Science.gov

Sample records for linear ablative thermics

  1. An inverse method for non linear ablative thermics with experimentation of automatic differentiation

    NASA Astrophysics Data System (ADS)

    Alestra, S.; Collinet, J.; Dubois, F.

    2008-11-01

    Thermal Protection System is a key element for atmospheric re-entry missions of aerospace vehicles. The high level of heat fluxes encountered in such missions has a direct effect on mass balance of the heat shield. Consequently, the identification of heat fluxes is of great industrial interest but is in flight only available by indirect methods based on temperature measurements. This paper is concerned with inverse analyses of highly evolutive heat fluxes. An inverse problem is used to estimate transient surface heat fluxes (convection coefficient), for degradable thermal material (ablation and pyrolysis), by using time domain temperature measurements on thermal protection. The inverse problem is formulated as a minimization problem involving an objective functional, through an optimization loop. An optimal control formulation (Lagrangian, adjoint and gradient steepest descent method combined with quasi-Newton method computations) is then developed and applied, using Monopyro, a transient one-dimensional thermal model with one moving boundary (ablative surface) that has been developed since many years by ASTRIUM-ST. To compute numerically the adjoint and gradient quantities, for the inverse problem in heat convection coefficient, we have used both an analytical manual differentiation and an Automatic Differentiation (AD) engine tool, Tapenade, developed at INRIA Sophia-Antipolis by the TROPICS team. Several validation test cases, using synthetic temperature measurements are carried out, by applying the results of the inverse method with minimization algorithm. Accurate results of identification on high fluxes test cases, and good agreement for temperatures restitutions, are obtained, without and with ablation and pyrolysis, using bad fluxes initial guesses. First encouraging results with an automatic differentiation procedure are also presented in this paper.

  2. Thermic effect of food in lean and obese men.

    PubMed Central

    D'Alessio, D A; Kavle, E C; Mozzoli, M A; Smalley, K J; Polansky, M; Kendrick, Z V; Owen, L R; Bushman, M C; Boden, G; Owen, O E

    1988-01-01

    A systemic reappraisal of the thermic effect of food was done in lean and obese males randomly fed mixed meals containing 0, 8, 16, 24, and 32 kcal/kg fat-free mass. Densitometric analysis was used to measure body composition. Preprandial and postprandial energy expenditures were measured by indirect calorimetry. The data show that the thermic effect of food was linearly correlated with caloric intake, and that the magnitude and duration of augmented postprandial thermogenesis increased linearly with caloric consumption. Postprandial energy expenditures over resting metabolic requirements were indistinguishable when comparing lean and obese men for a given caloric intake. Individuals, however, had distinct and consistent thermic responses to progressively greater caloric challenges. These unique thermic profiles to food ingestion were also independent of leanness or obesity. We conclude that the thermic effect of food increases linearly with caloric intake, and is independent of leanness and obesity. Images PMID:3384951

  3. Thermic diode performance characteristics and design manual

    NASA Technical Reports Server (NTRS)

    Bernard, D. E.; Buckley, S.

    1979-01-01

    Thermic diode solar panels are a passive method of space and hot water heating using the thermosyphon principle. Simplified methods of sizing and performing economic analyses of solar heating systems had until now been limited to passive systems. A mathematical model of the thermic diode including its high level of stratification has been constructed allowing its performance characteristics to be studied. Further analysis resulted in a thermic diode design manual based on the f-chart method.

  4. Non-thermic skin affections.

    PubMed

    Broz, L; Kripner, J

    2000-01-01

    The Centre for Burns can help by its means (material, technical and personal) in the treatment of burns with extensive and deep losses of the skin cover and other tissue structures and in some affections with a different etiology (non-thermic affections). Indicated for admission are, in particular, extensive exfoliative affections--Stevens-Johnson's syndrome (SJS), Lyell's syndrome--toxic epidermal necrolysis (TEN) and staphylococcal scalded skin syndrome (SSSS), deep skin and tissue affections associated with fulminant purpura (PF), possibly other affections (epidermolysis bullosa, posttraumatic avulsions etc.). The similarity with burn injuries with loss of the skin cover grade II is typical, in particular in exfoliative affections with a need for adequate fluid replacement in the acute stage and aseptic surgical treatment of the affected area from the onset of the disease. In conditions leading to full thickness skin loss, in addition to general treatment rapid plastic surgical interventions dominate.

  5. Substrate modification by adding ablation of localized complex fractionated electrograms after stepwise linear ablation in persistent atrial fibrillation.

    PubMed

    Nakahara, Shiro; Kamijima, Tohru; Hori, Yuichi; Tsukada, Naofumi; Okano, Akiko; Takayanagi, Kan

    2014-03-01

    Linear left atrial (LA) ablation in patients with persistent atrial fibrillation (PsAF) resulting in the elimination of most complex fractionated electrogram (CFE) sites has been demonstrated. This study was designed to evaluate the impact of a localized CFE ablation in addition to a representative linear LA ablation in patients with PsAF. A total of 40 consecutive patients with PsAF underwent construction of CFE and dominant frequency (DF) maps using NavX. A stepwise linear ablation including at the PV antra, septum, roof, mitral annulus, and ridge of the appendage was performed followed by additional ablation of localized CFEs detected by an automatic algorithm. A significant reduction in the continuous CFE burden (<50 ms) after the linear ablation (69 vs. 21 %; P < 0.0001) was confirmed, and localized CFEs (40-120 ms) were observed with a significant predilection for the anterior (30 %), posterior (30 %), and inferior LA (38 %) regions (P < 0.01). Comparing the localized CFEs with higher frequency sources, 45 % (70/156) of the localized CFE sites included continuous CFE regions, and 59 % (92/156) of those sites overlapped with the high-DF sites (>8 Hz). Additional localized CFE-targeted ablation further terminated PsAF in 20 % of the patients and further increased the mean CFE cycle length (110 ± 31 to 125 ± 39 ms; P = 0.0033) and decreased the DF (6.0 ± 0.8 to 5.7 ± 0.7 Hz; P = 0.0013) within the CS. The presence of localized CFE sites with a predilection for particular LA regions after a representative linear LA ablation could provide the optimal sites for selective substrate modification of the atrial fibrillation substrate in patients with PsAF.

  6. Surface roughness in PMMA is linearly related to the amount of excimer laser ablation.

    PubMed

    O'Donnell, C B; Kemner, J; O'Donnell, F E

    1996-01-01

    To determine if surface roughness after excimer laser ablation is a function of the amount of ablation and to identify a standard unit for ablation roughness. We used a VISX 20/20 excimer laser to perform a series of single zone 6-mm diameter ablations (photorefractive keratectomy [PRK]) in polymethylmethacrylate (PMMA). Corrections ranged from -1.00 diopter (D) to -15.00 D. A scanning white light interferometry microscope (Zygo Corp, Middlefield, Conn) was used to quantify the surface roughness at the center of each ablation. We found a linear increase in surface roughness as the refractive correction increased. Each diopter increment resulted in an approximately 300 nm increased peak-to-valley measurement. This represented an increase of 25 nm roughness per micron of ablation in PMMA. Surface irregularities in PMMA increase with ablation depth. We propose a unit of measure of roughness, the "ablation," expressed as the peak-to-valley distance in nm/divided by m of ablation.

  7. Electrode impedance: an indicator of electrode-tissue contact and lesion dimensions during linear ablation.

    PubMed

    Zheng, X; Walcott, G P; Hall, J A; Rollins, D L; Smith, W M; Kay, G N; Ideker, R E

    2000-12-01

    Pre-ablation impedance was evaluated for its ability to detect electrode-tissue contact and allow creation of long uniform linear lesions with a multi-electrode ablation catheter. The study consisted of 2 parts, both of which used the in vivopig thigh muscle model. In part 1, a 7 Fr. multi-electrode catheter was held in 3 electrode-tissue contact conditions: (1) non-contact; (2) light contact with a 30g downward force; and (3) tight contact with a 90g downward force. Impedances were measured in unipolar, modified unipolar and bipolar configurations using a source with frequencies from 100Hz to 500kHz. Compared with non-contact, the impedance increased 35 +/- 22 % with 30g contact pressure and 68 +/- 40% when the contact pressure was increased to 90g across the range of frequencies studied. In part 2, the same catheter was held against the tissue with different forces. Pre-ablation impedance was measured using a 10kHz current. Phased radiofrequency energy was applied to the 5 electrodes simultaneously using 10W power at each electrode for 120s. A total of 32 linear lesions were created. The lesion dimensions correlated with pre-ablation impedance. A unipolar impedance > or = 190 Omega indicates 95% possibility to create a uniform linear lesion of at least 3mm depth with our ablation system. We conclude that pre-ablation impedance may be a useful indicator for predicting electrode-tissue contact and the ability to create a continuous and transmural linear lesion with a multi-electrode catheter.

  8. A Case of "Inflammatory Linear Verrucous Epidermal Nevus" (ILVEN) Treated with CO2 Laser Ablation.

    PubMed

    Gianfaldoni, Serena; Tchernev, Georgi; Gianfaldoni, Roberto; Wollina, Uwe; Lotti, Torello

    2017-07-25

    The "inflammatory linear verrucous epidermal nevus" is a rare disease, consisting of hyperplasia of the normal components of the epidermis. Its clinical features include erythematous and hyperkeratosic, warty, sometimes psoriasiform or lichenoid patches with a typical linear arrangement. At present, there are no effective medical therapies available. Currently, the best therapeutic results are obtained with surgical excision or the latest laser therapy. The Authors present a 9-years old girl with an inflammatory linear verrucous epidermal nevus on her neck, successfully treated with CO2 Laser ablation.

  9. Identification of transmural necrosis along a linear catheter ablation lesion during atrial fibrillation and sinus rhythm.

    PubMed

    Sanchez, Javier E; Kay, G Neal; Benser, Michael E; Hall, Jeffrey A; Walcott, Gregory P; Smith, William M; Ideker, Raymond E

    2003-02-01

    Determining whether a linear catheter radio frequency (RF) ablation lesion is transmural may be difficult, especially during atrial fibrillation. We hypothesized that changes in pacing thresholds and electrogram amplitude during atrial fibrillation and sinus rhythm could be used to assess whether a radiofrequency ablation resulted in transmural necrosis. A hexapolar, linear, RF ablation catheter was positioned between the caval veins in the right atrium of seven sheep. Pacing thresholds and electrogram amplitudes during atrial fibrillation and sinus rhythm were measured before and after the application of RF energy. Sites along the linear lesion were assessed histologically. The electrogram amplitude in atrial fibrillation decreased significantly more at transmural sites (unipolar recording: 33 +/- 11% transmural vs. 22 +/- 13% non-transmural, p < or = 0.01; bipolar recording: 62 +/- 9% transmural vs. 43 +/- 15% non-transmural, p < or = 0.01). The electrogram amplitude in sinus rhythm decreased significantly more at transmural sites (unipolar recording: 49 +/- 18% transmural vs. 15 +/- 20% non-transmural, p < 0.001; bipolar recording: 63 +/- 17% transmural vs. 42 +/- 19% non-transmural, p = 0.002). The pacing threshold increased significantly more at sites with transmural necrosis (unipolar: increased by 378 +/- 103% transmural vs. 207 +/- 93% non-transmural, p < 0.001; bipolar: 370 +/- 80% transmural vs. 259 +/- 60% non-transmural, p < 0.001). The amplitude of the atrial electrogram from an ablation catheter can be used to discriminate areas with transmural necrosis from those without transmural necrosis during either atrial fibrillation or sinus rhythm. Termination of atrial fibrillation may not be necessary to estimate the histologic characteristics of an ablation lesion.

  10. Theoretical and experimental analysis of amplitude control ablation and bipolar ablation in creating linear lesion and discrete lesions for treating atrial fibrillation.

    PubMed

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2017-09-01

    Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.

  11. Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: a randomized comparison.

    PubMed

    Pokushalov, Evgeny; Romanov, Alexandr; Katritsis, Demosthenes G; Artyomenko, Sergey; Shirokova, Natalya; Karaskov, Alexandr; Mittal, Suneet; Steinberg, Jonathan S

    2013-09-01

    The optimal ablation technique for persistent and long-standing persistent atrial fibrillation (AF) is unclear. Both linear lesion (LL) and ganglionated plexus (GP) ablation have been used in addition to pulmonary vein isolation (PVI), but no direct comparison of the 2 methods exists. The aim of this study is to assess the comparative safety and efficacy of 2 different ablation strategies-PVI+LL vs PVI+GP ablation -in patients with persistent or long-standing persistent AF. Two hundred sixty-four consecutive patients with persistent/long-standing persistent AF were randomly assigned to 2 different ablation schemes: PVI+LL (n = 132) and PVI+GP (n = 132) ablation. Consistent sinus rhythm (SR) off antiarrhythmic drug was assessed after follow-up of at least 3 years with the use of an implanted monitoring device. All procedural end points were acutely achieved. At 12 months after a single procedure, 47% of the patients treated with PVI+LL were in SR compared to 54% of the patients treated with PVI+GP (P = .29). At 3 years, 34% of the patients with PVI+LL and 49% of the patients with PVI+GP maintained SR (P = .035). Atrial flutter was more frequent in the PVI+LL group than in PVI+GP group (18% vs 6%; P = .002). After a second procedure in 78 patients of the PVI+LL group and 55 patients of the PVI+GP group, the long-term overall success rate was 52% and 68%, respectively (P = .006). PVI+GP ablation confers superior clinical results with less ablation-related left atrial flutter and reduced AF recurrence compared to PVI+LL ablation at 3 years of follow-up. © 2013 Heart Rhythm Society. All rights reserved.

  12. The thermic effect of food is reduced in older adults

    PubMed Central

    Du, Shichun; Rajjo, Tamim; Santosa, Sylvia; Jensen, Michael D.

    2015-01-01

    Background The thermic effect of food accounts for ~ 10% of daily energy expenditure. A reduction in the thermic effect of food, which has been variably observed in the older adults, could predispose to fat gain. We tested whether the thermic effect of food is reduced in older adults compared with young adults by analyzing our database of standardized studies conducted at the Mayo Clinic between 1999 and 2009. Methods Data was available from 136 older adults volunteers age 60 to 88 (56 females) and 141 young adults ages 18 to 35 years (67 female). Basal energy expenditure was measured by indirect calorimetry to assess basal metabolic rate. Body fat, fat free mass and visceral fat were measured using a combination of dual energy x-ray absorptiometry and an abdominal CT scan. We measured the thermic effect of food and postprandial insulinemia in 123 older adults (52 female) and 86 young (38 female) of these volunteers. Results Basal metabolic rate adjusted for fat free mass was less in older adults (P = 0.01) and the thermic effect of food was ~ 1% (P = 0.02) less in the older adults. After controlling for meal size and fat free mass, body fat and fat distribution did not predict the thermic effect of food. Conclusions Both basal metabolic rate and the thermic effect of food are less in older adults than young adults, even when they have similar amounts of lean tissue and consume a similar size meal. These factors contribute to lower daily energy expenditure in the older adults. PMID:24155251

  13. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method.

  14. Linear Ablation Following Pulmonary Vein Isolation in Patients with Atrial Fibrillation: A Meta-Analysis.

    PubMed

    Zhang, Zhiwei; Letsas, Konstantinos P; Zhang, Nixiao; Efremidis, Michael; Xu, Gang; Li, Guangping; Liu, Tong

    2016-06-01

    Previous studies have given conflicting data regarding the long-term adjunctive efficacy of linear lesions (LLs) on top of pulmonary vein isolation (PVI) as an ablation strategy in patients with atrial fibrillation (AF). The aim of this meta-analysis was to provide a detailed analysis of the available randomized controlled trials (RCTs) regarding the efficacy of LL following PVI in AF patients. Current databases were searched until October 2015. The primary outcome end point of the meta-analysis was recurrence of any symptomatic or documented episode of AF or atrial tachycardia after a single ablation procedure with or without the use of antiarrhythmic drugs. Ten RCTs with a total of 1,446 patients were included in the meta-analysis. The pooled analysis of five trials concerning persistent AF (PeAF) patients (400 in PVI plus LL group and 182 in PVI alone group) suggested that the addition of LL following PVI does not lead to a significant reduction in recurrent atrial tachyarrhythmias compared with PVI alone (relative ratio [RR] = 0.73, 95% confidence interval [CI]: 0.44-1.21, P = 0.22). Similarly, there was no incremental benefit of additional LL in long-term outcomes in paroxysmal AF (PAF) patients (RR = 0.85, 95% CI: 0.68-1.05, P = 0.13). Pooling the results of all eligible trials suggested that PVI plus LL compared with PVI alone significantly increased radiofrequency time (P = 0.0002), fluoroscopy time (P < 0.00001), and procedure time (P < 0.0001). This meta-analysis suggests that LL following PVI does not provide additional benefit to sinus rhythm maintenance in patients with PeAF and PAF. © 2016 Wiley Periodicals, Inc.

  15. Association Between Local Bipolar Voltage and Conduction Gap Along the Left Atrial Linear Ablation Lesion in Patients With Atrial Fibrillation.

    PubMed

    Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Sunaga, Akihiro; Tsujimura, Takuya; Matsuda, Yasuhiro; Mano, Toshiaki

    2017-08-01

    A bipolar voltage reflects a thick musculature where formation of a transmural lesion may be hard to achieve. The purpose of this study was to explore the association between local bipolar voltage and conduction gap in patients with persistent atrial fibrillation (AF) who underwent atrial roof or septal linear ablation. This prospective observational study included 42 and 36 consecutive patients with persistent AF who underwent roof or septal linear ablations, respectively. After pulmonary vein isolation, left atrial linear ablations were performed, and conduction gap sites were identified and ablated after first-touch radiofrequency application. Conduction gap(s) after the first-touch roof and septal linear ablation were observed in 13 (32%) and 19 patients (53%), respectively. Roof and septal area voltages were higher in patients with conduction gap(s) than in those without (roof, 1.23 ± 0.77 vs 0.73 ± 0.42 mV, p = 0.010; septal, 0.96 ± 0.43 vs 0.54 ± 0.18 mV, p = 0.001). Trisected regional analyses revealed that the voltage was higher at the region with a conduction gap than at the region without. Complete conduction block across the roof and septal lines was not achieved in 3 (7%) and 6 patients (17%), respectively. Patients in whom a linear conduction block could not be achieved demonstrated higher ablation area voltage than those with a successful conduction block (roof, 1.91 ± 0.74 vs 0.81 ± 0.51 mV, p = 0.001; septal, 1.15 ± 0.56 vs 0.69 ± 0.31 mV, p = 0.006). In conclusion, a high regional bipolar voltage predicts failure to achieve conduction block after left atrial roof or septal linear ablation. In addition, the conduction gap was located at the preserved voltage area. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mediterranean detachment zones : thermicity vs heritage.

    NASA Astrophysics Data System (ADS)

    Labrousse, Loic; Huet, Benjamin; Le Pourhiet, Laetitia; Jolivet, Laurent; Burov, Evgenii

    2017-04-01

    and ditributed modes. An exaggeration of one order of magnitude (100 to 1000) of the strength contrast between the upper and lower crust appears to be sufficient to promote the development of a MCC, whatever the cause of this exaggeration. For large Mediterranean Core Complexes (Menderes, Cyclades, Betics for instance) evolution through time is also compatible with a progressive prevalence of thermicity over herited contrasts.

  17. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  18. A simulation study to compare the phase-shift angle radiofrequency ablation mode with bipolar and unipolar modes in creating linear lesions for atrial fibrillation ablation.

    PubMed

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2016-05-01

    Purpose In pulmonary veins (PVs) isolation (PVI), radiofrequency (RF) energy is often used to create a linear lesion for blocking the accessory conduction pathways around PVs. By using transient finite element analysis, this study compared the effectiveness of phase-shift mode (PsM) ablation with bipolar mode (BiM) and unipolar mode (UiM) in creating a continuous lesion and lesion depth in a 5-mm thick atrial wall. Materials and methods Computer models were developed to study the temperature distributions and lesion dimensions in atrial walls created through PsM, BiM, and UiM. Four phase-shift angles - 45°, 90°, 135°, and 180° - were considered in PsM ablation (hereafter, PsM-45°, PsM-90°, PsM-135°, and PsM-180°, respectively). Results At 60 s/30 V peak value of RF voltage, UiM and PsM-45° did not create an effective lesion, whereas BiM created a lesion of maximum depth and width approximately 1.01 and 1.62 mm, respectively. PsM-135° and PsM-180° not only created transmural lesions in 5-mm thick atrial walls but also created continuous lesions between electrodes spaced 4 mm apart; similarly, PsM-90° created a continuous lesion with a maximum depth and width of nearly 4.09 and 6.12 mm. Conclusions Compared with UiM and BiM, PsM-90°, PsM-135° and PsM-180° created continuous and larger lesions in a single ablation procedure and at 60 s/30 V peak value of RF voltage. Therefore, the proposed PsM ablation method is suitable for PVI and linear isolation at the left atrial roof for treating atrial fibrillation.

  19. Biatrial tachycardia following linear anterior wall ablation for the perimitral reentry: incidence and electrophysiological evaluations.

    PubMed

    Mikhaylov, Evgeny N; Mitrofanova, Lubov B; Vander, Marianna A; Tatarskiy, Roman B; Kamenev, Alexander V; Abramov, Mikhail L; Szili-Torok, Tamas; Lebedev, Dmitry S

    2015-01-01

    A left atrial (LA) anterior ablation line (AnL), connecting the mitral annulus and right pulmonary veins or a roof line, has been suggested as an alternative to mitral isthmus (MI) ablation for perimitral flutter (PMF). Theoretically, the AnL can exclude the LA septal wall from the reentrant circle, and lead to involvement of the right atrium (RA) in a tachycardia (AT) mechanism. Among 807 patients undergoing atrial fibrillation ablation, PMF was diagnosed in 28 subjects, and AnL was performed in 13, and MI ablation in 15 cases. In 4 (31%) patients, AnL resulted in abrupt AT cycle length prolongation, which was associated with the development of a clockwise biatrial tachycardia (bi-AT). The bi-AT propagated along the lateral and posterior mitral annulus, entered the RA via the coronary sinus, and after activating the RA septum reentered the LA over the Bachmann's bundle. The bi-AT was terminated by ablation in Bachmann's bundle insertion areas in the RA or LA. No bi-AT was documented in the MI group. One patient in the AnL group died of stroke in 10 days following the procedure. Anatomic evaluation showed that at the level of the AnL the RA anteroseptal area was separated from the LA by the aortic root, and was free from ablation damage. A bi-AT can develop when an AnL is created for PMF termination. Biatrial entrainment mapping facilitates diagnosis. Termination of the bi-AT is feasible when ablated from either RA or LA. © 2014 Wiley Periodicals, Inc.

  20. Biatrial linear ablation in sustained nonpermanent AF: Results of the substrate modification with ablation and antiarrhythmic drugs in nonpermanent atrial fibrillation (SMAN-PAF) trial.

    PubMed

    Wynn, Gareth J; Panikker, Sandeep; Morgan, Maureen; Hall, Mark; Waktare, Johan; Markides, Vias; Hussain, Wajid; Salukhe, Tushar; Modi, Simon; Jarman, Julian; Jones, David G; Snowdon, Richard; Todd, Derick; Wong, Tom; Gupta, Dhiraj

    2016-02-01

    More advanced atrial fibrillation (AF) is associated with lower success rates after pulmonary vein isolation (PVI), and the optimal ablation strategy is uncertain. To assess the impact of additional linear ablation (lines) compared to PVI alone. In this multicenter randomized controlled trial, 122 patients (mean age 61.9 ± 10.5 years; left atrial diameter 43 ± 6 mm) with persistent AF (PeAF) or sustained (>12 hours) paroxysmal AF (SusPAF) with risk factors for atrial substrate were included and followed up for 12 months. Patients were randomized to PVI-only or PVI + lines (left atrial roof line, mitral isthmus line, and tricuspid isthmus line) group. Holter monitoring was performed at 3, 6, and 12 months and according to symptoms. The primary outcome was atrial tachyarrhythmia recurrence lasting ≥30 seconds. Baseline characteristics were comparable between groups; 61% had PeAF and 39% SusPAF. Successful PVI was achieved for 98% of pulmonary veins, and bidirectional block was obtained in 90% of lines. The primary end point occurred in 38% of the PVI + lines group and 32% of the PVI-only group (P = .50), which was consistent in both PeAF (36% vs 28%; P = .45) and SusPAF (42% vs 39%; P = .86). Compared with the PVI-only group, the PVI + lines group had higher procedure duration (209 ± 52 minutes vs 172 ± 44 minutes; P < .001), ablation time (4352 ± 1084 seconds vs 2503 ± 1061 seconds; P < .001), and radiation exposure (Dose-area product 3992 ± 6496 Gy·cm(2) vs 2106 ± 1679 Gy·cm(2); P = .03). Quality of life (disease-specific Atrial Fibrillation Effect on Quality of Life questionnaire and mental component scale of the Short Form 36 Health Survey) improved significantly during the study but did not differ between groups. Adding lines to wide antral PVI in substrate-based AF requires significantly more ablation, increases procedure duration and radiation dose, but provides no additional clinical benefit. Copyright © 2016 Heart Rhythm Society. Published by

  1. The impact of adjunctive complex fractionated atrial electrogram ablation and linear lesions on outcomes in persistent atrial fibrillation: a meta-analysis.

    PubMed

    Scott, Paul A; Silberbauer, John; Murgatroyd, Francis D

    2016-03-01

    In persistent atrial fibrillation (PsAF), success rates for pulmonary vein isolation (PVI) alone are limited and additional substrate modification is often performed. The two most widely used substrate-based strategies are the ablation of complex fractionated atrial electrograms (CFAE) and left atrial linear ablation (LALA) at the roof and mitral isthmus. However, it is unclear whether adjunctive CFAE ablation or LALA add significant benefit to PVI alone. We performed a meta-analysis to better gauge the benefit of adjunctive CFAE ablation and LALA in PsAF. Electronic databases were systematically searched. We included studies that examined the impact of CFAE ablation or LALA in addition to a PVI-based strategy on clinical outcomes in PsAF. We included both randomized and non-randomized studies. Totally 10 studies (n = 1821) were included: 6 evaluating CFAE ablation, 3 LALA, and 1 both approaches. In comparison with PVI alone, the addition of CFAE ablation [RR 0.86; 95% confidence intervals (CI) 0.64, 1.16; P = 0.32] or LALA (RR 0.64; 95% CI 0.37, 1.09; P = 0.10) offered no significant improvement in arrhythmia-free survival. However, adjunctive CFAE ablation was associated with significant increases (P < 0.05) and LALA non-significant increases in procedure and fluoroscopy times. In PsAF, the addition of CFAE ablation or LALA, in comparison with PVI alone, offers no significant improvement in arrhythmia-free survival. Furthermore, they are associated with increases in both procedural and fluoroscopy times. The optimal ablation strategy for PsAF is currently unclear and needs further refinement. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  2. The feasibility of MRI-guided whole prostate ablation with a linear aperiodic intracavitary ultrasound phased array.

    PubMed

    Sokka, S D; Hynynen, K H

    2000-11-01

    Over the past decade, numerous minimally invasive thermal procedures have been investigated to treat benign prostate hyperplasia and prostate cancer. Of these methods, ultrasound has shown considerable promise due to its ability to produce more precise and deeper thermal foci. In this study, a linear, transrectal ultrasound phased array capable of ablating large tissue volumes was fabricated and evaluated. The device was designed to be compatible for use with MRI guidance and thermometry. The intracavitary applicator increases treatable tissue volume by using an ultrasonic motor to provide a mechanical rotation angle of up to 100 degrees to a 62-element 1D ultrasound array. An aperiodic array geometry was used to reduce grating lobes. In addition, a specially designed Kapton interconnect was used to reduce cable crosstalk and hence also improve the acoustic efficiency of the array. MRI-guided in vivo and ex vivo experiments were performed to verify the array's large-volume ablative capabilities. Ex vivo bovine experiments were performed to assess the focusing range of the applicator. The array generated foci in a 3 cm (2 to 5 cm from the array surface along the axis normal to the array) by 5.5 cm (along the long axis of the array) by 6 cm (along the transverse axis of the array at a depth of 4 cm) volume. In vivo rabbit thigh experiments were performed to evaluate the lesion producing capabilities in perfused tissue. The array generated 3 cm x 2 cm x 2 cm lesions with 8 to 12 half-minute sonications equally spaced in the volume. The results indicate that transrectal ultrasound coagulation of the whole prostate is feasible with the developed device.

  3. The feasibility of MRI-guided whole prostate ablation with a linear aperiodic intracavitary ultrasound phased array

    NASA Astrophysics Data System (ADS)

    Sokka, S. D.; Hynynen, K. H.

    2000-11-01

    Over the past decade, numerous minimally invasive thermal procedures have been investigated to treat benign prostate hyperplasia and prostate cancer. Of these methods, ultrasound has shown considerable promise due to its ability to produce more precise and deeper thermal foci. In this study, a linear, transrectal ultrasound phased array capable of ablating large tissue volumes was fabricated and evaluated. The device was designed to be compatible for use with MRI guidance and thermometry. The intracavitary applicator increases treatable tissue volume by using an ultrasonic motor to provide a mechanical rotation angle of up to 100° to a 62-element 1D ultrasound array. An aperiodic array geometry was used to reduce grating lobes. In addition, a specially designed Kapton interconnect was used to reduce cable crosstalk and hence also improve the acoustic efficiency of the array. MRI-guided in vivo and ex vivo experiments were performed to verify the array's large-volume ablative capabilities. Ex vivo bovine experiments were performed to assess the focusing range of the applicator. The array generated foci in a 3 cm (2 to 5 cm from the array surface along the axis normal to the array) by 5.5 cm (along the long axis of the array) by 6 cm (along the transverse axis of the array at a depth of 4 cm) volume. In vivo rabbit thigh experiments were performed to evaluate the lesion-producing capabilities in perfused tissue. The array generated 3 cm × 2 cm × 2 cm lesions with 8 to 12 half-minute sonications equally spaced in the volume. The results indicate that transrectal ultrasound coagulation of the whole prostate is feasible with the developed device.

  4. Investigation of thermic transition and renaturation of high polymerized DNA extracted from thyroid nodule.

    PubMed

    Bistriceanu, M; Roşca, T; Dumitriu, I; Bistriceanu, I; Voinea, F; Burdescu, C

    1985-01-01

    The study was carried out on 16 cases of mixed thyroid hypertrophy in which total or partial thyroidectomy was performed. Fragments collected intraoperatively from the thyroid nodule were used for extraction of high polymerized DNA. At the same time with quantitative evaluation of DNA, RNA and proteins were also assayed. The thermic transition mean temperature of the DNA extracted from the thyroid nodule is compared to other standards (DNA-HP-standard, calf thymus DNA, normal leukocytic DNA) and the thermic transition curves are presented. Hyperchromicity after thermic denaturation and renaturation is analysed and expressed in per cent values.

  5. [Immunological investigations of patients after thermic injury (author's transl)].

    PubMed

    Sauer, H; Sauer, D; Meyer, K; Ambrosius, H

    1981-01-01

    A burn toxin, which is important for the manifestation of clinical and septical processes during the burn disease, was isolated from burned skin of mice. Using this antigen we have studied the immunological reactions against burn toxin in 10 patients following thermic trauma. We determined the specific antibodies against the burn toxin by means of the passive hemagglutination test, the level of IgM, IgG and IgA in the serum using Mancini-immunodiffusion, the burn toxin binding cells by means of the antigen specific rosette technique and the cell-mediate immunity using the macrophage electrophoretic mobility test (MEM-test). A rise of the burn toxin-specific cells could be observed with maximum at day 4 and a second peak at day 10 and cell mediated immunity between day 10 and day 15. The titer of specific antibodies increased, most following an initial decrease, after day 6, a correlation seemed to exist between this titer and the level of immunoglobulins in the serum.

  6. Lidar Measurements of the Thermic Structure in the Troposphere

    NASA Technical Reports Server (NTRS)

    Werner, Ch.

    1973-01-01

    Lidar measurements by UTHE (1972) and similar measurements with acoustic radar by HALL (1972) have shown, that short time variations in the troposphere can be determined. Aerosol backscatter measurements give the vertical structure. A series of such results shows the time variation of the tropospheric structure. The Figure is an example for a measuring period during half an hour in summer 1972 (1 pulse per minute). These variations were produced by humidity variations. For example, at humidity variations from 75% to 77% aerosol particles with 1 micron radius change their radii during 50 to 100 milliseconds. By lidar technique it is possible to determine this effect qualitatively. With a pulse repetition rate of 1 per second we plan to investigate the thermic structure at different weather conditions. By simultaneous measurements of the nitrogen Raman component it would be possible to compare the short time variations by temperature and humidity. The influence of wind can be determined by scanning a defined region (region or space). The meteorologist is interested in results of short time variations in the troposphere (microscale). By this remote sensing method he can get these values continuously.

  7. [Comparison of the effectiveness of pulmonary veins isolation vs linear radiofrequency ablation in paroxysmal atrial fibrillation patients using either mathematical scanning or clinical approach].

    PubMed

    Ardashev, A V; Mazurov, M E; Kaliuzhnyĭ, I M; Zheliakov, E G; Belenkov, Iu N

    2012-01-01

    to compare clinical results of linear ablation vs. PVI approach in patients with paroxysmal AF and to estimate theoretical probability of 4-waves re-entry to eliminate as a results of the both ablative techniques formatting by means left atrial geometry two-dimensional mathematical modeling. Clinical phase. Study was conducted on 20 pts (6 women, 51,4±13,6 years of age) with paroxysmal AF underwent index RFA. All pts were divided into two age-sex-arrhythmia history duration-antiarrhythmic drugs (AAD)-matched groups. The first group consisted of 10 pts (3 women, mean age - 51,1±11,9, history of arrhythmia - 3,2±1,2 years) in whom ablation strategy consisted of PVI using LASSO technique. The second group concluded of 10 pts (3 women, mean age - 51,1±12,9, history of arrhythmia- 3,1±1,1 years) in whom ablation strategy consisted of wide-area circumferential lines application around pulmonary veins, combined to roof line and mitral isthmus RFA using three-dimensional mapping system. Mathematical phase. As the first step numeric reconstruction of the autowave process in excitable tissues of the left atrium and the simulation of AF was performed. Fitzhugh-Nagumo equation was used for simulation to enabled us to take into account the electrical inhomogeneity of the atria (pulmonary vein ostia). A special scanning method was used for calculating characteristics of autowave processes in a two-dimensional mathematical model of the atrium. As the second step simulation of circular (corresponding to LASSO approach) and linear ablation (corresponding to 3D approach) was performed. Clinical phase. There were no complications associated with RFA. 7 pts of the first group vs 4 pts of the second subgroup had early recurrences of arrhythmia. AAD free sinus rhythm incidence in the first/second groups was 80%/20% at 12 months respectively (p=0,003). Mathematical phase. While circular LASSO-like ablation pattern was used, there was no elimination of 4-waves re-entry turning around

  8. Factors affecting optimal linear endovenous energy density for endovenous laser ablation in incompetent lower limb truncal veins - A review of the clinical evidence.

    PubMed

    Cowpland, Christine A; Cleese, Amy L; Whiteley, Mark S

    2017-06-01

    Objectives The objective is to identify the factors that affect the optimal linear endovenous energy density (LEED) to ablate incompetent truncal veins. Methods We performed a literature review of clinical studies, which reported truncal vein ablation rates and LEED. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram documents the search strategy. We analysed 13 clinical papers which fulfilled the criteria to be able to compare results of great saphenous vein occlusion as defined by venous duplex ultrasound, with the LEED used in the treatment. Results Evidence suggests that the optimal LEED for endovenous laser ablation of the great saphenous vein is >80 J/cm and <100 J/cm in terms of optimal closure rates with minimal side-effects and complications. Longer wavelengths targeting water might have a lower optimal LEED. A LEED <60 J/cm has reduced efficacy regardless of wavelength. The optimal LEED may vary with vein diameter and may be reduced by using specially shaped fibre tips. Laser delivery technique and type as well as the duration time of energy delivery appear to play a role in determining LEED. Conclusion The optimal LEED to ablate an incompetent great saphenous vein appears to be >80 J/cm and <95 J/cm based on current evidence for shorter wavelength lasers. There is evidence that longer wavelength lasers may be effective at LEEDs of <85 J/cm.

  9. Effects of meat species on the postprandial thermic effect in rats.

    PubMed

    Wakamatsu, Jun-ichi; Fujii, Ryoji; Yamaguchi, Kimikazu; Miyoshi, Syouhei; Nishimura, Takanori; Hattori, Akihito

    2013-05-01

    We examined animal species differences in the postprandial thermic effect of meat and investigated the postprandial thermic effect of mutton in rats. After intake of experimental diets containing each meat, body temperatures of rats fed mutton or venison were significantly higher than that of rats fed rabbit meat. After intake of experimental diets containing fractionized mutton, the body temperatures of rats fed diets containing lean mutton protein were higher than those of rats fed diets without lean mutton protein. In a two-dimensional fluorescence difference gel electrophoresis study of brown adipose tissue, it was shown that the intake of mutton up-regulated the expression of many signaling molecules that are involved in energy metabolism. The postprandial thermic effect of mutton seems to be due not to catecholamine and adrenocorticotropic hormone but to thyroid hormones. The results suggest that intake of lean mutton protein stimulates the secretion of thyroid hormones and facilitates energy metabolism in rats.

  10. A novel approach to calculating the thermic effect of food in a metabolic chamber.

    PubMed

    Ogata, Hitomi; Kobayashi, Fumi; Hibi, Masanobu; Tanaka, Shigeho; Tokuyama, Kumpei

    2016-02-01

    The thermic effect of food (TEF) is the well-known concept in spite of its difficulty for measuring. The gold standard for evaluating the TEF is the difference in energy expenditure between fed and fasting states (ΔEE). Alternatively, energy expenditure at 0 activity (EE0) is estimated from the intercept of the linear relationship between energy expenditure and physical activity to eliminate activity thermogenesis from the measurement, and the TEF is calculated as the difference between EE0 and postabsorptive resting metabolic rate (RMR) or sleeping metabolic rate (SMR). However, the accuracy of the alternative methods has been questioned. To improve TEF estimation, we propose a novel method as our original TEF calculation method to calculate EE0 using integrated physical activity over a specific time interval. We aimed to identify which alternative methods of TEF calculation returns reasonable estimates, that is, positive value as well as estimates close to ΔEE. Seven men participated in two sessions (with and without breakfast) of whole-body indirect calorimetry, and physical activity was monitored with a triaxial accelerometer. Estimates of TEF by three simplified methods were compared to ΔEE. ΔEE, EE0 above SMR, and our original method returned positive values for the TEF after breakfast in all measurements. TEF estimates of our original method was indistinguishable from those based on the ΔEE, whereas those as EE0 above RMR and EE0 above SMR were slightly lower and higher, respectively. Our original method was the best among the three simplified TEF methods as it provided positive estimates in all the measurements that were close to the value derived from gold standard for all measurements. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. 49 CFR 230.61 - Arch tubes, water bar tubes, circulators and thermic siphons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Arch tubes, water bar tubes, circulators and... MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.61 Arch tubes, water bar tubes, circulators and thermic siphons. (a) Frequency of cleaning. Each time the boiler is washed, arch tubes...

  12. 49 CFR 230.61 - Arch tubes, water bar tubes, circulators and thermic siphons.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Arch tubes, water bar tubes, circulators and... MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.61 Arch tubes, water bar tubes, circulators and thermic siphons. (a) Frequency of cleaning. Each time the boiler is washed, arch tubes...

  13. 49 CFR 230.61 - Arch tubes, water bar tubes, circulators and thermic siphons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Arch tubes, water bar tubes, circulators and... MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.61 Arch tubes, water bar tubes, circulators and thermic siphons. (a) Frequency of cleaning. Each time the boiler is washed, arch tubes...

  14. 49 CFR 230.61 - Arch tubes, water bar tubes, circulators and thermic siphons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Arch tubes, water bar tubes, circulators and... MAINTENANCE STANDARDS Boilers and Appurtenances Washing Boilers § 230.61 Arch tubes, water bar tubes, circulators and thermic siphons. (a) Frequency of cleaning. Each time the boiler is washed, arch tubes...

  15. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    SciTech Connect

    Hamad, Syed; Nageswara Rao, S. V. S.; Pathak, A. P.; Krishna Podagatlapalli, G.; Mounika, R.; Venugopal Rao, S. E-mail: soma-venu@uohyd.ac.in

    2015-12-15

    We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED), high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO{sub 2} NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz) and ∼70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (∼10{sup −14} e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm

  16. Linear and NLO spectroscopy of GaSe and InSe nanoparticles formed via laser ablation

    NASA Astrophysics Data System (ADS)

    Pashayev, A.; Tunaboylu, B.; Allahverdiyev, K.; Salayev, E.; Tagiyev, B.

    2015-12-01

    Nanoparticles of layered GaSe, InSe were fabricated by laser ablation (LA) method (KrF laser, λ = 248 nm, 50 Hz, maximum energy 200 mJ, τ = 4 ns) and characterized by: •XRF •GDOES •SEM and TEM; •UV-, VIS-, and IRabsorption; •Raman and PL spectroscopy (also in confocal geometry). Results are discussed in relation to the particle size. Absorption spectra of particles with diameter 20 nm and less turned out to be blue shifted and is consisted with a weak confinement effect on Wannier-Mott type excitons. It is shown, that with decreasing the particle size the energy position of the low-frequency Raman active phonons in both compounds are shifted to lower frequencies (21 and 18 cm-1 in bulk GaSe and InSe and 8 and 7 cm-1 in particles with sizes 5 and 7 nm, respectively). From the low frequency Raman data, decrease of the force constants ca. 25 % (for GaSe) due to the formation of the nanoparticles are estimated, and the origin is suggested. Second harmonic generation (SHG) with 1064 nm line of a mode locked Nd : YAG laser was observed for nanoparticles ablated on different substrates. Potential for using these structures for laser light visualizators are discussed.

  17. Pulmonary vein reconnection and arrhythmia progression after antral linear catheter ablation of paroxysmal and persistent atrial fibrillation.

    PubMed

    Wasmer, Kristina; Dechering, Dirk G; Köbe, Julia; Mönnig, Gerold; Pott, Christian; Frommeyer, Gerrit; Lange, Philipp S; Kochhäuser, Simon; Eckardt, Lars

    2016-09-01

    Assumption of different substrates is the basis for different ablation strategies in patients with paroxysmal and persistent atrial fibrillation (AF). We aimed to investigate pulmonary vein reconnection and influence on progression of initial paroxysmal (pAF) versus persistent atrial fibrillation (perAF). Between January 2010 and November 2012, 149 patients (117 men, mean age 59 ± 11 years, range 27-80 years) underwent at least one redo antral pulmonary vein isolation (PVI) using NavX-guided irrigated-tip radiofrequency catheter ablation. We analyzed whether and where reconnection of pulmonary veins was detected, and whether there were differences between patients with pAF and perAF. Of the 149 patients who underwent a redo antral PVI, 80 patients had pAF and 69 had perAF. One, two and three redo PVIs were performed in 149, 26 and 6 patients, respectively. Reconnection of at least one PV was detected in all patients at the second PVI, in 19 of 26 patients (73 %) at the third PVI and 5 of 6 patients (83 %) at the fourth PVI. 20 (29 %) patients with perAF prior to the first PVI had pAF at the second PVI, whereas 15 (19 %) patients with initial pAF had persistent AF at the time of the first redo procedure. From the second to the third PVI, four patients had developed perAF after previous pAF and two with per AF now had pAF. PV reconnection was observed independent of underlying AF type. At the second redo procedure, of those with reconnected veins 12 had pAF and 13 perAF. At the third redo procedure, four patients had pAF and four perAF. Most patients with recurrent AF after PVI showed at least one reconnected vein during redo procedures. Reconnection was identified irrespective of the underlying AF type. Progression from pAF to perAF and vice versa was observed irrespective of the initial AF type.

  18. Rectal temperature time of death nomogram: dependence of corrective factors on the body weight under stronger thermic insulation conditions.

    PubMed

    Henssge, C

    1992-04-01

    Ninety-eight test coolings were made under various cooling conditions (moving air, two types of both clothing and covering) on dummies of real masses of 1, 3.3, 9.9, 24.5 and 33.4 kg, respectively, which cool under standard conditions (unclothed, uncovered, still air) like human bodies of 14, 33, 41, 83 and 104 kg, respectively. The results provide evidence of a non-linear dependence of corrective factors of body weight upon the body weight. The dynamics of the dependence increases with the thickness of thermic insulation. Transferred to the use of the nomogram method on bodies, cooling conditions requiring corrective factors between 0.75 (moving air) and 1.3 (rather thin clothing/covering), known from experience on bodies of an average weight, can be used as in the past, independent of the body weight. According to experience the dependence of corrective factors on the body weight must be taken into account in bodies of a very high or low body weight. For that purpose both a simplified table and a formula for computing is given.

  19. Cleaning oil refining drainage waters out of emulsified oil products with thermic treated cedar nut shell

    NASA Astrophysics Data System (ADS)

    Pyatanova, P. A.; Adeeva, L. N.

    2017-08-01

    It was elaborated the ability of the sorbent produced by thermic treatment of cedar nut shell to destruct model and real first kind (direct) emulsions in static and dynamic conditions. In static conditions optimal ratio sorbent-emulsion with the original concentration of oil products 800 mg/l was in the range of 2.0 g per 100 ml of emulsion which corresponds to the level of treatment 94.9%. The time of emulsion destruction was 40 minutes. This sorbent is highly active in dynamic processes of oil-contaminated water treatment, the level of treatment 96.0% is being achieved. Full dynamic sorptive capacity of the sorbent is 0.85 g/g. Sorbent based on the thermic treated cedar nut shell can be elaborated as sorptive filter element of local treatment facilities of oil refining and petrochemical processes. After the treatment with this sorbent of drainage waters of oil refinery in dynamic conditions the concentration of oil products became less than mpc on oil products for waste waters coming to biological treatment.

  20. Clinical results of endovenous LASER ablation (EVLA) using low linear endovenous energy density (LEED) combined with high ligation for great saphenous varicose veins.

    PubMed

    Park, Yoong-Seok; Kim, Young-Wook; Park, Yang-Jin; Kim, Dong-Ik

    2016-09-01

    This study was designed to analyze the efficacy and complications in endovenous LASER ablation (EVLA) with 1470 nm diode lasers using low linear endovenous energy density (LEED) combined with high ligation for varicose veins of the great saphenous vein (GSV). One hundred and sixteen limbs of 102 patients were analyzed using 6 W with 2 mm/s constant pullback speed delivered by 30 J/cm LEED. The SFJ was ligated with a small inguinal incision. The complications and status of the GSV were checked at 1 and 6 months postoperatively. The occlusion rates for the GSV were 98 (84.5 %) at 1 month and 116 (100 %) at 6 months, postoperatively. The rate of partial occlusion was higher in males than in females (p = 0.004). There were 2 DVT, 27 feelings of the cord (23.3 %), and 36 numbness at the knee area (31.0 %) at 1 month, and 3 feelings of the cord (3.4 %) and 6 numbness of the knee (8.6 %) at 6 months postoperatively. The diameter and depth of the GSV did not affect the rates of feeling of the cord or numbness (p = 0.728, 0.208, 0.247, 0.884, respectively). EVLA with a 1470-nm diode laser using low LEED combined with high ligation for the GSV has lower complication rates and higher occlusion rates of GSV.

  1. Catheter ablation.

    PubMed

    Fromer, M; Shenasa, M

    1991-02-01

    Catheter ablation is gaining increasing interest for the therapy of symptomatic, sustained arrhythmias of various origins. The scope of this review is to give an overview of the biophysical aspects and major characteristics of some of the most widely used energy sources in catheter ablation, e.g., the discharge of conventional defibrillators, modified defibrillators, laser light, and radiofrequency current application. Results from animal studies are considered to explain the basic mechanisms of catheter ablation. The recent achievements with the use of radiofrequency current to modify or ablate cardiac conduction properties are outlined in more detail.

  2. Current Hot Potatoes in Atrial Fibrillation Ablation

    PubMed Central

    Roten, Laurent; Derval, Nicolas; Pascale, Patrizio; Scherr, Daniel; Komatsu, Yuki; Shah, Ashok; Ramoul, Khaled; Denis, Arnaud; Sacher, Frédéric; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-01-01

    Atrial fibrillation (AF) ablation has evolved to the treatment of choice for patients with drug-resistant and symptomatic AF. Pulmonary vein isolation at the ostial or antral level usually is sufficient for treatment of true paroxysmal AF. For persistent AF ablation, drivers and perpetuators outside of the pulmonary veins are responsible for AF maintenance and have to be targeted to achieve satisfying arrhythmia-free success rate. Both complex fractionated atrial electrogram (CFAE) ablation and linear ablation are added to pulmonary vein isolation for persistent AF ablation. Nevertheless, ablation failure and necessity of repeat ablations are still frequent, especially after persistent AF ablation. Pulmonary vein reconduction is the main reason for arrhythmia recurrence after paroxysmal and to a lesser extent after persistent AF ablation. Failure of persistent AF ablation mostly is a consequence of inadequate trigger ablation, substrate modification or incompletely ablated or reconducting linear lesions. In this review we will discuss these points responsible for AF recurrence after ablation and review current possibilities on how to overcome these limitations. PMID:22920482

  3. Remote Laser Processing of Composite Materials with Different Opto-Thermic Properties

    NASA Astrophysics Data System (ADS)

    Fürst, A.; Klotzbach, A.; Hühne, S.; Hauptmann, J.; Beyer, E.

    Near net shape preforms with a minimum of material consumption are required to increase the acceptance of fibre reinforced polymers in the industry, This should be accompanied with appropriate, fast and flexible processes. The 21/2 D beam deflection expands the area of possible kinds of processing strategies, wherefore the laser can be a tool for the future. The development of remote laser processing is strongly connected with the understanding of the interaction between tool and material. Within the paper investigations on opto - thermic properties of the components as a function of the wavelength of the beam source were shown. The results of the measurements are fundamental for processing composite structures made of glass- or carbon fibre and polymer matrices.

  4. The effect of fast eating on the thermic effect of food in young Japanese women.

    PubMed

    Toyama, Kenji; Zhao, Xifan; Kuranuki, Sachi; Oguri, Yasuo; Kashiwa Kato, Eriko; Yoshitake, Yutaka; Nakamura, Teiji

    2015-03-01

    The relationship between eating speed and the thermic effect of food (TEF) remains unclear. We investigated the difference in the TEF when meals containing the same amount of energy were eaten in 5 min (fast eating) or 15 min (regular eating). Subjects were nine non-obese young women. Following a 350 kcal (1464 kJ) meal, energy expenditure and autonomic nervous system activity were measured. The frequency of mastication was also calculated. The TEF for the 15-min period after the start of eating with fast eating was significantly lower than with regular eating (p < 0.01). There was a significant positive correlation between the low-frequency/high-frequency ratio and TEF at 5-min intervals up to 20 min after the start of eating and between total mastication frequency and TEF during ingestion. Fast eating may reduce the TEF, potentially because a decrease in mastication frequency decreases sympathetic nervous system activity.

  5. Helio-Thermics, Inc., lot no. 8, single family residence, Greenville, South Carolina

    NASA Astrophysics Data System (ADS)

    Beers, D.

    1981-03-01

    The Helio-Thermics Inc. House Lot No. 8 is one of two instrumented single-family residence in Greenville, South Carolina. The home has approximately 1086 square feet of conditioned space. Solar energy is used for space heating and for preheating domestic hot water. The attic space is used as the solar energy collector. It has a 416 square foot aperture and is painted black inside to maximize absorption. Warm air accumulates in the peak of the attic roof and circulates through the conditioned space or through storage by an air handler. Heat is stored in an 870 cubic foot rock bin under the house. Cold water is preheated in the attic by thermosiphoning water from the 82 gallon preheat tank through a manifold system of copper tubes. The instrumentation for the National Solar Data Network is described briefly. Original cost estimates for provisioning and installation of the solar system, with the exception of instrumentation costs, are given.

  6. Catheter Ablation

    MedlinePlus

    ... you during the procedure. Machines will measure your heart’s activity. All types of ablation require cardiac catheterization to place flexible tubes, or catheters, inside your heart to make the scars. Your doctor will clean ...

  7. Ablative and fractional ablative lasers.

    PubMed

    Brightman, Lori A; Brauer, Jeremy A; Anolik, Robert; Weiss, Elliot; Karen, Julie; Chapas, Anne; Hale, Elizabeth; Bernstein, Leonard; Geronemus, Roy G

    2009-10-01

    The field of nonsurgical laser resurfacing for aesthetic enhancement continues to improve with new research and technological advances. Since its beginnings in the 1980s, the laser-resurfacing industry has produced a multitude of devices employing ablative, nonablative, and fractional ablative technologies. The three approaches largely differ in their method of thermal damage, weighing degrees of efficacy, downtime, and side effect profiles against each other. Nonablative technologies generate some interest, although only for those patient populations seeking mild improvements. Fractional technologies, however, have gained dramatic ground on fully ablative resurfacing. Fractional laser resurfacing, while exhibiting results that fall just short of the ideal outcomes of fully ablative treatments, is an increasingly attractive alternative because of its far more favorable side effect profile, reduced recovery time, and significant clinical outcome.

