, with large nucleotide sequence difference between them (11.0%±1.7 SE). Diadema-sp and D. savignyi shared Y-shaped blue lines of iridophores along the interambulacrals, but individuals of Diadema-sp typically exhibited a conspicuous white streak at the fork of the Y-shaped blue iridophore lines, while this feature was absent in D. savignyi. Also, the central axis of the Y-shaped blue lines of iridophores was approximately twice as long as the V-component in D. savignyi whereas it was of similar length in Diadema-sp. Two parallel lines were observed to constitute the central axis of the Y-shaped blue lines in both species, but these were considerably narrower in Diadema-sp. Despite marked morphological and genetic differences, it appears that Diadema-sp has been mis-identified as D. savignyi for more than half a century.
Analysis of time-resolved argon line spectra from OMEGA direct-drive implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florido, R.; Nagayama, T.; Mancini, R. C.
2008-10-15
We discuss the observation and data analysis of argon K-shell line spectra from argon-doped deuterium-filled OMEGA direct-drive implosion cores based on data recorded with two streaked crystal spectrometers. The targets were 870 {mu}m in diameter, 27 {mu}m wall thickness plastic shells filled with 20 atm of deuterium gas, and a tracer amount of argon for diagnostic purposes. The argon K-shell line spectrum is primarily emitted at the collapse of the implosion and its analysis provides a spectroscopic diagnostic of the core implosion conditions. The observed spectra includes the He{alpha}, Ly{alpha}, He{beta}, He{gamma}, Ly{beta}, and Ly{gamma} line emissions and their associatedmore » He- and Li-like satellites thus covering a broad photon energy range from 3100 to 4200 eV with a spectral resolution power of approximately 500. The data analysis relies on detailed atomic and spectral models that take into account nonequilibrium collisional-radiative atomic kinetics, Stark-broadened line shapes, and radiation transport calculations.« less
Dutta, Rajesh; Bagchi, Kaushik
2017-01-01
Kubo’s fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo’s stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics. PMID:28527457
Directional pair distribution function for diffraction line profile analysis of atomistic models
Leonardi, Alberto; Leoni, Matteo; Scardi, Paolo
2013-01-01
The concept of the directional pair distribution function is proposed to describe line broadening effects in powder patterns calculated from atomistic models of nano-polycrystalline microstructures. The approach provides at the same time a description of the size effect for domains of any shape and a detailed explanation of the strain effect caused by the local atomic displacement. The latter is discussed in terms of different strain types, also accounting for strain field anisotropy and grain boundary effects. The results can in addition be directly read in terms of traditional line profile analysis, such as that based on the Warren–Averbach method. PMID:23396818
NASA Astrophysics Data System (ADS)
Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.
2016-03-01
Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.
Search for gamma ray lines from supernovae and supernova remnants
NASA Technical Reports Server (NTRS)
Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.
1974-01-01
A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com
A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done onmore » CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.« less
Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin
2015-03-15
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.
Resistively detected NMR line shapes in a quasi-one-dimensional electron system
NASA Astrophysics Data System (ADS)
Fauzi, M. H.; Singha, A.; Sahdan, M. F.; Takahashi, M.; Sato, K.; Nagase, K.; Muralidharan, B.; Hirayama, Y.
2017-06-01
We observe variation in the resistively detected nuclear magnetic resonance (RDNMR) line shapes in quantum Hall breakdown. The breakdown occurs locally in a gate-defined quantum point contact (QPC) region. Of particular interest is the observation of a dispersive line shape occurring when the bulk two-dimensional electron gas (2DEG) set to νb=2 and the QPC filling factor to the vicinity of νQPC=1 , strikingly resemble the dispersive line shape observed on a 2D quantum Hall state. This previously unobserved line shape in a QPC points to a simultaneous occurrence of two hyperfine-mediated spin flip-flop processes within the QPC. Those events give rise to two different sets of nuclei polarized in the opposite direction and positioned at a separate region with different degrees of electronic spin polarization.
NASA Technical Reports Server (NTRS)
Lundqvist, S.; Margolis, J.; Reid, J.
1982-01-01
Foreign-gas broadening coefficients have been measured for selected lines of ozone in the 9.2 micron region and for several R-branch lines of nitric oxide in the 5.4 micron region using a computerized tunable diode laser spectrometer. The data analysis showed the importance of fitting a Lorentzian line shape out to several times the halfwidth to obtain a correct value of the broadening coefficient. The measured broadening coefficients of nitric oxide were in good agreement with those obtained by Abels and Shaw (1966). The results of the analysis of eleven lines in the v-1 band and five lines in the v-3 band of ozone show a transition-dependent broadening coefficient. The average value of the foreign-gas broadening ceofficients for the measured v-1 and v-3 lines are 0.075 and 0.073 per cm per atm, respectively.
27 Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Zhi; Wan, Chuan; Vjunov, Aleksei
27Al single pulse (SP) MAS NMR spectra of HBEA zeolites with high Si/Al ratios of 71 and 75 were obtained at three magnetic field strengths of 7.05, 11.75 and 19.97 T. High field 27Al MAS NMR spectra acquired at 19.97 T show significantly improved spectral resolution, resulting in at least two well-resolved tetrahedral-Al NMR peaks. Based on the results obtained from 27Al MAS and MQMAS NMR acquired at 19.97 T, four different quadrupole peaks are used to deconvolute the 27Al SP MAS spectra acquired at vari-ous fields by using the same set of quadrupole coupling constants, asymmetric parameters and relativemore » integrated peak intensities for the tetrahedral Al peaks. The line shapes of individual peaks change from typical quadrupole line shape at low field to essentially symmetrical line shapes at high field. We demonstrate that for fully hydrated HBEA zeolites the effect of second order quadrupole interaction can be ignored and quantitative spectral analysis can be performed by directly fitting the high field spectra using mixed Gaussian/Lorentzian line shapes. Also, the analytical steps described in our work allow direct assignment of spectral intensity to individual Al tetrahedral sites (T-sites) of zeolite HBEA. Finally, the proposed concept is suggested generally applicable to other zeo-lite framework types, thus, allowing a direct probing of Al distributions by NMR spectroscopic methods in zeolites with high confi-dence.« less
Power line interference attenuation in multi-channel sEMG signals: Algorithms and analysis.
Soedirdjo, S D H; Ullah, K; Merletti, R
2015-08-01
Electromyogram (EMG) recordings are often corrupted by power line interference (PLI) even though the skin is prepared and well-designed instruments are used. This study focuses on the analysis of some of the recent and classical existing digital signal processing approaches have been used to attenuate, if not eliminate, the power line interference from EMG signals. A comparison of the signal to interference ratio (SIR) of the output signals is presented, for four methods: classical notch filter, spectral interpolation, adaptive noise canceller with phase locked loop (ANC-PLL) and adaptive filter, applied to simulated multichannel monopolar EMG signals with different SIR. The effect of each method on the shape of the EMG signals is also analyzed. The results show that ANC-PLL method gives the best output SIR and lowest shape distortion compared to the other methods. Classical notch filtering is the simplest method but some information might be lost as it removes both the interference and the EMG signals. Thus, it is obvious that notch filter has the lowest performance and it introduces distortion into the resulting signals.
Critical frontier of the triangular Ising antiferromagnet in a field
NASA Astrophysics Data System (ADS)
Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.
2004-03-01
We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.
NASA Astrophysics Data System (ADS)
Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Noureldeen, Amani F. H.
2014-11-01
Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.
Ramadan, Ramadan M; Abu Al-Nasr, Ahmad K; Noureldeen, Amani F H
2014-11-11
Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin. Copyright © 2014 Elsevier B.V. All rights reserved.
Reuter, Martin; Wolter, Franz-Erich; Shenton, Martha; Niethammer, Marc
2009-01-01
This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These spectral measures are isometry invariant and therefore allow for shape comparisons with minimal shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The discriminatory power of the 2D surface and 3D solid methods is demonstrated on a population of female caudate nuclei (a subcortical gray matter structure of the brain, involved in memory function, emotion processing, and learning) of normal control subjects and of subjects with schizotypal personality disorder. The behavior and properties of the Laplace-Beltrami eigenvalues and -functions are discussed extensively for both the Dirichlet and Neumann boundary condition showing advantages of the Neumann vs. the Dirichlet spectra in 3D. Furthermore, topological analyses employing the Morse-Smale complex (on the surfaces) and the Reeb graph (in the solids) are performed on selected eigenfunctions, yielding shape descriptors, that are capable of localizing geometric properties and detecting shape differences by indirectly registering topological features such as critical points, level sets and integral lines of the gradient field across subjects. The use of these topological features of the Laplace-Beltrami eigenfunctions in 2D and 3D for statistical shape analysis is novel. PMID:20161035
Suzuki, Kosuke; Suzuki, Ayahito; Ishikawa, Taiki; Itou, Masayoshi; Yamashige, Hisao; Orikasa, Yuki; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi
2017-09-01
Compton scattering is one of the most promising probes for quantitating Li under in operando conditions, since high-energy X-rays, which have high penetration power, are used as the incident beam and the Compton-scattered energy spectrum has specific line-shapes for each element. An in operando quantitation method to determine the Li composition in electrodes has been developed by using line-shape (S-parameter) analysis of the Compton-scattered energy spectrum. In this study, S-parameter analysis has been applied to a commercial coin cell Li-ion rechargeable battery and the variation of the S-parameters during the charge/discharge cycle at the positive and negative electrodes has been obtained. By using calibration curves for Li composition in the electrodes, the change in Li composition of the positive and negative electrodes has been determined using the S-parameters simultaneously.
Kopanja, Lazar; Kovacevic, Zorana; Tadic, Marin; Žužek, Monika Cecilija; Vrecl, Milka; Frangež, Robert
2018-04-23
Detailed shape analysis of cells is important to better understand the physiological mechanisms of toxins and determine their effects on cell morphology. This study aimed to develop a procedure for accurate morphological analysis of cell shape and use it as a tool to estimate toxin activity. With the aim of optimizing the method of cell morphology analysis, we determined the influence of ostreolysin A and pleurotolysin B complex (OlyA/PlyB) on the morphology of murine neuronal NG108-15 cells. A computational method was introduced and successfully applied to quantify morphological attributes of the NG108-15 cell line before and after 30 and 60 min exposure to OlyA/PlyB using confocal microscopy. The modified circularity measure [Formula: see text] for shape analysis was applied, which defines the degree to which the shape of the neuron differs from a perfect circle. It enables better detection of small changes in the shape of cells, making the outcome easily detectable numerically. Additionally, we analyzed the influence of OlyA/PlyB on the cell area, allowing us to detect the cells with blebs. This is important because the formation of plasma membrane protrusions such as blebs often reflects cell injury that leads to necrotic cell death. In summary, we offer a novel analytical method of neuronal cell shape analysis and its correlation with the toxic effects of the pore-forming OlyA/PlyB toxin in situ.
Application of machine vision in inspecting stem and shape of fruits
NASA Astrophysics Data System (ADS)
Ying, Yibin; Jing, Hansong; Tao, Yang; Jin, Juanqin; Ibarra, Juan G.; Chen, Zhikuan
2000-12-01
The shape and the condition of stem are important features in classification of Huanghua pears. As the commonly used thinning and erosion-dilation algorithm in judging the presence of the stem is too slow, a new fast algorithm was put forward. Compared with other part of the pear, the stem is obviously thin and long, with the help of various sized templates, the judgment of whether the stem is present was easily made, meanwhile the stem head and the intersection point of stem bottom and pear were labeled. Furthermore, after the slopes of the tangential line of stem head and tangential line of stem bottom were found, the included angle of these two lines was calculated. It was found that the included angle of the broken stem was obviously different from that of the good stem. After the analysis of 53 pictures of pears, the accuracy to judge whether the stem is present is 100% and whether the stem is good reaches 93%. Also, the algorithm is of robustness and can be made invariant to translation and rotation Meanwhile, the method to describe the shape of irregular fruits was studied. Fourier transformation and inverse Fourier transformation pair were adopted to describe the shape of Huanghua pears, and the algorithm for shape identification, which was based on artificial neural network, was developed. The first sixteen harmonic components of the Fourier descriptor were enough to represent the primary shape of pear, and the identification accuracy could reach 90% by applying the Fourier descriptor in combination with artificial neural network.
NASA Astrophysics Data System (ADS)
He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.
2018-04-01
With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
Geometric Analysis, Visualization, and Conceptualization of 3D Image Data
collection of geometric primitives (points, lines, polygons, etc.) that accurately represent the shape of the different color. The masks mentioned above are human supplied hints as to where to draw these contour lines ) Acquire information about the inside of an object, and generate a 3D image data set (2) Define the regions
On an image reconstruction method for ECT
NASA Astrophysics Data System (ADS)
Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro
2007-04-01
An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.
NASA Astrophysics Data System (ADS)
Mahdavi, Ali; Seyyedian, Hamid
2014-05-01
This study presents a semi-analytical solution for steady groundwater flow in trapezoidal-shaped aquifers in response to an areal diffusive recharge. The aquifer is homogeneous, anisotropic and interacts with four surrounding streams of constant-head. Flow field in this laterally bounded aquifer-system is efficiently constructed by means of variational calculus. This is accomplished by minimizing a properly defined penalty function for the associated boundary value problem. Simple yet demonstrative scenarios are defined to investigate anisotropy effects on the water table variation. Qualitative examination of the resulting equipotential contour maps and velocity vector field illustrates the validity of the method, especially in the vicinity of boundary lines. Extension to the case of triangular-shaped aquifer with or without an impervious boundary line is also demonstrated through a hypothetical example problem. The present solution benefits from an extremely simple mathematical expression and exhibits strictly close agreement with the numerical results obtained from Modflow. Overall, the solution may be used to conduct sensitivity analysis on various hydrogeological parameters that affect water table variation in aquifers defined in trapezoidal or triangular-shaped domains.
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.
2012-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The measurements showed 1 ppm random errors for 8-10 km altitudes and 30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2lidar on the NASA DC-8 and added an 02lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. We demonstrated measurements over the California Central Valley, to stratus cloud tops over the Pacific Ocean, over mountain regions with snow, and over several areas with broken clouds. Details of the lidar measurements and their analysis will be described in the presentation.
Universal Representation of the H-like Spectral Line Shapes
NASA Astrophysics Data System (ADS)
Bureyeva, L.
2009-05-01
A universal approach for the calculation of Rydberg atom line shapes in plasmas is developed. It is based on analytical formulas for the intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principal quantum numbers n, n'≫1, with Δ n = n-n'≪n, and on the Frequency Fluctuation Model (FFM) to account of electron and ion thermal motion effects. The theory allows to describe a transition from the static to the impact broadening domains for every hydrogen spectral line. A new approach to extremely fast line shape calculations with account of charged particle dynamic effect was proposed. The approach is based on the close analogy between the static-impact broadening transition in the spectral line shape theory and the Doppler-Lorentz broadening in the Dicke narrowing effect theory. The precision of the new approach was tested by the comparison of hydrogen-alpha and beta line shapes calculations with the FFM results. The excellent agreement was discovered, the computer time decreased two orders of magnitudes as compared with the FFM.
geometrical shape of the finite element in both of the models is a doubly-curved quadrilateral element whose edge curves are the lines-of-curvature coordinates employed to define the shell midsurface . (Author)
NASA Astrophysics Data System (ADS)
Farid, Sidra; Stroscio, Michael A.; Dutta, Mitra
2018-03-01
Thermal evaporation growth technique is presented as a route to grow cost effective high quality CdS thin films. We have successfully grown high quality CdS thin films on ITO coated glass substrates by thermal evaporation technique and analyzed the effects of annealing and excitation dependent input of CdS thin film using Raman and photoluminescence spectroscopy. LO phonon modes have been analyzed quantitatively considering the contributions due to anneal induced effects on film quality using phonon spatial correlation model, line shape and defect state analysis. Asymmetry in the Raman line shape towards the low frequency side is related to the phonon confinement effects and is modeled by spatial correlation model. Calculations of width (FWHM), integrated intensity, and line shape for the longitudinal (LO) optical phonon modes indicate improved crystalline quality for the annealed films as compared to the as grown films. With increase in laser power, intensity ratio of 2-LO to 1-LO optical phonon modes is found to increase while multiple overtones upto fourth order are observed. Power dependent photoluminescence data indicates direct band-to-band transition in CdS thin films.
NASA Astrophysics Data System (ADS)
Andrés, Nieves; Pinto, Cristina; Lobera, Julia; Palero, Virginia; Arroyo, M. Pilar
2017-06-01
Holographic techniques have been used to measure the shape and the radial deformation of a blood vessel model and a real sheep aorta. Measurements are obtained from several holograms recorded for different object states. For each object state, two holograms with two different wavelengths are multiplexed in the same digital recording. Thus both holograms are simultaneously recorded but the information from each of them is separately obtained. The shape analysis gives a wrapped phase map whose fringes are related to a synthetic wavelength. After a filtering and unwrapping process, the 3D shape can be obtained. The shape data for each line are fitted to a circumference in order to determine the local vessel radius and center. The deformation analysis also results in a wrapped phase map, but the fringes are related to the laser wavelength used in the corresponding hologram. After the filtering and unwrapping process, a 2D map of the deformation in an out-of-plane direction is reconstructed. The radial deformation is then calculated by using the shape information.
Comparison of Spectral Linewidths for Quantum Degenerate Bosons and Fermions
NASA Astrophysics Data System (ADS)
Notermans, R. P. M. J. W.; Rengelink, R. J.; Vassen, W.
2016-11-01
We observe a dramatic difference in optical line shapes of a 4He Bose-Einstein condensate and a 3He degenerate Fermi gas by measuring the 1557-nm 2 3S -2 1S magnetic dipole transition (8 Hz natural linewidth) in an optical dipole trap. The 15 kHz FWHM condensate line shape is only broadened by mean field interactions, whereas the degenerate Fermi gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli exclusion on the spatial and momentum distributions. The asymmetric optical line shapes are observed in excellent agreement with line shape models for the quantum degenerate gases. For 4He a triplet-singlet s -wave scattering length a =+50 (10 )stat(43 )systa0 is extracted. The high spectral resolution reveals a doublet in the absorption spectrum of the BEC, and this effect is understood by the presence of a weak optical lattice in which a degeneracy of the lattice recoil and the spectroscopy photon recoil leads to Bragg-like scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, H.; Fujino, H.; Bian, Z.
In this study, two types of marker-based tracking methods for Augmented Reality have been developed. One is a method which employs line-shaped markers and the other is a method which employs circular-shaped markers. These two methods recognize the markers by means of image processing and calculate the relative position and orientation between the markers and the camera in real time. The line-shaped markers are suitable to be pasted in the buildings such as NPPs where many pipes and tanks exist. The circular-shaped markers are suitable for the case that there are many obstacles and it is difficult to use line-shapedmore » markers because the obstacles hide the part of the line-shaped markers. Both methods can extend the maximum distance between the markers and the camera compared to the legacy marker-based tracking methods. (authors)« less
Layout pattern analysis using the Voronoi diagram of line segments
NASA Astrophysics Data System (ADS)
Dey, Sandeep Kumar; Cheilaris, Panagiotis; Gabrani, Maria; Papadopoulou, Evanthia
2016-01-01
Early identification of problematic patterns in very large scale integration (VLSI) designs is of great value as the lithographic simulation tools face significant timing challenges. To reduce the processing time, such a tool selects only a fraction of possible patterns which have a probable area of failure, with the risk of missing some problematic patterns. We introduce a fast method to automatically extract patterns based on their structure and context, using the Voronoi diagram of line-segments as derived from the edges of VLSI design shapes. Designers put line segments around the problematic locations in patterns called "gauges," along which the critical distance is measured. The gauge center is the midpoint of a gauge. We first use the Voronoi diagram of VLSI shapes to identify possible problematic locations, represented as gauge centers. Then we use the derived locations to extract windows containing the problematic patterns from the design layout. The problematic locations are prioritized by the shape and proximity information of the design polygons. We perform experiments for pattern selection in a portion of a 22-nm random logic design layout. The design layout had 38,584 design polygons (consisting of 199,946 line segments) on layer Mx, and 7079 markers generated by an optical rule checker (ORC) tool. The optical rules specify requirements for printing circuits with minimum dimension. Markers are the locations of some optical rule violations in the layout. We verify our approach by comparing the coverage of our extracted patterns to the ORC-generated markers. We further derive a similarity measure between patterns and between layouts. The similarity measure helps to identify a set of representative gauges that reduces the number of patterns for analysis.
Self- and Air-Broadened Line Shapes in the 2v3 P and R Branches of 12CH4
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Yu, Shanshan; Brown, Linda R.; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed
2015-01-01
In this paper we report line shape parameters of 12CH4 for several hundred 2V(sub 3) transitions in the spectral regions 5891-5996 cm( exp -1) (P branch) and 6015-6115 cm(exp -1) (R branch). Air- and self-broadening coefficients were measured as a function of temperature; line mixing via off-diagonal relaxation matrix element coefficients was also obtained for 47 transition pairs. In total, nearly 1517 positions and intensities were retrieved, but many transitions were too weak for the line shape study. For this analysis, we used 25 high-resolution (0.0056 and 0.0067 cm(ex[ -1) and high signal-to-noise (S/N) spectra of high-purity 12CH4 and the same high-purity 12CH4 broadened by dry air recorded at different sample temperatures between 130 K and 295 K with the Bruker IFS 125HR Fourier transform spectrometer at JPL. Three different absorption cells were used (1) a White cell set to a path length of 13.09 m for room temperature data, (2) a single-pass 0.2038 m long coolable cell (for self-broadening) and (3) a multipass cell with 20.941 m total path coolable Herriott cell (for air-broadening). In total there were 13 spectra with pure 12CH4 (0.27-599 Torr) and 12 air-broadened spectra with total sample pressures of 80-805 Torr and volume mixing ratios (VMR) of methane between 0.18 and 1.0. An interactive multispectrum nonlinear least-squares technique was employed to fit the individual P10-P1 and R0-R10 manifolds in all the spectra simultaneously. Results obtained from the present analysis are compared to other recent measurements.
NASA Astrophysics Data System (ADS)
Dean, Timothy C.; Ventrice, Carl A.
1995-05-01
As a final report for phase 1 of the project, the researchers are submitting to the Tennessee Tech Office of Research the following two papers (reprinted in this report): 'Collision Line Broadening Effects on Spectrometric Data from the Optical Plume Anomaly System (OPAD),' presented at the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27-29 June 1994, and 'Calculation of Collision Cross Sections for Atomic Line Broadening in the Plume of the Space Shuttle Main Engine (SSME),' presented at the IEEE Southeastcon '95, 26-29 March 1995. These papers fully state the problem and the progress made up to the end of NASA Fiscal Year 1994. The NASA OPAD system was devised to predict concentrations of anomalous species in the plume of the Space Shuttle Main Engine (SSME) through analysis of spectrometric data. The self absorption of the radiation of these plume anomalies is highly dependent on the line shape of the atomic transition of interest. The Collision Line Broadening paper discusses the methods used to predict line shapes of atomic transitions in the environment of a rocket plume. The Voigt profile is used as the line shape factor since both Doppler and collisional line broadening are significant. Methods used to determine the collisional cross sections are discussed and the results are given and compared with experimental data. These collisional cross sections are then incorporated into the current self absorbing radiative model and the predicted spectrum is compared to actual spectral data collected from the Stennis Space Center Diagnostic Test Facility rocket engine. The second paper included in this report investigates an analytical method for determining the cross sections for collision line broadening by molecular perturbers, using effective central force interaction potentials. These cross sections are determined for several atomic species with H2, one of the principal constituents of the SSME plume environment, and compared with experimental data.
Unusual Contact-Line Dynamics of Thick Films and Drops
NASA Technical Reports Server (NTRS)
Veretennikov, Igor; Agarwal, Abhishek; Indeikina, Alexandra; Chang, Hsueh-Chia
1999-01-01
We report several novel phenomena In contact-line and fingering dynamics of macroscopic spinning drops and gravity-driven films with dimensions larger than the capillary length. It is shown through experimental and theoretical analysis that such macroscopic films can exhibit various interfacial shapes, including multi valued ones, near the contact line due to a balance between the external body forces with capillarity. This rich variety of front shapes couples with the usual capillary, viscous, and intermolecular forces at the contact line to produce a rich and unexpected spectrum of contact-line dynamics. A single finger develops when part of the front becomes multivalued on a partially wetting macroscopic spinning drop in contrast to a different mechanism for microscopic drops of completely wetting fluids. Contrary to general expectation, we observe that, at high viscosity and low frequencies of rotation, the speed of a glycerine finger increases with increasing viscosity. Completely wetting Dow Corning 200 Fluid spreads faster over a dry inclined plane than a prewetted one. The presence of a thin prewetted film suppresses fingering both for gravity-driven flow and for spin coating. We analyze some of these unique phenomena in detail and offer qualitative physical explanations for the others.
Establishing the connection between peanut-shaped bulges and galactic bars
NASA Technical Reports Server (NTRS)
Kuijken, Konrad; Merrifield, Michael R.
1995-01-01
It has been suggested that the peanut-shaped bulges seen in some edge-on disk galaxies are due to the presence of a central bar. Although bars cannot be detected photometrically in edge-on galaxies, we show that barred potentials produce a strong kinematic signature in the form of double-peaked line-of-sight velocity distributions with a characteristic 'figure-of-eight' variation with radius. We have obtained spectroscopic observations of two edge-on galaxies with peanut-shaped bulges (NGC 5746 and NGC 5965), and they reveal exactly such line-of-sight velocity distributions in both their gaseous (emission line) and their stellar (absorption line) components. These observations provide strong observational evidence that peanut-shaped bulges are a by-product of bar formation.
Impact of temperature-velocity distribution on fusion neutron peak shape
Munro, D. H.; Field, J. E.; Hatarik, R.; ...
2017-02-21
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences amongmore » several lines of sight. Finally, this paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.« less
Impact of temperature-velocity distribution on fusion neutron peak shape
NASA Astrophysics Data System (ADS)
Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.
2017-05-01
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.
Mechanism of Ice Crystal Growth Habit and Shape Instability Development Below Water Saturation.
1981-08-01
The temperature dependence of the mass growth rate of ice crystals at water saturation had been intepreted in terms of the varia- tions with temperature...copy film and recorded by use of a camera for subsequent analysis. 3.3.4.3 Wedge-shaped chamber. A new geometry was introduced to thermal diffusion...camera, equippped with an Olympus Winder 2, a motor driven film advancer, an Olympus Varimagni 3600 rotating eyepiece attachment, and a Dot Line
Automated processing for proton spectroscopic imaging using water reference deconvolution.
Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W
1994-06-01
Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.
Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.
2000-04-03
We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less
NASA Astrophysics Data System (ADS)
Dixit, Saurabh; Shukla, A. K.
2018-06-01
In this article, single-walled carbon nanotubes (SWCNTs) are synthesized at room temperature using pulsed laser ablation of ferrocene mixed graphitic target. Radial breathing mode (RBM) reveals the presence of semiconducting SWCNTs of multiple diameters. Quantum confinement model is developed for Raman line-shape of G - feature. It is invoked here that G-feature is the manifestation of TO phonons in the semiconducting SWCNTs. Disorder in the SWCNTs is studied here as a function of the concentration of ferrocene in the graphitic target using X-ray diffraction analysis, oscillator strength of G - feature and D mode and Raman line-shape model of G - feature. Furthermore, phonon softening of G - feature of semiconducting SWCNTs is observed as a function of the diameter of nanotube.
Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U.
Ishii, K; Shinohara, K; Ishikawa, M; Baba, M; Isobe, M; Okamoto, A; Kitajima, S; Sasao, M
2010-10-01
A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-γ pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and γ-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the γ-ray contamination in most of the beam heating phase was negligible compared with the statistical error with 10 ms time resolution.
Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, K.; Okamoto, A.; Kitajima, S.
2010-10-15
A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-{gamma} pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and {gamma}-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the {gamma}-ray contamination in most of themore » beam heating phase was negligible compared with the statistical error with 10 ms time resolution.« less
Shape Analysis of the Peripapillary RPE Layer in Papilledema and Ischemic Optic Neuropathy
Kupersmith, Mark J.; Rohlf, F. James
2011-01-01
Purpose. Geometric morphometrics (GM) was used to analyze the shape of the peripapillary retinal pigment epithelium–Bruch's membrane (RPE/BM) layer imaged on the SD-OCT 5-line raster in normal subjects and in patients with papilledema and ischemic optic neuropathy. Methods. Three groups of subjects were compared: 30 normals, 20 with anterior ischemic optic neuropathy (AION), and 25 with papilledema and intracranial hypertension. Twenty equidistant semilandmarks were digitized on OCT images of the RPE/BM layer spanning 2500 μm on each side of the neural canal opening (NCO). The data were analyzed using standard GM techniques, including a generalized least-squares Procrustes superimposition, principal component analysis, thin-plate spline (to visualize deformations), and permutation statistical analysis to evaluate differences in shape variables. Results. The RPE/BM layer in normals and AION have a characteristic V shape pointing away from the vitreous; the RPE/BM layer in papilledema has an inverted U shape, skewed nasally inward toward the vitreous. The differences were statistically significant. There was no significant difference in shapes between normals and AION. Pre- and posttreatment OCTs, in select cases of papilledema, showed that the inverted U-shaped RPE/BM moved posteriorly into a normal V shape as the papilledema resolved with weight loss or shunting. Conclusions. The shape difference in papilledema, absent in AION, cannot be explained by disc edema alone. The difference is a consequence of both the translaminar pressure gradient and the material properties of the peripapillary sclera. GM offers a novel way of statistically assessing shape differences of the peripapillary optic nerve head. PMID:21896851
NASA Astrophysics Data System (ADS)
Grzeszczuk, A.; Kowalski, S.
2015-04-01
Compute Unified Device Architecture (CUDA) is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs) for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.
Numerical Solution of the Flow of a Perfect Gas Over A Circular Cylinder at Infinite Mach Number
NASA Technical Reports Server (NTRS)
Hamaker, Frank M.
1959-01-01
A solution for the two-dimensional flow of an inviscid perfect gas over a circular cylinder at infinite Mach number is obtained by numerical methods of analysis. Nonisentropic conditions of curved shock waves and vorticity are included in the solution. The analysis is divided into two distinct regions, the subsonic region which is analyzed by the relaxation method of Southwell and the supersonic region which was treated by the method of characteristics. Both these methods of analysis are inapplicable on the sonic line which is therefore considered separately. The shapes of the sonic line and the shock wave are obtained by iteration techniques. The striking result of the solution is the strong curvature of the sonic line and of the other lines of constant Mach number. Because of this the influence of the supersonic flow on the sonic line is negligible. On comparison with Newtonian flow methods, it is found that the approximate methods show a larger variation of surface pressure than is given by the present solution.
Comparison of Spectral Linewidths for Quantum Degenerate Bosons and Fermions.
Notermans, R P M J W; Rengelink, R J; Vassen, W
2016-11-18
We observe a dramatic difference in optical line shapes of a ^{4}He Bose-Einstein condensate and a ^{3}He degenerate Fermi gas by measuring the 1557-nm 2 ^{3}S-2 ^{1}S magnetic dipole transition (8 Hz natural linewidth) in an optical dipole trap. The 15 kHz FWHM condensate line shape is only broadened by mean field interactions, whereas the degenerate Fermi gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli exclusion on the spatial and momentum distributions. The asymmetric optical line shapes are observed in excellent agreement with line shape models for the quantum degenerate gases. For ^{4}He a triplet-singlet s-wave scattering length a=+50(10)_{stat}(43)_{syst}a_{0} is extracted. The high spectral resolution reveals a doublet in the absorption spectrum of the BEC, and this effect is understood by the presence of a weak optical lattice in which a degeneracy of the lattice recoil and the spectroscopy photon recoil leads to Bragg-like scattering.
Norris, Neil J.
1979-01-01
A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.
Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
NASA Astrophysics Data System (ADS)
Pan, E.
2004-03-01
This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.
Study of the Auger line shape of polyethylene and diamond
NASA Technical Reports Server (NTRS)
Dayan, M.; Pepper, S. V.
1984-01-01
The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account account to the theories of Cini and Sawatzky and Lenselink.
Shape modeling with family of Pearson distributions: Langmuir waves
NASA Astrophysics Data System (ADS)
Vidojevic, Sonja
2014-10-01
Two major effects of Langmuir wave electric field influence on spectral line shapes are appearance of depressions shifted from unperturbed line and an additional dynamical line broadening. More realistic and accurate models of Langmuir waves are needed to study these effects with more confidence. In this article we present distribution shapes of a high-quality data set of Langmuir waves electric field observed by the WIND satellite. Using well developed numerical techniques, the distributions of the empirical measurements are modeled by family of Pearson distributions. The results suggest that the existing theoretical models of energy conversion between an electron beam and surrounding plasma is more complex. If the processes of the Langmuir wave generation are better understood, the influence of Langmuir waves on spectral line shapes could be modeled better.
Verification and extension of the MBL technique for photo resist pattern shape measurement
NASA Astrophysics Data System (ADS)
Isawa, Miki; Tanaka, Maki; Kazumi, Hideyuki; Shishido, Chie; Hamamatsu, Akira; Hasegawa, Norio; De Bisschop, Peter; Laidler, David; Leray, Philippe; Cheng, Shaunee
2011-03-01
In order to achieve pattern shape measurement with CD-SEM, the Model Based Library (MBL) technique is in the process of development. In this study, several libraries which consisted by double trapezoid model placed in optimum layout, were used to measure the various layout patterns. In order to verify the accuracy of the MBL photoresist pattern shape measurement, CDAFM measurements were carried out as a reference metrology. Both results were compared to each other, and we confirmed that there is a linear correlation between them. After that, to expand the application field of the MBL technique, it was applied to end-of-line (EOL) shape measurement to show the capability. Finally, we confirmed the possibility that the MBL could be applied to more local area shape measurement like hot-spot analysis.
Non-Linear Signal Detection Improvement by Radiation Damping in Single-Pulse NMR Spectra
Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé
2012-01-01
When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell–Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation. PMID:22266720
Stephenson, Jennifer
2009-03-01
Communication symbols for students with severe intellectual disabilities often take the form of computer-generated line drawings. This study investigated the effects of the match between color and shape of line drawings and the objects they represented on drawing recognition and use. The match or non-match between color and shape of the objects and drawings did not have an effect on participants' ability to match drawings to objects, or to use drawings to make choices.
NASA Astrophysics Data System (ADS)
Giustini, M.
2016-05-01
We present the results of the uniform analysis of 46 XMM-Newton observations of six BAL and seven mini-BAL QSOs belonging to the Palomar-Green Quasar catalogue. Moderate-quality X-ray spectroscopy was performed with the EPIC-pn, and allowed to characterise the general source spectral shape to be complex, significantly deviating from a power law emission. A simple power law analysis in different energy bands strongly suggests absorption to be more significant than reflection in shaping the spectra. If allowing for the absorbing gas to be either partially covering the continuum emission source or to be ionised, large column densities of the order of 1022-1024 cm-2 are inferred. When the statistics was high enough, virtually every source was found to vary in spectral shape on various time scales, from years to hours. All in all these observational results are compatible with radiation driven accretion disk winds shaping the spectra of these intriguing cosmic sources.
2015-04-23
blade geometry parameters the TPL design 9 tool was initiated by running the MATLAB script (*.m) Main_SpeedLine_Auto. Main_SpeedLine_Auto...SolidWorks for solid model generation of the blade shapes. Computational Analysis With solid models generated of the gas -path air wedge, automated...287 mm (11.3 in) Constrained by existing TCR geometry Number of Passages 12 None A blade tip-down design approach was used. The outputs of the
Hudson, Kerry D; Farran, Emily K
2017-09-01
Successfully completing a drawing relies on the ability to accurately impose and manipulate spatial frames of reference for the object that is being drawn and for the drawing space. Typically developing (TD) children use cues such as the page boundary as a frame of reference to guide the orientation of drawn lines. Individuals with Williams syndrome (WS) typically produce incohesive drawings; this is proposed to reflect a local processing bias. Across two studies, we provide the first investigation of the effect of using a frame of reference when drawing simple lines and shapes in WS and TD groups (matched for non-verbal ability). Individuals with WS (N=17 Experiment 1; N=18 Experiment 2) and TD children matched by non-verbal ability drew single lines (Experiment One) and whole shapes (Experiment Two) within a neutral, incongruent or congruent frame. The angular deviation of the drawn line/shape, relative to the model line/shape, was measured. Both groups were sensitive to spatial frames of reference when drawing single lines and whole shapes, imposed by a frame around the drawing space. A local processing bias in WS cannot explain poor drawing performance in WS. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Analysis of folded pulse forming line operation.
Domonkos, M T; Watrous, J; Parker, J V; Cavazos, T; Slenes, K; Heidger, S; Brown, D; Wilson, D
2014-09-01
A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.
Analysis of folded pulse forming line operation
NASA Astrophysics Data System (ADS)
Domonkos, M. T.; Watrous, J.; Parker, J. V.; Cavazos, T.; Slenes, K.; Heidger, S.; Brown, D.; Wilson, D.
2014-09-01
A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.
Impact of temperature-velocity distribution on fusion neutron peak shape
NASA Astrophysics Data System (ADS)
Munro, David
2016-10-01
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This talk will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radhydro implosion simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Diode laser spectroscopy: precise spectral line shape measurements
NASA Astrophysics Data System (ADS)
Nadezhdinskii, A. I.
1996-07-01
When one speaks about modern trends in tunable diode laser spectroscopy (TDLS) one should mention that precise line shape measurements have become one of the most promising applications of diode lasers in high resolution molecular spectroscopy. Accuracy limitations of TDL spectrometers are considered in this paper, proving the ability to measure spectral line profile with precision better than 1%. A four parameter Voigt profile is used to fit the experimental spectrum, and the possibility of line shift measurements with an accuracy of 2 × 10 -5 cm -1 is shown. Test experiments demonstrate the error line intensity ratios to be less than 0.3% for the proposed approach. Differences between "soft" and "hard" models of line shape have been observed experimentally for the first time. Some observed resonance effects are considered with respect to collision adiabacity.
