Science.gov

Sample records for linear accelerator cavities

  1. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  2. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    DOEpatents

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  3. Cavity control system advanced modeling and simulations for TESLA linear accelerator and free electron laser

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced. The elementary analysis of the cavity resonator on RF (radio frequency) level and low level frequency with signal and power considerations is presented. For the field vector detection the digital signal processing is proposed. The electromechanical model concerning Lorentz force detuning is applied for analyzing the basic features of the system performance. For multiple cavities driven by one klystron the field vector sum control is considered. Simulink model implementation is developed to explore the feedback and feed-forward system operation and some experimental results for signals and power considerations are presented.

  4. Multi-cavity complex controller with vector simulator for TESLA technology linear accelerator

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Szewinski, Jaroslaw

    2008-01-01

    A digital control, as the main part of the Low Level RF system, for superconducting cavities of a linear accelerator is presented. The FPGA based controller, supported by MATLAB system, was developed to investigate a novel firmware implementation. The complex control algorithm based on the non-linear system identification is the proposal verified by the preliminary experimental results. The general idea is implemented as the Multi-Cavity Complex Controller (MCC) and is still under development. The FPGA based controller executes procedure according to the prearranged control tables: Feed-Forward, Set-Point and Corrector unit, to fulfill the required cavity performance: driving in the resonance during filling and field stabilization for the flattop range. Adaptive control algorithm is applied for the feed-forward and feedback modes. The vector Simulator table has been introduced for an efficient verification of the FPGA controller structure. Experimental results of the internal simulation, are presented for a cavity representative condition.

  5. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  6. Cavity digital control testing system by Simulink step operation method for TESLA linear accelerator and free electron laser

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced in this paper. The FPGA -- Field Programmable Gate Array technology has been implemented for digital controller stabilizing cavity field gradient. The cavity SIMULINK model has been applied to test the hardware controller. The step operation method has been developed for testing the FPGA device coupled to the SIMULINK model of the analog real plant. The FPGA signal processing has been verified according to the required algorithm of the reference MATLAB controller. Some experimental results have been presented for different cavity operational conditions.

  7. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  8. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  9. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    NASA Astrophysics Data System (ADS)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  10. Crab Cavities for Linear Colliders

    SciTech Connect

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; Shulte, D.; Jones, Roger M.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  11. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  12. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  13. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  14. Cumulative beam breakup in linear accelerators with random displacement of cavities and focusing elements

    SciTech Connect

    Jean Delayen

    2004-04-09

    A formalism presented in a previous paper for the analysis of cumulative beam breakup with arbitrary time dependence of the beam current [J. R. Delayen, Phys. Rev. ST Accel Beams 6, 084402 (2003)] is applied to the problem of beam breakup in the presence of random displacements of cavities and focusing elements. A closed-form solution is obtained and is applied to the behavior of a single bunch and to the steady-state and transient behavior of dc beams and beams composed of point-like bunches.

  15. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  16. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  17. Damped acceleration cavities

    SciTech Connect

    Palmer, R.B.

    1988-07-01

    Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.

  18. Finite element analysis and frequency shift studies for the bridge coupler of the coupled cavity linear accelerator of the spallation neutron source.

    SciTech Connect

    Chen, Z.

    2001-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron scattering research facility. The linear accelerator (linac) is the principal accelerating structure and divided into a room-temperature linac and a superconducting linac. The normal conducting linac system that consists of a Drift Tube Linac (DTL) and a Coupled Cavity Linac (CCL) is to be built by Los Alamos National Laboratory. The CCL structure is 55.36-meters long. It accelerates H- beam from 86.8 Mev to 185.6 Mev at operating frequency of 805 MHz. This side coupled cavity structure has 8 cells per segment, 12 segments and 11 bridge couplers per module, and 4 modules total. A 5-MW klystron powers each module. The number 3 and number 9 bridge coupler of each module are connected to the 5-MW RF power supply. The bridge coupler with length of 2.5 {beta}{gamma} is a three-cell structure and located between the segments and allows power flow through the module. The center cell of each bridge coupler is excited during normal operation. To obtain a uniform electromagnetic filed and meet the resonant frequency shift, the RF induced heat must be removed. Thus, the thermal deformation and frequency shift studies are performed via numerical simulations in order to have an appropriate cooling design and predict the frequency shift under operation. The center cell of the bridge coupler also contains a large 4-inch slug tuner and a tuning post that used to provide bulk frequency adjustment and field intensity adjustment, so that produce the proper total field distribution in the module assembly.

  19. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  20. Distributed coupling high efficiency linear accelerator

    DOEpatents

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  1. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    SciTech Connect

    Kelly, Paul J.; Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E.

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women's Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1-3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15-18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41-1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective studies.

  2. Large Scale Shape Optimization for Accelerator Cavities

    SciTech Connect

    Akcelik, Volkan; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Xiao, Li-Ling; Ko, Kwok; /SLAC

    2011-12-06

    We present a shape optimization method for designing accelerator cavities with large scale computations. The objective is to find the best accelerator cavity shape with the desired spectral response, such as with the specified frequencies of resonant modes, field profiles, and external Q values. The forward problem is the large scale Maxwell equation in the frequency domain. The design parameters are the CAD parameters defining the cavity shape. We develop scalable algorithms with a discrete adjoint approach and use the quasi-Newton method to solve the nonlinear optimization problem. Two realistic accelerator cavity design examples are presented.

  3. Linear accelerator: A concept

    NASA Technical Reports Server (NTRS)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  4. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  5. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  6. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  7. Linear Accelerator (LINAC)

    MedlinePlus

    ... is the device most commonly used for external beam radiation treatments for patients with cancer. The linear ... shape of the patient's tumor and the customized beam is directed to the patient's tumor. The beam ...

  8. The Klynac: An Integrated Klystron and Linear Accelerator

    SciTech Connect

    Potter, J. M.; Schwellenbach, D.

    2013-04-01

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  9. The Klynac: An integrated klystron and linear accelerator

    SciTech Connect

    Potter, James M.; Schwellenbach, David; Meidinger, Alfred

    2013-04-19

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  10. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  11. New directions in linear accelerators

    SciTech Connect

    Jameson, R.A.

    1984-01-01

    Current work on linear particle accelerators is placed in historical and physics contexts, and applications driving the state of the art are discussed. Future needs and the ways they may force development are outlined in terms of exciting R and D challenges presented to today's accelerator designers. 23 references, 7 figures.

  12. Prototype rf cavity for the HISTRAP accelerator

    SciTech Connect

    Mosko, S.W.; Dowling, D.T.; Olsen, D.K.

    1989-01-01

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C.

  13. Elementary principles of linear accelerators

    NASA Astrophysics Data System (ADS)

    Loew, G. A.; Talman, R.

    1983-09-01

    A short chronology of important milestones in the field of linear accelerators is presented. Proton linacs are first discussed and elementary concepts such as transit time, shunt impedance, and Q are introduced. Critical issues such as phase stability and transverse forces are addressed. An elementary discussion of waveguide acclerating structures is also provided. Finally, electron accelerators addressed. Taking SLAC as an exmple, various topics are discussed such as structure design, choice of parameters, frequency optmization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly.

  14. Repair of overheating linear accelerator

    SciTech Connect

    Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

    2004-01-01

    Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

  15. Radio frequency focused interdigital linear accelerator

    DOEpatents

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  16. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  17. Isogeometric simulation of Lorentz detuning in superconducting accelerator cavities

    NASA Astrophysics Data System (ADS)

    Corno, Jacopo; de Falco, Carlo; De Gersem, Herbert; Schöps, Sebastian

    2016-04-01

    Cavities in linear accelerators suffer from eigenfrequency shifts due to mechanical deformation caused by the electromagnetic radiation pressure, a phenomenon known as Lorentz detuning. Estimating the frequency shift up to the needed accuracy by means of standard Finite Element Methods, is a complex task due to the non exact representation of the geometry and due to the necessity for mesh refinement when using low order basis functions. In this paper, we use Isogeometric Analysis for discretizing both mechanical deformations and electromagnetic fields in a coupled multiphysics simulation approach. The combined high-order approximation of both leads to high accuracies at a substantially lower computational cost.

  18. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    SciTech Connect

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D.

    2013-09-15

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  19. Hybrid photonic-bandgap accelerating cavities

    NASA Astrophysics Data System (ADS)

    Di Gennaro, E.; Zannini, C.; Savo, S.; Andreone, A.; Masullo, M. R.; Castaldi, G.; Gallina, I.; Galdi, V.

    2009-11-01

    In a recent investigation, we studied two-dimensional (2D) point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.

  20. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  1. The spatial relation between EUV cavities and linear polarization signatures

    NASA Astrophysics Data System (ADS)

    Bak-Stȩślicka, Urszula; Gibson, Sarah E.; Fan, Yuhong; Bethge, Christian; Forland, Blake; Rachmeler, Laurel A.

    2014-01-01

    Solar coronal cavities are regions of rarefied density and elliptical cross-section. The Coronal Multi-channel Polarimeter (CoMP) obtains daily full-Sun coronal observations in linear polarization, allowing a systematic analysis of the coronal magnetic field in polar-crown prominence cavities. These cavities commonly possess a characteristic ``lagomorphic'' signature in linear polarization that may be explained by a magnetic flux-rope model. We analyze the spatial relation between the EUV cavity and the CoMP linear polarization signature.