  8. A current genotoxicity database for heterocyclic thermic food mutagens. I. Genetically relevant endpoints.

    PubMed Central

    Hatch, F T

    1986-01-01

    Cooking, heat processing, or pyrolysis of protein-rich foods induce the formation of a series of structurally related heterocyclic aromatic bases that have been found to be mutagens. The primary genetic assay utilized to detect and isolate these mutagens has been the his reversion assay in Salmonella typhimurium. The classification and nomenclature of these chemicals is revised to reflect recent advances. The findings of short-term tests for genetic injury that have been applied to these agents are presented in a systematic way. Cell-free, bacterial, mammalian cell culture, and in vivo systems are included. Major results, the mutagens tested, and key references are presented in tabular form, with text commentary. Integrated conclusions on the state of current knowledge of the genetic toxicity of thermic food mutagens are presented. Areas in need of further research are defined. Finally, an outline is presented of a suggested path leading to the determination whether normal methods of food preparation and processing constitute a human health hazard. PMID:3530740

  9. Enhanced thermic effect of food after Roux-en-Y gastric bypass surgery.

    PubMed

    Wilms, Britta; Ernst, Barbara; Schmid, Sebastian M; Thurnheer, Martin; Schultes, Bernd

    2013-09-01

    The mechanisms of weight loss after Roux-en-Y gastric bypass (RYGB) surgery are incompletely understood. Our objective was to investigate changes in metabolic processing of ingested food that may contribute to the weight-reducing effect of RYGB surgery. This was a cross-sectional case-control study at the Interdisciplinary Obesity Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland. Ten formerly obese women (mean ± SEM body mass index [BMI] = 26.6 ± 0.9 kg/m(2)) who had undergone RYGB surgery 41.9 ± 9.7 months before, 8 severely obese women (BMI = 40.8 ± 2.0 kg/m(2)), and 10 lean women (BMI = 20.9 ± 0.6 kg/m(2)). Intervention was a standardized liquid meal test. The thermic effect of food (TEF), respiratory quotient, and circulating levels of glucose, insulin, and C-peptide were assessed before and repeatedly during the first 90 minutes after the ingestion of a standardized liquid mixed meal containing 39.2 g carbohydrates, 15.4 g protein, and 2.8 g fat. TEF area under curve (0-90 minutes) was significantly greater in RYGB patients than in severely obese and lean women (both P < .01). After ingestion of the mixed meal, the respiratory quotient increased to significantly greater values in the RYGB patients than in the severely obese and lean group (P < .001 for ANOVA time × group interaction). Also, the postprandial rise in circulating glucose, insulin, and C-peptide levels was remarkably higher in the RYGB patients than in the other 2 groups (all P < .001 for ANOVA time × group interaction). Data demonstrate an enhanced TEF after RYGB surgery. Although this observation likely contributes to the weight-reducing effects of the surgery, data also point to an altered metabolic processing of food in RYGB patients characterized by an enhanced glucose absorption and postprandial carbohydrate oxidation.

  10. Changing environment and urban identity following open-cast mining and thermic power plant in Turkey: case of Soma.

    PubMed

    Karadag, Arife

    2012-03-01

    This paper is a summary of a project changed into a book named by "Changing Environment, City and Identity in Soma with the Geographical Evaluations" issued on May 2005. In this research, Soma, which is one of the most remarkable districts in Manisa in the West Anatolia from the point of economical figures, is assessed with its physical environment potential, improving economical activities and changing socio-economical structure. Owing to the open coal basins in the northeast and southwest of the district where lignite is produced and the impact of the thermic power plant near the city centre, Soma has changed on a large scale. This change has introduced some environmental problems into the district such as the devastation of the forestry land; the infertility of farming land; and soil, water and air pollution. Even though the change under discussion has led to many problems to deal with, it has also influenced its socio-economical structure to a large extent and revealed new type of inhabitants having different life expectations and aims. In conclusion, in this article, changing environment and city structure after lignite processing and thermic station establishment in Soma are discussed through the effective geographical factors. The new city profile formed by the local dynamics in question is evaluated according to the data obtained by the studies made in the neighbourhood.

  11. Video assisted thoracoscopic and cardioscopic radiofrequency Maze ablation.

    PubMed

    Inoue, Y; Yozu, R; Mitsumaru, A; Ueda, T; Hiraki, O; Sano, Y; Kawada, S

    1997-01-01

    The authors examined the feasibility of transthoracic radio frequency Maze ablation of atrial fibrillation using video assisted thoracoscopy and cardioscopy in the experimental setting of a beating porcine heart. In six pigs under general anesthesia, the left atrium was viewed using a video assisted thoracoscopy system (VATS), and radiofrequency linear ablation of the left atrial wall was carried out using a radiofrequency ablation catheter (HAT200S:OSYPKA) inserted through a trocar port. The right atrium was also ablated in the same manner under VATS. In six other pigs, intravenous radiofrequency ablation by cardioscopic catheter device was carried out. Atrial fibrillation was provoked by acetylcholine injection plus rapid atrial pacing. The thoracoscopic visual field created for radiofrequency catheter ablation from a transthoracic approach and the cardioscopic visual field from an intravenous approach were sufficient, and safe positioning of the ablation catheter device on the atrial epicardium and endocardium, which enabled linear ablation of the atrium, was obtained. The Optimal setting for ablation was 70-80 degrees C/ 30 sec duration per each ablation. This process was monitored and documented by a video system through the thoracoscope and cardioscope, and results were confirmed by postmortem macrohistologic examination. In conclusion, the authors' results suggest the potential usefulness of the combination of transthoracic radiofrequency catheter ablation with video assisted thoracoscopic and cardioscopic linear ablation of atrial fibrillation, and the possibility that use of this system might eliminate the need for open heart Maze surgery.

  12. Mixed variable optimization for radio frequency ablation planning

    NASA Astrophysics Data System (ADS)

    Kapoor, Ankur; Li, Ming; Wood, Bradford

    2011-03-01

    We present a method towards optimization of multiple ablation probe placement to provide efficient coverage of a tumor for thermal therapy while respecting clinical needs such as limiting the sites of probe insertions at the pleura/liver surface, choosing secure probe trajectories and locations, avoiding ablation of critical structures, reducing ablation of healthy tissue and overlap of ablation zones. The ablation optimizer treats each ablation location independently, and the number of ablation probe placements itself is treated as a variable to be optimized. This allows us to potentially feedback the ablation after deployment and re-optimize the next steps during the plan. The optimization method uses a new class of derivate-free algorithms for solving a non-linear mixed variable problem with hard and soft constraints derived from clinical images. Our methods use discretization of the ablation volume, which can accommodate irregular shape of the ablation zone. The non-gradient based strategy produce new candidates to yield a feasible solution within a few iterations. In our simulation experiments this strategy typically reduced the ablation zone overlap and ablated healthy tissue ablated by 46% and 29%, respectively in a single iteration, resulting in a feasible solution to be found within 35 iterations. Our method for optimization provides efficient implementation for planning the coverage of a tumor while respecting clinical constraints. The ablation planning can be combined with navigation assistance to enable accurate translation and feedback of the plan.

  13. Thermic effect of food at rest, during exercise, and after exercise in lean and obese men of similar body weight.

    PubMed Central

    Segal, K R; Gutin, B; Nyman, A M; Pi-Sunyer, F X

    1985-01-01

    The thermic effect of food at rest, during 30 min of cycle ergometer exercise, and after exercise was studied in eight lean (mean +/- SEM, 10 +/- 1% body fat, hydrostatically-determined) and eight obese men (30 +/- 2% body fat). The lean and obese mean were matched with respect to age, height, weight, and body mass index (BMI) to determine the relationship between thermogenesis and body composition, independent of body weight. All men were overweight, defined as a BMI between 26-34, but the obese had three times more body fat and significantly less lean body mass than the lean men. Metabolic rate was measured by indirect calorimetry under four conditions on separate mornings, in randomized order, after an overnight fast: 3 h of rest in the postabsorptive state; 3 h of rest after a 750-kcal mixed meal (14% protein, 31.5% fat, and 54.5% carbohydrate); during 30 min of cycling and for 3 h post exercise in the postabsorptive state; and during 30 min of cycling performed 30 min after the test meal and for 3 h post exercise. The thermic effect of food, which is the difference between postabsorptive and postprandial energy expenditure, was significantly higher for the lean than the obese men under the rest, post exercise, and exercise conditions: the increments in metabolic rate for the lean and obese men, respectively, were 48 +/- 7 vs. 28 +/- 4 kcal over 3 h rest (P less than 0.05); 44 +/- 7 vs. 16 +/- 5 kcal over 3 h post exercise (P less than 0.05); and 19 +/- 3 vs. 6 +/- 3 kcal over 30 min of exercise (P less than 0.05). The thermic effect of food was significantly negatively related to body fat content under the rest (r = -0.55), post exercise (r = -0.66), and exercise (r = -0.58) conditions. The results of this study indicate that for men of similar total body weight and BMI, body composition is a significant determinant of postprandial thermogenesis; the responses of obese are significantly blunted compared with those of lean men. Images PMID:4044828

  14. Pellet ablation and ablation model development

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs.

  15. Hepatic tumor ablation.

    PubMed

    Sindram, David; Lau, Kwan N; Martinie, John B; Iannitti, David A

    2010-08-01

    Ablation of liver tumors is part of a multimodality liver-directed strategy in the treatment of various tumors. The goal of ablation is complete tumor destruction, and ultimately improvement of quality and quantity of life for the patient. Technology is evolving rapidly, with important improvements in efficacy. The current state of ablation technology and indications for ablation are described in this review.

  16. Surgical Ablation of Atrial Fibrillation.

    PubMed

    Ramlawi, Basel; Abu Saleh, Walid K

    2015-01-01

    The Cox-maze procedure for the restoration of normal sinus rhythm, initially developed by Dr. James Cox, underwent several iterations over the years. The main concept consists of creating a series of transmural lesions in the right and left atria that disrupt re-entrant circuits responsible for propagating the abnormal atrial fibrillation rhythm. The left atrial appendage is excluded as a component of the Maze procedure. For the first three iterations of the Cox- maze procedure, these lesions were performed using a surgical cut-and-sew approach that ensured transmurality. The Cox-Maze IV is the most currently accepted iteration. It achieves the same lesion set of the Cox- maze III but uses alternative energy sources to create the transmural lesions, potentially in a minimally invasive approach on the beating heart. High-frequency ultrasound, microwave, and laser energy have all been used with varying success in the past. Today, bipolar radiofrequency heat or cryotherapy cooling are the most accepted sources for creating linear lesions with consistent safety and transmurality. The robust and reliable nature of these energy delivery methods has yielded a success rate reaching 90% freedom from atrial fibrillation at 12 months. Such approaches offer a significant long-term advantage over catheter-based ablation, especially in patients having longstanding, persistent atrial fibrillation with characteristics such as dilated left atrial dimensions, poor ejection fraction, and failed catheter ablation. Based on these improved results, there currently is significant interest in developing a hybrid ablation strategy that incorporates the superior transmural robust lesions of surgical ablation, the reliable stroke prevention potential of epicardial left atrial appendage exclusion, and sophisticated mapping and confirmatory catheter-based ablation technology. Such a minimally invasive hybrid strategy for ablation may lead to the development of multidisciplinary "Afib teams" to

  17. Lessons from computer simulations of ablation of atrial fibrillation

    PubMed Central

    2016-01-01

    Abstract This paper reviews the simulations of catheter ablation in computer models of the atria, from the first attempts to the most recent anatomical models. It describes how postulated substrates of atrial fibrillation can be incorporated into mathematical models, how modelling studies can be designed to test ablation strategies, what their current trade‐offs and limitations are, and what clinically relevant lessons can be learnt from these simulations. Drawing a parallel between clinical and modelling studies, six ablation targets are considered: pulmonary vein isolation, linear ablation, ectopic foci, complex fractionated atrial electrogram, rotors and ganglionated plexi. The examples presented for each ablation target illustrate a major advantage of computer models, the ability to identify why a therapy is successful or not in a given atrial fibrillation substrate. The integration of pathophysiological data to create detailed models of arrhythmogenic substrates is expected to solidify the understanding of ablation mechanisms and to provide theoretical arguments supporting substrate‐specific ablation strategies. PMID:26846178

  18. Bubble acceleration in the ablative Rayleigh-Taylor instability.

    PubMed

    Betti, R; Sanz, J

    2006-11-17

    The highly nonlinear evolution of the single-mode Rayleigh-Taylor instability (RTI) at the ablation front of an accelerated target is investigated in the parameter range typical of inertial confinement fusion implosions. A new phase of the nonlinear bubble evolution is discovered. After the linear growth phase and a short constant-velocity phase, it is found that the bubble is accelerated to velocities well above the classical value. This acceleration is driven by the vorticity accumulation inside the bubble resulting from the mass ablation and vorticity convection off the ablation front. While the ablative growth rates are slower than their classical values in the linear regime, the ablative RTI grows faster than the classical RTI in the nonlinear regime for deuterium and tritium ablators.

  19. Ablative skin resurfacing.

    PubMed

    Chwalek, Jennifer; Goldberg, David J

    2011-01-01

    Ablative skin resurfacing has remained the gold standard for treating photodamage and acne scars since the development of the first CO(2) lasers. CO(2) and Er:YAG lasers emit infrared light, which targets water resulting in tissue contraction and collagen formation. The first ablative laser systems created significant thermal damage resulting in unacceptably high rates of scarring and prolonged healing. Newer devices, such as high-energy pulsed lasers and fractional ablative lasers, are capable of achieving significant improvements with fewer side effects and shorter recovery times. While ablative resurfacing has become safer, careful patient selection is still important to avoid post-treatment scarring, dyspigmentation, and infections. Clinicians utilizing ablative devices need to be aware of possible side effects in order to maximize results and patient satisfaction. This chapter reviews the background of ablative lasers including the types of ablative lasers, mechanism of action, indications for ablative resurfacing, and possible side effects.

  20. Tissue morphologic analysis and ablation rates in the UV and visible for laser angioplasty

    NASA Astrophysics Data System (ADS)

    Sartori, M.; Henry, P. D.; Roberts, R.; Sauerbrey, R.; Tittel, F. K.

    1986-08-01

    Ablation rates were determined in human and canine aortas subjected to excimer and visible laser radiation. For UV and pulsed frequency doubled Nd:YAG lasers ablation rates were constant and depended linearly on average laser power, while for cw argon lasers ablation rates depended nonlinearly on laser power.

  1. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  2. Enhanced thermic effect of food, postprandial NEFA suppression and raised adiponectin in obese women who eat slowly.

    PubMed

    Reddy, Narendra L; Peng, Chenjing; Carreira, Marcos C; Halder, Louise; Hattersley, John; Piya, Milan K; Tripathi, Gyanendra; Randeva, Harpal S; Casanueva, Felipe F; McTernan, Philip G; Kumar, Sudhesh; Barber, Thomas M

    2015-06-01

    Meal duration may influence cardiometabolic health. The aim of this study was to explore postprandial effects of meal duration on human metabolism and appetite. Postprandial comparisons following a standard meal eaten slowly over 40 min ('D40') and the same meal eaten quickly over 10 min ('D10') on a different day. Each participant therefore acted as their own control, thereby limiting confounding factors. Obese premenopausal Caucasian women (n = 10) with confirmed normoglycaemia were recruited from an obesity clinic at UHCW, Coventry UK. Subjects underwent whole-body calorimetry (8-h) on two separate days. Following standard lunch (D40 vs D10), 4-h postprandial analysis included thermic effect of food (TEF) and bloods taken at predefined times (including baseline fasting). Analytes included lipid profile, adiponectin, insulin, glucose, ghrelin, leptin, endotoxin, gut and pancreatic hormones. Appetite was measured using visual-analogue scales and ad libitum food intake at subsequent meal. Paired sample t-tests [including area under the curve (AUC)] were used to compare D40 and D10 trials. Postprandial TEF (over 240-min) was significantly greater for D40 than D10 [mean (SEM): 80·9 kcal (3·8) vs 29·9 kcal (3·4); 10·6% vs 3·9%, respectively, P = 0·006; AUC 71·7 kcal.h vs 22·4 kcal.h, respectively, P = 0·02]. Postprandial plasma NEFA was significantly lower, and adiponectin levels were significantly higher for D40 than D10 [AUC (SEM): NEFA 627 μmol.h/l (56) vs 769 μmol.h/l (60), respectively, P = 0·02; adiponectin 33·4 μg.h/ml (3·9) vs 27·3 μg.h/ml (3·8), respectively, P = 0·04]. Other postprandial analytes and appetite measures were equivalent. In obese women, eating slowly associates with enhanced TEF, elevated serum adiponectin and suppressed NEFA. © 2015 John Wiley & Sons Ltd.

  3. Breakfast Macronutrient Composition Influences Thermic Effect of Feeding and Fat Oxidation in Young Women Who Habitually Skip Breakfast.

    PubMed

    Neumann, Brianna L; Dunn, Amy; Johnson, Dallas; Adams, J D; Baum, Jamie I

    2016-08-10

    The purpose of this study was to determine if breakfast macronutrient composition improved thermic effect of feeding (TEF) and appetite after a one-week adaptation in young women who habitually skip breakfast. A randomized, controlled study was conducted in females (24.1 ± 2 years), who skip breakfast (≥5 times/week). Participants were placed into one of three groups for eight days (n = 8 per group): breakfast skipping (SKP; no breakfast), carbohydrate (CHO; 351 kcal; 59 g CHO, 10 g PRO, 8 g fat) or protein (PRO; 350 kcal; 39 g CHO, 30 g PRO, 8 g fat). On days 1 (D1) and 8 (D8), TEF, substrate oxidation, appetite and blood glucose were measured. PRO had higher (p < 0.05) TEF compared to SKP and CHO on D1 and D8, with PRO having 29% higher TEF than CHO on D8. On D1, PRO had 30.6% higher fat oxidation than CHO and on D8, PRO had 40.6% higher fat oxidation than CHO. SKP had higher (p < 0.05) fat oxidation on D1 and D8 compared to PRO and CHO. There was an interaction (p < 0.0001) of time and breakfast on appetite response. In addition, CHO had a significant increase (p < 0.05) in PP hunger response on D8 vs. D1. CHO and PRO had similar PP (postprandial) glucose responses on D1 and D8. Consumption of PRO breakfast for 8 days increased TEF compared to CHO and SKP, while consumption of CHO for one week increased PP hunger response.

  4. Breakfast Macronutrient Composition Influences Thermic Effect of Feeding and Fat Oxidation in Young Women Who Habitually Skip Breakfast

    PubMed Central

    Neumann, Brianna L.; Dunn, Amy; Johnson, Dallas; Adams, J. D.; Baum, Jamie I.

    2016-01-01

    The purpose of this study was to determine if breakfast macronutrient composition improved thermic effect of feeding (TEF) and appetite after a one-week adaptation in young women who habitually skip breakfast. A randomized, controlled study was conducted in females (24.1 ± 2 years), who skip breakfast (≥5 times/week). Participants were placed into one of three groups for eight days (n = 8 per group): breakfast skipping (SKP; no breakfast), carbohydrate (CHO; 351 kcal; 59 g CHO, 10 g PRO, 8 g fat) or protein (PRO; 350 kcal; 39 g CHO, 30 g PRO, 8 g fat). On days 1 (D1) and 8 (D8), TEF, substrate oxidation, appetite and blood glucose were measured. PRO had higher (p < 0.05) TEF compared to SKP and CHO on D1 and D8, with PRO having 29% higher TEF than CHO on D8. On D1, PRO had 30.6% higher fat oxidation than CHO and on D8, PRO had 40.6% higher fat oxidation than CHO. SKP had higher (p < 0.05) fat oxidation on D1 and D8 compared to PRO and CHO. There was an interaction (p < 0.0001) of time and breakfast on appetite response. In addition, CHO had a significant increase (p < 0.05) in PP hunger response on D8 vs. D1. CHO and PRO had similar PP (postprandial) glucose responses on D1 and D8. Consumption of PRO breakfast for 8 days increased TEF compared to CHO and SKP, while consumption of CHO for one week increased PP hunger response. PMID:27517958

  5. Ablation of dermal and mucosal lesions with a new CO2 laser application system

    NASA Astrophysics Data System (ADS)

    Jovanovic, Sergije; Sedlmaier, Benedikt W.; Fuehrer, Ariane

    1997-05-01

    Laser treatment of skin changes has become common practice in recent years. The high absorption of the wavelength of the carbon-dioxide laser (10600 nm) is responsible for its low penetration depth in biological tissue. Shortening the exposure time minimizes thermic side effects such as carbonization and coagulation. This effect can be achieved with the SilkTouchTM scanner 767, since the focused laser beam is moved over a defined area by rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scars, scars after common acne, wrinkles, rhinophyma and benign neoplasms like verruca vulgaris. Cosmetically favorable reepithelialization of the lasered surfaces results within a very short period of time. Benign mucosal changes of the upper aerodigestive tract can also be treated. Ablation is less traumatic for papillomas, fibromas, hyperplasias in the area of Waldeyer's tonsillar ring and certain laryngotracheal pathologies. Clinical examples demonstrate the advantages of this new mode of application.

  6. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  7. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  8. Radiofrequency Ablation of Cancer

    PubMed Central

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized. PMID:15383844

  9. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  10. Lung Ablation: Whats New?

    PubMed

    Xiong, Lillian; Dupuy, Damian E

    2016-07-01

    Lung cancer had an estimated incidence of 221,200 in 2015, making up 13% of all cancer diagnoses. Tumor ablation is an important treatment option for nonsurgical lung cancer and pulmonary metastatic patients. Radiofrequency ablation has been used for over a decade with newer modalities, microwave ablation, cryoablation, and irreversible electroporation presenting as additional and possibly improved treatment options for patients. This minimally invasive therapy is best for small primary lesions or favorably located metastatic tumors. These technologies can offer palliation and sometimes cure of thoracic malignancies. This article discusses the current available technologies and techniques available for tumor ablation.

  11. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  12. Thermal distribution of microwave antenna for atrial fibrillation catheter ablation.

    PubMed

    Zhang, Huijuan; Nan, Qun; Liu, Youjun

    2013-09-01

    The aim of this study is to investigate the effects of ablation parameters on thermal distribution during microwave atrial fibrillation catheter ablation, such as ablation time, ablation power, blood condition and antenna placement, and give proper ablative parameters to realise transmural ablation. In this paper, simplified 3D antenna-myocardium-blood finite element method models were built to simulate the endocardial ablation operation. Thermal distribution was obtained based on the coupled electromagnetic-thermal analysis. Under different antenna placement conditions and different microwave power inputs within 60 s, the lesion dimensions (maximum depth, maximum width) of the ablation zones were analysed. The ablation width and depth increased with the ablation time. The increase rate significantly slowed down after 10 s. The maximum temperature was located in 1 mm under the antenna tip when perpendicular to the endocardium, while 1.5 mm away from the antenna axis and 26 mm along the antenna (with antenna length about 30 mm) in the myocardium when parallel to the endocardium. The maximum temperature in the ablated area decreased and the effective ablation area (with the temperature raised to 50°C) shifted deeper into the myocardium due to the blood cooling. The research validated that the microwave antenna can provide continuous long and linear lesions for the treatment of atrial fibrillation. The dimensions of the created lesion widths were all larger than those of the depths. It is easy for the microwave antenna to produce transmural lesions for an atrial wall thickness of 2-6 mm by adjusting the applied power and ablation time.

  13. Ablation Resistance of C/C Composites with Atmospheric Plasma-Sprayed W Coating

    NASA Astrophysics Data System (ADS)

    Zhou, Zhe; Wang, Yuan; Gong, Jieming; Ge, Yicheng; Peng, Ke; Ran, Liping; Yi, Maozhong

    2016-12-01

    To improve the ablation resistance of carbon/carbon (C/C) composites, tungsten (W) coating with thickness of 1.2 mm was applied by atmospheric plasma spraying. The antiablation property of the coated composites was evaluated by oxyacetylene flame ablation experiments. The phase composition of the coating was investigated by a combination of x-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectroscopy analysis. The ablation resistance of the coated C/C substrates was compared with that of uncoated C/C composites and C/C-CuZr composites after ablation for 30 s. The properties of the coated C/C composites after ablation time of 10, 30, 60, 90, 120, and 180 s were further studied. The results indicated that the mass and linear ablation rates of the W-coated C/C composites were lower than those of uncoated C/C or C/C-CuZr composites after ablation for 30 s. The coating exhibited heat stability after 120 s of ablation, with mass loss and linear ablation rates of 7.39 × 10-3 g/s and 3.50 × 10-3 mm/s, respectively. However, the W coating became ineffective and failed after ablation for 180 s. Three ablation regions could be identified, in which the ablation mechanism of the coating changed from thermochemical to thermophysical erosion to mechanical scouring with increasing ablation time.

  14. Nonlinear theory of the ablative Rayleigh-Taylor instability.

    PubMed

    Sanz, J; Ramírez, J; Ramis, R; Betti, R; Town, R P J

    2002-11-04

    A fully nonlinear sharp-boundary model of the ablative Rayleigh-Taylor instability is derived and closed in a similar way to the self-consistent closure of the linear theory. It contains the stabilizing effect of ablation and accurately reproduces the results of 2D DRACO simulations. The single-mode saturation amplitude, bubble and spike evolutions in the nonlinear regimes, and the seeding of long-wavelength modes via mode coupling are determined and compared with the classical theory without ablation. Nonlinear stability above the linear cutoff is also predicted.

  15. Microwave Ablation of Hepatic Malignancy

    PubMed Central

    Lubner, Meghan G.; Brace, Christopher L.; Ziemlewicz, Tim J.; Hinshaw, J. Louis; Lee, Fred T.

    2013-01-01

    Microwave ablation is an extremely promising heat-based thermal ablation modality that has particular applicability in treating hepatic malignancies. Microwaves can generate very high temperatures in very short time periods, potentially leading to improved treatment efficiency and larger ablation zones. As the available technology continues to improve, microwave ablation is emerging as a valuable alternative to radiofrequency ablation in the treatment of hepatic malignancies. This article reviews the current state of microwave ablation including technical and clinical considerations. PMID:24436518

  16. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    SciTech Connect

    Oraevsky, A.A. |; DaSilva, L.B.; Feit, M.D.

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  17. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  18. Approaches to catheter ablation for persistent atrial fibrillation.

    PubMed

    Verma, Atul; Jiang, Chen-yang; Betts, Timothy R; Chen, Jian; Deisenhofer, Isabel; Mantovan, Roberto; Macle, Laurent; Morillo, Carlos A; Haverkamp, Wilhelm; Weerasooriya, Rukshen; Albenque, Jean-Paul; Nardi, Stefano; Menardi, Endrj; Novak, Paul; Sanders, Prashanthan

    2015-05-07

    Catheter ablation is less successful for persistent atrial fibrillation than for paroxysmal atrial fibrillation. Guidelines suggest that adjuvant substrate modification in addition to pulmonary-vein isolation is required in persistent atrial fibrillation. We randomly assigned 589 patients with persistent atrial fibrillation in a 1:4:4 ratio to ablation with pulmonary-vein isolation alone (67 patients), pulmonary-vein isolation plus ablation of electrograms showing complex fractionated activity (263 patients), or pulmonary-vein isolation plus additional linear ablation across the left atrial roof and mitral valve isthmus (259 patients). The duration of follow-up was 18 months. The primary end point was freedom from any documented recurrence of atrial fibrillation lasting longer than 30 seconds after a single ablation procedure. Procedure time was significantly shorter for pulmonary-vein isolation alone than for the other two procedures (P<0.001). After 18 months, 59% of patients assigned to pulmonary-vein isolation alone were free from recurrent atrial fibrillation, as compared with 49% of patients assigned to pulmonary-vein isolation plus complex electrogram ablation and 46% of patients assigned to pulmonary-vein isolation plus linear ablation (P=0.15). There were also no significant differences among the three groups for the secondary end points, including freedom from atrial fibrillation after two ablation procedures and freedom from any atrial arrhythmia. Complications included tamponade (three patients), stroke or transient ischemic attack (three patients), and atrioesophageal fistula (one patient). Among patients with persistent atrial fibrillation, we found no reduction in the rate of recurrent atrial fibrillation when either linear ablation or ablation of complex fractionated electrograms was performed in addition to pulmonary-vein isolation. (Funded by St. Jude Medical; ClinicalTrials.gov number, NCT01203748.).

  19. Ablation for Atrial Fibrillation

    PubMed Central

    2006-01-01

    Executive Summary Objective To review the effectiveness, safety, and costing of ablation methods to manage atrial fibrillation (AF). The ablation methods reviewed were catheter ablation and surgical ablation. Clinical Need Atrial fibrillation is characterized by an irregular, usually rapid, heart rate that limits the ability of the atria to pump blood effectively to the ventricles. Atrial fibrillation can be a primary diagnosis or it may be associated with other diseases, such as high blood pressure, abnormal heart muscle function, chronic lung diseases, and coronary heart disease. The most common symptom of AF is palpitations. Symptoms caused by decreased blood flow include dizziness, fatigue, and shortness of breath. Some patients with AF do not experience any symptoms. According to United States data, the incidence of AF increases with age, with a prevalence of 1 per 200 people aged between 50 and 60 years, and 1 per 10 people aged over 80 years. In 2004, the Institute for Clinical Evaluative Sciences (ICES) estimated that the rate of hospitalization for AF in Canada was 582.7 per 100,000 population. They also reported that of the patients discharged alive, 2.7% were readmitted within 1 year for stroke. One United States prevalence study of AF indicated that the overall prevalence of AF was 0.95%. When the results of this study were extrapolated to the population of Ontario, the prevalence of AF in Ontario is 98,758 for residents aged over 20 years. Currently, the first-line therapy for AF is medical therapy with antiarrhythmic drugs (AADs). There are several AADs available, because there is no one AAD that is effective for all patients. The AADs have critical adverse effects that can aggravate existing arrhythmias. The drug selection process frequently involves trial and error until the patient’s symptoms subside. The Technology Ablation has been frequently described as a “cure” for AF, compared with drug therapy, which controls AF but does not cure it

  20. Effect of Cu particles on the ablation properties of C/C composites

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Hejun; Shi, Xiaohong; Feng, Wei; Feng, Bo; Sun, Can

    2013-11-01

    To improve the ablation property, Cu particles were introduced into carbon/carbon (C/C) composites through liquid precursor infiltration combined with in-situ reaction. Compared to pure C/C composites, the modified composites displayed better mechanical property and ablation resistance under oxyacetylene torch when the Cu content was below 8 wt. %. For C/C-Cu composites with 8 wt. % Cu, a 14% decline of linear ablation rate was obtained while defective fibers and laminar matrix survived after ablation. Analyses of ablation behavior depending on ablation time indicated that overflowing of Cu gas weakened the scouring of ablation gas and the Cu gas reduced the partial pressure of oxidizing species, which led to the improved ablation property.

  1. Optically thick ablation fronts. [in interstellar medium

    NASA Technical Reports Server (NTRS)

    Konigl, A.

    1984-01-01

    The physical characteristics of optically thick ablation fronts such as interstellar clouds are analyzed. Attention is given to cold clumps in both planar and spherical geometries and modifications caused by accelerations in a gravitational field or by evaporation of the clumps when encountered hot gas. The effects of ablation on the appearance of the Rayleigh-Taylor instability are examined in both linear and nonlinear regimes. The results of the calculations are applied to the astrophysical phenomena of cold clumps immersed in a supersonic flow, optically thick jets, and ablation in stellar envelopes. Evaporation in an optically thick front is projected to be orders of magnitude larger than evaporation in electron-conduction fronts in optically thin conditions. The optically thick processes could then be useful for modeling flows from, e.g., newly formed stars and active galactic nuclei.

  2. Predictors of Success in Ablation of Scar-Related Ventricular Tachycardia

    PubMed Central

    Ghanem, Mazen T.; Ahmed, Rania S.; Abd El Moteleb, Ayman M.; Zarif, John K.

    2013-01-01

    During ablation of re-entrant ventricular tachycardia (VT) 3-dimensional mapping systems are now used to properly delineate the scar tissue and aid ablation of scar-related VT. The aim of our study was to outline how the mode of ablation predicts success and recurrence in large scar-related VT. When comparing patients with recurrence and patients with no recurrence, univariate analysis showed that number of ablation lesions (28 ± 8 vs. 12 ± 8, P = 0.01) and more linear ablation lesions rather than focal lesions (P = 0.03) were associated with long-term success. We demonstrated that more extensive ablation lesions and creation of linear lesions is associated with better success rate and lower recurrence rate during ablation of large scar-related ventricular tachycardia. PMID:23700377

  3. Convergent ablator performance measurements

    SciTech Connect

    Hicks, D. G.; Spears, B. K.; Braun, D. G.; Sorce, C. M.; Celliers, P. M.; Collins, G. W.; Landen, O. L.; Olson, R. E.

    2010-10-15

    The velocity and remaining ablator mass of an imploding capsule are critical metrics for assessing the progress toward ignition of an inertially confined fusion experiment. These and other convergent ablator performance parameters have been measured using a single streaked x-ray radiograph. Traditional Abel inversion of such a radiograph is ill-posed since backlighter intensity profiles and x-ray attenuation by the ablated plasma are unknown. To address this we have developed a regularization technique which allows the ablator density profile {rho}(r) and effective backlighter profile I{sub 0}(y) at each time step to be uniquely determined subject to the constraints that {rho}(r) is localized in radius space and I{sub 0}(y) is delocalized in object space. Moments of {rho}(r) then provide the time-resolved areal density, mass, and average radius (and thus velocity) of the remaining ablator material. These results are combined in the spherical rocket model to determine the ablation pressure and mass ablation rate during the implosion. The technique has been validated on simulated radiographs of implosions at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)] and implemented on experiments at the OMEGA laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)].

  4. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  5. Pulsed Tm:YAG laser ablation of knee joint tissues

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  6. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  7. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects.

  8. Endometrial Ablation for Menorrhagia

    PubMed Central

    Sanders, Barry H.

    1992-01-01

    Endometrial ablation is a relatively new treatment for patients with persistent menorrhagia. The procedure can be performed by either laser photocoagulation or electrocoagulation; both have a very low risk of complication. Generally, less than 24 hours of hospitalization is required and return to normal activities, including work, is almost immediate. Endometrial ablation is likely to become a mainstay of treatment for menorrhagia as the technology and training become more readily available. PMID:21229128

  9. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  10. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.

  11. Defining New Metrics in Microwave Ablation of Pulmonary Tumors: Ablation Work and Ablation Resistance Score.

    PubMed

    Al-Hakim, Ramsey A; Abtin, Fereidoun G; Genshaft, Scott J; Kutay, Erin; Suh, Robert D

    2016-09-01

    To investigate pulmonary microwave ablation metrics including ablation work, ablation resistance score, and involution. Retrospective review was performed of 98 pulmonary tumor ablations using the NeuWave Certus Microwave Ablation System (NeuWave Medical, Madison, Wisconsin) in 71 patients (32 men and 39 women; mean age, 64.7 y ± 11.5). Ablation work was defined as sum of (power) * (time) * (number of antennas) for all phases during an ablation procedure. Ablation zone was measured on CT at 3 time points: after procedure, 1-3 months (mean 47 d), and 3-12 months (mean 292 d). Ablation zones were scored based on location for pulmonary lobe (upper = 1, middle/lingula = 2, lower = 3) and region (peripheral = 1, parenchymal = 2, central = 3), and the 2 were summed for ablation resistance score. Ablation zone on CT at 1-3 months was significantly smaller in regions with higher ablation resistance score (P < .05). There was a significant correlation between ablation work and ablation zone measured on CT performed after procedure (P < .001), at 1-3 months (P < .001), and at 3-12 months (P < .05). Ablation zone significantly decreased from after procedure to 1-3 months (P < .001) and from 1-3 months to 3-12 months (P < .001), with change from after procedure to 1-3 months significantly greater (P < .01). Pulmonary microwave ablation zone is significantly smaller in regions with higher ablation resistance score. Ablation work correlates to ablation zone with a nonlinear involution pattern in the first year and may be useful for planning before the procedure. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  12. Ablative therapies for renal tumors

    PubMed Central

    Ramanathan, Rajan; Leveillee, Raymond J.

    2010-01-01

    Owing to an increased use of diagnostic imaging for evaluating patients with other abdominal conditions, incidentally discovered kidney masses now account for a majority of renal tumors. Renal ablative therapy is assuming a more important role in patients with borderline renal impairment. Renal ablation uses heat or cold to bring about cell death. Radiofrequency ablation and cryoablation are two such procedures, and 5-year results are now emerging from both modalities. Renal biopsy at the time of ablation is extremely important in order to establish tissue diagnosis. Real-time temperature monitoring at the time of radiofrequency ablation is very useful to ensure adequacy of ablation. PMID:21789083

  13. Thermic and electric power production and use from gasification of biomass and RDF: Experience at CFBG Plant at Greve in Chianti

    SciTech Connect

    Barducci, G.L.; Daddi, P.; Polzinetti, G.C.

    1995-11-01

    With the gasification plant of Greve in Chianti, it is easy to produce electric power, starting from sorghum bagasse and RDF. The experiment demonstrated the possibility of gasifying the biomass sorghum bagasse in CFBG, obtaining a low gas with a sufficiently high heat value. It is possible to use the lean gas, obtained from gasification of sorghum bagasse and RDF, as fuel in the cement production. With the realization of the second line of gas combustion and heat recovery system, the plant will be able to produce electric power of 6,7 MW and thermic treatment about 200 ton/day of RDF or biomass. At the same time the new configuration of the second line will be able to avoid the fouling problems on the boiler section.

  14. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  15. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P. )

    1993-11-08

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  16. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-11-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code orchid.

  17. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  18. Experimental study on thermic effects, morphology and function of guinea pig cochlea: a comparison between the erbium:yttrium-aluminum-garnet laser and carbon dioxide laser.

    PubMed

    Ren, Dong-Dong; Chi, Fang-Lu

    2008-08-01

    Surgery of the inner ear requires atraumatic techniques to preserve the morphology of the inner ear. Recent experiment and clinical studies have demonstrated that several laser systems are suitable for cochleostomy. The goal of this study was to quantify the thermic effects, morphology and function of guinea pig cochlea in vivo by comparing the erbium:yttrium-aluminum-garnet (Er:YAG) laser and carbon dioxide (CO(2)) laser and to determine the optimum laser parameters for safe clinical treatment. A fenestration in the basal cochlear turn of guinea pigs was created. A type K thermocouple was placed on the membrane of round window to detect the local temperature change during laser irradiation. The auditory evoked brainstem response (ABR) was measured before and after laser application. Confocal laser microscopy and scanning electron microscopy (SEM) was used for cochlear morphology. An increased hearing loss immediately and 4 weeks later after irradiation was observed in animals with the higher power CO(2) laser in accordance with a higher temperature increase during laser application. In contrast, a wider safety scope of Er:YAG application in cochleostomy was presented with little temperature increase. These findings were correlated with the ultrastructural changes in guinea pig cochlea. The Er:YAG and CO(2) lasers are shown to be safe if the total amount of energy is kept within the limits applied in this study. In addition, on this preliminary basis by guinea pig laser cochleostomy, Er:YAG laser maybe less damaging to inner ear structures than CO(2) laser with a larger safety scope and less thermic effects. (c) 2008 Wiley-Liss, Inc.

  19. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  20. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Lim, Yong C.; Altman, Katrina J.; Farson, Dave F.; Flores, Katharine M.

    2009-11-01

    We investigated fabrication of cylindrical micropillars on bovine cortical bone using direct-write femtosecond laser ablation. The ablation threshold of the material was measured by single-pulse ablation tests, and the incubation coefficient was measured from linear scanned ablation tests. A motion system was programmed to apply multiple layers of concentric rings of pulses to machine pillars of various diameters and heights. The diameter of the top surface of the pillar was found to steadily decrease due to incubation of damage from successive layers of pulses during the machining process. Pillar top diameter was predicted based on a paraxial beam fluence approximation and single-pulse ablation threshold and incubation coefficient measurements. Pillar diameters predicted as successive layers of pulses were applied were well-matched to experiments, confirming that femtosecond laser ablation of the cortical bone was well-modeled by single-pulse ablation threshold measurements and an incubation coefficient.

  1. Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields

    PubMed Central

    Xie, Fei; Varghese, Frency; Pakhomov, Andrei G.; Semenov, Iurii; Xiao, Shu; Philpott, Jonathan; Zemlin, Christian

    2015-01-01

    Background Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations. Methods We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, at varying pulse numbers and frequencies) to create linear lesions of 12–18 mm length. Hearts were stained either with tetrazolium chloride (TTC) or propidium iodide (PI) to determine the extent of ablation. Some stained lesions were sectioned to obtain the three-dimensional geometry of the ablated volume. Results In all animals (12/12), we were able to create nonconducting lesions with less than 2 seconds of nsPEF application per site and minimal heating (< 0.2°C) of the tissue. The geometry of the ablated volume was smoother and more uniform throughout the wall than typical for RF ablation. The width of the lesions could be controlled up to 6 mm via the electrode spacing and the shock parameters. Conclusions Ablation with nsPEFs is a promising alternative to radiofrequency (RF) ablation of AF. It may dramatically reduce procedure times and produce more consistent lesion thickness than RF ablation. PMID:26658139

  2. Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields.

    PubMed

    Xie, Fei; Varghese, Frency; Pakhomov, Andrei G; Semenov, Iurii; Xiao, Shu; Philpott, Jonathan; Zemlin, Christian

    2015-01-01

    Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations. We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2-4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5-20 kV/cm, 350 ns duration, at varying pulse numbers and frequencies) to create linear lesions of 12-18 mm length. Hearts were stained either with tetrazolium chloride (TTC) or propidium iodide (PI) to determine the extent of ablation. Some stained lesions were sectioned to obtain the three-dimensional geometry of the ablated volume. In all animals (12/12), we were able to create nonconducting lesions with less than 2 seconds of nsPEF application per site and minimal heating (< 0.2°C) of the tissue. The geometry of the ablated volume was smoother and more uniform throughout the wall than typical for RF ablation. The width of the lesions could be controlled up to 6 mm via the electrode spacing and the shock parameters. Ablation with nsPEFs is a promising alternative to radiofrequency (RF) ablation of AF. It may dramatically reduce procedure times and produce more consistent lesion thickness than RF ablation.

  3. Transient Ablation of Teflon Hemispheres

    NASA Technical Reports Server (NTRS)

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  4. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  5. Tumour ablation: technical aspects.

    PubMed

    Widmann, Gerlig; Bodner, Gerd; Bale, Reto

    2009-10-02

    Image-guided percutaneous radiofrequency ablation (RFA) is a minimally invasive, relatively low-risk procedure for tumour treatment. Local recurrence and survival rates depend on the rate of complete ablation of the entire tumour including a sufficient margin of surrounding healthy tissue. Currently a variety of different RFA devices are available. The interventionalist must be able to predict the configuration and extent of the resulting ablation necrosis. Accurate planning and execution of RFA according to the size and geometry of the tumour is essential. In order to minimize complications, individualized treatment strategies may be necessary for tumours close to vital structures. This review examines the state-of-the art of different device technologies, approaches, and treatment strategies for percutaneous RFA of liver tumours.

  6. Shuttle subscale ablative nozzle tests

    NASA Technical Reports Server (NTRS)

    Powers, L. B.; Bailey, R. L.

    1980-01-01

    Recent subscale nozzle tests have identified new and promising carbon phenolic nozzle ablatives which utilize staple rayon, PAN, and pitch based carbon cloth. A 4-inch throat diameter submerged test nozzle designed for the 48-inch Jet Propulsion Laboratory char motor was used to evaluate five different designs incorporating 20 candidate ablatives. Test results indicate that several pitch and PAN-based carbon phenolic ablatives can provide erosion and char performance equivalent or superior to the present continuous rayon-based SRM ablative.

  7. Thermal ablation in cancer

    PubMed Central

    Liu, Yong; Cao, Cheng-Song; Yu, Yang; Si, Ya-Meng

    2016-01-01

    Radiofrequency ablation (RFA) and cryoablation are alternative forms of therapy used widely in various pathological states, including treatment of carcinogenesis. The reason is that ablation techniques have ability of modulating the immune system. Furthermore, recent studies have applied this form of therapy on tumor microenvironment and in the systematic circulation. Moreover, RFA and cryoablation result in an inflammatory immune response along with tissue disruption. Evidence has demonstrated that these procedures affect carcinogenesis by causing a significant local inflammatory response leading to an immunogenic gene signature. The present review enlightens the current view of these techniques in cancer. PMID:27703520

  8. Wavelength scaling of silicon laser ablation in picosecond regime

    NASA Astrophysics Data System (ADS)

    Sikora, A.; Grojo, D.; Sentis, M.

    2017-07-01

    Single pulse laser ablation of silicon has been investigated at 343, 515, and 1030 nm using a laser pulse duration of 50 ps. In this large spectral range, ablation thresholds of silicon vary from 0.01 to 0.83 J/cm2, confirming a strong dependence on the wavelength. By solving the free-carrier density rate equation at threshold conditions, we show that band-to-band linear absorption dominates energy deposition at 343 and 515 nm, whereas at 1030 nm, the energy leading to ablation is primarily absorbed by the generated free-carriers. This allows us to determine the relevant criteria to derive a simple model predicting the wavelength dependence of the ablation threshold in this regime. We obtain an excellent agreement between experimental measurements and calculations by simply considering an averaged energy density required in the absorption depth for surface ablation and accounting for the laser-induced variations of the important thermophysical parameters. On the basis of this analysis, we discuss the optimal wavelength and fluence conditions for maximum removal rate, ablation efficiency, and accuracy. Despite the difference in mechanisms at the different wavelengths, we find that the maximal efficiency remains at around 7 times the ablation threshold fluence for all investigated wavelengths. This work provides guidelines for high-quality and efficient micromachining of silicon in the scarcely explored picosecond regime, while new picosecond sources offer numerous advantages for real throughput industrial applications.

  9. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    SciTech Connect

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  10. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  11. Modelling ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Rethfeld, Baerbel; Ivanov, Dmitriy S.; E Garcia, Martin; Anisimov, Sergei I.

    2017-05-01

    This review is devoted to the study of ultrafast laser ablation of solids and liquids. The ablation of condensed matter under exposure to subpicosecond laser pulses has a number of peculiar properties which distinguish this process from ablation induced by nanosecond and longer laser pulses. The process of ultrafast ablation includes light absorption by electrons in the skin layer, energy transfer from the skin layer to target interior by nonlinear electronic heat conduction, relaxation of the electron and ion temperatures, ultrafast melting, hydrodynamic expansion of heated matter accompanied by the formation of metastable states and subsequent formation of breaks in condensed matter. In case of ultrashort laser excitation, these processes are temporally separated and can thus be studied separately. As for energy absorption, we consider peculiarities of the case of metal irradiation in contrast to dielectrics and semiconductors. We discuss the energy dissipation processes of electronic thermal wave and lattice heating. Different types of phase transitions after ultrashort laser pulse irradiation as melting, vaporization or transitions to warm dense matter are discussed. Also nonthermal phase transitions, directly caused by the electronic excitation before considerable lattice heating, are considered. The final material removal occurs from the physical point of view as expansion of heated matter; here we discuss approaches of hydrodynamics, as well as molecular dynamic simulations directly following the atomic movements. Hybrid approaches tracing the dynamics of excited electrons, energy dissipation and structural dynamics in a combined simulation are reviewed as well.

  12. Universal threshold for femtosecond laser ablation with oblique illumination

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Long; Cheng, Weibo; Petrarca, Massimo; Polynkin, Pavel

    2016-10-01

    We quantify the dependence of the single-shot ablation threshold on the angle of incidence and polarization of a femtosecond laser beam, for three dissimilar solid-state materials: a metal, a dielectric, and a semiconductor. Using the constant, linear value of the index of refraction, we calculate the laser fluence transmitted through the air-material interface at the point of ablation threshold. We show that, in spite of the highly nonlinear ionization dynamics involved in the ablation process, the so defined transmitted threshold fluence is universally independent of the angle of incidence and polarization of the laser beam for all three material types. We suggest that angular dependence of ablation threshold can be utilized for profiling fluence distributions in ultra-intense femtosecond laser beams.

  13. Surface ablation and threshold determination of AlCu4SiMg aluminum alloy in picosecond pulsed laser micromachining

    NASA Astrophysics Data System (ADS)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong; Wang, Fangcheng

    2017-09-01

    Interaction of an ultrafast pulsed laser with material surface has become a research hotspot in recent years. Picosecond pulsed laser micromachining of AlCu4SiMg aluminum alloy and determination of the ablation threshold are the main research directions, which have vitally important theoretical significance and application value. The ablation characteristics of aluminum alloy under different focusing characteristics and energies were experimentally investigated with picosecond ultrafast laser pulses. The different ablation areas of laser Gaussian beam were divided based on ablation threshold, morphological characteristics, and interaction mechanism. The surface morphologies and feature sizes, including ablation width (i.e. diameter), ablation depth, ablation depth-to-width ratio, ablation area, ablation volume, and single pulse ablation rate, of the ablation craters were studied; and the variation of their ablation distributions with laser energy density were analyzed. The results showed that the irradiated surface morphologies of aluminum alloy under the focal lengths of 100 and 150 mm were better, and the ablation width increased with the increase of focal length; however, the ablation depth decreased clearly. More distinct morphological characteristics at high energy and better ablation quality at low energy were exhibited by ablation crater surface. Ablation area could be divided into ablation, melt, redeposition, phase-transformation, and modification regions, and the entire regions were dominated by multiphoton ionization and avalanche ionization. The ablation feature sizes, increasing monotonically in laser energy density, exhibited approximately linear dependence on the energy density at low energy-density. When the energy density reached a certain critical value, the increasing extent decelerated gradually, and tended increasingly towards saturation. According to the linear dependence of laser energy density on the ablation crater area, the average

  14. Pulsed holmium laser ablation of cardiac valves

    SciTech Connect

    Lilge, L.; Radtke, W.; Nishioka, N.S. )

    1989-01-01

    Ablation efficiency and residual thermal damage produced by pulsed holmium laser radiation were investigated in vitro for bovine mitral valves and human calcified and noncalcified cardiac valves. Low-OH quartz fibers (200 and 600 microns core diameter) were used in direct contact perpendicular to the specimen under saline or blood. Etch rate was measured with a linear motion transducer. Radiant exposure was varied from 0 to 3 kJ/cm{sup 2}. For 200-microns fibers, the energy of ablation was approximately 5 kJ/cm{sup 3} in noncalcified and 15 kJ/cm{sup 3} in calcified valves. Etch rates were dependent on mechanical tissue properties. Maximum etch rate at 1,000 J/cm{sup 2} was 1-2 mm/pulse at 3 Hz repetition rate. Microscopic examination revealed a zone of thermal damage extending 300 microns lateral into adjacent tissue. Thermal damage was independent of radiant exposure beyond twice threshold.

  15. Ablative property of HfC-based multilayer coating for C/C composites under oxy-acetylene torch

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Jie; Li, He-Jun; Fu, Qian-Gang; Wu, Heng; Yao, Dong-Jia; Wei, Bing-Bo

    2011-03-01

    To improve ablation resistance of C/C composites, HfC-based coating and SiC coating were prepared on the surface of C/C composites by chemical vapor deposition. The coating exhibits dense surface and outstanding anti-ablation ability. Compared with uncoated C/C, the linear and mass ablation rates of the coated C/C decreased by 33.3% and 66.7%, respectively, after ablation for 20 s. The residual oxides can prevent oxygen from diffusing inwardly; large amounts of heat can be taken away by the gas generated during ablation, which is also helpful for protection.

  16. Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability.

    PubMed

    Masse, L

    2007-06-15

    Linear theory of the ablative Rayleigh-Taylor instability in anisotropic diffusive materials is presented. This analysis indicates that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. In the context of inertial confinement fusion, it is shown that anisotropic diffusion can be achieved using a laminated ablator made of successive layers of different diffusive properties. Numerical simulations confirm the theoretical predictions and indeed exhibit a significant stabilization of the ablation front for laminated ablators.

  17. Ablation of Martian glaciers

    NASA Technical Reports Server (NTRS)

    Moore, Henry J.; Davis, Philip A.

    1987-01-01

    Glacier like landforms are observed in the fretted terrain of Mars in the latitude belts near + or - 42 deg. It was suggested that sublimation or accumulation-ablation rates could be estimated for these glaciers if their shapes were known. To this end, photoclinometric profiles were obtained of a number of these landforms. On the basis of analyses of these profiles, it was concluded that ice is chiefly ablating from these landforms that either are inactive rock-glaciers or have materials within them that are moving exceedingly slowly at this time. These conclusions are consistent with other geologic information. The analyses were performed using a two-dimensional model of an isothermal glacier.

  18. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  19. Improved Ablation Resistance of Silicone Rubber Composites by Introducing Montmorillonite and Silicon Carbide Whisker

    PubMed Central

    Zhang, Guangwu; Wang, Fuzhong; Huang, Zhixiong; Dai, Jing; Shi, Minxian

    2016-01-01

    Montmorillonite (MMT) was added to silicone rubber (SR) to improve the ablation resistance of the silicone. Following this, different quantities of silicon carbide whiskers (SiCw) were incorporated into the MMT/SR to yield a hybrid, ablative composite. The tensile strength and elongation at break of the composite increased after the addition of MMT. The ablation test results showed that MMT helped to form a covering layer by bonding with the silica and other components on the ablated surface. The linear and mass ablation rates exhibited decreases of 22.5% and 18.2%, respectively, in comparison to a control sample. After further incorporation of SiCw as the second filler, the resulting composites exhibited significantly higher tensile strength and ablation resistance, but not particularly lower elongation at break in comparison to the control sample. The SiCw/MMT fillers were beneficial in forming a dense and compact covering layer that delayed the heat and oxygen diffusion into the inner layers, which improved the ablation properties effectively. The remaining whiskers acted as a micro skeleton to maintain the composite’s char strength. Compared to the control sample, the linear and mass ablation rates of the composite after incorporating 6 phr SiCw and 10 phr MMT decreased by 59.2% and 43.6%, respectively. These experimental results showed that the fabricated composites exhibited outstanding mechanical properties and excellent ablation resistance. PMID:28773846

  20. Improved Ablation Resistance of Silicone Rubber Composites by Introducing Montmorillonite and Silicon Carbide Whisker.