Line intersect sampling: Ell-shaped transects and multiple intersections
Timothy G. Gregoire; Harry T. Valentine
2003-01-01
The probability of selecting a population element under line intersect sampling depends on the width of the particle in the direction perpendicular to the transect, as is well known. The consequence of this when using ell-shaped transects rather than straight-line transects are explicated, and modifications that preserve design-unbiasedness of Kaiser's (1983)...
Desbiens, Raphaël; Tremblay, Pierre; Genest, Jérôme; Bouchard, Jean-Pierre
2006-01-20
The instrument line shape (ILS) of a Fourier-transform spectrometer is expressed in a matrix form. For all line shape effects that scale with wavenumber, the ILS matrix is shown to be transposed in the spectral and interferogram domains. The novel representation of the ILS matrix in the interferogram domain yields an insightful physical interpretation of the underlying process producing self-apodization. Working in the interferogram domain circumvents the problem of taking into account the effects of finite optical path difference and permits a proper discretization of the equations. A fast algorithm in O(N log2 N), based on the fractional Fourier transform, is introduced that permits the application of a constant resolving power line shape to theoretical spectra or forward models. The ILS integration formalism is validated with experimental data.
Biometric assessment of prostate cancer's metastatic potential.
Cooper, C R; Emmett, N; Harris-Hooker, S; Patterson, R; Cooke, D B
1994-01-01
Currently, no protocol exists that can assess the metastatic potential of prostate adenocarcinoma. The reason for this is partly due to the lack of information on cellular changes that result in a tumor cell's becoming metastatic. In this investigation, attempts were made to devise a method that correlated with the metastatic potential of AT-1, Mat-Lu, and Mat-LyLu cell lines of the Dunning R-3327 rat prostatic adenocarcinoma system. To accomplish this, we applied BioQuant biometric parameters, i.e., area, shape factor, and cell motility. AT-1 had a lower shape factor and a greater area as compared with the more highly metastatic Mat-Lu subline. No significant difference in area or shape factor was detected between the AT-1 cell line and the highly metastatic Mat-LyLu line. However, the lowly metastatic AT-1 line had less motility as compared with the Mat-Lu and Mat-LyLu lines. This study revealed that metastatic potential could be partially predicted via area and shape factor and accurately predicted via cell motility.
Piper, Alan T
2015-10-01
Much of the work within economics attempting to understand the relationship between age and well-being has focused on the U-shape, whether it exists and, more recently, potential reasons for its existence. This paper focuses on one part of the lifecycle rather than the whole: young people. This focus offers a better understanding of the age-well-being relationship for young people, and helps with increasing general understanding regarding the U-shape itself. The empirical estimations employ both static and dynamic panel estimations, with the latter preferred for several reasons. The empirical results are in line with the U-shape, and the results from the dynamic analysis indicate that this result is a lifecycle effect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Particle Shape and Composition of NU-LHT-2M
NASA Technical Reports Server (NTRS)
Rickman, D. L.; Lowers, H.
2012-01-01
Particle shapes of the lunar regolith simulant NU-LHT-2M were analyzed by scanning electron microscope of polished sections. These data provide shape, size, and composition information on a particle by particle basis. 5,193 particles were measured, divided into four sized fractions: less than 200 mesh, 200-100 mesh, 100-35 mesh, and greater than 35 mesh. 99.2% of all particles were monominerallic. Minor size versus composition effects were noted in minor and trace mineralogy. The two metrics used are aspect ratio and Heywood factor, plotted as normalized frequency distributions. Shape versus composition effects were noted for glass and possibly chlorite. To aid in analysis, the measured shape distributions are compared to data for ellipses and rectangles. Several other simple geometric shapes are also investigated as to how they plot in aspect ratio versus Heywood factor space. The bulk of the data previously reported, which were acquired in a plane of projection, are between the ellipse and rectangle lines. In contrast, these data, which were acquired in a plane of section, clearly show that a significant number of particles have concave hulls in this view. Appendices cover details of measurement error, use of geometric shapes for comparative analysis, and a logic for comparing data from plane of projection and plane of section measurements.
NASA Astrophysics Data System (ADS)
Hashemi, Robab; Rozario, Hoimonti; Povey, Chad; Garber, Jolene; Derksen, Mark; Predoi-Cross, Adriana
2014-06-01
The line positions for transitions in the ν1 +ν3 band are often used as a frequency standard by the telecom industry and also needed for planetary atmospheric studies. Four relevant studies have been recently carried out in our group and will be discussed briefly below. (1) N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the ν1 +ν3 band of acetylene at seven temperatures in the range 213333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. This study has been published in Molecular Physics, 110 Issue 21/22 (2012) 2645-2663. (2) Six nitrogen perturbed transitions of acetylene within the ν1 +ν3 absorption band have been recorded using a 3-channel diode laser spectrometer. We have examined C2H2 spectra using a hard collision (Rautian) profile over a range of five temperatures (213 K-333 K). From these fits we have obtained the N2-broadening and narrowing coefficients of C2H2 and examined their temperature dependence. The experimentally measured narrowing coefficients have been used to estimate the nitrogen diffusion coefficients. The broadening coefficients and corresponding temperature dependence exponents have also been compared to that of calculations completed using a classical impact approach on an ab initio potential energy surface. We have observed a good agreement between our theoretical and experimental results. This study was published in Canadian Journal of Physics 91(11) 896-905 (2013). (3) An extension of the previous study was to analyze the room temperature for the same six transitions using the Voigt, Rautian, Galatry, RautianGalatry and Correlated Rautian profiles. For the entire pressure range, we have tested the applicability of these line-shape models. Except for Voigt profile, Dicke narrowing effect has been considered in all mentioned line-shape models. The experimental results for the narrowing parameters have been compared with calculated values based on the theory of diffusion. This study is in press in press in the Journal of Quantitative Spectroscopy and Radiative Transfer. (4) In this paper we present accurate measurements of the fundamental Boltzmann constant based on a lineshape analysis of acetylene spectra in the ν1 +ν3 band recorded using a tunable diode laser. Experimental spectra recorded at low pressures have been analyzed using both the Voigt model and the Speed Dependent Voigt model that takes into account the molecular speed dependence effects. These line-shape models reproduces the experimental data with high accuracy and allow us to determine precise line-shape parameters for the transitions used, the Doppler-width and then determined the Boltzmann constant, kB. This study has been submitted for publication in the Journal of Chemical Physics. 1 1 Research described in this work was funded by NSERC, Canada.
Depicting 3D shape using lines
NASA Astrophysics Data System (ADS)
DeCarlo, Doug
2012-03-01
Over the last few years, researchers in computer graphics have developed sophisticated mathematical descriptions of lines on 3D shapes that can be rendered convincingly as strokes in drawings. These innovations highlight fundamental questions about how human perception takes strokes in drawings as evidence of 3D structure. Answering these questions will lead to a greater scientific understanding of the flexibility and richness of human perception, as well as to practical techniques for synthesizing clearer and more compelling drawings. This paper reviews what is known about the mathematics and perception of computer-generated line drawings of shape and motivates an ongoing program of research to better characterize the shapes people see when they look at such drawings.
Computer-Aided Diagnostic System For Mass Survey Chest Images
NASA Astrophysics Data System (ADS)
Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi
1988-06-01
In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.
Shape analysis of cylindrical micromirrors for angular focusing
NASA Astrophysics Data System (ADS)
Hou, Max Ti-Kuang; Hong, Pei-Yuan; Chen, Rongshun
2001-11-01
In this paper, we analyze the shape of the cylindrical micromirror, which directly defines the profile of the reflecting surface, and is very important for the function on focusing. A cylindrical micromirror can converge incident rays to a real focal line after reflection, namely angular focusing. Therefore, under specific design two cylindrical micromirrors, the primary and secondary, can converge incident rays into a real focal point after twice reflection. The curved shape of micromirror, formed due to the stress-induced bending of the bilayer microstructure upon release, has been theoretically analyzed and numerically simulated. The results show that the reflecting surface, especially at boundaries, is not perfectly cylindrical, while adding longitudinal frames can make some improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babailov, S. P., E-mail: babajlov@niic.nsc.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050; Purtov, P. A.
An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.
Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar
2016-01-01
Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy outline traits was observed for origins, and maturity indexes. These results indicate the usefulness of EFT method for reconstruction and study of canopy morphometric traits, and provides opportunities for data reduction of large images for ease in future use.
NASA Astrophysics Data System (ADS)
Ngo, N. H.; Nguyen, H. T.; Tran, H.
2018-03-01
In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.
Rovibrational line-shape parameters for H2 in He and new H2-He potential energy surface
NASA Astrophysics Data System (ADS)
Thibault, Franck; Patkowski, Konrad; Żuchowski, Piotr S.; Jóźwiak, Hubert; Ciuryło, Roman; Wcisło, Piotr
2017-11-01
We report a new H2-He potential energy surface that, with respect to the previous one [Bakr et al.(2013)], covers much larger range of H2 stretching and exhibits more accurate asymptotic behavior for large separations between H2 and He. Close-coupling calculations performed on this improved potential energy surface allow us to provide line shape parameters for H2 between 5 and 2000 K for Raman isotropic Q lines and anisotropic Q lines (or electric quadrupole lines) and for vibrational bands from the ground up to v = 5 and rotational quantum numbers up to j = 5 . The parameters provided include the usual pressure -broadening and -shifting coefficients as well as the real and imaginary part of Dicke contribution to the Hess profile. The latter parameters can be readily implemented in other line-shape profiles like the most recent one of Hartmann and Tran.
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.
2012-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The measurements showed -1 ppm random errors for 8-10 km altitudes and -30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2 lidar on the NASA DC-8 and added an O2 lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected -linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. The seven flights in the 2011 Ascends campaign were flown over a wide variety of surface and cloud conditions in the US, which produced a wide variety of lidar signal conditions. Details of the lidar measurements and their analysis will be described in the presentation.
Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.
2010-10-01
A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.
Spectral Line Shapes. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoppi, M.; Ulivi, L.
1997-02-01
These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple{minus}free and ultra{minus}fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction{minus}induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energymore » Science and Technology database.(AIP)« less
Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B
2015-04-10
We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.
Pressure broadening and pressure shift of diatomic iodine at 675 nm
NASA Astrophysics Data System (ADS)
Wolf, Erich N.
Doppler-limited, steady-state, linear absorption spectra of 127 I2 (diatomic iodine) near 675 nm were recorded with an internally-referenced wavelength modulation spectrometer, built around a free-running diode laser using phase-sensitive detection, and capable of exceeding the signal-to-noise limit imposed by the 12-bit data acquisition system. Observed I2 lines were accounted for by published spectroscopic constants. Pressure broadening and pressure shift coefficients were determined respectively from the line-widths and line-center shifts as a function of buffer gas pressure, which were determined from nonlinear regression analysis of observed line shapes against a Gaussian-Lorentzian convolution line shape model. This model included a linear superposition of the I2 hyperfine structure based on changes in the nuclear electric quadrupole coupling constant. Room temperature (292 K) values of these coefficients were determined for six unblended I 2 lines in the region 14,817.95 to 14,819.45 cm-1 for each of the following buffer gases: the atoms He, Ne, Ar, Kr, and Xe; and the molecules H2, D2, N2, CO2, N2O, air, and H2O. These coefficients were also determined at one additional temperature (388 K) for He and CO2, and at two additional temperatures (348 and 388 K) for Ar. Elastic collision cross-sections were determined for all pressure broadening coefficients in this region. Room temperature values of these coefficients were also determined for several low-J I2 lines in the region 14,946.17 to 14,850.29 cm-1 for Ar. A line shape model, obtained from a first-order perturbation solution of the time-dependent Schrodinger equation for randomly occurring interactions between a two-level system and a buffer gas treated as step-function potentials, reveals a relationship between the ratio of pressure broadening to pressure shift coefficients and a change in the wave function phase-factor, interpreted as reflecting the "cause and effect" of state-changing events in the microscopic domain. Collision cross-sections determined from this model are interpreted as reflecting the inelastic nature of collision-induced state-changing events. A steady-state kinetic model for the two-level system compatible with the Beer-Lambert law reveals thermodynamic constraints on the ensemble-average state-changing rates and collision cross-sections, and leads to the proposal of a relationship between observed asymmetric line shapes and irreversibility in the microscopic domain.
The Temperature and Distribution of Organic Molecules in the Inner Regions of T Tauri Disks
NASA Technical Reports Server (NTRS)
Mandell, Avi
2012-01-01
"High-resolution NIR spectroscopic observations of warm molecular gas emission from young circumstellar disks allow us to constrain the temperature and composition of material in the inner planet-forming region. By combining advanced data reduction algorithms with accurate modeling of the terrestrial atmospheric spectrum and a novel double-differencing data analysis technique, we have achieved very high-contrast measurements (S/N approx. 500-1000) of molecular emission at 3 microns. In disks around low-mass stars, we have achieved the first detections of emission from HCN and C2H2 at near-infrared wavelengths from several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope. We spectrally resolve the line shape, showing that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We used a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we then compared these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU)."
On the line-shape analysis of Compton profiles and its application to neutron scattering
NASA Astrophysics Data System (ADS)
Romanelli, G.; Krzystyniak, M.
2016-05-01
Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss-Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures.
NASA Technical Reports Server (NTRS)
Bowman, K.; Worden, H.; Beer, R.
1999-01-01
Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.
Liu, Beibei; Su, Shengzhong; Wu, Ying; Li, Ying; Shan, Xiaohui; Li, Shipeng; Liu, Hongkui; Dong, Haixiao; Ding, Meiqi; Han, Junyou; Yuan, Yaping
2015-07-01
Intact somatic embryos were obtained from an elite maize inbred line Y423, bred in our laboratory. Using 13-day immature embryos after self-pollination as explants, and after 4-5 times subculture, a large number of somatic embryos were detected on the surface of the embryonic calli on the medium. The intact somatic embryos were transferred into the differential medium, where the plantlets regenerated with shoots and roots forming simultaneously. Histological analysis and scanning electron micrographs confirmed the different developmental stages of somatic embryogenesis, including globular-shaped embryo, pear-shaped embryo, scutiform embryo, and mature embryo. cDNA-amplified fragment length polymorphism (cDNA-AFLP) was used for comparative transcript profiling between embryogenic and non-embryogenic calli of a new elite maize inbred line Y423 during somatic embryogenesis. Differentially expressed genes were cloned and sequenced. Gene Ontology analysis of 117 candidate genes indicated their involvement in cellular component, biological process and molecular function. Nine of the candidate genes were selected. The changes in their expression levels during embryo induction and regeneration were analyzed in detail using quantitative real-time PCR. Two full-length cDNA sequences, encoding ZmSUF4 (suppressor of fir 4-like protein) and ZmDRP3A (dynamin-related protein), were cloned successfully from intact somatic embryos of the elite inbred maize line Y423. Here, a procedure for maize plant regeneration from somatic embryos is described. Additionally, the possible roles of some of these genes during the somatic embryogenesis has been discussed. This study is a systematic analysis of the cellular and molecular mechanism during the formation of intact somatic embryos in maize. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Moore, Candace R; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P
2013-01-01
Seeds are studied to understand dispersal and establishment of the next generation, as units of agricultural yield, and for other important reasons. Thus, elucidating the genetic architecture of seed size and shape traits will benefit basic and applied plant biology research. This study sought quantitative trait loci (QTL) controlling the size and shape of Arabidopsis thaliana seeds by computational analysis of seed phenotypes in recombinant inbred lines derived from the small-seeded Landsberg erecta × large-seeded Cape Verde Islands accessions. On the order of 10(3) seeds from each recombinant inbred line were automatically measured with flatbed photo scanners and custom image analysis software. The eight significant QTL affecting seed area explained 63% of the variation, and overlapped with five of the six major-axis (length) QTL and three of the five minor-axis (width) QTL, which accounted for 57% and 38% of the variation in those traits, respectively. Because the Arabidopsis seed is exalbuminous, lacking an endosperm at maturity, the results are relatable to embryo length and width. The Cvi allele generally had a positive effect of 2.6-4.0%. Analysis of variance showed heritability of the three traits ranged between 60% and 73%. Repeating the experiment with 2.2 million seeds from a separate harvest of the RIL population and approximately 0.5 million seeds from 92 near-isogenic lines confirmed the aforementioned results. Structured for download are files containing phenotype measurements, all sets of seed images, and the seed trait measuring tool.
Constant- q data representation in Neutron Compton scattering on the VESUVIO spectrometer
NASA Astrophysics Data System (ADS)
Senesi, R.; Pietropaolo, A.; Andreani, C.
2008-09-01
Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,ω). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved.
Simple scattering analysis and simulation of optical components created by additive manufacturing
NASA Astrophysics Data System (ADS)
Rank, M.; Horsak, A.; Heinrich, A.
2017-10-01
Additive manufacturing of optical elements is known but still new to the field of optical fabrication. In 3D printers, the parts are deposited layer-by-layer approximating the shape defined in optics design enabling new shapes, which cannot be manufactured using conventional methods. However, the layered structure also causes surface roughness and subsurface scattering, which decrease the quality of optical elements. Illuminating a flat sample with a laser beam, different light distributions are generated on a screen depending on the printing orientation of the sample. Whereas the laser beam is mainly diffused by the samples, a line shaped light distribution can be achieved for a special case in which the laser light goes parallel to the layer structure. These optical effects of 3D printed parts are analyzed using a goniometric setup and fed back into the optics simulation with the goal to improve the design considering the characteristics of the real sample. For a detailed look on the effect, the total scattering is split up into surface contributions and subsurface scattering using index matching techniques to isolate the effects from each other. For an index matched sample with negligible surface effects the line shaped distribution turns into a diffraction pattern which corresponds to the layer thickness of the printer. Finally, an optic simulation with the scattering data is set up for a simple curved sample. The light distribution measured with a robot-based goniophotometer differs from the simulation, because the curvature is approximated by the layer structure. This makes additional analysis necessary.
NASA Technical Reports Server (NTRS)
Leutenegger, Maurice A.; Cohen, David H.; Sundqvist, Jon O.; Owocki, Stanley P.
2013-01-01
We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant Zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (40%) are allowed if moderate porosity effects (h(sub infinity) less than approximately R(sub *)) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars
On-Demand Microwave Generator of Shaped Single Photons
NASA Astrophysics Data System (ADS)
Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.
2017-11-01
We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.
Shape-based human detection for threat assessment
NASA Astrophysics Data System (ADS)
Lee, Dah-Jye; Zhan, Pengcheng; Thomas, Aaron; Schoenberger, Robert B.
2004-07-01
Detection of intrusions for early threat assessment requires the capability of distinguishing whether the intrusion is a human, an animal, or other objects. Most low-cost security systems use simple electronic motion detection sensors to monitor motion or the location of objects within the perimeter. Although cost effective, these systems suffer from high rates of false alarm, especially when monitoring open environments. Any moving objects including animals can falsely trigger the security system. Other security systems that utilize video equipment require human interpretation of the scene in order to make real-time threat assessment. Shape-based human detection technique has been developed for accurate early threat assessments for open and remote environment. Potential threats are isolated from the static background scene using differential motion analysis and contours of the intruding objects are extracted for shape analysis. Contour points are simplified by removing redundant points connecting short and straight line segments and preserving only those with shape significance. Contours are represented in tangent space for comparison with shapes stored in database. Power cepstrum technique has been developed to search for the best matched contour in database and to distinguish a human from other objects from different viewing angles and distances.
Fano resonance in anodic aluminum oxide based photonic crystals.
Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De
2014-01-08
Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.
Vision-based in-line fabric defect detection using yarn-specific shape features
NASA Astrophysics Data System (ADS)
Schneider, Dorian; Aach, Til
2012-01-01
We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.
NASA Astrophysics Data System (ADS)
Nandi, N.; Chowdhury, Roy; Dutta, S. C.
2018-02-01
The present study makes an effort to understand the damage of earthen dams under static and seismic loading condition. To make the investigation more realistic, behaviour of earthen dams considering the occurrence of a phreatic line indicating the submerged zone due to seepage within the dam body is considered. In case of earthen dams, homogeneous or nonhomogeneous, the consideration of the occurrence of a phreatic line or seepage line through the dam body is an important part of the earthen dam design methodology. The impervious material properties in the submerged zone below the phreatic line due to seepage may differ a lot in magnitudes as compared to the value of the same materials lying above this line. Hence, to have the exact stress distribution scenarios within the earthen dam, the different material properties above and below the phreatic line are considered in this present study. The study is first carried out by two-dimensional as well as three-dimensional finite element analysis under static loading condition. The work is further extended to observe the effect of seepage due to the consideration of the phreatic line on dynamic characteristics of earthen dams. Free vibration analysis and seismic analysis based on the Complete Quadratic Combination (CQC) method by considering twodimensional and three-dimensional modeling are carried out to present the frequencies, mode shapes and the stress distribution pattern of the earthen dam.
Grinding Inside A Toroidal Cavity
NASA Technical Reports Server (NTRS)
Mayer, Walter; Adams, James F.; Burley, Richard K.
1987-01-01
Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.
NASA Technical Reports Server (NTRS)
Whealton, J. H.; Mason, E. A.
1973-01-01
An asymptotic solution of the Boltzmann equation is developed for ICR absorption, without restrictions on the ion-neutral collision frequency or mass ratio. Velocity dependence of the collision frequency causes deviations from Lorentzian line shape.
Significance of Polarization Charges and Isomagnetic Surface in Magnetohydrodynamics
Liang, Zhu-Xing; Liang, Yi
2015-01-01
From the frozen-in field lines concept, a highly conducting fluid can move freely along, but not traverse to, magnetic field lines. We discuss this topic and find that in the study of the frozen-in field lines concept, the effects of inductive and capacitive reactance have been omitted. When admitted, the relationships among the motional electromotive field, the induced electric field, the eddy electric current, and the magnetic field becomes clearer. We emphasize the importance of isomagnetic surfaces and polarization charges, and show analytically that whether a conducting fluid can freely traverse magnetic field lines or not depends solely on the magnetic gradient along the path of the fluid. If a fluid does not change its density distribution and shape (can be regarded as a quasi-rigid body) and moves along isomagnetic surface, it can freely traverse magnetic field lines without any magnetic drag, no matter how strong the magnetic field is. Besides theoretical analysis, we also present experimental results to support our analysis. The main purpose of this work is to correct a fallacy among some astrophysicists. PMID:26322894
Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun
2018-01-01
In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.
Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei
2016-01-21
In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.
Dipole-dipole resonance line shapes in a cold Rydberg gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2016-04-01
We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.
Document reconstruction by layout analysis of snippets
NASA Astrophysics Data System (ADS)
Kleber, Florian; Diem, Markus; Sablatnig, Robert
2010-02-01
Document analysis is done to analyze entire forms (e.g. intelligent form analysis, table detection) or to describe the layout/structure of a document. Also skew detection of scanned documents is performed to support OCR algorithms that are sensitive to skew. In this paper document analysis is applied to snippets of torn documents to calculate features for the reconstruction. Documents can either be destroyed by the intention to make the printed content unavailable (e.g. tax fraud investigation, business crime) or due to time induced degeneration of ancient documents (e.g. bad storage conditions). Current reconstruction methods for manually torn documents deal with the shape, inpainting and texture synthesis techniques. In this paper the possibility of document analysis techniques of snippets to support the matching algorithm by considering additional features are shown. This implies a rotational analysis, a color analysis and a line detection. As a future work it is planned to extend the feature set with the paper type (blank, checked, lined), the type of the writing (handwritten vs. machine printed) and the text layout of a snippet (text size, line spacing). Preliminary results show that these pre-processing steps can be performed reliably on a real dataset consisting of 690 snippets.
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.
2005-09-01
A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.
NASA Astrophysics Data System (ADS)
Ngo, N. H.; Lin, H.; Hodges, J. T.; Tran, H.
2017-12-01
High signal-to-noise ratio spectra of the (3-0) band P(1) and P(17) lines of CO broadened by He, Ar, Kr and SF6 were measured with a frequency-stabilized cavity ring-down spectroscopy system. For each collision-partner and both lines, multiple spectra were measured over pressures spanning nearly three decades up to 130 kPa. These data were analyzed with a multispectrum fitting procedure. Line shapes were modeled using the Hartmann-Tran (HT) profile with first-order line mixing as well as several other simplified profiles. The results show that for all considered collision partners (with the exception of SF6), the HT profile captures the measured line shapes with maximum absolute residuals that are within 0.1% of the peak absorption. In the case of SF6, which is the heaviest perturber investigated here, the maximum residuals for the HT profile are twice as large as for the other collision partners.
An Analysis of Water Line Profiles in Star Formation Regions Observed by SWAS
NASA Technical Reports Server (NTRS)
Ashby, Matthew L. N.; Bergin, Edwin A.; Plume, Rene; Carpenter, John M.; Neufeld, David A.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, J. E.
2000-01-01
We present spectral line profiles for the 557 GHz 1(sub 1,0) yields 1(sub 0,1) ground-state rotational transition of ortho-H2(16)O for 18 galactic star formation regions observed by SWAS. 2 Water is unambiguously detected in every source. The line profiles exhibit a wide variety of shapes, including single-peaked spectra and self-reversed profiles. We interpret these profiles using a Monte Carlo code to model the radiative transport. The observed variations in the line profiles can be explained by variations in the relative strengths of the bulk flow and small-scale turbulent motions within the clouds. Bulk flow (infall, outflow) must be present in some cloud cores, and in certain cases this bulk flow dominates the turbulent motions.
Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H
2018-05-17
A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.
Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.
Winds from accretion disks - Ultraviolet line formation in cataclysmic variables
NASA Technical Reports Server (NTRS)
Shlosman, Isaac; Vitello, Peter
1993-01-01
Winds from accretion disks in cataclysmic variable stars are ubiquitous. Observations by IUE reveal P Cygni-shaped profiles of high-ionization lines which are attributed to these winds. We have studied the formation of UV emission lines in cataclysmic variables by constructing kinematical models of biconical rotating outflows from disks around white dwarfs. The photoionization in the wind is calculated taking into account the radiation fields of the disk, the boundary layer, and the white dwarf. The 3D radiative transfer is solved in the Sobolev approximation. Effects on the line shapes of varying basic physical parameters of the wind are shown explicitly. We identify and map the resonant scattering regions in the wind which have strongly biconical character regardless of the assumed velocity and radiation fields. Rotation at the base of the wind introduces a radial shear which decreases the line optical depth and reduces the line core intensity. We find that it is possible to reproduce the observed P Cygni line shapes and make some predictions to be verified in high-resolution observations.
The detailed balance requirement and general empirical formalisms for continuum absorption
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
Two general empirical formalisms are presented for the spectral density which take into account the deviations from the Lorentz line shape in the wing regions of resonance lines. These formalisms satisfy the detailed balance requirement. Empirical line shape functions, which are essential to provide the continuum absorption at different temperatures in various frequency regions for atmospheric transmission codes, can be obtained by fitting to experimental data.
Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy
NASA Technical Reports Server (NTRS)
Chou, Nee-Yin; Sachse, Glen W.
1987-01-01
A generalized theory for optical heterodyne spectroscopy with phase modulated laser radiation is used which allows the calculation of signal line shapes for frequency modulation spectroscopy of Lorentzian gas absorption lines. In particular, synthetic spectral line shapes for both single-tone and two-tone modulation of lead-salt diode lasers are presented in which the contributions from both amplitude and frequency modulations are included.
Fano resonances of a ring-shaped "hexamer" cluster at near-infrared wavelength
NASA Astrophysics Data System (ADS)
Liu, Tong-Tong; Xia, Feng; Sun, Peng; Liu, Li-Li; Du, Wei; Li, Meng-Xue; Kong, Wei-Jin; Wan, Yong; Dong, Li-Feng; Yun, Mao-Jin
2018-03-01
Fano resonances have been studied intensely in the last decade, since it is an important way to decrease the resonance line width and enhance local electric field. However, achieving a Fano line-shape with both narrow line width and high spectral contrast ratio is still a challenge. In this paper, we theoretically predict the Fano resonance induced by the extinction of normal plane wave in a ring-shaped hexamer cluster at near-infrared wavelength. In order to obtain the narrow Fano line width and high spectral contrast ratio, the relationships between the Fano line-shape and the parameters of the nanostructure are analyzed in detail. The nanostructure is simulated by using commercial software based on finite element method. The simulation results show that when the structural parameters are optimized, the Fano line width can be narrowed down 0.028 eV with a contrast ratio of 86%, and the local electric field enhancement factor at the Fano resonance wavelength can reach to 36. Furthermore, the effective mode volume of the structure is 3.9 ×10-23m3 which is lower than the available literature. These results indicate many potential applications of the Fano resonance in multiwavelength surface-enhanced Raman scattering and biosensing.
Sensor for In-Motion Continuous 3D Shape Measurement Based on Dual Line-Scan Cameras
Sun, Bo; Zhu, Jigui; Yang, Linghui; Yang, Shourui; Guo, Yin
2016-01-01
The acquisition of three-dimensional surface data plays an increasingly important role in the industrial sector. Numerous 3D shape measurement techniques have been developed. However, there are still limitations and challenges in fast measurement of large-scale objects or high-speed moving objects. The innovative line scan technology opens up new potentialities owing to the ultra-high resolution and line rate. To this end, a sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras is presented. In this paper, the principle and structure of the sensor are investigated. The image matching strategy is addressed and the matching error is analyzed. The sensor has been verified by experiments and high-quality results are obtained. PMID:27869731
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogane, S.; Shikama, T., E-mail: shikama@me.kyoto-u.ac.jp; Hasuo, M.
In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2{sup 3}S–2{sup 3}P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steadymore » State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.« less
Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment
NASA Technical Reports Server (NTRS)
Davis, Mark; Ridnour, Andrew; Brethen, Mark
2011-01-01
The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1992-01-01
The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.
Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions.
Brand, Christoph A; Linke, Marco; Weißenbruch, Kai; Richter, Benjamin; Bastmeyer, Martin; Schwarz, Ulrich S
2017-08-22
The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Frequency Detuning Correction and the Asymmetry of Line Shapes: The Far Wings of H2O-H2O
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.; Hansen, James E. (Technical Monitor)
2002-01-01
A far-wing line shape theory which satisfies the detailed balance principle is applied to the H2O-H2O system. Within this formalism, two line shapes are introduced, corresponding to band-averages over the positive and negative resonance lines, respectively. Using the coordinate representation, the two line shapes can be obtained by evaluating 11-dimensional integrations whose integrands are a product of two factors. One depends on the interaction between the two molecules and is easy to evaluate. The other contains the density matrix of the system and is expressed as a product of two 3-dimensional distributions associated with the density matrices of the absorber and the perturber molecule, respectively. If most of the populated states are included in the averaging process, to obtain these distributions requires extensive computer CPU time, but only have to be computed once for a given temperature. The 11-dimensional integrations are evaluated using the Monte Carlo method, and in order to reduce the variance, the integration variables are chosen such that the sensitivity of the integrands on them is clearly distinguished.
Decoding of top-down cognitive processing for SSVEP-controlled BMI
Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert
2016-01-01
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting. PMID:27808125
Decoding of top-down cognitive processing for SSVEP-controlled BMI
NASA Astrophysics Data System (ADS)
Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert
2016-11-01
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.
Ramos, Paweł; Pieprzyca, Małgorzata; Pilawa, Barbara
2016-01-01
Complex free radical system in thermally sterilized acidum boricum (AB) was studied. Acidum boricum was sterilized at temperatures and times given by pharmaceutical norms: 160 degrees C and 120 min, 170 degrees C and 60 min and 180 degrees C and 30 min. The advanced spectroscopic tests were performed. The EPR spectra of free radicals were measured as the first derivatives with microwaves of 9.3 GHz frequency and magnetic modulation of 100 kHz. The Polish X-band electron paramagnetic resonance spectrometer of Radiopan (Poznań) was used. EPR lines were not observed for the nonheated AB. The broad EPR asymmetric lines were obtained for all the heated AB samples. The influence of microwave power in the range of 2.2-70 mW on the shape of EPR spectra of the heated drug samples was tested. The following asymmetry parameters: A1/A2, A1-A2, B1/B2, and B1-B2, were analyzed. The changes of these parameters with microwave power were observed. The strong dependence of shape and its parameters on microwave power proved the complex character of free radical system in thermally sterilized AB. Changes of microwave power during the detection of EPR spectra indicated complex character of free radicals in AB sterilized in hot air under all the tested conditions. Thermolysis, interactions between free radicals and interactions of free radicals with oxygen may be responsible for the complex free radicals system in thermally treated AB. Usefulness of continuous microwave saturation of EPR lines and shape analysis to examine free radicals in thermally sterilized drugs was confirmed.
Temperature dependence of the water vapor continuum absorption in the 3-5 μm spectral region
NASA Astrophysics Data System (ADS)
Klimeshina, T. E.; Rodimova, O. B.
2013-04-01
Asymptotic line wing theory allows one to construct the line shape describing the frequency and temperature dependence of the self-broadened H2O continuum in the 3-5 μm spectral region obtained experimentally by CAVIAR and NIST. The H2O transmission functions are adequately described as well, using this line shape up to temperatures of ˜675 K and pressures of ˜10 atm.
ERIC Educational Resources Information Center
Ebersbach, Mirjam; Luwel, Koen; Frick, Andrea; Onghena, Patrick; Verschaffel, Lieven
2008-01-01
This experiment aimed to expand previous findings on the development of mental number representation. We tested the hypothesis that children's familiarity with numbers is directly reflected by the shape of their mental number line. This mental number line was expected to be linear as long as numbers lay within the range of numbers children were…
NASA Astrophysics Data System (ADS)
Hmood, Jassim K.; Harun, Sulaiman W.
2018-05-01
A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.
NASA Astrophysics Data System (ADS)
Teng, Zhaojie; Zhang, Wenyan; Chen, Yiran; Pan, Hongmiao; Xiao, Tian; Wu, Long-Fei
2017-08-01
Magnetotactic bacteria are a group of Gram-negative bacteria that synthesize magnetic crystals, enabling them to navigate in relation to magnetic field lines. Morphologies of magnetotactic bacteria include spirillum, coccoid, rod, vibrio, and multicellular morphotypes. The coccid shape is generally the most abundant morphotype among magnetotactic bacteria. Here we describe a species of giant rod-shaped magnetotactic bacteria (designated QR-1) collected from sediment in the low tide zone of Huiquan Bay (Yellow Sea, China). This morphotype accounted for 90% of the magnetotactic bacteria collected, and the only taxonomic group which was detected in the sampling site. Microscopy analysis revealed that QR-1 cells averaged (6.71±1.03)×(1.54±0.20) μm in size, and contained in each cell 42-146 magnetosomes that are arranged in a bundle formed one to four chains along the long axis of the cell. The QR-1 cells displayed axial magnetotaxis with an average velocity of 70±28 μm/s. Transmission electron microscopy based analysis showed that QR-1 cells had two tufts of flagella at each end. Phylogenetic analysis of the 16S rRNA genes revealed that QR-1 together with three other rod-shaped uncultivated magnetotactic bacteria are clustered into a deep branch of Alphaproteobacteria.
Analysis of Drop Oscillations Excited by an Electrical Point Force in AC EWOD
NASA Astrophysics Data System (ADS)
Oh, Jung Min; Ko, Sung Hee; Kang, Kwan Hyoung
2008-03-01
Recently, a few researchers have reported the oscillation of a sessile drop in AC EWOD (electrowetting on dielectrics), and some of its consequences. The drop oscillation problem in AC EWOD is associated with various applications based on electrowetting such as LOC (lab-on-a-chip), liquid lens, and electronic display. However, no theoretical analysis of the problem has been attempted yet. In the present paper, we propose a theoretical model to analyze the oscillation by applying the conventional method to analyze the drop oscillation. The domain perturbation method is used to derive the shape mode equations under the assumptions of weak viscous flow and small deformation. The Maxwell stress is exerted on the three-phase contact line of the droplet like a point force. The force is regarded as a delta function, and is decomposed into the driving forces of each shape mode. The theoretical results on the shape and the frequency responses are compared with experiments, which shows a qualitative agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel
Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. Wemore » present current profile shaping results, aberrations on the shaped profile, and its suppression.« less
AlQahtani, Nabeeh A; Haralur, Satheesh B; AlMaqbol, Mohammad; AlMufarrij, Ali Jubran; Al Dera, Ahmed Ali; Al-Qarni, Mohammed
2016-04-01
To determine the occurrence of smile line and maxillary tooth shape in the Saudi Arabian subpopulation, and to estimate the association between these parameters with gingival biotype. On the fulfillment of selection criteria, total 315 patients belong to Saudi Arabian ethnic group were randomly selected. Two frontal photographs of the patients were acquired. The tooth morphology, gingival angle, and smile line classification were determined with ImageJ image analyzing software. The gingival biotype was assessed by probe transparency method. The obtained data were analyzed with SPSS 19 (IBM Corporation, New York, USA) software to determine the frequency and association between other parameters and gingival biotype. Among the clinical parameters evaluated, the tapering tooth morphology (56.8%), thick gingival biotype (53%), and average smile line (57.5%) was more prevalent. The statistically significant association was found between thick gingival biotype and the square tooth, high smile line. The high gingival angle was associated with thin gingival biotype. The study results indicate the existence of an association between tooth shape, smile line, and gingival angle with gingival biotype.
Anterior Chamber Angle Shape Analysis and Classification of Glaucoma in SS-OCT Images.
Ni Ni, Soe; Tian, J; Marziliano, Pina; Wong, Hong-Tym
2014-01-01
Optical coherence tomography is a high resolution, rapid, and noninvasive diagnostic tool for angle closure glaucoma. In this paper, we present a new strategy for the classification of the angle closure glaucoma using morphological shape analysis of the iridocorneal angle. The angle structure configuration is quantified by the following six features: (1) mean of the continuous measurement of the angle opening distance; (2) area of the trapezoidal profile of the iridocorneal angle centered at Schwalbe's line; (3) mean of the iris curvature from the extracted iris image; (4) complex shape descriptor, fractal dimension, to quantify the complexity, or changes of iridocorneal angle; (5) ellipticity moment shape descriptor; and (6) triangularity moment shape descriptor. Then, the fuzzy k nearest neighbor (fkNN) classifier is utilized for classification of angle closure glaucoma. Two hundred and sixty-four swept source optical coherence tomography (SS-OCT) images from 148 patients were analyzed in this study. From the experimental results, the fkNN reveals the best classification accuracy (99.11 ± 0.76%) and AUC (0.98 ± 0.012) with the combination of fractal dimension and biometric parameters. It showed that the proposed approach has promising potential to become a computer aided diagnostic tool for angle closure glaucoma (ACG) disease.