  2. Non linear effects in ferrite tuned cavities

    SciTech Connect

    Goren, Y.; Mahale, N.; Walling, L.; Enegren, T.; Hulsey, G. ); Yakoviev, V.; Petrov, V. )

    1993-05-01

    The phenomenon of dependence of the resonance shape and frequency on the RF power level in perpendicular biased ferrite-tuned cavities has been observed by G. Hulsey and C. Friedrichs in the SSC test cavity experiment. This paper presents a theoretical as well as numerical analysis of this phenomenon and compares the results with experimental data. The effect of this nonlinearity on the SSC low energy booster prototype cavity is discussed.

  3. Automating linear accelerator quality assurance

    SciTech Connect

    Eckhause, Tobias; Thorwarth, Ryan; Moran, Jean M.; Al-Hallaq, Hania; Farrey, Karl; Ritter, Timothy; DeMarco, John; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Park, SungYong; Perez, Mario; Booth, Jeremy T.

    2015-10-15

    Purpose: The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. Methods: The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. Results: For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The

  4. Terahertz-driven linear electron acceleration

    SciTech Connect

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  5. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  6. Elementary principles of linear accelerators

    SciTech Connect

    Loew, G.A.; Talman, R.

    1983-09-01

    These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables.

  7. Versatile Low Level RF System For Linear Accelerators

    SciTech Connect

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360 deg. range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  8. Versatile Low Level RF System For Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360° range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  9. Enhancement of accelerating field of microwave cavities by magnetic insulation

    SciTech Connect

    Stratakis, D.; Gallardo, J.; Palmer, R.B.

    2011-04-15

    Limitations on the maximum achievable accelerating gradient of microwave cavities can strongly influence the performance, length, and cost of particle accelerators. Gradient limitations are widely believed to be initiated by electron emission from the cavity surfaces. Here, we show that the deleterious effects of field emission are effectively suppressed by applying a tangential magnetic field to the cavity walls. With the aid of numerical simulations we compute the field strength required to insulate an 805 MHz cavity and estimate the cavity's tolerances to typical experimental errors such as magnet misalignments and positioning errors. Then, we review an experimental program, currently under progress, to further study the concept. Finally, we report on two specific examples that illustrate the feasibility of magnetic insulation into prospective particle accelerator applications.

  10. Developing of superconducting niobium cavities for accelerators

    NASA Astrophysics Data System (ADS)

    Pobol, I. L.; Yurevich, S. V.

    2015-11-01

    The results of a study of structure and mechanical properties of welding joints, superconducting characteristics of the material after joining of welded components of superconducting radio frequency cavities are presented. The paper also describes the results of testing of the RF 1.3 GHz single-cell niobium cavity manufactured in the PTI NAS Belarus.

  11. Terahertz-driven linear electron acceleration

    DOE PAGESBeta

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  12. Coherent THz Pulses from Linear Accelerators

    SciTech Connect

    G.L. Carr; H. Loos; J.B. Murphy; T. Shaftan; B. Sheehy; X.-J. Wang; W.R. McKinney; M.C. Martin; G.P. Williams; K. Jordan; G. Neil

    2003-10-01

    Coherent THz pulses are being produced at several facilities using relativistic electrons from linear accelerators. The THz pulses produced at the Brookhaven accelerator have pulse energies exceeding 50 {micro}J and reach a frequency of 2 THz. The high repetition rate of the Jefferson Lab accelerator leads to an average THz power of 20 watts. Possible uses for these high power pulses are discussed.

  13. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  14. Stability of non-linear integrable accelerator

    SciTech Connect

    Batalov, I.; Valishev, A.; /Fermilab

    2011-09-01

    The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.

  15. Test Sequence for Superconducting XFEL Cavities in the Accelerator Module Test Facility (AMTF) at DESY

    NASA Astrophysics Data System (ADS)

    Schaffran, J.; Petersen, B.; Reschke, D.; Swierblewski, J.

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2016 onwards, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The main part of the superconducting European XFEL linear accelerator consists of 100 accelerator modules with 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF) at DESY. This paper gives an overview of the test sequences for the superconducting cavities, applied in the preparation area and at the two cryostats (XATC) of the AMTF-hall, and describes the complete area. In addition it summarizes the tests and lessons learnt until the middle of 2014.

  16. A New Cavity Design For Medium Beta Acceleration

    SciTech Connect

    He, Feisi; Wang, Haipeng; Rimmer, Robert A.

    2014-02-01

    Heavy duty or cw, superconducting proton and heavy ion accelerators are being proposed and constructed worldwide. The total length of the machine is one of the main drivers in terms of cost. Thus hwr and spoke cavities at medium beta are usually optimized to achieve low surface field and high gradient. A novel accelerating structure at beta=0.5 evolved from spoke cavity is proposed, with lower surface fields but slightly higher heat load. It would be an interesting option for pulsed and cw accelerators with beam energy of more than 200mev/u.

  17. Transverse emittance dilution due to coupler kicks in linear accelerators

    NASA Astrophysics Data System (ADS)

    Buckley, Brandon; Hoffstaetter, Georg H.

    2007-11-01

    One of the main concerns in the design of low emittance linear accelerators (linacs) is the preservation of beam emittance. Here we discuss one possible source of emittance dilution, the coupler kick, due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. In addition to emittance growth, the coupler kick also produces orbit distortions. It is common wisdom that emittance growth from coupler kicks can be strongly reduced by using two couplers per cavity mounted opposite each other or by having the couplers of successive cavities alternate from above to below the beam pipe so as to cancel each individual kick. While this is correct, including two couplers per cavity or alternating the coupler location requires large technical changes and increased cost for superconducting cryomodules where cryogenic pipes are arranged parallel to a string of several cavities. We therefore analyze consequences of alternate coupler placements. We show here that alternating the coupler location from above to below compensates the emittance growth as well as the orbit distortions. For sufficiently large Q values, alternating the coupler location from before to after the cavity leads to a cancellation of the orbit distortion but not of the emittance growth, whereas alternating the coupler location from before and above to behind and below the cavity cancels the emittance growth but not the orbit distortion. We show that cancellations hold for sufficiently large Q values. These compensations hold even when each cavity is individually detuned, e.g., by microphonics. Another effective method for reducing coupler kicks that is studied is the optimization of the phase of the coupler kick so as to minimize the effects on emittance from each coupler. This technique is independent of the coupler geometry but relies on operating on crest. A final technique studied is symmetrization of the cavity geometry in the coupler region with

  18. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  19. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  20. Diagnostic resonant cavity for a charged particle accelerator

    DOEpatents

    Barov, Nikolai

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  1. Linear Collider Accelerator Physics Issues Regarding Alignment

    SciTech Connect

    Seeman, J.T.; /SLAC

    2005-08-12

    The next generation of linear colliders will require more stringent alignment tolerances than those for the SLC with regard to the accelerating structures, quadrupoles, and beam position monitors. New techniques must be developed to achieve these tolerances. A combination of mechanical-electrical and beam-based methods will likely be needed.

  2. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  3. LIGA fabrication of mm-wave accelerating cavity structures at the Advanced Photon Source (APS)

    SciTech Connect

    Song, J.J.; Bajikar, S.; Kang, Y.W.

    1997-08-01

    Recent microfabrication technologies based on the LIGA (German acronym for Lithographe, Galvanoformung, und Abformung) process have been applied to build high-aspect-ratio, metallic or dielectric planar structures suitable for high-frequency rf cavity structures. The cavity structures would be used as parts of linear accelerators, microwave undulators, and mm-wave amplifiers. The microfabrication process includes manufacture of precision x-ray masks, exposure of positive resist x-rays through the mask, resist development, and electroforming of the final microstructure. Prototypes of a 32-cell, 108-GHz constant-impedance cavity and a 66-cell, 94-GHz constant-gradient cavity were fabricated with the synchrotron radiation sources at APS and NSLS. This paper will present an overview of the new technology and details of the mm-wave cavity fabrication.

  4. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  5. Laser polishing for topography management of accelerator cavity surfaces

    SciTech Connect

    Zhao, Liang; Klopf, J. Mike; Reece, Charles E.; Kelley, Michael J.

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  6. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  7. A linear accelerator for simulated micrometeors.

    NASA Technical Reports Server (NTRS)

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  8. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  9. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  10. Minimization of power consumption during charging of superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-11-01

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  11. High average power linear induction accelerator development

    SciTech Connect

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs.

  12. The SPARC linear accelerator based terahertz source

    SciTech Connect

    Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Gatti, G.; Pace, E.; Rossi, A. R.; Vaccarezza, C.; Catani, L.; Cianchi, A.; Marchetti, B.; Mostacci, A.; Palumbo, L.; Ronsivalle, C.; and others

    2013-03-04

    Ultra-short electron beams, produced through the velocity bunching compression technique, are used to drive the SPARC linear accelerator based source, which relies on the emission of coherent transition radiation in the terahertz range. This paper reports on the main features of this radiation, as terahertz source, with spectral coverage up to 5 THz and pulse duration down to 200 fs, with an energy per pulse of the order of several micro-joule, and as electron beam longitudinal diagnostics.