    PubMed

    Zhang, Guangwu; Wang, Fuzhong; Huang, Zhixiong; Dai, Jing; Shi, Minxian

    2016-08-24

    Montmorillonite (MMT) was added to silicone rubber (SR) to improve the ablation resistance of the silicone. Following this, different quantities of silicon carbide whiskers (SiCw) were incorporated into the MMT/SR to yield a hybrid, ablative composite. The tensile strength and elongation at break of the composite increased after the addition of MMT. The ablation test results showed that MMT helped to form a covering layer by bonding with the silica and other components on the ablated surface. The linear and mass ablation rates exhibited decreases of 22.5% and 18.2%, respectively, in comparison to a control sample. After further incorporation of SiCw as the second filler, the resulting composites exhibited significantly higher tensile strength and ablation resistance, but not particularly lower elongation at break in comparison to the control sample. The SiCw/MMT fillers were beneficial in forming a dense and compact covering layer that delayed the heat and oxygen diffusion into the inner layers, which improved the ablation properties effectively. The remaining whiskers acted as a micro skeleton to maintain the composite's char strength. Compared to the control sample, the linear and mass ablation rates of the composite after incorporating 6 phr SiCw and 10 phr MMT decreased by 59.2% and 43.6%, respectively. These experimental results showed that the fabricated composites exhibited outstanding mechanical properties and excellent ablation resistance.

  1. [Ablative and fractional lasers].

    PubMed

    Beylot, C

    2008-02-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. The fractional techniques such as Fraxel are used to treat non-adjacent microzones without ablation of the epidermis. Around 25 p. 100 of the affected region is treated per session without ablation of the epidermis. Each fraction is only mini-invasive and is performed under local anesthesia. Social hindrance is minimal. Nonetheless, the results are inferior to those obtained with ablative lasers, especially regarding deep wrinkles. The treatment is costly and four sessions are usually required to treat the whole affected area. Others regions of the face may also be treated. Encouraging results have been obtained with mélasma.

  2. Investigation of excimer laser ablation threshold of polymers using a microphone

    NASA Astrophysics Data System (ADS)

    Krüger, Jörg; Niino, Hiroyuki; Yabe, Akira

    2002-09-01

    KrF excimer laser ablation of polyethylene terephthalate (PET), polyimide (PI) and polycarbonate (PC) in air was studied by an in situ monitoring technique using a microphone. The microphone signal generated by a short acoustic pulse represented the etch rate of laser ablation depending on the laser fluence, i.e., the ablation "strength". From a linear relationship between the microphone output voltage and the laser fluence, the single-pulse ablation thresholds were found to be 30 mJ cm -2 for PET, 37 mJ cm -2 for PI and 51 mJ cm -2 for PC (20-pulses threshold). The ablation thresholds of PET and PI were not influenced by the number of pulses per spot, while PC showed an incubation phenomenon. A microphone technique provides a simple method to determine the excimer laser ablation threshold of polymer films.

  3. Ablation for Persistent Atrial Fibrillation-Is There a Role for More Than PVI?

    PubMed

    Lappe, Jason M; Cutler, Michael J; Day, John D; Bunch, T Jared

    2016-03-01

    Persistent atrial fibrillation (AF) is a prevalent condition that can be difficult to treat medically, and an ablation strategy is often sought. Currently, the cornerstone of AF ablation strategies is pulmonary vein isolation (PVI). Unfortunately, the single procedure success rates are limited, particularly when long-term outcomes (>1 year) are considered. As a result, the most recent consensus statement recommends that in patients with persistent AF a more extensive ablation be considered. Many additive procedural approaches to PVI have been investigated. These include electrical compartmentalization of the atria with linear lesions (LLs), ablation of complex fractionated atrial electrograms (CFAEs), ablation of the dominant frequency (DF) signals, and focal impulse and rotor modulation (FIRM) ablation. Each of these approaches has demonstrated degrees of additive success when performed with a PVI in patients with persistent AF. This review provides an in-depth discussion of these techniques, their successes in treating persistent AF, and their shortcomings.

  4. Radiofrequency Ablation of Metastatic Pheochromocytoma

    PubMed Central

    Venkatesan, Aradhana M.; Locklin, Julia; Lai, Edwin W.; Adams, Karen T.; Fojo, Antonio Tito; Pacak, Karel; Wood, Bradford J.

    2013-01-01

    In the present report on the preliminary safety and effectiveness of radiofrequency (RF) ablation for pheochromocytoma metastases, seven metastases were treated in six patients (mean size, 3.4 cm; range, 2.2–6 cm). α- and β-adrenergic and catecholamine synthesis inhibition and intraprocedural anesthesia monitoring were used. Safety was assessed by recording ablation-related complications. Complete ablation was defined as a lack of enhancement within the ablation zone on follow-up computed tomography. No serious adverse sequelae were observed. Complete ablation was achieved in six of seven metastases (mean follow-up, 12.3 months; range, 2.5–28 months). In conclusion, RF ablation may be safely performed for metastatic pheochromocytoma given careful attention to peri-procedural management. PMID:19875067

  5. Catheter Ablation for Ventricular Arrhythmias

    PubMed Central

    Nof, Eyal; Stevenson, William G; John, Roy M

    2013-01-01

    Catheter ablation has emerged as an important and effective treatment option for many recurrent ventricular arrhythmias. The approach to ablation and the risks and outcomes are largely determined by the nature of the severity and type of underlying heart disease. In patients with structural heart disease, catheter ablation can effectively reduce ventricular tachycardia (VT) episodes and implantable cardioverter defibrillator (ICD) shocks. For VT and symptomatic premature ventricular beats that occur in the absence of structural heart disease, catheter ablation is often effective as the sole therapy. Advances in catheter technology, imaging and mapping techniques have improved success rates for ablation. This review discusses current approaches to mapping and ablation for ventricular arrhythmias. PMID:26835040

  6. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  7. Temperature dependent ablation threshold in silicon using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Thorstensen, Jostein; Erik Foss, Sean

    2012-11-01

    We have experimentally investigated the ablation threshold in silicon as a function of temperature when applying ultrashort laser pulses at three wavelengths. By varying the temperature of a silicon substrate from room temperature to 320 °C, we observe that the ablation threshold for a 3 ps pulse using a wavelength of 1030 nm drops from 0.43 J/cm2 to 0.24 J/cm2, a reduction of 43%. For a wavelength of 515 nm, the ablation threshold drops from 0.22 J/cm2 to 0.15 J/cm2, a reduction of 35%. The observed ablation threshold for pulses at 343 nm remains constant with temperature, at 0.10 J/cm2. These results indicate that substrate heating is a useful technique for lowering the ablation threshold in industrial silicon processing using ultrashort laser pulses in the IR or visible wavelength range. In order to investigate and explain the observed trends, we apply the two-temperature model, a thermodynamic model for investigation of the interaction between silicon and ultrashort laser pulses. Applying the two-temperature model implies thermal equilibrium between optical and acoustic phonons. On the time scales encountered herein, this need not be the case. However, as discussed in the article, the two-temperature model provides valuable insight into the physical processes governing the interaction between the laser light and the silicon. The simulations indicate that ablation occurs when the number density of excited electrons reaches the critical electron density, while the lattice remains well below vaporization temperature. The simulated laser fluence required to reach critical electron density is also found to be temperature dependent. The dominant contributor to increased electron density is, in the majority of the investigated cases, the linear absorption coefficient. Two-photon absorption and impact ionization also generate carriers, but to a lesser extent. As the linear absorption coefficient is temperature dependent, we find that the simulated reduction in

  8. The thermic effect of sugar-free Red Bull: do the non-caffeine bioactive ingredients in energy drinks play a role?

    PubMed

    Miles-Chan, Jennifer L; Charrière, Nathalie; Grasser, Erik K; Montani, Jean-Pierre; Dulloo, Abdul G

    2015-01-01

    Consumption of energy drinks is increasing amongst athletes and the general public. By virtue of their bioactive ingredients (including caffeine, taurine, glucuronolactone, and B-group vitamins) and paucity of calories, sugar-free "diet" versions of these drinks could be a useful aid for weight maintenance. Yet little is known about the acute influence of these drinks, and specifically the role of the cocktail of non-caffeine ingredients, on resting energy expenditure (REE) and substrate oxidation. Therefore, the metabolic impact of sugar-free Red Bull (sfRB) to a comparable amount of caffeine was compared. REE and respiratory quotient (RQ) were measured in eight healthy young men by ventilated-hood indirect calorimetry for 30 min baseline and 2 h following ingestion of 355 ml of either: sfRB + placebo, water + 120 mg caffeine, or water + placebo, according to a randomized cross-over design. sfRB and water + caffeine both increased REE to the same degree (+4%). Additionally, sfRB briefly increased RQ. Water + caffeine had no effect on RQ relative to water + placebo. sfRB enhanced thermogenesis and marginally shifted RQ to favor carbohydrate oxidation. The stimulatory effects of sfRB on REE are mimicked by water + caffeine, indicating that the auxiliary ingredients do not influence this thermic effect. The metabolic effects of sfRB are primarily due to caffeine alone. © 2014 The Obesity Society.

  9. Availability of self-recorded axillary temperature for assessment of thermic effects of food: relationship between HDL-cholesterol level and postprandial thermoregulation in type 2 diabetic patients.

    PubMed

    Suzuki, S; Nishio, S-i; Ishii, H; Sato, A; Takeda, T; Komatsu, M

    2012-02-01

    The present study was performed to develop a simple procedure for assessment of body temperature and to determine whether postprandial thermoregulation is related to metabolic regulation in diabetic patients. We examined 101 male and female subjects with diabetes. Axillary temperature was measured prior to and after all meals (3 meals per day) and self-recorded for 1 week. The averages were calculated. Positive postprandial thermoregulation (PPT) was defined as a pattern in which each of 3 average postprandial temperatures was higher than the corresponding 3 preprandial temperatures. Negative postprandial thermoregulation (NPT) was defined as the pattern except for PPT. A significant increase in postprandial temperature was observed. With the exception of high-density lipoprotein (HDL)-cholesterol levels, there were no relationships between the categorized postprandial thermoregulation and other factors, including age, sex, body mass index, thyroid function, HbA1c, diabetic complications, lipid metabolism, and calorie intake. Logistic analysis indicated an independent positive relation between HDL-cholesterol and PPT. A simple method for measurement of body temperature indicated that HDL-cholesterol level was predominantly associated with thermic effects of food in diabetic patients, while other metabolic factors showed no such relations. HDL-cholesterol may affect the postprandial regulation of body temperature in diabetic patients. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  10. Non-Mendelian Female Sterility in DROSOPHILA MELANOGASTER: Influence of Aging and Thermic Treatments. III. Cumulative Effects Induced by These Factors

    PubMed Central

    Bucheton, Alain

    1979-01-01

    Crosses between various strains of Drosophila melanogaster may give rise to a female sterility of non-Mendelian determination. Reduced fertility is observed in females, known as SF females, bred from crosses between females of "reactive" strains and males of "inducer" strains. The reduced fertility of the SF females is the result of an interaction between an extrachromosomal property, the reactivity, and a chromosomal factor, I. The extrachromosomal property varies considerably in its ability to reduce fertility. The fertility reduction of the SF females corresponds to what is known as the reactivity level of their reactive mothers. Two nongenetic factors can modify the level of reactivity: aging and temperature. The action of aging is cumulative. When the flies of a reactive strain are submitted at each generation to the action of this factor, the level of reactivity of this strain is gradually modified. The modifications induced are reversible. Indeed, when such a modified strain is returned to standard breeding conditions, the reactivity returns progressively to its initial level. The effect of thermic treatments also seems to be cumulative and reversible. PMID:121289

  11. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  12. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  13. Radiofrequency Ablation for Liver Cancer.

    PubMed

    Jacobs, Amy

    2015-01-01

    Interventional ablative technologies aided by imaging techniques such as ultrasonography, computed tomography, and magnetic resonance imaging have been crucial in managing patients with primary liver cancer and liver metastases over the past 20 years. Several ablative technologies have been used to treat liver cancer; however, radiofrequency ablation (RFA) has emerged as the most common ablative therapy for hepatic lesions, both in the United States and globally. RFA is the treatment of choice for patients who cannot have surgical resection of the liver. This article focuses on the role of imaging in RFA treatment of primary and metastatic hepatic lesions.

  14. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes.

    PubMed

    Arba Mosquera, Samuel; Verma, Shwetabh

    2015-07-01

    The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r 2 =0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r 2 =0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.

  15. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes

    NASA Astrophysics Data System (ADS)

    Mosquera, Samuel Arba; Verma, Shwetabh

    2015-07-01

    The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r2=0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r2=0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.

  16. Effect of nonparallel placement of in-circle bipolar radiofrequency ablation probes on volume of tissue ablated with heat sink.

    PubMed

    Pillai, Krishna; Al-Alem, Ihssan; Akhter, Javed; Chua, Terence C; Shehata, Mena; Morris, David L

    2015-06-01

    Percutaneous bipolar radiofrequency ablation (RFA) is a minimally invasive technique for treating liver tumors. It is not always possible to insert the bipolar probes parallel to each other on either side of tumor, since it restricts maneuverability away from vital structures or ablate certain tumor shape. Therefore, we investigated how nonparallel placement of probes affected ablation. Bipolar RFA in parallel and in divergent positions were submerged in tissue model (800 mL egg white) at 37°C and ablated. Temperature probes, T1 and T2 were placed 8.00 mm below the tip of the probes, T3 in between the probe coil elements and T4 and T5 at water inlet and outlet, respectively. Both models with heat sink (+HS) and without (-HS) were investigated. The mean ablated tissue volume, mass, density and height increased linearly with unit angle increase for -HS model. With +HS, a smaller increase in mean volume and mass, a slightly greater increase in mean density but a reduction in height of tissue was seen. The mean ablation time and duration of maximum temperature with +HS was slightly larger, compared with -HS, while -HS ablated at a slightly higher temperature. The heat sink present was minimal for probes in parallel position compared to nonparallel positions. Divergence from parallel insertion of bipolar RFA probes increased the mean volume, mass, and density of tissue ablated. However, the presence of large heat sinks may limit the application of this technique, when tumors border on larger vessels. © The Author(s) 2014.

  17. High temperature ablative foam

    NASA Technical Reports Server (NTRS)

    Liu, Matthew T. (Inventor)

    1992-01-01

    An ablative foam composition is formed of approximately 150 to 250 parts by weight polymeric isocyanate having an isocyanate functionality of 2.6 to 3.2; approximately 15 to 30 parts by weight reactive flame retardant having a hydroxyl number range from 200-260; approximately 10 to 40 parts by weight non-reactive flame retardant; approximately 10 to 40 parts by weight nonhydrolyzable silicone copolymer having a hydroxyl number range from 75-205; and approximately 3 to 16 parts by weight amine initiated polyether resin having an isocyanate functionality greater than or equal to 3.0 and a hydroxyl number range from 400-800.

  18. Matricectomy and nail ablation.

    PubMed

    Baran, Robert; Haneke, Eckart

    2002-11-01

    Matricectomy refers to the complete extirpation of the nail matrix, resulting in permanent nail loss. Usually however, matricectomy is only partial, restricted to one or both lateral horns of the matrix. Nail ablation is the definitive removal of the entire nail organ. The most important common denominator in the successful matricectomy is the total removal or destruction of the matrix tissue. Matricectomy may be indicated for the management of onychauxis, onychogryphosis, congenital nail dystrophies, and chronic painful nail, such as recalcitrant ingrown toenail or split within the medial or lateral one-third of the nail.

  19. Good practice with endometrial ablation.

    PubMed

    Garry, R

    1995-07-01

    To provide clear guidelines for the safe and effective performance of endometrial ablation. Representatives of American, Australian, British, and Canadian hysteroscopists were brought together to produce a consensus document of good practice in endometrial ablation. The guidelines were produced after researching the literature, combining the extensive experience of the group, and debating the relevant issues. Endometrial ablation is a new procedure. Correct patient selection is essential in producing good results. Patients must be counseled carefully about the advantages, disadvantages, and potential complications of this approach to the management of menstrual disorders. The main indication for endometrial ablation is heavy menstrual loss in the absence of organic disease. Excessive uterine size, the presence of active pelvic infection, and evidence of malignant and premalignant endometrium are absolute contraindications. Ablation can be produced by electrosurgical resection, rollerball or rollerbarrel ablation and Nd-YAG laser ablation. Severe complications can occur, and techniques should be adopted to avoid uterine perforation, hemorrhage, and excessive fluid absorption. In skilled hands, endometrial ablation can be a safe and effective treatment for menorrhagia.

  20. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-02

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology.

  1. Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

    SciTech Connect

    Garnier, J.; Masse, L.

    2005-06-15

    A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1{lambda} for long wavelengths, but higher for short instable wavelengths in the ablative regime.

  2. Percutaneous Ablation in the Kidney

    PubMed Central

    Wood, Bradford J.; Gervais, Debra A.

    2011-01-01

    Percutaneous ablation in the kidney is now performed as a standard therapeutic nephron-sparing option in patients who are poor candidates for resection. Its increasing use has been largely prompted by the rising incidental detection of renal cell carcinomas with cross-sectional imaging and the need to preserve renal function in patients with comorbid conditions, multiple renal cell carcinomas, and/or heritable renal cancer syndromes. Clinical studies to date indicate that radiofrequency ablation and cryoablation are effective therapies with acceptable short- to intermediate-term outcomes and with a low risk in the appropriate setting, with attention to pre-, peri-, and postprocedural detail. The results following percutaneous radiofrequency ablation and cryoablation in the treatment of renal cell carcinoma are reviewed in this article, including those of several larger scale studies of ablation of T1a tumors. Clinical and technical considerations unique to ablation in the kidney are presented, and potential complications are discussed. © RSNA, 2011 PMID:22012904

  3. Simulation of Pellet Ablation

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  4. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Xiao-Jing, Yu; Jian-Ming, Ma; Yi-Wen, Guan; Jiang, Li; Qiang, Li; Sa, Yang

    2017-06-01

    A volumetric ablation model for EPDM (ethylene- propylene-diene monomer) is established in this paper. This model considers the complex physicochemical process in the porous structure of a char layer. An ablation physics model based on a porous structure of a char layer and another model of heterogeneous volumetric ablation char layer physics are then built. In the model, porosity is used to describe the porous structure of a char layer. Gas diffusion and chemical reactions are introduced to the entire porous structure. Through detailed formation analysis, the causes of the compact or loose structure in the char layer and chemical vapor deposition (CVD) reaction between pyrolysis gas and char layer skeleton are introduced. The Arrhenius formula is adopted to determine the methods for calculating carbon deposition rate C which is the consumption rate caused by thermochemical reactions in the char layer, and porosity evolution. The critical porosity value is used as a criterion for char layer porous structure failure under gas flow and particle erosion. This critical porosity value is obtained by fitting experimental parameters and surface porosity of the char layer. Linear ablation and mass ablation rates are confirmed with the critical porosity value. Results of linear ablation and mass ablation rate calculations generally coincide with experimental results, suggesting that the ablation analysis proposed in this paper can accurately reflect practical situations and that the physics and mathematics models built are accurate and reasonable.

  5. Laboratory Simulations of Micrometeoroid Ablation

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  6. Thermic effect of a meal and appetite in adults: an individual participant data meta-analysis of meal-test trials

    PubMed Central

    Ravn, Anne-Marie; Gregersen, Nikolaj Ture; Christensen, Robin; Rasmussen, Lone Graasbøl; Hels, Ole; Belza, Anita; Raben, Anne; Larsen, Thomas Meinert; Toubro, Søren; Astrup, Arne

    2013-01-01

    Background Thermic effect of a meal (TEF) has previously been suggested to influence appetite. Objective The aim of this study was to assess whether there is an association between appetite and TEF. Second, to examine whether protein intake is associated with TEF or appetite. Design Individual participant data (IPD) meta-analysis on studies were performed at the Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark. Five randomized meal-test studies, with 111 participants, were included. The included studies measured energy expenditure (EE) in respiration chambers and pre- and postprandial appetite sensations using Visual Analog Scales (VAS). The primary meta-analysis was based on a generic-inverse variance random-effects model, pooling individual study Spearman's correlation coefficients, resulting in a combined r-value with 95% confidence interval (95% CI). The I 2 value quantifies the proportion (%) of the variation in point estimates due to among-study differences. Results The IPD meta-analysis found no association between satiety and TEF expressed as the incremental area under the curve (TEFiAUC) (r=0.06 [95% CI −0.16 to 0.28], P=0.58; I 2=15.8%). Similarly, Composite Appetite Score (CAS) was not associated with TEFiAUC (r=0.08 [95% CI −0.12 to 0.28], P=0.45; I 2=0%). Posthoc analyses showed no association between satiety or CAS and TEF expressed as a percentage of energy intake (EI) (P>0.49) or TEF expressed as a percentage of baseline EE (P>0.17). When adjusting for covariates, TEFiAUC was associated with protein intake (P=0.0085). Conclusions This IPD meta-analysis found no evidence supporting an association between satiety or CAS and TEF at protein intakes ∼15 E% (range 11–30 E%). PMID:24376394

  7. Effects of the Earth Albedo and Thermic Emissivity on Geodetic Satellite Trajectories: a Mean Model from 2000-2016 data sets.

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Sammuneh, Muhammad Ali; Coulot, David; Pollet, Arnaud; Biancale, Richard; Capderou, Michel

    2017-04-01

    Part of the energy received on the Earth from the Sun is split into two components, a short wave component which corresponds to the visible emissivity of the Earth's surface (albedo), and the long wave part corresponding to the thermic emissivity (infrared wavelengths). These two components induce small non gravitational forces on the orbits of artificial satellites, towards the radial direction (mainly), that we are evaluating to derive a mean model. The first step to evaluate the mean amplitudes and periods of the generaetd perturbations consists in comparing post-fit adjustment of geodetic satellites to SLR data, in two dynamical models accounting or not accounting for empirical forces standing for such effects: the orbits of the geodetic satellite STARLETTE, Stella, Ajisai, Lageos 1 and Lageos 2 are carried out in such a way over the period 2000-2016, with the GINS GRGS orbit computation s/w. We then use three kinds of data sets to investigate the mean amplitudes of the perturbations, and to investigate features on regional spatial scales: (i) Stephens tables, (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts ) data sets (that are available at GRGS, Groupe de Recherche de Géodésie Spatiale, France), and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available).We analyze what is the data set leading to the lowest residual level. Then, following an approach close to the one developed by Stephens, we propose a set of monthly grids that are averaged over the period 2000-2016, and that is evaluated through the orbit computation of the above-mentioned satellites.

  8. Airborne and soilborne microfungi in the vicinity Hamitabat Thermic Power Plant in Kirklareli City (Turkey), their seasonal distributions and relations with climatological factors.

    PubMed

    Asan, Ahmet; Okten, Suzan Sarica; Sen, Burhan

    2010-05-01

    Soil and air samples of seven different localities around Hamitabat Thermic Power Plant, 10 km far away from Luleburgaz/Kirklareli (Turkey), were taken between the years 2003 and 2004 with seasonal intervals. The samples were brought to the laboratory and their microfungal identifications were done. From the air samples, 737 microfungi colonies were isolated comprising 26 species belonging to eight genera. From soil samples, 170.6 x 10(4) colony-forming unit (CFU)/g was isolated from 33 species belonging to 16 genera. The most isolated genus from air samples was Alternaria (324 CFU, 43.96%), followed by Cladosporium (208 CFU, 25.52%) and Phoma (44 CFU, 5.40%). Penicillium was the most isolated genus from the soil samples with a value of 560,000 CFU/g (32.8%), followed by Fusarium (226,000 CFU/g, 13.12%) and Aspergillus (154,000 CFU/g, 9.03%). Among these species, Alternaria citri and Alternaria alternata are the most abundant species in air with 164 and 107 CFU, respectively, whereas Fusarium graminearum and Penicillium citrinum are the most abundant species in soil with CFU per gram values of 17.8 x 10(4) and 1.3 x 10(5). Correlation analysis was applied to determine whether or not there was a relationship between colony number of isolated fungal genera and meteorological factors. Some parameters of soil samples' incontent during the research period were calculated using a computer analysis program. From the air samples, a positive correlation was found between relative humidity and Alternaria colonial counts and Cladosporium spore counts (r = 0.912 and r = 1.000, respectively). Similarly, with the analysis of soil samples, a positive correlation between colonial counts of Alternaria and soil pH and a positive correlation between colonial counts of Aspergillus and Penicillium and salt percentage concentration of soil were found.

  9. Ginger consumption enhances the thermic effect of food and promotes feelings of satiety without affecting metabolic and hormonal parameters in overweight men: A pilot study

    PubMed Central

    Mansour, Muhammad S.; Ni, Yu-Ming; Roberts, Amy L.; Kelleman, Michael; RoyChoudhury, Arindam; St-Onge, Marie-Pierre

    2012-01-01

    Objective Evidence suggests that ginger consumption has anti-inflammatory, anti-hypertensive, glucose-sensitizing, and stimulatory effects on the gastrointestinal tract. This study assessed the effects of a hot ginger beverage on energy expenditure, feelings of appetite and satiety and metabolic risk factors in overweight men. Methods Ten men, age 39.1 ± 3.3 y and body mass index (BMI) 27.2 ± 0.3 kg/m2, participated in this randomized crossover study. Resting state energy expenditure was measured using indirect calorimetry and for 6 h after consumption of a breakfast meal with or without 2 g ginger powder dissolved in a hot water beverage. Subjective feelings of satiety were assessed hourly using visual analog scales (VAS) and blood samples were taken fasted and for 3 h after breakfast consumption. Results There was no significant effect of ginger on total resting energy expenditure (P = 0.43) or respiratory quotient (P = 0.41). There was a significant effect of ginger on thermic effect of food (ginger vs control = 42.7 ± 21.4 kcal/d, P = 0.049) but the area under the curve was not different (P = 0.43). VAS ratings showed lower hunger (P = 0.002), lower prospective food intake (P = 0.004) and greater fullness (P = 0.064) with ginger consumption versus control. There were no effects of ginger on glucose, insulin, lipids, or inflammatory markers. Conclusions The results, showing enhanced thermogenesis and reduced feelings of hunger with ginger consumption, suggest a potential role of ginger in weight management. Additional studies are necessary to confirm these findings. PMID:22538118

  10. Influence of short-term consumption of the caffeine-free, epigallocatechin-3-gallate supplement, Teavigo, on resting metabolism and the thermic effect of feeding.

    PubMed

    Lonac, Mark C; Richards, Jennifer C; Schweder, Melani M; Johnson, Tyler K; Bell, Christopher

    2011-02-01

    Green tea is purported to promote weight loss. Resting metabolic rate (RMR) and the thermic effect of feeding (TEF) are significant components of total daily energy expenditure and are partially determined by the sympathetic nervous system via catecholamine-mediated stimulation of β-adrenergic receptors. Epigallocatechin-3-gallate (EGCG: the most bioactive catechin in green tea) inhibits catechol-O-methyltransferase, an enzyme contributing to the degradation of catecholamines. Accordingly, we hypothesized that short-term consumption of a commercially available EGCG supplement (Teavigo) augments RMR and TEF. On two separate occasions, seven placebo or seven EGCG capsules (135 mg/capsule) were administered to 16 adults (9 males, 7 females, age 25 ± 2 years, BMI 24.6 ± 1.2 kg/m(2) (mean ± s.e.)). Capsules (three/day) were consumed over 48 h; the final capsule was consumed 2 h prior to visiting the laboratory. Energy expenditure (ventilated hood technique) was determined at rest and for 5 h following ingestion of a liquid meal (caloric content: 40% RMR). Contrary to our hypothesis, RMR was not greater (P = 0.10) following consumption of EGCG (6,740 ± 373 kJ/day) compared with placebo (6,971 ± 352). Similarly, the area under the TEF response curve (Δ energy expenditure) was also unaffected by EGCG (246,808 ± 23,748 vs. 243,270 ± 22,177 kJ; P = 0.88). EGCG had no effect on respiratory exchange ratio at rest (P = 0.29) or throughout the TEF measurement (P = 0.56). In summary, together RMR and TEF may account for up to 85% of total daily energy expenditure; we report that short-term consumption of a commercially available EGCG supplement did not increase RMR or TEF.

  11. Non-photic, non-thermic circadecadal solar cycle interaction with cardiovascular circannual and circasemiannual variation in heated air-conditioned habitat.

    PubMed

    Watanabe, Yoshihiko; Cornélissen, Germaine; Katinas, George; Sothern, Robert B; Halberg, Franz; Watanabe, Misako; Watanabe, Fumihiko; Otsuka, Kuniaki

    2003-10-01

    In order to re-examine the extent to which secular circulatory variation can be resolved into possibly accountable, if not yet predictable behavior, the 15-year record of blood pressure and heart rate of an adult male cardiologist (Y.W.) is reanalyzed. Gliding spectral windows with an interval of 4 years progressively displaced throughout the data series examine monthly means from August 1987 to August 2002. A circannual variation is only intermittent and appears to drift for years. A circasemiannual variation is consistent and prominent, yet only for a fraction of the record examined. By contrast to the circadian rhythm in blood pressure and heart rate, which is reliably detectable in most subjects in clinical health, the circannual variation in the human circulation is inconsistent and hence should be monitored, as in this case for its assessment as one goes, a conclusion that also applies to the circasemiannual variation, prominent for years but not detected thereafter. The results prompt the search for interactions between the photic, thermic and societal effects of the seasons that, if solely pertinent, should yield a consistent 1-year spectral component. That non-photic effects may also play an important role may point to modulation by solar cycle stage and solar cycle number, perhaps mediated by the solar wind. This conclusion is extended in proof to the role played by the most recently discovered transannual component in human blood pressure and heart rate, which is a probable further signature of the solar wind. The beating of the transannual and circannual components documented on another data series may contribute to the lack of a consistent 1-year synchronized circannual variation in this case and many others.

  12. Efficacy of ablation at the anteroseptal line for the treatment of perimitral flutter.

    PubMed

    Abi-Saleh, Bernard; Skouri, Hadi; Cantillon, Daniel J; Fowler, Jeffery; Wazni, Oussama; Tchou, Patrick; Saliba, Walid

    2015-12-01

    Left atrial flutter following atrial fibrillation (AF) ablation is increasingly common and difficult to treat. We evaluated the safety and efficacy of ablation of the anteroseptal line connecting the right superior pulmonary vein (RSPV) to the anteroseptal mitral annulus (MA) for the treatment of perimitral flutter (PMF). We systematically studied patients who were previously treated with AF ablation and who presented to the electrophysiology laboratory with atrial tachyarrhythmias between January 2000 and July 2010. The diagnosis of PMF was confirmed by activation mapping and/or entrainment. After re-isolation of any recovered pulmonary vein, a linear radiofrequency (RF) ablation was performed on the line that connected the RSPV to the anteroseptal MA. In this analysis, we included only patients who were treated with an anteroseptal line for their PMF. Ablation was performed at the anteroseptal line in 27 PMF patients (63±13 years; 9 women) who had undergone prior ablation for paroxysmal (n=3) or persistent (n=24) AF, using electroanatomic activation mapping (70% CARTO, 30% NavX). The anteroseptal ablation line was effective in 22/27 (81.5%) patients in the acute-care setting. Termination of AF to sinus rhythm occurred in 15/22 (68.2%) patients, and 7/22 (31.8%) patients׳ AF converted to another right or left atrial flutter. At the 6-month follow-up, 20% of patients demonstrated recurrent left atrial tachyarrhythmia. Only one patient required repeat ablation, and the remaining patients׳ condition was controlled with antiarrhythmic medications. No major procedural complications or heart block occurred. Ablation at the left atrial anteroseptal line is safe and efficacious for the treatment of PMF. Unlike ablation at the traditional mitral isthmus line, ablation at the left atrial anteroseptal line does not require ablation in the coronary sinus.

  13. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  14. Thermal response and ablation characteristics of light weight ceramic ablators

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Esfahani, Lili

    1993-01-01

    An account is given of the thermal performance and ablation characteristics of the NASA-Ames Lightweight Ceramic Ablators (LCAs) in supersonic, high-enthalpy convective environments, which use low density ceramic or carbon fiber matrices as substrates for main structural support, with organic resin fillers. LCA densities are in the 0.224-1.282 g/cu cm range. In-depth temperature data have been obtained to determine thermal penetration depths and conductivity. The addition of SiC and PPMA is noted to significantly improve the ablation performance of LCAs with silica substrates. Carbon-based LCAs are the most mass-efficient at high flux levels.

  15. Thermal response and ablation characteristics of light weight ceramic ablators

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Esfahani, Lili

    1993-01-01

    An account is given of the thermal performance and ablation characteristics of the NASA-Ames Lightweight Ceramic Ablators (LCAs) in supersonic, high-enthalpy convective environments, which use low density ceramic or carbon fiber matrices as substrates for main structural support, with organic resin fillers. LCA densities are in the 0.224-1.282 g/cu cm range. In-depth temperature data have been obtained to determine thermal penetration depths and conductivity. The addition of SiC and PPMA is noted to significantly improve the ablation performance of LCAs with silica substrates. Carbon-based LCAs are the most mass-efficient at high flux levels.

  16. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect

    Sahin, R.; Akturk, S.; Simsek, E.

    2014-02-03

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400 nm wide ablation channels could be achieved over 100 μm length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  17. Epicardial Ablation of Ventricular Tachycardia

    PubMed Central

    Tung, Roderick; Shivkumar, Kalyanam

    2015-01-01

    Epicardial mapping and ablation via a percutaneous subxiphoid technique has been instrumental in improving the working understanding of complex myocardial scars in various arrhythmogenic substrates. Endocardial ablation alone may not be sufficient in patients with ischemic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, and Chagas disease to prevent recurrent ventricular tachycardia. Multiple observational studies have demonstrated greater freedom from recurrence with adjunctive epicardial ablation compared with endocardial ablation alone. While epicardial ablation is performed predominantly at tertiary referral centers, knowledge of the technical approach, clinical indications, and potential complications is imperative to maximizing clinical success and patient safety. In 1996, Sosa and colleagues modified the pericardiocentesis technique to enable percutaneous access to the pericardial space for mapping and catheter ablation of ventricular tachycardia.1 Originally developed for patients with epicardial scarring due to chagasic cardiomyopathy and patients with ischemic cardiomyopathy refractory to endocardial ablationm,2,3 this approach has since become an essential part of the armamentarium for the treatment of ventricular tachycardia. Myocardial scars are three-dimensionally complex with varying degrees of transmurality, and the ability to map and ablate the epicardial surface has contributed to a greater understanding of scar-related VT in postinfarction cardiomyopathy and nonischemic substrates including idiopathic dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, and chagasic cardiomyopathy. In this review, we highlight the percutaneous approach and discuss clinical indications and potential complications. PMID:26306131

  18. Epicardial Ablation of Ventricular Tachycardia.

    PubMed

    Tung, Roderick; Shivkumar, Kalyanam

    2015-01-01

    Epicardial mapping and ablation via a percutaneous subxiphoid technique has been instrumental in improving the working understanding of complex myocardial scars in various arrhythmogenic substrates. Endocardial ablation alone may not be sufficient in patients with ischemic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, and Chagas disease to prevent recurrent ventricular tachycardia. Multiple observational studies have demonstrated greater freedom from recurrence with adjunctive epicardial ablation compared with endocardial ablation alone. While epicardial ablation is performed predominantly at tertiary referral centers, knowledge of the technical approach, clinical indications, and potential complications is imperative to maximizing clinical success and patient safety. In 1996, Sosa and colleagues modified the pericardiocentesis technique to enable percutaneous access to the pericardial space for mapping and catheter ablation of ventricular tachycardia.1 Originally developed for patients with epicardial scarring due to chagasic cardiomyopathy and patients with ischemic cardiomyopathy refractory to endocardial ablationm,2,3 this approach has since become an essential part of the armamentarium for the treatment of ventricular tachycardia. Myocardial scars are three-dimensionally complex with varying degrees of transmurality, and the ability to map and ablate the epicardial surface has contributed to a greater understanding of scar-related VT in postinfarction cardiomyopathy and nonischemic substrates including idiopathic dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, and chagasic cardiomyopathy. In this review, we highlight the percutaneous approach and discuss clinical indications and potential complications.

  19. Spontaneous left atrial reentry tachycardias : radiofrequency ablation and outcome.

    PubMed

    Schneider, R; Schneider, C; Bänsch, D

    2015-02-01

    Spontaneous left atrial reentry tachycardias (LART) in patients without previous cardiac surgical or catheter ablation are rare. Several therapeutic concepts of catheter ablation have been suggested: linear lesions (LL), circumferential pulmonary vein isolation (PVI), and both (LL + PVI). In all, 28 consecutive symptomatic patients with 51 LARTs presented to our institution for catheter ablation. Electroanatomical mapping was performed on 25 patients. Three patients were ablated conventionally during LART; 25 patients (89.3 %) had extensive low-voltage areas in the left atrium (atrial myopathy). One of the following ablation strategies was applied: first, LL (n = 8), second, PVI + LL (n = 11), and third PVI alone (n = 9). Fourteen patients (50 %) had a recurrent arrhythmia during a mean follow-up of 12.2 ± 11.1 months. Six patients presented with a recurrent LART (21.4 %), 4 with LART and atrial fibrillation (Afib) (14.3 %), and 4 with Afib (14.3 %). The recurrence rate of any arrhythmia (LART and Afib) was 37.5 % in the LL group, 44.4 % in the PVI group, and 63.6 % in the PVI + LL group (ns); the recurrence rate of LARTs was 12.5 % in the LL group, 22.2 % in the PVI group, and 63.6 % in the PVI + LL group (p < 0.05). Atrial tachyarrhythmia recurrence after ablation of spontaneous LART in mid-term is considerable. Stable LARTs are effectively treated by LL. PVI alone may be an acceptable alternative, especially in patients with unstable LARTs and Afib. However, the risk of recurrent LARTs after a more extensive strategy with PVI and LL is considerable, probably due to proarrhythmic effects of long linear lesions.

  20. Excimer laser ablation of thick SiOx-films: Etch rate measurements and simulation of the ablation threshold

    NASA Astrophysics Data System (ADS)

    Ihlemann, J.; Meinertz, J.; Danev, G.

    2012-08-01

    Excimer laser ablation of 4.5 μm thick SiOx-films with x ≈ 1 is investigated at 193 nm, 248 nm, and 308 nm. Strong absorption enables precisely tunable removal depths. The ablation rates correlate with laser penetration depths calculated from low level absorption coefficients. The experimental ablation thresholds are in agreement with numerical simulations on the basis of linear absorption and one-dimensional heat flow. This behaviour is similar to that of strongly UV-absorbing polymers, leading to well controllable micro machining prospects. After laser processing, SiOx can be converted to SiO2, opening a route to laser based fabrication of micro optical components.

  1. Ablative heat shield design for space shuttle

    NASA Technical Reports Server (NTRS)

    Seiferth, R. W.

    1973-01-01

    Ablator heat shield configuration optimization studies were conducted for the orbiter. Ablator and reusable surface insulation (RSI) trajectories for design studies were shaped to take advantage of the low conductance of ceramic RSI and high temperature capability of ablators. Comparative weights were established for the RSI system and for direct bond and mechanically attached ablator systems. Ablator system costs were determined for fabrication, installation and refurbishment. Cost penalties were assigned for payload weight penalties, if any. The direct bond ablator is lowest in weight and cost. A mechanically attached ablator using a magnesium subpanel is highly competitive for both weight and cost.

  2. [New techniques of tumor ablation (microwaves, electroporation)].

    PubMed

    de Baere, T

    2011-09-01

    Since the introduction of radiofrequency tumor ablation of liver tumors in the late 1990s, local destructive therapies have been applied to lung, renal and bone lesions. In addition, new techniques have been introduced to compensate for the limitations of radiofrequency ablation, namely the reduced rate of complete ablation for tumors larger than 3 cm and tumors near vessels larger than 3 mm. Microwave ablation is currently evolving rapidly. While it is a technique based on thermal ablation similar to radiofrequency ablation, there are significant differences between both techniques. Electroporation, of interest because of the non-thermal nature of the ablation process, also is under evaluation.

  3. Late atypical atrial flutter after ablation of atrial fibrillation.

    PubMed

    Ferreira, Raquel; Primo, João; Adão, Luís; Gonzaga, Anabela; Gonçalves, Helena; Santos, Rui; Fonseca, Paulo; Santos, José; Gama, Vasco

    2016-10-01

    Cardiac surgery for structural heart disease (often involving the left atrium) and radiofrequency catheter ablation of atrial fibrillation have led to an increased incidence of regular atrial tachycardias, often presenting as atypical flutters. This type of flutter is particularly common after pulmonary vein isolation, especially after extensive atrial ablation including linear lesions and/or defragmentation. The authors describe the case of a 51-year-old man, with no relevant medical history, referred for a cardiology consultation in 2009 for paroxysmal atrial fibrillation. After failure of antiarrhythmic therapy, he underwent catheter ablation, with criteria of acute success. Three years later he again suffered palpitations and atypical atrial flutter was documented. The electrophysiology study confirmed the diagnosis of atypical left flutter and reappearance of electrical activity in the right inferior pulmonary vein. This vein was again ablated successfully and there has been no arrhythmia recurrence to date. In an era of frequent catheter ablation it is essential to understand the mechanism of this arrhythmia and to recognize such atypical flutters. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Epicardial Ablation For Ventricular Tachycardia

    PubMed Central

    Maccabelli, Giuseppe; Mizuno, Hiroya; Della Bella, Paolo

    2012-01-01

    Epicardial ablation has lately become a necessary tool to approach some ventricular tachycardias in different types of cardiomyopathy. Its diffusion is now limited to a few high volume centers not because of the difficulty of the pericardial puncture but since it requires high competence not only in the VT ablation field but also in knowing and recognizing the possible complications each of which require a careful treatment. This article will review the state of the art of epicardial ablation with special attention to the procedural aspects and to the possible selection criteria of the patients PMID:23233758

  5. Magnetic and robotic navigation for catheter ablation: "joystick ablation".

    PubMed

    Ernst, Sabine

    2008-10-01

    Catheter ablation has become the treatment of choice to cure various arrhythmias in the last decades. The newest advancement of this general concept is made on the navigation ability using remote-controlled ablation catheters. This review summarizes the concept of the two currently available systems, followed by a critical review of the published clinical reports for each system, respectively. Despite the limited amount of data, an attempt to compare the two systems is made.

  6. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  7. Linear polarizer local characterizations by polarimetric imaging for applications to polarimetric sensors for torque measurement for hybrid cars

    NASA Astrophysics Data System (ADS)

    Georges, F.; Remouche, M.; Meyrueis, P.

    2011-06-01

    Usually manufacturer's specifications do not deal with the ability of linear sheet polarizers to have a constant transmittance function over their geometric area. These parameters are fundamental for developing low cost polarimetric sensors(for instance rotation, torque, displacement) specifically for hybrid car (thermic + electricity power). It is then necessary to specially characterize commercial polarizers sheets to find if they are adapted to this kind of applications. In this paper, we present measuring methods and bench developed for this purpose, and some preliminary characterization results. We state conclusions for effective applications to hybrid car gearbox control and monitoring.

  8. Radiofrequency Ablation of Lung Tumors

    MedlinePlus

    ... you may need to be admitted overnight for observation. What are Radiofrequency and Microwave Ablation of Lung ... performed on an outpatient basis or with overnight observation in the hospital with general anesthesia. For the ...

  9. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun Wang, Kedian; Mei, Xuesong

    2014-03-15

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  10. Usefulness of ablation of complex fractionated atrial electrograms using nifekalant in persistent atrial fibrillation.

    PubMed

    Kumagai, Koichiro; Toyama, Hideko

    2013-01-01

    Additional ablation of complex fractionated atrial electrograms (CFAE) after pulmonary vein isolation (PVI) has been shown to improve the success of ablation of persistent atrial fibrillation (AF). However, extensive ablation is often necessary to eliminate all CFAE or to terminate AF. We assessed the usefulness of the administration of an antiarrhythmic drug (AAD) before CFAE ablation. One-hundred and ten patients with persistent AF first underwent PVI, roof and floor linear ablation (box isolation). One hundred patients who remained in AF after box isolation were then randomized to either receive (AAD group, n=50) or not receive (no-AAD group, n=50) intravenous nifekalant (0.3mg/kg) followed by a CFAE ablation. In the AAD group, nifekalant terminated AF in 19 (38%) patients and ablation of localized CFAE was performed in 31 patients who remained in AF after nifekalant, and terminated AF in 11 (35%) patients. In the no-AAD group, ablation of CFAE terminated AF in 13 (26%) patients. The AAD group had a significantly lesser number of radio frequency applications at CFAE sites (18 ± 12 versus 36 ± 10, p<0.0001) and shorter procedure time (162 ± 34 versus 197 ± 29 min, p<0.0001) compared with the no-AAD group. However, there was no significant difference in success rate at 12 months after a single ablation procedure between the two groups (AAD group, 74% versus no-AAD group, 76%). An approach to ablation using nifekalant may be useful in localizing areas of CFAE, reducing the number of applications at CFAE sites and procedure time. Ablation of only CFAE localized with nifekalant may be sufficient for clinical outcome. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  11. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    PubMed

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  12. Corneal ablation depth readout of the MEL 80 excimer laser compared to Artemis three-dimensional very high-frequency digital ultrasound stromal measurements.

    PubMed

    Reinstein, Dan Z; Archer, Timothy J; Gobbe, Marine

    2010-12-01

    To evaluate the accuracy of the ablation depth readout for the MEL 80 excimer laser (Carl Zeiss Meditec). Artemis 1 very high-frequency digital ultrasound measurements were obtained before and at least 3 months after LASIK in 121 eyes (65 patients). The Artemis-measured ablation depth was calculated as the maximum difference in stromal thickness before and after treatment. Laser in situ keratomileusis was performed using the MEL 80 excimer laser and the Hansatome microkeratome (Bausch & Lomb). The Aberration Smart Ablation profile was used in 56 eyes and the Tissue Saving Ablation profile was used in 65 eyes. All ablations were centered on the corneal vertex. Comparative statistics and linear regression analysis were performed between the laser readout ablation depth and Artemis-measured ablation depth. The mean maximum myopic meridian was -6.66±2.40 diopters (D) (range: -1.50 to -10.00 D) for Aberration Smart Ablation-treated eyes and -6.50±2.56 D (range: -1.34 to -11.50 D) for Tissue Saving Ablation-treated eyes. The MEL 80 readout was found to overestimate the Artemis-measured ablation depth by 20±12 μm for Aberration Smart Ablation and by 21±12 μm for Tissue Saving Ablation profiles. The accuracy of ablation depth measurement was improved by using the Artemis stromal thickness profile measurements before and after surgery to exclude epithelial changes. The MEL 80 readout was found to overestimate the achieved ablation depth. The linear regression equations could be used by MEL 80 users to adjust the ablation depth for predicted residual stromal thickness calculations without increasing the risk of ectasia due to excessive keratectomy depth as long as a suitable flap thickness bias is included. Copyright 2010, SLACK Incorporated.

  13. Picosecond laser ablation of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  14. Analysis of Ablative Performance of C/C Composite Throat Containing Defects Based on X-ray 3D Reconstruction in a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Hui, Wei-Hua; Bao, Fu-Ting; Wei, Xiang-Geng; Liu, Yang

    2015-12-01

    In this paper, a new measuring method of ablation rate was proposed based on X-ray three-dimensional (3D) reconstruction. The ablation of 4-direction carbon/carbon composite nozzles was investigated in the combustion environment of a solid rocket motor, and the macroscopic ablation and linear recession rate were studied through the X-ray 3D reconstruction method. The results showed that the maximum relative error of the X-ray 3D reconstruction was 0.0576%, which met the minimum accuracy of the ablation analysis; along the nozzle axial direction, from convergence segment, throat to expansion segment, the ablation gradually weakened; in terms of defect ablation, the middle ablation was weak, while the ablation in both sides was more serious. In a word, the proposed reconstruction method based on X-ray about C/C nozzle ablation can construct a clear model of ablative nozzle which characterizes the details about micro-cracks, deposition, pores and surface to analyze ablation, so that this method can create the ablation curve in any surface clearly.

  15. Real-time calibration of temperature estimates during radiofrequency ablation.

    PubMed

    Varghese, T; Daniels, M J

    2004-07-01

    Radiofrequency ablation is an interstitial focal ablative therapy that can be used in a percutaneous fashion and permits in situ destruction of hepatic tumors. Recurrence rates after rf therapy are as high as 34-55%, due to difficulties in accurately identifying the zone of necrosis (thermal lesion) because of the low intrinsic acoustic contrast between normal and ablated liver tissue. Our goal is to provide real-time ultrasonic tracking of temperature changes over the large range of temperatures traditionally used (40-100 degrees C) in rfablation procedures using an external ultrasound transducer. Temperature estimates are obtained using a cross-correlation algorithm applied to rf ultrasound echo signal data acquired at discrete intervals during heating. Apparent tissue displacement estimates obtained at these discrete time-intervals are accumulated to obtain a cumulative displacement map, whose gradient provides after appropriate scaling provides a temperature map at the specified elapsed ablation duration. Temperature maps are used to display the initial temperature rise and to continuously update a thermal map of the treated region. In this paper, we develop calibration curves that relate the echo shift due to the change in the speed of sound and thermal expansion to the corresponding temperature increase on in-vitro tissue specimens. These calibration curves can then be utilized for the real time calibration and analysis of temperature estimates obtained from the rf echo signals during ablation. Temperature maps obtained using the calibration curve compare favorably to temperature estimates observed using the invasive thermosensor readings on the ablation electrode and previous results that utilized a linear calibration factor.

  16. Radiofrequency Ablation to Prevent Sudden Cardiac Death.

    PubMed

    Atoui, Moustapha; Gunda, Sampath; Lakkireddy, Dhanunjaya; Mahapatra, Srijoy

    2015-01-01

    Radiofrequency ablation may prevent or treat atrial and ventricular arrhythmias. Since some of these arrhythmias are associated with sudden cardiac death, it has been hypothesized that ablation may prevent sudden death in certain cases. We performed a literature search to better understand under which circumstances ablation may prevent sudden death and found little randomized data demonstrating the long-term effects of ablation. Current literature shows that ablation clearly prevents symptoms of arrhythmia and may reduce the incidence of sudden cardiac death in select patients, although data does not indicate improved mortality. Ongoing clinical trials are needed to better define the role of ablation in preventing sudden cardiac death.

  17. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  18. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (~10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J/cm2, respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  19. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  20. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  1. Fragmentation and ablation during entry

    SciTech Connect

    Canavan, G.H.

    1997-09-01

    This note discusses objects that both fragment and ablate during entry, using the results of previous reports to describe the velocity, pressure, and fragmentation of entering objects. It shows that the mechanisms used there to describe the breakup of non-ablating objects during deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation during entry, building on earlier models that separately discuss the entry of objects that are hard, whose high heat of ablation permits little erosion, and those who are strong whose strength prevents fragmentation, which are discussed in ``Radiation from Hard Objects,`` ``Deceleration and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,`` and ``Meteor Signature Interpretation.`` This note provides a more detailed treatment of the further breakup and separation of fragments during descent. It replaces the constraint on mass per unit area used earlier to determine the altitude and magnitude of peak power radiation with a detailed analytic solution of deceleration. Model predictions are shown to be in agreement with the key features of numerical calculations of deceleration. The model equations are solved for the altitudes of maximum radiation, which agree with numerical integrations. The model is inverted analytically to infer object size and speed from measurements of peak power and altitude to provide a complete model for the approximate inversion of meteor data.

  2. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  3. Theoretical Modeling for Hepatic Microwave Ablation

    PubMed Central

    Prakash, Punit

    2010-01-01

    Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation. PMID:20309393

  4. Impact of stepwise ablation on the biatrial substrate in patients with persistent atrial fibrillation and heart failure.

    PubMed

    Jones, David G; Haldar, Shouvik K; Jarman, Julian W E; Johar, Sofian; Hussain, Wajid; Markides, Vias; Wong, Tom

    2013-08-01

    Ablation of persistent atrial fibrillation can be challenging, often involving not only pulmonary vein isolation (PVI) but also additional linear lesions and ablation of complex fractionated electrograms (CFE). We examined the impact of stepwise ablation on a human model of advanced atrial substrate of persistent atrial fibrillation in heart failure. In 30 patients with persistent atrial fibrillation and left ventricular ejection fraction ≤35%, high-density CFE maps were recorded biatrially at baseline, in the left atrium (LA) after PVI and linear lesions (roof and mitral isthmus), and biatrially after LA CFE ablation. Surface area of CFE (mean cycle length ≤120 ms) remote to PVI and linear lesions, defined as CFE area, was reduced after PVI (18.3±12.03 to 10.2±7.1 cm(2); P<0.001) and again after linear lesions (7.7±6.5 cm(2); P=0.006). Complete mitral isthmus block predicted greater CFE reduction (P=0.02). Right atrial CFE area was reduced by LA ablation, from 25.9±14.1 to 12.9±11.8 cm(2) (P<0.001). Estimated 1-year arrhythmia-free survival was 72% after a single procedure. Incomplete linear lesion block was an independent predictor of arrhythmia recurrence (hazard ratio, 4.69; 95% confidence interval, 1.05-21.06; P=0.04). Remote LA CFE area was progressively reduced following PVI and linear lesions, and LA ablation reduced right atrial CFE area. Reduction of CFE area at sites remote from ablation would suggest either regression of the advanced atrial substrate or that these CFE were functional phenomena. Nevertheless, in an advanced atrial fibrillation substrate, linear lesions after PVI diminished the target area for CFE ablation, and complete lesions resulted in a favorable clinical outcome.