Yan, Bao; Liu, Rongjia; Li, Yibo; Wang, Yan; Gao, Guanjun; Zhang, Qinglu; Liu, Xing; Jiang, Gonghao; He, Yuqing
2014-01-01
Rice grain shape and yield are usually controlled by multiple quantitative trait loci (QTL). This study used a set of F9–10 recombinant inbred lines (RILs) derived from a cross of Huahui 3 (Bt/Xa21) and Zhongguoxiangdao, and detected 27 QTLs on ten rice chromosomes. Among them, twelve QTLs responsive for grain shape/ or yield were mostly reproducibly detected and had not yet been reported before. Interestingly, the two known genes involved in the materials, with one insect-resistant Bt gene, and the other disease-resistant Xa21 gene, were found to closely link the QTLs responsive for grain shape and weight. The Bt fragment insertion was firstly mapped on the chromosome 10 in Huahui 3 and may disrupt grain-related QTLs resulting in weaker yield performance in transgenic plants. The introgression of Xa21 gene by backcrossing from donor material into receptor Minghui 63 may also contain a donor linkage drag which included minor-effect QTL alleles positively affecting grain shape and yield. The QTL analysis on rice grain appearance quality exemplified the typical events of transgenic or backcrossing breeding. The QTL findings in this study will in the future facilitate the gene isolation and breeding application for improvement of rice grain shape and yield. PMID:25320558
Yan, Bao; Liu, Rongjia; Li, Yibo; Wang, Yan; Gao, Guanjun; Zhang, Qinglu; Liu, Xing; Jiang, Gonghao; He, Yuqing
2014-09-01
Rice grain shape and yield are usually controlled by multiple quantitative trait loci (QTL). This study used a set of F9-10 recombinant inbred lines (RILs) derived from a cross of Huahui 3 (Bt/Xa21) and Zhongguoxiangdao, and detected 27 QTLs on ten rice chromosomes. Among them, twelve QTLs responsive for grain shape/ or yield were mostly reproducibly detected and had not yet been reported before. Interestingly, the two known genes involved in the materials, with one insect-resistant Bt gene, and the other disease-resistant Xa21 gene, were found to closely link the QTLs responsive for grain shape and weight. The Bt fragment insertion was firstly mapped on the chromosome 10 in Huahui 3 and may disrupt grain-related QTLs resulting in weaker yield performance in transgenic plants. The introgression of Xa21 gene by backcrossing from donor material into receptor Minghui 63 may also contain a donor linkage drag which included minor-effect QTL alleles positively affecting grain shape and yield. The QTL analysis on rice grain appearance quality exemplified the typical events of transgenic or backcrossing breeding. The QTL findings in this study will in the future facilitate the gene isolation and breeding application for improvement of rice grain shape and yield.
Analysis of laser pumping and thermal effects based on element analysis
NASA Astrophysics Data System (ADS)
Cui, Li; Liu, Zhijia; Zhang, Yizhuo; Han, Juan
2018-03-01
Thermal effect is a plateau that limits the output of high-power, high beam quality laser, and thermal effects become worse with the increase of pump power. We can reduce the effects caused by thermal effects from pumping, laser medium shape, cooling method and other aspects. In this article, by using finite element analysis software, the thermal effects between Nd:Glass and Nd:YAG laser crystal was analyzed and compared. The causes of generation for thermal effects, and factors that influence the distribution in laser medium were analyzed, including the light source, the laser medium shape and the working mode. Nd:Glass is more suitable for low repetition frequency, high energy pulsed laser output, due to its large size, line width and so on, and Nd:YAG is more suitable for continue or high repetition rate laser output, due to its higher thermal conductivity.
ERIC Educational Resources Information Center
Renaud, Esteban Alejandro; Suarez-Renaud, Giovanna
2008-01-01
Latinos with doctorate degrees working in academe were interviewed about their experiences in graduate school. They were asked to elaborate upon what they considered to be their most meaningful experiences that shaped their personal, academic and intellectual lives that influenced their success throughout graduate school. A thematic analysis of…
Terahertz Atmospheric Attenuation and Continuum Effects
2013-05-01
comparison of the two pressure-broadened line shapes as well as a Doppler -broadened line shape. As can be seen in the figure, the effect of foreign gas...Conference April 29-‐May 3, 2013, Baltimore, MD Figure 2. A Doppler -broadened absorption line with the partial pressure of... Goldman , A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen
Iwamatsu, Masao
2017-07-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.
Dynamic Stark broadening as the Dicke narrowing effect
NASA Astrophysics Data System (ADS)
Calisti, A.; Mossé, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.
2010-01-01
A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high- n series emission lines. It is not limited to hydrogen spectra. Results on helium- β and Lyman- α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.
A computer program for thermal radiation from gaseous rocket exhuast plumes (GASRAD)
NASA Technical Reports Server (NTRS)
Reardon, J. E.; Lee, Y. C.
1979-01-01
A computer code is presented for predicting incident thermal radiation from defined plume gas properties in either axisymmetric or cylindrical coordinate systems. The radiation model is a statistical band model for exponential line strength distribution with Lorentz/Doppler line shapes for 5 gaseous species (H2O, CO2, CO, HCl and HF) and an appoximate (non-scattering) treatment of carbon particles. The Curtis-Godson approximation is used for inhomogeneous gases, but a subroutine is available for using Young's intuitive derivative method for H2O with Lorentz line shape and exponentially-tailed-inverse line strength distribution. The geometry model provides integration over a hemisphere with up to 6 individually oriented identical axisymmetric plumes, a single 3-D plume, Shading surfaces may be used in any of 7 shapes, and a conical limit may be defined for the plume to set individual line-of-signt limits. Intermediate coordinate systems may specified to simplify input of plumes and shading surfaces.
Carbon Dioxide Line Shapes for Atmospheric Remote Sensing
NASA Astrophysics Data System (ADS)
Predoi-Cross, Adriana; Ibrahim, Amr; Wismath, Alice; Teillet, Philippe M.; Devi, V. Malathy; Benner, D. Chris; Billinghurst, Brant
2010-02-01
We present a detailed spectroscopic study of carbon dioxide in support of atmospheric remote sensing. We have studied two weak absorption bands near the strong ν2 band that is used to derive atmospheric temperature profiles. We have analyzed our laboratory spectra recorded with the synchrotron and globar sources with spectral line profiles that reproduce the absorption features with high accuracy. The Q-branch transitions exhibited asymmetric line shape due to weak line-mixing. For these weak transitions, we have retrieved accurate experimental line strengths, self- and air-broadening, self- and air-induced shift coefficients and weak line mixing parameters. The experimental precision is sufficient to reveal inherent variations of the width and shift coefficients according to transition quantum numbers.
Meng, Depeng; Ouyang, Yueping; Hou, Chunlin
2017-12-01
To establish the finite element model of Y-shaped patellar fracture fixed with titanium-alloy petal-shaped poly-axial locking plate and to implement the finite element mechanical analysis. The three-dimensional model was created by software Mimics 19.0, Rhino 5.0, and 3-Matic 11.0. The finite element analysis was implemented by ANSYS Workbench 16.0 to calculate the Von-Mises stress and displacement. Before calculated, the upper and lower poles of the patella were constrained. The 2.0, 3.5, and 4.4 MPa compressive stresses were applied to the 1/3 patellofemoral joint surface of the lower, middle, and upper part of the patella respectively, and to simulated the force upon patella when knee flexion of 20, 45, and 90°. The number of nodes and elements of the finite element model obtained was 456 839 and 245 449, respectively. The max value of Von-Mises stress of all the three conditions simulated was 151.48 MPa under condition simulating the knee flexion of 90°, which was lower than the yield strength value of the titanium-alloy and patella. The max total displacement value was 0.092 8 mm under condition simulating knee flexion of 45°, which was acceptable according to clinical criterion. The stress concentrated around the non-vertical fracture line and near the area where the screws were sparse. The titanium-alloy petal-shaped poly-axial locking plate have enough biomechanical stiffness to fix the Y-shaped patellar fracture, but the result need to be proved in future.
Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1
NASA Technical Reports Server (NTRS)
Bhattacharyya, Sudip; Strohmayer, Tod E.
2007-01-01
We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.
Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Burkart, Johannes; Kassi, Samir
2015-04-01
Optical feedback frequency-stabilized cavity ring-down spectroscopy (OFFS-CRDS) is a near-shot-noise-limited technique combining a sensitivity of with a highly linear frequency axis and sub-kHz resolution. Here, we give an in-depth review of the key elements of the experimental setup encompassing a highly stable V-shaped reference cavity, an integrated Mach-Zehnder modulator and a tightly locked ring-down cavity with a finesse of 450,000. Carrying out a detailed analysis of the spectrometer performance and its limitations, we revisit the photo-electron shot-noise limit in CRDS and discuss the impact of optical fringes. We demonstrate different active schemes for fringe cancelation by varying the phase of parasitic reflections. The proof-of-principle experiments reported here include a broadband high-resolution spectrum of carbon dioxide at 1.6 µm and an isolated line-shape measurement with a signal-to-noise ratio of 80,000. Beyond laboratory-based absorption line metrology for fundamental research, OFFS-CRDS holds a considerable potential for field laser measurements of trace gas concentrations and isotopic ratios by virtue of its small sample volume and footprint, the robust cavity-locking scheme and supreme precision.
NASA Technical Reports Server (NTRS)
Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.
2008-01-01
We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.
B1 field-insensitive transformers for RF-safe transmission lines.
Krafft, Axel; Müller, Sven; Umathum, Reiner; Semmler, Wolfhard; Bock, Michael
2006-11-01
Integration of transformers into transmission lines suppresses radiofrequency (RF)-induced heating. New figure-of-eight-shaped transformer coils are compared to conventional loop transformer coils to assess their signal transmission properties and safety profile. The transmission properties of figure-of-eight-shaped transformers were measured and compared to transformers with loop coils. Experiments to quantify the effect of decoupling from the B1 field of the MR system were conducted. Temperature measurements were performed to demonstrate the effective reduction of RF-induced heating. The transformers were investigated during active tracking experiments. Coupling to the B1 field was reduced by 18 dB over conventional loop-shaped transformer coils. MR images showed a significantly reduced artifact for the figure-of-eight- shaped coils generated by local flip-angle amplification. Comparable transmission properties were seen for both transformer types. Temperature measurements showed a maximal temperature increase of 30 K/3.5 K for an unsegmented/segmented cable. With a segmented transmission line a robotic assistance system could be successfully localized using active tracking. The figure-of-eight-shaped transformer design reduces both RF field coupling with the MR system and artifact sizes. Anatomical structure close to the figure-of-eight-shaped transformer may be less obscured as with loop-shaped transformers if these transformers are integrated into e.g. intravascular catheters.
Villarrubia, J S; Vladár, A E; Ming, B; Kline, R J; Sunday, D F; Chawla, J S; List, S
2015-07-01
The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm. Published by Elsevier B.V.
1998-01-01
its underlying mechanism. The morphologies and associated terminology of the ferrography wear atlas (13), have been adopted almost universally by...connected to the World-Wide Web (WWW). What has emerged from the more recent developments is that, whereas a universal atlas , coupled to a coding...D.W., ’Wear Particle Atlas ,(Revised)’ Naval Air Eng. Centre Report No. NAEC 92 163 (1982) 14. Ruff A.W. ’Characterisation of debris particles
Moltke, S; Nevzorov, A A; Sakai, N; Wallat, I; Job, C; Nakanishi, K; Heyn, M P; Brown, M F
1998-08-25
The orientation of prosthetic groups in membrane proteins is of considerable importance in understanding their functional role in energy conversion, signal transduction, and ion transport. In this work, the orientation of the retinylidene chromophore of bacteriorhodopsin (bR) was investigated using 2H NMR spectroscopy. Bacteriorhodopsin was regenerated with all-trans-retinal stereospecifically deuterated in one of the geminal methyl groups on C1 of the cyclohexene ring. A highly oriented sample, which is needed to obtain individual bond orientations from 2H NMR, was prepared by forming hydrated lamellar films of purple membranes on glass slides. A Monte Carlo method was developed to accurately simulate the 2H NMR line shape due to the distribution of bond angles and the orientational disorder of the membranes. The number of free parameters in the line shape simulation was reduced by independent measurements of the intrinsic line width (1.6 kHz from T2e experiments) and the effective quadrupolar coupling constant (38. 8-39.8 kHz from analysis of the line shape of a powder-type sample). The angle between the C1-(1R)-1-CD3 bond and the purple membrane normal was determined with high accuracy from the simultaneous analysis of a series of 2H NMR spectra recorded at different inclinations of the uniaxially oriented sample in the magnetic field at 20 and -50 degrees C. The value of 68.7 +/- 2.0 degrees in dark-adapted bR was used, together with the previously determined angle of the C5-CD3 bond, to calculate the possible orientations of the cyclohexene ring in the membrane. The solutions obtained from 2H NMR were then combined with additional constraints from linear dichroism and electron cryomicroscopy to obtain the allowed orientations of retinal in the noncentrosymmetric membrane structure. The combined data indicate that the methyl groups on the polyene chain point toward the cytoplasmic side of the membrane and the N-H bond of the Schiff base to the extracellular side, i.e., toward the side of proton release in the pump pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attota, Ravikiran, E-mail: Ravikiran.attota@nist.gov; Dixson, Ronald G.
We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.
On the orbits that generate the X-shape in the Milky Way bulge
NASA Astrophysics Data System (ADS)
Abbott, Caleb G.; Valluri, Monica; Shen, Juntai; Debattista, Victor P.
2017-09-01
The Milky Way (MW) bulge shows a boxy/peanut or X-shaped bulge (hereafter BP/X) when viewed in infrared or microwave bands. We examine orbits in an N-body model of a barred disc galaxy that is scaled to match the kinematics of the MW bulge. We generate maps of projected stellar surface density, unsharp masked images, 3D excess-mass distributions (showing mass outside ellipsoids), line-of-sight number count distributions, and 2D line-of-sight kinematics for the simulation as well as co-added orbit families, in order to identify the orbits primarily responsible for the BP/X shape. We estimate that between 19 and 23 per cent of the mass of the bar in this model is associated with the BP/X shape and that the majority of bar orbits contribute to this shape that is clearly seen in projected surface density maps and 3D excess mass for non-resonant box orbits, 'banana' orbits, 'fish/pretzel' orbits and 'brezel' orbits. Although only the latter two families (comprising 7.5 per cent of the total mass) show a distinct X-shape in unsharp masked images, we find that nearly all bar orbit families contribute some mass to the 3D BP/X-shape. All co-added orbit families show a bifurcation in stellar number count distribution with distance that resembles the bifurcation observed in red clump stars in the MW. However, only the box orbit family shows an increasing separation of peaks with increasing galactic latitude |b|, similar to that observed. Our analysis suggests that no single orbit family fully explains all the observed features associated with the MW's BP/X-shaped bulge, but collectively the non-resonant boxes and various resonant boxlet orbits contribute at different distances from the centre to produce this feature. We propose that since box orbits (which are the dominant population in bars) have three incommensurable orbital fundamental frequencies, their 3D shapes are highly flexible and, like Lissajous figures, this family of orbits is most easily able to adapt to evolution in the shape of the underlying potential.
Single-shot three-dimensional reconstruction based on structured light line pattern
NASA Astrophysics Data System (ADS)
Wang, ZhenZhou; Yang, YongMing
2018-07-01
Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.
Suh, Hyo Seon; Chen, Xuanxuan; Rincon-Delgadillo, Paulina A.; ...
2016-04-22
Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shapemore » when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. Lastly, the results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.« less
Disentangling the role of the Y(4260) in e+e- →D*Dbar* and Ds* Dbars* via line shape studies
NASA Astrophysics Data System (ADS)
Xue, Si-Run; Jing, Hao-Jie; Guo, Feng-Kun; Zhao, Qiang
2018-04-01
Whether the Y (4260) can couple to open charm channels has been a crucial issue for understanding its nature. The available experimental data suggest that the cross section line shapes of exclusive processes in e+e- annihilations have nontrivial structures around the mass region of the Y (4260). As part of a series of studies of the Y (4260) as mainly a D bar D1 (2420) + c . c . molecular state, we show that the partial widths of the Y (4260) to the two-body open charm channels of e+e- →D*Dbar* and Ds* D bars* are much smaller than that to D bar D* π + c . c . . The line shapes measured by the Belle Collaboration for these two channels can be well described by the vector charmonium states ψ (4040), ψ (4160) and ψ (4415) together with the Y (4260). It turns out that the interference of the Y (4260) with the other charmonia produces a dip around 4.22 GeV in the e+e- →D*Dbar* cross section line shape. The data also show an evidence for the strong coupling of the Y (4260) to the DDbar1 (2420), in line with the expectation in the hadronic molecular scenario for the Y (4260).
Gaffney, Betty Jean; Eaton, Gareth R.; Eaton*, Sandra S.
2005-01-01
To optimize simulations of CW EPR spectra for high-spin Fe(III) with zero-field splitting comparable to the EPR quantum, information is needed on the factors that contribute to the line shapes and line widths. Continuous wave electron paramagnetic resonance (EPR) spectra obtained for iron transferrin carbonate from 4 to 150 K and for iron transferrin oxalate from 4 to 100 K did not exhibit significant temperature dependence of the line shape, which suggested that the line shapes were not relaxation determined. To obtain direct information concerning the electron spin relaxation rates, electron spin echo and inversion recovery EPR were used to measure T1 and Tm for the high-spin Fe(III) in iron transferrin carbonate and iron transferrin oxalate between 5 and 20–30 K. For comparison with the data for the transferrin complexes, relaxation times were obtained for tris(oxalato)ferrate(III). The relaxation rates are similar for the three complexes and do not exhibit a strong dependence on position in the spectrum. Extrapolation of the observed temperature dependence of the relaxation rates to higher temperatures gives values consistent with the conclusion that the CW line shapes are not relaxation determined up to 150 K. PMID:16429607
NASA Astrophysics Data System (ADS)
Mendonca, J.; Strong, K.; Toon, G. C.; Wunch, D.; Sung, K.; Deutscher, N. M.; Griffith, D. W. T.; Franklin, J. E.
2016-05-01
A quadratic speed-dependent Voigt spectral line shape with line mixing (qSDV + LM) has been included in atmospheric trace-gas retrievals to improve the accuracy of the calculated CO2 absorption coefficients. CO2 laboratory spectra were used to validate absorption coefficient calculations for three bands: the strong 20013 ← 00001 band centered at 4850 cm-1, and the weak 30013 ← 00001 and 30012 ← 00001 bands centered at 6220 cm-1 and 6340 cm-1 respectively, and referred to below as bands 1 and 2. Several different line lists were tested. Laboratory spectra were best reproduced for the strong CO2 band when using HITRAN 2008 spectroscopic data with air-broadened widths divided by 0.985, self-broadened widths divided by 0.978, line mixing coefficients calculated using the exponential power gap (EPG) law, and a speed-dependent parameter of 0.11 used for all lines. For the weak CO2 bands, laboratory spectra were best reproduced using spectroscopic parameters from the studies by Devi et al. in 2007 coupled with line mixing coefficients calculated using the EPG law. A total of 132,598 high-resolution ground-based solar absorption spectra were fitted using qSDV + LM to calculate CO2 absorption coefficients and compared to fits that used the Voigt line shape. For the strong CO2 band, the average root mean square (RMS) residual is 0.49 ± 0.22% when using qSDV + LM to calculate the absorption coefficients. This is an improvement over the results with the Voigt line shape, which had an average RMS residual of 0.60 ± 0.21%. When using the qSDV + LM to fit the two weak CO2 bands, the average RMS residual is 0.47 ± 0.19% and 0.51 ± 0.20% for bands 1 and 2, respectively. These values are identical to those obtained with the Voigt line shape. Finally, we find that using the qSDV + LM decreases the airmass dependence of the column averaged dry air mole fraction of CO2 retrieved from the strong and both weak CO2 bands when compared to the retrievals obtained using the Voigt line shape.
A Global Fitting Approach For Doppler Broadening Thermometry
NASA Astrophysics Data System (ADS)
Amodio, Pasquale; Moretti, Luigi; De Vizia, Maria Domenica; Gianfrani, Livio
2014-06-01
Very recently, a spectroscopic determination of the Boltzmann constant, kB, has been performed at the Second University of Naples by means of a rather sophisticated implementation of Doppler Broadening Thermometry (DBT)1. Performed on a 18O-enriched water sample, at a wavelength of 1.39 µm, the experiment has provided a value for kB with a combined uncertainty of 24 parts over 106, which is the best result obtained so far, by using an optical method. In the spectral analysis procedure, the partially correlated speed-dependent hard-collision (pC-SDHC) model was adopted. The uncertainty budget has clearly revealed that the major contributions come from the statistical uncertainty (type A) and from the uncertainty associated to the line-shape model (type B)2. In the present work, we present the first results of a theoretical and numerical work aimed at reducing these uncertainty components. It is well known that molecular line shapes exhibit clear deviations from the time honoured Voigt profile. Even in the case of a well isolated spectral line, under the influence of binary collisions, in the Doppler regime, the shape can be quite complicated by the joint occurrence of velocity-change collisions and speed-dependent effects. The partially correlated speed-dependent Keilson-Storer profile (pC-SDKS) has been recently proposed as a very realistic model, capable of reproducing very accurately the absorption spectra for self-colliding water molecules, in the near infrared3. Unfortunately, the model is so complex that it cannot be implemented into a fitting routine for the analysis of experimental spectra. Therefore, we have developed a MATLAB code to simulate a variety of H218O spectra in thermodynamic conditions identical to the one of our DBT experiment, using the pC-SDKS model. The numerical calculations to determine such a profile have a very large computational cost, resulting from a very sophisticated iterative procedure. Hence, the numerically simulated spectra (with the addition of random noise) have been used to test the validity of simplified line shape models, such as the speed-dependent Galatry (SDG) profile and pC-SDHC model. In particular, we have used the global fitting procedure that is described in Amodio et al4. Such a procedure is very effective in reducing the uncertainty resulting from statistical correlation among free parameters. Therefore, the analysis of large amounts of simulated spectra has allowed us to study the influence of the choice of the model and quantify the achievable precision and accuracy levels, at the present value of the signal-to-noise ratio. freely redistributable under the GPL http://www.gnu.org.
NASA Technical Reports Server (NTRS)
Bruno, G. V.; Harrington, J. K.; Eastman, M. P.
1978-01-01
The purposes of this vanadyl spin probe study are threefold: (1) to establish when the breakdown of motionally narrowed formulas occurs; (2) to analyze the experimental vanadyl EPR line shapes by the stochastic Lioville method as developed by Polnaszek et al. (1973) for slow tumbling in an anisotropic liquid; and (3) to compare the vanadyl probe study results with those of Polnaszek and Freed (1975). Spectral EPR line shapes are simulated for experimental spectra of vanadyl acetylacetonate (VOAA) in nematic liquid crystal butyl p-(p-ethoxyphenoxycarbonyl) phenyl carbonate (BEPC) and Phase V of EM laboratories. It is shown that the use of typical vanadyl complexes as spin probes for nematic liquid crystals simplifies the theoretical analysis and the subsequent interpretation. Guidelines for the breakdown of motionally narrowed formulas are established. Both the slow tumbling aspects and the effects of non-Brownian rotation should be resolved in order to extract quantitative information about molecular ordering and rotational mobility.
NASA Astrophysics Data System (ADS)
Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.
2018-04-01
In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.
NASA Astrophysics Data System (ADS)
Chitraningrum, Nidya; Chu, Ting-Yi; Huang, Ping-Tsung; Wen, Ten-Chin; Guo, Tzung-Fang
2018-02-01
We fabricate the phenyl-substituted poly(p-phenylene vinylene) copolymer (super yellow, SY-PPV)-based polymer light-emitting diodes (PLEDs) with different device architectures to modulate the injection of opposite charge carriers and investigate the corresponding magnetoconductance (MC) responses. At the first glance, we find that all PLEDs exhibit the positive MC responses. By applying the mathematical analysis to fit the curves with two empirical equations of a non-Lorentzian and a Lorentzian function, we are able to extract the hidden negative MC component from the positive MC curve. We attribute the growth of the negative MC component to the reduced interaction of the triplet excitons with charges to generate the free charge carriers as modulated by the applied magnetic field, known as the triplet exciton-charge reaction, by analyzing MC responses for PLEDs of the charge-unbalanced and hole-blocking device configurations. The negative MC component causes the broadening of the line shape in MC curves.
Matt, C. E.; Fatuzzo, C. G.; Sassa, Y.; ...
2015-10-27
We report an angle-resolved photoemission study of the charge stripe ordered La 1.6–xNd 0.4Sr xCuO 4 (Nd-LSCO) system. A comparative and quantitative line-shape analysis is presented as the system evolves from the overdoped regime into the charge ordered phase. On the overdoped side (x = 0.20), a normal-state antinodal spectral gap opens upon cooling below 80 K. In this process, spectral weight is preserved but redistributed to larger energies. A correlation between this spectral gap and electron scattering is found. A different line shape is observed in the antinodal region of charge ordered Nd-LSCO x = 1/8. Significant low-energy spectralmore » weight appears to be lost. As a result, these observations are discussed in terms of spectral-weight redistribution and gapping originating from charge stripe ordering.« less
Dynamics of the line-start reluctance motor with rotor made of SMC material
NASA Astrophysics Data System (ADS)
Smółka, Krzysztof; Gmyrek, Zbigniew
2017-12-01
Design and control of electric motors in such a way as to ensure the expected motor dynamics, are the problems studied for many years. Many researchers tried to solve this problem, for example by the design optimization or by the use of special control algorithms in electronic systems. In the case of low-power and fractional power motors, the manufacture cost of the final product is many times less than cost of electronic system powering them. The authors of this paper attempt to improve the dynamic of 120 W line-start synchronous reluctance motor, energized by 50 Hz mains (without any electronic systems). The authors seek a road enabling improvement of dynamics of the analyzed motor, by changing the shape and material of the rotor, in such a way to minimize the modification cost of the tools necessary for the motor production. After the initial selection, the analysis of four rotors having different tooth shapes, was conducted.
Photosynthetic Energy Transduction | Bioenergy | NREL
a large lighter green oval. There is a black line moving from one green bar to the other indicating blue oval labeled "FDX" and one green arrow pointing into the oval, labeled "electrons images with the third red line connecting the top of one L-shape to the bottom of the next L-shape
Early, Involuntary Top-Down Guidance of Attention From Working Memory
ERIC Educational Resources Information Center
Soto, David; Heinke, Dietmar; Humphreys, Glyn W.; Blanco, Manuel J.
2005-01-01
Four experiments explored the interrelations between working memory, attention, and eye movements. Observers had to identify a tilted line amongst vertical distractors. Each line was surrounded by a colored shape that could be precued by a matching item held in memory. Relative to a neutral baseline, in which no shapes matched the memory item,…
Experimental observation of Fano effect in Ag nanoparticle-CdTe quantum dot hybrid system
NASA Astrophysics Data System (ADS)
Gurung, Sabina; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Chari, Rama
2018-04-01
We have experimentally measured the optical properties of Ag nanoparticle-CdTe quantum dot hybrid system and compared it with that of bare CdTe quantum dot colloid. It has been shown that the photoluminescence line shape of CdTe quantum dots becomes asymmetric in presence of Ag nanoparticles. The observed changes in the PL spectrum closely match the expected changes in the line shape due to Fano interaction between discrete level and continuum levels. Our experiment shows that a very small fraction of metal nanoparticles in the metal-semiconductor hybrid is sufficient to induce such changes in line shape which is in contrary to the earlier reported theoretical prediction on metal-semiconductor hybrid.
Self- and Air-Broadened Line Shape Parameters of (12)CH(4) : 4500-4620 cm(-1)
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Sung, K.; Brown, L. R.; Crawford, T. J.; Smith, M. A. H.; Mantz, A. W.; Predoi-Cross, A.
2014-06-01
Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. We report the self and air-broadened Lorentz widths, shifts and line mixing coefficients along with their temperature dependencies for methane absorption lines in the 2.2 µm spectral region. For this, we obtained a series of high-resolution, high S/N spectra of 99.99% 12C-enriched samples of pure methane and its dilute mixtures in dry air at cold temperatures down to 150 K using the Bruker IFS 125HR Fourier transform spectrometer at JPL. The coolable absorption cell had an optical path of 20.38 cm and was specially built to reside inside the sample compartment of the Bruker FTS1. The 13 spectra used in the analysis consisted of seven pure 12CH4 spectra at pressures from 4.5 to 169 Torr and six air-broadened spectra with total sample pressures of 113-300 Torr and methane volume mixing ratios between 4 and 9.7%. These 13 spectra were fit simultaneously using the multispectrum least-squares fitting technique2. The results will be compared to existing values reported in the literature3. as part of the GNU EPrints system
Fatty acyl chain order in lecithin model membranes determined from proton magnetic resonance.
Bloom, M; Burnell, E E; MacKay, A L; Nichol, C P; Valic, M I; Weeks, G
1978-12-26
Proton magnetic resonance (1H NMR) has been used to compare the local orientational order of acyl chains in phospholipid bilayers of multilamellar and small sonicated vesicular membranes of dipalmitoyllecithin (DPL) at 50 degrees C and egg yolk lecithin (EYL) at 31 degrees C. The orientational order of the multilamellar systems was characterized using deuterium magnetic resonance order parameters and 1H NMR second moments. 1H NMR line shapes in the vesicle samples were calculated using vesicle size distributions, determined directly using electron microscopy, and a theory of motional narrowing, which takes into account the symmetry properties of the bilayer systems. The predicted non-Lorentzian line shapes and widths were found to be in good agreement with experimental results, indicating that the local orientational order (called "packing" by many workers) in the bilayers of small vesicles and in multilamellar membranes is substantially the same. This results was found to be true not only for the largest 1H NMR line associated with the nonterminal methylene protons but also for the resolved 1H NMR lines due to the alpha-CH2 and the terminal CH3 positions on the acyl chain. Analysis of the vesicle 1H NMR spectra of EYL taken with different medium viscosities yielded a value of approximately 4 X 10(-8) cm2 s-1 for the lateral diffusion constant of the phospholipid molecules at 31 degrees C.
Differential surface models for tactile perception of shape and on-line tracking of features
NASA Technical Reports Server (NTRS)
Hemami, H.
1987-01-01
Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.
Discovery of a Wolf-Rayet Star through Detection of Its Photometric Variability
NASA Astrophysics Data System (ADS)
Littlefield, Colin; Garnavich, Peter; Marion, G. H. Howie; Vinkó, József; McClelland, Colin; Rettig, Terrence; Wheeler, J. Craig
2012-06-01
We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 Å, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 Å line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 ± 0.3 kpc.
Iron line spectroscopy with Einstein-dilaton-Gauss-Bonnet black holes
NASA Astrophysics Data System (ADS)
Nampalliwar, Sourabh; Bambi, Cosimo; Kokkotas, Kostas D.; Konoplya, Roman A.
2018-06-01
Einstein-dilaton-Gauss-Bonnet gravity is a well-motivated alternative theory of gravity that emerges naturally from string theory. While black hole solutions have been known in this theory in numerical form for a while, an approximate analytical metric was obtained recently by some of us, which allows for faster and more detailed analysis. Here we test the accuracy of the analytical metric in the context of X-ray reflection spectroscopy. We analyze innermost stable circular orbits (ISCO) and relativistically broadened iron lines and find that both the ISCO and iron lines are determined sufficiently accurately up to the limit of the approximation. We also find that, though the ISCO increases by about 7% as dilaton coupling increases from zero to extremal values, the redshift at ISCO changes by less than 1%. Consequently, the shape of the iron line is much less sensitive to the dilaton charge than expected.
Parameters sensitivity on mooring loads of ship-shaped FPSOs
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Saidee
2017-12-01
The work in this paper is focused on special assessment and evaluation of mooring system of ship-shaped FPSO unit. In particular, the purpose of the study is to find the impact on mooring loads for the variation in different parameters using MIMOSA software. First, a selected base case was designed for an intact mooring system in a typical ultimate limit state (ULS) condition, and then the sensitivity to mooring loads on parameters e.g. location of the turret, analysis method (quasi-static vs. dynamic analysis), low-frequency damping level in the surge, pretension and drag coefficients on chain and steel wire has been performed. It is found that mooring loads change due to the change of these parameters. Especially, pretension has a large impact on the maximum tension of mooring lines and low-frequency damping can change surge offset significantly.
AlQahtani, Nabeeh A.; Haralur, Satheesh B.; AlMaqbol, Mohammad; AlMufarrij, Ali Jubran; Al Dera, Ahmed Ali; Al-Qarni, Mohammed
2016-01-01
Objectives: To determine the occurrence of smile line and maxillary tooth shape in the Saudi Arabian subpopulation, and to estimate the association between these parameters with gingival biotype. Materials and Methods: On the fulfillment of selection criteria, total 315 patients belong to Saudi Arabian ethnic group were randomly selected. Two frontal photographs of the patients were acquired. The tooth morphology, gingival angle, and smile line classification were determined with ImageJ image analyzing software. The gingival biotype was assessed by probe transparency method. The obtained data were analyzed with SPSS 19 (IBM Corporation, New York, USA) software to determine the frequency and association between other parameters and gingival biotype. Results: Among the clinical parameters evaluated, the tapering tooth morphology (56.8%), thick gingival biotype (53%), and average smile line (57.5%) was more prevalent. The statistically significant association was found between thick gingival biotype and the square tooth, high smile line. The high gingival angle was associated with thin gingival biotype. Conclusions: The study results indicate the existence of an association between tooth shape, smile line, and gingival angle with gingival biotype. PMID:27195228
Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S
2015-08-07
A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.
Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene1
Jiménez-Bermúdez, Silvia; Redondo-Nevado, José; Muñoz-Blanco, Juan; Caballero, José L.; López-Aranda, José M.; Valpuesta, Victoriano; Pliego-Alfaro, Fernando; Quesada, Miguel A.; Mercado, José A.
2002-01-01
Strawberry (Fragaria × ananassa, Duch., cv Chandler) is a soft fruit with a short postharvest life, mainly due to a rapid lost of firm texture. To control the strawberry fruit softening, we obtained transgenic plants that incorporate an antisense sequence of a strawberry pectate lyase gene under the control of the 35S promoter. Forty-one independent transgenic lines (Apel lines) were obtained, propagated in the greenhouse for agronomical analysis, and compared with control plants, non-transformed plants, and transgenic lines transformed with the pGUSINT plasmid. Total yield was significantly reduced in 33 of the 41 Apel lines. At the stage of full ripen, no differences in color, size, shape, and weight were observed between Apel and control fruit. However, in most of the Apel lines, ripened fruits were significantly firmer than controls. Six Apel lines were selected for further analysis. In all these lines, the pectate lyase gene expression in ripened fruit was 30% lower than in control, being totally suppressed in three of them. Cell wall material isolated from ripened Apel fruit showed a lower degree of in vitro swelling and a lower amount of ionically bound pectins than control fruit. An analysis of firmness at three different stages of fruit development (green, white, and red) showed that the highest reduction of softening in Apel fruit occurred during the transition from the white to the red stage. The postharvest softening of Apel fruit was also diminished. Our results indicate that pectate lyase gene is an excellent candidate for biotechnological improvement of fruit softening in strawberry. PMID:11842178
An analysis of scattered light in low dispersion IUE spectra
NASA Technical Reports Server (NTRS)
Basri, G.; Clarke, J. T.; Haisch, B. M.
1985-01-01
A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.
Molecular chirality and domain shapes in lipid monolayers on aqueous surfaces
NASA Astrophysics Data System (ADS)
Krüger, Peter; Lösche, Mathias
2000-11-01
The shapes of domain boundaries in the mesoscopic phase separation of phospholipids in aqueous surface monolayers are analyzed with particular attention to the influence of molecular chirality. We have calculated equilibrium shapes of such boundaries, and show that the concept of spontaneous curvature-derived from an effective pair potential between the chiral molecules-yields an adequate description of the contribution of chirality to the total energy of the system. For enantiomeric dipalmitoylphosphatidylcholine in pure monolayers, and in mixtures with impurities that adsorb preferentially at the (one-dimensional) boundary line between the isotropic and anisotropic fluid phases, such as cyanobiphenyl (5CB), a total energy term that includes line tension, electrostatic dipole-dipole interaction, and spontaneous curvature is sufficient to describe the shapes of well-separated domain boundaries in full detail. As soon as interdomain distances fall below the domain sizes upon compression of a monolayer, fluctuations take over in determining its detailed structural morphology. Using Minkowski measures for the well-studied dimyristoyl phosphatidic acid (DMPA)/cholesterol system, we show that calculations accounting for line tension, electrostatic repulsion, and molecular chirality yield boundary shapes that are of the same topology as the experimentally observed structures. At a fixed molecular area in the phase coexistence region, the DMPA/cholesterol system undergoes an exponential decay of the line tension λ with decreasing subphase temperature T.
Estimation of surface curvature from full-field shape data using principal component analysis
NASA Astrophysics Data System (ADS)
Sharma, Sameer; Vinuchakravarthy, S.; Subramanian, S. J.
2017-01-01
Three-dimensional digital image correlation (3D-DIC) is a popular image-based experimental technique for estimating surface shape, displacements and strains of deforming objects. In this technique, a calibrated stereo rig is used to obtain and stereo-match pairs of images of the object of interest from which the shapes of the imaged surface are then computed using the calibration parameters of the rig. Displacements are obtained by performing an additional temporal correlation of the shapes obtained at various stages of deformation and strains by smoothing and numerically differentiating the displacement data. Since strains are of primary importance in solid mechanics, significant efforts have been put into computation of strains from the measured displacement fields; however, much less attention has been paid to date to computation of curvature from the measured 3D surfaces. In this work, we address this gap by proposing a new method of computing curvature from full-field shape measurements using principal component analysis (PCA) along the lines of a similar work recently proposed to measure strains (Grama and Subramanian 2014 Exp. Mech. 54 913-33). PCA is a multivariate analysis tool that is widely used to reveal relationships between a large number of variables, reduce dimensionality and achieve significant denoising. This technique is applied here to identify dominant principal components in the shape fields measured by 3D-DIC and these principal components are then differentiated systematically to obtain the first and second fundamental forms used in the curvature calculation. The proposed method is first verified using synthetically generated noisy surfaces and then validated experimentally on some real world objects with known ground-truth curvatures.