  13. Tilt perception during dynamic linear acceleration.

    PubMed

    Seidman, S H; Telford, L; Paige, G D

    1998-04-01

    Head tilt is a rotation of the head relative to gravity, as exemplified by head roll or pitch from the natural upright orientation. Tilt stimulates both the otolith organs, owing to shifts in gravitational orientation, and the semicircular canals in response to head rotation, which in turn drive a variety of behavioral and perceptual responses. Studies of tilt perception typically have not adequately isolated otolith and canal inputs or their dynamic contributions. True tilt cannot readily dissociate otolith from canal influences. Alternatively, centrifugation generates centripetal accelerations that simulate tilt, but still entails a rotatory (canal) stimulus during important periods of the stimulus profiles. We reevaluated the perception of head tilt in humans, but limited the stimulus to linear forces alone, thus isolating the influence of otolith inputs. This was accomplished by employing a centrifugation technique with a variable-radius spinning sled. This allowed us to accelerate the sled to a constant angular velocity (128 degrees/s), with the subject centered, and then apply dynamic centripetal accelerations after all rotatory perceptions were extinguished. These stimuli were presented in the subjects' naso-occipital axis by translating the subjects 50 cm eccentrically either forward or backward. Centripetal accelerations were thus induced (0.25 g), which combined with gravity to yield a dynamically shifting gravitoinertial force simulating pitch-tilt, but without actually rotating the head. A magnitude-estimation task was employed to characterize the dynamic perception of pitch-tilt. Tilt perception responded sluggishly to linear acceleration, typically reaching a peak after 10-30 s. Tilt perception also displayed an adaptation phenomenon. Adaptation was manifested as a per-stimulus decline in perceived tilt during prolonged stimulation and a reversal aftereffect upon return to zero acceleration (i.e., recentering the subject). We conclude that otolith

  14. The general RF tuning for IH-DTL linear accelerators

    NASA Astrophysics Data System (ADS)

    Lu, Y. R.; Ratzinger, U.; Schlitt, B.; Tiede, R.

    2007-11-01

    The RF tuning is the most important research for achieving the resonant frequency and the flatness of electric field distributions along the axis of RF accelerating structures. The six different tuning concepts and that impacts on the longitudinal field distributions have been discussed in detail combining the RF tuning process of a 1:2 modeled 20.85 MV compact IH-DTL cavity, which was designed to accelerate proton, helium, oxygen or C 4+ from 400 keV/ u to 7 MeV/u and used as the linear injector of 430 MeV/ u synchrotron [Y.R. Lu, S. Minaev, U. Ratzinger, B. Schlitt, R.Tiede, The Compact 20MV IH-DTL for the Heidelberg Therapy Facility, in: Proceedings of the LINAC Conference, Luebeck, Germany, 2004 [1]; Y.R. Lu, Frankfurt University Dissertation, 2005. [2

  15. Compact 810 kA Linear Transformer Driver Cavity

    NASA Astrophysics Data System (ADS)

    Woodworth, J. R.; Fowler, W. E.; Stoltzfus, B. S.; Stygar, W. A.; Sceiford, M. E.; Mazarakis, M. G.; Anderson, H. D.; Harden, M. J.; Blickem, J. R.; White, R.; Kim, A. A.

    2011-04-01

    We are performing experiments with a 92-kV, 810-kA, 74.6-GW linear transformer driver (LTD) cavity. This cavity generates a ˜100ns power pulse from DC-charged capacitors in a single step. Our experiments start with an existing 100-kV, 490-kA LTD cavity and are making a number of improvements to it that are aimed at increasing the cavity’s peak output power and better understanding its operation. We are making improvements to the gas switches, the capacitors, and the magnetic toroids as well as heavily instrumenting the cavity. These experiments have increased the cavity’s output current into a matched load by 65% without increasing its volume.

  16. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    SciTech Connect

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q{sub ext} and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes.

  17. LIONs at the Stanford Linear Accelerator Center

    SciTech Connect

    Constant, T.N.; Zdarko, R.W.; Simmons, R.H.; Bennett, B.M.

    1998-01-01

    The term LION is an acronym for Long Ionization Chamber. This is a distributed ion chamber which is used to monitor secondary ionization along the shield walls of a beam line resulting from incorrectly steered charged particle beams in lieu of the use of many discrete ion chambers. A cone of ionizing radiation emanating from a point source as a result of incorrect steering intercepts a portion of 1-5/8 inch Heliax cable (about 100 meters in length) filled with Argon gas at 20 psi and induces a pulsed current which is proportional to the ionizing charge. This signal is transmitted via the cable to an integrator circuit whose output is directed to an electronic comparators, which in turn is used to turn off the accelerated primary beam when preset limits are exceeded. This device is used in the Stanford Linear Accelerator Center (SLAC) Beam Containment System (BCS) to prevent potentially hazardous ionizing radiation resulting from incorrectly steered beams in areas that might be occupied by people. This paper describes the design parameters and experience in use in the Final Focus Test Beam (FFTB) area of the Stanford Linear Accelerator Center.

  18. Field Emission in CEBAF's SRF Cavities and Implications for Future Accelerators

    SciTech Connect

    Jay Benesch

    2006-02-15

    Field emission is one of the key issues in superconducting RF for particle accelerators. When present, it limits operating gradient directly or via induced heat load at 2K. In order to minimize particulate contamination of and thus field emission in the CEBAF SRF cavities during assembly, a cold ceramic RF window was placed very close to the accelerating cavity proper. As an unintended consequence of this, the window is charged by field-emitted electrons, making it possible to monitor and model field emission in the CEBAF cavities since in-tunnel operation began. From January 30, 1995, through February 10, 2003, there were 64 instances of spontaneous onset or change in cavity field emission with a drop in usable gradient averaging 1.4 ({sigma} 0.8) MV/m at each event. Fractional loss averaged 0.18 ({sigma} 0.12) of pre-event gradient. This event count corresponds to 2.4 events per century per cavity, or 8 per year in CEBAF. It is hypothesized that changes in field emission are due to adsorbed gas accumulation. The possible implications of this and other observations for the International Linear Collider (ILC) and other future accelerators will be discussed.

  19. Omega3P: A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities

    SciTech Connect

    Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Ko, Kwok; /SLAC

    2009-03-04

    Omega3P is a parallel eigenmode calculation code for accelerator cavities in frequency domain analysis using finite-element methods. In this report, we will present detailed finite-element formulations and resulting eigenvalue problems for lossless cavities, cavities with lossy materials, cavities with imperfectly conducting surfaces, and cavities with waveguide coupling. We will discuss the parallel algorithms for solving those eigenvalue problems and demonstrate modeling of accelerator cavities through different examples.

  20. Elliptical Cavity Shape Optimization for Acceleration and HOM Damping

    SciTech Connect

    Haipeng Wang; Robert Rimmer; Genfa Wu

    2005-05-01

    We report a survey of center cell shapes developed for Superconducting Radio Frequency (SRF) multi-cell cavities for different projects. Using a set of normalized parameters, we compare the designs for different frequencies and particle velocities for the fundamental mode. Using dispersion curves of High Order Modes (HOM) (frequency verse phase advance) calculated by MAFIA for a single cell, we further optimize the cavity shape to avoid a light cone line crossing at the dangerous resonance frequencies determined by the beam bunch structure and eliminate the trapped (or high R/Q) modes with a low group velocity. We developed this formulation to optimize a 5-cell, 750MHz cavity shape, with good real-estate accelerating gradient and a strong HOM damping waveguide structure for the JLab 1MW ERL-FEL project.

  1. Superconducting Accelerating Cavity Pressure Sensitivity Analysis and Stiffening

    SciTech Connect

    Rodnizki, J; Ben Aliz, Y; Grin, A; Horvitz, Z; Perry, A; Weissman, L; Davis, G Kirk; Delayen, Jean R.

    2014-12-01

    The Soreq Applied Research Accelerator Facility (SARAF) design is based on a 40 MeV 5 mA light ions superconducting RF linac. Phase-I of SARAF delivers up to 2 mA CW proton beams in an energy range of 1.5 - 4.0 MeV. The maximum beam power that we have reached is 5.7 kW. Today, the main limiting factor to reach higher ion energy and beam power is related to the HWR sensitivity to the liquid helium coolant pressure fluctuations. The HWR sensitivity to helium pressure is about 60 Hz/mbar. The cavities had been designed, a decade ago, to be soft in order to enable tuning of their novel shape. However, the cavities turned out to be too soft. In this work we found that increasing the rigidity of the cavities in the vicinity of the external drift tubes may reduce the cavity sensitivity by a factor of three. A preliminary design to increase the cavity rigidity is presented.

  2. Application of impedance measurement techniques to accelerating cavity mode characterization

    NASA Astrophysics Data System (ADS)

    Hanna, S. M.; Stefan, P. M.

    1993-11-01

    Impedance measurements, using a central wire to simulate the electron beam, were performed on a 52 MHz accelerating cavity at the National Synchrotron Light Source (NSLS). This cavity was recently installed in the X-ray storage ring at the NSLS as a part of an upgrade of the ring. To damp higher-order modes (HOM) in this cavity, damping antennas have been installed. We implemented the impedance measurement technique to characterize the cavity modes up to 1 GHz and confirm the effectiveness of the damping antennas. Scattering parameters were measured using a network analyzer (HP 8510B) with a personal computer as a controller. Analysis based on S and T parameters for the system was used to solve for the cavity impedance, Z( ω), as a function of the measured transmission response, S21( ω). Search techniques were used to find the shunt resistance Rsh, and Q from the calculated Z( ω) for different modes. Our results for {R}/{Q} showed good agreement with URMEL simulations. The values of Q were compared with other independent Q measurement techniques. Our analytical technique offers an alternative approach for cases where full thru-reflection-line (TRL) calibration is not feasible and a more time-effective technique for obtaining {R}/{Q}, compared with the bead-pull method.