  5. Ablation of multi-wavelet re-entry: general principles and in silico analyses.

    PubMed

    Spector, Peter S; Correa de Sa, Daniel D; Tischler, Ethan S; Thompson, Nathaniel C; Habel, Nicole; Stinnett-Donnelly, Justin; Benson, Bryce E; Bielau, Philipp; Bates, Jason H T

    2012-11-01

    Catheter ablation strategies for treatment of cardiac arrhythmias are quite successful when targeting spatially constrained substrates. Complex, dynamic, and spatially varying substrates, however, pose a significant challenge for ablation, which delivers spatially fixed lesions. We describe tissue excitation using concepts of surface topology which provides a framework for addressing this challenge. The aim of this study was to test the efficacy of mechanism-based ablation strategies in the setting of complex dynamic substrates. We used a computational model of propagation through electrically excitable tissue to test the effects of ablation on excitation patterns of progressively greater complexity, from fixed rotors to multi-wavelet re-entry. Our results indicate that (i) focal ablation at a spiral-wave core does not result in termination; (ii) termination requires linear lesions from the tissue edge to the spiral-wave core; (iii) meandering spiral-waves terminate upon collision with a boundary (linear lesion or tissue edge); (iv) the probability of terminating multi-wavelet re-entry is proportional to the ratio of total boundary length to tissue area; (v) the efficacy of linear lesions varies directly with the regional density of spiral-waves. We establish a theoretical framework for re-entrant arrhythmias that explains the requirements for their successful treatment. We demonstrate the inadequacy of focal ablation for spatially fixed spiral-waves. Mechanistically guided principles for ablating multi-wavelet re-entry are provided. The potential to capitalize upon regional heterogeneity of spiral-wave density for improved ablation efficacy is described.

  6. Recurrent spontaneous clinical perimitral atrial tachycardia in the context of atrial fibrillation ablation.

    PubMed

    Miyazaki, Shinsuke; Shah, Ashok J; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2015-01-01

    Recurrent perimitral atrial tachycardia (AT) is a challenging arrhythmia and is frequently encountered in the context of atrial fibrillation (AF) ablation. The purpose of this study was to investigate the clinical characteristics and the procedural and clinical outcomes in patients with recurrent perimitral atrial tachycardia (PMAT) after AF ablation. Among 520 consecutive ablation procedures for recurrent AT/AF after AF ablation, 40 procedures (patients) were performed for clinically recurrent PMAT 12.1 ± 13.6 months after the last procedure (total 2.2 ± 1.3 procedures). Previously, mitral isthmus (MI) linear ablation was performed in 26 of 40 procedures, including 13 procedures with complete block and 13 with 159.0 ± 23.0 ms of conduction delay without block. As a reference group, conduction delay was evaluated in 55 patients with incomplete MI block and absence of spontaneous PMAT during the follow-up period. Recurrent PMATs were terminated by MI linear ablation in 26 of 40 patients. Bidirectional block across the MI and anterior line joining the mitral annulus and left atrial roof was achieved in 33 (82.5%) and 2 (5%) patients, respectively. At mean follow-up of 26.7 ± 14.5 months, 2 patients (5%) underwent reablation for spontaneously recurrent PMAT. At 12 months after the ablation procedure for PMAT, 73.5% of the patients were free from AT/AF. Conduction delay >149 ms predicted the occurrence of spontaneous PMAT with 80.0% sensitivity and 87.3% specificity. PMAT can recur even after successful bidirectional MI linear block. Substantial conduction delay without block across the MI from a previous procedure(s) could predispose to recurrent PMAT. Although most clinical PMATs can be successfully treated by catheter ablation, very late recurrence is possible. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  8. Microwave ablation of hepatocellular carcinoma.

    PubMed

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-11-08

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s', RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s', showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA.

  9. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  10. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  11. Laser ablation: LIBS and ICPMS

    SciTech Connect

    Russo, Richard E.; Gonzalez, Jhanis; Liu, Chunyi

    2006-08-29

    Laser ablation has become a dominant technology for directsolid sampling chemical analysis. Commonly used detection modalitiesinclude LIBS (laser induced breakdown spectroscopy) for directspectroscopic analysis from the laser-induced plasma at the samplesurface,and ICPMS (inductively coupled plasma mass spectroscopy) in whichthe ablated aerosol is transported and excited in a secondary source.Each measurement approach dictates the laser parameters required foroptimum performance. Fundamental and experimental research studies haveled to significant improvements in performance metrics for laser ablationsolid sampling chemical analysis using both LIBS and ICPMS.

  12. Transhemangioma Ablation of Hepatocellular Carcinoma

    SciTech Connect

    Pua, Uei

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  13. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  14. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  15. Fractional ablative laser skin resurfacing: a review.

    PubMed

    Tajirian, Ani L; Tarijian, Ani L; Goldberg, David J

    2011-12-01

    Ablative laser technology has been in use for many years now. The large side effect profile however has limited its use. Fractional ablative technology is a newer development which combines a lesser side effect profile along with similar efficacy. In this paper we review fractional ablative laser skin resurfacing.

  16. Hybrid epicardial and endocardial ablation of persistent or permanent atrial fibrillation: a new approach for difficult cases.

    PubMed

    Pak, Hui-Nam; Hwang, Chun; Lim, Hong Euy; Kim, Jin Seok; Kim, Young-Hoon

    2007-09-01

    Although percutaneous epicardial catheter ablation (PECA) has been used for the management of epicardial ventricular tachycardia, the use of PECA for atrial fibrillation (AF) has not yet been reported. To evaluate the efficacy and feasibility of a hybrid PECA and endocardial ablation for AF. We performed PECA for AF in five patients (48.6 +/- 8.1 years old, all male, four redo ablation procedures of persistent AF with a risk of pulmonary vein (PV) stenosis, one de novo ablation of permanent [AF]) after an endocardial AF ablation guided by PV potentials and 3D mapping (NavX). Utilizing an open irrigation tip catheter, a left atrial (LA) linear ablation from the roof to the perimitral isthmus or localized ablation at the junction between the LA appendage and left-sided PVs or ligament of Marshall (LOM) was performed. PECA of AF was successful in all patients with an ablation time of <15 minutes. The left-sided PV potentials were eliminated by PECA in all patients. Bidirectional block of the perimitral line was achieved in two of two patients and a left inferior PV tachycardia with conduction block to the LA was observed during the ablation in the area of the LOM in one patient. A hemopericardium developed in one patient, but was controlled successfully. During 8.0 +/- 6.3 months of follow-up, all patients have remained in sinus rhythm (four patients without antiarrhythmic drugs). A hybrid PECA of AF is feasible and effective in patients with redo-AF ablation procedures and at risk for left-sided PV stenosis or who are resistant to endocardial linear ablation.

  17. Substrate and Trigger Ablation for Reduction of Atrial Fibrillation Trial-Part II (STAR AF II): design and rationale.

    PubMed

    Verma, Atul; Sanders, Prashanthan; Macle, Laurent; Deisenhofer, Isabel; Morillo, Carlos A; Chen, Jian; Jiang, Chen-yang; Ernst, Sabine; Mantovan, Roberto

    2012-07-01

    The optimal ablation approach for patients with persistent atrial fibrillation (AF) remains unknown. In particular, it is unclear if pulmonary vein (PV) antral isolation (PVI) is sufficient as a lone strategy for persistent AF. Furthermore, if additional substrate ablation is to be added, the ideal approach to substrate ablation is yet to be determined. The aim of this study is to determine the optimal strategy of catheter ablation of persistent AF by comparing the efficacy of 3 strategies: PVI vs PVI plus complex fractionated electrogram (CFE) ablation (PVI + CFE) vs PVI plus linear ablation (PVI + Lines). The STAR AF II study (ClinicalTrials.gov NCT01203748) is a prospective, multicenter, randomized trial with a blinded assessment of outcomes. A total of 549 patients will be randomized in a 1:4:4 fashion to one of the investigation arms: PVI, PVI + CFE, and PVI + Lines, respectively. Patients undergoing a first-time ablation procedure for symptomatic, persistent AF that is refractory to at least 1 antiarrhythmic medication will be included. Persistent AF will be defined as a sustained episode lasting >7 days and <3 years. Patients with a left atrial parasternal size ≥60 mm will be excluded. The primary end point is freedom from documented AF >30 seconds at 18 months after 1 or 2 ablation procedures with or without antiarrhythmic medications. The STAR AF II study is a randomized trial designed to evaluate the optimal approach for catheter ablation of persistent AF. Copyright © 2012 Mosby, Inc. All rights reserved.

  18. Backspallation due to ablative recoil generated during Q-switched Er:YAG ablation of dental hard tissue

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Shori, Ramesh K.; Duhn, Clifford W.

    1998-04-01

    The purpose of this study was to evaluate the suitability of Q-switched Er:YAG radiation with a pulse duration of approximately 150 ns for caries ablation in dental enamel and dentin. The rate and efficiency of ablation were determined at various laser fluences via perforation of enamel and dentin thin slabs. Peripheral thermal and acoustic damage was evaluated using optical and electron microscopy. Enamel and dentin were ablated with extremely high precision without peripheral thermal damage using these short laser pulses. However, mechanical damage resulted from stress transients produced during the ablative process which caused fracture s in dentin and enamel on the back side of the perforated tissue samples. The thickness of the layer of spallated dentin increased linearly with deposited energy consistent with proposed models. The possibility of acoustic-mechanical damage may limit the maximum single pulse energy that may be deposited when using short pulsed Er:YAG lasers for hard tissue use. This work was supported by NIH/NIDR Grant R29DE12091.

  19. Left atrial function and scar after catheter ablation of atrial fibrillation.

    PubMed

    Wylie, John V; Peters, Dana C; Essebag, Vidal; Manning, Warren J; Josephson, Mark E; Hauser, Thomas H

    2008-05-01

    Catheter ablation of atrial fibrillation (AF) involves extensive radiofrequency ablation (RFA) of the left atrium (LA) around the pulmonary veins. The effect of this therapy on LA function is not fully characterized. The purpose of this study was to determine whether catheter ablation of AF is associated with a change in LA function. LA and right atrial (RA) systolic function was assessed in 33 consecutive patients with paroxysmal or persistent AF referred for ablation using cardiovascular magnetic resonance (CMR) imaging. Steady-state free precession ECG cine CMR imaging was performed before and after (mean 48 days) AF ablation. All patients underwent circumferential pulmonary vein isolation using an 8-mm tip RFA catheter. High spatial resolution late gadolinium enhancement CMR images of LA scar were obtained in 16 patients. Maximum LA volume decreased by 15% (P <.001), and LA ejection fraction decreased by 14% (P <.001) after AF ablation. Maximum RA volume decreased by 13% (P = .018), but RA ejection fraction increased by 5% (P = .008). Mean LA scar volume was 8.1 +/- 3.7 mL. A linear correlation was observed between change in LA ejection fraction and scar volume (r = -0.75, P <.001). Catheter ablation of AF is associated with decreased LA size and reduced atrial systolic function. This change strongly correlates with the volume of LA scar. This finding may have implications for postprocedural thromboembolic risk and for procedures involving more extensive RFA.

  20. Percutaneous Irreversible Electroporation Lung Ablation: Preliminary Results in a Porcine Model

    SciTech Connect

    Deodhar, Ajita; Monette, Sebastien; Single, Gordon W.; Hamilton, William C.; Thornton, Raymond H.; Sofocleous, Constantinos T.; Maybody, Majid; Solomon, Stephen B.

    2011-12-15

    Objective: Irreversible electroporation (IRE) uses direct electrical pulses to create permanent 'pores' in cell membranes to cause cell death. In contrast to conventional modalities, IRE has a nonthermal mechanism of action. Our objective was to study the histopathological and imaging features of IRE in normal swine lung. Materials and Methods: Eleven female swine were studied for hyperacute (8 h), acute (24 h), subacute (96 h), and chronic (3 week) effects of IRE ablation in lung. Paired unipolar IRE applicators were placed under computed tomography (CT) guidance. Some applicators were deliberately positioned near bronchovascular structures. IRE pulse delivery was synchronized with the cardiac rhythm only when ablation was performed within 2 cm of the heart. Contrast-enhanced CT scan was performed immediately before and after IRE and at 1 and 3 weeks after IRE ablation. Representative tissue was stained with hematoxylin and eosin for histopathology. Results: Twenty-five ablations were created: ten hyperacute, four acute, and three subacute ablations showed alveolar edema and necrosis with necrosis of bronchial, bronchiolar, and vascular epithelium. Bronchovascular architecture was maintained. Chronic ablations showed bronchiolitis obliterans and alveolar interstitial fibrosis. Immediate post-procedure CT images showed linear or patchy density along the applicator tract. At 1 week, there was consolidation that resolved partially or completely by 3 weeks. Pneumothorax requiring chest tube developed in two animals; no significant cardiac arrhythmias were noted. Conclusion: Our preliminary porcine study demonstrates the nonthermal and extracellular matrix sparing mechanism of action of IRE. IRE is a potential alternative to thermal ablative modalities.

  1. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  2. Brain Emboli After Left Ventricular Endocardial Ablation.

    PubMed

    Whitman, Isaac R; Gladstone, Rachel A; Badhwar, Nitish; Hsia, Henry H; Lee, Byron K; Josephson, S Andrew; Meisel, Karl M; Dillon, William P; Hess, Christopher P; Gerstenfeld, Edward P; Marcus, Gregory M

    2017-02-28

    Catheter ablation for ventricular tachycardia and premature ventricular complexes (PVCs) is common. Catheter ablation of atrial fibrillation is associated with a risk of cerebral emboli attributed to cardioversions and numerous ablation lesions in the low-flow left atrium, but cerebral embolic risk in ventricular ablation has not been evaluated. We enrolled 18 consecutive patients meeting study criteria scheduled for ventricular tachycardia or PVC ablation over a 9-month period. Patients undergoing left ventricular (LV) ablation were compared with a control group of those undergoing right ventricular ablation only. Patients were excluded if they had implantable cardioverter defibrillators or permanent pacemakers. Radiofrequency energy was used for ablation in all cases and heparin was administered with goal-activated clotting times of 300 to 400 seconds for all LV procedures. Pre- and postprocedural brain MRI was performed on each patient within a week of the ablation procedure. Embolic infarcts were defined as new foci of reduced diffusion and high signal intensity on fluid-attenuated inversion recovery brain MRI within a vascular distribution. The mean age was 58 years, half of the patients were men, half had a history of hypertension, and the majority had no known vascular disease or heart failure. LV ablation was performed in 12 patients (ventricular tachycardia, n=2; PVC, n=10) and right ventricular ablation was performed exclusively in 6 patients (ventricular tachycardia, n=1; PVC, n=5). Seven patients (58%) undergoing LV ablation experienced a total of 16 cerebral emboli, in comparison with zero patients undergoing right ventricular ablation (P=0.04). Seven of 11 patients (63%) undergoing a retrograde approach to the LV developed at least 1 new brain lesion. More than half of patients undergoing routine LV ablation procedures (predominately PVC ablations) experienced new brain emboli after the procedure. Future research is critical to understanding the long

  3. Femtosecond laser ablation of copper

    NASA Astrophysics Data System (ADS)

    Goh, Yeow-Whatt; Lu, Yong-Feng; Hong, Ming-Hui; Chong, Tow Chong

    2003-02-01

    In recent years, femtosecond (fs) laser ablation has attracted much interest in both basic and applied physics, mainly because of its potential application in micromachining and pulsed laser deposition. Ultrashort laser ablation have the capability to ablate materials precisely with little or no collateral damage, even with materials that are impervious to laser energy from conventional pulsed lasers. The extreme intensities and short timescale at which ultrashort pulsed lasers operate differentiate them from other lasers such as nanosecond laser. In this work, we investigate the expansion dynamics of Cu (copper) plasma generated by ultrashort laser ablation of pure copper targets by optically examining the plasma plume. Time-integrated optical emission spectroscopy measurements by using intensified charged couple detector array (ICCD) imaging were used to detect the species present in the plasma and to study the laser-generated plasma formation and evolution. Temporal emission profiles are measured. Our interest in the dynamics of laser-generated copper plasma arises from the fact that copper has been considered as a substitute for Aluminum (Al) interconnects/metallization in ULSI devices (for future technology). It is important to know the composition and behavior of copper plasma species for the understanding of the mechanisms involved and optimizing the micro-machining processes and deposition conditions.

  4. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  5. Photochemical Ablation of Organic Solids

    NASA Astrophysics Data System (ADS)

    Garrison, Barbara

    2004-03-01

    As discovered by Srinivasan in 1982, irradiation of materials by far UV laser light can lead to photochemical ablation, a process distinct from normal thermal ablation in which the laser primarily heats the material. A versatile mesoscopic model for molecular dynamics simulations of the laser ablation phenomena is presented. The model incorporates both the thermal and photochemical events, that is, both heating of the system and UV induced bond-cleavage followed by abstraction and radical-radical recombination reactions. The results from the simulations are compared to experimental data and the basic physics and chemistry for each irradiation regime are discussed. Initial results from polymer ablation simulations will be presented. L. V. Zhigilei, P. B. S. Kodali and B. J. Garrison, J. Phys. Chem. B, 102, 2845-2853 (1998); L. V. Zhigilei and B. J. Garrison, Journal of Applied Physics, 88, 1281-1298 (2000). Y. G. Yingling, L. V. Zhigilei and B. J. Garrison, J. Photochemistry and Photobiology A: Chemistry, 145, 173-181 (2001); Y. G. Yingling and B. J. Garrison, Chem. Phys. Lett., 364, 237-243 (2002).

  6. Long-term results of radiofrequency catheter ablation in non-ischemic sustained ventricular tachycardia with underlying heart disease. Nonuniform arrhythmogenic substrate and mode of ablation.

    PubMed

    Chinushi, M; Aizawa, Y; Ohhira, K; Abe, A; Shibata, A

    1996-03-01

    This study examined 12 VTs in 8 patients who underwent radiofrequency (RF) catheter ablation for ventricular tachycardia (VT) associated with non-ischemic underlying heart diseases, and who were followed-up for more than 24 months after ablation. The site of VT origin was determined to be within a narrow site (within 1.0 x 1.0 cm) in 5 VTs (4 patients), but VT originated from a wide origin (more than 1.0 x 1.0 cm) in the other 5 VTs (3 patients). The remaining patient had two macroreentrant VTs revolving around an anatomical obstacle in both the clockwise and counterclockwise directions. Two of 5 VTs originating from a narrow site were successfully ablated by 2-3 RF applications. In VT associated with a wide origin, two perpendicular linear RF lesions with 6.0 +/- 1.8 RF applications were required to ablate the VT. Eight of the 12 VTs (66.7%) were finally ablated by RF current (30-50 watts), and they did not recur during the follow-up period of 31.2 +/- 6.5 months. An excellent long-term outcome is expected, even in VT associated with non-ischemic underlying heart disease, if VT is successfully treated by RF ablation.

  7. Catheter ablation - new developments in robotics.

    PubMed

    Chun, K R Julian; Schmidt, Boris; Köktürk, Bülent; Tilz, Roland; Fürnkranz, Alexander; Konstantinidou, Melanie; Wissner, Erik; Metzner, Andreas; Ouyang, Feifan; Kuck, Karl-Heinz

    2008-12-01

    Catheter ablation has become the curative treatment modality for various arrhythmias. Extending the indications for catheter ablation from simple supraventricular tachycardias to complex arrhythmias such as ventricular tachycardia or atrial fibrillation, the investigator faces prolonged procedure times, fluoroscopy exposure and the need for stable and reproducible catheter movement. Recently, remote-controlled robotic catheter ablation has emerged as a novel ablation concept to meet these requirements. This review describes the two available robotic ablation systems and summarizes their clinical applications and current human experience.

  8. Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth.

    PubMed

    Ikegawa, Tadashi; Nishihara, Katsunobu

    2002-09-09

    A weakly nonlinear but numerically tractable model (to third order in amplitude and including bandwidth effects) has been developed for the ablative Rayleigh-Taylor (RT) instability. Model results clearly show growth reduction from linear ablative RT values and even amplitude saturation in some realistic cases. For excitation of a band of wave numbers near the cutoff for growth, the behavior is dominated by the mode with the largest linear growth rate, and not by the mode with the largest initial amplitude. This type of model is likely to be important for the future assessment of the RT effects on specific target designs of the inertial confinement fusion.

  9. Atrial Tachycardias Following Atrial Fibrillation Ablation

    PubMed Central

    Sághy, László; Tutuianu, Cristina; Szilágyi, Judith

    2015-01-01

    One of the most important proarrhythmic complications after left atrial (LA) ablation is regular atrial tachycardia (AT) or flutter. Those tachycardias that occur after atrial fibrillation (AF) ablation can cause even more severe symptoms than those from the original arrhythmia prior to the index ablation procedure since they are often incessant and associated with rapid ventricular response. Depending on the method and extent of LA ablation and on the electrophysiological properties of underlying LA substrate, the reported incidence of late ATs is variable. To establish the exact mechanism of these tachycardias can be difficult and controversial but correlates with the ablation technique and in the vast majority of cases the mechanism is reentry related to gaps in prior ablation lines. When tachycardias occur, conservative therapy usually is not effective, radiofrequency ablation procedure is mostly successful, but can be challenging, and requires a complex approach. PMID:25308808

  10. Percutaneous ablation of benign bone tumors.

    PubMed

    Welch, Brian T; Welch, Timothy J

    2011-09-01

    Percutaneous image-guided ablation has become a standard of practice and one of the primary modalities for treatment of benign bone tumors. Ablation is most commonly used to treat osteoid osteomas but may also be used in the treatment of chondroblastomas, osteoblastomas, and giant cell tumors. Percutaneous image-guided ablation of benign bone tumors carries a high success rate (>90% in case series) and results in decreased morbidity, mortality, and expense compared with traditional surgical methods. The ablation technique most often applied to benign bone lesions is radiofrequency ablation. Because the ablation technique has been extensively applied to osteoid osteomas and because of the uncommon nature of other benign bone tumors, we will primarily focus this discussion on the percutaneous ablation of osteoid osteomas.

  11. Esophageal papilloma: Flexible endoscopic ablation by radiofrequency

    PubMed Central

    del Genio, Gianmattia; del Genio, Federica; Schettino, Pietro; Limongelli, Paolo; Tolone, Salvatore; Brusciano, Luigi; Avellino, Manuela; Vitiello, Chiara; Docimo, Giovanni; Pezzullo, Angelo; Docimo, Ludovico

    2015-01-01

    Squamous papilloma of the esophagus is a rare benign lesion of the esophagus. Radiofrequency ablation is an established endoscopic technique for the eradication of Barrett esophagus. No cases of endoscopic ablation of esophageal papilloma by radiofrequency ablation (RFA) have been reported. We report a case of esophageal papilloma successfully treated with a single session of radiofrequency ablation. Endoscopic ablation of the lesion was achieved by radiofrequency using a new catheter inserted through the working channel of endoscope. The esophageal ablated tissue was removed by a specifically designed cup. Complete ablation was confirmed at 3 mo by endoscopy with biopsies. This case supports feasibility and safety of as a new potential indication for BarrxTM RFA in patients with esophageal papilloma. PMID:25789102

  12. Fast conductivity imaging in magnetic resonance electrical impedance tomography (MREIT) for RF ablation monitoring.

    PubMed

    Kwon, Oh In; Chauhan, Munish; Kim, Hyung Joong; Jeong, Woo Chul; Wi, Hun; Oh, Tong In; Woo, Eung Je

    2014-11-01

    This study shows the potential of magnetic resonance electrical impedance tomography (MREIT) as a non-invasive RF ablation monitoring technique. We prepared bovine muscle tissue with a pair of needle electrodes for RF ablation, a temperature sensor, and two pairs of surface electrodes for conductivity image reconstructions. We used the injected current non-linear encoding with multi-echo gradient recalled echo (ICNE-MGRE) pulse sequence in a series of MREIT scans for conductivity imaging. We acquired magnetic flux density data induced by externally injected currents, while suppressing other phase artefacts. We used an 8-channel RF head coil and 8 echoes to improve the signal-to-noise ratio (SNR) in measured magnetic flux density data. Using the measured data, we reconstructed a time series of 180 conductivity images at every 10.24 s during and after RF ablation. Tissue conductivity values in the lesion increased with temperature during RF ablation. After reaching 60 °C, a steep increase in tissue conductivity values occurred with relatively little temperature increase. After RF ablation, tissue conductivity values in the lesion decreased with temperature, but to values different from those before ablation due to permanent structural changes of tissue by RF ablation. We could monitor temperature and also structural changes in tissue during RF ablation by producing spatio-temporal maps of tissue conductivity values using a fast MREIT conductivity imaging method. We expect that the new monitoring method could be used to estimate lesions during RF ablation and improve the efficacy of the treatment.

  13. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    SciTech Connect

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    2008-04-28

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum and the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.

  14. [Catheter ablation in supraventricular tachycardia].

    PubMed

    Pitschner, H F; Neuzner, J

    1996-01-01

    The first report about successful radio frequency ablation of a right-posterior-septal accessory pathway appeared in 1986. Since then, the technology of both guidable ablation catheters and radio frequency generators has been considerably improved in an initially clinical-experimental phase. At the same time, electrophysiologists were equally able to enlarge their knowledge in the field of signal characteristics of arrhythmogenic substrates. This included the discovery of action potentials of accessory pathways (preexcitation syndromes), the location of fast and slow AV node conduction (AV nodal reentrant tachycardia, AVNRT), the functional importance of the anatomical isthmus between the os of the coronary sinus, the tricuspid valve and the inferior caval vein (atrial flutter). Mapping techniques such as transient and concealed entrainment became, among others, significant tools in finding the best localization for radio frequency catheter ablation. Thus, technical development and the increased knowledge of clinical electrophysiologists resulted in firmly establishing the procedure of catheter ablation as the method of first choice in the curative treatment of supraventricular tachycardias in a potential collective of about 5 per mill of the normal population (without atrial fibrillation). Supraventricular tachycardias with a reentry mechanism in the broadest sense (> 95% of all pts. with SVT) and those with focal automaticity (< 5%) occur as atrial fibrillation or atrial flutter in about 60% of all pts. (4-6 per mill of the normal population). Manifestation of the remaining reentrant tachycardias is mainly in the form of AVNRT (retrograde conduction via the fast pathway > 90% versus uncommon type < 10%). AV reentry via accessory pathways is found in about 15%, with orthodromic conduction via the AV node (> 90%). Atrial reentrant tachycardias are rather rare (with the exception of atrial fibrillation/flutter). The literature suggests medical therapy to be

  15. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  16. Meteoroid ablation in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Haider, Syed A.; Pandya, Bhavinkumar

    Periodic meteor streams and meteor showers are results of continuous impact of debris and interplanetary dust, which is disintegrated from the periodic comets at their perihelion distance. The interplanetary dust and debris known as meteoroids and micro meteoroids enter the Martian atmosphere and produces sporadic low-laying plasma layers in the ionosphere. The metallic ions are produced by meteoric ablation of neutral metal atoms or charge exchange between neutral meteoric metal atoms and atmospheric atoms. In this talk we shall present new model results which produces three plasma layers simultaneously due to impact of the meteoroids, solar X-ray (0.5-9nm) and EUV (9-102.6 nm) radiation at altitude range 80-85 km, 100-115 km and 135-140 km respectively in the dayside ionosphere of Mars. The calculated results are compared with the radio occultation measurements made by Mars Express and Mars Global Surveyor on 18 April, 2004 and 11 May, 2005, when comets P/2003 WC7 (LINEAR Catalina) and 10P/Tempel 2 intersected the orbit of Mars respectively. The densities of 21 ions (CO2+, O2+, CO+, O+, NO+, N2+, Mg+, Fe+, Si+, MgO+, FeO+, SiO+, MgCO2+, MgO2+, FeCO2+, FeO2+, SiCO2+, SiO2+, MgN2+, FeN2+, and SiN2+) have been computed self-consistently between altitude 50 km and 200 km. The model shows that the ions CO2+, N2+, O+, CO+, O2+, and NO+ are produced in the upper ionosphere due to impact of solar X-ray and EUV radiation. The metallic ions are formed in the middle ionosphere due to ablation of micrometeoroids.

  17. Glue septal ablation: A promising alternative to alcohol septal ablation.

    PubMed

    Okutucu, Sercan; Aytemir, Kudret; Oto, Ali

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is defined as myocardial hypertrophy in the absence of another cardiac or systemic disease capable of producing the magnitude of present hypertrophy. In about 70% of patients with HCM, there is left ventricular outflow tract (LVOT) obstruction (LVOTO) and this is known as obstructive type of hypertrophic cardiomyopathy (HOCM). Cases refractory to medical treatment have had two options either surgical septal myectomy or alcohol septal ablation (ASA) to alleviate LVOT gradient. ASA may cause some life-threatening complications including conduction disturbances and complete heart block, hemodynamic compromise, ventricular arrhythmias, distant and massive myocardial necrosis. Glue septal ablation (GSA) is a promising technique for the treatment of HOCM. Glue seems to be superior to alcohol due to some intrinsic advantageous properties of glue such as immediate polymerization which prevents the leak into the left anterior descending coronary artery and it is particularly useful in patients with collaterals to the right coronary artery in whom alcohol ablation is contraindicated. In our experience, GSA is effective and also a safe technique without significant complications. GSA decreases LVOT gradient immediately after the procedure and this reduction persists during 12 months of follow-up. It improves New York Heart Association functional capacity and decrease interventricular septal wall thickness. Further studies are needed in order to assess the long-term efficacy and safety of this technique.

  18. Glue septal ablation: A promising alternative to alcohol septal ablation

    PubMed Central

    Aytemir, Kudret; Oto, Ali

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is defined as myocardial hypertrophy in the absence of another cardiac or systemic disease capable of producing the magnitude of present hypertrophy. In about 70% of patients with HCM, there is left ventricular outflow tract (LVOT) obstruction (LVOTO) and this is known as obstructive type of hypertrophic cardiomyopathy (HOCM). Cases refractory to medical treatment have had two options either surgical septal myectomy or alcohol septal ablation (ASA) to alleviate LVOT gradient. ASA may cause some life-threatening complications including conduction disturbances and complete heart block, hemodynamic compromise, ventricular arrhythmias, distant and massive myocardial necrosis. Glue septal ablation (GSA) is a promising technique for the treatment of HOCM. Glue seems to be superior to alcohol due to some intrinsic advantageous properties of glue such as immediate polymerization which prevents the leak into the left anterior descending coronary artery and it is particularly useful in patients with collaterals to the right coronary artery in whom alcohol ablation is contraindicated. In our experience, GSA is effective and also a safe technique without significant complications. GSA decreases LVOT gradient immediately after the procedure and this reduction persists during 12 months of follow-up. It improves New York Heart Association functional capacity and decrease interventricular septal wall thickness. Further studies are needed in order to assess the long-term efficacy and safety of this technique. PMID:27011786

  19. Characterization of tracked radiofrequency ablation in phantom

    SciTech Connect

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-10-15

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4{+-}0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA.

  20. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  1. Percutaneous ablation of pancreatic cancer

    PubMed Central

    D’Onofrio, Mirko; Ciaravino, Valentina; De Robertis, Riccardo; Barbi, Emilio; Salvia, Roberto; Girelli, Roberto; Paiella, Salvatore; Gasparini, Camilla; Cardobi, Nicolò; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review. PMID:27956791

  2. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  3. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  4. Laser Ablation Propulsion A Study

    NASA Astrophysics Data System (ADS)

    Irfan, Sayed A.; Ugalatad, Akshata C.

    Laser Ablation Propulsion (LAP) will serve as an alternative propulsion system for development of microthrusters. The principle of LAP is that when a laser (pulsed or continuous wave) with sufficient energy (more than the vaporization threshold energy of material) is incident on material, ablation or vaporization takes place which leads to the generation of plasma. The generated plasma has the property to move away from the material hence pressure is generated which leads to the generation of thrust. Nowadays nano satellites are very common in different space and defence applications. It is important to build micro thruster which are useful for orienting and re-positioning small aircraft (like nano satellites) above the atmosphere. modelling of LAP using MATLAB and Mathematica. Schematic is made for the suitable optical configuration of LAP. Practical experiments with shadowgraphy and self emission techniques and the results obtained are analysed taking poly (vinyl-chloride) (PVC) as propellant to study the

  5. Laser Ablation for Medical Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Ken-Ichi

    Medical applications of laser are measurement, laser surgery, in-situ monitoring, and processing of medical devices. In this paper, author briefly reviews the trends of medical applications, describes some new applications, and then discuss about the future trends and problems of medical applications. At present, the domestic market of laser equipment for medical applications is nearly 1/10 of that for industrial applications, which has registered significant growth continuously. Laser surgery as a minimum invasive surgery under arthroscope is expected to decrease the pain of patients. Precise processing such as cutting and welding is suitable for manufacturing medical devices. Pulsed laser deposition has been successfully applied to the thin film coating. The corneal refractive surgery by ArF excimer laser has been widely accepted for its highly safe operation. Laser ablation for retinal implant in the visual prosthesis is one of the promising applications of laser ablation in medicine. New applications with femtosecond laser are expected in the near future.

  6. Endometrial Ablation: a Review Article.

    PubMed

    Famuyide, Abimbola

    2017-09-06

    The destruction of the endometrium in women with heavy menstrual bleeding has been employed for well over a century and the various techniques of delivering forms of thermal energy have been modified over the years to assure a safe and effective treatment approach. Today, six non-resectoscopic devices are approved for use in the United States in addition to resectoscopic techniques that rely on skillful use of the operative hysteroscope. Regardless of the technique employed, endometrial ablation uniformly reduces menstrual blood loss, improves general and menstrual related quality of life and prevents hysterectomy in four out of five women who undergo the procedure. When patients are appropriately selected, outcomes are optimized and risks of serious complications are minimized. This article reviews the literature with singular reference to non-resectoscopic endometrial ablation procedures including historical background, appropriate patient selection, clinical outcomes data, complication and special or unique considerations. Copyright © 2017. Published by Elsevier Inc.

  7. Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in the in vivo porcine liver

    NASA Astrophysics Data System (ADS)

    Ramaekers, P.; de Greef, M.; van Breugel, J. M. M.; Moonen, C. T. W.; Ries, M.

    2016-02-01

    This study investigated whether an MR-guided pulsed HIFU ablation strategy could be implemented under clinical conditions, using a transducer designed for uterine fibroid ablation, to obtain an ablation rate that is sufficiently high for clinical abdominal HIFU therapy in highly perfused organs. A pulsed HIFU ablation strategy, aimed at increasing the energy absorption in the HIFU focal area by local shock wave formation in the non-linear pressure regime, was compared to an energy-equivalent continuous wave sonication strategy in the linear pressure regime. Both ablation strategies were used for transcutaneous sonication of pre-defined treatment cells in the livers of 5 pigs in vivo. Temperature evolution in both the target area as well as the pre-focal muscle layer was monitored simultaneously using MR thermometry. Local energy absorption and thermal dose volumes were shown to be increased using the pulsed ablation strategy, while preserving healthy tissue in the near field of the acoustic beam. Respiratory motion compensation of both acoustic energy delivery and MR thermometry was applied through gating based on MR navigator echoes. Histopathology showed that confluent vacuolated thermal lesions were created when the pulsed ablation strategy was used. Additionally, it was shown that the heat sink effect caused by the presence of larger vessels could be overcome. The pulsed HIFU ablation strategy achieved an ablation rate of approximately 4 ml per hour in the in vivo porcine liver, without causing undesired damage to healthy tissues in the near field.

  8. Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in the in vivo porcine liver.

    PubMed

    Ramaekers, P; de Greef, M; van Breugel, J M M; Moonen, C T W; Ries, M

    2016-02-07

    This study investigated whether an MR-guided pulsed HIFU ablation strategy could be implemented under clinical conditions, using a transducer designed for uterine fibroid ablation, to obtain an ablation rate that is sufficiently high for clinical abdominal HIFU therapy in highly perfused organs. A pulsed HIFU ablation strategy, aimed at increasing the energy absorption in the HIFU focal area by local shock wave formation in the non-linear pressure regime, was compared to an energy-equivalent continuous wave sonication strategy in the linear pressure regime. Both ablation strategies were used for transcutaneous sonication of pre-defined treatment cells in the livers of 5 pigs in vivo. Temperature evolution in both the target area as well as the pre-focal muscle layer was monitored simultaneously using MR thermometry. Local energy absorption and thermal dose volumes were shown to be increased using the pulsed ablation strategy, while preserving healthy tissue in the near field of the acoustic beam. Respiratory motion compensation of both acoustic energy delivery and MR thermometry was applied through gating based on MR navigator echoes. Histopathology showed that confluent vacuolated thermal lesions were created when the pulsed ablation strategy was used. Additionally, it was shown that the heat sink effect caused by the presence of larger vessels could be overcome. The pulsed HIFU ablation strategy achieved an ablation rate of approximately 4 ml per hour in the in vivo porcine liver, without causing undesired damage to healthy tissues in the near field.

  9. Mechanism of water augmentation during IR laser ablation of dental enamel.

    PubMed

    Fried, Daniel; Ashouri, Nahal; Breunig, Thomas; Shori, Ramesh

    2002-01-01

    The mechanism of water augmentation during IR laser ablation of dental hard tissues is controversial and poorly understood. The influence of an optically thick applied water layer on the laser ablation of enamel was investigated at wavelengths in which water is a primary absorber and the magnitude of absorption varies markedly. Q-switched and free running Er: YSGG (2.79 microm) and Er:YAG (2.94 microm), free running Ho:YAG and 9.6 microm TEA CO(2) laser systems were used to produce linear incisions in dental enamel with and without water. Synchrotron-radiation IR spectromicroscopy with the Advanced Light Source at Lawrence Berkeley National Laboratory was used to determine the chemical changes across the laser ablation profiles with a spatial resolution of 10-microm. The addition of water increased the rate of ablation and produced a more desirable surface morphology during enamel ablation with all the erbium systems. Moreover, ablation was markedly more efficient for Q-switched (0.15 microsecond) versus free-running (150 microsecond) erbium laser pulses with the added water layer. Although the addition of a thick water layer reduced the rate of ablation during CO(2) laser ablation, the addition of the water removed undesirable deposits of non-apatite mineral phases from the crater surface. IR spectromicroscopy indicates that the chemical composition of the crater walls deviates markedly from that of hydroxyapatite after Er:YAG and CO(2) laser irradiation without added water. New mineral phases were resolved that have not been previously observed using conventional IR spectroscopy. There was extensive peripheral damage after irradiation with the Ho:YAG laser with and without added water without effective ablation of enamel. We postulate that condensed mineral phases from the plume are deposited along the crater walls after repetitive laser pulses and such non-apatitic phases interfere with subsequent laser pulses during IR laser irradiation reducing the rate and

  10. Ablative therapy for ventricular arrhythmias.

    PubMed

    Klein, L S; Miles, W M

    1995-01-01

    Radiofrequency catheter ablation techniques have enjoyed successful applications in patients with a wide variety of supraventricular tachycardias, especially the Wolff-Parkinson-White syndrome and atrioventricular nodal reentry. More recent reports have shown successful applications in patients with atrial tachycardias and atrial flutter. In addition to these, there are now reports of success during attempts to use radiofrequency techniques to eliminate ventricular tachycardia (VT), both in patients without structural heart disease (idiopathic VT) and patients with structural heart disease (primarily coronary artery disease). Techniques to map sites for ablation in patients with idiopathic VT usually include identifying early endocardial activation and using pace mapping. Success rates for ablation of idiopathic VT have been very high (over 90%) in patients with VT arising from the right ventricular outflow tract. Success rates have not been quite as high when VTs arising from sites other than the right ventricular outflow tract are targeted in the patient with idiopathic VT. In patients with VT caused by coronary artery disease, early endocardial activation and pace mapping can be unreliable. In these patients, searching for mid-diastolic potentials or showing concealed entrainment have proved more reliable. When these latter techniques are applied, success rates in eliminating a single focus of VT in a patient with coronary artery disease has been reported to be as high as 60% to 80%. Future therapies will include new energy sources, new (larger and/or cooled) electrodes, and multipoint catheter mapping, possibly using body surface mapping techniques.

  11. A new methodology for atrial flutter ablation by direct visualization of cavotricuspid conduction with voltage gradient mapping: a comparison to standard techniques.

    PubMed

    Bailin, Steven J; Johnson, William Ben; Jumrussirikul, Pitayadet; Sorentino, Denise; West, Robert

    2013-07-01

    To demonstrate that critical conduction within the cavotricuspid isthmus (CTI) can be directly visualized by voltage gradient mapping and facilitate efficient ablation compared to standard techniques. Group 1 (1 operator, n = 11) ablated based upon contact voltage measurements and voltage gradient mapping. Ablation targeted low-voltage bridges (LVBs) within the CTI. Repeat maps were obtained following ablation. Group 2 (operators 2, 3, and 4 n = 35) utilized electroanatomic navigation and ablated by the creation of linear lesions from the tricuspid valve to the inferior vena cava. Demonstration of bidirectional block (BDB) was required in both groups. LVB were associated with CTI conduction in all Group A patients. LVB ablation terminated flutter, or created BDB. Following ablation, CTI voltage connections were absent in all patients. Compared with Group B, Group A had less radiofrequency (RF) lesions to atrial flutter (AFL) termination (P = 0.001), less total RF lesions (P = 0.0001), and less total RF time (P = 0.001). Group 1 had no recurrent AFL whereas Group 2 had three recurrences. (follow-up median of 231 ± 181 days). (i) Voltage gradient mapping visualized regions of critical CTI conduction, (ii) ablation of LVB terminated AFL and resulted in BDB, (iii) repeat mapping confirmed the absence of trans-isthmus voltage, and (iv) Compared with standard ablation, voltage gradient mapping decreases total RF lesions, lesions to AFL termination, and total RF time. Use of voltage gradient mapping can facilitate successful AFL ablation.

  12. [Current treatment of Wolff-Parkinson-White syndrome and ventricular tachycardia: surgical ablation versus catheter ablation?].

    PubMed

    Misaki, T; Watanabe, G; Iwa, T; Watanabe, Y

    1992-09-01

    From November 1973, 454 patients with Wolff-Parkinson-White syndrome underwent surgical ablation of accessory pathways. Overall curative rate was 94% in our series including 65 cases of simultaneous surgical repair for combined heart diseases. In recent months, radiofrequency catheter ablation was applied in 7 cases. There has been 2 failures, which have taken more than 2 hours of radiation exposure and have required surgery. There has been 47 patients who underwent surgical ablation for non-ischemic ventricular tachycardia. Forty cases (85%) had a successful outcome of surgical ablation and another 2 cases required DC catheter ablation postoperatively to eliminate ventricular tachycardias. In conclusion, radiofrequency ablation of WPW syndrome in patients without combined heart disease or multiple accessory pathways is feasible. Surgical ablation is effective and safe technique compared with catheter ablation in patients with ventricular tachycardia.

  13. Microwave Ablation Compared to Radiofrequency Ablation for Hepatic Lesions: A Meta-Analysis.

    PubMed

    Huo, Ya Ruth; Eslick, Guy D

    2015-08-01

    To evaluate the efficacy and safety of microwave (MW) ablation compared with radiofrequency (RF) ablation for hepatic lesions by using meta-analytic techniques. Overall, 16 studies involving 2,062 patients were included. MW ablation was found to have significantly better 6-year overall survival than RF ablation (odds ratio, 1.64, 95% confidence interval, 1.15-2.35), but this was based on a few articles (n = 3 of 16). MW ablation and RF ablation had similar 1-5-year overall survival, disease-free survival, local recurrence rate, and adverse events. Based on similar safety and efficacy outcomes, either MW ablation or RF ablation may be used for effective local hepatic therapy. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  14. Tumor Thermal Ablation Enhancement by Micromaterials.

    PubMed

    Zhao, Fan; Su, Hongying; Han, Xiangjun; Bao, Han; Qi, Ji

    2016-01-07

    Thermal ablation is a minimally invasive therapeutic technique that has shown remarkable potential in treating un resectable tumors. However, clinical applications have stalled, due to safety ambiguities, slow heat induction, lengthy ablation times, and post-therapeutic monitoring issues. To further improve treatment efficacy, an assortment of micro materials (eg, nano particulates of gold, silica, or iron oxide and single-walled carbon nanotubes) are under study as thermal ablative adjuncts.In recent years, the micro material domain has become especially interesting.In vivo and in vitro animal studies have validated the use of microspheres as embolic agents in liver tumors, in advance of radiofrequency ablation. Microcapsules and micro bubbles serving as ultrasound contrast and ablation sensibilizers are strong prospects for clinical applications. This review was conducted to explore benefits of the three aforementioned micro scale technologies, in conjunction with tumor thermal ablation.

  15. Ablation Strategies for Locally Advanced Pancreatic Cancer.

    PubMed

    Linecker, Michael; Pfammatter, Thomas; Kambakamba, Patryk; DeOliveira, Michelle L

    2016-01-01

    With the advent of novel and somewhat effective chemotherapy against pancreas cancer, several groups developed a new interest on locally advanced pancreatic cancer (LAPC). Unresectable tumors constitute up to 80% of pancreatic cancer (PC) at the time of diagnosis and are associated with a 5-year overall survival of less than 5%. To control those tumors locally, with perhaps improved patients survival, significant advances were made over the last 2 decades in the development of ablation methods including cryoablation, radiofrequency ablation, microwave ablation, high intensity focused ultrasound and irreversible electroporation (IRE). Many suggested a call for caution for possible severe or lethal complications in using such techniques on the pancreas. Most fears were on the heating or freezing of the pancreas, while non-thermal ablation (IRE) could offer safer approaches. The multimodal therapies along with high-resolution imaging guidance have created some enthusiasm toward ablation for LAPC. The impact of ablation techniques on primarily non-resectable PC remains, however, unclear.

  16. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  17. Non-selective photoionization for isotope ratio measurements by time of flight mass spectrometry with laser ablation

    NASA Astrophysics Data System (ADS)

    Vors, E.; Semerok, A.; Wagner, J.-F.; Fomichev, S. V.

    2000-12-01

    Isotope ratio measurements of metallic uranium samples were carried out by linear TOF mass spectrometry in combination with laser ablation. To eliminate the problems resulting from laser plasma ion energy and spatial dispersions, the uranium atoms were post-ionized by the third harmonic of a Nd-YAG laser. Experimental and theoretical results of the LA-TOF performance and non-selective photoionization of uranium atoms produced by laser ablation are presented.

  18. Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-06-01

    Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.

  19. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    PubMed Central

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  20. Plasma-mediated ablation of biofilm contamination

    NASA Astrophysics Data System (ADS)

    Guo, Zhixiong; Wang, Xiaoliang; Huang, Huan

    2010-12-01

    Ultra-short pulsed laser removal of thin biofilm contamination on different substrates has been conducted via the use of plasma-mediated ablation. The biofilms were formed using sheep whole blood. The ablation was generated using a 1.2 ps ultra-short pulsed laser with wavelength centered at 1552 nm. The blood contamination was transformed into plasma and collected with a vacuum system. The single line ablation features have been measured. The ablation thresholds of blood contamination and bare substrates were determined. It is found that the ablation threshold of the blood contamination is lower than those of the beneath substrates including the glass slide, PDMS, and human dermal tissues. The ablation effects of different laser parameters (pulse overlap rate and pulse energy) were studied and ablation efficiency was measured. Proper ablation parameters were found to efficiently remove contamination with maximum efficiency and without damage to the substrate surface for the current laser system. Complete removal of blood contaminant from the glass substrate surface and freeze-dried dermis tissue surface was demonstrated by the USP laser ablation with repeated area scanning. No obvious thermal damage was found in the decontaminated glass and tissue samples.

  1. Ultrafast pulsed Bessel beams for enhanced laser ablation of bone tissue for applications in LASSOS

    NASA Astrophysics Data System (ADS)

    Ashforth, Simon A.; Oosterbeek, Reece N.; Simpson, M. Cather

    2017-02-01

    Using a femtosecond pulsed laser system (pulse width = 100fs, repetition rate = 500 Hz, λ=800nm), a zero-order Bessel beam was generated using a LCOS-Spatial light modulator (LCOS-SLM) with an effective cone angle of 4.56°. Ablation threshold studies of fresh bovine and ovine load bearing cortical bone was identified using the method of least damage and found to be identical at φth = 0.15 +/- 0.03 J cm-2, irrespective of the target species. The ablation threshold is significantly reduced compared to the ablation threshold determined for Gaussian beams in bovine and ovine cortical bone (Load Bearing: φth = 0.91 +/- 0.03 J cm-2, Skull: φth = 1.19 +/- 0.06 J cm-2). Incubation effects were investigated and the incubation coefficient was determined to be ζ = 0.93 +/- 0.06, indicating no incubation effects are present. The relationship between tissue removal and the number of pulses applied was explored. By altering the translation rate of the sample under the Bessel region of the incident laser, the number of pulses applied at each point along the linear ablation features was varied. Cross sections of ablation features were measured using scanning electron microscopy (SEM) and maximum depths of the ablation features measured. The ablation rate of bovine and ovine cortical was found to be 2.69 - 13.21 +/- 0.05 μm pulse-1 and 2.49 - 12.79 +/- 0.03 μm pulse-1 respectively for fluence values ranging from 25.0 - 2.5 Jcm-2, significantly higher than those of Gaussian beams. Structural analysis of the ablation features using SEM and optical microscopy showed no signs of heat affected zone (HAZ) in the form of thermal shockwave cracking, molten debris deposition or charring of the tissue.

  2. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    NASA Astrophysics Data System (ADS)

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm-1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm-1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm-1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility was

  3. Effects of variable power on tissue ablation dynamics during magnetic resonance-guided laser-induced thermal therapy with the Visualase system.

    PubMed

    Munier, Sean M; Hargreaves, Eric L; Patel, Nitesh V; Danish, Shabbar F

    2017-09-18

    Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is a minimally invasive procedure used to treat various intracranial pathologies. This study investigated the effects of variable power on maximal estimated thermal damage during ablation and duration required to reach maximal ablation. All ablations were performed using the Visualase Thermal Therapy System (Medtronic Inc., Minneapolis, Minnesota), which uses a 980 nm diffusing tip diode laser. Cases were stratified into low, medium and high power. Maximal thermal damage estimate (TDEmax) achieved in a single plane and time to reach maximal damage (ttdemax) were measured and compared between groups using a 2×3 Fixed Factor Analysis of Covariance. Ablation area change for cases in which an initial thermal dose was followed by a subsequent dose, with increased power, was also assessed. We used real-time ablation data from 93 patients across various intracranial pathologies. ttdemax (mean ± SEM) decreased linearly as power increased (low: 139.2 ± 10.4 s, medium: 127.5 ± 4.3 s, high: 103.7 ± 5.8 s). In cases where a second thermal dose was delivered at higher power, the TDE expanded an average of 51.4 mm(2) beyond the initial TDE generated by the first ablation, with the second ablation approaching TDEmax at a higher rate than the initial ablation. Increased power results in a larger TDEmax and an increased ablation rate. In cases where an initial thermal dose does not fully ablate the target lesion, a second ablation at higher power can increase the area of ablation with an increased ablation rate.

  4. Reconfigurable tapered coaxial slot antenna for hepatic microwave ablation.

    PubMed

    Malhotra, Neeru; Marwaha, Anupma; Kumar, Ajay

    2016-01-01

    Microwave ablation is rapidly being rediscovered and developed for treating many cancers of liver, lung, kidney and bone, as well as arrhythmias and other medical conditions. The microwaves ablate tissue by heating it to cytotoxic temperatures. The microwave antenna design suffers the challenges of effective coupling and penetration into body tissues, uncontrolled power deposition due to applicator construction limitations affecting uniform heating of target region, and narrowband operation leading to mismatch for many patients and detrimental heating. To meet out the requirements of wideband operation and localized lesion reconfigurable linearly tapered slot interstitial wideband antenna has been proposed for working in the 1.38 GHz to 4.31 GHz frequency band. The performance of the antenna is evaluated by using FEM-based HFSS software. The slot height and taper height are reconfigured for parametric analysis achieving maximum impedance matching and spherical ablation zone without requiring any additional adjustable structures. The tapering of the slot in coaxial antenna generates current distribution at the edges of the slot for maximizing specific absorption rate.

  5. Ablation of long-standing persistent atrial fibrillation

    PubMed Central

    Mody, Behram P.; Raza, Anoshia; Jacobson, Jason; Iwai, Sei; Frenkel, Daniel; Rojas, Rhadames

    2017-01-01

    Atrial fibrillation (AF) is the most commonly encountered arrhythmia in the clinical setting affecting nearly 6 million people in United States and the numbers are only expected to rise as the population continues to age. Broadly it is classified into paroxysmal, persistent and longstanding persistent AF. Electrical, structural and autonomic remodeling are some of the diverse pathophysiological mechanisms that contribute to the persistence of AF. Our review article emphasizes particularly on long standing persistent atrial fibrillation (LSPAF) aspect of the disease which poses a great challenge for electrophysiologists. While pulmonary vein isolation (PVI) has been established as a successful ablation strategy for paroxysmal AF, same cannot be said for LSPAF owing to its long duration, complexity of mechanisms, multiple triggers and substrate sites that are responsible for its perpetuation. The article explains different approaches currently being adopted to achieve freedom from atrial arrhythmias. These mainly include ablation techniques chiefly targeting complex fractionated atrial electrograms (CFAE), rotors, linear lesions, scars and even considering hybrid approaches in a few cases while exploring the role of delayed enhancement magnetic resonance imaging (deMRI) in the pre-procedural planning to improve the overall short and long term outcomes of catheter ablation. PMID:28856145

  6. Femtosecond pulsed laser ablation of thin gold film

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, K.; Tan, B.; Ngoi, B. K. A.