Establishment and proteomic characterization of a novel synovial sarcoma cell line, NCC-SS2-C1.
Oyama, Rieko; Kito, Fusako; Sakumoto, Marimu; Shiozawa, Kumiko; Toki, Shunichi; Endo, Makoto; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi
2018-05-01
Synovial sarcoma is an aggressive mesenchymal tumor, characterized by the presence of unique transfusion gene, SS18-SSX. Cell lines enable researchers to investigate the molecular backgrounds of disease and the significance of SS18-SSX in relevant cellular contexts. We report the establishment and proteomic characterization of a novel synovial sarcoma cell line. Primary tissue culture was performed using tumor tissue of synovial sarcoma. The established cell line was authenticated by assessing its DNA microsatellite short tandem repeat analysis and characterized by in vitro assay. Proteomic study was achieved by mass spectrometry, and the results were analyzed by treemap. The cell line NCC-SS2-C1 was established from a primary tumor tissue of a synovial sarcoma patient. The cell line has grown well for 11 mo and has been subcultured more than 15 times. The established cells were authenticated by assessing their short tandem repeat pattern comparing with that of original tumor tissue. The cells showed polygonal in shape and formed spheroid when seeded on the low-attachment dish. Proteomic analysis revealed the molecular pathways which are unique to the original tumor tissue or the established cell line. In conclusion, a novel synovial sarcoma cell line NCC-SS2-C1 was successfully established from the primary tumor tissue. The cell line has characteristic transfusion SS18-SSX and poses aggressive in vitro growth and capability of spheroid formation. Thus, NCC-SS2-C1 cell line will be a useful tool for investigation of the mechanisms of disease and the biological role of fusion gene.
H2 emission from non-stationary magnetized bow shocks
NASA Astrophysics Data System (ADS)
Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.
2018-01-01
When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).
Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.
Iliev, Stanimir; Pesheva, Nina
2016-06-01
We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.
NASA Astrophysics Data System (ADS)
Patel, Utkarsh R.; Triverio, Piero
2016-09-01
An accurate modeling of skin effect inside conductors is of capital importance to solve transmission line and scattering problems. This paper presents a surface-based formulation to model skin effect in conductors of arbitrary cross section, and compute the per-unit-length impedance of a multiconductor transmission line. The proposed formulation is based on the Dirichlet-Neumann operator that relates the longitudinal electric field to the tangential magnetic field on the boundary of a conductor. We demonstrate how the surface operator can be obtained through the contour integral method for conductors of arbitrary shape. The proposed algorithm is simple to implement, efficient, and can handle arbitrary cross-sections, which is a main advantage over the existing approach based on eigenfunctions, which is available only for canonical conductor's shapes. The versatility of the method is illustrated through a diverse set of examples, which includes transmission lines with trapezoidal, curved, and V-shaped conductors. Numerical results demonstrate the accuracy, versatility, and efficiency of the proposed technique.
Dynamics of droplet motion under electrowetting actuation.
Annapragada, S Ravi; Dash, Susmita; Garimella, Suresh V; Murthy, Jayathi Y
2011-07-05
The static shape of droplets under electrowetting actuation is well understood. The steady-state shape of the droplet is obtained on the basis of the balance of surface tension and electrowetting forces, and the change in the apparent contact angle is well characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a droplet has received less attention. Additional dynamic frictional forces are at play during this transient process. We present a model to predict this transient behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting actuation. The predictions of the transient behavior of droplet shape and contact radius are in excellent agreement with our experimental measurements. The internal fluid motion is explained, and the droplet motion is shown to initiate from the contact line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the overall droplet motion and the contact line velocities. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.
Packings of a charged line on a sphere.
Alben, Silas
2008-12-01
We find equilibrium configurations of open and closed lines of charge on a sphere, and track them with respect to varying sphere radius. Closed lines transition from a circle to a spiral-like shape through two low-wave-number bifurcations-"baseball seam" and "twist"-which minimize Coulomb energy. The spiral shape is the unique stable equilibrium of the closed line. Other unstable equilibria arise through tip-splitting events. An open line transitions smoothly from an arc of a great circle to a spiral as the sphere radius decreases. Under repulsive potentials with faster-than-Coulomb power-law decay, the spiral is tighter in initial stages of sphere shrinkage, but at later stages of shrinkage the equilibria for all repulsive potentials converge on a spiral with uniform spacing between turns. Multiple stable equilibria of the open line are observed.
Andres, Ryan J; Bowman, Daryl T; Kaur, Baljinder; Kuraparthy, Vasu
2014-01-01
A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L (o) ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.
NASA Astrophysics Data System (ADS)
Schneider, Thomas
2015-03-01
High-quality frequency comb sources like femtosecond-lasers have revolutionized the metrology of fundamental physical constants. The generated comb consists of frequency lines with an equidistant separation over a bandwidth of several THz. This bandwidth can be broadened further to a super-continuum of more than an octave through propagation in nonlinear media. The frequency separation between the lines is defined by the repetition rate and the width of each comb line can be below 1 Hz, even without external stabilization. By extracting just one of these lines, an ultra-narrow linewidth, tunable laser line for applications in communications and spectroscopy can be generated. If two lines are extracted, the superposition of these lines in an appropriate photo-mixer produces high-quality millimeter- and THz-waves. The extraction of several lines can be used for the creation of almost-ideally sinc-shaped Nyquist pulses, which enable optical communications with the maximum-possible baud rate. Especially combs generated by low-cost, small-footprint fs-fiber lasers are very promising. However due to the resonator length, the comb frequencies have a typical separation of 80 - 100 MHz, far too narrow for the selection of single tones with standard optical filters. Here the extraction of single lines of an fs-fiber laser by polarization pulling assisted stimulated Brillouin scattering is presented. The application of these extracted lines as ultra-narrow, stable and tunable laser lines, for the generation of very high-quality mm and THz-waves with an ultra-narrow linewidth and phase noise and for the generation of sinc-shaped Nyquist pulses with arbitrary bandwidth and repetition rate is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delpassand, M.S.
The power section of a mud driven progressing cavity drill motors consists of a steel rotor shaped with an external helix rotating within a stationary tube with a molded helical elastomeric lining (stator). Operating temperature of the elastomer lining is an important parameter that affects the stator life. Motor operating conditions such as down hole temperature, torque, differential pressure, and speed determine the elastomer temperature. This paper presents an analysis technique to predict stator elastomer temperature as a function of the motor`s operating parameters. A non-linear finite element analysis technique is used to predict the stator temperature. Physical and mechanicalmore » properties of the elastomer are measured, using laboratory equipment such as Monsanto`s RPA2000 dynamic analyzer and BFGoodrich model (II) flexometer. Boundary conditions of the finite element model are defined based on the down hole temperature, differential pressure, and the motor`s speed. Results of the finite element analysis are compared with laboratory test data to verify the accuracy of the analysis.« less
Compagnon, Julien; Barone, Vanessa; Rajshekar, Srivarsha; Kottmeier, Rita; Pranjic-Ferscha, Kornelija; Behrndt, Martin; Heisenberg, Carl-Philipp
2014-12-22
Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. Copyright © 2014 Elsevier Inc. All rights reserved.
Variable-pulse-shape pulsed-power accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus, Brian S.; Austin, Kevin; Hutsel, Brian Thomas
A variable-pulse-shape pulsed-power accelerator is driven by a large number of independent LC drive circuits. Each LC circuit drives one or more coaxial transmission lines that deliver the circuit's output power to several water-insulated radial transmission lines that are connected in parallel at small radius by a water-insulated post-hole convolute. The accelerator can be impedance matched throughout. The coaxial transmission lines are sufficiently long to transit-time isolate the LC drive circuits from the water-insulated transmission lines, which allows each LC drive circuit to be operated without being affected by the other circuits. This enables the creation of any power pulsemore » that can be mathematically described as a time-shifted linear combination of the pulses of the individual LC drive circuits. Therefore, the output power of the convolute can provide a variable pulse shape to a load that can be used for magnetically driven, quasi-isentropic compression experiments and other applications.« less
Optical Fiber On-Line Detection System for Non-Touch Monitoring Roller Shape
NASA Astrophysics Data System (ADS)
Guo, Y.; Wang, Y. T.
2006-10-01
Basing on the principle of reflective displacement fiber-optic sensor, a high accuracy non-touch on-line optical fiber measurement system for roller shape is presented. The principle and composition of the detection system and the operation process are expatiated also. By using a novel probe of three optical fibers in equal transverse space, the effects of fluctuations in the light source, reflective changing of target surface and the intensity losses in the fiber lines are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network (ANN) is set up. Also by using interpolation method and value filtering to process the signals, effectively reduce the influence of random noise and the vibration of the roller bearing. So enhance the accuracy and resolution remarkably. Experiment proves that the accuracy of the system reach to the demand of practical production process, it provides a new method for the high speed, accurate and automatic on line detection of the mill roller shape.
Graphical Acoustic Liner Design and Analysis Tool
NASA Technical Reports Server (NTRS)
Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)
2016-01-01
An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.
NASA Astrophysics Data System (ADS)
Coe, P. A.; Howell, D. F.; Nickerson, R. B.
2004-11-01
ATLAS is the largest particle detector under construction at CERN Geneva. Frequency scanning interferometry (FSI), also known as absolute distance interferometry, will be used to monitor shape changes of the SCT (semiconductor tracker), a particle tracker in the inaccessible, high radiation environment at the centre of ATLAS. Geodetic grids with several hundred fibre-coupled interferometers (30 mm to 1.5 m long) will be measured simultaneously. These lengths will be measured by tuning two lasers and comparing the resulting phase shifts in grid line interferometers (GLIs) with phase shifts in a reference interferometer. The novel inexpensive GLI design uses diverging beams to reduce sensitivity to misalignment, albeit with weaker signals. One micrometre precision length measurements of grid lines will allow 10 µm precision tracker shape corrections to be fed into ATLAS particle tracking analysis. The technique was demonstrated by measuring a 400 mm interferometer to better than 400 nm and a 1195 mm interferometer to better than 250 nm. Precise measurements were possible, even with poor quality signals, using numerical analysis of thousands of intensity samples. Errors due to drifts in interferometer length were substantially reduced using two lasers tuned in opposite directions and the precision was further improved by linking measurements made at widely separated laser frequencies.
Gabriel, Jan; Petrov, Oleg V; Kim, Youngsik; Martin, Steve W; Vogel, Michael
2015-09-01
We use (7)Li NMR to study the ionic jump motion in ternary 0.5Li2S+0.5[(1-x)GeS2+xGeO2] glassy lithium ion conductors. Exploring the "mixed glass former effect" in this system led to the assumption of a homogeneous and random variation of diffusion barriers in this system. We exploit that combining traditional line-shape analysis with novel field-cycling relaxometry, it is possible to measure the spectral density of the ionic jump motion in broad frequency and temperature ranges and, thus, to determine the distribution of activation energies. Two models are employed to parameterize the (7)Li NMR data, namely, the multi-exponential autocorrelation function model and the power-law waiting times model. Careful evaluation of both of these models indicates a broadly inhomogeneous energy landscape for both the single (x=0.0) and the mixed (x=0.1) network former glasses. The multi-exponential autocorrelation function model can be well described by a Gaussian distribution of activation barriers. Applicability of the methods used and their sensitivity to microscopic details of ionic motion are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fatome, Julien; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe
2016-04-01
Versatile and easy to implement methods to generate arbitrary optical waveforms at high repetition rates are of considerable interest with applications in optical communications, all-optical signal processing, instrumentation systems and microwave signal manipulation. While shaping sinusoidal, Gaussian or hyperbolic secant intensity profiles is commonly achieved by means of modulators or mode-locked lasers, other pulse profiles such as parabolic, triangular or flat-top shapes still remain challenging to synthesize. In this context, several strategies were already explored. First, the linear pulse shaping is a common method to carve an initial ultrashort pulse train into the desired shape. The line-by-line shaping of a coherent frequency comb made of tens of spectral components was also investigated to generate more complex structures whereas Fourier synthesis of a few discrete frequencies spectrum was exploited to efficiently generate high-fidelity ultrafast periodic intensity profiles. Besides linear shaping techniques, several nonlinear methods were implemented to benefit from the adiabatic evolution of the intensity pulse profile upon propagation in optical fibers. Other examples of efficient methods are based on the photonic generation involving specific Mach-Zehnder modulators, microwave photonic filters as well as frequency-to-time conversion. In this contribution, we theoretically and experimentally demonstrate a new approach enabling the synthesis of periodic high-repetition rate pulses with various intensity profiles ranging from parabola to triangular and flat-top pulses. More precisely by linear phase and amplitude shaping of only four spectral lines is it possible to reach the targeted temporal profile. Indeed, tailoring the input symmetric spectrum only requires the determination of two physical parameters: the phase difference between the inner and outer spectral sidebands and the ratio between the amplitude of these sidebands. Therefore, a systematic bidimensional analysis provides the optimum parameters and also highlights that switching between the different waveforms is achieved by simply changing the spectral phase between the inner and outer sidebands. We successfully validate this concept with the generation of high-fidelity ultrafast periodic waveforms at 40 GHz by shaping with a liquid cristal on insulator a four sideband comb resulting from a phase-modulated continuous wave. In order to reach higher repetition rates, we also describe a new scenario to obtain the required initial spectrum by taking advantage of the four-wave mixing process occurring in a highly nonlinear fiber. This approach is experimentally implemented at a repetition rate of 80-GHz by use of intensity and phase measurements that stress that full-duty cycle, high-quality, triangular, parabolic or flat-top profiles are obtained in full agreement with numerical simulations. The reconfigurable property of this photonic waveform generator is confirmed. Finally, the generation of bunch of shaped pulses is investigated, as well as the impact of Brillouin backscattering.
Implementing a new EPR lineshape parameter for organic radicals in carbonaceous matter.
Bourbin, Mathilde; Du, Yann Le; Binet, Laurent; Gourier, Didier
2013-07-17
Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to suffice to fully determine a single EPR line. In this paper, we give the definition and practical implementation of a new EPR parameter based on the signal shape that we call the R10 factor. This parameter was originally defined in the case of a single symmetric EPR line and used as a new datation method for organic matter in the field of exobiology. Combined to classical EPR parameters, the proposed shape parameter provides a full description of an EPR spectrum and opens the way to novel applications like datation. Such a parameter is a powerful tool for future EPR studies, not only of carbonaceous matter, but also of any substance which spectrum exhibits a single symmetric line. The paper is a literate program-written using Noweb within the Org-mode as provided by the Emacs editor- and it also describes the full data analysis pipeline that computes the R10 on a real EPR spectrum.
Development of the Miniature Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Matsumoto, N.; Yasukawa, Y.; Ohshima, K.; Toyama, K.; Tsukahara, Y.; Kamoshita, T.; Takeuchi, T.
2004-06-01
Fuji Electric has developed a pulse tube cryocooler (PTC) with in-line configuration with a cooling capacity of 3 W at 70 K and requiring 100 W of electrical input power. The emphasis has been on compactness, lightweight, high performance and low cost. In particular, the dimensions of the PTC have been reduced to a width of 190 mm and a height of 300 mm. Presently, we are developing a U-shaped PTC based on the technology of the in-line PTC. The advantage of the U-shaped PTC is that the cold head is located at the end for easy accessing. The key issue for developing the U-shaped PTC is the design of the flow straightener at the cold head. As a first step in the development we visualized the inside of the pulse tube by using particle image velocimetry (PIV). The design of the flow straightener is based on the visualization results. Preliminary tests indicated that the cooling performance of the U-shaped PTC is 2 W at 70 K while requiring 51 W PV power. We will present the test results on the U-shaped PTC as well as the in-line PTC.
557 GHz Observations of Water Vapor Outflow from VY Canis Majoris and W Hydrae
NASA Astrophysics Data System (ADS)
Harwit, Martin; Bergin, Edwin A.
2002-02-01
We report the first detection of thermal water vapor emission in the 557 GHz, 110-101 ground-state transition of ortho-H2O toward VY Canis Majoris. In observations obtained with the Submillimeter Wave Astronomy Satellite, we measured a flux of ~450 Jy, in a spectrally resolved line centered on a velocity vLSR=25 km s-1 with an FWHM of ~35 km s-1, somewhat dependent on the assumed line shape. We analyze the line shape in the context of three different radial outflow models for which we provide analytical expressions. We also detected a weaker 557 GHz emission line from W Hydrae. We find that these and other H2O emission-line strengths scale as suggested by Zubko and Elitzur.
NASA Astrophysics Data System (ADS)
Long, D. A.; Wójtewicz, S.; Miller, C. E.; Hodges, J. T.
2015-08-01
We present new high accuracy measurements of the (30012)←(00001) CO2 band near 1575 nm recorded with a frequency-agile, rapid scanning cavity ring-down spectrometer. The resulting spectra were fit with the partially correlated, quadratic-speed-dependent Nelkin-Ghatak profile with line mixing. Significant differences were observed between the fitted line shape parameters and those found in existing databases, which are based upon more simplistic line profiles. Absolute transition frequencies, which were referenced to an optical frequency comb, are given, as well as the other line shape parameters needed to model this line profile. These high accuracy measurements should allow for improved atmospheric retrievals of greenhouse gas concentrations by current and future remote sensing missions.
21 CFR 872.1850 - Lead-lined position indicator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lead-lined position indicator. 872.1850 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1850 Lead-lined position indicator. (a) Identification. A lead-lined position indicator is a cone-shaped device lined with lead that is attached to a...
21 CFR 872.1850 - Lead-lined position indicator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lead-lined position indicator. 872.1850 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1850 Lead-lined position indicator. (a) Identification. A lead-lined position indicator is a cone-shaped device lined with lead that is attached to a...
21 CFR 872.1850 - Lead-lined position indicator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lead-lined position indicator. 872.1850 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1850 Lead-lined position indicator. (a) Identification. A lead-lined position indicator is a cone-shaped device lined with lead that is attached to a...
21 CFR 872.1850 - Lead-lined position indicator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lead-lined position indicator. 872.1850 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1850 Lead-lined position indicator. (a) Identification. A lead-lined position indicator is a cone-shaped device lined with lead that is attached to a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkhitaryan, V. V.; Danilovic, D.; Hippola, C.
We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π-conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing amore » monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I/I is ∝ PL within the PPR model, while it is ∝ P2L crossing over to P3L within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Lastly, our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.« less
Mkhitaryan, V. V.; Danilovic, D.; Hippola, C.; ...
2018-01-03
We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π-conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing amore » monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I/I is ∝ PL within the PPR model, while it is ∝ P2L crossing over to P3L within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Lastly, our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.« less
NASA Astrophysics Data System (ADS)
Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.
2018-01-01
We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.
Schmidtmann, Gunnar; Kingdom, Frederick A A
2017-05-01
Radial frequency (RF) patterns, which are sinusoidal modulations of a radius in polar coordinates, are commonly used to study shape perception. Previous studies have argued that the detection of RF patterns is either achieved globally by a specialized global shape mechanism, or locally using as cue the maximum tangent orientation difference between the RF pattern and the circle. Here we challenge both ideas and suggest instead a model that accounts not only for the detection of RF patterns but also for line frequency patterns (LF), i.e. contours sinusoidally modulated around a straight line. The model has two features. The first is that the detection of both RF and LF patterns is based on curvature differences along the contour. The second is that this curvature metric is subject to what we term the Curve Frequency Sensitivity Function, or CFSF, which is characterized by a flat followed by declining response to curvature as a function of modulation frequency, analogous to the modulation transfer function of the eye. The evidence that curvature forms the basis for detection is that at very low modulation frequencies (1-3 cycles for the RF pattern) there is a dramatic difference in thresholds between the RF and LF patterns, a difference however that disappears at medium and high modulation frequencies. The CFSF feature on the other hand explains why thresholds, rather than continuously declining with modulation frequency, asymptote at medium and high modulation frequencies. In summary, our analysis suggests that the detection of shape modulations is processed by a common curvature-sensitive mechanism that is subject to a shape-frequency-dependent transfer function. This mechanism is independent of whether the modulation is applied to a circle or a straight line. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iisaka, Joji; Sakurai-Amano, Takako
1994-08-01
This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.
NASA Astrophysics Data System (ADS)
Koshelev, Alexei
2013-03-01
Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.
Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu
2015-01-01
The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.
NASA Astrophysics Data System (ADS)
Rutkowski, Lucile; Masłowski, Piotr; Johansson, Alexandra C.; Khodabakhsh, Amir; Foltynowicz, Aleksandra
2018-01-01
Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadband high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution matched to the comb mode spacing. Here we describe in detail the experimental and numerical steps needed to achieve sub-nominal resolution and retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3ν1 + ν3 band of CO2 around 1575 nm with line widths narrower than the nominal resolution. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.
Recommended Isolated-Line Profile for Representing High-Resolution Spectroscoscopic Transitions
NASA Astrophysics Data System (ADS)
Tennyson, J.; Bernath, P. F.; Campargue, A.; Császár, A. G.; Daumont, L.; Gamache, R. R.; Hodges, J. T.; Lisak, D.; Naumenko, O. V.; Rothman, L. S.; Tran, H.; Hartmann, J.-M.; Zobov, N. F.; Buldyreva, J.; Boone, C. D.; De Vizia, M. Domenica; Gianfrani, L.; McPheat, R.; Weidmann, D.; Murray, J.; Ngo, N. H.; Polyansky, O. L.
2014-06-01
Recommendations of an IUPAC Task Group, formed in 2011 on "Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and theory" (Project No. 2011-022-2-100), on line profiles of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules are presented. The well-documented inadequacies of the Voigt profile, used almost universally by databases and radiative-transfer codes to represent pressure effects and Doppler broadening in isolated vibrational-rotational and pure rotational transitions of the water molecule, have resulted in the development of a variety of alternative line profile models. These models capture more of the physics of the influence of pressure on line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially-Correlated quadratic-Speed-Dependent Hard-Collision profile should be adopted as the appropriate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann-Tran profile (HTP). This profile is sophisticated enough to capture the various collisional contributions to the isolated line shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including the Voigt profile, under certain simplifying assumptions. For further details see: J. Tennyson et al, Pure Appl. Chem., 2014, in press.
NASA Technical Reports Server (NTRS)
Boissoles, J.; Boulet, C.; Robert, D.; Green, S.
1987-01-01
Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.
FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel
NASA Astrophysics Data System (ADS)
Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu
2014-12-01
The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.
C 3, A Command-line Catalog Cross-match Tool for Large Astrophysical Catalogs
NASA Astrophysics Data System (ADS)
Riccio, Giuseppe; Brescia, Massimo; Cavuoti, Stefano; Mercurio, Amata; di Giorgio, Anna Maria; Molinari, Sergio
2017-02-01
Modern Astrophysics is based on multi-wavelength data organized into large and heterogeneous catalogs. Hence, the need for efficient, reliable and scalable catalog cross-matching methods plays a crucial role in the era of the petabyte scale. Furthermore, multi-band data have often very different angular resolution, requiring the highest generality of cross-matching features, mainly in terms of region shape and resolution. In this work we present C 3 (Command-line Catalog Cross-match), a multi-platform application designed to efficiently cross-match massive catalogs. It is based on a multi-core parallel processing paradigm and conceived to be executed as a stand-alone command-line process or integrated within any generic data reduction/analysis pipeline, providing the maximum flexibility to the end-user, in terms of portability, parameter configuration, catalog formats, angular resolution, region shapes, coordinate units and cross-matching types. Using real data, extracted from public surveys, we discuss the cross-matching capabilities and computing time efficiency also through a direct comparison with some publicly available tools, chosen among the most used within the community, and representative of different interface paradigms. We verified that the C 3 tool has excellent capabilities to perform an efficient and reliable cross-matching between large data sets. Although the elliptical cross-match and the parametric handling of angular orientation and offset are known concepts in the astrophysical context, their availability in the presented command-line tool makes C 3 competitive in the context of public astronomical tools.
NASA Astrophysics Data System (ADS)
Gibson, Justus; Stencel, Robert E.; ARCES Team; Ketzeback, W.; Barentine, J.; Bradley, A.; Coughlin, J.; Dembicky, J.; Hawley, S.; Huehnerhoff, J.; Leadbeater, R.; McMillan, R.; Saurage, G.; Schmidt, S.; Ule, N.; Wallerstein, G.; York, D.
2018-06-01
Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. One hundred and sixteen epochs of data were obtained between 2009 and 2012, and equivalent widths and line velocities measured for high versus low eccentricity accretion disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830A line, and the discovery of the P Cygni shape of the Pa-beta line at third contact. We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualized the disk and stream interaction using SHAPE software, and used CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with log nH = 11 cm-3 and temperature of 20,000 K, consistent with a mid-B type central star. We thank the following for their contributions to this paper: William Ketzeback, John Barentine, Jeffrey Coughlin, Robin Leadbeater, Gabrelle Saurage, and others. This paper has been submitted to Monthly Notices.
NASA Astrophysics Data System (ADS)
Rohart, François
2017-01-01
In a previous paper [Rohart et al., Phys Rev A 2014;90(042506)], the influence of detection-bandwidth properties on observed line-shapes in precision spectroscopy was theoretically modeled for the first time using the basic model of a continuous sweeping of the laser frequency. Specific experiments confirmed general theoretical trends but also revealed several insufficiencies of the model in case of stepped frequency scans. As a consequence in as much as up-to-date experiments use step-by-step frequency-swept lasers, a new model of the influence of the detection-bandwidth is developed, including a realistic timing of signal sampling and frequency changes. Using Fourier transform techniques, the resulting time domain apparatus function gets a simple analytical form that can be easily implemented in line-shape fitting codes without any significant increase of computation durations. This new model is then considered in details for detection systems characterized by 1st and 2nd order bandwidths, underlining the importance of the ratio of detection time constant to frequency step duration, namely for the measurement of line frequencies. It also allows a straightforward analysis of corresponding systematic deviations on retrieved line frequencies and broadenings. Finally, a special attention is paid to consequences of a finite detection-bandwidth in Doppler Broadening Thermometry, namely to experimental adjustments required for a spectroscopic determination of the Boltzmann constant at the 1-ppm level of accuracy. In this respect, the interest of implementing a Butterworth 2nd order filter is emphasized.
SHAPEMOL: Modelling molecular line emission in protoplanetary and planetary nebulae with SHAPE
NASA Astrophysics Data System (ADS)
Santander-García, M.; Bujarrabal, V.; Steffen, W.; Koning, N.
2014-04-01
Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window for probing molecular warm gas (˜50-1000 K). On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE v5.0 with which we intend to fill the so far empty molecular niche. Shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the young planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the 12CO and 13CO J=1-0 to J=17-16 lines. Shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.
"A" shape plate for open rigid internal fixation of mandible condyle neck fracture.
Kozakiewicz, Marcin; Swiniarski, Jacek
2014-09-01
Reduction of the fracture is crucial for proper outcome of the treatment. The stability of reduction is closed connected to the method of its fixation. The topic of condylar fracture osteosynthesis still remains highly controversial and challenging. That is why authors decided to propose novel design of the fixating plate and the example of its application. The aim of this study was to present A-shape plate dedicated to rigid fixation of mandible condyle neck fracture. A-shape condylar plate (ACP) design is prepared of 1.0 mm thick titanium alloy (grade 5) sheet: posterior and anterior bars are reinforced by widening to 2.5 mm and anatomically curved along the compression and traction lines in ramus and condylar neck. Superior three-hole-group has triangular organization and located on the level of condylar head. The inferior extensions of the bars are equipped in three holes located at each of lower tails. Connecting bar (2.0 mm wide) connects the first hole of each lower tails closing upper part of ACP in triangular shape. The connecting bar runs along compression line of condylar neck. Holes in ACP has 2.0 mm diameter for locking or normal screws. Height of ACP is 31 mm. The proposed new type of plate was compared by finite element analysis (FEA) to nowadays manufactured 9-hole trapezoid plate as the most similar device. ACP design was evaluated by finite element analysis (FEA) and later applied in patient affected with high condylar neck fracture complicated by fracture of coronoid process. FEA revealed high strength of ACP and more stabile fixation than trapezoid plate. The result was caused by multipoint fixation at three regions of the plate and reinforced bars supported by semi-horizontal connecting bar. Clinical application of ACP was as versatile as makes possible to simultaneous fixation of high condylar neck and coronoid process fracture. Application of proposed A-shape condylar plate would be possible in all levels of neck fractures and can be use for stabilization additionally existed coronoid process fracture. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Viability of Using Diamond Field Emitter Array Cathodes in Free Electron Lasers
2010-06-01
essential component of a field emitter array is the shape of the electric field lines and equipotential lines at the surface of the array. The...BARRIER AND QUANTUM TUNNELING ...........25 B. FIELD ENHANCEMENT AND SURFACE PROTRUSIONS .........26 C. ELECTRIC FIELDS AND ELECTRON TRAVEL...26 Figure 4. Diagram of a protrusion (triangular in shape) from the surface of a cathode. The protrusion is of height h, with a
Improved Characterization of Healthy and Malignant Tissue by NMR Line-Shape Relaxation Correlations
Peemoeller, H.; Shenoy, R.K.; Pintar, M.M.; Kydon, D.W.; Inch, W.R.
1982-01-01
We performed a relaxation-line-shape correlation NMR experiment on muscle, liver, kidney, and spleen tissues of healthy mice and of mouse tumor tissue. In each tissue studied, five spin groups were resolved and characterized by their relaxation parameters. We report a previously uncharacterized semi-solid spin group and discuss briefly the value of this method for the identification of malignant tissues. PMID:7104438
Finger vein recognition using local line binary pattern.
Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin
2011-01-01
In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).
Coil extensions improve line shapes by removing field distortions
NASA Astrophysics Data System (ADS)
Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.
2018-06-01
The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.
An improved quasistatic line-shape theory: The effects of molecular motion on the line wings
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, Richard H.
1994-01-01
A theory is presented for the modification of the line-shape functions and absorption coefficient due to the breakdown of the quasistatic approximation. This breakdown arises from the effects of molecular motion and increases the absorption in the near wings. Numerical calculations for the high-frequency wing of the nu(sub 3) band of CO2 broadened by Ar are reported and it is shown that these effects are significant near the bandhead. The importance of such corrections in other spectral regions and for other systems is discussed briefly.
Fingered bola body, bola with same, and methods of use
NASA Technical Reports Server (NTRS)
Dzenitis, John M. (Inventor); Billica, Linda W. (Inventor)
1994-01-01
The present invention discloses bola bodies, bolas, and a snaring method which makes use such devices. A bola body, according to the present invention, is nonspherical or irregular in shape rather than a smooth sphere or ovoid body. One or more fingers extends from the bola body. These fingers may be relatively straight or they may have crooked or bent portions to enhance entanglement with a bola line or lines or with each other. Two or more of such fingers may be used and may be regularly or irregularly spaced apart on a bola body. A bola with such bodies includes lines which are connected to the other bodies. In one particular embodiment of a bola body, according to the present invention, the body has an irregular shape with a bottom rectangular portion and a top pyramid portion forming a nose. A plurality of fingers is extended from the pyramidal top portion with one finger extended up and away from each of four corners of the top portion. Such a bola body tends to be initially oriented with its nose and fingers against an object being snared since the body is pulled nose first when a bola line is secured at the tip of the pyramidal portion of the bola body. With such a bola, an unwrapping bola body can slip around a target member so that two of the rod-shaped fingers catch a bola line and guide it into an area or crook between the fingers and a side of the top pyramidal portion of the bola body. Tension on the bola line maintains the line in the crook and tends to press the fingers against the unwrapped target member to stabilize the wrapping of the line about the target member. With such a bola, it is difficult for two or more lines unwrapping in different directions to move past one another without being forced together by line tension. Also, the fingers of such bola bodies may hook and hold each other. The fingers may also hook or entangle some object on or portion of the target member. A probable known target member has known dimensions and shapes so that the bola may be sized and configured to reliably snare such a known target. The bolas can be optimally sized, fashioned, and configured to contact and hold a probable target of known size, dimension, and shape.
Spectral Line-Shape Model to Replace the Voigt Profile in Spectroscopic Databases
NASA Astrophysics Data System (ADS)
Lisak, Daniel; Ngo, Ngoc Hoa; Tran, Ha; Hartmann, Jean-Michel
2014-06-01
The standard description of molecular line shapes in spectral databases and radiative transfer codes is based on the Voigt profile. It is well known that its simplified assumptions of absorber free motion and independence of collisional parameters from absorber velocity lead to systematic errors in analysis of experimental spectra, and retrieval of gas concentration. We demonstrate1,2 that the partially correlated quadratic speed-dependent hardcollision profile3. (pCqSDHCP) is a good candidate to replace the Voigt profile in the next generations of spectroscopic databases. This profile takes into account the following physical effects: the Doppler broadening, the pressure broadening and shifting of the line, the velocity-changing collisions, the speed-dependence of pressure broadening and shifting, and correlations between velocity- and phase/state-changing collisions. The speed-dependence of pressure broadening and shifting is incorporated into the pCqSDNGP in the so-called quadratic approximation. The velocity-changing collisions lead to the Dicke narrowing effect; however in many cases correlations between velocityand phase/state-changing collisions may lead to effective reduction of observed Dicke narrowing. The hard-collision model of velocity-changing collisions is also known as the Nelkin-Ghatak model or Rautian model. Applicability of the pCqSDHCP for different molecular systems was tested on calculated and experimental spectra of such molecules as H2, O2, CO2, H2O in a wide span of pressures. For all considered systems, pCqSDHCP is able to describe molecular spectra at least an order of magnitude better than the Voigt profile with all fitted parameters being linear with pressure. In the most cases pCqSDHCP can reproduce the reference spectra down to 0.2% or better, which fulfills the requirements of the most demanding remote-sensing applications. An important advantage of pCqSDHCP is that a fast algorithm for its computation was developedab4,5 and allows for its calculation only a few times slower than the standard Voigt profile. Moreover, the pCqSDHCP reduces to many simpler models commonly used in experimental spectra analysis simply by setting some parameters to zero, and it can be easily extended to incorporate the line-mixing effect in the first-order approximation. The idea of using pCqSDHCP as a standard profile to go beyond the Voigt profile for description of H2O line shapes was recently supported by the IUPAC task group6 which also recommended to call this profile with fast computation algorithm the HTP profile (for Hartmann-Tran).
NASA Astrophysics Data System (ADS)
Yamauchi, Makoto; Iwamoto, Kazuyo
2010-05-01
Line heating is a skilled task in shipbuilding to shape the outer plates of ship hulls. Real-time information on the deformation of the plates during the task would be helpful to workers performing this process. Therefore, we herein propose an interactive scheme for supporting workers performing line heating; the system provides such information through an optical shape measurement instrument combined with an augmented reality (AR) system. The instrument was designed and fabricated so that the measured data were represented using coordinates based on fiducial markers. Since the markers were simultaneously used in the AR system for the purpose of positioning, the data could then be displayed to the workers through a head-mounted display as a virtual image overlaid on the plates. Feedback of the shape measurement results was thus performed in real time using the proposed system.
The Micromechanics of the Moving Contact Line
NASA Technical Reports Server (NTRS)
Lichter, Seth
1999-01-01
A transient moving contact line is investigated experimentally. The dynamic interface shape between 20 and 800 microns from the contact line is compared with theory. A novel experiment is devised, in which the contact line is set into motion by electrically altering the solid-liquid surface tension gamma(sub SL). The contact line motion simulates that of spontaneous wetting along a vertical plate with a maximum capillary number Ca approx. = 4 x 10(exp -2). The images of the dynamic meniscus are analyzed as a funtion of Ca. For comparison, the steady-state hydrodynamic equation based on the creeping flow model in a wedge geometry and the three-region uniform perturbation expansion of Cox (1986) is adopted. The interface shape is well depicted by the uniform solutions for Ca <= 10(exp -3). However, for Ca > 10(exp -3), the uniform solution over-predicts the viscous bending. This over-prediction can be accounted for by modifying the slip coefficient within the intermediate solution. With this correction, the measured interface shape is seen to match the theoretical prediction for all capillary numbers. The amount of slip needed to fit the measurements does not scale with the capillary number.
Atomic Physics of Shocked Plasma in Winds of Massive Stars
NASA Technical Reports Server (NTRS)
Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.
2012-01-01
High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure
Bergman, Casey M.; Haddrill, Penelope R.
2015-01-01
To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center. PMID:25717372
Bergman, Casey M; Haddrill, Penelope R
2015-01-01
To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center.
NASA Astrophysics Data System (ADS)
Mallamace, D.; Vasi, S.; Missori, M.; Corsaro, C.
2016-05-01
The action of water within biological systems is strictly linked either with their physical chemical properties and with their functions. Cellulose is one of the most studied biopolymers due to its biological importance and its wide use in manufactured products. Among them, paper is mainly constituted by an almost equimolar ratio of cellulose and water. Therefore the study of the behavior of water within pristine and aged paper samples can help to shed light on the degradation mechanisms that irremediably act over time and spoil paper. In this work we present Nuclear Magnetic Resonance (NMR) experiments on modern paper samples made of pure cellulose not aged and artificially aged as well as on ancient paper samples made in 1413 in Perpignan (France). The line shape parameters of the proton NMR spectra were studied as a function of the hydration content. Results indicate that water in aged samples is progressively involved in the hydration of the byproducts of cellulose degradation. This enhances the degradation process itself through the progressive consumption of the cellulose amorphous regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V
2006-07-31
A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern,more » considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)« less
Jalalian, Athena; Tay, Francis Eng Hock; Arastehfar, Soheil; Gibson, Ian; Liu, Gabriel
2017-04-01
In multi-body models of scoliotic spine, personalization of mechanical properties of joints significantly improves reconstruction of the spine shape. In personalization methods based on lateral bending test, simulation of bending positions is an essential step. To simulate, a force is exerted on the spine model in the erect position. The line of action of the force affects the moment of the force about the joints and thus, if not correctly identified, causes over/underestimation of mechanical properties. Therefore, we aimed to identify the line of action, which has got little attention in previous studies. An in-depth analysis was performed on the scoliotic spine movement from the erect to four spine positions in the frontal plane by using pre-operative X-rays of 18 adolescent idiopathic scoliosis (AIS) patients. To study the movement, the spine curvature was considered as a 2D chain of micro-scale motion segments (MMSs) comprising rigid links and 1-degree-of-freedom (DOF) rotary joints. It was found that two MMSs representing the inflection points of the erect spine had almost no rotation (0.0028° ± 0.0021°) in the movement. The small rotation can be justified by weak moment of the force about these MMSs due to very small moment arm. Therefore, in the frontal plane, the line of action of the force to simulate the left/right bending position was defined as the line that passes through these MMSs in the left/right bending position. Through personalization of a 3D spine model for our patients, we demonstrated that our line of action could result in good estimates of the spine shape in the bending positions and other positions not included in the personalization, supporting our proposed line of action.