  3. Acceleration in Linear and Circular Motion

    ERIC Educational Resources Information Center

    Kellington, S. H.; Docherty, W.

    1975-01-01

    Describes the construction of a simple accelerometer and explains its use in demonstrating acceleration, deceleration, constant speed, measurement of acceleration, acceleration and the inclined plane and angular and radial acceleration. (GS)

  4. Production of medical radioisotopes with linear accelerators.

    PubMed

    Starovoitova, Valeriia N; Tchelidze, Lali; Wells, Douglas P

    2014-02-01

    In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, (100)Mo(γ,n)(99)Mo and (68)Zn(γ,p)(67)Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires (100)Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, (99)Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and (99)Mo is collected. At the same time, (100)Mo nanoparticles can be reused. For the photoproduction method, (67)Cu can be separated from the target nuclides, (68)Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the (99)Mo activity was predicted to be about 7MBq/(g(⁎)kW(⁎)h) while (67)Cu activity was predicted to be about 1MBq/(g(⁎)kW(⁎)h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well. PMID:24374071

  5. Production of medical radioisotopes with linear accelerators.

    PubMed

    Starovoitova, Valeriia N; Tchelidze, Lali; Wells, Douglas P

    2014-02-01

    In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, (100)Mo(γ,n)(99)Mo and (68)Zn(γ,p)(67)Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires (100)Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, (99)Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and (99)Mo is collected. At the same time, (100)Mo nanoparticles can be reused. For the photoproduction method, (67)Cu can be separated from the target nuclides, (68)Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the (99)Mo activity was predicted to be about 7MBq/(g(⁎)kW(⁎)h) while (67)Cu activity was predicted to be about 1MBq/(g(⁎)kW(⁎)h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well.

  6. CULA: hybrid GPU accelerated linear algebra routines

    NASA Astrophysics Data System (ADS)

    Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.

    2010-04-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.

  7. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    SciTech Connect

    Bane, K.L.F.; Adolphsen, C.; Li, Z.; Dohlus, M.; Zagorodnov, I.; Gonin, I.; Lunin, A.; Solyak, N.; Yakovlev, V.; Gjonaj, E.; Weiland, T.; /Darmstadt, Tech. Hochsch.

    2008-07-07

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.

  8. Novel Approach to Linear Accelerator Superconducting Magnet System

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  9. Vanguard industrial linear accelerator rapid product development

    NASA Astrophysics Data System (ADS)

    Harroun, Jim

    1994-07-01

    Siemens' ability to take the VanguardTM Industrial Linear Accelerator from the development stage to the market place in less than two years is described. Emphasis is on the development process, from the business plan through the shipment of the first commercial sale. Included are discussions on the evolution of the marketing specifications, with emphasis on imaging system requirements, as well as flexibility for expansion into other markets. Requirements used to create the engineering specifications, how they were incorporated into the design, and lessons learned from the demonstration system are covered. Some real-life examples of unanticipated problems are presented, as well as how they were resolved, including some discussion of the special problems encountered in developing a user interface and a training program for an international customer.

  10. High-gradient compact linear accelerator

    SciTech Connect

    Carder, B.M.

    1995-12-31

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  11. High-gradient compact linear accelerator

    DOEpatents

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  12. High-gradient compact linear accelerator

    DOEpatents

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  13. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  14. 600-Hz linewidth short-linear-cavity fiber laser.

    PubMed

    Mo, Shupei; Huang, Xiang; Xu, Shanhui; Li, Can; Yang, Changsheng; Feng, Zhouming; Zhang, Weinan; Chen, Dongdan; Yang, Zhongmin

    2014-10-15

    We proposed a short-linear-cavity (SLC) fiber laser based on a virtual-folded-ring (VFR) resonator and a fiber Bragg grating Fabry-Perot filter. Spatial hole burning effect was reduced by retarding the polarization state of the counter-propagating light waves utilizing the VFR structure. The photon lifetime of the resonator was extended due to the multi-reflection inside the FBG FP, which increased the intra-cavity power and relatively suppressed the contribution of phase diffusion from spontaneous emission. The relaxation oscillation frequency is around 160 kHz due to the slow light effect. The linewidth of the SLC fiber laser was measured to be less than 600 Hz.

  15. Analysis of a teleportation scheme involving cavity field states in a linear superposition of Fock states

    NASA Astrophysics Data System (ADS)

    Carvalho, C. R.; Guerra, E. S.; Jalbert, Ginette

    2008-04-01

    We analyse a teleportation scheme of cavity field states. The experimental sketch discussed makes use of cavity quantum electrodynamics involving the interaction of Rydberg atoms with superconducting (micromaser) cavities as well as with classical microwave (Ramsey) cavities. In our scheme the Ramsey cavities and the atoms play the role of auxiliary systems used to teleport a field state, which is formed by a linear superposition of vacuum |∅> and the one-photon state |1>, from a micromaser cavity to another.

  16. Next linear collider test accelerator injector design and status

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.; Wang, J.W.

    1994-08-01

    The Next Linear Collider Test Accelerator (NLCTA) being built at SLAC will integrate the new technologies of X-band accelerator structures and RF systems for the Next Linear Collider, demonstrate multibunch beam-loading energy compensation and suppression of higher-order deflecting modes, measure transverse components of the accelerating field, and measure the dark current generated by RF field emission in the accelerator Injector design and simulation results for the NLCTA injector are discussed.

  17. Simulation of a medical linear accelerator for teaching purposes.

    PubMed

    Anderson, Rhys; Lamey, Michael; MacPherson, Miller; Carlone, Marco

    2015-01-01

    Simulation software for medical linear accelerators that can be used in a teaching environment was developed. The components of linear accelerators were modeled to first order accuracy using analytical expressions taken from the literature. The expressions used constants that were empirically set such that realistic response could be expected. These expressions were programmed in a MATLAB environment with a graphical user interface in order to produce an environment similar to that of linear accelerator service mode. The program was evaluated in a systematic fashion, where parameters affecting the clinical properties of medical linear accelerator beams were adjusted independently, and the effects on beam energy and dose rate recorded. These results confirmed that beam tuning adjustments could be simulated in a simple environment. Further, adjustment of service parameters over a large range was possible, and this allows the demonstration of linear accelerator physics in an environment accessible to both medical physicists and linear accelerator service engineers. In conclusion, a software tool, named SIMAC, was developed to improve the teaching of linear accelerator physics in a simulated environment. SIMAC performed in a similar manner to medical linear accelerators. The authors hope that this tool will be valuable as a teaching tool for medical physicists and linear accelerator service engineers.

  18. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect

    Kurennoy, Sergey S.

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  19. Accelerator physics of the Stanford Linear Collider and SLC accelerator experiments towards the Next Linear Collider

    SciTech Connect

    Seeman, J.T.

    1992-06-01

    The Stanford Linear Collider (SLC) was built to collide single bunches of electrons and positrons head-on at a single interaction point with single beam energies up to 55 GeV. The small beam sizes and high currents required for high luminosity operation have significantly pushed traditional beam quality limits. The Polarized Electron Source produces about 8 {times} 10{sup 10} electrons in each of two bunches with up to 28% polarization,. The Damping Rings provide coupled invariant emittances of 1.8 {times} 10{sup {minus}5} r-m with 4.5 {times} 10{sup 10} particles per bunch. The 57 GeV Linac has successfully accelerated over 3 {times} 10{sup 10} particles with design invariant emittances of 3 {times} 10{sup {minus}5} r-m. Both longitudinal and transverse wakefields affect strongly the trajectory and emittance corrections used for operations. The Arc systems routinely transport decoupled and betatron matched beams. In the Final Focus, the beams are chromatically corrected and demagnified producing spot sizes of 2 to 3 {mu}m at the focal point. Spot sizes below 2 {mu}m have been made during special tests. Instrumentation and feedback systems are well advanced, providing continuous beam monitoring and pulse-by-pulse control. A luminosity of 1.6 {times} 10{sup 29} cm{sup {minus}2}sec{sup {minus}1} has been produced. Several experimental tests for a Next Linear Collider (NLC) are being planned or constructed using the SLC accelerator as a test facility. The Final Focus Test Beam will demagnify a flat 50 GeV electron beam to dimensions near 60 nm vertically and 900 nm horizontally. A potential Emittance Dynamics Test Area has the capability to test the acceleration and transport of very low emittance beams, the compression of bunch lengths to 50 {mu}m, the acceleration and control of multiple bunches, and the properties of wakefields in the very short bunch length regime.