    2002-04-01

    Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/ e2 diameter). The sample was translated at a linear speed of 400 μm/ s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.

  7. Ablation front rayleigh taylor dispersion curve in indirect drive

    SciTech Connect

    Budil, K S; Lasinski, B; Edwards, M J; Wan, A S; Remington, B A; Weber, S V; Glendinning, S G; Suter, L; Stry, P

    2000-11-17

    was diagnosed via x-ray radiography. These measurements unambiguously map out the linear regime dispersion curve, including the observation of stabilization at short wavelengths. The data are compared favorably to two-dimensional simulations. Due to the influence of the rippled shock transit phase of the experiment, direct comparison to the ablation front RT theory of R. Betti was difficult. Instead, a numerical ''experiment'' was constructed that minimized the influence of the shock and this was compared to the Betti model showing quite good agreement.

  8. Comparison of Wet Radiofrequency Ablation with Dry Radiofrequency Ablation and Radiofrequency Ablation Using Hypertonic Saline Preinjection: Ex Vivo Bovine Liver

    PubMed Central

    Lee, Jeong Min; Kim, Se Hyung; Shin, Kyung Sook; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn

    2004-01-01

    Objective We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Materials and Methods Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. Results With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (p < 0.05). During RF ablation, the tissue impedance was well controlled in groups C and E, but it was often rapidly increased to more than 200 Ω in groups A and B. In group D, the impedance was well controlled in six of ten trials but it was increased in four trials (40%) 7 min after starting RF ablation. As consequences, the mean current was higher for groups C, D, and E than for the other groups: 401 ± 145 mA in group A, 287 ± 32 mA in group B, 1907 ± 96 mA in group C, 1649 ± 514 mA in group D, and 1968 ± 108 m

  9. Ablation Technology for the Surgical Treatment of Atrial Fibrillation

    PubMed Central

    Melby, Spencer J.; Schuessler, Richard B.; Damiano, Ralph J.

    2014-01-01

    The Cox maze procedure for the surgical treatment of atrial fibrillation has been simplified from its original cut-and-sew technique. Various energy sources now exist which create linear lines of ablation that can be used to replace the original incisions, greatly facilitating the surgical approach. This review article describes the anatomy of the atria that must be considered in choosing a successful energy source. Furthermore the device characteristics, safety profile, mechanism of tissue injury, and ability to create transmural lesions of the various energy sources that have been used in the Cox maze procedure, along with the strengths and weaknesses of each device is discussed. PMID:23995989

  10. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  11. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  12. Radiofrequency ablation of hepatocellular carcinoma: Mono or multipolar?

    PubMed

    Cartier, Victoire; Boursier, Jérôme; Lebigot, Jérôme; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Aubé, Christophe

    2016-03-01

    Thermo-ablation by radiofrequency is recognized as a curative treatment for early-stage hepatocellular carcinoma. However, local recurrence may occur because of incomplete peripheral tumor destruction. Multipolar radiofrequency has been developed to increase the size of the maximal ablation zone. We aimed to compare the efficacy of monopolar and multipolar radiofrequency for the treatment of hepatocellular carcinoma and determine factors predicting failure. A total of 171 consecutive patients with 214 hepatocellular carcinomas were retrospectively included. One hundred fifty-eight tumors were treated with an expandable monopolar electrode and 56 with a multipolar technique using several linear bipolar electrodes. Imaging studies at 6 weeks after treatment, then every 3 months, assessed local effectiveness. Radiofrequency failure was defined as persistent residual tumor after two sessions (primary radiofrequency failure) or local tumor recurrence during follow-up. This study received institutional review board approval (number 2014/77). Imaging showed complete tumor ablation in 207 of 214 lesions after the first session of radiofrequency. After a second session, only two cases of residual viable tumor were observed. During follow-up, there were 46 local tumor recurrences. Thus, radiofrequency failure occurred in 48/214 (22.4%) cases. By multivariate analysis, technique (P < 0.001) and tumor size (P = 0.023) were independent predictors of radiofrequency failure. Failure rate was lower with the multipolar technique for tumors < 25 mm (P = 0.023) and for tumors between 25 and 45 mm (P = 0.082). There was no difference for tumors ≥ 45 mm (P = 0.552). Compared to monopolar radiofrequency, multipolar radiofrequency improves tumor ablation with a subsequent lower rate of local tumor recurrence. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  13. "Dormant transisthmus conduction" revealed by adenosine after cavotricuspid isthmus ablation.

    PubMed

    Lehrmann, Heiko; Weber, Reinhold; Park, Chan-il; Allgeier, Jürgen; Schiebeling-Römer, Jochen; Arentz, Thomas; Jadidi, Amir

    2012-12-01

    Linear radiofrequency ablation at the cavotricuspid isthmus (CTI) is the treatment of choice for typical flutter. Despite a high acute success rate, reconduction through the CTI may occur in approximately 15% of patients and eventually lead to flutter recurrence. The purpose of this study was to test the hypothesis that injection of adenosine may reveal transient CTI reconduction and predict early relapse of permanent CTI conduction. Thirty-one patients with CTI-dependent flutter (mean age 65 ± 11 years, 87% male, ejection fraction 55% ± 11%) were included in the study. CTI ablation was performed using an open-irrigated ablation catheter. Bidirectional conduction block was confirmed using conventional criteria. Subsequently, transisthmus conduction was reevaluated after adenosine injection. During a 30-minute waiting period, permanent recovery of CTI conduction was monitored. During a mean follow-up of 6 ± 3 months, clinical recurrences of typical flutter were assessed. Bidirectional isthmus block was achieved in all patients. Injection of 16 ± 3 mg adenosine IV induced transient second- or third-degree AV block in all patients. An adenosine-induced brief sequence reversal at the right lateral wall occurred in 6 of 31 patients (19%) and revealed transient CTI reconduction. Among these 6 patients, 4 (67%) had permanent recovery of transisthmus conduction in the subsequent waiting period; the remaining 2 patients (33%) had clinical recurrence of common flutter. Importantly, no patient without adenosine-mediated dormant transisthmus conduction (25/31 [81%]) showed permanent recovery during the waiting period or clinical flutter recurrence during follow-up. Adenosine-induced "dormant transisthmus conduction" precedes early relapse of permanent CTI conduction. Patients without "dormant transisthmus conduction" develop no recovery of conduction during the postablation waiting period. Routine use of adenosine for assessment of ablation lines may help to reduce the

  14. A method for rapid measurement of laser ablation rate of hard dental tissue

    NASA Astrophysics Data System (ADS)

    Perhavec, T.; Gorkič, A.; Bračun, D.; Diaci, J.

    2009-06-01

    The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm 3/s in dentine and 0.7 mm 3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm 3/s in dentine and 0.12 mm 3/s in enamel). Since the presented method proves to be easy to

  15. Laser Navigation for Radiofrequency Ablation

    SciTech Connect

    Varro, Zoltan; Locklin, Julia K. Wood, Bradford J.

    2004-09-15

    A 45-year-old male with renal cell carcinoma secondary to von-Hippel Lindau (VHL) disease presented for radiofrequency ablation (RFA) of kidney tumors. Due to his prior history of several partial nephrectomies and limited renal reserve, RFA was chosen because of its relatively nephron-sparing nature. A laser guidance device was used to help guide probe placement in an attempt to reduce procedure time and improve targeting accuracy. The device was successful at guiding needle placement, as both tumors were located with a single pass. Follow-up CT scan confirmed accurate needle placement, showing an area of coagulation necrosis covering the previously seen tumor.

  16. A retrospective study comparing endovenous laser ablation and microwave ablation for great saphenous varicose veins.

    PubMed

    Mao, Jieqi; Zhang, Ci; Wang, Zhanshan; Gan, Shujie; Li, Ke

    2012-07-01

    Endo-venous laser or microwave ablation is a minimally invasive surgery for treating varicose veins of lower limbs. The aim of our study was to determine whether endovenous microwave ablation of the greater saphenous vein was associated with better effectiveness and less complications than the endovenous laser ablation. From July 2008 to June 2011, 259 cases (306 limbs) of varicose veins were assigned to endovenous laser ablation (n=138, 163 limbs) or endovenous microwave ablation (n=121, 143 limbs). Through analysis there was no significant difference of the operating time, length of hospital stay and Aberdeen score in the two groups. The recanalization rate was statistically higher in the laser group than that in the microwave group. The ecchymosis complication was significantly lower in microwave ablation than that of laser ablation group. However, the skin burn and paralysis complications were significantly lower in the laser ablation than that of microwave ablation group. Endo-venous microwave ablation is an effective alternative to laser ablation for treatment of varicose veins, associated with higher occlusion rate and without serious complications.

  17. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  18. [Study on interventional ultrasonic thrombus ablation technique].

    PubMed

    Lai, Yi-nan; Luo, Jian-wei; Liu, Xiang-dong

    2002-01-01

    Ultrasonic thrombus ablation is a newly-developed technology for percutaneous arterial recanalization. An ultrasound angioplasty device is described here in detail. The device has an adjustable power output range and distal tip longitudinal displacement range. Experimental data suggest that this ultrasound device is significantly effective in ablating fresh thrombi.

  19. Ablative therapies for small renal tumours.

    PubMed

    Castro, Arturo; Jenkins, Lawrence C; Salas, Nelson; Lorber, Gideon; Leveillee, Raymond J

    2013-05-01

    Improvements in imaging technology have resulted in an increase in detection of small renal masses (SRMs). Minimally invasive ablation modalities, including cryoablation, radiofrequencey ablation, microwave ablation and irreversible electroporation, are currently being used to treat SRMs in select groups of patients. Cryoablation and radiofrequency ablation have been extensively studied. Presently, cryoablation is gaining popularity because the resulting ice ball can be visualized easily using ultrasonography. Tumour size and location are strong predictors of outcome of radiofrequency ablation. One of the main benefits of microwave ablation is that microwaves can propagate through all types of tissue, including desiccated and charred tissue, as well as water vapour, which might be formed during the ablation. Irreversible electroporation has been shown in animal studies to affect only the cell membrane of undesirable target tissues and to spare adjacent structures; however, clinical studies that depict the efficacy and safety of this treatment modality in humans are still sparse. As more experience is gained in the future, ablation modalities might be utilized in all patients with tumours <4 cm in diameter, rather than just as an alternative treatment for high-risk surgical patients.

  20. Effective temperatures of polymer laser ablation

    NASA Astrophysics Data System (ADS)

    Furzikov, Nickolay P.

    1991-09-01

    Effective temperatures of laser ablation of certain polymers are extracted from experimental dependences of ablation depths on laser fluences. Dependence of these temperatures on laser pulse durations is established. Comparison with the known thermodestruction data shows that the effective temperature corresponds to transient thermodestruction proceeding by the statistically most probable way.

  1. Local Ablation for Hepatocellular Carcinoma in Taiwan

    PubMed Central

    Lin, Shi-Ming

    2013-01-01

    Hepatocellular carcinoma (HCC) is the second commonest cancer in Taiwan. The national surveillance program can detect HCC in its early stages, and various curative modalities (including surgical resection, orthotopic liver transplantation, and local ablation) are employed for the treatment of small HCC. Local ablation therapies are currently advocated for early-stage HCC that is unresectable because of co-morbidities, the need to preserve liver function, or refusal of resection. Among the various local ablation therapies, the most commonly used modalities include percutaneous ethanol injection and radiofrequency ablation (RFA); percutaneous acetic acid injection and microwave ablation are used less often. RFA is more commonly employed than other local ablative modalities in Taiwan because the technique is highly effective, minimally invasive, and requires fewer sessions. RFA is therefore advocated in Taiwan as the first-line curative therapy for unresectable HCC or even for resectable HCC. However, current RFA procedures are less effective against tumors that are in high-risk or difficult-to-ablate locations, are poorly visualized on ultrasonography (US), or are large. Recent advancements in RFA in Taiwan can resolve these issues by the creation of artificial ascites or pleural effusion, application of real-time virtual US assistance, use of combination therapy before RFA, or use of switching RF controllers with multiple electrodes. This review article provides updates on the clinical outcomes and advances in local ablative modalities (mostly RFA) for HCC in Taiwan. PMID:24159599

  2. Basic aspects of radiofrequency catheter ablation.

    PubMed

    Nath, S; DiMarco, J P; Haines, D E

    1994-10-01

    Radiofrequency (RF) catheter ablation has become the treatment of choice for many symptomatic cardiac arrhythmias. It is presumed that the primary cause of tissue injury by RF ablation is thermally mediated, resulting in a relatively discrete homogeneous lesion. The mechanism by which RF current heats tissue is resistive heating of a narrow rim (< 1 mm) of tissue that is in direct contact with the ablation electrode. Deeper tissue heating occurs as a result of passive heat conduction from this small region of volume heating. Lesion size is proportional to the temperature at the electrode-tissue interface and the size of the ablation electrode. Temperatures above 50 degrees C are required for irreversible myocardial injury, but temperatures above 100 degrees C result in coagulum formation on the ablation electrode, a rapid rise in electrical impedance, and loss of effective tissue heating. Lesion formation is also dependent on optimal electrode-tissue contact and duration of RF delivery. Newer developments in RF ablation include temperature monitoring, longer ablation electrodes coupled to high-powered RF generators, and novel ablation electrode designs.

  3. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  4. Percutaneous Radiofrequency Ablation of Nodal Metastases

    SciTech Connect

    Gervais, Debra A.; Arellano, Ronald S.; Mueller, Peter R.

    2002-12-15

    We report our experience with percutaneous image-guided radiofrequency (RF) ablation to treat isolated nodal metastases. Four patients underwent image-guided percutaneous RF ablation of metastatic disease involving retrocrural nodes,retroperitoneal nodes, or pelvic nodes. Coagulation necrosis was achieved in all cases.

  5. Non-linear characteristics of Rayleigh-Taylor instable perturbations

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Luo, Jisheng

    2008-04-01

    The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the classical electrical thermal conductivity is included, and NND difference scheme is used. The linear growth rates obtained from the simulation agree with the Takabe formula. The amplitude distribution of the density perturbation at the ablation front is obtained for the linear growth case. The non-linear characteristics of Rayleigh-Taylor instable perturbations are analyzed and the numerical results show that the amplitude distributions of the compulsive harmonics are very different from that of the fundamental perturbation. The characteristics of the amplitude distributions of the harmonics and their fast growth explain why spikes occur at the ablation front. The numerical results also show that non-linear effects have relations with the phase differences of double mode initial perturbations, and different phase differences lead to varied spikes.

  6. Efficacy of a novel bipolar radiofrequency ablation device on the beating heart for atrial fibrillation ablation: A chronic porcine study

    PubMed Central

    Voeller, Rochus K.; Zierer, Andreas; Lall, Shelly C.; Sakamoto, Shun-ichiro; Schuessler, Richard B.; Damiano, Ralph J.

    2015-01-01

    Background Over the recent years, a variety of energy sources have been used to replace the traditional incisions of the Cox-Maze procedure for the surgical treatment of atrial fibrillation. This study evaluated the safety and efficacy of a new bipolar radiofrequency ablation device for atrial ablation in a chronic porcine model. Methods Six pigs underwent a Cox-Maze IV procedure on a beating heart off cardiopulmonary bypass using the Atricure Isolator II™ bipolar ablation device. In addition, 6 pigs underwent median sternotomy and pericardiotomy alone to serve as a control group. All animals were survived for 30 days. Each pig underwent induction of atrial fibrillation, and was then sacrificed to remove the heart en bloc for histological assessment. MRI scan were also obtained preoperatively and postoperatively to assess atrial and ventricular function, pulmonary vein anatomy, valve function, and coronary artery patency. Results All animals survived the operation. Electrical isolation of the left atrial appendage and the pulmonary veins was documented by pacing acutely and at 30 days in all animals. No animal that underwent the Cox-Maze IV procedure was able to be induced into atrial fibrillation at 30 days postoperatively, compared to all the sham animals. All 257 ablations examined were discrete, linear and transmural, with a mean lesion width of 2.2±1.1 mm and a mean lesion depth of 5.3±3.0 mm. Conclusions The Atricure Isolator II™ was able to create reliable chronic transmural lesions of the modified Cox-Maze procedure on a beating heart without cardiopulmonary bypass 100% of the time. There were no discernible effects on ventricular or valvular function. PMID:20122702

  7. Trends in inflammatory biomarkers during atrial fibrillation ablation across different catheter ablation strategies.

    PubMed

    Schmidt, Martin; Marschang, Harald; Clifford, Sarah; Harald, Rittger; Guido, Ritscher; Oliver, Turschner; Johannes, Brachmann; Daccarett, Marcos

    2012-06-28

    Chest pain after atrial fibrillation (AF) ablations is a common complaint with a wide differential diagnosis including coronary events. Elevation of troponins (Trop I) has been shown with radio-frequency (RF) ablation for atrial fibrillation. New devices including cryoballoon and multipolar ablation catheters have been introduced as alternative methods. We aim to compare cardiac injury following AF ablations according to different ablation technologies. In consecutive patients undergoing AF ablations with RF ablation, cryoballoon or multipolar ablation catheter (PVAC), Trop I, creatine kinase (CK) and CRP were analyzed immediately prior to and 24h following completion of ablation. Coronary events and symptoms and serial ECGs post procedure were evaluated. A total of 243 patients were included, 18.5% of them females. The mean age was 63 ± 11 years old. Baseline Trop I, CK and CRP levels were within normal range in all patients. After RF ablation Trop I, CK and CRP levels were elevated in 100%, 20% and 91% of patients respectively (Trop I 3.55 pg/ml [range: 0.60-24.01 pg/ml], CK 147 U/l [range: 56-380 U/l] and CRP 2.15 mg/dl [range: 0.28-20.98 mg/dl]). All post-procedure Trop I levels were above the range of myocardial infarction (>0.15 ng/ml). After cryoballoon ablation, Trop I and CK levels were significantly higher than after RF or PVAC ablation (p<0.001). No ischemic ECG changes were documented. Trop I elevations are not specific for ischemia in the setting of chest pain after AF ablation. Cryoballoon ablation resulted in a higher amount of cardiac injury. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Formation of periodic structures upon laser ablation of metal targets in liquids

    SciTech Connect

    Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A

    2005-09-30

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface. (interaction of laser radiation with matter)

  9. Laser Ablation of Silk Protein (Fibroin) Films

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yasuyuki; Adachi, Hisanori; Yamada, Kazushi; Miyasaka, Hiroshi; Itaya, Akira

    2002-07-01

    Fibroin is the main protein component of silk and is expected to have functional applications in bioelectronics and medicine. We investigated nanosecond (ns) pulsed laser ablation of solid fibroin films with/without a dye as a photosensitizer. Laser lights at 248 nm and 532/355/351 nm excited the peptide bond of fibroin and the dye, respectively. The neat film irradiated at 248 nm was scarcely accessible to etching and swelling, and instead, a microscopic pattern (structure) was formed. In contrast, for ablation of the doped film at 532/355/351 nm, we found marked swelling (height ˜500 μm) and deep etching (depth ˜10 μm) on the irradiated surfaces. The dye-photosensitized ablation was brought about by a photothermal mechanism, whereas ablation of neat films may be induced by another process, such as a photochemical one. The ablation processes are discussed in terms of the properties of fibroin and the mode of excitation.

  10. Epicardial Ventricular Tachycardia Ablation for Which Patients?

    PubMed Central

    Roten, Laurent; Sacher, Frédéric; Daly, Matthew; Pascale, Patrizio; Komatsu, Yuki; Ramoul, Khaled; Scherr, Daniel; Chaumeil, Arnaud; Shah, Ashok; Denis, Arnaud; Derval, Nicolas; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-01-01

    With the widespread use of implantable cardioverter-defibrillators, an increasing number of patients present with ventricular tachycardia (VT). Large multicentre studies have shown that ablation of VT successfully reduces recurrent VT and this procedure is being performed by an increasing number of centres. However, for a number of reasons, many patients experience VT recurrence after ablation. One important reason for VT recurrence is the presence of an epicardial substrate involved in the VT circuit which is not affected by endocardial ablation. Epicardial access and ablation is now frequently performed either after failed endocardial VT ablation or as first-line treatment in selected patients. This review will focus on the available evidence for identifying VT of epicardial origin, and discuss in which patients an epicardial approach would be benefitial. PMID:26835028

  11. Artificial meteor ablation studies - Iron oxides.

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.

    1972-01-01

    Artificial meteor ablation was performed on natural minerals composed predominantly of magnetite and hematite by using an arc-heated plasma stream of air. Analysis indicates that most of the ablated debris was composed of two or more minerals. Wustite, a metastable mineral, was found to occur as a common product. The 'magnetite' sample, which was 80% magnetite, 14% hematite, 4% apatite, and 2% quartz, yielded ablated products consisting of more than 12 different minerals. Magnetite occurred in 91% of the specimens examined, hematite in 16%, and wustite in 30%. The 'hematite' sample, which was 96% hematite and 3% quartz, yielded ablated products consisting of more than 13 different minerals. Hematite occurred in 47% of the specimens examined, magnetite in 60%, and wustite in 28%. The more volatile elements (Si, P, and Cl) were depleted by about 50%. This study has shown that artificially created ablation products from iron oxides exhibit unique properties that can be used for identification.

  12. Lung Cancer Ablation: Technologies and Techniques

    PubMed Central

    Alexander, Erica S.; Dupuy, Damian E.

    2013-01-01

    The incidence of lung cancers in 2012 is estimated to reach 226,160 new cases, with only a third of patients suitable surgical candidates. Tumor ablation has emerged as an important and efficacious treatment option for nonsurgical lung cancer patients. This localized minimally invasive therapy is best suited for small oligonodular lesions or favorably located metastatic tumors. Radiofrequency ablation has been in use for over a decade, and newer modalities including microwave ablation, cryoablation, and irreversible electroporation have emerged as additional treatment options for patients. Ablation therapies can offer patients and clinicians a repeatable and effective therapy for palliation and, in some cases, cure of thoracic malignancies. This article discusses the available technologies and techniques available for tumor ablation of thoracic malignancies including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparisons between various therapies. PMID:24436530

  13. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  14. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  15. Simple model for ablative stabilization

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    1992-11-01

    We present a simple analytic model for ablative stablization of the Rayleigh-Taylor instability. In this model the effect of ablation is to move the peak of the perturbations to the location of peak pressure. This mechanism enhances the density-gradient stabilization, which is effective at short wavelengths, and it also enhances the stabilization of long-wavelength perturbations due to finite shell thickness. We consider the following density profile: exponential blowoff plasma with a density gradient β, followed by a constant-density shell of thickness δt. For perturbations of arbitrary wave number k, we present an explicit expression for the growth rate γ as a function of k, β, and δt. We find that ``thick'' shells defined by β δt>=1 have γ2>=0 for any k, while ``thin'' shells defined by β δt<1 can have γ2<0 for small k, reflecting stability by proximity to the back side of the shell. We also present lasnex simulations that are in good agreement with our analytic formulas.

  16. Tumor Ablation with Irreversible Electroporation

    PubMed Central

    Al-Sakere, Bassim; André, Franck; Bernat, Claire; Connault, Elisabeth; Opolon, Paule; Davalos, Rafael V.; Rubinsky, Boris; Mir, Lluis M.

    2007-01-01

    We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 µs at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation. PMID:17989772

  17. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  18. Femtosecond ablation of ultrahard materials

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.

    Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.

  19. [Surgical ablation therapy - lessons learned].

    PubMed

    Diegeler, A

    2007-06-01

    Atrial fibrillation (AF) is the most frequent sustained arrhythmia affecting more than 5% of the population above 65 years resulting in loss in quality of life and life expectancy. Since the introduction of the MAZE procedure, an increasing number of surgical approaches have been implemented for the treatment of AF. During past years a variety of devices such as application of unipolar and bipolar radiofrequency, cryothermal therapy, microwave, laser and ultrasound have been described. All new methods have undergone thorough evaluations; in that course technical systems have been re-designed and surgical approaches were modified. Before reaching a widespread clinical application a thorough analysis in terms of therapeutic benefit and possible complications is required. Several reports have reported success rates leading to reinstitution of atrial rhythm in 60 to 80% of the patients treated. However, there is no overview on possible complications using surgical ablation therapy. In this report we have focused on different energy sources, time of occurrence of postoperative arrhythmias, patient's symptoms and related diagnostic processes. Various published reports of surgical ablation therapy were evaluated with regard to complications that have occurred. In addition, our own extensive experience was considered as well.

  20. Percutaneous Microwave Ablation of Renal Angiomyolipomas.

    PubMed

    Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T

    2016-03-01

    To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  1. Metabolic predictors of obesity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization to four-year weight gain of post-obese and never-obese women.

    PubMed Central

    Weinsier, R L; Nelson, K M; Hensrud, D D; Darnell, B E; Hunter, G R; Schutz, Y

    1995-01-01

    This prospective study was designed to identify abnormalities of energy expenditure and fuel utilization which distinguish post-obese women from never-obese controls. 24 moderately obese, postmenopausal, nondiabetic women with a familial predisposition to obesity underwent assessments of body composition, fasting and postprandial energy expenditure, and fuel utilization in the obese state and after weight loss (mean 12.9 kg) to a post-obese, normal-weight state. The post-obese women were compared with 24 never-obese women of comparable age and body composition. Four years later, without intervention, body weight was reassessed in both groups. Results indicated that all parameters measured in the post-obese women were similar to the never-obese controls: mean resting energy expenditure, thermic effect of food, and fasting and postprandial substrate oxidation and insulin-glucose patterns. Four years later, post-obese women regained a mean of 10.9 kg while control subjects remained lean (mean gain 1.7 kg) (P < 0.001 between groups). Neither energy expenditure nor fuel oxidation correlated with 4-yr weight changes, whereas self-reported physical inactivity was associated with greater weight regain. The data suggest that weight gain in obesity-prone women may be due to maladaptive responses to the environment, such as physical inactivity or excess energy intake, rather than to reduced energy requirements. PMID:7883999

  2. Pulsed infrared laser ablation and clinical applications

    NASA Astrophysics Data System (ADS)

    Chan, Kin Foong

    Sufficient light energy deposited in tissue can result in ablation and excessive thermal and mechanical damage to adjacent tissues. The goals of this research are to investigate the mechanisms of pulsed infrared laser ablation of tissue, to optimize laser parameters for minimizing unnecessary damage to healthy tissue, and to explore the potential of using pulsed infrared lasers for clinical applications, especially laser lithotripsy. A dual-channel optical low coherence reflectometer was implemented to measure the expansion and collapse velocities of a Q-switched Ho:YAG (λ = 2.12 μm) laser-induced cavitation in water. Cavitation wall velocities up to 11 m/s were measured with this technique, and the results were in fair agreement with those calculated from fast-flash photographic images. The dependence of ablation threshold fluence on calculus absorption was examined. Preliminary results indicated that the product of optical absorption and ablation threshold fluence, which is the heat of ablation, remained constant for a given urinary calculus type and laser pulse duration. An extended study examined the influence of optical absorption on pulsed infrared laser ablation. An analytical photothermal ablation model was applied and compared to experimental ablation results using an infrared free-electron laser at selected wavelengths between 2.12 μm and 6.45 μm Results were in good agreement with the model, and the ablation depths of urinary calculi were highly dependent upon the calculus optical absorption as well as light attenuation within the intrapulse ablation plume. An efficient wavelength for ablation corresponded to the wavelength of the Er:YAG laser (λ = 2.94 μm) suggested this laser should be examined for laser lithotripsy. Schlieren flash photography, acoustic transient measurements with a piezoelectric polyvinylidene-fluoride needle-hydrophone, mass loss measurements, and chemical analyses were employed to study the ablation mechanisms of the free

  3. Association of left atrial function with incident atypical atrial flutter after atrial fibrillation ablation.

    PubMed

    Gucuk Ipek, Esra; Marine, Joseph E; Habibi, Mohammadali; Chrispin, Jonathan; Lima, Joao; Rickard, Jack; Spragg, David; Zimmerman, Stefan L; Zipunnikov, Vadim; Berger, Ronald; Calkins, Hugh; Nazarian, Saman

    2016-02-01

    Symptomatic left atrial (LA) flutter (LAFL) is common after atrial fibrillation (AF) ablation. The purpose of this study was to examine the association of baseline LA function with incident LAFL after AF ablation. The source cohort included 216 patients with cardiac magnetic resonance (CMR) before initial AF ablation between 2010 and 2013. Patients who underwent cryoballoon or laser ablation, patients with AF during CMR, and those with suboptimal CMR, or missing follow-up data were excluded. Baseline LA volume and function were assessed by feature-tracking CMR analysis. The final cohort included 119 patients (mean age 58.9 ± 11 years; 76.5% men; 70.6% patients with paroxysmal AF). During a median follow-up of 421 days (interquartile range 235-751 days), 22 patients (18.5%) had incident LAFL. Baseline LA volume was similar between the 2 groups. In contrast, baseline reservoir, conduit, and contractile function of the LA were significantly impaired in patients with incident LAFL. Baseline global peak longitudinal atrial strain (PLAS) <22.65% predicted incident LAFL with 86% sensitivity and 68% specificity (C statistic 0.76). In a multivariable model adjusting for age, heart failure, and LA volume, PLAS (hazard ratio 0.9 per % increase in PLAS; P = .003) and LA linear lesions (hazard ratio 2.94; P = .020) were independently associated with incident LAFL. The coexistence of PLAS <22.65% and linear lesions was associated with 9-fold increased hazard of incident LAFL. Baseline LA function and linear lesions were independently associated with incident LAFL after AF ablation. Linear lesions should be limited to selected cases, especially in patients with impaired LA function. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  4. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    SciTech Connect

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-02-15

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  5. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    SciTech Connect

    Yan, R.; Betti, R.; Sanz, J.; Aluie, H.; Liu, B.; Frank, A.

    2016-02-02

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  6. An overview of energy sources in clinical use for the ablation of atrial fibrillation.

    PubMed

    Comas, George M; Imren, Yildirim; Williams, Mathew R

    2007-01-01

    Recent years have seen many developments in the field of alternative energy sources for arrhythmia surgery. The impetus behind these advances is to replace the traditional, "cut-and-sew" Cox maze III procedure with lesion sets that are simpler, shorter, and safer but just as effective. There is demand for technology to make continuous, linear, transmural ablations reliably with a versatile energy source via an epicardial approach. This would make minimally invasive endoscopic surgical ablation of atrial fibrillation (AF) without cardiopulmonary bypass and with a closed chest feasible. These advances would shorten cardio-pulmonary bypass and improve outcomes in patients having surgical ablation and concomitant cardiac surgery. This review summarizes the technology behind alternative energy sources used to treat AF. Alternative energy sources include hypothermic sources (cryoablation) and hyperthermic sources (radiofrequency, microwave, laser, ultrasound). For each source, the biophysical background, mode of tissue injury, factors affecting lesion size, and advantages and complications are discussed.

  7. Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers

    SciTech Connect

    Puliafito, C.A.; Wong, K.; Steinert, R.F.

    1987-01-01

    Excimer laser radiation at 193 nm and 248 nm was used to create linear etch perforations of enucleated calf corneas. The etch depth per pulse was determined for various exposures, and specimens were examined by light and transmission electron microscopy. Compared to 248 nm, excimer laser ablation at 193 nm was found to have a lower threshold for onset of ablation, less increase in etch depth per pulse at increasing fluences, and less structural alteration in adjacent cornea. For 193 nm, structural alterations were minimal, confined to an area less than 0.3 micron wide, and did not increase with increasing fluence. These studies suggest that clinical strategies for excimer laser refractive surgery will employ the 193-nm wavelength, with fluence chosen depending on surgical strategy. Ablation exposures above 600 mJ/cm2 at 193 nm may give the most repeatable etch depth.

  8. Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass

    SciTech Connect

    Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.; Jarman, Kenneth D.; Robinson, John W.; Endres, Mackenzie C.; Hart, Garret L.; Gonzalez, Jhanis J.; Oropeza, Dayana; Russo, Richard; Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.; Eiden, Gregory C.

    2015-02-06

    We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling also allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.

  9. Endovascular Radiofrequency Ablation for Varicose Veins

    PubMed Central

    2011-01-01

    Executive Summary Objective The objective of the MAS evidence review was to conduct a systematic review of the available evidence on the safety, effectiveness, durability and cost–effectiveness of endovascular radiofrequency ablation (RFA) for the treatment of primary symptomatic varicose veins. Background The Ontario Health Technology Advisory Committee (OHTAC) met on August 26th, 2010 to review the safety, effectiveness, durability, and cost-effectiveness of RFA for the treatment of primary symptomatic varicose veins based on an evidence-based review by the Medical Advisory Secretariat (MAS). Clinical Condition Varicose veins (VV) are tortuous, twisted, or elongated veins. This can be due to existing (inherited) valve dysfunction or decreased vein elasticity (primary venous reflux) or valve damage from prior thrombotic events (secondary venous reflux). The end result is pooling of blood in the veins, increased venous pressure and subsequent vein enlargement. As a result of high venous pressure, branch vessels balloon out leading to varicosities (varicose veins). Symptoms typically affect the lower extremities and include (but are not limited to): aching, swelling, throbbing, night cramps, restless legs, leg fatigue, itching and burning. Left untreated, venous reflux tends to be progressive, often leading to chronic venous insufficiency (CVI). A number of complications are associated with untreated venous reflux: including superficial thrombophlebitis as well as variceal rupture and haemorrhage. CVI often results in chronic skin changes referred to as stasis dermatitis. Stasis dermatitis is comprised of a spectrum of cutaneous abnormalities including edema, hyperpigmentation, eczema, lipodermatosclerosis and stasis ulceration. Ulceration represents the disease end point for severe CVI. CVI is associated with a reduced quality of life particularly in relation to pain, physical function and mobility. In severe cases, VV with ulcers, QOL has been rated to be as bad

  10. Hepatic ablation with multiple interstitial ultrasound applicators: initial ex vivo and computational studies

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Salgaonkar, Vasant A.; Burdette, E. Clif; Diederich, Chris J.

    2011-03-01

    Radiofrequency (RF) ablation has emerged as an effective method for treating liver tumors under 3 cm in diameter. Multiple applicator devices and techniques - using RF, microwave and other modalities - are under development for thermal ablation of large and irregularly-shaped liver tumors. Interstitial ultrasound (IUS) applicators, comprised of linear arrays of independently powered tubular transducers, enable 3D control of the spatial power deposition profile and simultaneous ablation with multiple applicators. We evaluated IUS applicator configurations (parallel, converging and diverging implants) suitable for percutaneous and laparascopic placement with experiments in ex vivo bovine tissue and computational models. Ex vivo ablation zones measured 4.6+/-0.5 x 4.2+/-0.5 × 3.3+/-0.5 cm3 and 5.6+/-0.5 × 4.9+/-0.5 x 2.8+/-0.3 cm3 using three parallel applicators spaced 2 and 3 cm apart, respectively, and 4.0+/-0.3 × 3.2+/-0.4 × 2.9+/-0.2 cm3 using two parallel applicators spaced 2 cm apart. Computational models indicate in vivo ablation zones up to 4.5 × 4.4 × 5.5 cm3 and 5.7 × 4.8 × 5.2 cm3, using three applicators spaced 2 and 3 cm apart, respectively. Converging and diverging implant patterns can also be employed for conformal ablation of irregularly-shaped tumor margins by tailoring power levels along each device. Simultaneously powered interstitial ultrasound devices can create tailored ablation zones comparable to currently available RF devices and similarly sized microwave antennas.

  11. Utilizing confocal laser endomicroscopy for evaluating the adequacy of laparoscopic liver ablation

    PubMed Central

    Johnson, Sean P.; Walker‐Samuel, Simon; Gurusamy, Kurinchi; Clarkson, Matthew J.; Thompson, Stephen; Song, Yi; Totz, Johannes; Cook, Richard J.; Desjardins, Adrien E.; Hawkes, David J.; Davidson, Brian R.

    2015-01-01

    Background Laparoscopic liver ablation therapy can be used for the treatment of primary and secondary liver malignancy. The increased incidence of cancer recurrence associated with this approach, has been attributed to the inability of monitoring the extent of ablated liver tissue. Methods The feasibility of assessing liver ablation with probe‐based confocal laser endomicroscopy (CLE) was studied in a porcine model of laparoscopic microwave liver ablation. Following the intravenous injection of the fluorophores fluorescein and indocyanine green, CLE images were recorded at 488 nm and 660 nm wavelength and compared to liver histology. Statistical analysis was performed to assess if fluorescence intensity change can predict the presence of ablated liver tissue. Results CLE imaging of fluorescein at 488 nm provided good visualization of the hepatic microvasculature; whereas, CLE imaging of indocyanine green at 660 nm enabled detailed visualization of hepatic sinusoid architecture and interlobular septations. Fluorescence intensity as measured in relative fluorescence units was found to be 75–100% lower in ablated compared to healthy liver regions. General linear mixed modeling and ROC analysis found the decrease in fluorescence to be statistically significant. Conclusion Laparoscopic, dual wavelength CLE imaging using two different fluorophores enables clinically useful visualization of multiple liver tissue compartments, in greater detail than is possible at a single wavelength. CLE imaging may provide valuable intraoperative information on the extent of laparoscopic liver ablation. Lasers Surg. Med. 48:299–310, 2016. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. PMID:26718623

  12. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  13. Properties of low power spark ablation in aqueous solution for dissolution of precious metals and alloys

    NASA Astrophysics Data System (ADS)

    Goltz, Douglas; Boileau, Michael; Plews, Ian; Charleton, Kimberly; Hinds, Michael W.

    2006-07-01

    Spark ablation or electric dispersion of metal samples in aqueous solution can be a useful approach for sample preparation. The ablated metal forms a stable suspension that has been described as colloidal, which is easily dissolved with a small amount of concentrated (16 M) HNO 3. In this study, we have examined some of the properties of the spark ablation process for a variety of metals (Rh and Au) and alloys (stainless steel) using a low power spark (100-300 W). Particle size distributions and conductivity measurements were carried out on selected metals to characterize the stable suspensions. A LASER diffraction particle size analyzer was useful for showing that ablated particles varied in size from 1 to 30 μm for both the silver and the nickel alloy, Inconel. In terms of weight percent most of the particles were between 10 and 30 μm. Conductivity of the spark ablation solution was found to increase linearly for approximately 3 min before leveling off at approximately 300 S cm 3. These measurements suggest that a significant portion of the ablated metal is also ionic in nature. Scanning electron microscope measurements revealed that a low power spark is much less damaging to the metal surface than a high power spark. Crater formation of the low power spark was found in a wider area than expected with the highest concentration where the spark was directed. The feasibility of using spark ablation for metal dissolution of a valuable artifact such as gold was also performed. Determinations of Ag (4-12%) and Cu (1-3%) in Bullion Reference Material (BRM) gave results that were in very good agreement with the certified values. The precision was ± 0.27% for Ag at 4.15% (RSD = 6.5%) and ± 0.09% for Cu at 1% (RSD = 9.0%).

  14. [Indications for catheter ablation of ventricular tachycardia].

    PubMed

    Deneke, T; Israel, C W; Krug, J; Nentwich, K; Müller, P; Mügge, A; Schade, A

    2013-09-01

    Ventricular tachyarrhythmias (VT) can cause sudden cardiac death. This can be prevented by an implantable cardioverter-defibrillator (ICD) but approximately 25% of patients with an ICD develop electrical storm (≥ 3 VTs within 24 hours) during the course of 4-5 years. This is a life-threatening event even in the presence of an ICD, particularly if incessant VT is present, and may significantly deteriorate the patient's psychological state if multiple shocks are discharged. Catheter ablation of VT has developed into a standard procedure in many specialized electrophysiology centers. Patients with hemodynamically stable and unstable VT are amendable to substrate-based ablation strategies. Catheter ablation can be performed as emergency procedure in patients with electrical storm as well as electively in patients with monomorphic VT stored in ICD memory. In patients with ischemic or non-ischemic cardiomyopathy, VT ablation is complementary to ICD implantation and can reduce the number of ventricular arrhythmia episodes and shocks and should be performed early. In patients with electrical storm, catheter ablation can acutely achieve rhythm stabilization and may improve prognosis in the long term. Further indications for catheter ablation exist in patients with idiopathic VT where catheter ablation represents a curative therapy, and in patients with symptomatic or asymptomatic frequent premature ventricular beats which may improve prognosis in patients with heart failure and cardiac resynchronization therapy.

  15. Analysis of infrared laser tissue ablation

    NASA Astrophysics Data System (ADS)

    McKenzie, Gordon P.; Timmerman, Brenda H.; Bryanston-Cross, Peter J.

    2005-04-01

    The mechanisms involved in infrared laser tissue ablation are studied using a free electron laser (FELIX) in order to clarify whether the increased ablation efficiency reported in literature for certain infrared wavelengths is due to a wavelength effect or to the specific pulse structure of the lasers that are generally used in these studies. Investigations are presented of ablation of vitreous from pigs" eyes using several techniques including protein gel electrophoresis and ablation plume visualization. The ablation effects of three different infrared wavelengths are compared: 3 mm, which is currently in clinical surgical use, and the wavelengths associated with the amide I and amide II bands, i.e. 6.2 mm and 6.45mm, respectively. The results suggest a different ablation mechanism to be in operation for each studied wavelength, thus indicating that the generally reported increased ablation efficiency in the 6-6.5 micron range is due to the wavelength rather than the typical free electron laser pulse structure.

  16. A spectral analysis of ablating meteors

    NASA Astrophysics Data System (ADS)

    Bloxam, K.; Campbell-Brown, M.

    2017-09-01

    Meteor ablation features in the spectral lines occurring at 394, 436, 520, and 589 nm were observed using a four-camera spectral system between September and December 2015. In conjunction with this multi-camera system the Canadian Automated Meteor Observatory was used to observe the orbital parameters and fragmentation of these meteors. In total, 95 light curves with complete data in the 520 and 589 nm filters were analyzed; some also had partial or complete data in the 394 nm filter, but no usable data was collected with the 436 nm filter. Of the 95 events, 70 exhibited some degree of differential ablation, and in all except 3 of these 70 events the 589 nm filter started or ended sooner compared with the 520 nm filter, indicating early ablation at the 589 nm wavelength. In the majority of cases the meteor showed evidence of fragmentation regardless of the type of ablation (differential or uniform). A surprising result was the lack of correlation found concerning the KB parameter, linked to meteoroid strength, and differential ablation. In addition, 22 shower-associated meteors were observed; Geminids showed mainly slight differential ablation, while Taurids were more likely to ablate uniformly.

  17. On the Ablation Models of Fuel Pellets

    SciTech Connect

    Rozhansky, V.A.; Senichenkov, I.Yu.

    2005-12-15

    The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.

  18. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  19. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  20. Radiofrequency Ablation: A Nursing Perspective

    PubMed Central

    Locklin, Julia K.; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has emerged as a safe and predictable technology for treating certain patients with cancer who otherwise have few treatment options. Nurses need to be familiar with all phases of the RFA procedure to create an optimal environment for patients. This article offers a brief review of the RFA procedure and nurses' responsibilities in caring for these patients. Before RFA, nurses should focus on patient education and aggressive hydration. During the procedure, nurses can prevent injury by placing grounding pads appropriately, monitoring vital signs, and medicating patients as needed. After RFA, nurses should assess the skin puncture site, provide adequate pain relief, and, again, hydrate patients. Nurses who care appropriately for RFA recipients may help to improve patient outcomes and make an otherwise frightening procedure more comfortable. PMID:15973845

  1. Ablation of idiopathic ventricular tachycardia.

    PubMed

    Schreiber, Doreen; Kottkamp, Hans

    2010-09-01

    Idiopathic ventricular arrhythmias occur in patients without structural heart disease. They can arise from a variety of specific areas within both ventricles and in the supravalvular regions of the great arteries. Two main groups need to be differentiated: arrhythmias from the outflow tract (OT) region and idiopathic left ventricular, so-called fascicular, tachycardias (ILVTs). OT tachycardia typically originates in the right ventricular OT, but may also occur in the left ventricular OT, particularly in the sinuses of Valsalva or the anterior epicardium or the great cardiac vein. Activation mapping or pace mapping for the OT regions and mapping of diastolic potentials in ILVTs are the mapping techniques that are typically used. The ablation of idiopathic ventricular arrhythmias is highly successful, associated with only rare complications. Newly recognized entities of idiopathic ventricular tachycardias are those originating in the papillary muscles and in the atrioventricular annular regions.

  2. Alternative Approaches for Ablation of Resistant Ventricular Tachycardia.

    PubMed

    Gianni, Carola; Mohanty, Sanghamitra; Trivedi, Chintan; Di Biase, Luigi; Al-Ahmad, Amin; Natale, Andrea; David Burkhardt, J

    2017-03-01

    Ventricular tachycardia (VT) ablation is usually performed with an ablation catheter that delivers unipolar radiofrequency (RF) energy to eliminate the re-entry circuit responsible for VT. However, there are some instances when unipolar RF ablation fails, notably in VTs with a deep intramural origin, or cases in which epicardial access is not attainable due to prior cardiac surgery. To overcome these limitations, several alternative approaches have been used in clinical practice, including alcohol ablation or coil embolization, simultaneous unipolar or bipolar RF ablation, surgical ablation, or noninvasive ablation with stereotactic radiosurgery. This review article describes some of these alternative techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Femtosecond laser surface ablation of polymethyl-methacrylate with position control through z-scan

    NASA Astrophysics Data System (ADS)

    Florian, C.; Caballero-Lucas, F.; Fernández-Pradas, J. M.; Bosch, S.; Morenza, J. L.; Serra, P.

    2015-08-01

    Spatial resolution of laser micromachining of polymers can be improved with the use of femtosecond laser pulses. Due to the short interaction time, thermal effects are significantly reduced. Additionally, the non-linear character of the interaction of ultrashort laser pulses with transparent materials allows the modification inside their bulk also. However, this creates the challenge to accurately focus the laser beam in the surface when only surface ablation is required. Thus, this work presents a study of the laser ablation of a transparent polymer at different pulse energies and focusing positions controlled through z-scan transmittance measurements. Experiments were performed using an Yb:KYW laser with 450 fs pulses and 1027 nm wavelength. Morphological analysis of the polymer surface after irradiation was performed using scanning electron microscopy. Similar ablation craters were found for a range of sample positions around the beam waist. However, focused ion beam cross-sections of the craters unveil significant inner modifications under most of the focusing conditions leading to surface ablation. Hence, surface ablation without damaging the bulk material only occurs at critical positions where the beam waist is located slightly outside the sample. In situ monitoring of the sample position can be made through transmittance measurements.

  4. Precision test apparatus for evaluating the heating pattern of radiofrequency ablation devices.

    PubMed

    Chang, I; Beard, B

    2002-11-01

    Radiofrequency has established itself as a useful technique for managing cardiac arrhythmias and treating soft tissue tumors. However, despite its pervasive use, many of the biophysical principals needed to fully understand and optimize the radiofrequency ablation technique have not been explored. We have designed a test rig that is useful for studying the heat transfer mechanisms that affect the outcome of radiofrequency ablation devices. Using both solid and liquid phantom materials, which simulate body tissues and blood, the test rig is designed for systematic testing of the effects of predictable flow patterns on the temperature profiles generated within the solid phantom. The test rig consists of a custom built thermistor array, a linear test chamber, and a radiofrequency generator. We calibrate the flow of a liquid phantom material to demonstrate that predictable laminar flow profiles are generated. To demonstrate the performance of the ablation system, we present preliminary data attained using a commercially available cardiac ablation catheter. The advantages of this test system are its flexibility, its reproducibility, its precision, and its low cost. Thus, it is ideally suited for studying a variety of complex ablation problems involving multiple tissues types and complex blood flow geometries.

  5. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin

    2014-06-01

    Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.

  6. Prospective, Tissue-Specific Optimization of Ablation for Multiwavelet Reentry: Predicting the Required Amount, Location, and Configuration of Lesions.

    PubMed

    Carrick, Richard T; Benson, Bryce E; Bates, Jason H T; Spector, Peter S

    2016-03-01

    Treatment of multiwavelet reentry (MWR) remains difficult. We previously developed a metric, the fibrillogenicity index, to assess the propensity of homogeneous, 2-dimensional tissues to support MWR. In this study, we demonstrate a method by which fibrillogenicity index can be generalized to heterogeneous tissues and validate an algorithm for prospective, tissue-specific optimization of ablation to reduce MWR burden. We used a computational model to simulate and measure the duration of MWR in tissues with heterogeneously distributed action potential durations and then assessed the relative efficacy of a variety of ablation strategies for reducing tissues' ability to support MWR. We then derived and tested a strategy in which multiple linear lesions partially divided a fibrillogenic tissue into functionally equivalent subsections. The composite action potential duration of heterogeneous tissue was well approximated by an inverse sum of cellular action potential durations (R(2)=0.82). Linear ablation more efficiently reduced MWR duration than branching ablation patterns and optimally reduced disease burden when positioned at a tissue's functional (rather than geometric) center. The duration of MWR after application of prospective, individually optimized ablation sets fell within 4.4% (95% confidence interval, 3-5.8) of the predicted target. We think that this study presents a novel approach for (1) quantifying the extent of a tissue's electric derangement, (2) prospectively determining the amount of ablation required to minimize the burden of MWR, and (3) predicting the most efficient distribution of these ablation lesions in tissue refractory to standard ablation strategies. © 2016 American Heart Association, Inc.

  7. Diamond Ablators for Inertial Confinement Fusion

    SciTech Connect

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  8. Catheter ablation of inappropriate sinus tachycardia.

    PubMed

    Gianni, Carola; Di Biase, Luigi; Mohanty, Sanghamitra; Gökoğlan, Yalçın; Güneş, Mahmut F; Horton, Rodney; Hranitzky, Patrick M; Burkhardt, J David; Natale, Andrea

    2016-06-01

    Catheter ablation for inappropriate sinus tachycardia (IST) is recommended for patients symptomatic for palpitations and refractory to other treatments. The current approach consists in sinus node modification (SNM), achieved by ablation of the cranial part of the sinus node to eliminate faster sinus rates while trying to preserve chronotropic competence. This approach has a limited efficacy, with a very modest long-term clinical success. To overcome this, proper patient selection is crucial and an epicardial approach should always be considered. This brief review will discuss the current role and limitations of catheter ablation in the management of patients with IST.

  9. Radiofrequency Ablation of Persistent Atrial Fibrillation

    PubMed Central

    Hussein, Ayman A.; Saliba, Walid I.; Barakat, Amr; Bassiouny, Mohammed; Chamsi-Pasha, Mohammed; Al-Bawardy, Rasha; Hakim, Ali; Tarakji, Khaldoun; Baranowski, Bryan; Cantillon, Daniel; Dresing, Thomas; Tchou, Patrick; Martin, David O.; Varma, Niraj; Bhargava, Mandeep; Callahan, Thomas; Niebauer, Mark; Kanj, Mohamed; Chung, Mina; Natale, Andrea; Lindsay, Bruce D.; Wazni, Oussama M.

    2017-01-01

    Background Various ablation strategies of persistent atrial fibrillation (PersAF) have had disappointing outcomes, despite concerted clinical and research efforts, which could reflect progressive atrial fibrillation–related atrial remodeling. Methods and Results Two-year outcomes were assessed in 1241 consecutive patients undergoing first-time ablation of PersAF (2005–2012). The time intervals between the first diagnosis of PersAF and the ablation procedures were determined. Patients had echocardiograms and measures of B-type natriuretic peptide and C-reactive protein before the procedures. The median diagnosis-to-ablation time was 3 years (25th–75th percentiles 1–6.5). With longer diagnosis-to-ablation time (based on quartiles), there was a significant increase in recurrence rates in addition to an increase in B-type natriuretic peptide levels (P=0.01), C-reactive protein levels (P<0.0001), and left atrial size (P=0.03). The arrhythmia recurrence rates over 2 years were 33.6%, 52.6%, 57.1%, and 54.6% in the first, second, third, and fourth quartiles, respectively (Pcategorical<0.0001). In Cox Proportional Hazard analyses, B-type natriuretic peptide levels, C-reactive protein levels, and left atrial size were associated with arrhythmia recurrence. The diagnosis-to-ablation time had the strongest association with the ablation outcomes which persisted in multivariable Cox analyzes (hazard ratio for recurrence per +1Log diagnosis-to-ablation time 1.27, 95% confidence interval 1.14–1.43; P<0.0001; hazard ratio fourth versus first quartile 2.44, 95% confidence interval 1.68–3.65; Pcategorical<0.0001). Conclusions In patients with PersAF undergoing ablation, the time interval between the first diagnosis of PersAF and the catheter ablation procedure had a strong association with the ablation outcomes, such as shorter diagnosis-to-ablation times were associated with better outcomes and in direct association with markers of atrial remodeling. PMID:26763227

  10. Nanosecond laser ablation of gold nanoparticle films

    SciTech Connect

    Ko, Seung H.; Choi, Yeonho; Hwang, David J.; Grigoropoulos, Costas P.; Chung, Jaewon; Poulikakos, Dimos

    2006-10-02

    Ablation of self-assembled monolayer protected gold nanoparticle films on polyimide was explored using a nanosecond laser. When the nanoparticle film was ablated and subsequently thermally sintered to a continuous film, the elevated rim structure by the expulsion of molten pool could be avoided and the ablation threshold fluence was reduced to a value at least ten times lower than the reported threshold for the gold film. This could be explained by the unusual properties of nanoparticle film such as low melting temperature, weak bonding between nanoparticles, efficient laser energy deposition, and reduced heat loss. Finally, submicron lines were demonstrated.