Objects of attention, objects of perception.
Avrahami, J
1999-11-01
Four experiments were conducted, to explore the notion of objects in perception. Taking as a starting point the effects of display content on rapid attention transfer and manipulating curvature, closure, and processing time, a link between objects of attention and objects of perception is proposed. In Experiment 1, a number of parallel, equally spaced, straight lines facilitated attention transfer along the lines, relative to transfer across the lines. In Experiment 2, with curved, closed-contour shapes, no "same-object" facilitation was observed. However, when a longer time interval was provided, in Experiment 3, a same-object advantage started to emerge. In Experiment 4, using the same curved shapes but in a non-speeded distance estimation task, a strong effect of objects was observed. It is argued that attention transfer is facilitated by line tracing but that line tracing is encouraged by objects.
Chemical information obtained from Auger depth profiles by means of advanced factor analysis (MLCFA)
NASA Astrophysics Data System (ADS)
De Volder, P.; Hoogewijs, R.; De Gryse, R.; Fiermans, L.; Vennik, J.
1993-01-01
The advanced multivariate statistical technique "maximum likelihood common factor analysis (MLCFA)" is shown to be superior to "principal component analysis (PCA)" for decomposing overlapping peaks into their individual component spectra of which neither the number of components nor the peak shape of the component spectra is known. An examination of the maximum resolving power of both techniques, MLCFA and PCA, by means of artificially created series of multicomponent spectra confirms this finding unambiguously. Substantial progress in the use of AES as a chemical-analysis technique is accomplished through the implementation of MLCFA. Chemical information from Auger depth profiles is extracted by investigating the variation of the line shape of the Auger signal as a function of the changing chemical state of the element. In particular, MLCFA combined with Auger depth profiling has been applied to problems related to steelcord-rubber tyre adhesion. MLCFA allows one to elucidate the precise nature of the interfacial layer of reaction products between natural rubber vulcanized on a thin brass layer. This study reveals many interesting chemical aspects of the oxi-sulfidation of brass undetectable with classical AES.
NASA Astrophysics Data System (ADS)
Ikeno, Rimon; Mita, Yoshio; Asada, Kunihiro
2017-04-01
High-throughput electron-beam lithography (EBL) by character projection (CP) and variable-shaped beam (VSB) methods is a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as standard-cell logics and memory arrays. However, non-VLSI applications like MEMS and MOEMS may not fully utilize the benefits of CP method due to their wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear on such irregular edges by VSB exposure often result in intolerable edge roughness, which may degrade performances of the fabricated devices. In our former study, we proposed a general EBL methodology for such applications utilizing a combination of CP and VSB methods, and demonstrated its capabilities in electron beam (EB) shot reduction and edge-quality improvement by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and high-resolution Hydrogen Silsesquioxane resist. Both scanning electron microscope and atomic force microscope observations were used to analyze quality of the resist edge profiles to determine the influence of the control parameters used in the exposure-data preparation process. In this study, we carried out detailed analysis of the captured edge profiles utilizing Fourier analysis, and successfully distinguish the systematic undulation by the exposed CP character profiles from random roughness components. Such capability of precise edge-roughness analysis is useful to our EBL methodology to maintain both the line-edge quality and the exposure throughput by optimizing the control parameters in the layout data conversion.
NASA Astrophysics Data System (ADS)
Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar
2018-06-01
Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Steger, J. L.
1980-01-01
A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).
Analysis Of Scoliosis By Back Shape Topography
NASA Astrophysics Data System (ADS)
Turner-Smith, Alan R.; Harris, John D.
1983-07-01
The use of surface topography for the assessment of scoliotic deformity in the clinic depends firstly on the quality of measures which reliably characterise deformity of the back, and secondly on the ease and speed with which these measures can be applied. A method of analysis of back shape measurements is presented which can be applied to any topographic measurement system. Measures presented are substantially independent of minor changes in the patient's posture in rotation and flexion from one clinic to the next, and yet sensitive enough to indicate significant improvement or degeneration of the disease. The presentation shows (1) horizontal cross-sections at ten levels up the back from sacrum to vertebra prominens, (2) angles of rotation of the surface over a small region about the spine, (3) three vertical profiles following the line of the spine, and (4) measures of maximum kyphosis and lordosis. Dependence on the operator has been reduced to a minimum. Extreme care in positioning the patient is unnecessary and those spinous processes which are easily palpable, the vertebra prominens and the two dimples over the posterior superior iliac spines are marked. Analysis proceeds entirely automatically once the basic shape data have been supplied. Applications of the technique to indirect moire topography and a television topographic measurement system are described.
Noninvasive deep Raman detection with 2D correlation analysis
NASA Astrophysics Data System (ADS)
Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug
2014-07-01
The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.
Structural Analysis in a Conceptual Design Framework
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
Barone, Vincenzo; Biczysko, Malgorzata; Borkowska-Panek, Monika; Bloino, Julien
2014-10-20
The subtle interplay of several different effects means that the interpretation and analysis of experimental spectra in terms of structural and dynamic characteristics is a challenging task. In this context, theoretical studies can be helpful, and as such, computational spectroscopy is rapidly evolving from a highly specialized research field toward a versatile and widespread tool. However, in the case of electronic spectra (e.g. UV/Vis, circular dichroism, photoelectron, and X-ray spectra), the most commonly used methods still rely on the computation of vertical excitation energies, which are further convoluted to simulate line shapes. Such treatment completely neglects the influence of nuclear motions, despite the well-recognized notion that a proper account of vibronic effects is often mandatory to correctly interpret experimental findings. Development and validation of improved models rooted into density functional theory (DFT) and its time-dependent extension (TD-DFT) is of course instrumental for the optimal balance between reliability and favorable scaling with the number of electrons. However, the implementation of easy-to-use and effective procedures to simulate vibrationally resolved electronic spectra, and their availability to a wide community of users, is at least equally important for reliable simulations of spectral line shapes for compounds of biological and technological interest. Here, such an approach has been applied to the study of the UV/Vis spectra of chlorophyll a. The results show that properly tailored approaches are feasible for state-of-the-art computational spectroscopy studies, and allow, with affordable computational resources, vibrational and environmental effects on the spectral line shapes to be taken into account for large systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hasani, E; Parravicini, J; Tartara, L; Tomaselli, A; Tomassini, D
2018-05-01
We propose an innovative experimental approach to estimate the two-photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence-based method for the TPA measurement by employing a line-shaped excitation beam, generating a line-shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge-coupled device (CCD) cameras. The method is finally tested on a fluorescent isothiocyanate sample, whose TPA spectrum, which is measured with the proposed technique, is compared with the TPA spectra reported in the literature, confirming the validity of our experimental approach. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Temperature-tunable Fano resonance induced by strong Weyl fermion-phonon coupling in TaAs
NASA Astrophysics Data System (ADS)
Dai, Yaomin; Trugman, S. A.; Zhu, J.-X.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Xu, B.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Qiu, X. G.
Strong coupling between discrete phonon and continuous electron-hole pair excitations can give rise to a pronounced asymmetry in the phonon line shape, known as the Fano resonance. We present infrared spectroscopic studies on the recently discovered Weyl semimetal TaAs at different temperatures. Our experimental results reveal strong coupling between an infrared-active A1 phonon and electronic transitions near the Weyl points (Weyl fermions), as evidenced by the conspicuous asymmetry in the phonon line shape. More interestingly, the phonon line shape can be continuously tuned by temperature, which we demonstrate to arise from the suppression of the electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above the Fermi level. Supported by LANL LDRD and LANL-UCRP programs.
Sivers and Boer-Mulders observables from lattice QCD
NASA Astrophysics Data System (ADS)
Musch, B. U.; Hägler, Ph.; Engelhardt, M.; Negele, J. W.; Schäfer, A.
2012-05-01
We present a first calculation of transverse momentum-dependent nucleon observables in dynamical lattice QCD employing nonlocal operators with staple-shaped, “process-dependent” Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and, in particular, to access nonuniversal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm-gear function g1T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an nf=2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.
Macroecological factors shape local-scale spatial patterns in agriculturalist settlements.
Tao, Tingting; Abades, Sebastián; Teng, Shuqing; Huang, Zheng Y X; Reino, Luís; Chen, Bin J W; Zhang, Yong; Xu, Chi; Svenning, Jens-Christian
2017-11-15
Macro-scale patterns of human systems ranging from population distribution to linguistic diversity have attracted recent attention, giving rise to the suggestion that macroecological rules shape the assembly of human societies. However, in which aspects the geography of our own species is shaped by macroecological factors remains poorly understood. Here, we provide a first demonstration that macroecological factors shape strong local-scale spatial patterns in human settlement systems, through an analysis of spatial patterns in agriculturalist settlements in eastern mainland China based on high-resolution Google Earth images. We used spatial point pattern analysis to show that settlement spatial patterns are characterized by over-dispersion at fine spatial scales (0.05-1.4 km), consistent with territory segregation, and clumping at coarser spatial scales beyond the over-dispersion signals, indicating territorial clustering. Statistical modelling shows that, at macroscales, potential evapotranspiration and topographic heterogeneity have negative effects on territory size, but positive effects on territorial clustering. These relationships are in line with predictions from territory theory for hunter-gatherers as well as for many animal species. Our results help to disentangle the complex interactions between intrinsic spatial processes in agriculturalist societies and external forcing by macroecological factors. While one may speculate that humans can escape ecological constraints because of unique abilities for environmental modification and globalized resource transportation, our work highlights that universal macroecological principles still shape the geography of current human agricultural societies. © 2017 The Author(s).
Line parameters for CO2- and self-broadening in the ν3 band of HD16O
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.
2017-12-01
Pressure-broadened line shape parameters of transitions in the ν3 band of HDO (ν0 = 3707.4 cm-1) were measured from spectra of HDO and mixtures of HDO and CO2 for application to accurate retrievals of HDO abundances and D/H ratios for CO2-rich planetary atmospheres of Mars and Venus. A few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, but the present study represents the first laboratory measurements of those parameters in the ν3 band; Measurements for nearly 100 transitions in the ν3 band have been made. Room temperature measurements of self-broadened width and shift coefficients for all of these transitions, line mixing via off-diagonal relaxation matrix element coefficients and quadratic speed dependence parameter were measured for the majority of these transitions. All these measurements were made by simultaneously fitting eleven high-resolution spectra of HDO and HDO-CO2 mixtures at various temperatures and pressures recorded with the Bruker Fourier transform spectrometer at the Jet Propulsion Laboratory. Two specially built coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to contain the sample mixtures. Multispectrum nonlinear least squares fitting algorithm was employed in the analysis. Calculations using the Modified Complex Robert-Bonamy formalism (MCRB) were made for the half-width coefficients, their temperature dependences and pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. The calculations were made for all ν3 band transitions in the 1100-4100 cm-1 region on the HITRAN2012 database. Present measurements are compared with the MCRB calculations and other literature values.
DISCOVERY OF A WOLF-RAYET STAR THROUGH DETECTION OF ITS PHOTOMETRIC VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littlefield, Colin; Garnavich, Peter; McClelland, Colin
We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 A, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 A line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocularmore » Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 {+-} 0.3 kpc.« less
Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.
2016-05-01
This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0-2815 cm-1 using a detection module consisting of an imaging spectrograph and a CCD camera. A layered sample, which was created by placing a plastic sheet cut from the original container on top of cane sugar, was used to test the capability for subsurface food inspection. A whole set of SORS data was acquired in an offset range of 0-36 mm (two sides of the laser) with a spatial interval of 0.07 mm. Raman spectrum from the cane sugar under the plastic sheet was resolved using self-modeling mixture analysis algorithms, demonstrating the potential of the technique for authenticating foods and ingredients through packaging. The line-scan SORS measurement technique provides a new method for subsurface inspection of food safety and quality.
Resilience and work-life balance in first-line nurse manager.
Kim, Miyoung; Windsor, Carol
2015-03-01
The aim of this study was to explore how first-line nurse managers constructed the meaning of resilience and its relationship to work-life balance for nurses in Korea. Participants were 20 first-line nurse managers working in six university hospitals. Data were collected through in-depth interviews from December 2011 to August 2012, and analyzed using Strauss and Corbin's grounded theory method. Analysis revealed that participants perceived work-life balance and resilience to be shaped by dynamic, reflective processes. The features consisting resilience included "positive thinking", "flexibility", "assuming responsibility", and "separating work and life". This perception of resilience has the potential to facilitate a shift in focus from negative to positive experiences, from rigidity to flexibility, from task-centered to person-centered thinking, and from the organization to life. Recognizing the importance of work-life balance in producing and sustaining resilience in first-line nurse managers could increase retention in the Korean nursing workforce. Copyright © 2015. Published by Elsevier B.V.
Contour entropy: a new determinant of perceiving ground or a hole.
Gillam, Barbara J; Grove, Philip M
2011-06-01
Figure-ground perception is typically described as seeing one surface occluding another. Figure properties, not ground properties, are considered the significant factors. In scenes, however, a near surface will often occlude multiple contours and surfaces, often at different depths, producing alignments that are improbable except under conditions of occlusion. We thus hypothesized that unrelated (high entropy) lines would tend to appear as ground in a figure-ground paradigm more often than similarly aligned ordered (low entropy) lines. We further hypothesized that for lines spanning a closed area, high line entropy should increase the hole-like appearance of that area. These predictions were confirmed in three experiments. The probability that patterned rectangles were seen as ground when alternated with blank rectangles increased with pattern entropy. A single rectangular shape appeared more hole-like when the entropy of the enclosed contours increased. Furthermore, these same contours, with the outline shape removed, gave rise to bounding illusory contours whose strength increased with contour entropy. We conclude that figure-ground and hole perception can be determined by properties of ground in the absence of any figural shape, or surround, factors.
NASA Technical Reports Server (NTRS)
Birn, J.; Hones, E. W., Jr.; Craven, J. D.; Frank, L. A.; Elphinstone, R. D.; Stern, D. P.
1991-01-01
The boundary between open and closed field lines is investigated in the empirical Tsyganenko (1987) magnetic field model. All field lines extending to distances beyond -70 R(E), the tailward velocity limit of the Tsyganenko model are defined as open, while all other field lines, which cross the equatorial plane earthward of -70 R(E) and are connected with the earth at both ends, are assumed closed. It is found that this boundary at the surface of the earth, identified as the polar cap boundary, can exhibit the arrowhead shape, pointed toward the sun, which is found in horse collar auroras. For increasing activity levels, the polar cap increases in area and becomes rounder, so that the arrowhead shape is less pronounced. The presence of a net B(y) component can also lead to considerable rounding of the open flux region. The arrowhead shape is found to be closely associated with the increase of B(z) from the midnight region to the flanks of the tail, consistent with a similar increase of the plasma sheet thickness.
Airborne LIDAR point cloud tower inclination judgment
NASA Astrophysics Data System (ADS)
liang, Chen; zhengjun, Liu; jianguo, Qian
2016-11-01
Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.
Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A
2017-06-01
EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant differences in EPR spectral line broadening and a corresponding inverse central line width between spin-labeled KCNE1 residues located inside and outside of the membrane for lipodisq nanoparticle samples when compared to lipid vesicle samples. These results are consistent with the solution NMR structure of KCNE1. This study will be beneficial for researchers working on studying the structural and dynamic properties of membrane proteins.
Characterizations of coal fly ash nanoparticles and induced in vitro toxicity in cell lines
NASA Astrophysics Data System (ADS)
Sambandam, Bharathi; Palanisami, Eganathan; Abbugounder, Rajasekar; Prakhya, Balakrishnamurthy; Thiyagarajan, Devasena
2014-02-01
The present study illustrates the characterization and cytotoxicity studies of coal fly ash nanoparticles (CFA-NPs). The coal fly ash (CFA) collected from electrostatic precipitator of a coal-fired power plant and the average size of the CFA-NPs was found to be 9-50 nm. Imaging techniques showed predominantly homogenous spherical shaped nanoparticles. The X-ray diffraction analysis and energy dispersive X-ray (EDAX) analysis spectra reveal the elemental constituents of the CFA-NPs contain several toxic heavy metals. Cytotoxicity of CFA-NPs was determined by MTT assay. Cellular metabolism is inhibited in a dose dependent manner by CFA concentrations varying from 13 to 800 μg mL-1. After 48 h exposure, the Hep2, A549 and HepG2 cell lines prove more sensitive to CFA-NPs at varying levels which results in IC50 (50 % inhibitory concentration) cytotoxicity end point.
A single scan skeletonization algorithm: application to medical imaging of trabecular bone
NASA Astrophysics Data System (ADS)
Arlicot, Aurore; Amouriq, Yves; Evenou, Pierre; Normand, Nicolas; Guédon, Jean-Pierre
2010-03-01
Shape description is an important step in image analysis. The skeleton is used as a simple, compact representation of a shape. A skeleton represents the line centered in the shape and must be homotopic and one point wide. Current skeletonization algorithms compute the skeleton over several image scans, using either thinning algorithms or distance transforms. The principle of thinning is to delete points as one goes along, preserving the topology of the shape. On the other hand, the maxima of the local distance transform identifies the skeleton and is an equivalent way to calculate the medial axis. However, with this method, the skeleton obtained is disconnected so it is required to connect all the points of the medial axis to produce the skeleton. In this study we introduce a translated distance transform and adapt an existing distance driven homotopic algorithm to perform skeletonization with a single scan and thus allow the processing of unbounded images. This method is applied, in our study, on micro scanner images of trabecular bones. We wish to characterize the bone micro architecture in order to quantify bone integrity.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Ceselin, Giorgia; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi
2018-06-01
Difluoromethane (CH2F2,HFC-32) presents strong ro-vibrational bands within the 8-12 μm atmospheric window and hence it represents a greenhouse gas able of contributing to global warming. Numerous spectroscopic studies have been devoted to this molecule, however, much information on line-by-line parameters, like line intensities and broadening parameters, is still lacking. In this work, line-by-line spectroscopic parameters are retrieved for several CH2F2 ro-vibrational transitions belonging to the ν7 band located around 8.5 μm. Self-broadening as well N2- and O2- broadening experiments are carried out at room temperature by using a tunable diode laser (TDL) spectrometer. The line shape analysis of CH2F2 self-broadened spectra leads to the determination of resonant frequencies, integrated absorption coefficients and self-broadening parameters, while CH2F2-N2 and CH2F2-O2 broadening coefficients are obtained from foreign-broadening measurements. In addition, the broadening parameters of CH2F2 in air are derived from the N2- and O2- broadening coefficients. The results of the present work provide fundamental information to measure the concentration profiles of this molecule in the atmosphere through remote sensing spectroscopic techniques.
Flux Cloning in Josephson Transmission Lines
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Kusmartsev, F. V.
2006-07-01
We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The “baby” vortex arises at the moment when a “mother” vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect.
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Krejsa, E. A.; Coats, J. W.
1972-01-01
Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.
Finger Vein Recognition Using Local Line Binary Pattern
Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin
2011-01-01
In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP). PMID:22247670
Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts
Wang, Hongju; Liu, Siqing; Zhang, Bo
2016-01-01
Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts. PMID:27893824
Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band
NASA Astrophysics Data System (ADS)
Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.
2018-02-01
To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.
NASA Astrophysics Data System (ADS)
Kiseleva, M.; Mandon, J.; Persijn, S.; Harren, F. J. M.
2018-01-01
Accurate intensity measurements were performed for several lines of the two main isotopologues of carbon dioxide, using cavity ring down spectroscopy. Absorption spectra of the R52e line at 6112.8902 cm-1 (30014←00001 band) of 12CO2 and the P6e line at 6114.8580 cm-1 (30013←00001 band) of 13CO2 were recorded at pressures between 15 and 50 mbar at 298 K. Line shape analysis shows that Galatry profile, taking into account Dicke narrowing of spectral lines, better describes the measured spectra at all pressures than the Voigt profile. The values of Dicke narrowing parameter for both lines were found to be significantly smaller than those predicted based on the mass diffusion constant. The values of the line strength for R52e line of 12CO2 and P6e line of 13CO2 were determined with an uncertainty of 0.5%. These values were found to be in good agreement with the corresponding data available in literature, in particular with the most recent ab initio calculations. The results of relative isotopic ratio 13CO2/12CO2 measurements are also presented in pure carbon dioxide samples and in 400 μmol/mol carbon dioxide in air samples, using cavity ring down spectroscopy.
D Central Line Extraction of Fossil Oyster Shells
NASA Astrophysics Data System (ADS)
Djuricic, A.; Puttonen, E.; Harzhauser, M.; Mandic, O.; Székely, B.; Pfeifer, N.
2016-06-01
Photogrammetry provides a powerful tool to digitally document protected, inaccessible, and rare fossils. This saves manpower in relation to current documentation practice and makes the fragile specimens more available for paleontological analysis and public education. In this study, high resolution orthophoto (0.5 mm) and digital surface models (1 mm) are used to define fossil boundaries that are then used as an input to automatically extract fossil length information via central lines. In general, central lines are widely used in geosciences as they ease observation, monitoring and evaluation of object dimensions. Here, the 3D central lines are used in a novel paleontological context to study fossilized oyster shells with photogrammetric and LiDAR-obtained 3D point cloud data. 3D central lines of 1121 Crassostrea gryphoides oysters of various shapes and sizes were computed in the study. Central line calculation included: i) Delaunay triangulation between the fossil shell boundary points and formation of the Voronoi diagram; ii) extraction of Voronoi vertices and construction of a connected graph tree from them; iii) reduction of the graph to the longest possible central line via Dijkstra's algorithm; iv) extension of longest central line to the shell boundary and smoothing by an adjustment of cubic spline curve; and v) integration of the central line into the corresponding 3D point cloud. The resulting longest path estimate for the 3D central line is a size parameter that can be applied in oyster shell age determination both in paleontological and biological applications. Our investigation evaluates ability and performance of the central line method to measure shell sizes accurately by comparing automatically extracted central lines with manually collected reference data used in paleontological analysis. Our results show that the automatically obtained central line length overestimated the manually collected reference by 1.5% in the test set, which is deemed sufficient for the selected paleontological application, namely shell age determination.
Voigt spectral profiles in two-photon resonance fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexanian, Moorad; Bose, Subir K.; Department of Physics, University of Central Florida, Orlando, Florida 32816
2007-11-15
A recent work on two-photon fluorescence is extended by considering the pump field to be a coherent state, which represents a laser field operating well above threshold. The dynamical conditions are investigated under which the two-photon spectrum gives rise, in addition to a Lorentzian line shape at the pump frequency, to two Voigt spectral sideband profiles. Additional conditions are found under which the Voigt profile behaves like either a Gaussian or a Lorentzian line shape.
Temperature Dependent Rubidium Helium Line Shapes and Fine Structure Mixing Rates
2015-09-01
that uses alkali metal vapor as a gain medium and a buffer gas to control the line shape and kinetics. While these systems were first demonstrated in...noble gas interactions with a high degree of accuracy. The physical parameters of interest here include pressure broadening (γ), pressure shift (δ...optical transitions between the two excited states. This collisional partner is a gas mixture that is pumped into the cell. The gases used range from
Temperature Dependent Rubidium-Helium Line Shapes and Fine Structure Mixing Rates
2015-09-17
that uses alkali metal vapor as a gain medium and a buffer gas to control the line shape and kinetics. While these systems were first demonstrated in...noble gas interactions with a high degree of accuracy. The physical parameters of interest here include pressure broadening (γ), pressure shift (δ...optical transitions between the two excited states. This collisional partner is a gas mixture that is pumped into the cell. The gases used range from
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, R.W.; Long, F.; Martin, T.H.
Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathodemore » conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.« less
Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.
Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita
2014-04-01
Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.
Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas
NASA Astrophysics Data System (ADS)
Gil, J. M.; Rodríguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Mínguez, E.; Sauvan, P.; Angelo, P.; Schott, R.; Dalimier, E.; Mancini, R.
2008-10-01
We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph (λ/Δλ≈6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Lyα, Heβ, Heγ, Lyβ and Lyγ line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.
NASA Astrophysics Data System (ADS)
Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei
2018-05-01
The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.
Cryogenic line insulation made from prefabricated polyurethane shells
NASA Technical Reports Server (NTRS)
Lerma, G.
1975-01-01
Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldi, Giulio Francesco; Bozza, Valerio, E-mail: giuliofrancesco.aldi@sa.infn.it, E-mail: valboz@sa.infn.it
The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analyticalmore » calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.« less
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao
2018-07-01
In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.
Learning the 3-D structure of objects from 2-D views depends on shape, not format
Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit
2016-01-01
Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196
NASA Astrophysics Data System (ADS)
Berk, Alexander
2013-03-01
Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.
NASA Astrophysics Data System (ADS)
Zupančič, B.; Emri, I.
2009-11-01
This is the second paper in the series addressing the constitutive modeling of dynamically loaded elastomeric products such as power transmission belts. During the normal operation of such belts certain segments of the belt structure are loaded via tooth-like cyclical loading. When the time-dependent properties of the elastomeric material “match” the time-scale of the dynamic loading a strain accumulation (incrementation) process occurs. It was shown that the location of a critical rotation speed strongly depends on the distribution (shape) of the retardation spectrum, whereas the magnitude of the accumulated strain is governed by the strength of the corresponding spectrum lines. These interrelations are extremely non-linear. The strain accumulation process is most intensive at the beginning of the drive belt operation, and is less intensive for longer belts. The strain accumulation process is governed by the spectrum lines that are positioned within a certain region, which we call the Strain Accumulation Window (SAW). An SAW is always located to the right of the spectrum line, L i , at log ( ω λ i )=0, where ω is the operational angular velocity. The width of the SAW depends on the width of the material spectrum. Based on the following analysis a new designing criterion is proposed for use in engineering applications for selecting a proper material for general drive-belt operations.
Patterning N-type and S-type neuroblastoma cells with Pluronic F108 and ECM proteins.
Corey, Joseph M; Gertz, Caitlyn C; Sutton, Thomas J; Chen, Qiaoran; Mycek, Katherine B; Wang, Bor-Shuen; Martin, Abbey A; Johnson, Sara L; Feldman, Eva L
2010-05-01
Influencing cell shape using micropatterned substrates affects cell behaviors, such as proliferation and apoptosis. Cell shape may also affect these behaviors in human neuroblastoma (NBL) cancer, but to date, no substrate design has effectively patterned multiple clinically important human NBL lines. In this study, we investigated whether Pluronic F108 was an effective antiadhesive coating for human NBL cells and whether it would localize three NBL lines to adhesive regions of tissue culture plastic or collagen I on substrate patterns. The adhesion and patterning of an S-type line, SH-EP, and two N-type lines, SH-SY5Y and IMR-32, were tested. In adhesion assays, F108 deterred NBL adhesion equally as well as two antiadhesive organofunctional silanes and far better than bovine serum albumin. Patterned stripes of F108 restricted all three human NBL lines to adhesive stripes of tissue culture plastic. We then investigated four schemes of applying collagen and F108 to different regions of a substrate. Contact with collagen obliterates the ability of F108 to deter NBL adhesion, limiting how both materials can be applied to substrates to produce high fidelity NBL patterning. This patterned substrate design should facilitate investigations of the role of cell shape in NBL cell behavior. Copyright 2009 Wiley Periodicals, Inc.
Patterning N-type and S-type Neuroblastoma Cells with Pluronic F108 and ECM Proteins
Corey, Joseph M.; Gertz, Caitlyn C.; Sutton, Thomas J.; Chen, Qiaoran; Mycek, Katherine B.; Wang, Bor-Shuen; Martin, Abbey A.; Johnson, Sara L.; Feldman, Eva L.
2009-01-01
Influencing cell shape using micropatterned substrates affects cell behaviors, such as proliferation and apoptosis. Cell shape may also affect these behaviors in human neuroblastoma (NBL) cancer, but to date, no substrate design has effectively patterned multiple clinically important human NBL lines. In this study, we investigated whether Pluronic F108 was an effective anti-adhesive coating for human NBL cells and whether it would localize three NBL lines to adhesive regions of tissue culture plastic or collagen I on substrate patterns. The adhesion and patterning of an S-type line, SH-EP, and two N-type lines, SH-SY5Y and IMR-32, were tested. In adhesion assays, F108 deterred NBL adhesion equally as well as two anti-adhesive organofunctional silanes and far better than bovine serum albumin. Patterned stripes of F108 restricted all three human NBL lines to adhesive stripes of tissue culture plastic. We then investigated four schemes of applying collagen and F108 to different regions of a substrate. Contact with collagen obliterates the ability of F108 to deter NBL adhesion, limiting how both materials can be applied to substrates to produce high fidelity NBL patterning. This patterned substrate design should facilitate investigations of the role of cell shape in NBL cell behavior. PMID:19609877
Finite element analysis of a composite crash box subjected to low velocity impact
NASA Astrophysics Data System (ADS)
Shaik Dawood, M. S. I.; Ghazilan, A. L. Ahmad; Shah, Q. H.
2017-03-01
In this work, finite element analyses using LS-DYNA had been carried out to investigate the energy absorption capability of a composite crash box. The analysed design incorporates grooves to the cross sectional shape and E-Glass/Epoxy as design material. The effects of groove depth, ridge lines, plane width, material properties, wall thickness and fibre orientation had been quantitatively analysed and found to significantly enhance the energy absorption capability of the crash box.
The Past, Present, and Future of Auger Lineshape Analysis
1991-01-01
Theoretical study of the application of positron induced Auger electron spectroscopy, Phys. Rev. B41, 3928, 1990. 295. Schultz,.P.J. and Lynn. K.G...system. The line shapes most heavily studied over the years include those of the low Z metals (e.g. Be. Li, Na. Mg. and Al), those of C and Si, and of...background signal. fuggle Two new experimental approaches almost completely eliminate the Ramaker 9 background. In one method, low energy positrons are
NASA Technical Reports Server (NTRS)
Bown, R. L.; Winans, L. C.
1975-01-01
Results are presented of a study to show the effect of selecting a constant inertial attitude during the fuel dissipation phase of a return-to-launch-site abort. Results are also presented which show that the selection of the constant inertial attitude will affect the arrival point on the range-velocity target line. An alternate selection of the inertial attitude will provide control over the trajectory shape.
NASA Technical Reports Server (NTRS)
Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William
2010-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.
Reconstructing spectral cues for sound localization from responses to rippled noise stimuli.
Van Opstal, A John; Vliegen, Joyce; Van Esch, Thamar
2017-01-01
Human sound localization in the mid-saggital plane (elevation) relies on an analysis of the idiosyncratic spectral shape cues provided by the head and pinnae. However, because the actual free-field stimulus spectrum is a-priori unknown to the auditory system, the problem of extracting the elevation angle from the sensory spectrum is ill-posed. Here we test different spectral localization models by eliciting head movements toward broad-band noise stimuli with randomly shaped, rippled amplitude spectra emanating from a speaker at a fixed location, while varying the ripple bandwidth between 1.5 and 5.0 cycles/octave. Six listeners participated in the experiments. From the distributions of localization responses toward the individual stimuli, we estimated the listeners' spectral-shape cues underlying their elevation percepts, by applying maximum-likelihood estimation. The reconstructed spectral cues resulted to be invariant to the considerable variation in ripple bandwidth, and for each listener they had a remarkable resemblance to the idiosyncratic head-related transfer functions (HRTFs). These results are not in line with models that rely on the detection of a single peak or notch in the amplitude spectrum, nor with a local analysis of first- and second-order spectral derivatives. Instead, our data support a model in which the auditory system performs a cross-correlation between the sensory input at the eardrum-auditory nerve, and stored representations of HRTF spectral shapes, to extract the perceived elevation angle.
NASA Astrophysics Data System (ADS)
Giles, Rohini Sara; Fletcher, Leigh N.; Irwin, Patrick G. J.
2015-11-01
The CRIRES instrument on the Very Large Telescope was used to make high-resolution (R=100,000) observations of Jupiter in the 4.5-5.2 μm spectral range. At these wavelengths, Jupiter’s atmosphere is optically thin and the spectra are sensitive to the 4-8 bar region. This enabled us to spectrally resolve the line shapes of four minor species in Jupiter’s troposphere: CH3D, GeH4, AsH3 and PH3. The slit was aligned north-south along Jupiter’s central meridian, allowing us to search for latitudinal variability in these line shapes. The spectra were analysed using the NEMESIS radiative transfer code and retrieval algorithm.The CH3D line shape is narrower in the cool zones than in the warm belts. CH3D is chemically stable and does not condense in Jupiter’s atmosphere, so this difference cannot be due to variations in the CH3D abundance. Instead, it can be modelled as variations in the opacity of a deep cloud located at around 4 bar. This deep cloud is opaque in the zones and transparent in the belts.We also observe variability in the GeH4 line shape, with stronger absorption features in the belts than in the zones. As a disequilibrium species, GeH4 is expected to vary with latitude, but we found that the variations in the line shape could be entirely explained by the variations in the cloud structure.In contrast, there is clear evidence for spatial variability in the remaining two molecular species, AsH3 and PH3. Their absorption features are weak near the equator and significantly stronger at high latitudes. A full latitudinal retrieval leads to a broadly symmetric profile for both species, with a minimum at the equator and an enhancement towards the poles.
A horse's eye view: size and shape discrimination compared with other mammals.
Tomonaga, Masaki; Kumazaki, Kiyonori; Camus, Florine; Nicod, Sophie; Pereira, Carlos; Matsuzawa, Tetsuro
2015-11-01
Mammals have adapted to a variety of natural environments from underwater to aerial and these different adaptations have affected their specific perceptive and cognitive abilities. This study used a computer-controlled touchscreen system to examine the visual discrimination abilities of horses, particularly regarding size and shape, and compared the results with those from chimpanzee, human and dolphin studies. Horses were able to discriminate a difference of 14% in circle size but showed worse discrimination thresholds than chimpanzees and humans; these differences cannot be explained by visual acuity. Furthermore, the present findings indicate that all species use length cues rather than area cues to discriminate size. In terms of shape discrimination, horses exhibited perceptual similarities among shapes with curvatures, vertical/horizontal lines and diagonal lines, and the relative contributions of each feature to perceptual similarity in horses differed from those for chimpanzees, humans and dolphins. Horses pay more attention to local components than to global shapes. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Amini, Amirhossein; Homsy, G. M.
2017-04-01
We study the evolution of the profile of a two-dimensional volatile liquid droplet that is evaporating on a flat heated substrate. We adopt a one-sided model with thermal control that, together with the lubrication approximation, results in an evolution equation for the local height of the droplet. Without requiring any presumption for the shape of the drop, the problem is formulated for the two modes of evaporation: a pinned contact line and a moving contact line with fixed contact angle. Numerical solutions are provided for each case. For the pinned contact line case, we observe that after a time interval the contact angle dynamics become nonlinear and, interestingly, the local contact angle goes to zero in advance of total evaporation of the drop. For the case of a moving contact line, in which the singularity at the contact line is treated by a numerical slip model, we find that the droplet nearly keeps its initial circular shape and that the contact line recedes with constant speed.
High-resolution laser absorption spectroscopy of ozone near 1129.4 cm (-1)
NASA Technical Reports Server (NTRS)
Majorana, L. N.
1981-01-01
A Beer's Law experiment was performed with a tunable diode laser to determine self broadened line shape parameters of one infrared absorption ozone line in the nu1 band for ten pressures from 0.26 to 6.29 torr at 285 K. The SO2 line positions were used for wavelength calibration. Line shapes were iteratively fitted to the Voigt function at a Doppler width of 29.54 MHz (HWHM) resulting in values for the integrated line strength, (S), of (0.144 +/- 0.007) x 10 to the minus 20th/cm molecule/cu cm, line center frequency, nu sub o, of 1129.426/cm and the Lorentzian contributions to halfwidth. A linear least squares fit of (alpha sub L)5 as a function of pressure yielded a zero intercept of 15.27 +/- 0.29 MHz (rho = 0.99) and a broadening parameter, (alpha sub L)5, of 5.71 +/- 0.29 MHz/Torr. This results in a line width (FWHM) of 0.144 +/- .007/cm at 760 torr and 285 K.
Analysing intracellular deformation of polymer capsules using structured illumination microscopy
NASA Astrophysics Data System (ADS)
Chen, Xi; Cui, Jiwei; Sun, Huanli; Müllner, Markus; Yan, Yan; Noi, Ka Fung; Ping, Yuan; Caruso, Frank
2016-06-01
Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces, which induce capsule deformation during cell uptake, vary between cell lines, indicating that the capsules are exposed to higher mechanical forces in HeLa cells, followed by RAW264.7 and then differentiated THP-1 cells. Our study demonstrates the use of super-resolution SIM in analysing intracellular capsule deformation, offering important insights into the cellular processing of drug carriers in cells and providing fundamental knowledge of intracellular mechanobiology. Furthermore, this study may aid in the design of novel drug carriers that are sensitive to deformation for enhanced drug release properties.Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces, which induce capsule deformation during cell uptake, vary between cell lines, indicating that the capsules are exposed to higher mechanical forces in HeLa cells, followed by RAW264.7 and then differentiated THP-1 cells. Our study demonstrates the use of super-resolution SIM in analysing intracellular capsule deformation, offering important insights into the cellular processing of drug carriers in cells and providing fundamental knowledge of intracellular mechanobiology. Furthermore, this study may aid in the design of novel drug carriers that are sensitive to deformation for enhanced drug release properties. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c6nr02151d
NASA Astrophysics Data System (ADS)
Peng, Limin; Zheng, Yuan; You, Feng; Wu, Zhihao; Zou, Yuxia; Zhang, Peijun
2016-09-01
The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical "S" shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.