  20. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  1. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  2. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  3. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  4. A novel active optical approach for acceleration measurement based on a Y-shaped cavity dual-frequency laser

    NASA Astrophysics Data System (ADS)

    Xiao, Guangzong; Long, Xingwu; Zhang, Bin; Jin, Shilong

    2012-03-01

    A novel active optical approach for acceleration measurement based on a Y-shaped cavity dual-frequency laser is presented and demonstrated. Applied acceleration causes a change in the refractivity of sensing gas in one of the two cavities, resulting in a beat frequency variation between two orthogonal polarized lights. As a result, this approach produces a modulation of beat frequency strictly proportional to the input acceleration. Preliminary experiments with a 632.8 nm Y-shaped cavity He-Ne dual-frequency laser confirm the validity of the laser sensor. The experimental results show that the laser sensor in this approach characterizes a nearly linear response to the input acceleration, which is a projection of gravitational acceleration. The experimental values of the scale factors are mostly in good agreement with theoretical ones. By optimizing the optical and geometrical parameters of the laser sensor, an acceleration measurement resolution of 10 -5-10 -6 gravitational acceleration (within ±5 g measurement range) could be expected. Furthermore, we investigate the principle about the sign of the scale factor in detail, and propose a simple but efficient method to distinguish the direction of the acceleration acted on the laser sensor.

  5. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant

  6. Cryogenic system for the MYRRHA superconducting linear accelerator

    SciTech Connect

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  7. Cryogenic system for the MYRRHA superconducting linear accelerator

    NASA Astrophysics Data System (ADS)

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-01

    SCKṡCEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MWth), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  8. Optimal coupler and power setting for superconductive linear accelerators

    SciTech Connect

    Branlard, J.; Chase, B,; Nagaitsev, S.; Nezhevenko, O.; Reid, J.; /Fermilab

    2008-09-01

    The modeling analysis presented in this paper addresses the question of how to achieve the highest vector sum gradient for all beam currents when individual cavities operate at different gradients due to their inherent quenching limitations. The analytical method explained here constitutes a step forward toward the operability of the International Linear Collider (ILC), Project X [8], or XFEL [7]. Unlike previously proposed methods [1, 2], this approach prevents cavities from quenching should the beam current be lower than its maximum value.

  9. Production and test results of SC 3.9-GHz accelerating cavity at Fermilab

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charlie; Edwards, Helen; Foley, Mike; Gonin, Ivan; Mitchell, Donald; Olis, D.; Rowe, Allan; Salman, Tariq; Solyak, Nikolay; /Fermilab

    2006-08-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve beam performances for TTF-FEL facility. In the frame of collaboration Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. In this paper we discuss the status of the cavity and coupler production and the first result of cavity tests. It is hoped that this project will be completed during the first half of 2007 and the cryomodule delivered to DESY in this time span.

  10. Single crystal niobium tubes for particle colliders accelerator cavities

    SciTech Connect

    Murphy, James E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred °C of the melting temperature of niobium, which is 2477 °C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 °C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was

  11. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  12. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  13. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    NASA Astrophysics Data System (ADS)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  14. LOADED WAVE GUIDES FOR LINEAR ACCELERATORS

    DOEpatents

    Walkinshaw, W.; Mullett, L.B.

    1959-12-01

    A periodically loaded waveguide having substantially coaxially arranged elements which provide an axial field for the acceleration of electrons is described. Radiofrequency energy will flow in the space between the inner wall of an outer guide and the peripheries of equally spaced irises or washes arranged coaxially with each other and with the outer guide, where the loading due to the geometry of the irises is such as to reduce the phase velocity of the r-f energy flowing in the guide from a value greater than that of light to the velocity of light or less.

  15. Detection of linear ego-acceleration from optic flow.

    PubMed

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  16. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    SciTech Connect

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations.

  17. Muscle sympathetic outflow during horizontal linear acceleration in humans.

    PubMed

    Cui, J; Iwase, S; Mano, T; Katayama, N; Mori, S

    2001-08-01

    To elucidate the effects of linear acceleration on muscle sympathetic nerve activity (MSNA) in humans, 16 healthy men were tested in a linear accelerator. Measurements of MSNA, electrocardiogram, blood pressure, and thoracic impedance were undertaken during linear acceleration. Sinusoidal linear acceleration with peak values at +/-0.10, +/-0.15, and +/-0.20 G was applied in anteroposterior (+/-G(x), n = 10) or lateral (+/-G(y), n = 6) directions. The total activity and burst rate of MSNA decreased significantly during forward, backward, left, or right linear accelerations. The total activity of MSNA decreased to 50.5 +/- 6.9, 52.5 +/- 4.4, 71.2 +/- 9.6, and 67.6 +/- 8.2% from the baselines (100%) during linear accelerations with peak values at +/-0.20 G in the four directions, respectively. These results suggest that dynamic stimulation of otolith organs in horizontal directions in humans might inhibit MSNA directly in order to quickly redistribute blood to muscles during postural reflexes induced by passive movement, which supports the concept that the vestibular system contributes to sympathetic regulation in humans.

  18. Eye movements due to linear accelerations in the rabbit.

    PubMed Central

    Baarsma, E A; Collewijn, H

    1975-01-01

    1. Compensatory vertical or torsional eye movements of rabbits caused by linear accelerations along the transverse or sagittal axis were measured. Sinusoidal accelerations (parallel swing) in a frequency range of 0-068--1-22 Hz and acceleration steps (linear track) of 0-02--0-11 g were applied. 2. On the parallel swing, properties of the maculo-ocular reflexes were similar for transverse and sagittal acceleration. Gain (rotation of eye/rotation of the resultant linear vector) proved to be very low: about 0-1 for 0-3 Hz and smaller than 0-01 for frequencies above 1-0 Hz. The decrease in gain was accompanied by an increase in phase lag to about 180degrees. No non-linearity was revealed by the use of different amplitudes (10--30 cm). 3. On the linear track, eye deviation after an acceleration step took many seconds to develop fully. Gain increased with time and was about 0-65 after 5 sec. 4. The results indicate that the responses of the otoliths, as reflected in maculo-ocular reactions, are very slow. Fluctuations in the direction of gravity seem to be averaged over several seconds by the system. This may explain that erratic linear accelerations(frequency greater than 1 Hz) during locomotion or transport do not lead to eye movements or disorientation. PMID:1127609

  19. High power RF klystrons for linear accelerators

    NASA Astrophysics Data System (ADS)

    Konrad, G. T.

    1984-05-01

    Design criteria and operating experience for two klystrons of differing power are described. A one-dimensional large signal code was used to design the tubes. Calculated operating parameters obtained from this code are presented. Based on standard klystron experience at SLAC high voltage breakdown, instabilities and RF window breakdown were expected to be problem areas. Current experience in these areas on the tube designs are summarized. In the case of the SLC klystron 50 MW at rated average power has been obtained at 315 kV with an efficiency of 45%. The fault rate has been found to be as low as one fault per 8 hour shift. The first 150 MW klystron had a conventional output cavity and produced 105 MW at the design beam voltage of 450 kV. At 475 kV a power of 122 MW with an efficiency of 43% were obtained. Design changes to obtain higher power and efficiency are incorporated in the second 150 MW tube and projections are made for future tubes.

  20. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  1. Unified formulation for linear accelerator design

    SciTech Connect

    Farkas, Z.D.

    1986-05-01

    Expressions for peak and average powers required to produce a given average gradient in an accelerator section are given. They are valid for both lossy and lossless (superconducting) sections, for both traveling wave and standing wave sections, and for pulsed or continuous wave rf input. The expressions are given in terms of structure parameters that are equally applicable to traveling wave or standing wave. These parameters delineate the effect of wall losses and energy required to build up the field. For both traveling wave and standing wave sections it is possible to make the rf pulse length short enough to make the wall losses negligible at the expense of increased peak power requirement. Therefore the expressions will include the effects of pulse compression. 6 refs., 7 figs.

  2. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  3. Proton linear accelerators: A theoretical and historical introduction

    SciTech Connect

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs.

  4. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    SciTech Connect

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs.

  5. Response properties of pigeon otolith afferents to linear acceleration

    NASA Technical Reports Server (NTRS)

    Si, X.; Angelaki, D. E.; Dickman, J. D.

    1997-01-01

    In the present study, the sensitivity to sinusoidal linear accelerations in the plane of the utricular macula was tested in afferents. The head orientation relative to the translation axis was varied in order to determine the head position that elicited the maximal and minimal responses for each afferent. The response gain and phase values obtained to 0.5-Hz and 2-Hz linear acceleration stimuli were then plotted as a function of head orientation and a modified cosine function was fit to the data. From the best-fit cosine function, the predicted head orientations that would produce the maximal and minimal response gains were estimated. The estimated maximum response gains to linear acceleration in the utricular plane for the afferents varied between 75 and 1420 spikes s-1 g-1. The mean maximal gains for all afferents to 0.5-Hz and 2-Hz sinusoidal linear acceleration stimuli were 282 and 367 spikes s-1 g-1, respectively. The minimal response gains were essentially zero for most units. The response phases always led linear acceleration and remained constant for each afferent, regardless of head orientation. These response characteristics indicate that otolith afferents are cosine tuned and behave as one-dimensional linear accelerometers. The directions of maximal sensitivity to linear acceleration for the afferents varied throughout the plane of the utricle; however, most vectors were directed out of the opposite ear near the interaural axis. The response dynamics of the afferents were tested using stimulus frequencies ranging between 0.25 Hz and 10 Hz (0.1 g peak acceleration). Across stimulus frequencies, most afferents had increasing gains and constant phase values. These dynamic properties for individual afferents were fit with a simple transfer function that included three parameters: a mechanical time constant, a gain constant, and a fractional order distributed adaptation operator.