  11. IR laser ablation of dental enamel

    NASA Astrophysics Data System (ADS)

    Fried, Daniel

    2000-03-01

    An overview of the basic mechanisms of IR laser ablation of dental enamel is presented. Enamel is a highly structured tissue consisting of an heterogeneous distribution of water, mineral, protein and lipid. Absorption bands of water and carbonated hydroxyapatite can be selectively targeted from 2.7 to 11-micrometer via several laser wavelengths. Mechanistic differences in the nature of ablation and the varying surface morphology produced can be explained by the microstructure of the tissue. Suggested criteria for the choice of the optimum laser parameters for clinical use, the influence of plasma shielding and the role of exogenous water on the mechanism of ablation are discussed.

  12. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Use of a circular mapping and ablation catheter for ablation of atypical right ventricular outflow tract arrhythmia.

    PubMed

    Katritsis, Demosthenes G; Giazitzoglou, Eleftherios; Paxinos, George

    2010-02-01

    A new technique for ablation of persistent ectopic activity with atypical electrocardiographic characteristics at the vicinity of the right ventricular outflow tract is described. A new circular mapping and ablation catheter initially designed for pulmonary vein ablation was used. Abolition of ectopic activity was achieved with minimal fluoroscopy and ablation times.

  14. [Effect analysis of multi-electrode synchronous radiofrequency ablation and conventional single electrode overlapping ablation].

    PubMed

    Zhang, Yanyang; Gu, Yangkui; Huang, Jinhua; Gao, Fei; Jiang, Xiongying; Zhang, Tianqi; Huang, Senmiao

    2015-11-17

    To explore the different effects in ex vivo bovine liver between multiple cool-tip internally cooled electrodes synchronous radiofrequency ablation via switching controller and conventional single electrode overlapping radiofrequency ablation. The above two methods were used to ablate in ex vivo bovine liver respectively. Electrode exposed end was 3 cm or 4 cm in length. The morphological characteristics of lesions created by two methods were observed, the sizes of the ablated lesions were measured and compared. The formation of lesions ablated by both two methods was ellipsoidal. The longitudinal diameter, transverse diameter, front-end diameter and volume of the lesions ablated 16 mins by multi-electrode synchronous radiofrequency ablation via switching controller were (7.12 ± 0.52) cm, (5.71 ± 0.47) cm, (1.77 ± 0.29) cm, (102 ± 20) cm³, respectively. All of them are larger than the lesions ablated 36 mins by conventional single electrode overlapping radiofrequency ablation (P<0.01). At the same 16 mins, multi-electrode synchronous radiofrequency ablation via switching controller created longer longitudinal diameter and large volume (P<0.01) with longer exposed end electrodes (4 cm vs 3 cm). But the transverse diameter, the front-end diameter had no statistical difference (P>0.05). Compared with the conventional single electrode overlapping radiofrequency ablation, multi-electrode synchronous radiofrequency ablation via switching controller create larger lesion in the shorter time. It may provide a new attempt for the clinical treatment of large hepatocellular carcinoma.

  15. Observation of the stabilizing effect of a laminated ablator on the ablative Rayleigh-Taylor instability.

    PubMed

    Masse, L; Casner, A; Galmiche, D; Huser, G; Liberatore, S; Theobald, M

    2011-05-01

    A laminated ablator is explored as an alternative concept for stabilizing the ablative Rayleigh-Taylor instability which develops in inertial fusion targets. Experiments measuring the growth of the Rayleigh-Taylor instability of laminated planar foils are reported. Consistent with both theory and simulations, a significant reduction of the perturbation growth is experimentally observed for laminated ablators in comparison to what is observed for classical uniform ablators. Such an enhanced hydrodynamic stability opens opportunities for the design of high-gain inertial fusion targets. © 2011 American Physical Society

  16. Observation of the stabilizing effect of a laminated ablator on the ablative Rayleigh-Taylor instability

    SciTech Connect

    Masse, L.; Casner, A.; Galmiche, D.; Huser, G.; Liberatore, S.; Theobald, M.

    2011-05-15

    A laminated ablator is explored as an alternative concept for stabilizing the ablative Rayleigh-Taylor instability which develops in inertial fusion targets. Experiments measuring the growth of the Rayleigh-Taylor instability of laminated planar foils are reported. Consistent with both theory and simulations, a significant reduction of the perturbation growth is experimentally observed for laminated ablators in comparison to what is observed for classical uniform ablators. Such an enhanced hydrodynamic stability opens opportunities for the design of high-gain inertial fusion targets.

  17. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  18. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  19. Pharmacological Tests in Atrial Fibrillation Ablation

    PubMed Central

    Gourraud, Jean-Baptiste; Andrade, Jason G; Macle, Laurent

    2016-01-01

    The invasive management of atrial fibrillation (AF) has been considerably changed by the identification of major sites of AF initiation and/or maintenance within the pulmonary vein antra. Percutaneous catheter ablation of these targets has become the standard of care for sustained maintenance of sinus rhythm. Long-term failure of ablation is related to an inability to create a durable transmural lesion or to identify all of the non-pulmonary vein arrhythmia triggers. Pharmacological challenges during catheter ablation have been suggested to improve outcomes in both paroxysmal and persistent AF. Herein we review the mechanism and evidence for the use of pharmacological adjuncts during the catheter ablation of AF. PMID:28116081

  20. Evolving Ablative Therapies for Hepatic Malignancy

    PubMed Central

    Hochwald, Steven N.

    2014-01-01

    The liver is a common site for both primary and secondary malignancy. Hepatic resection and transplantation are the two treatment modalities that have been shown to achieve complete cure, but only 10 to 20% of patients are candidates for these treatments. For the remaining patients, tumor ablation has emerged as the most promising alternative modality. In addition to providing local control and improving survival outcomes, tumor ablation also helps to down stage patients for potential curative treatments, both alone as well as in combination with other treatments. While tumor ablation can be achieved in multiple ways, the introduction of newer ablative techniques has shifted the focus from palliation to potentially curative treatment. Because the long-term safety and survival benefits are not substantive at present, it is important that we strive to evaluate the results from these studies using appropriate comparative outcome methodologies. PMID:24877069

  1. Laser ablation of a polysilane material

    NASA Astrophysics Data System (ADS)

    Hansen, S. G.; Robitaille, T. E.

    1987-08-01

    The laser ablation properties of a (50%)-isopropyl methyl-(50%)-n-propyl methyl silane copolymer are examined. Both 193- and 248-nm-pulsed excimer laser radiation cleanly and completely remove this material in vacuum above certain energy thresholds (30 and 50 mJ/cm2, respectively). Under these conditions the ablation properties are quite similar to those reported for typical organic polymers. Below threshold, ablation is less efficient and becomes increasingly inefficient as irradiation continues due to spectral bleaching. In the presence of air, material removal is incomplete even for high-energy densities and long exposures. The ablation rate is shown to be independent of substrate material both above and below threshold.

  2. Nanoscale ablation through optically trapped microspheres

    NASA Astrophysics Data System (ADS)

    Fardel, Romain; McLeod, Euan; Tsai, Yu-Cheng; Arnold, Craig B.

    2010-10-01

    The ability to directly create patterns with size scales below 100 nm is important for many applications where the production or repair of high resolution and density features is needed. Laser-based direct-write methods have the benefit of being able to quickly and easily modify and create structures on existing devices, but ablation can negatively impact the overall technique. In this paper we show that self-positioning of near-field objectives through the optical trap assisted nanopatterning (OTAN) method allows for ablation without harming the objective elements. Small microbeads are positioned in close proximity to a substrate where ablation is initiated. Upon ablation, these beads are temporarily displaced from the trap but rapidly return to the initial position. We analyze the range of fluence values for which this process occurs and find that there exists a critical threshold beyond which the beads are permanently ejected.

  3. Physical processes of laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Furzikov, Nickolay P.

    1991-05-01

    The revised ablation model applicable to homogeneous tissues is presented. It is based on the thermal mechanism and involves the instability of the laserinduced evaporation (thermodestruction) front the growth of the surface ripple structure the interference of the laser wave and of the surface wave arising by diffraction on the ripples Beer''s law violation the pulsed thermodestruction of the organic structural component the tissue water boiling and gas dynamic expansion of the resulting products into the surrounding medium which is followed by the shock wave formation. The UV and IR ablation schemes were implemented and compared to the corneal ablation experiments. The initial ablation pressure and temperature are given restored from the timeofflight measurements of the supersonic expansion of the product. 1.

  4. Photodynamic therapy toward selective endometrial ablation

    NASA Astrophysics Data System (ADS)

    Tadir, Yona; Tromberg, Bruce J.; Krasieva, Tatiana B.; Berns, Michael W.

    1993-05-01

    Potential applications of photodynamic therapy for endometrial disease are discussed. Experimental models that may lead to diagnosis and treatment of endometriosis as well as selective endometrial ablation are summarized.

  5. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  6. Microwave Tissue Ablation: Biophysics, Technology and Applications

    PubMed Central

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  7. Three-Dimensional Single-Mode Nonlinear Ablative Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Yan, R.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2015-11-01

    The nonlinear evolution of the ablative Rayleigh-Taylor (ART) instability is studied in three dimensions for conditions relevant to inertial confinement fusion targets. The simulations are performed using our newly developed code ART3D and an astrophysical code AstroBEAR. The laser ablation can suppress the growth of the short-wavelength modes in the linear phase but may enhance their growth in the nonlinear phase because of the vortex-acceleration mechanism. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the bubble velocity grows faster than predicted in the classical 3-D theory. When compared to 2-D results, 3-D short-wavelength bubbles grow faster and do not reach saturation. The unbounded 3-D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes into the ablated plasma filling the bubble volume. A density plateau is observed inside a nonlinear ART bubble and the plateau density is higher for shorter-wavelength modes. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  9. Hemodynamic Support for Ventricular Tachycardia Ablation.

    PubMed

    Palaniswamy, Chandrasekar; Miller, Marc A; Reddy, Vivek Y; Dukkipati, Srinivas R

    2017-03-01

    This review discusses the role of hemodynamic support for catheter ablation of unstable ventricular tachycardia, using commercially available mechanical circulatory support devices (intra-aortic balloon pump, Impella, TandemHeart, extracorporeal membrane oxygenation) and analyzes the published clinical experience of the safety and efficacy of these devices during ventricular tachycardia ablation. Appropriate selection of patients, device-specific characteristics, and hemodynamic monitoring is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Support for High Power Laser Ablation 2010

    DTIC Science & Technology

    2010-04-16

    Femtosecond Pulsed laser Ablation and Deposition Marta Castillejo Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain Tel:+34...system to transition the laser cavity’s low pressure to the ambient pressure outside the device. Diffusers use a series of shocks in a duct to...especially the incident laser fluence and ambient pressure. New results highlight the influence of the ambient pressure on ablation physics from the

  11. Resonant laser ablation: mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1996-10-01

    We report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation is presented.

  12. Novel Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.

  13. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  14. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  15. Epicardial ablation with irrigated electrodes: – effect of bipolar vs. unipolar ablation on lesion formation –.

    PubMed

    Nagashima, Koichi; Watanabe, Ichiro; Okumura, Yasuo; Sonoda, Kazumasa; Kofune, Masayoshi; Mano, Hiroaki; Ohkubo, Kimie; Nakai, Toshiko; Kunimoto, Satoshi; Kasamaki, Yuji; Hirayama, Atsushi

    2012-01-01

    Ablation of ventricular tachycardia originating from the left ventricular (LV) epicardium is often limited by the radiofrequency power delivery. We compared the effect of bipolar vs. unipolar epicardial ablation on lesion size. Eleven excised pig hearts were superfused with saline (2 L/min). Unipolar ablation (25 or 30 W for 120 s) was performed between the LV epicardial saline-irrigated electrode and an indifferent electrode (n = 33 lesions). Bipolar ablation (25 or 30 W for 120 s) was performed between a 4-mm saline-irrigated-tip (20 ml/min) electrode on the LV epicardium and an opposing 10-mm non-irrigated-tip electrode on the LV endocardium (n = 38 lesions). Wall thickness did not differ between experiments (15.4 ± 2.4 vs. 15.3 ± 2.1 mm). Impedance was lower at the beginning and end of unipolar ablation than at the beginning and end of bipolar ablation (163.2 ± 20.3Ω and 109.9 ± 16.0Ω vs. 194.6 ± 23.3Ω and 127.1 ± 16.4Ω, respectively) (P<0.001). Epicardial lesion width did not differ between unipolar and bipolar ablation (10.1 ± 2.7 vs. 10.2 ± 2.4 mm), but lesion depth was greater with bipolar ablation (10.6 ± 2.7 vs. 7.5 ± 1.0 mm) (P<0.001). Unipolar ablation produced no transmural lesion, but bipolar ablation produced 15 (46%) (P<0.001). Steam pop occurred in 11 (29%) and 3 (9%) cases, respectively (P = 0.036). Bipolar ablation of the LV free wall is highly effective at creating an appropriately deep epicardial lesion.

  16. Thermal Ablation of Colorectal Lung Metastases: Retrospective Comparison Among Laser-Induced Thermotherapy, Radiofrequency Ablation, and Microwave Ablation.

    PubMed

    Vogl, Thomas J; Eckert, Romina; Naguib, Nagy N N; Beeres, Martin; Gruber-Rouh, Tatjana; Nour-Eldin, Nour-Eldin A

    2016-12-01

    The purpose of this study is to retrospectively evaluate local tumor control, time to tumor progression, and survival rates among patients with lung metastatic colorectal cancer who have undergone ablation therapy performed using laser-induced thermotherapy (LITT), radiofrequency ablation (RFA), or microwave ablation (MWA). Data for this retrospective study were collected from 231 CT-guided ablation sessions performed for 109 patients (71 men and 38 women; mean [± SD] age, 68.6 ± 11.2 years; range, 34-94 years) from May 2000 to May 2014. Twenty-one patients underwent LITT (31 ablations), 41 patients underwent RFA (75 ablations), and 47 patients underwent MWA (125 ablations). CT scans were acquired 24 hours after each therapy session and at follow-up visits occurring at 3, 6, 12, 18, and 24 months after ablation. Survival rates were calculated from the time of the first ablation session, with the use of Kaplan-Meier and log-rank tests. Changes in the volume of the ablated lesions were measured using the Kruskal-Wallis method. Local tumor control was achieved in 17 of 25 lesions (68.0%) treated with LITT, 45 of 65 lesions (69.2%) treated with RFA, and 91 of 103 lesions (88.3%) treated with MWA. Statistically significant differences were noted when MWA was compared with LITT at 18 months after ablation (p = 0.01) and when MWA was compared with RFA at 6 months (p = 0.004) and 18 months (p = 0.01) after ablation. The overall median time to local tumor progression was 7.6 months. The median time to local tumor progression was 10.4 months for lesions treated with LITT, 7.2 months for lesions treated with RFA, and 7.5 months for lesions treated with MWA, with no statistically significant difference noted. New pulmonary metastases developed in 47.6% of patients treated with LITT, in 51.2% of patients treated with RFA, and in 53.2% of patients treated with MWA. According to the Kaplan-Meier test, median survival was 22.1 months for patients who underwent LITT, 24.2 months

  17. Multiple applicator hepatic ablation with interstitial ultrasound devices: Theoretical and experimental investigation

    PubMed Central

    Prakash, Punit; Salgaonkar, Vasant A.; Clif Burdette, E.; Diederich, Chris J.

    2012-01-01

    Purpose: To evaluate multiple applicator implant configurations of interstitial ultrasound devices for large volume ablation of liver tumors. Methods: A 3D bioacoustic-thermal model using the finite element method was implemented to assess multiple applicator implant configurations for thermal ablation with interstitial ultrasound energy. Interstitial applicators consist of linear arrays of up to four 10 mm-long tubular ultrasound transducers, each under separate and dynamic power control, enclosed within a water-cooled delivery catheter (2.4 mm OD). The authors considered parallel implants with two and three applicators (clustered configuration), spaced 2–3 cm apart, to simulate open surgical placement. In addition, the authors considered two applicator implants with applicators converging and diverging at angles of ∼20°, 30°, and 45° to simulate percutaneous placement. Heating experiments (10–15 min) were performed and compared against simulations employing the same experimental parameters. To estimate the performance of parallel, multiple applicator configurations in an in vivo setting, simulations were performed taking into account a range of blood perfusion levels (0, 5, 12, and 15 kg m−3 s−1) that may occur in tumors of varying vascularity. The impact of tailoring the power supplied to individual transducer elements along the length of applicators is explored for applicators inserted in non-parallel (converging and diverging) configurations. Thermal dose (t43 > 240 min) and temperature thresholds (T > 52 °C) were used to define the ablation zones, with dynamic changes to tissue acoustic and thermal properties incorporated within the model. Results: Experiments in ex vivo bovine liver yielded ablation zones ranging between 4.0–5.6 cm × 3.2–4.9 cm, in cross section. Ablation zone dimensions predicted by simulations with similar parameters to the experiments were in close agreement (within 5 mm). Simulations of in vivo heating showed that 15

  18. The efficacy of ablation based on the combined use of the dominant frequency and complex fractionated atrial electrograms for non-paroxysmal atrial fibrillation.

    PubMed

    Kumagai, Koji; Nakano, Masahiro; Kutsuzawa, Daisuke; Yamaguchi, Yoshiaki; Minami, Kentaro; Oshima, Shigeru

    2016-06-01

    This study aimed to evaluate an approach for an endpoint of non-inducibility using a combined high-dominant frequency (DF) and continuous complex fractionated atrial electrogram (CFAE) ablation following circumferential pulmonary vein isolation (PVI) in a sequential fashion, including linear ablation as compared to PVI alone. A total of 84 non-paroxysmal patients with atrial fibrillation (AF) were investigated retrospectively. The AF patients were divided into two groups: patients with PVI following a combined high-DF and continuous CFAE ablation with linear ablation (substrate modification group, n=59) and those with PVI alone (n=25). DF sites of ≥8Hz and then continuous CFAE sites defined by fractionation intervals of ≤50ms were modified after PVI. The ablation endpoint was non-inducibility. Atrial tachyarrhythmias (ATs) could not be induced in 54 of 59 (92%) patients after a sequential ablation, and in 18 of 25 (64%) with PVI alone. The ATs freedom without antiarrhythmic drugs in the substrate modification group was significantly greater than that in those with PVI alone after 1 procedure during 12 months of follow-up (78.6% vs. 53.8%, log-rank test p=0.039). This sequential approach using a substrate based ablation was associated with a better clinical long-term outcome as compared to PVI alone. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  19. Localization of gaps during redo ablations of paroxysmal atrial fibrillation: Preferential patterns depending on the choice of cryoballoon ablation or radiofrequency ablation for the initial procedure.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Auffret, Vincent; Fénéon, Damien; Behaghel, Albin; Daubert, Jean-Claude; Mabo, Philippe; Martins, Raphaël P

    2016-11-01

    Pulmonary vein (PV) isolation, using cryoballoon or radiofrequency ablation, is the cornerstone therapy for symptomatic paroxysmal atrial fibrillation (AF) refractory to antiarrhythmic drugs. One-third of the patients have recurrences, mainly due to PV reconnections. To describe the different locations of reconnection sites in patients who had previously undergone radiofrequency or cryoballoon ablation, and to compare the characteristics of the redo procedures in both instances. Demographic data and characteristics of the initial ablation (cryoballoon or radiofrequency) were collected. Number and localization of reconduction gaps, and redo characteristics were reviewed. Seventy-four patients scheduled for a redo ablation of paroxysmal AF were included; 38 had been treated by radiofrequency ablation and 36 by cryoballoon ablation during the first procedure. For the initial ablation, procedural and fluoroscopy times were significantly shorter for cryoballoon ablation (147.8±52.6min vs. 226.6±64.3min [P<0.001] and 37.0±17.7min vs. 50.8±22.7min [P=0.005], respectively). Overall, an identical number of gaps was found during redo procedures of cryoballoon and radiofrequency ablations. However, a significantly higher number of gaps were located in the right superior PV for patients first ablated with radiofrequency (0.9±1.0 vs. 0.5±0.9; P=0.009). Gap localization displayed different patterns. Although not significant, redo procedures of cryoballoon ablation were slightly shorter and needed shorter durations of radiofrequency to achieve PV isolation. During redo procedures, gap localization pattern is different for patients first ablated with cryoballoon or radiofrequency ablation, and right superior PV reconnections occur more frequently after radiofrequency ablation. Redo ablation of a previous cryoballoon ablation appears to be easier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. A clinical and health-economic evaluation of pulmonary vein encircling ablation compared with antiarrhythmic drug treatment in patients with persistent atrial fibrillation (Catheter Ablation for the Cure of Atrial Fibrillation-2 study).

    PubMed

    Bertaglia, Emanuele; Stabile, Giuseppe; Senatore, Gaetano; Colella, Andrea; Del Greco, Maurizio; Goessinger, Heinz; Lamberti, Filippo; Lowe, Martin; Mantovan, Roberto; Peters, Nicholas; Pratola, Claudio; Raatikainen, Pekka; Turco, Pietro; Verlato, Roberto

    2007-03-01

    Catheter Ablation for the Cure of Atrial Fibrillation 2 study is a prospective, randomized trial aimed to demonstrate the efficacy of catheter ablation with combined lesions in the right and left atria, in preventing atrial fibrillation (AF) recurrences among patients with recurrent persistent AF refractory to one antiarrhythmic drug, in comparison with the best pharmacological therapy. Enrolment is limited to patients aged between 18 and 70 years who have experienced at least one documented relapse of persistent AF during antiarrhythmic drug therapy. One hundred and twenty-six patients will be randomized to ablation or antiarrhythmic drug therapy in a 2 : 1 manner. In the ablation group, the patients will undergo right and left atrial linear ablation. Control group patients will be treated with the best antiarrhythmic drug. After an initial blanking period of 2 months patients will be followed for 24 months. Primary endpoint of the study is the absence of documented persistent atrial tachyarrhythmias relapse during the first 24 months after the blanking period. Enrolment is scheduled in 14 centres in Italy, UK, Austria, and Finland. Seventy-two patients have currently been enrolled. This study will provide important data about the efficacy of catheter ablation in comparison with antiarrhythmic drugs for the treatment of persistent AF.

  1. Plans and status of the Beryllium ablator campaign on NIF

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Krasheninnikova, N. S.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Dewald, E. L.; Edwards, M. J.; MacKinnon, A. J.; Meezan, N. B.

    2014-10-01

    Beryllium has long been known to have excellent properties for indirectly driven ICF implosions including enhanced ablation pressure, implosion velocity, and mass ablation rate. The high ablation velocity leads to stabilization of ablative hydrodynamic instabilities and higher ablation pressures. Recent ``high foot'' experiments have shown ablative Rayleigh-Taylor to be a leading cause of degraded performance for ICF implosions. While Beryllium ablators have these advantages, there are also risks associated with Beryllium target designs. A campaign is underway to design and to test these advantages for comparison with other ablator options and determine which provides the best path forward for ICF. Experiments using Beryllium ablators are expected to start in the late summer of 2014. This presentation will discuss the status of the experiments and layout the plans/goals for the campaign. This work is supported by the US DOE.

  2. Pulmonary vein stenosis after catheter ablation: electroporation versus radiofrequency.

    PubMed

    van Driel, Vincent J H M; Neven, Kars G E J; van Wessel, Harry; du Pré, Bastiaan C; Vink, Aryan; Doevendans, Pieter A F M; Wittkampf, Fred H M

    2014-08-01

    Radiofrequency ablation inside pulmonary vein (PV) ostia can cause PV stenosis. A novel alternative method of ablation is irreversible electroporation, but the long-term response of PVs to electroporation ablation is unknown. In ten 6-month-old pigs (60-75 kg), the response of PVs to circular electroporation and radiofrequency ablation was compared. Ten consecutive, nonarcing, electroporation applications of 200 J were delivered 5 to 10 mm inside 1 of the 2 main PVs, using a custom-deflectable, 18-mm circular decapolar catheter. Inside the other PV, circular radiofrequency ablation was performed using 30 W radiofrequency applications via an irrigated 4-mm ablation catheter. PV angiograms were made before ablation, immediately after ablation, and after 3-month survival. PV diameters and heart size were measured. With electroporation ablation, PV ostial diameter decreased 11±10% directly after ablation, but had increased 19±11% after 3 months. With radiofrequency ablation, PV ostial diameter decreased 23±15% directly after ablation and remained 7±17% smaller after 3 months compared with preablation diameter despite a 21±7% increase in heart size during aging from 6 to 9 months. In this porcine model, multiple circumferential 200-J electroporation applications inside the PV ostia do not affect PV diameter at 3-month follow-up. Radiofrequency ablation inside PV ostia causes considerable PV stenosis directly after ablation, which persists after 3 months. © 2014 American Heart Association, Inc.

  3. Percutaneous Microwave Ablation of Renal Angiomyolipomas

    SciTech Connect

    Cristescu, Mircea; Abel, E. Jason; Wells, Shane Ziemlewicz, Timothy J.; Hedican, Sean P.; Lubner, Megan G. Hinshaw, J. Louis Brace, Christopher L. Lee, Fred T.

    2016-03-15

    PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  4. Radiofrequency Ablation Beyond the Liver

    PubMed Central

    Neeman, Ziv; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has begun to show promise for extrahepatic indications. Although much of the reported work on image-guided RFA of liver neoplasms is quite promising, it is even earlier in the evaluation and validation process for extrahepatic RFA, with few short-term and no long-term studies reported. Although there are much more data for liver RFA with almost 3,000 cases reported in the literature, there are a number of ongoing investigations of RFA for tumors in the kidney, lung, bone, breast, bone, and adrenal gland. Debulking and pain control with RFA present palliative options becoming increasingly popular weapons in the interventionalist's oncology arsenal. Metastatic disease with a wide variety of primary histologies in a myriad of locations may be treated with RFA after a careful consideration of the risk-to-benefit ratio balance. The RFA technique can be slightly different outside the liver. Specifically, differing dielectric tissue characteristics may markedly alter the RFA treatment. Each different RFA system has a unique risk and advantage profile. Extrahepatic indications and contraindications will be suggested. Treatment tips and the unique complications and considerations will be introduced for some of the more common extrahepatic locations. PMID:12524646

  5. Magnetocardiographically-guided catheter ablation.

    PubMed

    Fenici, R R; Covino, M; Cellerino, C; Di Lillo, M; De Filippo, M C; Melillo, G

    1995-12-01

    After more than 30 years since the first magnetocardiographic (MCG) recording was carried out with induction coils, MCG is now approaching the threshold of clinical use. During the last 5 years, in fact, there has been a growing interest of clinicians in this new method which provides an unrivalled accuracy for noninvasive, three-dimensional localization of intracardiac source. An increasing number of laboratories are reporting data validating the use of MCG as an effective method for preoperative localization of arrhythmogenic substrates and for planning the best catheter ablation approach for different arrhythmogenic substrates. In this article, available data from literature have been reviewed. We consider the clinical use of MCG to localize arrhythmogenic substrates in patients with Wolff-Parkinson-White syndrome and in patients with ventricular tachycardia in order to assess the state-of-the-art of the method on a large number of patients. This article also addresses some suggestions for industrial development of more compact, medically oriented MCG equipments at reasonable cost.

  6. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  7. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.

  8. Quantification and controllability study of minimally invasive exothermic chemo-ablation therapy for tumor ablation.

    PubMed

    Liu, Ran; Huang, Yu; Liu, Jing

    2009-01-01

    The recently proposed exothermic chemical reaction based tumor hyperthermia method presented a new way of realizing truly minimally invasive treatment for tumor. This method utilizes heat generated from the reaction between acid and alkali solutions to allow for tumor ablation. Successful clinical implementation of this method requires a clearer understanding and quantification of the ablation area such that a more controllable operation can be made. A number of in-vitro and in-vivo experiments are designed to examine the features of thermal chemo-ablation therapy which include micro and macro characteristics of ablated tissue and temperature change during the ablation process. A Quantitative study on the relationship between velocity and ablation volume as well as a Graphical User Interface in Matlab for computerized ablation area analysis are also presented in this article. We present in here two instrument designs for thermal chemo-ablation and have completed the prototype design for the injection pump which has been tested and successfully applied in ex-vivo and vivo experiments.

  9. A systematic review of surgical ablation versus catheter ablation for atrial fibrillation

    PubMed Central

    Kearney, Katherine; Stephenson, Rowan; Phan, Kevin; Chan, Wei Yen; Huang, Min Yin

    2014-01-01

    Background Atrial fibrillation (AF) is an increasingly prevalent condition in the ageing population, with significantly associated morbidity and mortality. Surgical and catheter ablative strategies both aim to reduce mortality and morbidity through freedom from AF. This review consolidates all currently available comparative data to evaluate these two interventions. Methods A systematic search was conducted across MEDLINE, PubMed, Embase, Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews from January 2000 until August 2013. All studies were critically appraised and only those directly comparing surgical and catheter ablation were included. Results Seven studies were deemed suitable for analysis according to the inclusion criteria. Freedom from AF was significantly higher in the surgical ablation group versus the catheter ablation group at 6-month, 12-month and study endpoint follow-up periods. Subgroup analysis demonstrated similar trends, with higher freedom from AF in the surgical ablation group for paroxysmal AF patients. The incidence of pacemaker implantation was higher, while no difference in stroke or cardiac tamponade was demonstrated for the surgical versus catheter ablation groups. Conclusions Current evidence suggests that epicardial ablative strategies are associated with higher freedom from AF, higher pacemaker implantation rates and comparable neurological complications and cardiac tamponade incidence to catheter ablative treatment. Other complications and risks were poorly reported, which warrants further randomized controlled trials (RCTs) of adequate power and follow-up duration. PMID:24516794

  10. Online monitoring of nanoparticles formed during nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nováková, Hana; Holá, Markéta; Vojtíšek-Lom, Michal; Ondráček, Jakub; Kanický, Viktor

    2016-11-01

    The particle size distribution of dry aerosol originating from laser ablation of glass material was monitored simultaneously with Laser Ablation - Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis and two aerosol spectrometers - Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS). The unique combination of LA-ICP-MS and FMPS offers the possibility of measuring the particle size distribution every 1 s of the ablation process in the size range of 5.6-560 nm. APS extends the information about particle concentration in the size range 0.54-17 μm. Online monitoring of the dry aerosol was performed for two ablation modes (spot and line with a duration of 80 s) with a 193 nm excimer laser system, using the glass reference material NIST 610 as a sample. Different sizes of laser spot for spot ablation and different scan speeds for line ablation were tested. It was found that the FMPS device is capable of detecting changes in particle size distribution at the first pulses of spot laser ablation and is suitable for laser ablation control simultaneously with LA-ICP-MS analysis. The studied parameters of laser ablation have an influence on the resulting particle size distribution. The line mode of laser ablation produces larger particles during the whole ablation process, while spot ablation produces larger particles only at the beginning, during the ablation of the intact layer of the ablated material. Moreover, spot ablation produces more primary nano-particles (in ultrafine mode size range < 100 nm) than line ablation. This effect is most probably caused by a reduced amount of large particles released from the spot ablation crater. The larger particles scavenge the ultrafine particles during the line ablation mode.

  11. Early morphologic changes following microwave endocardial ablation for treatment of chronic atrial fibrillation during mitral valve surgery.

    PubMed

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sáenz-Santamaría, Javier; Nogales, Agustín G; Sánchez-Quintana, Damián

    2004-11-01

    The aim of this study was to investigate the early qualitative and quantitative structural changes in the left atrial wall after endocardial microwave ablation in patients with chronic atrial fibrillation (AF) undergoing mitral surgery. Seven patients with chronic AF of for at least 6 months underwent surgical microwave energy ablation. Linear isolation of pulmonary veins was performed in all patients by microwave energy applications to the endocardial surface delivered by catheter at 65-W constant power for 45 seconds. Biopsies were obtained from a selected site (below the right lower pulmonary vein) of the left atrial posterior wall before and after the ablation procedure in all patients. Control tissues from the same sites were obtained at autopsy from patients with noncardiac causes of death. Light and electron microscopy was used to examine qualitative and quantitative changes in tissue morphology. Tissues after endocardial ablation procedure showed significantly increased loss of contractile material. Electron microscopy of atrial tissue demonstrated loss of profile of perinuclear and plasma membranes of myocytes, disruption of the endothelial cells of capillary vessels, and presence of macrophages. Lesions created by endocardial microwave energy ablation revealed a transmural effect on the left atrial wall without a significant reduction in thickness but a significant increase in the myolytic areas involving the entire cytosol and occlusion of the small intramyocardial vessels within the ablative lesion.

  12. Factors Limiting Complete Tumor Ablation by Radiofrequency Ablation

    SciTech Connect

    Paulet, Erwan Aube, Christophe; Pessaux, Patrick; Lebigot, Jerome; Lhermitte, Emilie; Oberti, Frederic; Ponthieux, Anne; Cales, Paul; Ridereau-Zins, Catherine; Pereira, Philippe L.

    2008-01-15

    The purpose of this study was to determine radiological or physical factors to predict the risk of residual mass or local recurrence of primary and secondary hepatic tumors treated by radiofrequency ablation (RFA). Eighty-two patients, with 146 lesions (80 hepatocellular carcinomas, 66 metastases), were treated by RFA. Morphological parameters of the lesions included size, location, number, ultrasound echogenicity, computed tomography density, and magnetic resonance signal intensity were obtained before and after treatment. Parameters of the generator were recorded during radiofrequency application. The recurrence-free group was statistically compared to the recurrence and residual mass groups on all these parameters. Twenty residual masses were detected. Twenty-nine lesions recurred after a mean follow-up of 18 months. Size was a predictive parameter. Patients' sex and age and the echogenicity and density of lesions were significantly different for the recurrence and residual mass groups compared to the recurrence-free group (p < 0.05). The presence of an enhanced ring on the magnetic resonance control was more frequent in the recurrence and residual mass groups. In the group of patients with residual lesions, analysis of physical parameters showed a significant increase (p < 0.05) in the time necessary for the temperature to rise. In conclusion, this study confirms risk factors of recurrence such as the size of the tumor and emphasizes other factors such as a posttreatment enhanced ring and an increase in the time necessary for the rise in temperature. These factors should be taken into consideration when performing RFA and during follow-up.

  13. Contact pulsed Nd:YAG ablation of human dentin: ablation rates and tissue effects

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Yessik, Michael J.

    1994-09-01

    Dentin from freshly extracted human teeth was exposed to flashlamp pumped Nd:YAG pulses (100 microsecond(s) duration, 50 - 200 mJ/pulse) delivered through a flat cut fiberoptic in contact with the dentin surface. Ablation depth and volume were measured optically and confirmed with electron microscope morphometrics. Ablation depth increased with force applied at the fiber tip up to 5 - 10 g. Above this ablation depths were insensitive to applied force. Craters made in dental stone were deeper and narrower than those made in normal dentin. Ablation depths per pulse and volumes per pulse decrease as the number of pulses increase. This is more prominent for 200 mJ pulses. At 60 mJ the ablation depths are the same from 10 to 100 Hz repetition rates, although qualitative changes (collateral damage) are greater at higher repetition rates. A progressive increase in collateral damage is seen from the 1st through the 200th pulse.

  14. Numerical Studies of Ablative Mass Loss from Wind Accelerated Clouds.

    NASA Astrophysics Data System (ADS)

    Knerr, Jeffrey Matthew

    1993-01-01

    We have used numerical hydrodynamics to study the acceleration of dense gas clouds via wind ram pressure. Our goal has been to examine a model for the explanation of broad absorption lines (BALs) seen in the spectra of a certain fraction of observed QSOs. This model postulates cool dense clouds moving at very high speeds as the source of the BALs. Furthermore, it invokes simple wind ram pressure as the acceleration mechanism for the clouds. A crucial question is whether the clouds can survive potentially disruptive fluid instabilities, allowing time for acceleration to speeds comparable to the wind velocity. Linear stability arguments imply Rayleigh-Taylor (RT) instability growth occurs on time scales much shorter than the acceleration time scale. These arguments conclude acceleration via ram pressure cannot produce bulk cloud velocities in excess of the cloud's internal sound speed. Our simulations show this is simply not true. We present two-dimensional slab-symmetric simulations where clouds are accelerated to speeds close to an order of magnitude greater than their internal sound speed. Ablative mass loss by the flow of shocked wind gas around the periphery of the clouds acts to limit the growth of potentially disruptive instabilities. Simulations run at different computational grid resolutions clearly show the stabilizing effect ablation has on the evolution of the clouds. Simplified models for line profiles have been developed using mass-velocity histograms generated from the numerical simulations. There is good qualitative agreement between the simulated line profiles and observed BAL profiles.

  15. Simulation of instability growth on ICF capsule ablators

    NASA Astrophysics Data System (ADS)

    Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    It is believed that the ablation-front instabilities are mainly responsible for the hot-spot mix that impacts the performance of ICF capsules. Understanding the formation of these instabilities is therefore a first step towards a better control of the implosion dynamics and the optimization of the fusion yield. Using the Chimera code currently in development at Imperial College, we have performed several spherical wedge simulations of the low and high adiabat ablation phase pre-imposing different single-mode 2D and 3D perturbations on the capsule surface. Synthetic Sc, Fe and V X-ray backlighter images are generated by the Spk code and used to measure the growth of modes 30-160 with initial amplitude <= 3.4 μm PTV. The growth of imposed 2D perturbations is assessed for both low-foot and high-foot radiation pulse shapes on the National Ignition Facility. Results showing the merger of spike and bubble structures in multi-mode perturbations in both 2D and 3D simulations are explored and preliminary assessments of the difference between 2D and 3D non-linear behaviour is discussed. The sensitivity of shock timing to NLTE changes in opacity is also assessed.

  16. Pregnancy after endometrial ablation: a systematic review.

    PubMed

    Kohn, J R; Shamshirsaz, A A; Popek, E; Guan, X; Belfort, M A; Fox, K A

    2017-09-27

    Pregnancies have been reported after endometrial ablation but there is little data regarding subsequent pregnancy outcomes. To review systematically the available evidence regarding pregnancy outcomes after endometrial ablation, in order to equip physicians effectively to counsel women considering endometrial ablation. MEDLINE, Embase, Cochrane, and ClinicalTrials.gov were searched through January 2017. Published and unpublished literature in any language describing pregnancy after endometrial ablation or resection was eligible. Data about preconception characteristics and pregnancy outcomes were extracted and analysed according to study design of source and pregnancy viability. We identified 274 pregnancies from 99 sources; 78 sources were case reports. Women aged 26-50 years (mean 37.5 ± 5 years) conceived a median of 1.5 years after ablation (range: 3 weeks prior to 13 years after). When reported, 80-90% had not used contraception. In all, 85% of pregnancies from trial/observational studies ended in termination, miscarriage or ectopic pregnancy. Pregnancies that continued (case report and non-case report sources) had high rates of preterm delivery, caesarean delivery, caesarean hysterectomy, and morbidly adherent placenta. Case reports also frequently described preterm premature rupture of membranes, intrauterine growth restriction, intrauterine fetal demise, uterine rupture, and neonatal demise. An unexpectedly high rate of pregnancy complications is reported in the available literature (which may reflect publication bias) and high-quality evidence is lacking. However, based on the existing evidence, women undergoing endometrial ablation should be informed that subsequent pregnancy may have serious complications and should be counselled to use reliable contraception after the procedure. Systematic review - pregnancies reported after endometrial ablation have an increased risk of adverse outcomes. © 2017 Royal College of Obstetricians and Gynaecologists.

  17. Radioiodine Remnant Ablation: A Critical Review

    PubMed Central

    Bal, Chandra Sekhar; Padhy, Ajit Kumar

    2015-01-01

    Radioiodine remnant ablation (RRA) is considered a safe and effective method for eliminating residual thyroid tissue, as well as microscopic disease if at all present in thyroid bed following thyroidectomy. The rationale of RRA is that in the absence of thyroid tissue, serum thyroglobulin (Tg) measurement can be used as an excellent tumor marker. Other considerations are like the presence of significant remnant thyroid tissue makes detection and treatment of nodal or distant metastases difficult. Rarely, microscopic disease in the thyroid bed if not ablated, in the future, could be a source of anaplastic transformation. On the other hand, microscopic tumor emboli in distant sites could be the cause of distant metastasis too. The ablation of remnant tissue would in all probability eliminate these theoretical risks. It may be noted that all these are unproven contentious issues except postablation serum Tg estimation that could be a good tumor marker for detecting early biochemical recurrence in long-term follow-up strategy. Radioactive iodine is administered as a form of “adjuvant therapy” for remnant ablation. There have been several reports with regard to the administered dose for remnant ablation. The first report of a prospective randomized clinical trial was published from India by a prospective randomized study conducted at the All India Institute of Medical Sciences, New Delhi in the year 1996. The study reported that increasing the empirical 131I initial dose to more than 50 mCi results in plateauing of the dose-response curve and thus, conventional high-dose remnant ablation needs critical evaluation. Recently, two important studies were published: One from French group and the other from UK on a similar line. Interestingly, all three studies conducted in three different geographical regions of the world showed exactly similar conclusion. The new era of low-dose remnant ablation has taken a firm scientific footing across the continents. PMID:26420983

  18. Left Atrial Ablation for Atrial Fibrillation

    PubMed Central

    Sternik, Leonid; Schaff, Hartzel V.; Luria, David; Glikson, Michael; Kogan, Alexander; Malachy, Ateret; First, Maya; Raanani, Ehud

    2011-01-01

    The maze procedure is the gold standard for the ablation of atrial fibrillation, and the “box lesion” around the pulmonary veins is the most important part of this procedure. We have created this lesion with a bipolar radiofrequency ablator, abandoning the usual use of this device (to achieve bilateral epicardial isolation of the pulmonary veins). From March 2004 through the end of May 2010, we performed surgical ablation of atrial fibrillation in 240 patients. Of this number, 205 underwent operation by a hybrid maze technique and the remaining 35 (our study cohort) underwent the creation of a box lesion around the pulmonary veins by means of a bipolar radiofrequency device. Ablation lines were created by connecting the left atriotomy to the amputated left atrial appendage, with 2 ablation lines made with a bipolar radiofrequency device above and below the pulmonary veins. Lesions were made along the transverse and oblique sinuses by epicardial and endocardial application of a bipolar device. The left atrial isthmus was ablated by bipolar radiofrequency and cryoprobe. No complications were associated with the box lesion: 90% and 89% of patients were in sinus rhythm at 3 and 6 months of follow-up, respectively. By creating a box lesion around the pulmonary veins, we expect to improve transmurality by means of epicardial and endocardial ablation of 1 rather than 2 layers of atrial wall, as in epicardial pulmonary vein isolation. Isolation of the entire posterior wall of the left atrium is better electrophysiologically and renders dissection around the pulmonary veins unnecessary. PMID:21494518

  19. Catheter Ablation of Fascicular Ventricular Tachycardia

    PubMed Central

    Liu, Yaowu; Fang, Zhen; Yang, Bing; Kojodjojo, Pipin; Chen, Hongwu; Ju, Weizhu; Cao, Kejiang; Chen, Minglong

    2015-01-01

    Background— Fascicular ventricular tachycardia (FVT) is a common form of sustained idiopathic left ventricular tachycardia with an Asian preponderance. This study aimed to prospectively investigate long-term clinical outcomes of patients undergoing ablation of FVT and identify predictors of arrhythmia recurrence. Methods and Results— Consecutive patients undergoing FVT ablation at a single tertiary center were enrolled. Activation mapping was performed to identify the earliest presystolic Purkinje potential during FVT that was targeted by radiofrequency ablation. Follow-up with clinic visits, ECG, and Holter monitoring was performed at least every 6 months. A total of 120 consecutive patients (mean age, 29.3±12.7 years; 82% men; all patients with normal ejection fraction) were enrolled. FVT involved left posterior fascicle and left anterior fascicle in 118 and 2 subjects, respectively. VT was noninducible in 3 patients, and ablation was acutely successful in 117 patients. With a median follow-up of 55.7 months, VT of a similar ECG morphology recurred in 17 patients, and repeat procedure confirmed FVT recurrence involving the same fascicle. Shorter VT cycle length was the only significant predictor of FVT recurrence (P=0.03). Six other patients developed new-onset upper septal FVT that was successfully ablated. Conclusions— Ablation of FVT guided by activation mapping is associated with a single procedural success rate without the use of antiarrhythmic drugs of 80.3%. Arrhythmia recurrences after an initially successful ablation were caused by recurrent FVT involving the same fascicle in two thirds of patients or new onset of upper septal FVT in the remainder. PMID:26386017

  20. Photoacoustic characterization of radiofrequency ablation lesions

    NASA Astrophysics Data System (ADS)

    Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav

    2012-02-01

    Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.

  1. Global microwave endometrial ablation for menorrhagia treatment

    NASA Astrophysics Data System (ADS)

    Fallahi, Hojjatollah; Å ebek, Jan; Frattura, Eric; Schenck, Jessica; Prakash, Punit

    2017-02-01

    Thermal ablation is a dominant therapeutic option for minimally invasive treatment of menorrhagia. Compared to other energy modalities for ablation, microwaves offer the advantages of conformal energy delivery to tissue within short times. The objective of endometrial ablation is to destroy the endometrial lining of the uterine cavity, with the clinical goal of achieving reduction in bleeding. Previous efforts have demonstrated clinical use of microwaves for endometrial ablation. A considerable shortcoming of most systems is that they achieve ablation of the target by translating the applicator in a point-to-point fashion. Consequently, treatment outcome may be highly dependent on physician skill. Global endometrial ablation (GEA) not only eliminates this operator dependence and simplifies the procedure but also facilitates shorter and more reliable treatments. The objective of our study was to investigate antenna structures and microwave energy delivery parameters to achieve GEA. Another objective was to investigate a method for automatic and reliable determination of treatment end-point. A 3D-coupled FEM electromagnetic and heat transfer model with temperature and frequency dependent material properties was implemented to characterize microwave GEA. The unique triangular geometry of the uterus where lateral narrow walls extend from the cervix to the fundus forming a wide base and access afforded through an endocervical approach limit the overall diameter of the final device. We investigated microwave antenna designs in a deployed state inside the uterus. The impact of ablation duration on treatment outcome was investigated. Prototype applicators were fabricated and experimentally evaluated in ex vivo tissue to verify the simulation results and demonstrate proof-of-concept.

  2. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    SciTech Connect

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-12-15

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model {kappa}(T)={kappa}{sub SH}[1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where {kappa}{sub SH} is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  3. Catheter ablation of arrhythmic storm triggered by monomorphic ectopic beats in patients with coronary artery disease.

    PubMed

    Peichl, Petr; Cihák, Robert; Kozeluhová, Markéta; Wichterle, Dan; Vancura, Vlastimil; Kautzner, Josef

    2010-01-01

    Frequent episodes of polymorphic ventricular tachycardias/ventricular fibrillation (VT/VF) in patients with coronary artery disease can be triggered by monomorphic ventricular premature beats (VPBs) and thus, amenable to catheter ablation. The goal of this study was to review single-center experience in catheter ablation of electrical storm caused by focally triggered polymorphic VT/VF. Catheter ablation of electrical storm due to focally triggered polymorphic VT/VF was performed in nine patients (mean age, 62+/-7 years; two females). All patients had previous myocardial infarction (interval of 3 days to 171 months). Mean left ventricular ejection fraction was 27+/-6 percent. All patients presented with repeated runs of polymorphic VT/VF triggered by monomorphic VPBs. Based on mapping data, the ectopic beats originated from scar border zone on interventricular septum (n=5), inferior wall (n=3), and lateral wall (n=1). Catheter ablation was performed to abolish the triggering ectopy and to modify the arrhythmogenic substrate by linear lesions within the infarct border zone. The ablation procedure was acutely successful in eight out of nine patients. During the follow-up of 13+/-7 months, two patients died due to progressive heart failure. One patient had late recurrence of electrical storm due to ectopic beats of different morphology and was successfully reablated. Electrical storm due to focally triggered polymorphic VT/VF may occur either in subacute phase of myocardial infarction or substantially later after index event. Catheter ablation of ectopic beats triggering these arrhythmias can successfully abolish electrical storm and become a life-saving procedure.

  4. Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses

    PubMed Central

    Lanvin, Thomas; Conkey, Donald B.; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-01-01

    We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal. PMID:26203381

  5. Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses.

    PubMed

    Lanvin, Thomas; Conkey, Donald B; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal.

  6. Clinical Significance of Additional Ablation of Atrial Premature Beats after Catheter Ablation for Atrial Fibrillation

    PubMed Central

    Kim, In-Soo; Yang, Pil-Sung; Kim, Tae-Hoon; Park, Junbeum; Park, Jin-Kyu; Uhm, Jae Sun; Joung, Boyoung; Lee, Moon Hyoung

    2016-01-01

    Purpose The clinical significance of post-procedural atrial premature beats immediately after catheter ablation for atrial fibrillation (AF) has not been clearly determined. We hypothesized that the provocation of immediate recurrence of atrial premature beats (IRAPB) and additional ablation improves the clinical outcome of AF ablation. Materials and Methods We enrolled 200 patients with AF (76.5% males; 57.4±11.1 years old; 64.3% paroxysmal AF) who underwent catheter ablation. Post-procedure IRAPB was defined as frequent atrial premature beats (≥6/min) under isoproterenol infusion (5 µg/min), monitored for 10 min after internal cardioversion, and we ablated mappable IRAPBs. Post-procedural IRAPB provocations were conducted in 100 patients. We compared the patients who showed IRAPB with those who did not. We also compared the IRAPB provocation group with 100 age-, sex-, and AF-type-matched patients who completed ablation without provocation (No-Test group). Results 1) Among the post-procedural IRAPB provocation group, 33% showed IRAPB and required additional ablation with a longer procedure time (p=0.001) than those without IRAPB, without increasing the complication rate. 2) During 18.0±6.6 months of follow-up, the patients who showed IRAPB had a worse clinical recurrence rate than those who did not (27.3% vs. 9.0%; p=0.016), in spite of additional IRAPB ablation. 3) However, the clinical recurrence rate was significantly lower in the IRAPB provocation group (15.0%) than in the No-Test group (28.0%; p=0.025) without lengthening of the procedure time or raising complication rate. Conclusion The presence of post-procedural IRAPB was associated with a higher recurrence rate after AF ablation. However, IRAPB provocation and additional ablation might facilitate a better clinical outcome. A further prospective randomized study is warranted. PMID:26632385

  7. Clinical Significance of Additional Ablation of Atrial Premature Beats after Catheter Ablation for Atrial Fibrillation.

    PubMed

    Kim, In Soo; Yang, Pil Sung; Kim, Tae Hoon; Park, Junbeum; Park, Jin Kyu; Uhm, Jae Sun; Joung, Boyoung; Lee, Moon Hyoung; Pak, Hui Nam

    2016-01-01

    The clinical significance of post-procedural atrial premature beats immediately after catheter ablation for atrial fibrillation (AF) has not been clearly determined. We hypothesized that the provocation of immediate recurrence of atrial premature beats (IRAPB) and additional ablation improves the clinical outcome of AF ablation. We enrolled 200 patients with AF (76.5% males; 57.4±11.1 years old; 64.3% paroxysmal AF) who underwent catheter ablation. Post-procedure IRAPB was defined as frequent atrial premature beats (≥6/min) under isoproterenol infusion (5 μg/min), monitored for 10 min after internal cardioversion, and we ablated mappable IRAPBs. Post-procedural IRAPB provocations were conducted in 100 patients. We compared the patients who showed IRAPB with those who did not. We also compared the IRAPB provocation group with 100 age-, sex-, and AF-type-matched patients who completed ablation without provocation (No-Test group). 1) Among the post-procedural IRAPB provocation group, 33% showed IRAPB and required additional ablation with a longer procedure time (p=0.001) than those without IRAPB, without increasing the complication rate. 2) During 18.0±6.6 months of follow-up, the patients who showed IRAPB had a worse clinical recurrence rate than those who did not (27.3% vs. 9.0%; p=0.016), in spite of additional IRAPB ablation. 3) However, the clinical recurrence rate was significantly lower in the IRAPB provocation group (15.0%) than in the No-Test group (28.0%; p=0.025) without lengthening of the procedure time or raising complication rate. The presence of post-procedural IRAPB was associated with a higher recurrence rate after AF ablation. However, IRAPB provocation and additional ablation might facilitate a better clinical outcome. A further prospective randomized study is warranted.

  8. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes

    PubMed Central

    Laeseke, PF; Lee, FT; Sampson, LA; van der Weide, DW; Brace, CL

    2012-01-01

    Purpose To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than RF ablation using similarly sized internally cooled electrodes. Methods Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed using one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized post-ablation and ablation zone diameter, cross-sectional area and circularity were measured. Comparisons between groups were performed using a mixed effects model with P < .05 indicating statistical significance. Results No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm2) and single-antenna microwave (mean area, 10.9 cm2) ablation zones were significantly larger than single-electrode RF (mean area, 5.6 cm2; P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature, 123 °C; versus 100 °C for RF). Conclusion Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators. PMID:19616970

  9. Comparison of the anterior and posterior mitral isthmus ablation lines in patients with perimitral annulus flutter or persistent atrial fibrillation.