3D non-LTE corrections for the 6Li/7Li isotopic ratio in solar-type stars
NASA Astrophysics Data System (ADS)
Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian, G.; González Hernández, J. I.; Strassmeier, K. G.
Doppler shifts induced by convective motions in stellar atmospheres affect the shape of spectral absorption lines and create slightly asymmetric line profiles. It is important to take this effect into account in modeling the subtle depression created by the 6Li isotope which lies on the red wing of the Li I 670.8 nm resonance doublet line, since convective motions in stellar atmospheres can mimic a presence of 6Li when intrinsically symmetric theoretical line profiles are presumed for the analysis of the 7Li doublet \\citep{cayrel2007}. Based on CO5BOLD hydrodynamical model atmospheres, we compute 3D non-local thermodynamic equilibrium (NLTE) corrections for the 6Li/7Li isotopic ratio by using a grid of 3D NLTE and 1D LTE synthetic spectra. These corrections must be added to the results of the 1D LTE analysis to correct them for the combined 3D non-LTE effects. As one would expect, the resulting corrections are always negative and they range between 0 and -5 %, depending on effective temperature, surface gravity, and metallicity. For each metallicity we derive an analytic expression approximating the 3D NLTE corrections as a function of effective temperature, surface gravity and projected rotational velocity.
Effect of Geometrical Imperfection on Buckling Failure of ITER VVPSS Tank
NASA Astrophysics Data System (ADS)
Jha, Saroj Kumar; Gupta, Girish Kumar; Pandey, Manish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar
2017-04-01
The ‘Vacuum Vessel Pressure Suppression System’ (VVPSS) is part of ITER machine, which is designed to protect the ITER Vacuum Vessel and its connected systems, from an over-pressure situation. It is comprised of a partially evacuated tank of stainless steel approximately 46 m long and 6 m in diameter and thickness 30 mm. It is to hold approximately 675 tonnes of water at room temperature to condense the steam resulting from the adverse water leakage into the Vacuum Vessel chamber. For any vacuum vessel, geometrical imperfection has significant effect on buckling failure and structural integrity. Major geometrical imperfection in VVPSS tank depends on form tolerances. To study the effect of geometrical imperfection on buckling failure of VVPSS tank, finite element analysis (FEA) has been performed in line with ASME section VIII division 2 part 5 [1], ‘design by analysis method’. Linear buckling analysis has been performed to get the buckled shape and displacement. Geometrical imperfection due to form tolerance is incorporated in FEA model of VVPSS tank by scaling the resulted buckled shape by a factor ‘60’. This buckled shape model is used as input geometry for plastic collapse and buckling failure assessment. Plastic collapse and buckling failure of VVPSS tank has been assessed by using the elastic-plastic analysis method. This analysis has been performed for different values of form tolerance. The results of analysis show that displacement and load proportionality factor (LPF) vary inversely with form tolerance. For higher values of form tolerance LPF reduces significantly with high values of displacement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Sungnam, E-mail: blueden@postech.ac.kr; Hwang, Woonbong, E-mail: whwang@postech.ac.kr
Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the widthmore » of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.« less
On the nitrogen-induced far-infrared absorption spectra
NASA Technical Reports Server (NTRS)
Dore, P.; Filabozzi, A.
1987-01-01
The rototranslational absorption spectrum of gaseous N2 is analyzed, considering quadrupolar and hexadecapolar induction mechanisms. The available experimental data are accounted for by using a line-shape analysis in which empirical profiles describe the single-line translational profiles. Thus, a simple procedure is derived that allows the prediction of the N2 spectrum at any temperature. On the basis of the results obtained for the pure gas, a procedure to compute the far-infrared spectrum of the N2-Ar gaseous mixture is also proposed. The good agreement between computed and experimental N2-Ar data indicates that it is possible to predict the far-infrared absorption induced by N2 on the isotropic polarizability of any interacting partner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoy, Blake W
The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had beenmore » addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was modified by splitting it into multiple sections, isolating the T0 chopper from the rest of the beam line, and each section was then reinstalled and re-grouted. After these modifications, the vibration levels were reduced by a factor of 30. The reduction in vibration level was sufficient to allow the Vision beam line to operate at full capacity for the first time since its completed construction date.« less
Pass-Band Characteristics of an L-Shaped Waveguide in a Diamond Structure Photonic Crystal
NASA Astrophysics Data System (ADS)
Chen, Shibin; Ma, Jingcun; Yao, Yunshi; Liu, Xin; Lin, Ping
2018-06-01
The conduction characteristics of a L-shaped waveguide in a diamond structure photonic crystal is investigated in this paper. The waveguides were fabricated with titanium dioxide ceramic via 3-D printing and sintering. The effects of the position and size of line defects on the transmission characteristics are first simulated using a finite-difference time-domain method. The simulated results show that, when the length of the rectangular defect equals the lattice constant, multiple extended modes are generated. When the centers of the single unit cell of the diamond structure and the line defect waveguide coincide, higher transmission efficiency in the line defect can be achieved. In addition, the corner of the L-shaped waveguide was optimized to reduce reflection loss at the turning point using the arc transition of the large diameter. Our experimental results indicate that L-shaped waveguides with an optimized photonic band gap structure and high-K materials can produce a pass-band between 13.8 GHz and 14.4 GHz and increase transmission efficiency. The computed results agree with the experimental results. Our results may help the integration of microwave devices in the future and possibly enable new applications of photonic crystals.
Zhang, Lu; Aerziguli, Tursun; Guzalnur, Abliz
2012-04-01
To establish a uterine cervical carcinoma cell line of Uyghur ethnical background and to evaluate the related biological characteristics for future biomedical investigations of diseases in the Uyghur population. Poorly-differentiated squamous cell carcinoma specimens of Uyghur patients were obtained and cultured in vitro by enzymatic digestion method, followed by continuous passaging to reach a stable growth determined by cell viability and growth curve. Morphological study, cell cycling and chromosomal analysis were performed. Tumorigenesis study was conducted by inoculation of nude mice. Biomarker (CK17, CD44, Ki-67, CK14 and vimentin) expression was detected by immunofluorescence and immunocytochemical techniques. A cervical carcinoma cell line was successfully established and maintained for 12 months through 70 passages. The cell line had a stable growth with a population doubling time of 51.9 h. Flask method and double agar-agar assay showed that the cell line had colony-forming rates of 32.5% and 15.6%, respectively. Ultrastructural evaluation demonstrated numerous cell surface protrusions or microvilli, a large number of rod-shape structures in cytoplasm, typical desmosomes and nuclear atypia. Chromosomal analysis revealed human karyotype with the number of chromosomes per cell varying from 32 - 97 with a majority of 54 - 86 (60.3%). Xenogeneic tumors formed in nude mice showed histological structures identical to those of the primary tumor. The cells had high expression of CK17, CD44, Ki-67 and vimentin but no CK14 expression. A cervical carcinoma cell line from a female Uyghur patient is successfully established. The cell line has the characteristics of human cervical squamous cell carcinoma, and it is stable with maintaining the characteristic biological and morphological features in vitro for more than 12 months, therefore, qualified as a stable cell line for further biomedical research.
Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm
NASA Astrophysics Data System (ADS)
Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas
A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.
[Three-dimensional Finite Element Analysis to T-shaped Fracture of Pelvis in Sitting Position].
Fan, Yanping; Lei, Jianyin; Liu, Haibo; Li, Zhiqiang; Cai, Xianhua; Chen, Weiyi
2015-10-01
We developed a three-dimensional finite element model of the pelvis. According to Letournel methods, we established a pelvis model of T-shaped fracture with its three different fixation systems, i. e. double column reconstruction plates, anterior column plate combined with posterior column screws and anterior column plate combined with quadrilateral area screws. It was found that the pelvic model was effective and could be used to simulate the mechanical behavior of the pelvis. Three fixation systems had great therapeutic effect on the T-shaped fracture. All fixation systems could increase the stiffness of the model, decrease the stress concentration level and decrease the displacement difference along the fracture line. The quadrilateral area screws, which were drilled into cortical bone, could generate beneficial effect on the T-type fracture. Therefore, the third fixation system mentioned above (i. e. the anterior column plate combined with quadrilateral area screws) has the best biomechanical stability to the T-type fracture.
Effect of Wind Velocity on Flame Spread in Microgravity
NASA Technical Reports Server (NTRS)
Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)
2002-01-01
A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.
NASA Technical Reports Server (NTRS)
Wu, C. Y. R.; Ogawa, H. S.
1986-01-01
The sensitivity of the curve-of-growth (COG) technique utilized in rocket measurements to determine the line profiles of the solar He I resonance emissions is theoretically examined with attention to the possibility of determining the line core shape using this technique. The line at 584.334 A is chosen as an illustration. Various possible source functions of the solar line have been assumed in the computation of the integrated transmitted intensity. A recent observational data set obtained by the present researchers is used as the constraint of the computation. It is confirmed that the COG technique can indeed provide a good measurement of the solar line width. However, to obtain detailed knowledge of the solar profile at line center and in the core region, (1) it is necessary to be able to carry out relative solar flux measurements with a 1-percent or better precision, and (2) it must be possible to measure the He gas pressure in the absorption cell to lower than 0.1 mtorr. While these numbers apply specifically to the present geometry, the results are readily scaled to other COG measurements using other experimental parameters.
33 CFR 83.24 - Towing and pushing (Rule 24).
Code of Federal Regulations, 2012 CFR
2012-07-01
... line above the sternlight; and (5) When the length of the tow exceeds 200 meters, a diamond shape where... exceeds 200 meters, a diamond shape where it can best be seen. (f) Vessels being towed alongside or pushed... alongside each other shall be lighted as one vessel or object; (4) A diamond shape at or near the aftermost...
33 CFR 83.24 - Towing and pushing (Rule 24).
Code of Federal Regulations, 2013 CFR
2013-07-01
... line above the sternlight; and (5) When the length of the tow exceeds 200 meters, a diamond shape where... exceeds 200 meters, a diamond shape where it can best be seen. (f) Vessels being towed alongside or pushed... alongside each other shall be lighted as one vessel or object; (4) A diamond shape at or near the aftermost...
ERIC Educational Resources Information Center
Greenman, Geri
2002-01-01
Describes an art project used with beginning high school art students that teaches them about continuous line drawing. Explains that the students create portraits of themselves, or another student, using glue, black construction paper, and chalk. (CMK)
Pulse shaping of on-chip microresonator frequency combs: investigation of temporal coherence
NASA Astrophysics Data System (ADS)
Ferdous, F.; Miao, H.; Leaird, D. E.; Srinivasan, K.; Chen, L.; Aksyuk, V.; Weiner, A. M.
2013-03-01
We use pulse shaping to investigate the temporal coherence of frequency combs generated in microresonators pumped by a strong CW laser. We observe that different groups of comb lines have different mutual coherence.
Shaped superconductor cylinder retains intense magnetic field
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Wahlquist, H.
1964-01-01
The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.
Assessment of fatigue load alleviation potential through blade trailing edge morphing
NASA Astrophysics Data System (ADS)
Tsiantas, Theofanis; Manolas, Dimitris I.; Machairas, Theodore; Karakalas, Anargyros; Riziotis, Vasilis A.; Saravanos, Dimitrios; Voutsinas, Spyros G.
2016-09-01
The possibility of alleviating wind turbine loads through blade trailing edge shape morphing is investigated in the present paper. Emphasis is put on analyzing the effect of the trailing edge flap geometry on load reduction levels. The choice of the shape deformation of the camber line as well as the chordwise and spanwise dimensions of the trailing edge flap are addressed. The analysis concerns the conceptual DTU 10 MW RWT. Aeroelastic control of loads is materialized through a standard individual flap controller. Furthermore, a comb ined individual pitch-flap controller is evaluated and found to present advantages compared to the flap only controller. Flapwise fatigue load reduction ranging from 10% to 20%, depending on wind velocity and configuration considered, is obtained. Better performance is achieved by the combined pitch-flap controller.
Electron line shape and transmission function of the KATRIN monitor spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slezák, M.
Knowledge of the neutrino mass is of particular interest in modern neutrino physics. Besides the neutrinoless double beta decay and cosmological observation information about the neutrino mass is obtained from single beta decay by observing the shape of the electron spectrum near the endpoint. The KATRIN β decay experiment aims to push the limit on the effective electron antineutrino mass down to 0.2 eV/c{sup 2}. To reach this sensitivity several systematic effects have to be under control. One of them is the fluctuations of the absolute energy scale, which therefore has to be continuously monitored at very high precision. Thismore » paper shortly describes KATRIN, the technique for continuous monitoring of the absolute energy scale and recent improvements in analysis of the monitoring data.« less
Acousto-optic replication of ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.
2017-10-01
Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.
NASA Astrophysics Data System (ADS)
Voss, P.; Henderson, R.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Chester, A.; Cross, D. S.; Drake, T. E.; Garnsworthy, A. B.; Hackman, G.; Ketelhut, S.; Krücken, R.; Miller, D.; Rajabali, M. M.; Starosta, K.; Svensson, C. E.; Tardiff, E.; Unsworth, C.; Wang, Z.-M.
Electromagnetic transition rate measurements play an important role in characterizing the evolution of nuclear structure with increasing proton-neutron asymmetry. At TRIUMF, the TIGRESS Integrated Plunger device and its suite of ancillary detector systems have been implemented for charged-particle tagging and light-ion identification in coincidence with gamma-ray spectroscopy for Doppler-shift lifetime studies and low-energy Coulomb excitation measurements. Digital pulse-shape analysis of signals from these ancillary detectors for particle identification improves the signal-to-noise ratio of gamma-ray energy spectra. Here, we illustrate the reaction-channel selectivity achieved by utilizing digital rise-time discrimination of waveforms from alpha particles and carbon ions detected with silicon PIN diodes, thereby enhancing gamma-ray line-shape signatures for precision lifetime studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Kai; Lee, Soo-Y., E-mail: sooying@ntu.edu.sg
Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twentymore » four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.« less
NASA Astrophysics Data System (ADS)
Niu, Kai; Lee, Soo-Y.
2015-12-01
Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.
NASA Astrophysics Data System (ADS)
Pfeiffer, Adrian N.; Bell, M. Justine; Beck, Annelise R.; Mashiko, Hiroki; Neumark, Daniel M.; Leone, Stephen R.
2013-11-01
Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.
NASA Astrophysics Data System (ADS)
El-Kader, M. S. A.; Godet, J.-L.; El-Sadek, A. A.; Maroulis, G.
2017-10-01
Quantum mechanical line shapes of collision-induced light scattering at room temperature (295 K) and collision-induced absorption at T = 195 K are computed for gaseous mixtures of molecular hydrogen and argon using theoretical values for pair-polarisability trace and anisotropy and induced dipole moments as input. Comparison with other theoretical spectra of isotropic and anisotropic light scattering and measured spectra of absorption shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Ab initio models of the trace and anisotropy polarisability which reproduce the recent spectra of scattering are given. Empirical model of the dipole moment which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and/or experimental line shapes of both absorption and scattering is obtained when the potential model which is constructed from the transport and thermo-physical properties is used.
Soto, David; Humphreys, Glyn W
2009-01-01
Recent research has shown that the contents of working memory (WM) can guide the early deployment of attention in visual search. Here, we assessed whether this guidance occurred for all attributes of items held in WM, or whether effects are based on just the attributes relevant for the memory task. We asked observers to hold in memory just the shape of a coloured object and to subsequently search for a target line amongst distractor lines, each embedded within a different object. On some trials, one of the objects in the search display could match the shape, the colour or both dimensions of the cue, but this object never contained the relevant target line. Relative to a neutral baseline, where there was no match between the memory and the search displays, search performance was impaired when a distractor object matched both the colour and the shape of the memory cue. The implications for the understanding of the interaction between WM and selection are discussed.
Sivers and Boer-Mulders observables from lattice QCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.U. Musch, Ph. Hagler, M. Engelhardt, J.W. Negele, A. Schafer
We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, 'process-dependent' Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g{submore » 1}T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n{sub f} = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.« less
NASA Astrophysics Data System (ADS)
Gomez-Diaz, Juan Sebastian
This PhD. dissertation presents a multidisciplinary work, which involves the development of different novel formulations applied to the accurate and efficient analysis of a wide variety of new structures, devices, and phenomena at themicrowave frequency region. The objectives of the present work can be divided into three main research lines: (1) The first research line is devoted to the Green's function analysis of multilayered enclosures with convex arbitrarily-shaped cross section. For this purpose, three accurate spatial-domain formulations are developed at the Green's functions level. These techniques are then efficiently incorporated into a mixed-potential integral equation framework, which allows the fast and accurate analysis of multilayered printed circuits in shielded enclosures. The study of multilayered shielded circuits has lead to the development of the novel hybridwaveguide-microstrip filter technology, which is light, compact, low-loss and presents important advantages for the space industry. (2) The second research line is related to the impulse-regime study ofmetamaterial-based composite right/left-handed (CRLH) structures and the subsequent theoretical and practical demonstration of several novel optically-inspired phenomena and applications at microwaves, in both, the guided and the radiative region. This study allows the development of new devices for ultra wide band and high data-rate communications systems. Besides, this research line also deals with the simple and accurate characterization of CRLH leaky-wave antennas using transmission line theory. (3) The third and last research line presents a novel CRLH parallel-plate waveguide leaky-wave antenna structure, and a rigorous iterative modal-based technique for its fast and complete characterization, including a systematic calculation of the antenna physical dimensions. It is important to point out that all the theoretical developments and novel structures presented in thiswork have been numerically confirmed, by the use of both, home-made software and commercial full-wave simulations, and experimentally verified, by the use of measurements from fabricated prototypes.
Heterogeneous Catalysis for Thermochemical Conversion Publications |
pentagons is an upside-down Y shape and H2 +with a sideways Y shape with two lines at the base. A gold arrow a photo of woody biomass. In the center is a diamond shape composed of four outer triangle sections blue spheres. In the upper left is a large molecule shape made up of a hexagon of black spheres
Boucherie, Alexandra; Castex, Dominique; Polet, Caroline; Kacki, Sacha
2017-01-01
Harris lines (HLs) are defined as transverse, mineralized lines associated with temporary growth arrest. In paleopathology, HLs are used to reconstruct health status of past populations. However, their etiology is still obscure. The aim of this article is to test the reliability of HLs as an arrested growth marker by investigating their incidence on human metrical parameters. The study was performed on 69 individuals (28 adults, 41 subadults) from the Dendermonde plague cemetery (Belgium, 16th century). HLs were rated on distal femora and both ends of tibiae. Overall prevalence and age-at-formation of each detected lines were calculated. ANOVA analyses were conducted within subadult and adult samples to test if the presence of HLs did impact size and shape parameters of the individuals. At Dendermonde, 52% of the individuals had at least one HL. The age-at-formation was estimated between 5 and 9 years old for the subadults and between 10 and 14 years old for the adults. ANOVA analyses showed that the presence of HLs did not affect the size of the individuals. However, significant differences in shape parameters were highlighted by HL presence. Subadults with HLs displayed slighter shape parameters than the subadults without, whereas the adults with HLs had larger measurements than the adults without. The results suggest that HLs can have a certain impact on shape parameters. The underlying causes can be various, especially for the early formed HLs. However, HLs deposited around puberty are more likely to be physiological lines reflecting hormonal secretions. Am. J. Hum. Biol. 29:e22885, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
2012-02-01
use of polar gas species. While current simplified models have adequately predicted CRS and CRBS line shapes for a wide variety of cases, multiple ...published simplified models are presented for argon, molecular nitrogen, and methane at 300 & 500 K and 1 atm. The simplified models require uncertain gas... models are presented for argon, molecular nitrogen, and methane at 300 & 500 K and 1 atm. The simplified models require uncertain gas properties
Design, analysis and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A., III
1984-01-01
Investigations into transparent conductive polymers were begun. Polypyrrole was electrochemically deposited, but the film characteristics were poor. A proprietary polymer material supplied by Polaroid was evaluated and showed promise as a readily processable material. A method was developed for calculating the magnitude and location of the maximum electric field for the family of solar-cell-like shapes. A method for calculating the lines of force for three dimensional electric fields was developed and applied to a geometry of interest to the photovoltaic program.
Effect of Fractal Dimension on the Strain Behavior of Particulate Media
NASA Astrophysics Data System (ADS)
Altun, Selim; Sezer, Alper; Goktepe, A. Burak
2016-12-01
In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Pes anserinus and anserine bursa: anatomical study
Lee, Je-Hun; Kim, Kyung-Jin; Jeong, Young-Gil; Lee, Nam Seob; Han, Seung Yun; Lee, Chang Gug; Kim, Kyung-Yong
2014-01-01
This study investigated the boundary of anserine bursa with the recommended injection site and shape on the insertion area of pes anserinus (PA), with the aim of improving clinical practice. Eighty six legs from 45 Korean cadavers were investigated. The mixed gelatin solution was injected to identify the shape of anserine bursa, and then the insertion site of the PA tendons was exposed completely and carefully dissected to identify the shape of the PA. The sartorius was inserted into the superficial layer and gracilis, and the semitendinosus was inserted into the deep layer on the medial surface of the tibia. The number of the semitendinosus tendons at the insertion site varied: 1 in 66% of specimens, 2 in 31%, and 3 in 3%. The gracilis and semitendinosus tendons were connected to the deep fascia of leg. Overall, the shape of the anserine bursa was irregularly circular. Most of the anserine bursa specimens reached the proximal line of the tibia, and some of the specimens reached above the proximal line of the tibia. In the medial view of the tibia, the anserine bursa was located posteriorly and superiorly from the tibia's midline, and it followed the lines of the sartorius muscle. The injection site for anserine bursa should be carried out at 20° from the vertical line medially and inferiorly, 15 or 20 mm deeply, and at the point of about 20 mm medial and 12 mm superior from inferomedial point of tibial tuberosity. PMID:24987549
NASA Technical Reports Server (NTRS)
Green, Sheldon
1993-01-01
Rate constants for excitation of CO by collisions with H2O are needed to understand recent observations of comet spectra. These collision rates are closely related to spectral line shape parameters, especially those for Raman Q-branch spectra. Because such spectra have become quite important for thermometry applications, much effort has been invested in understanding this process. Although it is not generally possible to extract state-to-state rate constants directly from the data as there are too many unknowns, if the matrix of state-to-state rates can be expressed in terms of a rate-law model which depends only on rotational quantum numbers plus a few parameters, the parameters can be determined from the data; this has been done with some success for many systems, especially those relevant to combustion processes. Although such an analysis has not yet been done for CO-H2O, this system is expected to behave similarly to N2-H2O which has been well studies; modifications of parameters for the latter system are suggested which should provide a reasonable description of rate constants for the former.
Morphology of single inhalable particle inside public transit biodiesel fueled bus.
Shandilya, Kaushik K; Kumar, Ashok
2010-01-01
In an urban-transit bus, fueled by biodiesel in Toledo, Ohio, single inhalable particle samples in October 2008 were collected and detected by scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS). Particle size analysis found bimodal distribution at 0.2 and 0.5 microm. The particle morphology was characterized by 14 different shape clusters: square, pentagon, hexagon, heptagon, octagon, nonagon, decagon, agglomerate, sphere, triangle, oblong, strip, line or stick, and unknown, by quantitative order. The square particles were common in the samples. Round and triangle particles are more, and pentagon, hexagon, heptagon, octagon, nonagon, decagon, strip, line or sticks are less. Agglomerate particles were found in abundance. The surface of most particles was coarse with a fractal edge that can provide a suitable chemical reaction bed in the polluted atmospheric environment. The three sorts of surface patterns of squares were smooth, semi-smooth, and coarse. The three sorts of square surface patterns represented the morphological characteristics of single inhalable particles in the air inside the bus in Toledo. The size and shape distribution results were compared to those obtained for a bus using ultra low sulfur diesel.
Nichani, Ashish S; Ahmed, Arshia Zainab; Ranganath, V
2016-01-01
The aim of this study was to define shapes of maxillary central incisors and determine their relationship with the visual display of interdental papillae during smiling. A sample of 100 patients aged 20 to 25 years were recruited. Photographs were taken and gingival angle, crown width (CW), crown length (CL), contact surface (CS), CW/CL ratio, CS/CL ratio, gingival smile line (GSL), and interdental smile line (ISL) were measured. The data showed an increase in GA leading to an increase in CW and CS/CL ratio. Women showed a higher percentage of papillary display compared with men. This study reinforces the proposed hypothesis that the shape of the teeth and papilla affect the periodontium.
Chenglin, L.; Charpentier, R.R.
2010-01-01
The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.
Microscale hydrodynamics near moving contact lines
NASA Technical Reports Server (NTRS)
Garoff, Stephen; Chen, Q.; Rame, Enrique; Willson, K. R.
1994-01-01
The hydrodynamics governing the fluid motions on a microscopic scale near moving contact lines are different from those governing motion far from the contact line. We explore these unique hydrodynamics by detailed measurement of the shape of a fluid meniscus very close to a moving contact line. The validity of present models of the hydrodynamics near moving contact lines as well as the dynamic wetting characteristics of a family of polymer liquids are discussed.
Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints
Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David
2016-01-01
We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey. PMID:28066154
Hinton, Samuel R; Kazin, Eyal; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russell J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David
2017-02-01
We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c h 2 , H ( z ), and D A ( z ) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.
Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints
NASA Astrophysics Data System (ADS)
Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David
2017-02-01
We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.
Ring formation on an inclined surface
NASA Astrophysics Data System (ADS)
Deegan, Robert; Du, Xiyu
2015-11-01
A drop dried on a solid surface will typically leave a narrow band of solute deposited along the contact line. We examined variations of this deposit due to the inclination of the substrate using numerical simulations of a two-dimensional drop, equivalent to a strip-like drop. An asymptotic analysis of the contact line region predicts that the upslope deposit will grow faster at early times, but the growth of this deposit ends sooner because the upper contact line depins first. From our simulations we find that the deposit can be larger at either the upper or lower contact line depending on the initial drop volume and substrate inclination. For larger drops and steeper inclinations, the early lead in deposited mass at the upper contact line is wiped out by the earlier depinning of the upper contact line and subsequent continued growth at the lower contact line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper contact line is insurmountable despite its earlier termination in growth. Our results show that it is difficult to reconstruct a postiorithe inclination of the substrate based solely on the shape of the deposit. The authors thank the James S. McDonnell Foundation for support through a 21st Century Science Initiative in Studying Complex Systems Research Award, and the National Science Foundation for support under Grant No. 0932600.
NASA Astrophysics Data System (ADS)
Paudel, Hari P.; Jung, Yookyung; Raphael, Anthony; Alt, Clemens; Wu, Juwell; Runnels, Judith; Lin, Charles P.
2018-02-01
The present standard of blood cell analysis is an invasive procedure requiring the extraction of patient's blood, followed by ex-vivo analysis using a flow cytometer or a hemocytometer. We are developing a noninvasive optical technique that alleviates the need for blood extraction. For in-vivo blood analysis we need a high speed, high resolution and high contrast label-free imaging technique. In this proceeding report, we reported a label-free method based on differential epi-detection of forward scattered light, a method inspired by Jerome Mertz's oblique back-illumination microscopy (OBM) (Ford et al, Nat. Meth. 9(12) 2012). The differential epi-detection of forward light gives phase contrast image at diffraction-limited resolution. Unlike reflection confocal microscopy (RCM), which detects only sharp refractive index variation and suffers from speckle noise, this technique is suitable for detection of subtle variation of refractive index in biological tissue and it provides the shape and the size of cells. A custom built high speed electronic detection circuit board produces a real-time differential signal which yields image contrast based on phase gradient in the sample. We recorded blood flow in-vivo at 17.2k lines per second in line scan mode, or 30 frames per second (full frame), or 120 frame per second (quarter frame) in frame scan mode. The image contrast and speed of line scan data recording show the potential of the system for noninvasive blood cell analysis.
Drop Shapes Versus Fall Velocities in Rain: 2 Contrasting Examples
NASA Technical Reports Server (NTRS)
Thurai, M.; Bringi, V. N.; Petersen, W. A.; Carey, L. D.; Gatlin, P. N.; Tokay, A.
2011-01-01
Rainfall retrievals from polarimetric radar measurements require the knowledge of four fundamental rain microstructure parameters, namely, drop size distribution, drop shape distribution, canting angles and drop fall velocities. Some recent measurements of all four parameters in natural rain are summarized in [1]. In this paper, we perform an in-depth analysis of two events, using two co-located 2D video disdrometers (2DVD; see [2]) both with high calibration accuracy, and a C-band polarimetric radar [3], located 15 km away. The two events, which occurred 7 days apart (on the 18th and the 25th of Dec 2009), had moderate-to-intense rainfall rates, but the second event had an embedded convection line within the storm. The line had passed over the 2DVD site, thus enabling the shapes and fall velocities to be determined as the line crossed the site. The first event was also captured in a similar manner by both the 2DVDs as well as the C-band radar. Drop fall velocity measurements for, say, the 3 mm drops show noticeable differences between the two events. Whereas for the first event, the velocity distribution showed a narrow and symmetric distribution, with a mode at the expected value (7.95 m/s, as given by the formula in [4]), the second event produced a wider distribution with a significant skewness towards lower velocities (although its mode too was close to the expected value). Moreover, the slower 3 mm drops in the second event occurred when the convection line was directly over the 2DVD site (03:35-03:45 utc), and not before nor after. A similar trend was observed in terms of the horizontal dimensions of the 3 mm drops, i.e. large fluctuations during the same time period, but not outside the period. Vertical dimensions of the drops also fluctuated but not to the same extent. Interestingly, the horizontal dimensions tended towards larger values during the 10-minute period, implying an increase in drop oblateness, which in turn indicates the possibility of the horizontal mode oscillation, one of the three fundamental modes of drop oscillations [5], albeit the most difficult one to excite.
A comparison of colour, shape, and flash induced illusory line motion.
Hamm, Jeff P
2017-04-01
When a bar suddenly appears between two boxes, the bar will appear to shoot away from the box that matches it in colour or in shape-a phenomenon referred to as attribute priming of illusory line motion (ILM; colour ILM and shape ILM, respectively). If the two boxes are identical, ILM will still occur away from a box if it changes luminance shortly before the presentation of the bar ( flash ILM). This flash condition has been suggested to produce the illusory motion due to the formation of an attentional gradient surrounding the flashed location. However, colour ILM and shape ILM cannot be explained by an attentional gradient as there is no way for attention to select the matching box prior to the presentation of the bar. These findings challenge the attentional gradient explanation for ILM, but only if it is assumed that ILM arises for the same underlying reason. Two experiments are presented that address the question of whether or not flash ILM is the same as colour ILM or shape ILM. The results suggest that while colour ILM and shape ILM reflect a common illusion, flash ILM arises for a different reason. Therefore, the attentional gradient explanation for flash ILM is not refuted by the occurrence of colour ILM or shape ILM, which may reflect transformational apparent motion (TAM).
Multidimensional brain activity dictated by winner-take-all mechanisms.
Tozzi, Arturo; Peters, James F
2018-06-21
A novel demon-based architecture is introduced to elucidate brain functions such as pattern recognition during human perception and mental interpretation of visual scenes. Starting from the topological concepts of invariance and persistence, we introduce a Selfridge pandemonium variant of brain activity that takes into account a novel feature, namely, demons that recognize short straight-line segments, curved lines and scene shapes, such as shape interior, density and texture. Low-level representations of objects can be mapped to higher-level views (our mental interpretations): a series of transformations can be gradually applied to a pattern in a visual scene, without affecting its invariant properties. This makes it possible to construct a symbolic multi-dimensional representation of the environment. These representations can be projected continuously to an object that we have seen and continue to see, thanks to the mapping from shapes in our memory to shapes in Euclidean space. Although perceived shapes are 3-dimensional (plus time), the evaluation of shape features (volume, color, contour, closeness, texture, and so on) leads to n-dimensional brain landscapes. Here we discuss the advantages of our parallel, hierarchical model in pattern recognition, computer vision and biological nervous system's evolution. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Alexander, William R.; Linsky, Jeffrey L.
1996-01-01
We present new observations of the Ly alpha lines of Epsilon Indi (K5 5) and A Andromedae (G8 4-3 + ?) These data were obtained by the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. Analysis of the interstellar H 1 and D 1 absorption lines reveals that the velocities and temperatures inferred from the H 1 lines are inconsistent with the parameters inferred from the D 1 lines, unless the H 1 absorption is assumed to be produced by two absorption components. One absorption component is produced by interstellar material. For both lines of sight observed, the velocity of this component is consistent with the velocity predicted by the local flow vector. For the Epsilon Indi data, the large velocity separation between the stellar emission and the interstellar absorption allows us to measure the H 1 column density independent of the shape of the intrinsic stellar Ly alpha profile. This approach permits us to quote an accurate column density and to assess its uncertainty with far more confidence than in previous analyses, for which the errors were dominated by uncertainties in the assumed stellar profiles.
NASA Astrophysics Data System (ADS)
Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.
2017-02-01
Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.
Surface Aesthetics and Analysis.
Çakır, Barış; Öreroğlu, Ali Rıza; Daniel, Rollin K
2016-01-01
Surface aesthetics of an attractive nose result from certain lines, shadows, and highlights with specific proportions and breakpoints. Analysis emphasizes geometric polygons as aesthetic subunits. Evaluation of the complete nasal surface aesthetics is achieved using geometric polygons to define the existing deformity and aesthetic goals. The relationship between the dome triangles, interdomal triangle, facet polygons, and infralobular polygon are integrated to form the "diamond shape" light reflection on the nasal tip. The principles of geometric polygons allow the surgeon to analyze the deformities of the nose, define an operative plan to achieve specific goals, and select the appropriate operative technique. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
A procedure for the structural analysis of stiffened shells of revolution is presented. A digital computer program based on the Love-Reissner first order shell theory was developed. The computer program can analyze orthotropic thin shells of revolution, subjected to unsymmetric distributed loading or concentrated line loads, as well as thermal strains. The geometrical shapes of the shells which may be analyzed are described. The shell wall cross section can be a sheet, sandwich, or reinforced sheet or sandwich. General stiffness input options are also available.
Many P-Element Insertions Affect Wing Shape in Drosophila melanogaster
Weber, Kenneth; Johnson, Nancy; Champlin, David; Patty, April
2005-01-01
A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape. PMID:15545659
Many P-element insertions affect wing shape in Drosophila melanogaster.
Weber, Kenneth; Johnson, Nancy; Champlin, David; Patty, April
2005-03-01
A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape.
Hasegawa, Kiyoshi; Suzuki, Machiko; Ishikawa, Kunimi; Yasue, Akira; Kato, Rina; Nakamura, Azumi; Kuroki, Jun; Udagawa, Yasuhiro
2003-03-01
A new cell line of human uterine endometrial undifferentiated carcinoma, designated as TMG-L, was established from the metastatic lymph node of 56-year-old patient TMG-L cells have been cultured with Ham's F-12 medium supplemented with 10% FCS and grew as a loosely adherent monolayer with polygonal or spindle-shaped cells exhibiting poor cell-cell contact and piled up against each other, showing a tendency to grow as floating cells. The doubling time of this cell line was about 48 hours, and chromosomal analysis revealed aneuploidy at passage 25. The cells formed tumors in SCID mouse, the histology of which was similar to that of undifferentiated carcinoma component of primary tumor. TMG-L cells showed the loss of expression and membranous localization of either E-cadherin or alpha-catenin, implied corresponding loss of their adhesive function. And this dysfunction implicated the biological aggressive behavior of uterine endometrial undifferentiated carcinoma. This cell line appears to provide a useful system for studying uterine undifferentiated carcinoma in vivo and in vitro.
Geocoronal structure. 3. Optically thin, Doppler-broadened line profiles
NASA Astrophysics Data System (ADS)
Bishop, James; Chamberlain, Joseph W.
1987-11-01
Theoretical line profiles, applicable to the analysis of geocoronal Hα prifile measurements, are presented for illustrative cases. While retaining a number of simplifications (classical exobase and diffusive equilibrium plasmasphere conditions), distinctive spectral signatures of mechanisms governing the geocorona are isolated. Examining the consequences of solar radiation pressure dynamics is the main point here. In the prototype evaporative case, radiation pressure acts to form narrow profiles via the creation of an extensive quasi-satellite component. Comparison with a simple extension of the earlier analytic theory discloses the influence of an exopause in this regard. The main modifications to evaporative spectral shapes in the geocoronal application, for shadow heights greater than 2 RE, are predicted to be (1) a blueward ``shift'' or bias near line center, for look directions parallel to the antisolar axis, generated by loss mechanisms acting over the time of flight of exospheric constituents (for example, solar ionization) and (2) an enhanced redward wing at spectral displacements exceeding that defined by the shadow height escape speed, produced by plasmaspheric charge exchange collisions. Implications of these results for recent observations of geocoronal Hα line profiles are briefly discussed.
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.
2002-01-01
We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).
Srivastava, Pallavee; Braganca, Judith M; Kowshik, Meenal
2014-01-01
Nanoparticles synthesis by bacteria and yeasts has been widely reported, however, synthesis using halophilic archaea is still in a nascent stage. This study aimed at the intracellular synthesis of selenium nanoparticles (SeNPs) by the haloarchaeon Halococcus salifodinae BK18 when grown in the presence of sodium selenite. Crystallographic characterization of SeNPs by X-ray diffraction, Selected area electron diffraction, and transmission electron microscopy exhibited rod shaped nanoparticles with hexagonal crystal lattice, a crystallite domain size of 28 nm and an aspect ratio (length:diameter) of 13:1. Energy disruptive analysis of X-ray analysis confirmed the presence of selenium in the nano-preparation. The nitrate reductase enzyme assay and the inhibitor studies indicated the involvement of NADH-dependent nitrate reductase in SeNPs synthesis and metal tolerance. The SeNPs exhibited good anti-proliferative properties against HeLa cell lines while being non-cytotoxic to normal cell line model HaCat, suggesting the use of these SeNPs as cancer chemotherapeutic agent. This is the first study on selenium nanoparticles synthesis by haloarchaea. © 2014 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra
2012-09-01
Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.
Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy
NASA Astrophysics Data System (ADS)
Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.
2009-03-01
We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP)2SbF6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF)2X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d like superconducting pair is formed in this system as the case of κ-(BEDT-TTF)2X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet.
The influence of microlensing on spectral line shapes generated by a relativistic accretion disc
NASA Astrophysics Data System (ADS)
Popović, L. Č; Mediavilla, E. G.; Muñoz, J. A.
2001-10-01
We study the influence of gravitational microlensing on the spectral line profiles originating from a relativistic accretion disc. Using the Chen & Halpern model for the disc, we show the noticeable changes that microlensing can induce in the line shape when the Einstein radius associated with the microlens is of a size comparable to that of the accretion disc. Of special interest is the relative enhancement between the blue and red peaks of the line when an off-center microlens affects the approaching and receding parts of the accretion disc asymmetrically. In an AGN formed by a super-massive binary in which the accretion disc is located around one of the super-massive companions (the primary), we discuss the possibility of microlensing by the secondary. In this case the ratio between the blue and red peaks of the line profile would depend on the orbital phase. We have also considered the more standard configuration of microlensing by a star-sized object in an intervening galaxy and find that microlensing may also be detected in the broad emission lines of multiply imaged QSOs. The changes observed in the line profile of Arp 102 B are taken as a reference for exploring both scenarios.
Establishment and characterization of a novel osteosarcoma cell line: CHOS.
Liu, Yunlu; Feng, Xiaobo; Zhang, Yukun; Jiang, Hongyan; Cai, Xianyi; Yan, Xinxin; Huang, Zengfa; Mo, Fengbo; Yang, Wen; Yang, Cao; Yang, Shuhua; Liu, Xianzhe
2016-12-01
Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
A search for energetic ion directivity in large solar flares
NASA Astrophysics Data System (ADS)
Vestrand, W. Thomas
One of the key observational questions for solar flare physics is: What is the number, the energy spectrum, and the angular distribution of flare accelerated ions? The standard method for deriving ion spectral shape employs the ratio of influences observed on the 4-7 MeV band to the narrow neutron capture line at 2.223 MeV. The 4-7 MeV band is dominated by the principal nuclear de-excitation lines from C-12 and O-16 which are generated in the low chromosphere by the direct excitation or spallation of nuclei by energetic ions. In contrast, the narrow 2.223 MeV line is produced by the capture of thermal neutrons on protons in the photosphere. These capture neutrons are generated by energetic ion interactions and thermalized by scattering in the solar atmosphere. In a series of papers, Ramaty, Lingenfelter, and their collaborators have calculated the expected ratio of fluence in the 4-7 MeV band to the 2.223 MeV line for a wide range of energetic ion spectral shapes (see, e.g. Hua and Lingenfelter 1987). Another technique for deriving ion spectral shapes and angular distributions uses the relative strength of the Compton tail associated with the 2.223 MeV neutron capture line (Vestrand 1988, 1990). This technique can independently constrain both the angular and the energy distribution of the energetic parent ions. The combination of this tail/line strength diagnostic with the line/(4-7) MeV fluence ratio can allow one to constrain both properties of the energetic ion distributions. The primary objective of our Solar Maximum Mission (SMM) guest investigator program was to study measurements of neutron capture line emission and prompt nuclear de-excitation for large flares detected by the Solar Maximum Mission/ Gamma-Ray Spectrometer (SMM/GRS) and to use these established line diagnostics to study the properties of flare accelerated ions.
Microscopic analysis and simulation of check-mark stain on the galvanized steel strip
NASA Astrophysics Data System (ADS)
So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon
2010-11-01
When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.
The Distorted Winds of V444 Cygni: New Insights from Spectropolarimetry
NASA Astrophysics Data System (ADS)
Hoffman, Jennifer L.; Ashley, Sierra F.; Ornelas, Jose L.; Fullard, Andrew; Lomax, Jamie R.; Shrestha, Manisha; Babler, Brian L.; Bjorkman, Jon Eric; Bjorkman, Karen S.; Davidson, James W.; Meade, Marilyn; Nordsieck, Kenneth H.; Richardson, Noel
2017-01-01
V444 Cygni is a close, eclipsing WR+O binary system characterized by strong X-ray emission and colliding winds whose shapes are distorted by its rapid orbital velocity and powerful radiative forces. It also exhibits periodic polarimetric variability both in the continuum and in the strong emission lines of He II λ4686, Hα+He I λ6560, and N IV λ7125 these line polarization variations probe the distribution of line formation regions in the complex winds. Sparse spectropolarimetric coverage has limited the reliability of the line polarization analysis in past studies. We here present new line polarization curves that incorporate 11 recent observations of V444 Cyg, obtained with the HPOL spectropolarimeter at the University of Toledo’s Ritter Observatory, into the existing dataset. Because most of these data were taken with the blue grating, we focus primarily on the improved He II λ4686 polarization curve. Although the data display significant stochastic variability by virtue of spanning 27 years, the addition of the new observations allows a more robust analysis than was previously possible. We discuss our interpretation of the updated curves in light of current models for V444 Cyg and other WR+O binary systems. Accurately characterizing the structures of the wind collision regions in such systems is key to understanding the evolution of such massive binary systems and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.
(C-12)O emission from the envelopes of cool stars in the solar neighborhood
NASA Technical Reports Server (NTRS)
Margulis, M.; Van Blerkom, D. J.; Snell, R. L.; Kleinmann, S. G.
1990-01-01
Results are presented on observations of the CO J = 1-0 line emission from all M giants, S stars, and C stars listed in the Two-Micron Sky Survey having strong FIR emission and lying north of delta = -10 deg. The data from this survey and other data for C and S stars show that the line profiles of these stars look like flattened parabolas and have roughly the same shape for different stars. In contrast, the shapes of the spectral lines from giant M stars are diverse, ranging from triangular to spiked and asymmetric, suggesting that the envelopes of M stars have complex kinematics and structure. The outflow velocities inferred from the line profiles of the stars surveyed span a range of more than an order of magnitude, with the velocities of C stars correlating with IR color.
Identification of geometric faces in hand-sketched 3D objects containing curved lines
NASA Astrophysics Data System (ADS)
El-Sayed, Ahmed M.; Wahdan, A. A.; Youssif, Aliaa A. A.
2017-07-01
The reconstruction of 3D objects from 2D line drawings is regarded as one of the key topics in the field of computer vision. The ongoing research is mainly focusing on the reconstruction of 3D objects that are mapped only from 2D straight lines, and that are symmetric in nature. Commonly, this approach only produces basic and simple shapes that are mostly flat or rather polygonized in nature, which is normally attributed to inability to handle curves. To overcome the above-mentioned limitations, a technique capable of handling non-symmetric drawings that encompass curves is considered. This paper discusses a novel technique that can be used to reconstruct 3D objects containing curved lines. In addition, it highlights an application that has been developed in accordance with the suggested technique that can convert a freehand sketch to a 3D shape using a mobile phone.
Auger Line Shapes as a Probe of Electronic Structure in Covalent Systems
1992-01-01
representative of the the Cini-Sa%atzky expression. eq. (2). Auger line shape provided the a, a, x., and no bands are all Dunlap et al . have generalized...increased polanza- unfilled bands by Treglia et aL . [38], Cini et al . (39-4i] and ton then has the effect of increasing AU. For the alkenes, Liebsch [42]. We...briefly summarize some of this work. the AU’s are all the same. This suggests that the screening According to Treglia et al - the Cini equation is
X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignace, R.; Waldron, W. L.; Cassinelli, J. P.
2012-05-01
The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less
NASA Technical Reports Server (NTRS)
Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.
2011-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, and in-situ measurements were made using its CO2 sensor and radiosondes. We have conducted an analysis of the ranging and IPDA lidar measurements from these four flights. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We used a cross-correlation approach to process the laser echo records. This was used to estimate the range to the scattering surface, to define the edges of the laser pulses and to determine echo pulse energy at each wavelength. We used a minimum mean square approach to fit an instrument response function and to solve for the best-fit CO2 absorption line shape. We then calculated the differential optical depth (DOD) of the fitted CO2 line. We computed its statistics at the various altitude steps, and compare them to the DODs calculated from spectroscopy based on HITRAN 2008 and the column conditions calculated from the airborne in-situ readings. The results show the lidar and in-situ measurements have very similar DOD change with altitude and greater than 10 segments per flight where the scatter in the lidar measurements are less than or equal to 1ppm. We also present the results from subsequent CO2 column absorption measurements, which were made with stronger detected signals during three flights on the NASA DC-8 over the southwestern US in during July 2010.
- and Air-Broadened Line Shape Parameters of 12CH_4 : 4500-4620 CM-1
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda; Crawford, Timothy J.; Smith, Mary Ann H.; Mantz, Arlan; Predoi-Cross, Adriana
2014-06-01
Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. We report the self- and air-broadened Lorentz widths, shifts and line mixing coefficients along with their temperature dependences for methane absorption lines in the 2.2 μm spectral region. For this, we obtained a series of high-resolution, high S/N spectra of 99.99% 12C-enriched samples of pure methane and its dilute mixtures in dry air at cold temperatures down to 150 K using the Bruker IFS 125HR Fourier transform spectrometer at JPL. The coolable absorption cell had an optical path of 20.38 cm and was specially built to reside inside the sample compartment of the Bruker FTS. The 13 spectra used in the analysis consisted of seven pure 12CH_4 spectra at pressures from 4.5 to 169 Torr and six air-broadened spectra with total sample pressures of 113-300 Torr and methane volume mixing ratios between 4 and 9.7%. These 13 spectra were fit simultaneously using the multispectrum least-squares fitting technique. The results will be compared to existing values reported in the literature. K. Sung, A. W. Mantz, L. R. Brown, et al., J. Mol. Spectrosc., 162 (2010) 124-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT, 53 (1995) 705-721. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Gibson, Justus L.; Stencel, Robert E.; Ketzeback, William; Barentine, John; Coughlin, Jeffrey; Leadbeater, Robin; Saurage, Gabrelle
2018-06-01
Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. One hundred and sixteen epochs of data were obtained between 2009 and 2012, and equivalent widths and line velocities measured for high versus low eccentricity accretion disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830Å line, and the discovery of the P Cygni shape of the Pa-β line at third contact. We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualized the disk and stream interaction using SHAPE software, and used CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with nH = 1011 cm-3 and temperature of 20,000 K, consistent with a mid-B type central star. Van Rensbergen binary star evolutionary models are somewhat consistent with the current binary parameters for their case of a 9 plus 8 solar mass initial binary, evolving into a 2.3 and 14.11 solar mass end product after 35 Myr. With these results, it is possible to make predictions which suggest that continued monitoring prior to the next eclipse (2036) will help resolve standing questions about the mass and age of this binary.
LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskot, A. E.; Oey, M. S.
2014-08-20
We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originatesmore » from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.« less
NASA Astrophysics Data System (ADS)
Rodrigues, M.; Foster, C.; Taylor, E. N.; Wright, A. H.; Hopkins, A. M.; Baldry, I.; Brough, S.; Bland-Hawthorn, J.; Cluver, M. E.; Lara-López, M. A.; Liske, J.; López-Sánchez, Á. R.; Pimbblet, K. A.
2016-05-01
This paper presents a new catalog of emission lines based on the GAMA II data for galaxies between 0.07
Qiu, Xianjin; Gong, Rong; Tan, Youbin; Yu, Sibin
2012-12-01
Seed shape in rice (Oryza sativa) is an important factor that determines grain appearance, cooking quality and grain yield. Here, we report a major quantitative trait locus qSS7 on the long arm of chromosome 7 for seed length, seed width and the ratio of seed length to width, identified using a segregating population derived from a cross between an indica variety Zhenshan97 and a chromosomal segment substitution line of a japonica variety Cypress within the genetic background of Zhenshan97. The Cypress allele at qSS7 contributes to an increase in seed length and the ratio of length to width, but a decrease in seed width, without significantly changing seed weight, plant height, heading date or number of spikelets per panicle. Using a large F(2) population generated from a substitution line that carries only a heterozygous single segment surrounding qSS7, we delimited the QTL to a 23-kb region containing two annotated genes. Progeny testing of the informative recombinants suggested that this qSS7 region is a composite QTL in which at least two genes contribute to seed length and width. Sequence comparison and expression analysis of two probable candidate genes revealed differences between the parental lines. These results will facilitate cloning of the gene(s) underlying qSS7 as well as marker-assisted transfer of desirable genes for seed shape in rice improvement.
Z =50 core stability in 110Sn from magnetic-moment and lifetime measurements
NASA Astrophysics Data System (ADS)
Kumbartzki, G. J.; Benczer-Koller, N.; Speidel, K.-H.; Torres, D. A.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Gürdal, G.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Robinson, S. J. Q.; Sharon, Y. Y.; Wiens, A.
2016-04-01
Background: The structure of the semimagic 50Sn isotopes were previously studied via measurements of B (E 2 ;21+→01+ ) and g factors of 21+ states. The values of the B (E 2 ;21+ ) in the isotopes below midshell at N = 66 show an enhancement in collectivity, contrary to predictions from shell-model calculations. Purpose: This work presents the first measurement of the 2 1+ and 4 1+ states' magnetic moments in the unstable neutron-deficient 110Sn. The g factors provide complementary structure information to the interpretation of the observed B (E 2 ) values. Methods: The 110Sn nuclei have been produced in inverse kinematics in an α -particle transfer reaction from 12C to 106Cd projectiles at 390, 400, and 410 MeV. The g factors have been measured with the transient field technique. Lifetimes have been determined from line shapes using the Doppler-shift attenuation method. Results: The g factors of the 21+ and 41+ states in 110Sn are g (21+) = +0.29(11) and g (41+) = +0.05(14), respectively. In addition, the g (41+) = +0.27(6) in 106Cd has been measured for the first time. A line-shape analysis yielded τ (110Sn ; 21+) = 0.81(10) ps and a lifetime of τ (110Sn ; 31-) = 0.25(5) ps was calculated from the fully Doppler-shifted γ line. Conclusions: No evidence has been found in 110Sn that would require excitation of protons from the closed Z =50 core.
Temperature distribution in a stellar atmosphere diagnostic basis
NASA Technical Reports Server (NTRS)
Jefferies, J. T.; Morrison, N. D.
1973-01-01
A stellar chromosphere is considered a region where the temperature increases outward and where the temperature structure of the gas controls the shape of the spectral lines. It is shown that lines which have collision-dominated source sink terms, like the Ca(+) and Mg(+) H and K lines, can be used to obtain the distribution of temperature with height from observed line profiles. Intrinsic emission lines and geometrical emission lines are found in spectral regions where the continuum is depressed. In visual regions, where the continuum is not depressed, emission core in absorption lines are attributed to reflections of intrinsic emission lines.
Reconstructing spectral cues for sound localization from responses to rippled noise stimuli
Vliegen, Joyce; Van Esch, Thamar
2017-01-01
Human sound localization in the mid-saggital plane (elevation) relies on an analysis of the idiosyncratic spectral shape cues provided by the head and pinnae. However, because the actual free-field stimulus spectrum is a-priori unknown to the auditory system, the problem of extracting the elevation angle from the sensory spectrum is ill-posed. Here we test different spectral localization models by eliciting head movements toward broad-band noise stimuli with randomly shaped, rippled amplitude spectra emanating from a speaker at a fixed location, while varying the ripple bandwidth between 1.5 and 5.0 cycles/octave. Six listeners participated in the experiments. From the distributions of localization responses toward the individual stimuli, we estimated the listeners’ spectral-shape cues underlying their elevation percepts, by applying maximum-likelihood estimation. The reconstructed spectral cues resulted to be invariant to the considerable variation in ripple bandwidth, and for each listener they had a remarkable resemblance to the idiosyncratic head-related transfer functions (HRTFs). These results are not in line with models that rely on the detection of a single peak or notch in the amplitude spectrum, nor with a local analysis of first- and second-order spectral derivatives. Instead, our data support a model in which the auditory system performs a cross-correlation between the sensory input at the eardrum-auditory nerve, and stored representations of HRTF spectral shapes, to extract the perceived elevation angle. PMID:28333967
Octopus-inspired drag cancelation by added mass pumping
NASA Astrophysics Data System (ADS)
Weymouth, Gabriel; Giorgio-Serchi, Francesco
2016-11-01
Recent work has shown that when an immersed body suddenly changes its size, such as a deflating octopus during rapid escape jetting, the body experiences large forces due to the variation of added-mass energy. We extend this line of research by investigating a spring-mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. This system isolates the ability of the added-mass thrust to cancel the bluff body resistance (having no jet flow to confuse the analysis) and moves closer to studying how these effects would work in a sustained propulsion case by studying periodic shape-change instead of a "one-shot" escape maneuver. With a combination of analytical, numerical, and experimental results, we show that the recovery of added-mass kinetic energy can be used to completely cancel the drag of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius. Moreover, these results are fairly independent of the details of the shape-change kinematics as long as the Stokes number and shape-change number are large. In addition, the effective pumping frequency range based on parametric oscillator analysis is shown to predict large amplitude response region observed in the numerics and experiments.
Davis, James H; Schmidt, Miranda L
2014-05-06
Static (2)H NMR spectroscopy is used to study the critical behavior of mixtures of 1,2-dioleoyl-phosphatidylcholine/1,2-dipalmitoyl-phosphatidylcholine (DPPC)/cholesterol in molar proportion 37.5:37.5:25 using either chain perdeuterated DPPC-d62 or chain methyl deuterated DPPC-d6. The temperature dependence of the first moment of the (2)H spectrum of the sample made with DPPC-d62 and of the quadrupolar splittings of the chain-methyl-labeled DPPC-d6 sample are directly related to the temperature dependence of the critical order parameter η, which scales as [Formula: see text] near the critical temperature. Analysis of the data reveals that for the chain perdeuterated sample, the value of Tc is 301.51 ± 0.1 K, and that of the critical exponent, βc = 0.391 ± 0.02. The line shape analysis of the methyl labeled (d6) sample gives Tc = 303.74 ± 0.07 K and βc = 0.338 ± 0.009. These values obtained for βc are in good agreement with the predictions of a three-dimensional Ising model. The difference in critical temperature between the two samples having nominally the same molar composition arises because of the lowering of the phase transition temperature that occurs due to the perdeuteration of the DPPC. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammed, Priscilla N.; Steffes, Paul G.
2004-07-01
A model, based on the Van Vleck-Weisskopf line shape, was developed for the centimeter-wavelength opacity of PH3, which provides an order of magnitude improvement over previous models [Hoffman et al., 2001]. New laboratory measurements indicate that the model is also accurate at 94 GHz (3.2 mm) under conditions for the outer planets. Measurements of the opacity and refractivity of PH3 in a hydrogen/helium (H2/He) atmosphere were conducted at 94 GHz (3.2 mm) at pressures of 0.5 and 2 bars and at temperatures of 293 K and 213 K. Additionally, new high-precision laboratory measurements of the opacity and refractivity of NH3 in an H2/He atmosphere were conducted at the same frequency at pressures from 0.5 to 2 bars and at temperatures of 204 K, 211 K, and 290 K. Results show that existing models, which predict NH3 opacity in an H2/He environment, understate the absorption due to the pressure broadened rotational lines. A new model is proposed for use at 94 GHz (3.2 mm) which uses a Ben-Reuven line shape [Ben-Reuven, 1966] for the inversion lines and a Kinetic line shape [Gross, 1955] for the rotational lines. Results of measurements of both PH3 and NH3 can be used to better interpret maps of Saturn's emission at this wavelength and can potentially be used to deduce spatial variations in the abundances of both gases in the atmosphere of Saturn.
Role of the He I and He II metastables in the resonance 2p 2P°1/2, 3/2 B III level population
NASA Astrophysics Data System (ADS)
Djeniže, S.; Srećković, A.; Bukvić, S.
2007-01-01
Aims:The aim of this work is to present atomic processes which lead to an extra population of the 2p ~^2P°1/2, 3/2 B III resonance levels in helium plasma generating intense radiation in the B III 206.578 nm and 206.723 nm lines. Methods: The line profiles were recorded using a step-by-step (7.3 pm) technique which provides monitoring of the line shapes continually during the plasma decay and gives the possibility to compare line shapes at various times in the same plasma. Results: On the basis of the line intensity decays of the doubly ionized boron resonance spectral lines in laboratory nitrogen and helium plasmas, we have found the existence of a permanent energy transfer from He I and He II metastables to the 2p ^2P°1/2, 3/2 B III resonance levels. The shapes of the mentioned lines are also observed. At electron temperatures of about 18 000 K and electron densities about 1.1× 1023 m-3, the Stark broadening was found as a main B III line broadening mechanism. The measured Stark widths (W) are compared with the Doppler width (W_D) and with the splitting in the hyperfine structure (Δ_hfs). Our measured W data are found to be much higher than results obtained by means of various theoretical approaches. Conclusions: . The He I and He II metastables over populate the B III resonance levels leading to populations higher than predicted by LTE model. Consequently, the emitted B III resonance lines are more intense than expected from LTE model. This fact can be of importance if B III resonance line intensities are used for abundance determination purposes in astrophysics. Similar behavior can be expected for some lines emitted by astrophysical interesting emitters: Al III, Si III, Sc III, Cr III, V III, Ti III, Fe III, Co III, Ni III, Ga III, Zr III, Y III, Nb III, In III, Sn III, Sb III, Au III, Pb III and Bi III in hot and dense helium plasmas.
Souza, Beatriz C C; De Oliveira, Tiago B; Aquino, Thiago M; de Lima, Maria C A; Pitta, Ivan R; Galdino, Suely L; Lima, Edeltrudes O; Gonçalves-Silva, Teresinha; Militão, Gardênia C G; Scotti, Luciana; Scotti, Marcus T; Mendonça, Francisco J B
2012-06-01
A series of 2-[(arylidene)amino]-cycloalkyl[b]thiophene-3-carbonitriles (2a-x) was synthesized by incorporation of substituted aromatic aldehydes in Gewald adducts (1a-c). The title compounds were screened for their antifungal activity against Candida krusei and Criptococcus neoformans and for their antiproliferative activity against a panel of 3 human cancer cell lines (HT29, NCI H-292 and HEP). For antiproliferative activity, the partial least squares (PLS) methodology was applied. Some of the prepared compounds exhibited promising antifungal and proliferative properties. The most active compounds for antifungal activity were cyclohexyl[b]thiophene derivatives, and for antiproliferative activity cycloheptyl[b]thiophene derivatives, especially 2-[(1H-indol-2-yl-methylidene)amino]- 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile (2r), which inhibited more than 97 % growth of the three cell lines. The PLS discriminant analysis (PLS-DA) applied generated good exploratory and predictive results and showed that the descriptors having shape characteristics were strongly correlated with the biological data.
Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality
USDA-ARS?s Scientific Manuscript database
This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0–2815 cm-1 using a detection mod...
Production of Chemical Structure Drawings Using an Interactive Graphics System.
1981-02-01
E Structure display program flowcharts 32 Appendix F Execution exception conditions 39 Table I Order of search for a match between the bonds of a link...see Fig I). Shapes are connected together by a straight line known as a bond and one shape can have several bonds . Each shape definition contains...for each bond , the coordinates of the end of the bond nearest its parent shape together with the angle between the bond and the horizontal. Bonds are
The emerging planetary nebula CRL 618 and its unsettled central star(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balick, B.; Riera, A.; Raga, A.
We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whosemore » compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.« less
NASA Astrophysics Data System (ADS)
Hwang, J. S.; Al-Rashid, W. A.
Spin probe investigation of jojoba oil was carried out by electron paramagnetic rresonance (EPR) spectroscopy. The spin probe used was 2,2,6,6-tetramethyl-4-piperidone- N-oxide. The EPR line shape studies were carried out in the lower temperature range of 192 to 275 K to test the applicability of the stochastic Liouville theory in the simulation of EPR line shapes where earlier relaxation theories do not apply. In an earlier study, this system was analysed by employing rotational diffusion at the fast-motional region. The results show that PD-Tempone exhibits asymmetric rotational diffusion with N = 3.3 at an axis z'= Y in the plane of the molecule and perpendicular to the NO bond direction. In this investigation we have extended the temperature range to lower temperatures and observed slow tumbling EPR spectra. It is shown that the stochastic Liouville method can be used to simulate all but two of the experimentally observed EPR spectra in the slow-motional region and details of the slow-motional line shape are sensitive to the anisotropy of rotation and showed good agreement for a moderate jump model. From the computer simulation of EPR line shapes it is found that the information obtained on τ R, and N in the motional-narrowing region can be extrapolated into the slow-tumbling region. It is also found that ln (τ R) is linear in 1/ T in the temperature range studied and the resulting activation energy for rotation is 51 kJ/mol. The two EPR spectra at 240 and 231 K were found to exhibit the effects of anisotropic viscosity observed by B IRELL for nitroxides oriented in tubular cavities in inclusion crystals in which the molecule is free to rotate about the long axis but with its rotation hindered about the other two axes because of the cavity geometry. These results proved that the slow-tumbling spectra were very sensitive to the effects of anisotropy in the viscosity.
A Spectral-line Analysis of the G8 III Standard ɛ VIR
NASA Astrophysics Data System (ADS)
Gray, David F.
2017-08-01
Eleven seasons of spectroscopic data comprised of 107 exposures for the stable G8 III standard star, ɛ Vir are analyzed for projected rotation rate and granulation parameters. A Fourier analysis of the line shapes yield v sin I = 3.06 ± 0.20 km s-1 and a radial-tangential macroturbulence dispersion ζ RT = 5.16 ± 0.08 km s-1. The radial velocity over nine seasons is constant to 18 m s-1. The absolute radial velocity with granulation blueshifts (but not gravitational redshift) removed is -14120 ± 75 m s-1. Line-depth ratios show the temperature to be constant to 0.7 K over 11 years, although a small secular rise or cyclic variation ˜1 K cannot be ruled out. The third-signature plot shows that the star has granulation velocities 10% larger than the Sun's. Mapping the Fe I λ6253 line bisector on to the third-signature plot indicates a normal-for-giants flux deficit area of 12.8%, indicating ˜134 K temperature difference between granules and lanes. Deficit velocities of GK giants are seen to shift to higher values with higher luminosity, ˜0.75 km s-1 over ΔM V ˜ 1.5, indicating larger velocity differences between granules and lanes for giants higher in the HR diagram.
NASA Astrophysics Data System (ADS)
Tran, H.; Hartmann, J. M.
2011-06-01
Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.
NASA Astrophysics Data System (ADS)
López, Luis I. A.; Mendoza, Michel; Ujevic, Sebastian
2013-09-01
We have systematically studied the conductance σ( E,B) and the electronic current line shapes J( V ex ) through complex mesoscopic molecules in an elastic resonant tunneling regime. The studied systems are based on GaAs/AlGaAs hetero-structures, with several discrete states in each coupled mesoscopic molecule. The molecules were formed using different wells and barrier widths. These systems allow effective couplings and uncouplings that lead to elastic processes as a function of the electronic potential V ex and magnetic field B. In this situation, the J( V ex ) and σ( E, B) curves exhibit a sequence of peaks of difficult interpretation, in which crossings and anti-crossings (a splitting if it is generated in the resonance condition) of states contribute in a way that they cannot be easily identified. Performing a systematic analysis of the evolution of these states (before the resonance condition), we were able to determine the origin of these current peaks. We have found that the coupling of states (anti-crossing) around the resonance region can be identified as a broad mirrored- D line shape in the J( V ex ) curves. The mirrored- D line shape peaks can be clearly differentiated from the neighboring peaks because the last ones follow a very defined increasing sequence in their intensities and widths. Also, this behavior (fingerprint) can be used to identify possible splitting of states in the J( V ex ). The splittings that are generated between states with different quantum numbers (quantum numbers associated to the individual well) follow an unexpected opposite behavior when compared with those generated between states with the same quantum numbers (quasi-miniband). All these results are also observed in the conductance σ( E, B) associated with complex mesoscopic molecules based on a two-dimensional electron gas.
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.
2009-01-01
We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. This spring we improved the aircraft's nadir window. During July and August 2009 we made 9 additional 2 hour long flights and measured the atmospheric C02 absorption and line shapes using the 1572.33 nm C02 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and Virginia. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. The Oklahoma and east coast t1ights were coordinated with a LaRC/ITT C02 lidar on the LaRC UC-12 aircraft, a LaRC insitu C02 sensor, and the Oklahoma flights also included a JPL C02 lidar on a Twin Otter aircraft. Ed Browell and Gary Spiers led the LaRC and JPL teams. More details of the t1ights, measurements and analysis will be described in the presentation.
NASA Astrophysics Data System (ADS)
Stojadinović, Stevan; Tadić, Nenad; Šišović, Nikola M.; Vasilić, Rastko
2015-06-01
In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line Hβ (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 1021 m-3. The electron temperature of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO3.
Two-phase Hele-Shaw flow with a moving contact line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, S.J.; Ungar, L.H.; Dussan, E.B.
1988-01-01
An asymptotic analysis is presented for Hele-Shaw viscous fingering with a moving contact line at flow rates. As in problems where a thin film is present instead of a contact line, the narrow gap limit is nonuniform, and interfacial boundary conditions valid for the Hele-Shaw equations must be determined in order to predict the flow field and interface shape. Many well-posed boundary-value problems can be identified, each corresponding to a different flow regime characterized by the relative sizes of the capillary number (dimensionless velocity) and the dimensionless gap width. These problems incorporate terms corresponding to the gapwise component of themore » interfacial curvature (the curvature in the cross-sectional view of the Hele-Shaw cell) and spanwise curvature (seen in the top view of the cell) in different ways. Nonunique interface solutions typically arise as in the analogous thin film problems. The relationships between the curvature terms, the spectra of allowable solutions, and the implications for stability are discussed.« less
Insights on the Spectral Signatures of Stellar Activity and Planets from PCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Allen B.; Fischer, Debra A.; Cisewski, Jessi
Photospheric velocities and stellar activity features such as spots and faculae produce measurable radial velocity signals that currently obscure the detection of sub-meter-per-second planetary signals. However, photospheric velocities are imprinted differently in a high-resolution spectrum than are Keplerian Doppler shifts. Photospheric activity produces subtle differences in the shapes of absorption lines due to differences in how temperature or pressure affects the atomic transitions. In contrast, Keplerian Doppler shifts affect every spectral line in the same way. With a high enough signal-to-noise (S/N) and resolution, statistical techniques can exploit differences in spectra to disentangle the photospheric velocities and detect lower-amplitude exoplanetmore » signals. We use simulated disk-integrated time-series spectra and principal component analysis (PCA) to show that photospheric signals introduce spectral line variability that is distinct from that of Doppler shifts. We quantify the impact of instrumental resolution and S/N for this work.« less
Electronic relaxation effects in condensed polyacenes: A high-resolution photoemission study
NASA Astrophysics Data System (ADS)
Rocco, M. L. M.; Haeming, M.; Batchelor, D. R.; Fink, R.; Schöll, A.; Umbach, E.
2008-08-01
We present a high-resolution photoelectron spectroscopy investigation of condensed films of benzene, naphthalene, anthracene, tetracene, and pentacene. High spectroscopic resolution and a systematic variation of the molecular size allow a detailed analysis of the fine structures. The line shapes of the C 1s main lines are analyzed with respect to the different contributions of inhomogeneous broadening, vibronic coupling, and chemical shifts. The shake-up satellite spectra reveal trends, which give insight into the charge redistribution within the molecule upon photoexcitation. In particular, the shake-up between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) increases in intensity and moves closer toward the C 1s main line if the size of the aromatic system is increased. An explanation is given on the basis of the delocalization of the aromatic system and its capability in screening the photogenerated core hole. A comparison of the HOMO-LUMO shake-up position to the optical band gap gives additional insight into the reorganization of the electronic system upon photoexcitation.
Kanellopoulos, Anastasios John; Asimellis, George
2014-01-01
To investigate, by high-precision digital analysis of data provided by Scheimpflug imaging, changes in pupil size and shape and anterior chamber (AC) parameters following cataract surgery. The study group (86 eyes, patient age 70.58±10.33 years) was subjected to cataract removal surgery with in-the-bag intraocular lens implantation (pseudophakic). A control group of 75 healthy eyes (patient age 51.14±16.27 years) was employed for comparison. Scheimpflug imaging (preoperatively and 3 months postoperatively) was employed to investigate central corneal thickness, AC depth, and AC volume. In addition, by digitally analyzing the black-and-white dotted line pupil edge marking in the Scheimpflug "large maps," the horizontal and vertical pupil diameters were individually measured and the pupil eccentricity was calculated. The correlations between AC depth and pupil shape parameters versus patient age, as well as the postoperative AC and pupil size and shape changes, were investigated. Compared to preoperative measurements, AC depth and AC volume of the pseudophakic eyes increased by 0.99±0.46 mm (39%; P<0.001) and 43.57±24.59 mm(3) (36%; P<0.001), respectively. Pupil size analysis showed that the horizontal pupil diameter was reduced by -0.27±0.22 mm (-9.7%; P=0.001) and the vertical pupil diameter was reduced by -0.32±0.24 mm (-11%; P<0.001). Pupil eccentricity was reduced by -39.56%; P<0.001. Cataract extraction surgery appears to affect pupil size and shape, possibly in correlation to AC depth increase. This novel investigation based on digital analysis of Scheimpflug imaging data suggests that the cataract postoperative photopic pupil is reduced and more circular. These changes appear to be more significant with increasing patient age.
Photoionization Modelling of the Giant Broad-Line Region in NGC 3998.
NASA Astrophysics Data System (ADS)
Devereux, Nicholas
2018-01-01
Prior high angular resolution spectroscopic observations of the low-ionization nuclear emission-line region in NGC 3998 obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ~ 7 pc in radius consisting of dust-free, low density ~ 104 cm-3, low metallicity ~ 0.01 Z/Z⊙ gas. Modelling the shape of the broad Hα emission line significantly discriminates between two independent measures of the black hole mass, favouring the estimate of de Francesco (2006). Interpreting the broad Hα emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 x 10-2 M⊙/yr, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the Hα emission line, the relative intensities and luminosities for the H Balmer, [OIII], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.
ERIC Educational Resources Information Center
Post, Susan
1975-01-01
An art teacher described an elective course in graphics which was designed to enlarge a student's knowledge of value, color, shape within a shape, transparency, line and texture. This course utilized the technique of working a multi-colored print from a single block that was first introduced by Picasso. (Author/RK)
An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity
Rosa, Jeffrey B.; Metzstein, Mark M.
2018-01-01
During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens. PMID:29309404
High-speed pulse-shape generator, pulse multiplexer
Burkhart, Scott C.
2002-01-01
The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.
Ubiquity of Beutler-Fano profiles: From scattering to dissipative processes
NASA Astrophysics Data System (ADS)
Finkelstein-Shapiro, Daniel; Keller, Arne
2018-02-01
Fano models—consisting of a Hamiltonian with a discrete-continuous spectrum—are one of the basic toy models in spectroscopy. They have been successful in explaining the line shape of experiments in atomic physics and condensed matter. These models, however, have largely been beyond the scope of dissipative dynamics, with only a handful of works considering the effect of a thermal bath. Yet in nanostructures and condensed-matter systems, dissipation strongly modulates the dynamics. We present an overview of the theory of Fano interferences coupled to a thermal bath and compare them to the scattering formalism. We provide the solution to any discrete-continuous Hamiltonian structure within the wideband approximation coupled to a Markovian bath. In doing so, we update the toy models that have been available for unitary evolution since the 1960s. We find that the Fano line shape is preserved as long as we allow a rescaling of the parameters, and an additional Lorentzian contribution that reflects the destruction of the interference by dephasings. The universality of the line shape can be traced back to specific properties of the effective Liouvillian.
NASA Astrophysics Data System (ADS)
Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto
2017-08-01
The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.
Gong, Zhaoyuan; Walls, Jamie D
2018-02-01
Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Zhaoyuan; Walls, Jamie D.
2018-02-01
Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.
Gold-standard for computer-assisted morphological sperm analysis.