  6. 3.9 GHz superconducting accelerating 9-cell cavity vertical test results

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charles; Dhanaraj, Nandhini; Edwards, Helen; Foley, Mike; Harms, Elvin; Mitchell, Donald; Rowe, Allan; Solyak, Nikolay; Moeller, Wolf-Dietrich; /DESY

    2007-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility [1]. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient [2]. The main problem was a multipactor in the HOM couplers, which lead to overheating and quenching of the HOM couplers. New HOM couplers with improved design are integrated in the next 9-cell cavities. In this paper we present all results of the vertical tests.

  7. Plasma Processing of SRF Cavities for the next Generation Of Particle Accelerators

    SciTech Connect

    Vuskovic, Leposava

    2015-11-23

    The cost-effective production of high frequency accelerating fields are the foundation for the next generation of particle accelerators. The Ar/Cl2 plasma etching technology holds the promise to yield a major reduction in cavity preparation costs. Plasma-based dry niobium surface treatment provides an excellent opportunity to remove bulk niobium, eliminate surface imperfections, increase cavity quality factor, and bring accelerating fields to higher levels. At the same time, the developed technology will be more environmentally friendly than the hydrogen fluoride-based wet etching technology. Plasma etching of inner surfaces of standard multi-cell SRF cavities is the main goal of this research in order to eliminate contaminants, including niobium oxides, in the penetration depth region. Successful plasma processing of multi-cell cavities will establish this method as a viable technique in the quest for more efficient components of next generation particle accelerators. In this project the single-cell pill box cavity plasma etching system is developed and etching conditions are determined. An actual single cell SRF cavity (1497 MHz) is plasma etched based on the pill box cavity results. The first RF test of this plasma etched cavity at cryogenic temperature is obtained. The system can also be used for other surface modifications, including tailoring niobium surface properties, surface passivation or nitriding for better performance of SRF cavities. The results of this plasma processing technology may be applied to most of the current SRF cavity fabrication projects. In the course of this project it has been demonstrated that a capacitively coupled radio-frequency discharge can be successfully used for etching curved niobium surfaces, in particular the inner walls of SRF cavities. The results could also be applicable to the inner or concave surfaces of any 3D structure other than an SRF cavity.

  8. Comparison of accelerating structures for the first cavity of the main part of the INR linac

    NASA Astrophysics Data System (ADS)

    Rybakov, I. V.; Kalinin, Y. Z.; Leontev, V. N.; Naboka, A. N.; Paramonov, V. V.; Serov, V. L.; Feschenko, A. V.

    2016-09-01

    For the beam power improvement of the hydrogen-ion INR linac replacement of the first four-section cavity in the main part of linac is required. Existent cavity is realized using DAW structure on 991 MHz operating frequency. The new cavity should at least not lose in parameters to the current structure and essential changes in other linac systems are not wish able. Parameters of accelerating structures possible for such application are compared.

  9. Research and development for electropolishing of Nb for ILC accelerator cavities

    SciTech Connect

    Kelley, Michael J.

    2009-09-21

    The objectives of this project are to 1, Expand the scientific and technological understanding of the effect of post-treatment (electropolish, buffered chemical polish, low-temperature baking) on the surface of niobium; 2, Relate the knowledge to the performance of niobium superconducting radiofrequency accelerator cavities; and, 3, Thereby design and demonstrate an electropolish process that can be applied to complete cavities.

  10. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  11. Optimization of quasiperiodic structures in a linear resonance ion accelerator

    NASA Astrophysics Data System (ADS)

    Garashchenko, F. G.; Sokolov, L. S.; Tsulaya, A. V.

    1980-06-01

    A method is proposed for optimizing the parameters of a linear ion accelerator with rectangular or trapezoidal shape of the accelerating voltage between the tubes, systematic allowance being made for the quasiperiodicity of their arrangement. Numerical calculations have demonstrated the effectiveness of the method and also the fairly simple structure of its realization. A detailed algorithm is given. An estimate is made of the interval of entrance phases, the maximal value of which exceeds by several percent the limits previously predicted.

  12. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGESBeta

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  13. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    SciTech Connect

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  14. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  15. Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata.

    PubMed

    Tytell, Eric D

    2004-12-22

    The kinematics and hydrodynamics of routine linear accelerations were studied in American eels, Anguilla rostrata, using high-speed video and particle image velocimetry. Eels were examined both during steady swimming at speeds from 0.6 to 1.9 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s(-2). Multiple regression of the acceleration and steady swimming speed on the body kinematics suggests that eels primarily change their tail-tip velocity during acceleration. By contrast, the best predictor of steady swimming speed is body wave speed, keeping tail-tip velocity an approximately constant fraction of the swimming velocity. Thus, during steady swimming, Strouhal number does not vary with speed, remaining close to 0.32, but during acceleration, it deviates from the steady value. The kinematic changes during acceleration are indicated hydrodynamically by axial fluid momentum in the wake. During steady swimming, the wake consists of lateral jets of fluid and has minimal net axial momentum, which reflects a balance between thrust and drag. During acceleration, those jets rotate to point downstream, adding axial momentum to the fluid. The amount of added momentum correlates with the acceleration, but is greater than the necessary inertial force by 2.8+/-0.6 times, indicating a substantial acceleration reaction.

  16. Staging optics considerations for a plasma wakefield acceleration linear collider

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  17. Status of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Arnold, N.; Berg, W.; Cours, A.; Fuja, R.; Grelick, A.; Ko, K.; Qian, Y.; Russell, T.; Sereno, N.

    1994-09-01

    A 2856-MHz S-band, electron-positron linear accelerator (linac) has been constructed at the Advanced Photon Source (APS). It is the source of particles and the injector for the other APS accelerators, and linac commissioning is well underway. The linac is operated 24 hours per day to support linac beam studies and rf conditioning, as well as positron accumulator ring and synchrotron commissioning studies. The design goal for accelerated positron current is 8-mA, and has been met. Maximum positron energy to date is 420-MeV, approaching the design goal of 450-MeV. The linac design and its performance are discussed.

  18. Design of rf-cavities in the funnel of accelerators for transmutation technologies

    SciTech Connect

    Krawczyk, F.L.; Bultman, N.K.; Chan, K.D.C.; Martineau, R.L.; Nath, S.; Young, L.M.

    1994-09-01

    Funnels are a key component of accelerator structures proposed for transmutation technologies. In addition to conventional accelerator elements, specialized rf-cavities are needed for these structures. Simulations were done to obtain their electromagnetic field distribution and to minimize the rf-induced heat loads. Using these results a structural and thermal analysis of these cavities was performed to insure their reliability at high average power and to determine their cooling requirements. For one cavity the thermal expansion data in return was used to estimate the thermal detuning.

  19. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    SciTech Connect

    D. Dotson; M. Drury; R. May; C. Reece

    1996-10-01

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuable for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.

  20. PARMELA simulations of RF linear accelerators for ion implantation

    SciTech Connect

    Swenson, D. R.; Wan Zhimin; Di Vergilio, W. F.; Saadatmand, K.

    1999-06-10

    RF linear accelerators (LINACs) offer the highest beam energies and currents available to the high-energy segment of the ion-implantation industry. We are using the computer code PARMELA to simulate a variety of beam parameters. The simulations are used to generate beam tunes, optimize LINAC performance, and to design new LINACs.

  1. Beam breakup in an advanced linear induction accelerator

    DOE PAGESBeta

    Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent

    2016-07-01

    Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less

  2. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    NASA Astrophysics Data System (ADS)

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-08-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within +/-3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m-1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

  3. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    SciTech Connect

    Kurennoy, Sergey S.; Chan, Kwok-Chi Dominic; Jason, Andrew; Miyadera, Haruo; Turchi, Peter J.

    2011-01-01

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  4. Beam dynamics design for uranium drift tube linear accelerator

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Ping; He, Yuan; Lu, Yuan-Rong

    2014-07-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0 emA, is accelerated from injection energy of 0.35 MeV/u to output energy of 1.30 MeV/u by IH-DTL operated at 81.25 MHz in HIAF project at IMP of CAS. It achieves a transmission efficiency of 94.95% with a cavity length of 267.8 cm. The optimization aims are the reduction of emittance growth, beam loss and project costs. Because of the requirements of CW mode operation, the designed average acceleration gradient is about 2.48 MV/m. The maximum axial field is 10.2 MV/m, meanwhile the Kilpatrick breakdown field is 10.56 MV/m at 81.25 MHz.

  5. Separated-orbit bisected energy-recovered linear accelerator

    DOEpatents

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  6. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-11-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  7. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    NASA Astrophysics Data System (ADS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  8. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  9. Lorentz-Dirac force from QED for linear acceleration

    SciTech Connect

    Higuchi, Atsushi; Martin, Giles D.R.

    2004-10-15

    We investigate the motion of a wave packet of a charged scalar particle linearly accelerated by a static potential in quantum electrodynamics. We calculate the expectation value of the position of the charged particle after the acceleration to first order in the fine structure constant in the ({Dirac_h}/2{pi}){yields}0 limit. We find that the change in the expectation value of the position (the position shift) due to radiation reaction agrees exactly with the result obtained using the Lorentz-Dirac force in classical electrodynamics. We also point out that the one-loop correction to the potential may contribute to the position change in this limit.

  10. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  11. Linear accelerators for TeV colliders. Revision

    SciTech Connect

    Wilson, P.B.