    PubMed

    Huemer, Martin; Wutzler, Alexander; Parwani, Abdul Shokor; Attanasio, Philipp; Matsuda, Hisao; Blaschke, Florian; Boldt, Leif-Hendrik; Haverkamp, Wilhelm

    2015-11-01

    Catheter ablation of left atrial linear lesions is an effective treatment option for perimitral flutter and is often used as a substrate modification approach for persistent atrial fibrillation. The two most popular mitral isthmus lines are those of the anterior or the posterior mitral isthmus. A comparison of these two mitral isthmus ablation approaches is still pending. Patients undergoing catheter ablation either at the anterior or the posterior mitral isthmus were included. Procedural success, conduction block, procedure durations, complications, and the necessity of a coronary sinus ablation were analyzed. We investigated 80 consecutive patients, 40 (50%) with an anterior and 40 (50%) with a posterior mitral isthmus line. Twenty (25.0%) patients had perimitral annulus flutter; the remainder of the patients had persistent atrial fibrillation. Bidirectional conduction block was achieved in the same proportion in the anterior group (36; 90.0%) as it was in the posterior group (30; 75.0%) (statistically insignificant). Duration of procedure (18 ± 12 vs. 34 ± 24 min, p = 0.001), radiofrequency application (11 ± 7 vs. 18 ± 11 min, p = 0.004), and fluoroscopy (2 ± 2 vs. 8 ± 8 min, p < 0.001) values were all significantly lower in the anterior group. Only patients in the posterior line group had to be ablated via the coronary sinus 24 (60.0 %). Ablation at the anterior mitral isthmus shows the same success rate as the posterior mitral isthmus does. Catheter ablation at the anterior mitral isthmus is associated with significantly shorter procedure durations without the need of a coronary sinus ablation.

  10. Acute and Long-Term Effects of Full-Power Electroporation Ablation Directly on the Porcine Esophagus.

    PubMed

    Neven, Kars; van Es, René; van Driel, Vincent; van Wessel, Harry; Fidder, Herma; Vink, Aryan; Doevendans, Pieter; Wittkampf, Fred

    2017-05-01

    Esophageal ulceration and fistula are complications of pulmonary vein isolation using thermal energy sources. Irreversible electroporation is a novel, nonthermal ablation modality for pulmonary vein isolation. A single 200 J application can create deep myocardial lesions. Acute and chronic effects of this new energy source on the esophagus are unknown. In 8 pigs (±70 kg), the suprasternal esophagus was surgically exposed. A linear suction device with a single 35-mm long and 6-mm wide protruding linear electrode inside a plastic suction cup was used for ablation. Single, nonarcing, nonbarotraumatic, cathodal 100 and 200 J applications were delivered at 2 different sites on the anterior esophageal adventitia. No proton-pump inhibitors were administered during follow-up. Esophagoscopy was performed at days 2 and 7. After euthanasia at day 60, the esophagus was evaluated visually and histologically. All ablations were uneventful. Esophagoscopy at day 2 showed small white densities in the ablated areas, which appeared to be small intraepithelial vesicles. No epithelial erythema, erosions, or ulcerations were seen. At day 7, all densities had disappeared, and all esophaguses appeared completely normalized. After euthanasia, there were no macroscopically visible lesions on the adventitia or epithelium. Histologically, a small scar was observed at the outer part of the muscular layer, whereas the mucosa and submucosa were normal. Esophageal architecture remains unaffected 2 months after irreversible electroporation, purposely targeting the adventitia. Irreversible electroporation seems to be a safe modality for catheter ablation near the esophagus. © 2017 American Heart Association, Inc.

  11. Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean

    2011-01-01

    An ablative composite is low-density (0.25 to 0.40 g/cu cm), easy to fabricate, and superior to the current state-of-the-art ablator (phenolic impregnated carbon ablator, PICA) in terms of decomposition temperature, char yield, and mechanical strength. Initial ablative testing with a CO2 laser under high-heat-flux (1,100 W/sq cm) conditions showed these new ablators are over twice as effective as PICA in terms of weight loss, as well as transfer of heat through the specimen. The carbon fiber/poly(azomethine) composites have the same density as PICA, but are 8 to 11 times stronger to irreversible breaking by tensile compression. In addition, polyazomethine char yields by thermogravimetric analysis are 70 to 80 percent at 1,000 C. This char yield is 10 to 20 percent higher than phenolic resins, as well as one of the highest char yields known for any polymer. A high char yield holds the composite together better toward shearing forces on reentry, as well as reradiates high heat fluxes. This innovative composite is stronger than PICA, so multiple pieces can be sealed together without fracture. Researchers have also studied polyazomethines before as linear polymers. Due to poor solubility, these polymers precipitate from the polymerization solvent as a low-molecular-weight (2 to 4 repeat units) powder. The only way found to date to keep linear polyazomethines in solution is by adding solubilizing side groups. However, these groups sacrifice certain polymer properties. These hyperbranched polyazomethines are high molecular weight and fully aromatic.

  12. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  13. Design Calculations for NIF Convergent Ablator Experiments

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Callahan, D. A.; Hicks, D. G.; Landen, O. L.; Langer, S. H.; Meezan, N. B.; Spears, B. K.; Widmann, K.; Kline, J. L.; Wilson, D. C.; Petrasso, R. D.; Leeper, R. J.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics -- 1) Dante measurements of hohlraum x-ray flux and spectrum, 2) streaked radiographs of the imploding ablator shell, 3) wedge range filter measurements of D-He3 proton output spectra, and 4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to provide an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning. *SNL, LLNL, and LANL are operated under US DOE contracts DE-AC04-94AL85000. DE-AC52-07NA27344, and DE-AC04-94AL85000.

  14. Approximate model for laser ablation of carbon

    NASA Astrophysics Data System (ADS)

    Shusser, Michael

    2010-08-01

    The paper presents an approximate kinetic theory model of ablation of carbon by a nanosecond laser pulse. The model approximates the process as sublimation and combines conduction heat transfer in the target with the gas dynamics of the ablated plume which are coupled through the boundary conditions at the interface. The ablated mass flux and the temperature of the ablating material are obtained from the assumption that the ablation rate is restricted by the kinetic theory limitation on the maximum mass flux that can be attained in a phase-change process. To account for non-uniform distribution of the laser intensity while keeping the calculation simple the quasi-one-dimensional approximation is used in both gas and solid phases. The results are compared with the predictions of the exact axisymmetric model that uses the conservation relations at the interface derived from the momentum solution of the Boltzmann equation for arbitrary strong evaporation. It is seen that the simpler approximate model provides good accuracy.

  15. Tangle-Free Finite Element Mesh Motion for Ablation Problems

    NASA Technical Reports Server (NTRS)

    Droba, Justin

    2016-01-01

    Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.

  16. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model.

    PubMed

    Brace, Christopher L; Laeseke, Paul F; Sampson, Lisa A; Frey, Tina M; van der Weide, Daniel W; Lee, Fred T

    2007-07-01

    To prospectively investigate the ability of a single generator to power multiple small-diameter antennas and create large zones of ablation in an in vivo swine liver model. Thirteen female domestic swine (mean weight, 70 kg) were used for the study as approved by the animal care and use committee. A single generator was used to simultaneously power three triaxial antennas at 55 W per antenna for 10 minutes in three groups: a control group where antennas were spaced to eliminate ablation zone overlap (n=6; 18 individual zones of ablation) and experimental groups where antennas were spaced 2.5 cm (n=7) or 3.0 cm (n=5) apart. Animals were euthanized after ablation, and ablation zones were sectioned and measured. A mixed linear model was used to test for differences in size and circularity among groups. Mean (+/-standard deviation) cross-sectional areas of multiple-antenna zones of ablation at 2.5- and 3.0-cm spacing (26.6 cm(2) +/- 9.7 and 32.2 cm(2) +/- 8.1, respectively) were significantly larger than individual ablation zones created with single antennas (6.76 cm(2) +/- 2.8, P<.001) and were 31% (2.5-cm spacing group: multiple antenna mean area, 26.6 cm(2); 3 x single antenna mean area, 20.28 cm(2)) to 59% (3.0-cm spacing group: multiple antenna mean area, 32.2 cm(2); 3 x single antenna mean area, 20.28 cm(2)) larger than 3 times the mean area of the single-antenna zones. Zones of ablation were found to be very circular, and vessels as large as 1.1 cm were completely coagulated with multiple antennas. A single generator may effectively deliver microwave power to multiple antennas. Large volumes of tissue may be ablated and large vessels coagulated with multiple-antenna ablation in the same time as single-antenna ablation. (c) RSNA, 2007.

  17. Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray versus water surface film

    NASA Astrophysics Data System (ADS)

    Freiberg, Robert J.; Cozean, Colette D.

    2002-06-01

    It has been established that the ability of erbium lasers to ablate hard dental tissue is due primarily to the laser- initiated subsurface expansion of the interstitial water trapped within the enamel and that by maintaining a thin film of water on the surface of the tooth, the efficiency of the laser ablation is enhanced. It has recently been suggested that a more aggressive ablative mechanism, designated as a hydrokinetic effect, occurs when atomized water droplets, introduced between the erbium laser and the surface of the tooth, are accelerated in the laser's field and impact the tooth's surface. It is the objective of this study to determine if the proposed hydrokinetic effect exists and to establish its contribution to the dental hard tissue ablation process. Two commercially available dental laser systems were employed in the hard tissue ablation studies. One system employed a water irrigation system in which the water was applied directly to the tooth, forming a thin film of water on the tooth's surface. The other system employed pressurized air and water to create an atomized mist of water droplets between the laser hand piece and the tooth. The ablative properties of the two lasers were studied upon hard inorganic materials, which were void of any water content, as well as dental enamel, which contained interstitial water within its crystalline structure. In each case the erbium laser beam was moved across the surface of the target material at a constant velocity. When exposing material void of any water content, no ablation of the surfaces was observed with either laser system. In contrast, when the irrigated dental enamel was exposed to the laser radiation, a linear groove was formed in the enamel surface. The volume of ablated dental tissue associated with each irrigation method was measured and plotted as a function of the energy within the laser pulse. Both dental laser systems exhibited similar enamel ablation rates and comparable ablated surface

  18. Tangle-Free Mesh Motion for Ablation Simulations

    NASA Technical Reports Server (NTRS)

    Droba, Justin

    2016-01-01

    Problems involving mesh motion-which should not be mistakenly associated with moving mesh methods, a class of adaptive mesh redistribution techniques-are of critical importance in numerical simulations of the thermal response of melting and ablative materials. Ablation is the process by which material vaporizes or otherwise erodes due to strong heating. Accurate modeling of such materials is of the utmost importance in design of passive thermal protection systems ("heatshields") for spacecraft, the layer of the vehicle that ensures survival of crew and craft during re-entry. In an explicit mesh motion approach, a complete thermal solve is first performed. Afterwards, the thermal response is used to determine surface recession rates. These values are then used to generate boundary conditions for an a posteriori correction designed to update the location of the mesh nodes. Most often, linear elastic or biharmonic equations are used to model this material response, traditionally in a finite element framework so that complex geometries can be simulated. A simple scheme for moving the boundary nodes involves receding along the surface normals. However, for all but the simplest problem geometries, evolution in time following such a scheme will eventually bring the mesh to intersect and "tangle" with itself, inducing failure. This presentation demonstrates a comprehensive and sophisticated scheme that analyzes the local geometry of each node with help from user-provided clues to eliminate the tangle and enable simulations on a wide-class of difficult problem geometries. The method developed is demonstrated for linear elastic equations but is general enough that it may be adapted to other modeling equations. The presentation will explicate the inner workings of the tangle-free mesh motion algorithm for both two and three-dimensional meshes. It will show abstract examples of the method's success, including a verification problem that demonstrates its accuracy and

  19. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    NASA Astrophysics Data System (ADS)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  20. Excimer laser ablation of aluminum: influence of spot size on ablation rate

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2016-11-01

    The dependence of ablation rate of an Al alloy on laser beam spot size (10-150 µm) was investigated using an ArF excimer laser operating at a wavelength of 193 nm and pulse width less than 4 ns. Ablation was conducted in air at a fluence of 11 J cm-2 and at a repetition rate of 20 Hz. Surface morphology and depth of craters produced by a variable number of laser pulses were characterized using optical and scanning electron microscopy. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used as an additional diagnostic technique to estimate the amount of material ablated from craters produced by a laser beam of different diameters. Laser beam spot size and number of laser pulses applied to the same spot were found to influence crater morphology, ablation rate, shape and amount of particles deposited at or around the crater rim. Ablation rate was found to be less dependent on spot size for craters greater than 85 µm. A four-fold increase in ablation rate was observed with decreasing crater size from 150 µm to 10 µm.

  1. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  2. Thermal Response Simulation of Ultra Light Weight Phenolic Carbon Ablator by the Use of the Ablation Analysis Code

    NASA Astrophysics Data System (ADS)

    Kato, Sumio; Okuyama, Keiichi; Gibo, Kenta; Miyagi, Takuma; Suzuki, Toshiyuki; Fujita, Kazuhisa; Sakai, Takeharu; Nishio, Seiji; Watanabe, Akihiro

    A space vehicle which undergoes the atmospheric re-entry or a planetary entry needs the heat shield system to protect inner equipments against severe aerodynamic heating environments. Charring ablator is usually used for the heat shield system. In order to design the heat shield system, it is necessary to predict the thermal behavior under aerodynamic heating by ablation analysis. A computer code for charring ablation and thermal response analysis is newly developed for simulation of one-dimensional transient thermal behavior of charring ablation materials. The mathematical model for the charring ablation including basic equation and computational method of ablation analysis is briefly described. A new ultra light weight phenolic carbon ablator called LATS (Lightweight Ablator series for Transfer vehicle) was recently developed. Arc-heated tests of the LATS ablator were carried out and measured results of the temperature response and surface mass loss are compared with the simulation results of the ablation analysis program. The agreement between the results of simulation and measurement is found to be good. It is also found that the mathematical model used in the ablation code can be applied to the ablation analysis of the low density LATS ablator.

  3. Depth Profiling of Polymer Composites by Ultrafast Laser Ablation

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Clayton, Clive; Longtin, Jon

    2009-03-01

    Past work has shown femtosecond laser ablation to be an athermal process at low fluences in polymer systems. The ablation rate in this low fluence regime is very low, allowing for micro-scale removal of material. We have taken advantage of this fact to perform shallow depth profiling ablation on carbon fiber reinforced polymer (CFRP) composites. Neat composite and resin samples were studied to establish reference ablation profiles. These profiles and the effects of the heterogeneous distribution of carbon fibers were observed through confocal laser profilometry and optical and scanning electron microscopy. Weathered materials that have been subjected to accelerated tests in artificial sunlight or water conditions were ablated to determine the correlation between exposure and change in ablation characteristics. Preliminary Raman and micro-ATR analysis performed before and after ablation shows no chemical changes indicative of thermal effects. The low-volume-ablation property was utilized in an attempt to expose the sizing-matrix interphase for analysis.

  4. Deep Dive Topic: Choosing between ablators

    SciTech Connect

    Hurricane, O. A.; Thomas, C.; Olson, R.

    2015-07-14

    Recent data on implosions using identical hohlraums and very similar laser drives underscores the conundrum of making a clear choice of one ablator over another. Table I shows a comparison of Be and CH in a nominal length, gold, 575 μm-diameter, 1.6 mg/cc He gas-fill hohlraum while Table II shows a comparison of undoped HDC and CH in a +700 length, gold, 575 μm diameter, 1.6 mg/cc He gas fill hohlraum. As can be seen in the tables, the net integrated fusion performance of these ablators is the same to within error bars. In the case of the undoped HDC and CH ablators, the hot spot shapes of the implosions were nearly indistinguishable for the experiments listed in Table II.

  5. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  6. Laser Thermal Ablation of Thyroid Benign Nodules

    PubMed Central

    Shahrzad, Mohammad Karim

    2015-01-01

    Thermal ablation therapies for benign thyroid nodules have been introduced in recent years to avoid the complications of traditional methods such as surgery. Despite the little complications and the reportedly acceptable efficacy of thermal ablation methods, quite few medical centers have sought the potential benefits of employing them. This paper provides an introduction to the literature, principles and advances of Percutaneous Laser Ablation therapy of thyroid benign nodules, as well as a discussion on its efficacy, complications and future. Several clinical research papers evaluating the thermal effect of laser on the alleviation of thyroid nodules have been reviewed to illuminate the important points. The results of this research can help researchers to advance the approach and medical centers to decide on investing in these novel therapies. PMID:26705459

  7. Laser Thermal Ablation of Thyroid Benign Nodules.

    PubMed

    Shahrzad, Mohammad Karim

    2015-01-01

    Thermal ablation therapies for benign thyroid nodules have been introduced in recent years to avoid the complications of traditional methods such as surgery. Despite the little complications and the reportedly acceptable efficacy of thermal ablation methods, quite few medical centers have sought the potential benefits of employing them. This paper provides an introduction to the literature, principles and advances of Percutaneous Laser Ablation therapy of thyroid benign nodules, as well as a discussion on its efficacy, complications and future. Several clinical research papers evaluating the thermal effect of laser on the alleviation of thyroid nodules have been reviewed to illuminate the important points. The results of this research can help researchers to advance the approach and medical centers to decide on investing in these novel therapies.

  8. Effects of endocardial microwave energy ablation

    PubMed Central

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sánchez-Quintana, Damián

    2005-01-01

    Until recently the treatment of atrial fibrillation (AF) consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure. PMID:16943871

  9. Performance of Conformable Ablators in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, J.; Fan, W.; Skokova, K.; Stackpoole, M.; Beck, R.; Chavez-Garcia, J.

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICAs performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  10. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  11. Treatment of ventricular tachycardia: consider ablation sooner

    PubMed Central

    2009-01-01

    Ventricular tachycardia (VT) is a leading cause of morbidity and mortality for many patients, with a significant emotional and economic burden caused by implantable cardioverter-defibrillator (ICD) shocks and the requirement of medication with significant side effects. Additionally, 10% of VT occurs in patients with no structural heart disease. Until quite recently, ablation for VT has been reserved as the procedure of last hope for those who have ongoing recurrences despite maximal medical therapy and who are traumatized by multiple ICD shocks [1]. However, recent advances in imaging technology and three-dimensional intracardiac mapping systems have significantly improved the safety and efficacy of VT ablation procedures. Thus, ablation for VT should no longer be reserved as a last-resort bailout procedure and should move into the realm of routine electrophysiology treatment. PMID:20948708

  12. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  13. Mapping techniques for atrial fibrillation ablation.

    PubMed

    Sra, Jasbir; Akhtar, Masood

    2007-12-01

    Atrial fibrillation (AF) is a common arrhythmia. Although significant work still needs to be done, recent advances in understanding the mechanism of AF have led to the development of elegant catheter mapping techniques for ablation of AF. These improved mapping techniques are complemented by an evolution in various imaging and navigational technologies, several of which can now be combined in a process called registration, so that the physician no longer needs to rely solely on a mental image of the anatomy of the left atrium and the pulmonary vein while attempting to ablate the region. Ongoing advances in mapping technique will increase safety and efficacy and it is likely that AF ablation will become the first-line therapy in most patients with this complicated arrhythmia.

  14. Effects of endocardial microwave energy ablation.

    PubMed

    Climent, Vicente; Hurlé, Aquilino; Ho, Siew Yen; Sánchez-Quintana, Damián

    2005-07-01

    Until recently the treatment of atrial fibrillation (AF) consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure.

  15. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  16. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  17. Caries-selective ablation: the second threshold

    NASA Astrophysics Data System (ADS)

    Hennig, Thomas; Rechmann, Peter; Jeitner, Peter; Kaufmann, Raimund

    1993-07-01

    The aim of the study was to describe the appropriate fluence necessary for the effective removal of dental decay by ablation processes without or with at least minimal removal of healthy dentin. The experiments were conducted at two wavelengths [355 nm (frequency tripled, Q-switched Nd:YAG-laser) and 377 nm (frequency doubled, gain-switched Alexandrite-laser)] found to be close to the maximum of preferential absorption of carious dentin over healthy dentin. Optoacoustic techniques were applied to determine the ablation thresholds of healthy and carious dentin. The ablation efficiencies at characteristic fluences were determined using non-tactile microtopography. During all experiments a fiber optic delivery system was engaged.

  18. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  19. Simulation of Double-Pulse Laser Ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Itina, Tatian E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2010-10-01

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamicsimulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  20. Catheter ablation of fascicular ventricular tachycardia.

    PubMed

    Ramprakash, B; Jaishankar, S; Rao, Hygriv B; Narasimhan, C

    2008-08-01

    Fascicular ventricular tachycardia (VT) is an idiopathic VT with right bundle branch block morphology and left-axis deviation occuring predominantly in young males. Fascicular tachycardia has been classified into three subtypes namely, left posterior fascicular VT, left anterior fascicular VT and upper septal fascicular VT. The mechanism of this tachycardia is believed to be localized reentry close to the fascicle of the left bundle branch. The reentrant circuit is composed of a verapamil sensitive zone, activated antegradely during tachycardia and the fast conduction Purkinje fibers activated retrogradely during tachycardia recorded as the pre Purkinje and the Purkinje potentials respectively. Catheter ablation is the preferred choice of therapy in patients with fascicular VT. Ablation is carried out during tachycardia, using conventional mapping techniques in majority of the patients, while three dimensional mapping and sinus rhythm ablation is reserved for patients with nonmappable tachycardia.

  1. Safety and efficacy in ablation of premature ventricular contraction: data from the German ablation registry.

    PubMed

    Fichtner, S; Senges, J; Hochadel, M; Tilz, R; Willems, S; Eckardt, L; Deneke, T; Lewalter, T; Dorwarth, U; Reithmann, C; Brachmann, J; Steinbeck, G; Kääb, S

    2017-01-01

    Patients with frequent premature ventricular contractions (PVCs) are often highly symptomatic with significantly reduced quality-of-life. We evaluated the outcome and success of PVC ablation in patients in the German Ablation Registry. The German Ablation Registry is a nationwide prospective multicenter database of patients who underwent an ablation procedure, initiated by the "Stiftung Institut für Herzinfarktforschung" (IHF), Ludwigshafen, Germany. Data were acquired from March 2007 to May 2011. Patients underwent PVC ablation in the enrolling ablation centers. A total of 408 patients (age 53.5 ± 15 years, 55 % female) undergoing ablation for PVCs were included. 32 % of patients showed a co-existing structural heart disease. Acute ablation success of the procedure was 82 % in the overall patient group. In patients without structural heart disease, acute success was significantly higher compared with patients with structural heart disease (86 vs. 74 %, p = 0.002). All patients were discharged alive after a median of 3 days. No patient suffered an acute myocardial infarction, stroke, or major bleeding. After 12 months' follow-up, 99 % of patients were still alive showing a significant different mortality between patients with structural heart disease compared with those without (2.3 vs. 0 %, p = 0.012). In addition, 76 % of patients showed significantly improved symptoms after 12 months of follow-up. Based on the data from this registry, ablation of PVCs is a safe and efficient procedure with an excellent outcome and improved symptoms after 12 months.

  2. Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies.

    PubMed

    Vogl, Thomas J; Farshid, Parviz; Naguib, Nagy N N; Darvishi, Abbas; Bazrafshan, Babak; Mbalisike, Emmanuel; Burkhard, Thorsten; Zangos, Stephan

    2014-07-01

    Surgery is currently considered the treatment of choice for patients with colorectal cancer liver metastases (CRLM) when resectable. The majority of these patients can also benefit from systemic chemotherapy. Recently, local or regional therapies such as thermal ablations have been used with acceptable outcomes. We searched the medical literature to identify studies and reviews relevant to radiofrequency (RF) ablation, microwave (MW) ablation and laser-induced thermotherapy (LITT) in terms of local progression, survival indexes and major complications in patients with CRLM. Reviewed literature showed a local progression rate between 2.8 and 29.7 % of RF-ablated liver lesions at 12-49 months follow-up, 2.7-12.5 % of MW ablated lesions at 5-19 months follow-up and 5.2 % of lesions treated with LITT at 6-month follow-up. Major complications were observed in 4-33 % of patients treated with RF ablation, 0-19 % of patients treated with MW ablation and 0.1-3.5 % of lesions treated with LITT. Although not significantly different, the mean of 1-, 3- and 5-year survival rates for RF-, MW- and laser ablated lesions was (92.6, 44.7, 31.1 %), (79, 38.6, 21 %) and (94.2, 61.5, 29.2 %), respectively. The median survival in these methods was 33.2, 29.5 and 33.7 months, respectively. Thermal ablation may be an appropriate alternative in patients with CRLM who have inoperable liver lesions or have operable lesions as an adjunct to resection. However, further competitive evaluation should clarify the efficacy and priority of these therapies in patients with colorectal cancer liver metastases.

  3. High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.

    2017-03-01

    Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal

  4. Radiofrequency ablation for treatment of atrial fibrillation.

    PubMed

    Safaei, Nasser; Montazerghaem, Hossein; Azarfarin, Rasoul; Alizadehasl, Azin; Alikhah, Hossein

    2011-01-01

    Atrial Fibrillation (AF) is the most common cardiac arrhythmia which represents a major public health problem. The main purpose of this research is to evaluate the Radiofrequency (RF) ablation effects in the patients with chronic AF scheduled for cardiac surgery because of different heart diseases. The descriptive and prospective study was conducted on 60 patients with AF scheduled for surgery along with RF ablation. The data were collected by questionnaire and included: patients' age, sex, NYHA class, operation type, past medical history, type and cause of valvular heart disease, preoperative ECG (electrocardiogram), duration of surgery, clamping time, cardiopulmonary bypass, and RF ablation time. RF ablation was followed by the main operation. The follow up examination, ECG, and echocardiography were performed 3 and 6 months after operation. The mean age of patients was 48±10 years (18-71 years). Forty one patients had permanent AF and 19 had the persistent AF. The left ventricular ejection fraction was 48.27±9.75 percent before operation, and reached to 56.27±7.87 percent after the surgery (P<0.001). The mean NYHA class before the surgery was 2.83±0.68 which decreased to 1.34±0.46 6 months after the surgery with RF ablation (P<0.001). One patient (1.6%) died after surgery. Complete relief and freedom from AF recurrence was observed in 70% of patients in the mean follow up in 7 months after the surgery. The sinus rhythm with efficient atrial contraction was established in 100% of discharged patients. RF ablation is an effective procedure to cure atrial fibrillation in patients undergoing cardiac surgeries.

  5. Percutaneous epicardial ablation in ventricular arrhythmias.

    PubMed

    Galvão Santos, Pedro; Cavaco, Diogo; Adragão, Pedro; Scanavacca, Mauricio; Reis Santos, Katya; Belo Morgado, Francisco; Carmo, Pedro; Costa, Francisco; Bernardo, Ricardo; Nunes, Manuela; Abecasis, Miguel; Neves, José; Mendes, Miguel

    2014-05-01

    Reentrant circuits of ventricular tachycardia may involve not only the endocardium but also the epicardium. Epicardial ablation can be useful in these situations. The aim of this study was to assess efficacy, safety and complications in a series of consecutive patients who underwent ablation of ventricular tachycardia with epicardial mapping. The study included all patients undergoing ventricular tachycardia ablation with epicardial mapping from 2004 to 2012. Of a total of 95 ablations, an epicardial approach was attempted in nine patients, eight male, mean age 58±12 years. Endocardial mapping was performed in all patients previously or simultaneously. The etiology of the arrhythmia was non-ischemic in eight patients and ischemic in one. We compared the number of events in the six months prior to the epicardial procedure and six months after. Percutaneous epicardial access was achieved in eight patients. In one case it was not possible due to the presence of adhesions. In none of the patients was the procedure repeated and there were no major complications during hospitalization. In a mean follow-up of 3.5±1.2 years, one patient suffered stroke; there were no other medium-to-long-term complications and the number of ventricular tachycardia episodes was reduced in all patients after ablation. Epicardial radiofrequency ablation of ventricular tachycardia was effective in reducing morbidity in eight patients, with a low risk of complications in the short and medium-to-long term. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  6. EUS-Guided Ethanol Ablation of Insulinomas

    PubMed Central

    Qin, Shan-yu; Lu, Xiu-ping; Jiang, Hai-xing

    2014-01-01

    Abstract Surgical resection is a standard treatment for insulinomas; however, it is associated with a high risk of complications and limited to specific suitable candidates. In recent years, endoscopic ultrasound (EUS)-guided ethanol ablation of insulinomas has emerged as a new therapeutic option, especially for elderly patients and candidates unfit for surgery. We aimed to evaluate the feasibility and safety of this technique for insulinomas. Four patients diagnosed with insulinomas based on EUS–fine-needle aspiration and immunohistochemistry results underwent EUS-guided 95% ethanol ablation. A comprehensive literature review was performed to understand the current status of the feasibility, safety, and effects of EUS-guided ethanol ablation of insulinomas. EUS-guided ethanol ablation of insulinomas was successfully completed in all the 4 patients. There were no perioperative or postoperative complications. The patients were discharged at 3 days after the procedure. No recurrence of hypoglycemia or tumors was noted during follow-up (range, 3–6 months). Literature review showed 8 patients with insulinomas who underwent EUS-guided ethanol ablation. All the procedures were successful, with no need for further surgical treatment. Among these reviewed cases, 6 patients had no post-procedural complications, while other 2 patients showed a mild increase in the serum levels of lipase and/or pancreatic enzymes within 48 h post-procedure; furthermore, 1 of these 2 patients presented at a later date with medically controllable hematoma and ulceration. During follow-up, 6 patients remained asymptomatic and normoglycemic, while the 2 patients who presented post-procedural complications developed occasional mild confusion. EUS-guided ethanol ablation of insulinomas is an effective and safe modality, with an acceptable level of post-procedural complications. However, the long-term effects of this new therapeutic option need to be validated in a large randomized controlled

  7. [Magnetic navigation for ablation of cardiac arrhythmias].

    PubMed

    Chen, Jian; Hoff, Per Ivar; Solheim, Eivind; Schuster, Peter; Off, Morten Kristian; Ohm, Ole-Jørgen

    2010-08-12

    The first use of magnetic navigation for radiofrequency ablation of supraventricular tachycardias, was published in 2004. Subsequently, the method has been used for treatment of most types of tachyarrhythmias. This paper provides an overview of the method, with special emphasis on usefulness of a new remote-controlled magnetic navigation system. The paper is based on our own scientific experience and literature identified through a non-systematic search in PubMed. The magnetic navigation system consists of two external electromagnets (to be placed on opposite sides of the patient), which guide an ablation catheter (with a small magnet at the tip of the catheter) to the target area in the heart. The accuracy of this procedure is higher than that with manual navigation. Personnel can be quickly trained to use remote magnetic navigation, but the procedure itself is time-consuming, particularly for patients with atrial fibrillation. The major advantage is a considerably lower radiation burden to both patient and operator, in some studies more than 50 %, and a corresponding reduction in physical strain on the operator. The incidence of procedure-related complications seems to be lower than that observed with use of manually operated ablation catheters. Work is ongoing to improve magnetic ablation catheters and methods that can simplify mapping procedures and improve efficacy of arrhythmia ablation. The basic cost for installing a complete magnetic navigation laboratory may be three times that of a conventional electrophysiological laboratory. The new magnetic navigation system has proved to be applicable during ablation for a variety of tachyarrhythmias, but is still under development.

  8. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  9. Excimer laser corneal ablation: absence of a significant "incubation" effect.

    PubMed

    Pettit, G H; Ediger, M N; Weiblinger, R P

    1991-01-01

    Pulse-to-pulse consistency of excimer laser etching of cornea has been examined via two noncontact techniques: photoacoustic probe beam deflection, and time-resolved excimer pulse reflectometry. These methods clearly document the incubation phenomenon accompanying excimer laser ablation of polymethyl-methacrylate and the absence of the effect during polyimide ablation. In comparison, results for corneal ablation indicate consistent tissue etching over a train of pulses. Consequently, incubation appears to have negligible impact on corneal ablation.

  10. Revisiting the interplay between ablation, collisional, and radiative processes during ns-laser ablation

    NASA Astrophysics Data System (ADS)

    Autrique, D.; Gornushkin, I.; Alexiades, V.; Chen, Z.; Bogaerts, A.; Rethfeld, B.

    2013-10-01

    A study of ns-laser ablation is presented, which focuses on the transient behavior of the physical processes that act in and above a copper sample. A dimensionless multiphase collisional radiative model describes the interplay between the ablation, collisional, and radiative mechanisms. Calculations are done for a 6 ns-Nd:YAG laser pulse operating at 532 nm and fluences up to 15 J/cm2. Temporal intensity profiles as well as transmissivities are in good agreement with experimental results. It is found that volumetric ablation mechanisms and photo-processes both play an essential role in the onset of ns-laser induced breakdown.

  11. A Theoretical Analysis of Effects of Ablation on Heat Transfer to an Arbitrary Axisymmetric Body

    NASA Technical Reports Server (NTRS)

    Swann, Robert T.; South, Jerry

    1961-01-01

    An analysis has been performed t o determine the effect of mass injection on heat transfer to an arbitrary surface of revolution. effective heat of ablation is determined, and the downstream effects of injection are investigated. It is found that the linear relation between heat of ablation and difference between wall and free-stream enthalpy, previously verified at the stagnation point, provides a useful approximation at any point on a surface of revolution. From the investigation of the downstream effects of injection it is found that an appreciable rate of heating may be obtained, even at points considerably downstream from the point at which injection ends. However, the radiation equilibrium temperature is proportional to the fourth root of the heating rate; therefore, except in particular cases, it will be difficult to make use of this effect in the design of thermal protection systems. Effects of radiation from a hot gas layer to the ablating surface are investigated by an approximate procedure. The efficiency of ablation is found to approach a maximum value which depends on the ratio of radiant heating to aerodynamic heating and is independent of the enthalpy difference across the boundary layer.

  12. A 15 year record of frontal glacier ablation rates estimated from seismic data

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas; Nuth, Christopher; Kohler, Jack; Berthier, Etienne; Weidle, Christian; Schweitzer, Johannes

    2016-12-01

    We present a unique time series of continuous glacier frontal ablation rates with weekly resolution over 15 years estimated from seismic calving observations at Kronebreen, Svalbard. Using linear statistical models, we calibrate the seismic record with 7 years of satellite-derived frontal ablation measurements. The two basic input parameters required for our models are the cumulative duration of individual seismic calving events and the incompleteness of the seismic record to correct for the effect of seismic background noise. Frontal ablation follows the seasonal glacier speedup, peaking 1-2 months after the melt season maximum. Short-lived peaks are associated with melt and rain events. Cumulative frontal ablation of Kronebreen between 2001 and 2015 is about 4.0 km3 (3.7 Gt), with the greatest annual loss (0.45 km3) between 2013 and 2014 at the onset of the recent accelerated retreat of the glacier. Our approach provides a potential method for monitoring tidewater glaciers worldwide that have sufficiently close seismic instrumentation.

  13. Conformal Bulk Ablation And Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays

    NASA Astrophysics Data System (ADS)

    Makin, I. R.; Faidi, W.; Mast, T. D.; Runk, M.; Slayton, M.; Barthe, P.

    2005-03-01

    For thermal treatment of soft tissue, an alternative to HIFU is bulk ablation using unfocused or weakly focused intense ultrasound fields. This approach offers faster ablation of large tissue volumes and can be performed in minimally invasive (e.g., laparoscopic or percutaneous) procedures. Here, methods for image-guided ablation of large tissue volumes using compact dual-modality (image and treat) ultrasound arrays are reported including tissue modification caused by the thermal therapy. The dual-modality arrays developed have 16-64 elements spanning apertures of 2-8 mm in elevation and 24-48 mm in azimuth. These devices can provide both therapeutically significant power (e.g. source intensity > 80 W/cm2 at 3.1 MHz) and broad bandwidth (e.g. 50% with a center frequency of 3.5 MHz) for imaging. Imaging challenges associated with limited probe dimensions and channel count are met using signal processing techniques that improve definition and contrast, allowing high-quality B-scan images and useful monitoring information to be obtained during therapy planning and treatment. Using linear and rotational scanning methods, large tissue volumes (20-60 cc) can be treated. The approach can be applied for ablation of other soft tissue pathologies, e.g., kidney, heart, uterus, brain, GI tract, etc.

  14. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  15. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  16. General Model for Multicomponent Ablation Thermochemistry

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).

  17. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  18. Ablation of carbide materials with femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Sentis, Marc; Marine, Wladimir

    2003-01-01

    The response of cemented tungsten carbide and of titanium carbonitride was investigated with respect to damage and ablation properties, under interaction with ultrashort laser pulses. These carbide materials present high microhardness and are of significant interest for tribological applications. The experiments were carried out in air with a commercial Ti:sapphire laser at energy densities on the target up to 6.5 J/cm 2. The irradiated target surfaces were analyzed with optical, SEM and AFM techniques and the damage and ablation threshold values were determined using the measured spot diameters and the calculated incident energy density distributions.

  19. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  20. Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver.

    PubMed

    Tosi, Daniele; Macchi, Edoardo Gino; Gallati, Mario; Braschi, Giovanni; Cigada, Alfredo; Rossi, Sandro; Leen, Gabriel; Lewis, Elfed

    2014-06-01

    A linearly chirped fiber Bragg grating (LCFBG) has been used as a temperature sensor for online monitoring of radiofrequency thermal ablation (RFTA). The LCFBG acts as a distributed sensor, with spatial resolution of 75 μm. A white-light setup that records the LCFBG spectrum estimates the temperature profile in real time. Three RFTA experiments have been performed ex-vivo on porcine liver measuring the radial temperature distribution during the heating process. The analysis of thermal maps quantifies the spatial heat distribution along the measurement axis and determines the ablation efficiency.

  1. Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver

    PubMed Central

    Tosi, Daniele; Macchi, Edoardo Gino; Gallati, Mario; Braschi, Giovanni; Cigada, Alfredo; Rossi, Sandro; Leen, Gabriel; Lewis, Elfed

    2014-01-01

    A linearly chirped fiber Bragg grating (LCFBG) has been used as a temperature sensor for online monitoring of radiofrequency thermal ablation (RFTA). The LCFBG acts as a distributed sensor, with spatial resolution of 75 μm. A white-light setup that records the LCFBG spectrum estimates the temperature profile in real time. Three RFTA experiments have been performed ex-vivo on porcine liver measuring the radial temperature distribution during the heating process. The analysis of thermal maps quantifies the spatial heat distribution along the measurement axis and determines the ablation efficiency. PMID:24940541

  2. INTERACTION OF LASER RADIATION WITH MATTER: Formation of periodic structures upon laser ablation of metal targets in liquids

    NASA Astrophysics Data System (ADS)

    Kazakevich, Pavel V.; Simakin, Aleksandr V.; Shafeev, Georgii A.

    2005-09-01

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface.

  3. Ablation techniques for primary and metastatic liver tumors

    PubMed Central

    Ryan, Michael J; Willatt, Jonathon; Majdalany, Bill S; Kielar, Ania Z; Chong, Suzanne; Ruma, Julie A; Pandya, Amit

    2016-01-01

    Ablative treatment methods have emerged as safe and effective therapies for patients with primary and secondary liver tumors who are not surgical candidates at the time of diagnosis. This article reviews the current literature and describes the techniques, complications and results for radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation. PMID:26839642

  4. Experimental measurement of ablation effects in plasma armature railguns

    SciTech Connect

    Parker, J.V.; Parsons, W.M.

    1986-01-01

    Experimental evidence supporting the importance of ablation in plasma armature railguns is presented. Experiments conducted using the HYVAX and MIDI-2 railguns are described. Several indirect effects of ablation are identified from the experimental results. An improved ablation model of plasma armature dynamics is proposed which incorporates the restrike process.

  5. Treatment of colorectal metastases: surgery, cryotherapy, or radiofrequency ablation

    PubMed Central

    Primrose, J N

    2002-01-01

    The liver is the most common site of metastases from colorectal cancer. There has therefore been growing interest in how liver metastases may be ablated. The most common techniques for ablation of liver metastases are surgical resection, cryotherapy, and increasingly in recent years, radiofrequency ablation. PMID:11772955

  6. A Phase II Trial of Stereotactic Ablative Body Radiotherapy for Low-Risk Prostate Cancer Using a Non-Robotic Linear Accelerator and Real-Time Target Tracking: Report of Toxicity, Quality of Life, and Disease Control Outcomes with 5-Year Minimum Follow-Up

    PubMed Central

    Mantz, Constantine

    2014-01-01

    Purpose/Objective(s): Herein, we report the results of an IRB-approved phase II trial of Varian Trilogy/TrueBeam-based stereotactic ablative body radiotherapy (SABR) monotherapy for low-risk prostate cancer using the Calypso® System to provide real-time electromagnetic tracking of the prostate’s position during treatment delivery. Materials/Methods: A total of 102 low-risk patients completed protocol treatment between January 2007 and May 2009. A total dose of 40.0 Gy in 5 every-other-day fractions of 8.0 Gy was prescribed to the planning target volume. Target setup and tracking procedures were as follows: (1) the Calypso® System was used to achieve target setup prior to each fraction; (2) conebeam CT imaging was then used for correction of setup error and for assessment of target and organs-at-risk deformations; (3) after treatment delivery was initiated, the Calypso® System then provided real-time intrafractional target tracking. The NCI CTCAE v3.0 was used to assess urinary and rectal toxicity during treatment and at defined follow-up time points. Biochemical response and quality of life measurements were made at concurrent follow-up points. Results: Urinary toxicities were most common. At 6 months, 19.6, 2.9, and 4.9% of patients reported grades 1–2 urinary frequency, dysuria, and retention, respectively. Rectal toxicities were uncommon. By 12 months, 2.9% of patients reported painless rectal bleeding with subsequent symptom resolution without requiring invasive interventions. Quality of life measurements demonstrated a significant decline over baseline in urinary irritative/obstructive scores at 1 month following SABR but otherwise did not demonstrate any difference for bowel, bladder, and sexual function scores at any other follow-up time point. One patient suffered biochemical recurrence at 6 years following SABR. Conclusion: At 5 years, minimum follow-up for this favorable patient cohort, prostate SABR resulted in favorable toxicity

  7. Perivascular parenchymal extension of the ablation zone following liver microwave ablation.

    PubMed

    Singh, Saurabh; Siriwardana, Pulathis Nilantha; Johnston, Edward William; Bandula, Steven; Davidson, Brian Ritchie; Illing, Rowland Oliver

    2016-03-31

    A 69-year-old man who presented with abdominal discomfort was, on examination, found to have a palpable abdominal mass. Contrast-enhanced CT showed a mass arising from the inferior vena cava, which biopsy confirmed to be a leiomyosarcoma. One month after chemoradiotherapy, CT demonstrated a new 15 mm solitary central right liver metastasis. Microwave ablation (MWA) of the metastasis was performed using an Acculis Sulis V system (Angiodynamics, USA) at a power of 140 Watts for 4 min, with no immediate complications. After 1 month, MRI with gadolinium was performed to assess the liver ablation zone. The MRI demonstrated thrombosis of a right inferior hepatic vein branch leading to the ablation zone and extension of the ablation zone 1 cm into the tissue around the thrombosed vessel.

  8. Determination of femtosecond ablation thresholds by using laser ablation induced photoacoustics (LAIP)

    NASA Astrophysics Data System (ADS)

    Orzi, Daniel J. O.; Alvira, Fernando C.; Bilmes, Gabriel M.

    2013-03-01

    Femtosecond laser material processing as micromachining and nanoparticles fabrication require a careful control of the fluences deposited on the samples. In many cases, best results are obtained by using fluences slightly above the Laser Ablation Threshold (LAT), therefore its accurate determination is an important requirement. LAT can be obtained by measuring the intensity of the acoustic signal generated during the ablation process as a function of the laser fluence. In this work femtosecond laser ablation thresholds of commercially polished stainless steel plates, white high impact polystyrene, frosted glass, antique rag papers and silicon oxynitride thin films were determined by using laser ablation induced photoacoustics (LAIP). Results were compared with similar data previously obtained by using a nanosecond Nd:YAG laser.

  9. A review of the safety aspects of radio frequency ablation.

    PubMed

    Bhaskaran, Abhishek; Chik, William; Thomas, Stuart; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-09-01

    In light of recent reports showing high incidence of silent cerebral infarcts and organized atrial arrhythmias following radiofrequency (RF) atrial fibrillation (AF) ablation, a review of its safety aspects is timely. Serious complications do occur during supraventricular tachycardia (SVT) ablations and knowledge of their incidence is important when deciding whether to proceed with ablation. Evidence is emerging for the probable role of prophylactic ischemic scar ablation to prevent VT. This might increase the number of procedures performed. Here we look at the various complications of RF ablation and also the methods to minimize them. Electronic database was searched for relevant articles from 1990 to 2015. With better awareness and technological advancements in RF ablation the incidence of complications has improved considerably. In AF ablation it has decreased from 6% to less than 4% comprising of vascular complications, cardiac tamponade, stroke, phrenic nerve injury, pulmonary vein stenosis, atrio-esophageal fistula (AEF) and death. Safety of SVT ablation has also improved with less than 1% incidence of AV node injury in AVNRT ablation. In VT ablation the incidence of major complications was 5-11%, up to 3.4%, up to 1.8% and 4.1-8.8% in patients with structural heart disease, without structural heart disease, prophylactic ablations and epicardial ablations respectively. Vascular and pericardial complications dominated endocardial and epicardial VT ablations respectively. Up to 3% mortality and similar rates of tamponade were reported in endocardial VT ablation. Recent reports about the high incidence of asymptomatic cerebral embolism during AF ablation are concerning, warranting more research into its etiology and prevention.

  10. Therapy of HCC-radiofrequency ablation.

    PubMed

    Buscarini, L; Buscarini, E

    2001-01-01

    Radiofrequency interstitial hyperthermia has been used for percutaneous ablation of hepatocellular carcinoma, under ultrasound guidance in local anesthesia. Conventional needle electrodes require a mean number of 3 sessions to treat tumors of diameter < or = 3 cm. Tumors up to 3.5 cm in diameter can be treated in 1 or 2 sessions by expandable needle electrodes. With both methods in all treated cases, ablation of tumors was obtained. In a group of patients with long follow-up, survival rate at 5 years was 40%. In a mean follow-up of 23 months 41% of patients had recurrences (local recurrences in 5%; new lesions in 36%), which often could be retreated by a new course of radiofrequency application. In recent experience large hepatocellular carcinomas (up to 6.8 cm in diameter) were treated by a combination of segmental transcatheter arterial embolization followed by radiofrequency application. In this way most tumors were ablated in one session of radiofrequency therapy. No fatal complications were observed. Major complications were: strong pain due to capsular necrosis in one patient; hemotorax in one case; a fluid collection in the site of ablated tumor in one patient treated by combination of transcatheter arterial embolization and radiofrequency application.

  11. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  12. Microwave ablation devices for interventional oncology.

    PubMed

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  13. Laboratory Micrometeroid/Dust Ablation Studies

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Horanyi, M.; Janches, D.; Munsat, T. L.; Plane, J. M. C.; Simolka, J.; Sternovsky, Z.

    2014-12-01

    Each day, somewhere between 5-270 tonnes of meteoric material ablates in Earth's upper atmosphere. Thisenormous range is significant because the Interplanetary Dust Particle (IDP) input has implications in ourunderstanding of meteor transport in the atmosphere, the formation of layers of metal atoms and ions,nucleation of noctilucent clouds, effects on stratospheric aerosols and O3 chemistry, and dust evolution inour solar system. As the dust ablates, it produces light, as well as a plasma trail of ionized atmosphericatoms and electrons. These meteor signatures are detected by photographic means, or by radar, but thereremain uncertainties in the luminous efficiency and ionization coefficient of meteors - two parameters thatare essential to evaluate densities, masses, height distributions and fluxes. Precise measurements of theseparameters would allow for not only an understanding of the layers of metal atoms and ions and meteoricsmoke particles in the mesosphere and lower thermosphere, but also would allow for the Earth's atmosphereto be used as a dust detector to detect and characterize the dust environment in our solar system. This work discusses the preliminary results of the new dust ablation facility at the 3 MV hypervelocity dust accelerator at the Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT) at the University of Colorado, which aims to characterize the ionization coefficient and luminous efficiency of ablating micrometeroids.

  14. Intumescent-ablator coatings using endothermic fillers

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1978-01-01

    An intumescent-ablator coating composition which contains the ammonium salt of 1,4-nitroaniline-2-sulfonic acid or 4,4 dinitrosul fanilide, a polymeric binder system and about 5 to 30% weight of an endothermic filler is reported. The filler has a decomposition temperature about or within the exothermic region of the intumescent agent.

  15. Post-ablation-tubal sterilization syndrome.

    PubMed

    Townsend, D E; McCausland, V; McCausland, A; Fields, G; Kauffman, K

    1993-09-01

    To determine the cause of unilateral or bilateral pelvic pain associated with vaginal spotting in women who had previously undergone tubal ligation followed by roller-ball endometrial ablation. Women who had undergone previous tubal sterilization followed by rollerball endometrial ablation were evaluated laparoscopically and hysteroscopically when they presented with a symptom complex of intermittent vaginal bleeding associated with severe cramping pain in the lower abdomen. During a 1.5-year observation period, six women with the symptom complex had laparoscopy and hysteroscopy. In all cases, marked endometrial scarring was noted. In every case, the proximal portions of either one or both fallopian tubes were swollen, and two cases had the appearance of an early ectopic pregnancy. In the remaining cases, the fallopian tubes were rubbery and swollen to as much as twice normal size. Symptoms in five of six patients subsided after laparoscopic removal of the oviduct. It appears that women who have had a tubal sterilization followed by endometrial ablation are at risk of developing an ectopic-like symptom complex. Salpingectomy appears to be effective in relieving symptoms. Whether this represents a new syndrome or just an unusual association between tubal sterilization and endometrial ablation remains to be seen.

  16. Organized Atrial Tachycardias after Atrial Fibrillation Ablation

    PubMed Central

    Castrejón-Castrejón, Sergio; Ortega, Marta; Pérez-Silva, Armando; Doiny, David; Estrada, Alejandro; Filgueiras, David; López-Sendón, José L.; Merino, José L.

    2011-01-01

    The efficacy of catheter-based ablation techniques to treat atrial fibrillation is limited not only by recurrences of this arrhythmia but also, and not less importantly, by new-onset organized atrial tachycardias. The incidence of such tachycardias depends on the type and duration of the baseline atrial fibrillation and specially on the ablation technique which was used during the index procedure. It has been repeatedly reported that the more extensive the left atrial surface ablated, the higher the incidence of organized atrial tachycardias. The exact origin of the pathologic substrate of these trachycardias is not fully understood and may result from the interaction between preexistent regions with abnormal electrical properties and the new ones resultant from radiofrequency delivery. From a clinical point of view these atrial tachycardias tend to remit after a variable time but in some cases are responsible for significant symptoms. A precise knowledge of the most frequent types of these arrhythmias, of their mechanisms and components is necessary for a thorough electrophysiologic characterization if a new ablation procedure is required. PMID:21941669

  17. UV laser ablation patterns in intraocular lenses

    NASA Astrophysics Data System (ADS)

    Lagiou, D. P.; Evangelatos, Ch.; Apostolopoulos, A.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-03-01

    The aim of this work is to investigate the effect of UV solid state laser radiation on intraocular lens (IOL) polymer surfaces as an alternative method to conventional surface shaping techniques for IOLs customization. Laser ablation experiments were performed on PMMA plates and commercially available hydrophobic and hydrophilic acrylic IOLs with the 5th harmonic of a Q-switched Nd:YAG laser (λ=213 nm). Circular arrays of holes were drilled on the polymer surface, covering the centre and the peripheries of the IOL. The morphology of the ablated IOL surface was examined with a conventional optical microscope (Leitz GMBH Wetzlar) and with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements of ablation rates were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variationsF in surface height. Laser interaction with IOLs depends on optical and mechanical material properties, in addition to laser radiation parameters. The exact ablation mechanism is discussed. Some polymer materials, depending on their properties, are more susceptible to the photothermal mechanism than the photochemical one or vice versa. In summary, every IOL polymer exhibits specific attributes in its interaction with the 5th harmonic of Nd:YAG laser.

  18. Outpatient laser tonsillar ablation under local anaesthetic.

    PubMed

    Andrews, Peter J; Latif, Abdul

    2004-11-01

    Outpatient laser ablation of the palatine tonsils under local anaesthetic is an alternative technique to capsular tonsillectomy for recurrent tonsillitis under general anaesthetic. Laser tonsillotomy ablates up to 70% of the tonsillar tissue and is performed when patients choose not to have a conventional tonsillectomy, or are unfit for a general anaesthetic. The technique described here is an adaptation of Krespis' laser-assisted serial tonsillectomy (LAST) whereby only one sitting is required. Krespis' technique effectively eliminates recurrent tonsillitis in 96% of the cases over a 4-year follow-up period and represents the only substantial study looking at treating recurrent tonsillitis with outpatient laser ablation. This study is a retrospective postal survey of 19 patients who underwent laser tonsillar ablation under local anaesthetic for recurrent chronic tonsillitis from 1997 to 2001 and was performed in liaison with the clinical audit department at Basildon Hospital. We had a response rate of 74% and an admission rate of 0%, which compares favourably with day case tonsillectomy surgery. Of the patients, 75% did not experience further episodes of tonsillitis 12 months after the procedure and 77% of the patients were glad they had the operation. Although this technique does not completely eliminate tonsillitis, it offers an alternative for those patients who prefer a procedure that is done quickly in an outpatient setting without the additional problems of general anaesthesia, overnight hospital admission and long waiting lists.

  19. Highspeed laser ablation cutting of metal

    NASA Astrophysics Data System (ADS)

    Ullmann, F.; Loeschner, U.; Hartwig, L.; Szczepanski, D.; Schille, J.; Gronau, S.; Knebel, T.; Drechsel, J.; Ebert, R.; Exner, H.