Chang, Violeta; Garcia, Alejandra; Hitschfeld, Nancy; Härtel, Steffen
2017-04-01
Published algorithms for classification of human sperm heads are based on relatively small image databases that are not open to the public, and thus no direct comparison is available for competing methods. We describe a gold-standard for morphological sperm analysis (SCIAN-MorphoSpermGS), a dataset of sperm head images with expert-classification labels in one of the following classes: normal, tapered, pyriform, small or amorphous. This gold-standard is for evaluating and comparing known techniques and future improvements to present approaches for classification of human sperm heads for semen analysis. Although this paper does not provide a computational tool for morphological sperm analysis, we present a set of experiments for comparing sperm head description and classification common techniques. This classification base-line is aimed to be used as a reference for future improvements to present approaches for human sperm head classification. The gold-standard provides a label for each sperm head, which is achieved by majority voting among experts. The classification base-line compares four supervised learning methods (1- Nearest Neighbor, naive Bayes, decision trees and Support Vector Machine (SVM)) and three shape-based descriptors (Hu moments, Zernike moments and Fourier descriptors), reporting the accuracy and the true positive rate for each experiment. We used Fleiss' Kappa Coefficient to evaluate the inter-expert agreement and Fisher's exact test for inter-expert variability and statistical significant differences between descriptors and learning techniques. Our results confirm the high degree of inter-expert variability in the morphological sperm analysis. Regarding the classification base line, we show that none of the standard descriptors or classification approaches is best suitable for tackling the problem of sperm head classification. We discovered that the correct classification rate was highly variable when trying to discriminate among non-normal sperm heads. By using the Fourier descriptor and SVM, we achieved the best mean correct classification: only 49%. We conclude that the SCIAN-MorphoSpermGS will provide a standard tool for evaluation of characterization and classification approaches for human sperm heads. Indeed, there is a clear need for a specific shape-based descriptor for human sperm heads and a specific classification approach to tackle the problem of high variability within subcategories of abnormal sperm cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Why Evolved Massive Single Stars Create X-rays: Analysis of XMM Observations of WR 6 (EZ CMa)
NASA Astrophysics Data System (ADS)
Gayley, Kenneth
The proposers are US Co-Is on an XMM-Newton proposal that has been awarded a 400 ksec exposure of the Wolf-Rayet star EZ CMa (WR 6). The XMM observations do not currently come with funding for data analysis, so the US Co-Is need separate funding from NASA to be able to carry out the analysis of this important and unique dataset. The reason the data is so important is that it is the longest and highest-resolution X-ray spectrum that has ever been taken of a single Wolf-Rayet star, and it will provide large photon counts as a function of time (to study variability), as a function of phase within the rotation period (to study longitudinal structure), and within each spectral line (to study line shapes and f/i/r ratios). Thus the dataset represents a treasure trove of information about how X-rays are formed in the winds of single Wolf-Rayet stars, which is important to understand because the winds of these stars so completely shroud the underlying hydrostatic object that the only way to study the characteristics and evolution of this important class of supernova and GRB progenitor is by studying its winds. X-rays provide a window into the processes that generate shocks and hot gas in these winds, which in turn may couple to the stellar rotation, pulsations, magnetic fields, and wind acceleration mechanisms, all currently poorly understood for this type of star. Our data analysis will focus on identifying the basic physical processes most likely to be responsible for the X-ray emission. Starting from issues like the total fluxes in lines and continua, we will constrain the energetics involved, and then by considering the details of the line shapes, we can use the line widths, asymmetries, and f/i/r ratios (where applicable) to obtain robust constraints on the location of the hot gas in the wind. Then by considering the temporal variability of the emission, we can distinguish the emission from numerous stochastically distributed shocks, such as from the line-driven instability, from a smaller number of largely coherent structures, perhaps due to magnetic loops or other magnetically induced phenomena. Also, by binning the data by phase over the 3.77 day rotational period of the star, we can probe quasiperiodic longitudinal structure, reminiscent of corotating interaction regions (CIRs) on our own Sun. We will also be able to conclusively verify expectations from previous lower-resolution and lower-photon-count observations, such as that the X-rays will exhibit lines and a thermal continuum suggestive of local shock heating more so than a predominantly nonthermal spectrum. Less certain are the degree of rotational modulation, as opposed to a more constant stochastic background, and whether there will be temporal variability suggestive of features that either come and go on the several-day flow time in the wind, or persist longer over multiple rotations. We need a sustained year-long analysis effort to obtain answers to these questions. The Co-Investigators of this proposal have significant experience analyzing radiative processes in hot-star winds, including Wolf-Rayet winds, and the hydrodynamical and magnetic phenomena that can give rise to shocked X-ray plasma. This was their expected role as Co-Is for the XMM observation, so NASA funding will help make the most of the observing resources already committed.
Effect of Convection on Weld Pool Shape and Microstructure.
1986-07-01
latent heat of fusion 11 u dynamic viscosity Iwo V kinematic viscosity P density a Stefan -Boltzman constant stress tensor 0, functions defined the...and temperature. The convections for velocities and temperature are based on a mixed Gauss- -* Seidel and Jacobi schemes, proceeding from line-to...line according to the Gauss- Seidel scheme, updating values as each line is completed. With each line, however, the point-by-point iteration is based on
NASA Astrophysics Data System (ADS)
Ngamkhanong, Chayut; Kaewunruen, Sakdirat; Baniotopoulos, Charalampos; Papaelias, Mayorkinos
2017-10-01
Nowadays, the electric train becomes one of the efficient railway systems that are lighter, cleaner, quieter, cheaper and faster than a conventional train. Overhead line equipment (OHLE), which supplies electric power to the trains, is designed on the principle of overhead wires placed over the railway track. The OHLE is supported by mast structure which located at the lineside along the track. Normally, mast structure is a steel column or truss structure which supports the overhead wire carrying the power. Due to the running train and severe periodic force, such as an earthquake, in surrounding area may cause damage to the OHLE structure especially mast structure which leads to the failure of the electrical system. The mast structure needs to be discussed in order to resist the random forces. Due to the vibration effect, the natural frequencies of the structure are necessary. This is because when the external applied force occurs within a range of frequency of the structure, resonance effect can be expected which lead to the large oscillations and deflections. The natural frequency of a system is dependent only on the stiffness of the structure and the mass which participates with the structure, including self-weight. The modal analysis is used in order to calculate the mode shapes and natural frequencies of the mast structure during free vibration. A mast structure with varying rotational soil stiffness is used to observe the influence of soil-structure action. It is common to use finite element analysis to perform a modal analysis. This paper presents the fundamental mode shapes, natural frequencies and crossing phenomena of three-dimensional mast structure considering soil-structure interaction. The sensitivity of mode shapes to the variation of soil-structure interaction is discussed. The outcome of this study will improve the understanding of the fundamental dynamic behaviour of the mast structure which supports the OHLE. Moreover, this study will be a recommendation for the structural engineer to associate with the behaviour of mast structure during vibration.
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
Recognizing simple polyhedron from a perspective drawing
NASA Astrophysics Data System (ADS)
Zhang, Guimei; Chu, Jun; Miao, Jun
2009-10-01
Existed methods can't be used for recognizing simple polyhedron. In this paper, three problems are researched. First, a method for recognizing triangle and quadrilateral is introduced based on geometry and angle constraint. Then Attribute Relation Graph (ARG) is employed to describe simple polyhedron and line drawing. Last, a new method is presented to recognize simple polyhedron from a line drawing. The method filters the candidate database before matching line drawing and model, thus the recognition efficiency is improved greatly. We introduced the geometrical characteristics and topological characteristics to describe each node of ARG, so the algorithm can not only recognize polyhedrons with different shape but also distinguish between polyhedrons with the same shape but with different sizes and proportions. Computer simulations demonstrate the effectiveness of the method preliminarily.
Kajiya, Tadashi; Nishitani, Eisuke; Yamaue, Tatsuya; Doi, Masao
2006-01-01
We studied the drying process of polymer solution drops placed on a substrate having a large contact angle with the drop. The drying process takes place in three stages. First, the droplet evaporates keeping the contact line fixed. Second, the droplet shrinks uniformly with receding contact line. Finally the contact line is pinned again, and the droplet starts to be deformed. The shape of the final polymer deposit changes from concave dot, to flat dot, and then to concave dot again with the increase of the initial polymer concentration. This shape change is caused by the gradual transition from the solute piling mechanism proposed by Deegan to the crust buckling mechanism proposed by de Gennes and Pauchard.
NASA Astrophysics Data System (ADS)
Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.
2003-07-01
We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).
Origin of Plasmon Lineshape and Enhanced Hot Electron Generation in Metal Nanoparticles.
You, Xinyuan; Ramakrishna, S; Seideman, Tamar
2018-01-04
Plasmon-generated hot carriers are currently being studied intensively for their role in enhancing the efficiency of photovoltaic and photocatalytic processes. Theoretical studies of the hot electrons subsystem have generated insight, but we show that a unified quantum-mechanical treatment of the plasmon and hot electrons reveals new physical phenomena. Instead of a unidirectional energy transfer process in Landau damping, back energy transfer is predicted in small metal nanoparticles (MNPs) within a model-Hamiltonian approach. As a result, the single Lorentzian plasmonic line shape is modulated by a multipeak structure, whose individual line width provides a direct way to probe the electronic dephasing. More importantly, the hot electron generation can be enhanced greatly by matching the incident energy to the peaks of the modulated line shape.
Abramo, Antonio Carlos; Do Amaral, Thiago Paoliello Alves; Lessio, Bruno Pierotti; De Lima, Germano Andrighetto
2016-12-01
The purpose of this study is to establish a relationship between the skin lines on the upper third of the face in cadavers, which represent the muscle activity in life and the skin lines achieved by voluntary contraction of the forehead, glabellar, and orbital muscles in patients. Anatomical dissection of fresh cadavers was performed in 20 fresh cadavers, 11 females and 9 males, with ages ranging from 53 to 77 years. Subcutaneous dissection identified the muscle shape and the continuity of the fibers of the eyebrow elevator and depress muscles. Subgaleal dissection identified the cutaneous insertions of the muscles. They were correlated with skin lines on the upper third of the face of the cadavers that represent the muscle activity in life. Voluntary contraction was performed by 20 voluntary patients, 13 females and 7 males, with ages ranging from 35 to 62 years. Distinct patterns of skin lines on the forehead, glabellar and orbital areas, and eyebrow displacement were identified. The frontalis exhibited four anatomical shapes with four different patterns of horizontal parallel lines on the forehead skin. The corrugator supercilii showed three shapes of muscles creating six patterns of vertical glabellar lines, three symmetrical and three asymmetrical. The orbicularis oculi and procerus had single patterns. The skin lines exhibited in voluntary contraction of the upper third of the face in patients showed the same patterns of the skin lines achieved in cadavers. Skin lines in cadavers, which are the expression of the muscle activity in life, were similar to those achieved in the voluntary contraction of patients, allowing us to assert that the muscle patterns of patients were similar to those identified in cadavers. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .
ERIC Educational Resources Information Center
Derby, Marie
1998-01-01
Presents a printmaking project that enables students to work with lines and shapes by having them create tile designs on Scratch-Foam Board. Explains that the shape of the combined four tiles should be a pinwheel while the design on one corner of each tile should connect forming a design within itself. (CMK)
VizieR Online Data Catalog: NLTE spectral analysis of white dwarf G191-B2B (Rauch+, 2013)
NASA Astrophysics Data System (ADS)
Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.
2013-08-01
In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. (3 data files).
[An experiment with Chlamydomonas reinhardtii on the Kosmos-2044 biosatellite].
Gavrilova, O V; Gabova, A V; Goriainova, L N; Filatova, E V
1992-01-01
Space experiment with Chlamydomonas reinhardtii demonstrated that the microgravity effects were noted in Chlamydomonas at both cellular and population levels: in space the cell size is increased, stage of active growth of the culture is extended, it contains the juvenile vegetative motile cells in greater quantities. Ultrastructural analysis indicated that in microgravity the changes in shape, structure and distribution of intracellular organelles and in volume ratio of organelles and cytoplasma are absent. Chlamydomonas data are in line with the results of the Infusoria and Chlorella experiments.
Celik-Ozenci, Ciler; Jakab, Attila; Kovacs, Tamas; Catalanotti, Jillian; Demir, Ramazan; Bray-Ward, Patricia; Ward, David; Huszar, Gabor
2004-09-01
We hypothesize that the potential relationship between abnormal sperm morphology and increased frequency of numerical chromosomal aberrations is based on two attributes of diminished sperm maturity: (i) cytoplasmic retention and consequential sperm shape abnormalities; and (ii) meiotic errors caused by low levels of the HspA2 chaperone, a component of the synaptonemal complex. Because sperm morphology and aneuploidies were assessed in semen, but not in the same spermatozoa, previous studies addressing this relationship were inconclusive. We recently demonstrated that sperm shape is preserved following fluorescence in situ hybridization (FISH). Thus, we examined the shape and chromosomal aberrations in the same sperm. We performed phase contrast microscopy and FISH, using centromeric probes for chromosomes X, Y, 10, 11 and 17 in 15 men. The fluorescence and respective phase contrast images were digitized using the Metamorph program. We studied 1286 sperm (256 disomic, 130 diploid and 900 haploid sperm) by three criteria: head and tail dimensions, head shape and Kruger strict morphology. Furthermore, in each analysis, we considered whether disomic or diploid sperm may be distinguished from haploid sperm. There was an overall, but not discriminative, relationship between abnormal sperm dimensions or shape and increased frequencies of numerical chromosomal aberrations. However, approximately 68 of the 256 disomic, and four of 130 diploid sperm showed head and tail dimensions comparable with the most normal, lowest tertile of the 900 haploid spermatozoa. Considering all 1286 sperm, among those with the most regular, symmetrical shape (n = 367), there were 63 and five with disomic and diploid nuclei, respectively. In line with these findings, among the 256 disomic sperm, 10% were Kruger normal. Sperm dimensions or shape are not reliable attributes in selection of haploid sperm for ICSI.
Self-absorption characteristics of measured laser-induced plasma line shapes
NASA Astrophysics Data System (ADS)
Parigger, C. G.; Surmick, D. M.; Gautam, G.
2017-02-01
The determination of electron density and temperature is reported from line-of-sight measurements of laser-induced plasma. Experiments are conducted in standard ambient temperature and pressure air and in a cell containing ultra-high-pure hydrogen slightly above atmospheric pressure. Spectra of the hydrogen Balmer series lines can be measured in laboratory air due to residual moisture following optical breakdown generated with 13 to 14 nanosecond, pulsed Nd:YAG laser radiation. Comparisons with spectra obtained in hydrogen gas yields Abel-inverted line shape appearances that indicate occurrence of self-absorption. The electron density and temperature distributions along the line of sight show near-spherical rings, expanding at or near the speed of sound in the hydrogen gas experiments. The temperatures in the hydrogen studies are obtained using Balmer series alpha, beta, gamma profiles. Over and above the application of empirical formulae to derive the electron density from hydrogen alpha width and shift, and from hydrogen beta width and peak-separation, so-called escape factors and the use of a doubling mirror are discussed.
A spectroscopic study of LMC X-4
NASA Technical Reports Server (NTRS)
Petro, L. D.; Hiltner, W. A.
1982-01-01
The orbital radial velocity semi-amplitude of the binary star system LMC X-4 primary was determined to be 37.9 + or - 2.4 km/s from measurements of the hydrogen absorption lines. The semi-amplitude of the He I and He II absorption lines are consistent with this, namely 44.9 + or - 5.0 and 37.3 + or - 5.3 km/s. The phase and shape of the radial velocity curves of the three ions are consistent with a circular orbit and an ephemeris based upon X-ray measurements of the neutron star, with the exception that the He II absorption line radial velocity curve has detectable shape distortion. Measurements of the He II LAMBOA 4686 emission line velocity are consistent with a phase shifted sine wave of semi-amplitude 535 km/s, a square wave of semi-amplitude 407 km/s, or high order harmonic fits. The spectral type was found to be 08.5 IV-V during X-ray eclipse. Variations to types as early as 07 occur, but not as a function or orbital phase. Absorption line peculiarities were noted on 6 of 58 spectra.
Experimental Study of Temperature-Dependence Laws of Non-Voigt Absorption Line Shape Parameters
NASA Astrophysics Data System (ADS)
Wilzewski, Jonas; Birk, Manfred; Loos, Joep; Wagner, Georg
2017-06-01
To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν_3 rovibrational band of CO_2 perturbed by 10, 30, 100, 300 and 1000 mbar of N_2 were measured at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we will present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range. Tran et al. JQSRT 129, 199-203 (2013); JQSRT 134, 104 (2014). Loos et al., 2014; http://doi.org/10.5281/zenodo.11156. Ngo et al. JQSRT 29, 89-100 (2013); JQSRT 134, 105 (2014).
The coupled response to slope-dependent basal melting
NASA Astrophysics Data System (ADS)
Little, C. M.; Goldberg, D. N.; Sergienko, O. V.; Gnanadesikan, A.
2009-12-01
Ice shelf basal melting is likely to be strongly controlled by basal slope. If ice shelves steepen in response to intensified melting, it suggests instability in the coupled ice-ocean system. The dynamic response of ice shelves governs what stable morphologies are possible, and thus the influence of melting on buttressing and grounding line migration. Simulations performed using a 3-D ocean model indicate that a simple form of slope-dependent melting is robust under more complex oceanographic conditions. Here we utilize this parameterization to investigate the shape and grounding line evolution of ice shelves, using a shallow-shelf approximation-based model that includes lateral drag. The distribution of melting substantially affects the shape and aspect ratio of unbuttressed ice shelves. Slope-dependent melting thins the ice shelf near the grounding line, reducing velocities throughout the shelf. Sharp ice thickness gradients evolve at high melting rates, yet grounding lines remain static. In foredeepened, buttressed ice shelves, changes in grounding line flux allow two additional options: stable or unstable retreat. Under some conditions, slope-dependent melting results in stable configurations even at high melt rates.
NASA Astrophysics Data System (ADS)
Usami, Yumi; Stork, David G.; Fujiki, Jun; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2011-03-01
We derive and demonstrate new methods for dewarping images depicted in convex mirrors in artwork and for estimating the three-dimensional shapes of the mirrors themselves. Previous methods were based on the assumption that mirrors were spherical or paraboloidal, an assumption unlikely to hold for hand-blown glass spheres used in early Renaissance art, such as Johannes van Eyck's Portrait of Giovanni (?) Arnolfini and his wife (1434) and Robert Campin's Portrait of St. John the Baptist and Heinrich von Werl (1438). Our methods are more general than such previous methods in that we assume merely that the mirror is radially symmetric and that there are straight lines (or colinear points) in the actual source scene. We express the mirror's shape as a mathematical series and pose the image dewarping task as that of estimating the coefficients in the series expansion. Central to our method is the plumbline principle: that the optimal coefficients are those that dewarp the mirror image so as to straighten lines that correspond to straight lines in the source scene. We solve for these coefficients algebraically through principal component analysis, PCA. Our method relies on a global figure of merit to balance warping errors throughout the image and it thereby reduces a reliance on the somewhat subjective criterion used in earlier methods. Our estimation can be applied to separate image annuli, which is appropriate if the mirror shape is irregular. Once we have found the optimal image dewarping, we compute the mirror shape by solving a differential equation based on the estimated dewarping function. We demonstrate our methods on the Arnolfini mirror and reveal a dewarped image superior to those found in prior work|an image noticeably more rectilinear throughout and having a more coherent geometrical perspective and vanishing points. Moreover, we find the mirror deviated from spherical and paraboloidal shape; this implies that it would have been useless as a concave projection mirror, as has been claimed. Our dewarped image can be compared to the geometry in the full Arnolfini painting; the geometrical agreement strongly suggests that van Eyck worked from an actual room, not, as has been suggested by some art historians, a "fictive" room of his imagination. We apply our method to other mirrors depicted in art, such as Parmigianino's Self-portrait in a convex mirror and compare our results to those from earlier computer graphics simulations.
Evaluation on Compressive Characteristics of Medical Stents Applied by Mesh Structures
NASA Astrophysics Data System (ADS)
Hirayama, Kazuki; He, Jianmei
2017-11-01
There are concerns about strength reduction and fatigue fracture due to stress concentration in currently used medical stents. To address these problems, meshed stents applied by mesh structures were interested for achieving long life and high strength perfromance of medical stents. The purpose of this study is to design basic mesh shapes to obatin three dimensional (3D) meshed stent models for mechanical property evaluation. The influence of introduced design variables on compressive characteristics of meshed stent models are evaluated through finite element analysis using ANSYS Workbench code. From the analytical results, the compressive stiffness are changed periodically with compressive directions, average results need to be introduced as the mean value of compressive stiffness of meshed stents. Secondly, compressive flexibility of meshed stents can be improved by increasing the angle proportional to the arm length of the mesh basic shape. By increasing the number of basic mesh shapes arranged in stent’s circumferential direction, compressive rigidity of meshed stent tends to be increased. Finaly reducing the mesh line width is found effective to improve compressive flexibility of meshed stents.
NASA Astrophysics Data System (ADS)
Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Ceballos-Herrera, Daniel E.; Martínez-Guerra, Edgar
2016-09-01
Extraction light in light-pipes with different specular surfaces was analyzed. In the analysis, the impact of the surface shape in all properties of the extracted light in order to obtain an efficient extraction and a uniform illumination using a LED as light source. Also, several parameters of the specular surface to obtain spatial uniformity inside the light-pipe are considered. In this case, the simulation was made for a rectangular lightpipe. One objective of this work is to compare how the front face shape of the specular surface can affect the extraction of light in the lateral face of the light-pipe, only straight and elliptical front faces were used in this work and the comparison between them at different tilts and lengths were made. The main purpose of the front face was extract the light uniformly at the lateral face and this was done by studying simulations on OpticStudio Zemax. The results show how the extraction length is lower in the elliptical front but its total power performs better than the line front.
Kostka, Stanislav; Roy, Sukesh; Lakusta, Patrick J; Meyer, Terrence R; Renfro, Michael W; Gord, James R; Branam, Richard
2009-11-10
Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a well-calibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and quantifying the differences between peak-intensity and spectrally integrated line ratios. Investigated are the effects of collisional quenching, laser absorption, and the integration width for partial scanning of closely spaced lines on the measured temperatures. Data from excitation scans are compared with theoretical line shapes, and experimentally derived temperatures are compared with numerical predictions that were previously validated using coherent anti-Stokes-Raman scattering. Ratios of four pairs of transitions in the A2Sigma+<--X2Pi (1,0) band of OH are collected in an atmospheric-pressure, near-adiabatic hydrogen-air flame over a wide range of equivalence ratios--from 0.4 to 1.4. It is observed that measured temperatures based on the ratio of Q1(14)/Q1(5) transition lines result in the best accuracy and that line scanning improves the measurement accuracy by as much as threefold at low-equivalence-ratio, low-temperature conditions. These results provide a comprehensive analysis of the procedures required to ensure accurate two-line LIF measurements in reacting flows over a wide range of conditions.
Robustness of power systems under a democratic-fiber-bundle-like model
NASA Astrophysics Data System (ADS)
Yaǧan, Osman
2015-06-01
We consider a power system with N transmission lines whose initial loads (i.e., power flows) L1,...,LN are independent and identically distributed with PL(x ) =P [L ≤x ] . The capacity Ci defines the maximum flow allowed on line i and is assumed to be given by Ci=(1 +α ) Li , with α >0 . We study the robustness of this power system against random attacks (or failures) that target a p fraction of the lines, under a democratic fiber-bundle-like model. Namely, when a line fails, the load it was carrying is redistributed equally among the remaining lines. Our contributions are as follows. (i) We show analytically that the final breakdown of the system always takes place through a first-order transition at the critical attack size p=1 -E/[L ] maxx(P [L >x ](α x +E [L |L >x ]) ) , where E [.] is the expectation operator; (ii) we derive conditions on the distribution PL(x ) for which the first-order breakdown of the system occurs abruptly without any preceding diverging rate of failure; (iii) we provide a detailed analysis of the robustness of the system under three specific load distributions—uniform, Pareto, and Weibull—showing that with the minimum load Lmin and mean load E [L ] fixed, Pareto distribution is the worst (in terms of robustness) among the three, whereas Weibull distribution is the best with shape parameter selected relatively large; (iv) we provide numerical results that confirm our mean-field analysis; and (v) we show that p is maximized when the load distribution is a Dirac delta function centered at E [L ] , i.e., when all lines carry the same load. This last finding is particularly surprising given that heterogeneity is known to lead to high robustness against random failures in many other systems.
A simple 2-d thermal model for GMA welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matteson, M.A.; Franke, G.L.; Vassilaros, M.G.
1996-12-31
The Rosenthal model of heat distribution from a moving source has been used in many applications to predict the temperature distribution during welding. The equation has performed well in its original form or as modified. The expression has a significant limitation for application to gas metal arc welds (GMAW) that have a papilla extending from the root of the weld bead. The shape of the fusion line between the papilla and the plate surface has a concave shape rather than the expected convex shape. However, at some distance from the fusion line the heat affected zone (HAZ) made visible bymore » etching has the expected convex shape predicted by the Rosenthal expression. This anomaly creates a limitation to the use of the Rosenthal expression for predicting GMAW bead shapes or HAZ temperature histories. Current research at the Naval Surface Warfare Center--Carderock Division (NSWC--CD) to develop a computer based model to predict the microstructure of multi-pass GMAW requires a simple expression to predict the fusion line and temperature history of the HAZ for each weld pass. The solution employed for the NSWC--CD research is a modified Rosenthal expression that has a dual heat source. One heat source is a disk source above the plate surface supplying the majority of the heat. The second heat source is smaller and below the surface of the plate. This second heat source helps simulate the penetration power of many GMAW welds that produces the papilla. The assumptions, strengths and limitations of the model are presented along with some applications.« less
Edge-shape barrier irreversibility and decomposition of vortices in Bi 2Sr 2CaCu 2O 8
NASA Astrophysics Data System (ADS)
Indenbom, M. V.; D'Anna, G.; André, M.-O.; Kabanov, V. V.; Benoit, W.
1994-12-01
Magnetic flux dynamics is studied in Bi 2Sr 2CaCu 2O 8 single crystals by means of magneto-optical technique. It is clearly demonstrated that the magnetic irreversibility of these crystals in a magnetic field perpendicular to the basal plane at temperatures higher than approximately 35 K is governed by an edge-shape barrier and its disappearance determines the high temperature part of the magnetic irreversibility line which is commonly associated in the literature with vortex lattice melting. We argue that this barrier exists because of the non ellipsoidal shape of the samples and can disappear only when the flux lines lose their rigidity decomposing into pancakes, which is the only true magnetic phase transition on the B-T diagram for Bi 2Sr 2CaCu 2O 8.
Monitoring transients in low inductance circuits
Guilford, Richard P.; Rosborough, John R.
1987-01-01
A pair of flat cable transmission lines are monitored for transient current spikes by using a probe connected to a current transformer by a pickup loop and monitoring the output of the current transformer. The approach utilizes a U-shaped pickup probe wherein the pair of flat cable transmission lines are received between the legs of the U-shaped probe. The U-shaped probe is preferably formed of a flat coil conductor adhered to one side of a flexible substrate. On the other side of the flexible substrate there is a copper foil shield. The copper foil shield is connected to one end of the flat conductor coil and connected to one leg of the pickup loop which passes through the current transformer. The other end of the flat conductor coil is connected to the other leg of the pickup loop.
A line scanned light-sheet microscope with phase shaped self-reconstructing beams.
Fahrbach, Florian O; Rohrbach, Alexander
2010-11-08
We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.
Morphology of AGN Emission Line Regions in SDSS-IV MaNGA Survey
NASA Astrophysics Data System (ADS)
He, Zhicheng; Sun, Ai-Lei; Zakamska, Nadia L.; Wylezalek, Dominika; Kelly, Michael; Greene, Jenny E.; Rembold, Sandro B.; Riffel, Rogério; Riffel, Rogemar A.
2018-05-01
Extended narrow-line regions (NLRs) around active galactic nuclei (AGN) are shaped by the distribution of gas in the host galaxy and by the geometry of the circumnuclear obscuration, and thus they can be used to test the AGN unification model. In this work, we quantify the morphologies of the narrow-line regions in 308 nearby AGNs (z = 0 - 0.14, Lbol˜1042.4 - 44.1 erg s-1) from the MaNGA survey. Based on the narrow-line region maps, we find that a large fraction (81%) of these AGN have bi-conical NLR morphology. The distribution of their measured opening angles suggests that the intrinsic opening angles of the ionization cones has a mean value of 85-98° with a finite spread of 39-44° (1-σ). Our inferred opening angle distribution implies a number ratio of type I to type II AGN of 1:1.6-2.3, consistent with other measurements of the type I / type II ratio at low AGN luminosities. Combining these measurements with the WISE photometry data, we find that redder mid-IR color (lower effective temperature of dust) corresponds to stronger and narrower photo-ionized bicones. This relation is in agreement with the unification model that suggests that the bi-conical narrow-line regions are shaped by a toroidal dusty structure within a few pc from the AGN. Furthermore, we find a significant alignment between the minor axis of host galaxy disks and AGN ionization cones. Together, these findings suggest that obscuration on both circumnuclear (˜pc) and galactic (˜ kpc) scales are important in shaping and orienting the AGN narrow-line regions.
NASA Astrophysics Data System (ADS)
Kukushkin, A. B.; Sdvizhenskii, P. A.
2017-12-01
The results of accuracy analysis of automodel solutions for Lévy flight-based transport on a uniform background are presented. These approximate solutions have been obtained for Green’s function of the following equations: the non-stationary Biberman-Holstein equation for three-dimensional (3D) radiative transfer in plasma and gases, for various (Doppler, Lorentz, Voigt and Holtsmark) spectral line shapes, and the 1D transport equation with a simple longtailed step-length probability distribution function with various power-law exponents. The results suggest the possibility of substantial extension of the developed method of automodel solution to other fields far beyond physics.
Quantitative structure-cytotoxicity relationship of piperic acid amides.
Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Miyashiro, Takaki; Sugita, Yoshiaki; Sakagami, Hiroshi
2014-09-01
A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperoyldopamine ( 8: ) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Excitonic nature of optical transitions in electroabsorption spectra of perovskite solar cells
NASA Astrophysics Data System (ADS)
Ruf, Fabian; Magin, Alice; Schultes, Moritz; Ahlswede, Erik; Kalt, Heinz; Hetterich, Michael
2018-02-01
We investigate the electronic structure of solution-processed perovskite solar cells using temperature-dependent electroabsorption (EA) spectroscopy. Simultaneous measurements of absorption and electromodulated spectra of semitransparent methylammonium lead iodide solar cells facilitate a direct comparison of the specific features. The EA spectra can be transformed to peak-like line shapes utilizing an approach based on the Kramers-Kronig relations. The resulting peak positions correspond well to the discrete excitonic—rather than the continuum—contribution of the absorption spectra derived from generalized Elliott fits. This indicates the excitonic nature of the observed EA resonance and is found to be consistent over the whole temperature range investigated (from T = 10 K up to room temperature). To further confirm these findings, a line shape analysis of the measured EA spectra was performed. The best agreement was achieved using a first-derivative-like functional form which is expected for excitonic systems and supports the conclusion of an excitonic optical transition. Exciton binding energies EB are estimated for the orthorhombic and tetragonal phases as 26 meV and 19 meV, respectively. Nevertheless, power-conversion efficiencies η up to 13% (11.5% stabilized) demonstrate good charge-carrier separation in the devices due to sufficient thermal dissociation and Sommerfeld-enhanced absorption.
Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters
NASA Astrophysics Data System (ADS)
ZuHone, J. A.; Miller, E. D.; Simionescu, A.; Bautz, M. W.
2016-04-01
Astro-H will be the first X-ray observatory to employ a high-resolution microcalorimeter, capable of measuring the shift and width of individual spectral lines to the precision necessary for estimating the velocity of the diffuse plasma in galaxy clusters. This new capability is expected to bring significant progress in understanding the dynamics, and therefore the physics, of the intracluster medium. However, because this plasma is optically thin, projection effects will be an important complicating factor in interpreting future Astro-H measurements. To study these effects in detail, we performed an analysis of the velocity field from simulations of a galaxy cluster experiencing gas sloshing and generated synthetic X-ray spectra, convolved with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the sloshing motions produce velocity signatures that will be observable by Astro-H in nearby clusters: the shifting of the line centroid produced by the fast-moving cold gas underneath the front surface, and line broadening produced by the smooth variation of this motion along the line of sight. The line shapes arising from inviscid or strongly viscous simulations are very similar, indicating that placing constraints on the gas viscosity from these measurements will be difficult. Our spectroscopic analysis demonstrates that, for adequate exposures, Astro-H will be able to recover the first two moments of the velocity distribution of these motions accurately, and in some cases multiple velocity components may be discerned. The simulations also confirm the importance of accurate treatment of point-spread function scattering in the interpretation of Astro-H/SXS spectra of cluster plasmas.
Why is the conclusion of the Gerda experiment not justified
NASA Astrophysics Data System (ADS)
Klapdor-Kleingrothaus, H. V.; Krivosheina, I. V.
2013-12-01
The first results of the GERDA double beta experiment in Gran Sasso were recently presented. They are fully consistent with the HEIDELBERG-MOSCOW experiment, but because of its low statistics cannot proof anything at this moment. It is no surprise that the statistics is still far from being able to test the signal claimed by the HEIDELBERG-MOSCOW experiment. The energy resolution of the coaxial detectors is a factor of 1.5 worse than in the HEIDELBERG-MOSCOW experiment. The original goal of background reduction to 10-2 counts/kg y keV, or by an order of magnitude compared to the HEIDELBERG-MOSCOW experiment, has not been reached. The background is only a factor 2.3 lower if we refer it to the experimental line width, i.e. in units counts/kg y energy resolution. With pulse shape analysis ( PSA) the back-ground in the HEIDELBERG-MOSCOW experiment around Q ββ is 4 × 10-3 counts/kg y keV [1], which is a factor of 4 (5 referring to the line width) lower than that of GERDA with pulse shape analysis. The amount of enriched material used in the GERDA measurement is 14.6 kg, only a factor of 1.34 larger than that used in the HEIDELBERG-MOSCOW experiment. The background model is oversimplified and not yet adequate. It is not shown that the lines of their background can be identified. GERDA has to continue the measurement further ˜5 years, until they can responsibly present an understood background. The present half life limit presented by GERDA of T {1/2/0v} > 2.1 × 1025 y (90% confidence level, i.e. 1.6ρ) is still lower than the half-life of T {1/2/0v} = 2.23{-0.31/+0.44} × 1025 y [1] determined in the HEIDELBERG-MOSCOW experiment.
Localization and recognition of traffic signs for automated vehicle control systems
NASA Astrophysics Data System (ADS)
Zadeh, Mahmoud M.; Kasvand, T.; Suen, Ching Y.
1998-01-01
We present a computer vision system for detection and recognition of traffic signs. Such systems are required to assist drivers and for guidance and control of autonomous vehicles on roads and city streets. For experiments we use sequences of digitized photographs and off-line analysis. The system contains four stages. First, region segmentation based on color pixel classification called SRSM. SRSM limits the search to regions of interest in the scene. Second, we use edge tracing to find parts of outer edges of signs which are circular or straight, corresponding to the geometrical shapes of traffic signs. The third step is geometrical analysis of the outer edge and preliminary recognition of each candidate region, which may be a potential traffic sign. The final step in recognition uses color combinations within each region and model matching. This system maybe used for recognition of other types of objects, provided that the geometrical shape and color content remain reasonably constant. The method is reliable, easy to implement, and fast, This differs form the road signs recognition method in the PROMETEUS. The overall structure of the approach is sketched.
Line Designs Inspired by Paul Klee
ERIC Educational Resources Information Center
Blanchette, Lisa
2009-01-01
In this lesson, students learn about line, shape, color, mixed media and abstraction, while being introduced to Swiss artist, Paul Klee (1879-1940). This lesson works well with a variety of age levels and abilities and could also be used to teach analogous or triad color schemes.
Temporal Variation of HCO+ 1_0 Galactic Absorption Lines Toward NRAO 150 and BL Lac
NASA Astrophysics Data System (ADS)
Han, Junghwan; Yun, Youngjoo; Park, Yong-Sun
2017-12-01
We present observations of HCO^+ 1-0 absorption lines toward two extragalactic compact radio sources, NRAO 150 and BL Lac with the Korean VLBI Network in order to investigate their time variation over 20 years by Galactic foreground clouds. It is found that the line shape of -17 km s^{-1} component changed marginally during 1993-1998 period and has remained unaltered thereafter for NRAO 150. Its behavior is different from that of H_2CO 1_{10}-1_{11}, suggesting chemical differentiation on ˜ 20 AU scale, the smallest ever seen. On the other hand, BL Lac exhibits little temporal variation for the HCO^+ and H_2CO lines. Our observation also suggests that Korea VLBI Network performs reliably in the spectrum mode in that the shapes of the new HCO^+ 1-0 spectra are in good agreement with the previous ones to an accuracy of a few percent except the time varying component toward NRAO 150.
Fitness consequences of artificial selection on relative male genital size
Booksmythe, Isobel; Head, Megan L.; Keogh, J. Scott; Jennions, Michael D.
2016-01-01
Male genitalia often show remarkable differences among related species in size, shape and complexity. Across poeciliid fishes, the elongated fin (gonopodium) that males use to inseminate females ranges from 18 to 53% of body length. Relative genital size therefore varies greatly among species. In contrast, there is often tight within-species allometric scaling, which suggests strong selection against genital–body size combinations that deviate from a species' natural line of allometry. We tested this constraint by artificially selecting on the allometric intercept, creating lines of males with relatively longer or shorter gonopodia than occur naturally for a given body size in mosquitofish, Gambusia holbrooki. We show that relative genital length is heritable and diverged 7.6–8.9% between our up-selected and down-selected lines, with correlated changes in body shape. However, deviation from the natural line of allometry does not affect male success in assays of attractiveness, swimming performance and, crucially, reproductive success (paternity). PMID:27188478
Spectral line-by-line pulse shaping of on-chip microresonator frequency combs
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Miao, Houxun; Leaird, Daniel E.; Srinivasan, Kartik; Wang, Jian; Chen, Lei; Varghese, Leo Tom; Weiner, Andrew M.
2011-12-01
Recently, on-chip comb generation methods based on nonlinear optical modulation in ultrahigh-quality-factor monolithic microresonators have been demonstrated, where two pump photons are transformed into sideband photons in a four-wave-mixing process mediated by Kerr nonlinearity. Here, we investigate line-by-line pulse shaping of such combs generated in silicon nitride ring resonators. We observe two distinct paths to comb formation that exhibit strikingly different time-domain behaviours. For combs formed as a cascade of sidebands spaced by a single free spectral range that spread from the pump, we are able to compress stably to nearly bandwidth-limited pulses. This indicates high coherence across the spectra and provides new data on the high passive stability of the spectral phase. For combs where the initial sidebands are spaced by multiple free spectral ranges that then fill in to give combs with single free-spectral-range spacing, the time-domain data reveal partially coherent behaviour.
UV Spectroscopy of face-on accretion disks
NASA Astrophysics Data System (ADS)
Wade, Richard
1996-07-01
We will obtain GHRS spectra at 1 Angstrom resolution of three novalike variables that have low orbital inclinations, BD-7D3007 {= RW Sex}, HD174107 {= V603 Aql}, and MV-LYR. The blending and broadening of absorption lines from the accretion disk will not be as severe in these objects as in more edge-on systems, and we expect to see individual lines or blends that are distinctively characteristic of the varying projected velocities at different temperatures { i.e. radii} in the disk. These aspects of the UV disk spectrum have not previously been used as a tool to study accretion disk physics. Comparison of line strengths with our detailed models will indicate whether it is necessary to consider irradiated or NLTE disks, and test in a new way whether the disks are in steady state. The shapes of lines that would be formed in the inner disk will tell whether the inner disk is actually present, an important check on observational and theoretical suggestions that the inner disk is missing in some cataclysmic variables. The improved understanding and characterization of the photospheric spectrum will aid in the analysis of the wind-formed P Cygni lines that are seen in these objects. We will use grating G140L, covering much of the mid-UV spectrum with S/N up to 200.