    1985-10-01

    The basic scaling relations for important linear collider design parameters are introduced. Some of the basic concepts concerning the design of accelerating structures are presented, and breakdown limitations are discussed. Rf power sources are considered. Some of the key concepts of wakefield accelerators are discussed, and some examples of wake fields for typical linac structures are presented. Some general concepts concerning emittance, and the limitations on the emittance that can be obtained from linac guns and damping rings are discussed. 49 refs., 15 figs. (LEW)

  12. Parallel Computation of Intergrated Electronmagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.; Kabel, A.; Lee, L-Q.; Li, Z.; Ng, C-K.; Xiao, L.; Ko, K.

    2008-07-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  13. Parallel Computation of Integrated Electromagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.E.; Kabel, A.C.; Ko, K.; Lee, L.; Li, Z.; Ng, C.K.; Xiao, L.; /SLAC

    2011-11-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  14. BEAM ACCELERATION BY A MULTICELL RF CAVITY STRUCTURE PROPOSED FOR AN IMPROVED YIELD IN HYDROFORMING

    SciTech Connect

    Kang, Yoon W; Shin, Ki; Fathy, A. E.; Holmes, Jeffrey A

    2012-01-01

    We study the accelerating properties of a new multicell cavity structure with irises forming a rectangular aperture between the cavity cells. We are interested in this structure because, from a mechanical point of view, it may be possible to manufacture with high quality using a hydroforming process. RF analysis shows that the rectangular iris shape provides some asymmetric transverse focusing per half RF period, particularly for low beam energies. If the horizontal and vertical rectangular irises are interleaved, the net transverse focusing could be increased. Here we present studies of the acceleration and transport properties of these cavities by tracking particles using the ORBIT Code through time-dependent 3D cavity fields taken from CST MWS.

  15. Narrowband beam loading compensation in the Fermilab Main Injector accelerating cavities

    SciTech Connect

    Joseph E. Dey; John S. Reid and James Steimel

    2001-07-12

    A narrowband beam loading compensation system was installed for the Main Injector Accelerating Cavities. This feedback operates solely on the fundamental resonant mode of the cavity. This paper describes modifications to the high level Radio Frequency system required to make the system operational. These modifications decreased the effect of steady-state beam loading by a factor of 10 and improved the reliability of paraphasing for coalescing.

  16. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  17. Detection of infrasound and linear acceleration in fishes.

    PubMed Central

    Sand, O; Karlsen, H E

    2000-01-01

    Fishes have an acute sensitivity to extremely low-frequency linear acceleration, or infrasound, even down to below 1 Hz. The otolith organs are the sensory system responsible for this ability. The hydrodynamic noise generated by swimming fishes is mainly in the infrasound range, and may be important in courtship and prey predator interactions. Intense infrasound has a deterring effect on some species, and has a potential in acoustic barriers. We hypothesize that the pattern of ambient infrasound in the oceans may be used for orientation in migratory fishes, and that pelagic fishes may detect changes in the surface wave pattern associated with altered water depth and distant land formations. We suggest that the acute sensitivity to linear acceleration could be used for inertial guidance, and to detect the relative velocity of layered ocean currents. Sensitivity to infrasound may be a widespread ability among aquatic organisms, and has also been reported in cephalopods and crustaceans. PMID:11079418

  18. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGESBeta

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; Degraff, Brian D.; Gold, Steven W.; Hannah, Brian S.; Howell, Matthew P.; Kim, Sang-Ho; Mammosser, John; McMahan, Christopher J.; et al

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  19. In-situ plasma processing to increase the accelerating gradients of superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Doleans, M.; Tyagi, P. V.; Afanador, R.; McMahan, C. J.; Ball, J. A.; Barnhart, D. L.; Blokland, W.; Crofford, M. T.; Degraff, B. D.; Gold, S. W.; Hannah, B. S.; Howell, M. P.; Kim, S.-H.; Lee, S.-W.; Mammosser, J.; Neustadt, T. S.; Saunders, J. W.; Stewart, S.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2016-03-01

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed.

  20. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    SciTech Connect

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; Degraff, Brian D.; Gold, Steven W.; Hannah, Brian S.; Howell, Matthew P.; Kim, Sang-Ho; Mammosser, John; McMahan, Christopher J.; Neustadt, Thomas S.; Saunders, Jeffrey W.; Tyagi, Puneet V.; Vandygriff, Daniel J.; Vandygriff, David M.; Ball, Jeffrey Allen; Blokland, Willem; Crofford, Mark T.; Lee, Sung-Woo; Stewart, Stephen; Strong, William Herb

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.

  1. Evaluation of air photoactivation at linear accelerators for radiotherapy.

    PubMed

    Tana, Luigi; Ciolini, Riccardo; Ciuffardi, Eva; Romei, Chiara; d'Errico, Francesco

    2015-06-01

    High-energy x-rays produced by radiotherapy accelerators operating at potentials above 10 MV may activate the air via (γ, n) reactions with both oxygen and nitrogen. While the activation products are relatively short-lived, personnel entering the accelerator room may inhale some radioactive air, which warrants internal dosimetry assessments. This work illustrates a method based on the use of ammonium nitrate solutions for the evaluation of photon-induced air activation and for the estimate of internal doses to radiotherapy personnel. Air activation and internal dosimetry assessments based on our method are presented for some widespread radiotherapy linear accelerator models. Our results indicate that the equivalent dose to the lungs of radiotherapy personnel is negligible for beam energies below 18 MeV.

  2. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  3. Operations and maintenance manual for the linear accelerator (sled)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Linear Accelerator, a sliding chair which is pulled along a stationary platform in a horizontal axis is described. The driving force is a motor controlled by a velocity loop amplifier, and the mechanical link to the chair is a steel cable. The chair is moved in forward and reverse directions as indicated by the direction of motor rotation. The system operation is described with emphasis on the electronic control and monitoring functions. Line-by-line schematics and wire lists are included.

  4. Organizational cultural survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Linear Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  5. Superconducting accelerator cavity with a heat affected zone having a higher RRR

    DOEpatents

    Brawley, John; Phillips, H. Lawrence

    2000-01-01

    An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.

  6. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  7. International X-Band Linear Collider Accelerator Structure R&D

    SciTech Connect

    Wang, J.W.; /SLAC

    2009-03-04

    For more than fifteen years before the International Technology Recommendation Panel (ITRP) decision in August, 2004, there were intensive R&D activities and broad international collaboration among the groups at SLAC, KEK, FNAL, LLNL and other labs for the room temperature X-Band accelerator structures. The goal was to provide an optimized design of the main linac structure for the NLC (Next Linear Collider) or GLC (Global Linear Collider). There have been two major challenges in developing X-band accelerator structures for the linear colliders. The first is to demonstrate stable, long-term operation at the high gradient (65 MV/m) that is required to optimize the machine cost. The second is to strongly suppress the beam induced long-range wakefields, which is required to achieve high luminosity. More than thirty X-band accelerator structures with various RF parameters, cavity shapes and coupler types have been fabricated and tested since 1989. A summary of the main achievements and experiences are presented in this talk including the structure design, manufacturing techniques, high power performance, and other structure related issues. Also, the new progress in collaborating with the CLIC, high gradient structures and X-Band structure applications for RF deflectors and others are briefly introduced.

  8. Analysis and Control of Wakefields in X-Band Crab Cavities for Compact Linear Collider

    SciTech Connect

    Ambattu, P.K.; Burt, G.; Khan, V.F.; Jones, R.M.; Dexter, A.; Dolgashev, V.; /SLAC

    2012-04-25

    The Compact Linear Collider requires a crab cavity on each beamline prior to the interaction point to rotate the bunches before collision. The cavities are X-band travelling wave type and are located close to the final doublet of the beam delivery system. This makes the beam very sensitive to transverse momentum imparted by wakefields; hence the wakefields must be tightly controlled. Of special concerns are the orthogonal polarization of the operating mode and the fundamental monopole mode of the crab cavity. The former mode is at the same frequency as the operating mode of a cylindrically symmetric cavity and the latter one is at a lower frequency and hence is difficult to damp using a single means. In this paper major problematic modes of the crab cavity are investigated and damping requirements for them are calculated. Possibility of meeting the required wakefield control using waveguide damping and choke damping is thoroughly investigated. As a comparison, damped-detuning is also investigated.

  9. Selection of linear-cavity fibre laser radiation using a reflection interferometer

    SciTech Connect

    Terentyev, V S; Simonov, V A

    2013-08-31

    We consider the use of a two-mirror multibeam reflection interferometer as a selector of linear-cavity single-mode fibre laser radiation and present experimental data on continuous wavelength tuning of an erbium-doped fibre laser. Conditions are found for single-longitudinal-mode operation of the fibre laser cavity using a reflection interferometer, with the possibility of broadband wavelength tuning. (control of laser pulse parameters)

  10. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  11. Heterogenous Acceleration for Linear Algebra in Multi-coprocessor Environments

    SciTech Connect

    Luszczek, Piotr R; Tomov, Stanimire Z; Dongarra, Jack J

    2015-01-01

    We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs and coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.

  12. Two-photon phase gate with linear optical elements and atom-cavity system

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Xia, Yan; Lu, Pei-Min

    2016-09-01

    We propose a protocol for implementing π phase gate of two photons with linear optical elements and an atom-cavity system. The evolution of the atom-cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.