    2013-02-01

    In laser ablation cutting, irradiation of high-intense laser beams causes ejection of molten and evaporated material out of the cutting zone as a result of high pressure gradients, induced by expanding plasma plumes. This paper investigates highspeed laser ablation cutting of industrial grade metal sheets using high-brilliant continuous wave fiber lasers with output powers up to 5 kW. The laser beam was deflected with scan speeds up to 2700 m/min utilizing both a fast galvanometer scan system and a polygon scan system. By sharp laser beam focusing using different objectives with focal lengths ranging between 160 mm and 500 mm, small laser spot diameters between 16.5 μm and 60 μm were obtained, respectively. As a result high peak intensities between 3*108 W/cm² and 2.5*109 W/cm² were irradiated on the sample surface, and cutting kerfs with a maximum depth of 1.4 mm have been produced. In this study the impact of the processing parameters laser power, laser spot diameter, cutting speed, and number of scans on both the achievable cutting depth and the cutting edge quality was investigated. The ablation depths, the heights of the cutting burr, as well as the removed material volumes were evaluated by means of optical microscope images and cross section photographs. Finally highspeed laser ablation cutting was studied using an intensified ultra highspeed camera in order to get useful insights into the cutting process.

  20. Nonfluoroscopic Ablation of Atrial Fibrillation Using Cryoballoon.

    PubMed

    Razminia, Mansour; Demo, Hany; Arrieta-Garcia, Carlos; D'Silva, Oliver J; Wang, Theodore; Kehoe, Richard F

    2014-01-01

    The conventional method of cryoballoon ablation of atrial fibrillation involves the use of fluoroscopy for visual guidance. The use of fluoroscopy is accompanied by significant radiation risks to the patient and the medical staff. Herein, we report our experience in performing successful nonfluoroscopic pulmonary vein isolation using cryoballoon ablation in 5 consecutive patients with paroxysmal atrial fibrillation. Five consecutive patients with paroxysmal atrial fibrillation underwent cryoballoon ablation for pulmonary vein isolation using a nonfluoroscopic approach. Pre-procedural cardiac computed tomography or cardiac magnetic resonance imaging was not performed in any patient. A total of twenty pulmonary veins were identified and successfully isolated (100%) with the guidance of intracardiac echocardiography and 3-dimensional electroanatomic mapping. No fluoroscopy was used for the procedures. There were no major procedural adverse events. In an unselected group of patients undergoing cryoballoon ablation, a nonfluoroscopic approach is feasible and can be performed safely and effectively while eliminating the risks associated with radiation to both the patient and the medical staff.

  1. Combining Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time.

  2. Atmospheric Profile Imprint in Firewall Ablation Coefficient

    NASA Technical Reports Server (NTRS)

    Ceplecha, Z.; Pecina, P.

    1984-01-01

    A general formula which expresses the distance along the meteoric fireball trajectory 1 as a function of t is discussed. Differential equations which include the motion and ablation of a single nonfragmenting meteor body are presented. The importance of the atmospheric density profile in the meteor formula is emphasized.

  3. Unanswered Questions in Complex Fractionated Atrial Electrogram Ablation.

    PubMed

    Aksu, Tolga; Guler, Tümer Erdem; Yalin, Kivanc; Oto, Ali

    2016-11-01

    Pulmonary vein isolation has been accepted as potential target for ablation of paroxysmal atrial fibrillation (AF) given that the pulmonary veins are the main source of AF triggers. However, ablation strategies for persistent AF are less well defined. Mapping and ablation of complex fractionated atrial electrograms (CFAEs) is one strategy that has been proposed as a strategy for substrate modification although there is no consensus on their definition and procedural end points. Results of clinical studies have been conflicting. In this review, we aimed to discuss yesterday, today, and tomorrow of CFAEs ablation in persistent AF ablation. © 2016 Wiley Periodicals, Inc.

  4. Aluminum X-ray mass-ablation rate measurements

    DOE PAGES

    Kline, John L.; Hager, Jonathan D.

    2016-10-15

    Measurements of the mass ablation rate of aluminum (Al) have been completed at the Omega Laser Facility. Measurements of the mass-ablation rate show Al is higher than plastic (CH), comparable to high density carbon (HDC), and lower than beryllium. The mass-ablation rate is consistent with predictions using a 1D Lagrangian code, Helios. Lastly, the results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators warranting further investigation into the viability of Al capsules for ignition should be pursued.

  5. Aluminum X-ray mass-ablation rate measurements

    DOE PAGES

    Kline, John L.; Hager, Jonathan D.

    2016-10-15

    Measurements of the mass ablation rate of aluminum (Al) have been completed at the Omega Laser Facility. Measurements of the mass-ablation rate show Al is higher than plastic (CH), comparable to high density carbon (HDC), and lower than beryllium. The mass-ablation rate is consistent with predictions using a 1D Lagrangian code, Helios. Lastly, the results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators warranting further investigation into the viability of Al capsules for ignition should be pursued.

  6. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  7. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  8. Thermochemical Ablation Analysis of the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Sixel, William

    2015-01-01

    The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas

  9. Fascicular ventricular tachycardia: experience with radiofrequency ablation.

    PubMed

    Magalhaes, Sónia; Gonçalves, Helena; Primo, João; Sá, Ana Paula; Silva, Paula; Rosas, Rui; Gama, Vasco

    2006-05-01

    Fascicular ventricular tachycardia (VT), the commonest form of idiopathic left VT, occurs more frequently in young males without structural heart disease and usually presents as paroxysmal palpitations. It is subdivided into two more common subtypes, posterior and anterior. A macro-reentrant circuit involving a considerable and variable extent of the left interventricular septum is presumed to be the underlying arrhythmogenic mechanism. A slow conduction zone with particular sensitivity to verapamil participates in the circuit and it seems that diastolic potentials (DP) represent the electrical activity in or near this zone. The fascicles of the left bundle appear to constitute part of the retrograde pathway and Purkinje potentials (PP) are assumed to represent their activation. In the present retrospective study, the authors review twelve cases of fascicular VT (ten posterior and two anterior) evaluated in the electrophysiology laboratory. Although initial induction was obtained in all patients, reproducibility was poor as a consequence of frequent contact inhibition during endocardial mapping of the left ventricle and this meant that ablation was not possible in two cases. Two cases of associated atrioventricular nodal reentrant tachycardia (AVNRT) and a case of associated atrioventricular reentrant tachycardia by a right posterior accessory pathway were documented, which suggest a correlated anatomic substrate. After ablation of the slow nodal pathway in one of the AVNRTs, fascicular VT was no longer inducible. Ablation of the fascicular VT was attempted in nine patients, at the tachycardia exit site (characterized by an early ventricular electrogram fused with a Purkinje potential) in two patients with anterior fascicular VT and in five patients with the posterior subtype, and near the slow conduction pathway (site with simultaneous recording of DP and PP) in the other two patients. The initial success rate with a single procedure was 78%, two of the ablations

  10. A retrospective comparison of microwave ablation vs. radiofrequency ablation for colorectal cancer hepatic metastases.

    PubMed

    Correa-Gallego, Camilo; Fong, Yuman; Gonen, Mithat; D'Angelica, Michael I; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; Kingham, T Peter

    2014-12-01

    Microwave (MWA) and radiofrequency ablation (RFA) are the most commonly used techniques for ablating colorectal-liver metastases (CRLM). The technical and oncologic differences between these modalities are unclear. We conducted a matched-cohort analysis of patients undergoing open MWA or RFA for CRLM at a tertiary-care center between 2008 and 2011; the primary endpoint was ablation-site recurrence. Tumors were matched by size, clinical-risk score, and arterial-intrahepatic or systemic chemotherapy use. Outcomes were compared using conditional logistic regression and stratified log-rank test. We matched 254 tumors (127 per group) from 134 patients. MWA and RFA groups were comparable by age, gender, median number of tumors treated, proximity to major vessels, and postoperative complication rates. Patients in the MWA group had lower ablation-site recurrence rates (6% vs. 20%; P < 0.01). Median follow-up, however, was significantly shorter in the MWA group (18 months [95% confidence interval 17-20] vs. 31 months [95% confidence interval 28-35]; P < 0.001). Kaplan-Meier estimates of ablation-site recurrence at 2 years were significantly lower for the lesions treated with MWA (7% vs. 18%, P: 0.01). Ablation-site recurrences of CRLM were lower with MWA compared with RFA in this matched cohort analysis. Longer follow-up time in the MWA may increase the recurrence rate; however, actuarial local failure estimations demonstrated better local control with MWA.

  11. [Catheter ablation for paroxysmal atrial fibrillation: new generation cryoballoon or contact force sensing radiofrequency ablation?].

    PubMed

    Nagy, Zsófia; Kis, Zsuzsanna; Som, Zoltán; Földesi, Csaba; Kardos, Attila

    2016-05-29

    Contact force sensing radiofrequency ablation and the new generation cryoballoon ablation are prevalent techniques for the treatment of paroxysmal atrial fibrillation. The authors aimed to compare the procedural and 1-year outcome of patients after radiofrequency and cryoballoon ablation. 96 patients with paroxysmal atrial fibrillation (radiofrequency ablation: 58, cryoballoon: 38 patients; 65 men and 31 women aged 28-70 years) were enrolled. At postprocedural 1, 3, 6 and 12 months ECG, Holter monitoring and telephone interviews were performed. Procedure and fluorosocopy time were: radiofrequency ablation, 118.5 ± 15 min and 15.8 ± 6 min; cryoballoon, 73.5 ± 16 min (p<0.05) and 13.8 ± 4.,1 min (p = 0.09), respectively. One year later freedom from atrial fibrillation was achieved in 76.5% of patients who underwent radiofrequency ablation and in 81% of patients treated with cryoballoon. Temporary phrenic nerve palsy occurred in two patients and pericardial tamponade developed in one patient. In this single center study freedom from paroxysmal atrial fibrillation was similar in the two groups with significant shorter procedure time in the cryoballoon group.

  12. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    NASA Astrophysics Data System (ADS)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  13. Er:YAG laser ablation of epiretinal membranes in perfluorocarbon fluid-filled eyeballs: a preliminary report

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Ith, Michael; Weber, Heinz P.; Wesendahl, Th.; Janknecht, P.

    1998-06-01

    Purpose: The Er:YAG laser emitting radiation at a wavelength of 2.94 micrometer has been shown to produce precise tissue ablation because of the high water absorption at this wavelength. These studies evaluated the effects of the Er:YAG laser on pig retina utilizing a perfluoro-carbon/retina interphase with the goal to precisely ablate epiretinal membranes. Method: Various laser pulse energies were applied to the surface of pig retinas in perfluorocarbon filled enucleated eyes using a specially designed rotating sample holder. Free running ((tau) equals 250 microseconds) Er:YAG laser pulses were transmitted through a zirconium fluoride (ZrF4) fiber guarded by a low OH-quartz fiber at its distal tip. The tip diameters measured 400 micrometers and 1 mm. The fiber probe was elevated 1 mm above the retinal surface. The laser energy was applied in a systematic fashion while alternating energy settings and probe diameters. Radiant exposures were set to 1 J/cm2, 3 J/cm2, 5 J/cm2, and 10 J/cm2. Results: Eight of ten eyes were treated with concentric circles of 3.5 mm, 6.5 mm, and 9.5 mm radius. The remaining two eyes were treated with a hand held probe. Tissue ablation increased with radiant exposure in a linear fashion. At a radiant exposure of 1 J/cm2, tissue ablation was minimal with a maximum tissue ablation depth of 10 micrometers and minimal thermal damage to adjacent tissue. A radiant exposure of 10 J/cm2 produced an ablation depth of 30 - 50 micrometers. As the ablation was performed under perfluorcarbon fluid, used as transmitting medium, no laser- induced pressure transients have been measured. Conclusion: The Er:YAG laser in combination with perfluorocarbon fluid produced precise and homogeneous tissue ablation of the pig retina. Such precise tissue ablation needs to be achieved in order to safely ablate epiretinal membranes in close proximity to the retina surface. Further in-vivo experiments will be done to examine the functionality of the retina after laser

  14. Method to control depth error when ablating human dentin with numerically controlled picosecond laser: a preliminary study.

    PubMed

    Sun, Yuchun; Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Wang, Yong

    2015-07-01

    A three-axis numerically controlled picosecond laser was used to ablate dentin to investigate the quantitative relationships among the number of additive pulse layers in two-dimensional scans starting from the focal plane, step size along the normal of the focal plane (focal plane normal), and ablation depth error. A method to control the ablation depth error, suitable to control stepping along the focal plane normal, was preliminarily established. Twenty-four freshly removed mandibular first molars were cut transversely along the long axis of the crown and prepared as 48 tooth sample slices with approximately flat surfaces. Forty-two slices were used in the first section. The picosecond laser was 1,064 nm in wavelength, 3 W in power, and 10 kHz in repetition frequency. For a varying number (n = 5-70) of focal plane additive pulse layers (14 groups, three repetitions each), two-dimensional scanning and ablation were performed on the dentin regions of the tooth sample slices, which were fixed on the focal plane. The ablation depth, d, was measured, and the quantitative function between n and d was established. Six slices were used in the second section. The function was used to calculate and set the timing of stepwise increments, and the single-step size along the focal plane normal was d micrometer after ablation of n layers (n = 5-50; 10 groups, six repetitions each). Each sample underwent three-dimensional scanning and ablation to produce 2 × 2-mm square cavities. The difference, e, between the measured cavity depth and theoretical value was calculated, along with the difference, e 1, between the measured average ablation depth of a single-step along the focal plane normal and theoretical value. Values of n and d corresponding to the minimum values of e and e 1, respectively, were obtained. In two-dimensional ablation, d was largest (720.61 μm) when n = 65 and smallest when n = 5 (45.00 μm). Linear regression yielded the quantitative

  15. Ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion

    SciTech Connect

    Kilkenny, J.D.

    1994-08-04

    As shown elsewhere an ablatively imploded shell is hydrodynamically unstable, the dominant instability being the well known Rayleigh-Taylor instability with growth rate {gamma} = {radical}Akg where k = 2{pi}/{lambda} is the wave number, g is the acceleration and A the Attwood number ({rho}{sub hi} {minus} {rho}{sub lo})/({rho}{sub hi} + {rho}{sub lo}) where {rho}{sub hi} is the density of the heavier fluid and {rho}{sub lo} is the density of the lighter fluid. A theoretical understanding of ablative stabilization has gradually evolved, confirmed over the last five years by experiments. The linear growth is very well understood with excellent agreement between experiment and simulation for planar geometry with wavelengths in the region of 30--100{mu}m. There is an accurate, albeit phenomenological dispersion relation. The non-linear growth has been measured and agrees with calculations. In this lecture, the authors go into the fundamentals of the Rayleigh-Taylor instability and the experimental measurements that show it is stabilized sufficiently by ablation in regimes relevant to ICF.

  16. Transient effects in unstable ablation fronts and mixing layers in HEDP

    NASA Astrophysics Data System (ADS)

    Clarisse, J.-M.; Gauthier, S.; Dastugue, L.; Vallet, A.; Schneider, N.

    2016-07-01

    We report results obtained for two elementary unstable flow configurations relevant to high energy density physics: the ablation front instability and the Rayleigh-Taylor -instability induced mixing layer. These two flows are characterized by a transience of their perturbation dynamics. In the ablative flow case, this perturbation dynamics transience takes the form of finite-durations of successive linear-perturbation evolution phases until reaching regimes of decaying oscillations. This behaviour is observed in various regimes: weakly or strongly accelerated ablation fronts, irradiation asymmetries or initial external-surface defects, and is a result of the mean-flow unsteadiness and stretching. In the case of the Rayleigh-Taylor-instability induced mixing layer, perturbation dynamics transience manifests itself through the extinction of turbulence and mixing as the flow reaches a stable state made of two stably stratified layers of pure fluids separated by an unstratified mixing layer. A second feature, also due to compressibility, takes the form of an intense acoustic wave production, mainly localized in the heavy fluid. Finally, we point out that a systematic short-term linear-perturbation dynamics analysis should be undertaken within the framework of non-normal stability theory.

  17. Analysis of tungsten carbide coatings by UV laser ablation inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanicky, V.; Otruba, V.; Mermet, J.-M.

    2000-06-01

    Tungsten carbide coatings (thickness 0.1-0.2 mm) containing 8.0, 12.2, 17.2 and 22.9% Co were studied with laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES). Composition of these plasma sprayed deposits on steel disks was determined using X-ray fluorescence spectrometry and electron microprobe energy/wavelength dispersive X-ray spectrometry. The coatings were ablated by means of a Q-switched Nd:YAG laser at 266 nm (10 Hz, 10 mJ per shot) coupled to an ICP echelle-based spectrometer equipped with a segmented charge-coupled device detector. Non-linear dependences of cobalt lines intensities on the Co percentage were observed both at a single spot ablation and at a sample translation. This behaviour could be attributed to a complex phase composition of the system W-C-Co. However, employing tungsten as internal standard the linear calibration was obtained for studied analytical lines Co II 228.616 nm, Co II 230.786 nm, Co II 236.379 nm and Co II 238.892 nm.

  18. Femtosecond laser ablation of brass in air and liquid media

    SciTech Connect

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-07

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  19. Direct Pulmonary Vein Ablation with Stenosis Prevention Therapy

    PubMed Central

    DeSimone, Christopher V.; Holmes, David R.; Ebrille, Elisa; Syed, Faisal F.; Ladewig, Dorothy J.; Mikell, Susan B.; Powers, Joanne; Suddendorf, Scott H.; Gilles, Emily J.; Danielsen, Andrew J.; Hodge, David O.; Kapa, Suraj; Asirvatham, Samuel J.

    2015-01-01

    Introduction The dominant location of electrical triggers for initiating atrial fibrillation (AF) originates from the muscle sleeves inside pulmonary veins (PVs). Currently, radiofrequency ablation (RFA) is performed outside of the PVs to isolate, rather than directly ablate these tissues, due to the risk of intraluminal PV stenosis. Methods In 4 chronic canine experiments, we performed direct PV muscle sleeve RFA ± post-ablation drug-coated balloon (DCB) treatment with paclitaxel/everolimus. Of the 4 PVs, 2 PVs were ablated and treated with DCB, 1 PV was ablated without DCB treatment (positive control), and 1 PV was left as a negative control. Local electrograms were assessed in PVs for near-field signals and were targeted for ablation. After 12-14 weeks survival, PVs were interrogated for absence of near-field PV potentials, and each PV was assessed for stenosis. Results All canines survived the study period without cardiorespiratory complications, and remained ambulatory. In all canines, PVs that were ablated and treated with DCB remained without any significant intraluminal stenosis. In contrast, PVs that were ablated and not treated with DCB showed near or complete intraluminal stenosis. At terminal study, PV potentials remained undetectable. A blinded, histologic analysis demonstrated that ablated PVs without DCB treatment had extensive thrombus, fibrin, mineralization, and elastin disruption. Conclusion Our chronic canine data suggest that direct PV tissue ablation without subsequent stenosis is feasible with the use of post-ablation DCBs. PMID:26075706

  20. Silicon-Class Ablators for NIC Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Ho, Darwin; Salmonson, Jay; Haan, Steve

    2012-10-01

    We present design studies using silicon-class ablators (i.e., Si, SiC, SiB6, and SiB14) for NIC ignition capsules. These types of ablators have several advantages in that they: (a) require no internal dopant layers and are robust to M-band radiation; (b) have smooth outer surfaces; (c) have stable fuel-ablator interface; and (d) have good 1-D performance. The major disadvantage for some of the ablators in this class is the relatively smaller ablation stabilization. Consequently, the ablator is more susceptible to breakup caused by RT instabilities. However, smoother outer surfaces on this class of ablators can reduce the effect of RT instabilities. 2-D simulations of SiC ablators show ignition failure despite smooth surfaces and good 1-D performance. But SiB6 and SiB14 ablators exhibit promising behaviors. SiB6 (SiB14) ablators have high 1-D ignition margin and high peak core hydrodynamic pressure 880 (900) Gbar. The ablation scale length for SiB6 is longer than that for SiC and for SiB14 is comparable to that of plastic. Therefore, we expect acceptable performance for SiB6 and less RT growth for SiB14. 2-D simulations are now in progress.

  1. Anesthetic Management in Radiofrequency Catheter Ablation of Ventricular Tachycardia.

    PubMed

    Deng, Yi; Naeini, Payam S; Razavi, Mehdi; Collard, Charles D; Tolpin, Daniel A; Anton, James M

    2016-12-01

    Radiofrequency catheter ablation is increasingly being used to treat patients who have ventricular tachycardia, and anesthesiologists frequently manage their perioperative care. This narrative review is intended to familiarize anesthesiologists with preprocedural, intraprocedural, and postprocedural implications of this ablation. Ventricular tachycardia typically arises from structural heart disease, most often from scar tissue after myocardial infarction. Many patients thus affected will benefit from radiofrequency catheter ablation in the electrophysiology laboratory to ablate the foci of arrhythmogenesis. The pathophysiology of ventricular tachycardia is complex, as are the technical aspects of mapping and ablating these arrhythmias. Patients often have substantial comorbidities and tenuous hemodynamic status, necessitating pharmacologic and mechanical cardiopulmonary support. General anesthesia and monitored anesthesia care, when used for sedation during ablation, can lead to drug interactions and side effects in the presence of ventricular tachycardia, so anesthesiologists should also be aware of potential perioperative complications. We discuss variables that can help anesthesiologists safely guide patients through the challenges of radiofrequency catheter ablation of ventricular tachycardia.

  2. Electromagnetic measurement and modeling techniques for microwave ablation probes.

    PubMed

    Brannan, Joseph D

    2009-01-01

    Broadband scattering parameter measurement of a commercially available microwave ablation probe over the course of a 10 minute 45 Watt ablation cycle within ex-vivo bovine liver tissue is performed. Measurement results are compared to finite difference time domain simulation of the probe in non-ablated and fully ablated tissue geometries. Measurement and simulation results agree well from 0-3 GHz demonstrating the accuracy of a multi-compartmental ablation geometry modeling technique. The electromagnetic modeling technique presented in this paper introduces a useful design tool for optimizing microwave ablation probes without the need for multi-physics simulation packages. The relevance of tissue complex permittivity change with temperature to microwave ablation probe performance is discussed.

  3. Effects of pressure rise on cw laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  4. The impact of left atrial size on long-term outcome of catheter ablation of chronic atrial fibrillation.

    PubMed

    Lo, Li-Wei; Lin, Yenn-Jiang; Tsao, Hsuan-Ming; Chang, Shih-Lin; Udyavar, Ameya R; Hu, Yu-Feng; Ueng, Kwo-Chang; Tsai, Wen-Chin; Tuan, Ta-Chun; Chang, Chien-Jung; Tang, Wei-Hua; Higa, Satoshi; Tai, Ching-Tai; Chen, Shih-Ann

    2009-11-01

    The left atrial (LA) size is an important predictor of atrial fibrillation (AF) procedural termination and the long-term outcome. We sought to evaluate the long-term outcome in regard to the LA size and procedural termination. Eighty-seven consecutive chronic AF patients (72 males, 53 +/- 10 years) underwent 3D mapping (NavX) and ablation. A stepwise approach including circumferential pulmonary vein (PV) isolation, linear ablation, and continuous complex-fractionated electrogram (CFE) ablation (targeting fractionation intervals of < 50 ms). Electrical cardioversion was applied to those without any procedural termination. The freedom from AF was defined as the maintenance of sinus rhythm without the use of any class I or III antiarrhythmic drugs after the blanking period. Among the 87 patients, all received a circumferential PV isolation, 93% a linear ablation, and 59% a continuous CFE ablation. Those with AF procedural termination (n = 30) had a better long-term outcome when compared with those without termination during a follow-up of 21 +/- 12 months. Moreover, a Kaplan-Meier analysis showed that in those with an LA diameter of less than 45 mm (n = 49), the freedom from AF rate was higher when procedural termination was achieved (P = 0.004). On the contrary, the outcome was comparable in those with an LA diameter of >or= 45 mm (n = 38), whether AF procedural termination occurred or not (P = 0.658). AF procedural termination was related to the long-term success during chronic AF ablation, especially in those with an LA diameter of less than 45 mm. The favorable effect of termination decreased when the LA diameter was >or= 45 mm.

  5. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  6. Electromagnetic versus fluoroscopic mapping of the inferior isthmus for ablation of typical atrial flutter: A prospective randomized study.

    PubMed

    Kottkamp, H; Hügl, B; Krauss, B; Wetzel, U; Fleck, A; Schuler, G; Hindricks, G

    2000-10-24

    Radiofrequency catheter ablation within the tricuspid annulus-inferior caval vein isthmus can cure typical atrial flutter. The target for ablation, nonetheless, is relatively wide, and standard ablation procedures may require significant exposure to radiation. A total of 50 patients (mean age, 58+/-11 years) with typical atrial flutter were prospectively randomized to receive isthmus ablation using conventional fluoroscopy for catheter navigation (group I, n=24) or electromagnetic mapping (group II, n=26). Complete bidirectional isthmus block was verified with double potential mapping. If complete isthmus block could not be achieved after 20 radiofrequency pulses or 25 minutes of fluoroscopy, the patients were switched to the other group. Eight patients from group I (33%) but only 1 patient from group II (4%) were switched. Overall, complete isthmus block was achieved in 47 of 50 patients (94%). The overall fluoroscopy time, including the placement of the diagnostic catheters, was 22.0+/-6.3 minutes in group I and 3.9+/-1.5 minutes in group II (P:<0.0001). The fluoroscopy time needed for isthmus mapping was 17.7+/-6.5 minutes in group I and 0.2+/-0.3 minutes in group II (P:<0.0001). Electromagnetic mapping during the induction of linear lesions for the ablation of atrial flutter permitted a highly significant reduction in exposure to fluoroscopy while maintaining high efficacy, and it allowed the time required for fluoroscopy to be reduced to levels anticipated for diagnostic electrophysiological studies.

  7. Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-ke; Xiong, Xiang; Li, Guo-dong; Wang, Ya-lei

    2009-08-01

    Carbon/carbon composites with C-SiC-TaC multi-interlayers were prepared by isothermal chemical vapor infiltration. The ablation behaviors of the composites were tested with an oxyacetylene flame. The mass loss rate increases markedly in the initial 10 s, then reaches a steady state or decreases slightly in 10-40 s; while after 40 s, the mass loss rate increases remarkably. A similar trend is observed in the linear loss rate, except that it begins to increase only after 60 s. After ablation for 5 s, the composite surface consists in black carbon fibers and white ceramic oxides. After 20 s, three different regions with different ablation behaviors are observed: central, transition and border. After 100 s, the composites are severely ablated and the shape is completely destroyed. A cross-section of the composites after ablation for 20 s shows three distinct regions: a rugged oxide layer, a smooth oxide layer and the matrix. The tantalum compounds have not been able to protect efficiently the material from constant oxide evolution, possibly because of a too large pore volume fraction.

  8. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    PubMed Central

    2012-01-01

    Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types) were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA), followed by linear discriminant analysis (LDA). To assess the potential of tissue differentiation, area under the curve (AUC), sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%). However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85). Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the surrounding lipid-rich nerve

  9. Formation of jet-like spikes from the ablative Rayleigh-Taylor instability

    SciTech Connect

    Wang, L. F.; Ye, W. H.; He, X. T.; Zhang, W. Y.; Sheng, Z. M.; Yu, M. Y.

    2012-10-15

    The mechanism of jet-like spike formation from the ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating is reported. It is found that the preheating plays an essential role in the formation of the jet-like spikes. In the early stage, the preheating significantly increases the plasma density gradient, which can reduce the linear growth of ARTI and suppress its harmonics. In the middle stage, the preheating can markedly increase the vorticity convection and effectively reduce the vorticity intensity resulting in a broadened velocity shear layer near the spikes. Then the growth of ablative Kelvin-Helmholtz instability is dramatically suppressed and the ARTI remains dominant. In the late stage, nonlinear bubble acceleration further elongates the bubble-spike amplitude and eventually leads to the formation of jet-like spikes.

  10. Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions

    SciTech Connect

    Bobrinetskiy, I. I. Otero, N.; Romero, P. M.; Emelianov, A. V.

    2015-07-27

    Direct laser writing is a technology with excellent prospects for mask-less processing of carbon-based nanomaterials, because of the wide range of photoinduced reactions that can be performed on large surfaces with submicron resolution. In this paper, we demonstrate the use of picoseconds laser pulses for one-step ablation and functionalization of graphene. Varying the parameters of power, pulse frequency, and speed, we demonstrated the ablation down to 2 μm width and up to mm-long lines as well as functionalization with spatial resolution less than 1 μm with linear speeds in the range of 1 m/s. Raman and atomic-force microscopy studies were used to indicate the difference in modified graphene states and correlation to the changes in optical properties.

  11. Supercomputer Simulation of Radio-frequency Hepatic Tumor Ablation

    NASA Astrophysics Data System (ADS)

    Kosturski, N.; Margenov, S.

    2010-11-01

    We simulate the thermal and electrical processes, involved in the radio-frequency (RF) ablation procedure. The mathematical model consists of two parts—electrical and thermal. The energy from the applied AC voltage is determined first, by solving the Laplace equation to find the potential distribution. After that, the electric field intensity and the current density are directly calculated. Finally, the heat transfer equation is solved to determine the temperature distribution. Heat loss due to blood perfusion is also accounted for. The representation of the computational domain is based on a voxel mesh. Both partial differential equations are discretized in space via linear conforming FEM. After the space discretization, the backward Euler scheme is used for the time stepping. Large-scale linear systems arise from the FEM discretization. Moreover, they are ill-conditioned, due to the strong coefficient jumps and the complex geometry of the problem. Therefore, efficient parallel solution methods are required. The developed parallel solver is based on the preconditioned conjugate gradient (PCG) method. As a preconditioner, we use BoomerAMG—a parallel algebraic multigrid implementation from the package Hypre, developed in LLNL, Livermore. Parallel numerical tests, performed on the IBM Blue Gene/P massively parallel computer are presented.

  12. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  13. Temperature profiles of 980- and 1,470-nm endovenous laser ablation, endovenous radiofrequency ablation and endovenous steam ablation.

    PubMed

    Malskat, W S J; Stokbroekx, M A L; van der Geld, C W M; Nijsten, T E C; van den Bos, R R

    2014-03-01

    Endovenous thermal ablation (EVTA) techniques are very effective for the treatment of varicose veins, but their exact working mechanism is still not well documented. The lack of knowledge of mechanistic properties has led to a variety of EVTA protocols and a commercially driven dissemination of new or modified techniques without robust scientific evidence. The aim of this study is to compare temperature profiles of 980-and 1,470-nm endovenous laser ablation (EVLA), segmental radiofrequency ablation (RFA), and endovenous steam ablation (EVSA). In an experimental setting, temperature measurements were performed using thermocouples; raw potato was used to mimic a vein wall. Two laser wavelengths (980 and 1,470 nm) were used with tulip-tip fibers and 1,470 nm also with a radial-emitting fiber. Different powers and pullback speeds were used to achieve fluences of 30, 60, and 90 J/cm. For segmental RFA, 1 cycle of 20 s was analyzed. EVSA was performed with two and three pulses of steam per centimeter. Maximum temperature increase, time span of relevant temperature increase, and area under the curve of the time of relevant temperature increase were measured. In all EVLA settings, temperatures increased and decreased rapidly. High fluence is associated with significantly higher temperatures and increased time span of temperature rise. Temperature profiles of 980- and 1,470-nm EVLA with tulip-tip fibers did not differ significantly. Radial EVLA showed significantly higher maximum temperatures than tulip-tip EVLA. EVSA resulted in mild peak temperatures for longer durations than EVLA. Maximum temperatures with three pulses per centimeter were significantly higher than with two pulses. RFA temperature rises were relatively mild, resulting in a plateau-shaped temperature profile, similar to EVSA. Temperature increase during EVLA is fast with a high-peak temperature for a short time, where EVSA and RFA have longer plateau phases and lower maximum temperatures.

  14. Clinical experience with contact-force and flexible-tip ablation catheter designs.

    PubMed

    Deubner, N; Greiss, H; Akkaya, E; Berkowitsch, A; Zaltsberg, S; Hamm, C W; Kuniss, M; Neumann, T

    2016-10-01

    Lesion formation is a critical determinant of technical and clinical success of pulmonary vein isolation. Different catheter designs aim to enhance tissue contact during ablation to enable optimized lesion formation. We analyzed procedural characteristics and predictors of clinical success in patients ablated with three different contemporary ablation catheters. Two hundred sixty-eight sequentially included patients receiving pulmonary vein isolation (PVI) with conventional (n = 122), contact-force (n = 96) and flexible-tip (n = 60) catheters were followed for a median of 14.1 months with 7d-Holter-monitoring and TTE at 3, 6, 12, and 24 months. Baseline characteristics and follow-up times were homogeneous across all groups. Multivariable Cox proportional hazard regression for arrhythmia recurrence demonstrated a favorable hazard ratio for contact-force and flexible-tip catheters vs. conventional open irrigation catheters. Procedure time and fluoroscopy time were shorter for contact-force and flexible-tip catheters versus conventional catheters, but equal between. Linear lesions were applied in 58 % of contact-force and 66 % of flexible-tip cases, and CFAEs were targeted in 26 % of either. Our non-randomized prospectively collected data do not show a difference in observed procedure characteristics and in clinical outcome for flexible-tip versus contact-force catheter designs, while both display improved performance against conventional open irrigated-tip catheters. Linear lesions and CFAEs ablation were not associated with improved arrhythmia-free survival.

  15. Ablation of steel using picosecond laser pulses in burst mode

    NASA Astrophysics Data System (ADS)

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  16. Bipolar radiofrequency ablation of spinal tumors: predictability, safety and outcome.

    PubMed

    Gazis, Angelos N; Beuing, Oliver; Franke, Jörg; Jöllenbeck, Boris; Skalej, Martin

    2014-04-01

    Bone metastases are often the cause of tumor-associated pain and reduction of quality of life. For patients that cannot be treated by surgery, a local minimally invasive therapy such as radiofrequency ablation can be a useful option. In cases in which tumorous masses are adjacent to vulnerable structures, the monopolar radiofrequency can cause severe neuronal damage because of the unpredictability of current flow. The aim of this study is to show that the bipolar radiofrequency ablation provides an opportunity to safely treat such spinal lesions because of precise predictability of the emerging ablation zone. Prospective cohort study of 36 patients undergoing treatment at a single institution. Thirty-six patients in advanced tumor stage with primary or secondary tumor involvement of spine undergoing radiofrequency ablation. Prediction of emerging ablation zone. Clinical outcome of treated patients. X-ray-controlled treatment of 39 lesions by bipolar radiofrequency ablation. Magnetic resonance imaging was performed pre- and postinterventionally. Patients were observed clinically during their postinterventional stay. The extent of the ablation zones was predictable to the millimeter because it did not cross the peri-interventional planned dorsal and ventral boundaries in any case. No complications were observed. Ablation of tumorous masses adjacent to vulnerable structures is feasible and predictable by using the bipolar radiofrequency ablation. Damage of neuronal structures can be avoided through precise prediction of the ablation area. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Quantifying Local Stiffness Variations in Radiofrequency Ablations with Dynamic Indentation

    PubMed Central

    DeWall, Ryan J.; Varghese, Tomy; Brace, Christopher L.

    2012-01-01

    Elastographic imaging can be used to monitor ablation procedures, however confident and clear determination of the ablation boundary is essential to ensure complete treatment of the pathological target. To investigate the potential for ablation boundary representation on elastographic images, local variations in the viscoelastic properties in radiofrequency ablated regions that were formed in vivo in porcine liver tissue were quantified using dynamic indentation. Spatial stiffness maps were then correlated to stained histology, the gold standard for determination of the ablation periphery or boundary. Regions of interest in eleven radiofrequency ablation samples were indented at 18–24 locations each, including the central zone of complete necrosis and more peripheral transition zones including normal tissue. Storage modulus and rate of stiffening were both greatest in the central ablation zone and decreased with radial distance away from the center. The storage modulus and modulus contrast at the ablation outer transition zone boundary were 3.1 ± 1.0 kPa and 1.6 ± 0.4, respectively, and 36.2 ± 9.1 kPa and 18.3 ± 5.5 at the condensation boundary within the ablation zone. Elastographic imaging modalities were then compared to gross pathology in ex vivo bovine liver tissue. Area estimated from strain, shear wave velocity, and gross pathology images were 470 mm2, 560 mm2, and 574 mm2, respectively, and ablation widths were 19.4 mm, 20.7 mm, and 23.0 mm. This study has provided insights into spatial stiffness distributions within radiofrequency ablations and suggests that low stiffness contrast on the ablation periphery leads to the observed underestimation of ablation extent on elastographic images. PMID:22167553

  18. Automated planning of ablation targets in atrial fibrillation treatment

    NASA Astrophysics Data System (ADS)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  19. Particle analysis using laser ablation mass spectroscopy

    DOEpatents

    Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.

    2003-09-09

    The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.

  20. [Potentials of interventional radiology: percutaneous radiofrequency ablation].

    PubMed

    Péter, Mózes; Tóth, Judit

    2004-02-15

    The efficacy of the treatment of hepatic malignancies has improved, mostly due to the physical procedures which affect the tumors locally. The authors performed 210 radio-frequency ablations in 1.38 patients. They recommend this procedure based on their experiences. RF treatment is performed together with other therapeutical procedures done by cooperation of oncology clinic. The main indication for the treatment of tumors is, lesions less than 4 cm in diameter and the number of masses is less than 4. The treatment can be performed by CT guidance and is documented well. The applied RF generator is made by Radionics, electrodes are cooled. In 68% of the tumors they achieved complete necrosis using this procedure. After the intervention patients experienced no serious complications. The only side effects were abdominal pain and discomfort. RF tumor ablation is an important and effective procedure in the treatment of hepatic tumors.

  1. Palliative Radiofrequency Ablation for Recurrent Prostate Cancer

    SciTech Connect

    Jindal, Gaurav; Friedman, Marc; Locklin, Julia Wood, Bradford J.

    2006-06-15

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive local therapy for cancer. Its efficacy is now becoming well documented in many different organs, including liver, kidney, and lung. The goal of RFA is typically complete eradication of a tumor in lieu of an invasive surgical procedure. However, RFA can also play an important role in the palliative care of cancer patients. Tumors which are surgically unresectable and incompatible for complete ablation present the opportunity for RFA to be used in a new paradigm. Cancer pain runs the gamut from minor discomfort relieved with mild pain medication to unrelenting suffering for the patient, poorly controlled by conventional means. RFA is a tool which can potentially palliate intractable cancer pain. We present here a case in which RFA provided pain relief in a patient with metastatic prostate cancer with pain uncontrolled by conventional methods.

  2. Monopole antennas for microwave catheter ablation

    SciTech Connect

    Labonte, S.; Blais, A.; Legault, S.R.; Ali, H.O.; Roy, L.

    1996-10-01

    The authors study the characteristics of various monopole antennas for microwave catheter ablation of the endocardium. The investigation is done with a computer model based on the finite-element method in the frequency domain. Three monopole geometries are considered: open-tip, dielectric-tip, and metal-tip. Calculations are made for the magnetic field, the reflection coefficient and the power deposition pattern of the antennas immersed in normal saline. The theoretical results are compared with measurements performed on prototypes and good agreement is obtained. The antenna characteristics suggest that the metal-tip monopole best fulfills the requirements of catheter ablation. The computer model is then used to compare metal-tip monopoles of different dimensions and to determine design trade-offs.

  3. Ablation of neoplasia by direct current.

    PubMed

    Taylor, T V; Engler, P; Pullan, B R; Holt, S

    1994-08-01

    The application of low-voltage direct electrical current (DEC) has been studied in animals and humans for the ablation of anal condylomata, oesophageal cancer and Kaposi's sarcoma. Twenty milliamps of DEC passed through multiple 6 cm x 1 cm, flat-plate longitudinal electrodes into the squamous mucosa of the oesophagus of healthy dogs for periods ranging from 10 min to 2 h resulted in denudation and necrosis of the oesophageal mucosa at the site of application of the current. In humans, the application of DEC to two patients with benign anal condyloma acuminata, three patients with inoperable obstructing oesophageal cancer and one patient with disseminated Kaposi sarcoma resulted in striking necrosis of tumour tissue that was confirmed by macroscopic and microscopic studies. These initial findings imply promising therapeutic potential for the use of DEC as a simple, effective, safe, low-cost alternative for ablation of neoplasia.

  4. Simulation of ablation in Earth atmospheric entry

    NASA Technical Reports Server (NTRS)

    Keenan, James A.; Candler, Graham V.

    1993-01-01

    The process of ablation for Earth atmospheric entry is simulated using a computational approach that allows thermo-chemical nonequilibrium of the flow field and ablation gases. The heat pulse into the heat shield is modeled. The flowfield and graphite heat shield are coupled through surface mass and energy balances. The surface thermochemistry involves the oxidation of graphite and allows for catalytic recombination of diatomic oxygen. Steady-state simulations are performed on a one meter nose radius sphere at an altitude of 65/km and at freestream velocities of 8 km/s and 10 km/s. A transient simulation is performed at 65 km altitude and a freestream velocity of 10 km/s.

  5. Radiofrequency thermal ablation of hepatocellular carcinoma.

    PubMed

    Allgaier, H P; Galandi, D; Zuber, I; Blum, H E

    2001-01-01

    Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide. Due to advanced or decompensated liver cirrhosis, comorbidity and multicentricity of the tumor lesions, 70-80% of HCC patients are inoperable at the time of diagnosis. Radiofrequency thermal ablation (RFTA) is a new minimally invasive and sage technique for the nonsurgical treatment of HCCs. Similar to other ablation techniques, the treatment strategy depends on several factors, including the patient's clinical status, the stage of liver cirrhosis and of the HCC. RFTA can be performed percutaneously, laparoscopically or after laparotomy. Advanced RFTA equipment, refined techniques of modifying tumor tissue response to RFTA, and combined treatment strategies should lead to better response rates even in larger HCCs.

  6. Advanced Rigid Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Feldman, J. D.; Gasch, M. J.; Poteet, C. C.; Szalai, Christine

    2012-01-01

    With the gradual increase in robotic rover sophistication and the desire for humans to explore the solar system, the need for reentry systems to deliver large payloads into planetary atmospheres is looming. Heritage ablative Thermal Protection Systems (TPS) using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for many future missions. Significant advances in TPS materials technology are needed in order to enable susequent human exploration missions. This paper summarizes some recent progress at NASA in developing families of advanced rigid ablative TPS that could be used for thermal protection in planetary entry missions. In particular, the effort focuses on technologies required to land heavy masses on Mars to facilitate exploration.

  7. [Atrial fibrillation ablation: application of nurse methodology].

    PubMed

    Ramos-González-Serna, Amelia; Mateos-García, M Dolores

    2011-01-01

    Ablation of pulmonary veins for treatment of atrial fibrillation involves applying radiofrequency energy wave by a catheter that causes a circumferential lesion to achieve electrical isolation and voltage drop in the interior. It is mainly applied when there is resistance to treatment and recurrence of symptoms affecting the quality of life of patients. The nurse is an important part of the multidisciplinary team who care for patients who undergo this procedure. The provision of comprehensive nursing care should include nursing procedures prior to, during, and after treatment to ensure the careful and systematic quality required. The aims of this article are: to provide specialised knowledge on the procedure of atrial fibrillation ablation, to describe the preparation of the electrophysiology laboratory, analyse nursing care and develop a standardized care plan for patients on whom this procedure is performed using the NANDA (North American Nursing Association) taxonomy and NIC (Nursing Intervention Classification).

  8. [Pulmonary vein stenosis after radio frequency ablation].

    PubMed

    Guzzi, Marcelo; Bouza, Gabriel; Rodríguez, Raquel; Lantos, Jorge; Dubner, Sergio; Mrad, Jorge

    2011-01-01

    Physicians should be alert to the occurrence of respiratory symptoms after radio frequency ablation for the treatment of atrial fibrillation. Pulmonary veins stenosis could appear with an incidence of between 1 and 3% during the two years following the procedure. We present the case of a 41 year-old-male patient admitted with a three weeks old hemoptysis and thoracodinia and a prior history of a radiofrequency ablation procedure performed six months earlier. The angiotomography was not compatible with the diagnosis of pulmonary embolism and the angio-MRI detected hypoperfusion of the left upper pulmonary lobe. Consequently pulmonary veins angiotomography was requested, showing upper pulmonary lobe vein stenosis. An hemodynamic study with vein expansion and stent placement was successfully performed.

  9. A rare complication following radiofrequency ablation.

    PubMed

    Rajakulasingam, Ramyah; Francis, Rohin; Ghuran, Azad

    2013-02-18

    Atrial-oesophageal fistula (AOF) formation is a rare but often fatal complication post radio frequency ablation (RFA). Mortality ranges from 67% to 100%, with a rapid progression from symptom onset to death. We report a case of a healthy man in his early 40s who presented with a Glasgow Coma Scale  of 5/15, clinical evidence of sepsis and Streptococcus viridans bacteraemia, 14 days following uncomplicated RFA for atrial fibrillation. Establishing a diagnosis of AOF can be difficult, as patients may have bacteraemia, but are consequently misdiagnosed with infective endocarditis, as in this case. One should have a high-index of suspicion for AOF in patients presenting with the aforementioned constellation of symptoms following ablation. There are no established predictors of mortality, but prompt detection, emergent operative intervention and prolonged antibiotic therapy are vital for survival.

  10. Printable Nanophotonic Devices via Holographic Laser Ablation.

    PubMed

    Zhao, Qiancheng; Yetisen, Ali K; Sabouri, Aydin; Yun, Seok Hyun; Butt, Haider

    2015-09-22

    Holography plays a significant role in applications such as data storage, light trapping, security, and biosensors. However, conventional fabrication methods remain time-consuming, costly, and complex, limiting the fabrication of holograms and their extensive use. Here, we demonstrate a single-pulse laser ablation technique to write parallel surface gratings and Fresnel zone plates. We utilized a 6 ns high-energy green laser pulse to form interference patterns to record a surface grating with 820 nm periodicity and asymmetric zone plate holograms on 4.5 nm gold-coated substrates. The holographic recording process was completed within seconds. The optical characteristics of the interference patterns have been computationally modeled, and well-ordered polychromatic diffraction was observed from the fabricated holograms. The zone plate showed a significant diffraction angle of 32° from the normal incident for the focal point. The nanosecond laser interference ablation for rapid hologram fabrication holds great potential in a vast range of optical devices.

  11. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  12. Nozzle designs with pitch precursor ablatives

    NASA Technical Reports Server (NTRS)

    Blevins, H. R.; Bedard, R. J.

    1976-01-01

    Recent developments in carbon phenolic ablatives for solid rocket motor nozzles have yielded a pitch precursor carbon fiber offering significant raw material availability and cost saving advantages as compared to conventional rayon precursor material. This paper discusses the results of an experimental program conducted to assess the thermal performance and characterize the thermal properties of pitch precursor carbon phenolic ablatives. The end result of this program is the complete thermal characterization of pitch fabric, pitch mat, hybrid pitch/rayon fabric and pitch mat molding compound. With these properties determined an analytic capability now exists for predicting the thermal performance of these materials in rocket nozzle liner applications. Further planned efforts to verify material performance and analytical prediction procedures through actual rocket motor firings are also discussed.

  13. Laser ablation of gall bladder stones

    NASA Astrophysics Data System (ADS)

    Marafi, M.; Makdisi, Y.; Bhatia, K. S.; Abdulah, A. H.; Kokaj, Y.; Mathew, K.; Quinn, F.; Qabazard, A.

    1999-06-01

    Study of laser interaction with calculi is presented. A system of Nd-Yag and Ho-Yag pulsed lasers were used to produce fluorescence and plasma signals at the stone surface surrounded by saline and bile fluids. Fourth harmonic from Nd-Yag laser was transmitted to the samples by graded UV optical fibres. Gall bladder stones of various compositions were subjected to the high power Ho-Yag laser. Temporal transients and spectral evolution of plasma and fluorescence signals were monitored by a streak camera. A profile of acoustic pressures generated by shock waves was recorded with sensitive hydrophones placed in the surrounding fluids. Ablation threshold, cavitation process and fluorescence dependence on the laser parameters were studied in detail. Potential of stone identification by fluorescence and possible hydrodynamic model for ablation of biological samples is discussed.

  14. Pulmonary radiofrequency ablation (Part 1): current state.

    PubMed

    Plasencia Martínez, J M

    2015-01-01

    The risks involved in surgical treatment and conventional radiotherapy in patients with early lung cancer or lung metastases often make these treatments difficult to justify. However, on the other hand, it is also unacceptable to allow these lesions to evolve freely because, left untreated, these neoplasms will usually lead to the death of the patient. In recent years, alternative local therapies have been developed, such as pulmonary radiofrequency ablation, which has proven to increase survival with a minimal risk of complications. There are common recommendations for these treatments, and although the specific indications for using one technique or another have yet to be established, there are clearly defined situations that will determine the outcome of the treatment. It is important to know these situations, because appropriate patient selection is essential for therapeutic success. This article aims to describe the characteristics and constraints of pulmonary radiofrequency ablation and to outline its role in thoracic oncology in light of the current evidence.

  15. Viscous liquid expulsion in nanosecond UV laser ablation: From ``clean'' ablation to nanostructures

    NASA Astrophysics Data System (ADS)

    Tokarev, V. N.

    2006-09-01

    This paper reviews recent results on modeling UV nanosecond laser ablation. Particular attention is given to a viscous liquid flow driven by ablation pressure. Based on the analysis of the Navier-Stokes equation, various strongly different manifestations of this phenomenon are explained. These are (i) a “clean” laser ablation, when the laser spot has a clean sharp spot border free of resolidified melt dross; (ii) a new form of material removal in laser ablation, expulsion on a poly(methyl methacrylate) target of long (up to 1 mm) nanofibers with a radius about 150-200 nm to the exterior of the spot under the action of a single pulse of a KrF excimer laser; and (iii) a new method of laser surface nanostructuring, the formation of a surface foam having a structure of micropores interconnected by nanofilaments with diameters of about 100 nm as a result of single-pulse KrF laser ablation of biopolymer films.

  16. Is ablation of atrial flutter always safe?

    PubMed

    Brembilla-Perrot, Beatrice; Filali, Mourad Lemdersi; Zinzius, Pierre-Yves; Sellal, Jean-Marc; Beurrier, D; Schwartz, Jerome; DE Chillou, Christian; Cismaru, Gabriel; Pauriah, Mahesh

    2012-09-01

    Radiofrequency ablation of typical atrial flutter is largely used and is considered as safe. The purpose of the study was to evaluate the prevalence and the causes of severe adverse event (AE) following atrial flutter ablation. Ablation of typical flutter was performed by conventional method with an 8-mm-tip electrode catheter, a maximum power of 70 W, and a maximum target temperature of 70° for 60 seconds in 883 patients, (685 males and 198 females aged from 18 to 93 years [64 ± 11.5]; 664 had heart disease [HD]). AE occurred in 44 patients (5%). AE was life threatening in 14 patients: poorly tolerated bradycardia (transient complete atrioventricular block [AVB] or sinus bradycardia [SB] <40 beats per minute) associated with cardiac shock and acute renal failure in five patients, tamponade (n = 1), bleeding leading to death (n = 1), various AE-related deaths (n = 2), ventricular tachycardia-related death (n = 1), definitive complete AVB (n = 3), and right coronary artery occlusion-related complete AVB (n = 1). Less serious AE occurred in 30 patients: transitory major SB or second- or third-degree AVB (n = 23), bleeding (n = 4), transient ischemic attack (n = 1), and various AE (n = 2). Most of the bradycardia was related to β-blockers or other antiarrhythmic drugs used to slow atrial flutter. Factors of AE were female gender (36% vs 22%, P < 0.02) and the presence of ischemic (P < 0.03) or valvular HD (P < 0.01). AE following atrial flutter ablation occurred in 5% of patients. Most of them are avoidable by control of anticoagulants and arrest of rate-control drugs used to slow the rate of atrial flutter. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  17. A Review of Laser Ablation Propulsion

    SciTech Connect

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-08

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  18. Noninvasive mapping to guide atrial fibrillation ablation.

    PubMed

    Lim, Han S; Zellerhoff, Stephan; Derval, Nicolas; Denis, Arnaud; Yamashita, Seigo; Berte, Benjamin; Mahida, Saagar; Hooks, Darren; Aljefairi, Nora; Shah, Ashok J; Sacher, Frédéric; Hocini, Meleze; Jais, Pierre; Haissaguerre, Michel

    2015-03-01

    Atrial fibrillation (AF) is a dynamic rhythm. Noninvasive mapping overcomes many previous barriers to mapping such a dynamic rhythm, by providing a beat-to-beat, biatrial, panoramic view of the AF process. Catheter ablation of AF drivers guided by noninvasive mapping has yielded promising clinical results and has advanced understanding of the underlying pathophysiologic processes of this common heart rhythm disorder. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Microwave Ablation for Palliation of Bone Metastases.

    PubMed

    Kinczewski, Leigh

    2016-06-01

    Bone metastases are the most common source of pain for patients with cancer. For pain that is refractory to conventional measures, microwave ablation (MWA) is an emerging alternative therapy. Studies show that MWA is effective in reducing pain and analgesic requirements while improving function. This article describes studies of MWA that include patients with bone metastases to a variety of locations from a range of primary malignancies. Although studies are limited, MWA has proven to be well tolerated with impressive efficacy. 
.

  20. A Review of Laser Ablation Propulsion

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Sänger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing "Lightcraft" and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important rôle in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.