  13. Niobium cavity development for the high-energy linac of the rare isotope accelerator

    SciTech Connect

    D. Barni; C. Pagani; P. Pierini; C. Compton; T. Grimm; W. Hartung; H. Podlech; R. York; G. Ciovati; P. Kneisel

    2001-08-01

    The Rare Isotope Accelerator (RIA) is being designed to supply an intense beam of exotic isotopes for nuclear physics research [1]. Superconducting cavities are to be used to accelerate the CW beam of heavy ions to 400 MeV per nucleon, with a beam power of up to 400 kW. Because of the varying velocity of the ion beam along the linac, a number of different types of superconducting structures are needed. The RIA linac will accelerate heavy ions over the same velocity range as the proton linac for the Spallation Neutron Source (SNS). It was decided to use the 6-cell axisymmetric 805 MHz cavities and cryostats of SNS for the downstream portion of the RIA linac, thereby saving the non-recurring development and engineering costs. For additional cost saving, it was decided to extend the SNS multi-cell axisymmetric cavity design to lower velocity, {beta} = v/c = 0.4, using the same cryostats and RF systems. Axisymmetric cavities will thus constitute about three-quarters of RIA's total accelerating voltage, and most of that voltage will be provided by cavities already developed for SNS. The axisymmetric cavities will accelerate the RIA beam from {beta} = 0.4 to {beta} = 0.72. This velocity range can be efficiently covered with two different types of 6-cell cavities, one with a geometric {beta}, {beta}{sub g}, of 0.47, and the other with a {beta}{sub g} of 0.61. The {beta}{sub g} = 0.61 cavity will be of the existing SNS design; some {beta}{sub g} = 0.81 SNS cavities may also be desired at the end of the RIA linac for acceleration of light ions above 400 MeV per nucleon. Prototypes for both {beta}{sub g} = 0.61 and {beta}{sub g} = 0.81 have been fabricated and tested [2]. The {beta}{sub g} = 0.47 cavity is the focus of the present work. The reduction in {beta}{sub g} to 0.47 results in less favourable electromagnetic and mechanical properties, and opens up the possibility of multipacting, but several groups have already designed and prototyped cavities in this range. These

  14. Radio-Frequency Pulse Compression for Linear Accelerators.

    NASA Astrophysics Data System (ADS)

    Nantista, Christopher Dennis

    Recent efforts to develop plans for an electron -positron linear collider with center-of-mass energy approaching a TeV have highlighted the need for sources capable of delivering hundreds of megawatts of peak rf drive power at X-band frequencies. This need has driven work in the area of rf pulse compression, which enhances the peak power available from pulsed rf tubes by compressing their output pulses in time, accumulating the available energy into shorter pulses. The classic means of rf pulse compression for linear accelerators is SLED. This technique is described, and the problem it presents for multibunch acceleration explained. Other pulse compression schemes, capable of producing suitable output pulses are explored, both theoretically and experimentally, in particular Binary Pulse Compression and SLED-II. The merits of each are considered with regard to gain, efficiency, complexity, size and cost. The development of some novel system components, along with the theory behind their design, is also discussed. The need to minimize copper losses in long waveguide runs led to the use of the circular TE_{01} propagation mode in over-moded guide, requiring much attention to mechanisms of coupling power between modes. The construction and commissioning of complete, high-power pulse compression systems is reported on, as well as their use in the testing of X-band accelerating structures, which, along with the X-band klystrons used, were developed at SLAC in parallel with the pulse compression work. The focus of the dissertation is on SLED-II, the favored scheme in some current linear accelerator designs. In addition to our experimental results, practical implementation considerations and design improvements are presented. The work to date has led to detailed plans for SLED-II systems to be used in the Next Linear Collider Test Accelerator, now under construction at SLAC. The prototype of the upgraded system is near completion. Descriptions of various rf pulse

  15. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  16. Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes

    DOEpatents

    Palmer, R.B.

    1991-05-21

    An accelerating cavity is disclosed having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps. 17 figures.

  17. Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes

    DOEpatents

    Palmer, Robert B.

    1991-01-01

    An accelerating cavity having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps.

  18. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  19. RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR

    SciTech Connect

    Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

    2012-07-01

    Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

  20. The Advanced Photon Source (APS) Linear Accelerator: design and performance

    SciTech Connect

    White, M.M.

    1996-06-01

    The Advanced Photon Source linear accelerator (linac) system consists of a 200-MeV, 2856-MHz S-band electron linac and a 2-radiation-length- thick tungsten target followed by a 450-MeV positron linac. The linac system has operated 24 hours per day for the past two years to support accelerator commissioning and beam studies, and to provide beam for the experimental program. It achieves the design goal for positron current of 8 mA, and produces electron energies up to 650 MeV without the target in place. The linac is described, and its operation and performance are discussed. 9 refs., 3 figs., 1 tab.

  1. Phase and Radial Motion in Ion Linear Accelerators

    2007-03-29

    Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda andmore » was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.« less

  2. Analysis of linear head accelerations from collegiate football impacts.

    PubMed

    Brolinson, P Gunnar; Manoogian, Sarah; McNeely, David; Goforth, Mike; Greenwald, Richard; Duma, Stefan

    2006-02-01

    Sports-related concussions result in 300,000 brain injuries in the United States each year. We conducted a study utilizing an in-helmet system that measures and records linear head accelerations to analyze head impacts in collegiate football. The Head Impact Telemetry (HIT) System is an in-helmet system with six spring-mounted accelerometers and an antenna that transmits data via radio frequency to a sideline receiver and laptop computer system. A total of 11,604 head impacts were recorded from the Virginia Tech football team throughout the 2003 and 2004 football seasons during 22 games and 62 practices from a total of 52 players. Although the incidence of injury data are limited, this study presents an extremely large data set from human head impacts that provides valuable insight into the lower limits of head acceleration that cause mild traumatic brain injuries.

  3. Induction linear accelerators for commercial photon irradiation processing

    SciTech Connect

    Matthews, S.M.

    1989-01-13

    A number of proposed irradiation processes requires bulk rather than surface exposure with intense applications of ionizing radiation. Typical examples are irradiation of food packaged into pallet size containers, processing of sewer sludge for recycling as landfill and fertilizer, sterilization of prepackaged medical disposals, treatment of municipal water supplies for pathogen reduction, etc. Volumetric processing of dense, bulky products with ionizing radiation requires high energy photon sources because electrons are not penetrating enough to provide uniform bulk dose deposition in thick, dense samples. Induction Linear Accelerator (ILA) technology developed at the Lawrence Livermore National Laboratory promises to play a key role in providing solutions to this problem. This is discussed in this paper.

  4. Examination of sea freight containers using modern electron linear accelerators

    NASA Astrophysics Data System (ADS)

    Dönges, G.; Geus, G.; Henkel, R.; Ries, H.; Schall, P.; Bermbach, R.

    1992-05-01

    Electron linear accelerators and scintillation line detectors were studied as major components of a transmission scanning system to check the contents of standard sea containers. A maximum beam energy of 10 MeV was found to be the best compromise of high penetration capability of the bremsstrahlung and the WHO recommendations for irradiation of food. CsI(Tl) scintillation detectors turned out to be very efficient and reliable for this rugged application. The results obtained in full size prototype systems are discussed.

  5. Design of an accelerating cavity for the Superconducting Super Collider Low-Energy Booster

    SciTech Connect

    Friedrichs, C.C.; Walling, L. ); Campbell, B.M. )

    1991-01-01

    This paper presents the history and current status of the design of the accelerator cavity to be incorporated into the Low-Energy Booster (LEB) of the Superconducting Super Collider (SSC). The LEB is a proton synchrotron, 540 meters in circumference, and having 108 buckets around the ring. Acceleration programs, each 50 msec long, take place at a rate of 10 per second. The beta change of the particles from injection to extraction is from 0.8 to 0.997. Since the rf excitation frequency must track beta, the rf frequency must shift from 47.5 to 60 MHz over the 50-msec acceleration program. The cavity will use ferrite in a perpendicular control bias mode to effect the require tuning. 4 refs., 1 fig.

  6. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    SciTech Connect

    Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  7. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    NASA Astrophysics Data System (ADS)

    Machida, S.; Barlow, R.; Berg, J. S.; Bliss, N.; Buckley, R. K.; Clarke, J. A.; Craddock, M. K.; D'Arcy, R.; Edgecock, R.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Johnstone, C.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Keil, E.; Kelliher, D. J.; Kirkman, I. W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Méot, F.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Owen, H. L.; Pasternak, J.; Peach, K. J.; Poole, M. W.; Rao, Y.-N.; Saveliev, Y.; Scott, D. J.; Sheehy, S. L.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P. H.; Wolski, A.; Yokoi, T.

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a `scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  8. Accelerating sparse linear algebra using graphics processing units

    NASA Astrophysics Data System (ADS)

    Spagnoli, Kyle E.; Humphrey, John R.; Price, Daniel K.; Kelmelis, Eric J.

    2011-06-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of over 1 TFLOPS of peak computational throughput at a cost similar to a high-end CPU with excellent FLOPS-to-watt ratio. High-level sparse linear algebra operations are computationally intense, often requiring large amounts of parallel operations and would seem a natural fit for the processing power of the GPU. Our work is on a GPU accelerated implementation of sparse linear algebra routines. We present results from both direct and iterative sparse system solvers. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally. For example, the CPU is responsible for graph theory portion of the direct solvers while the GPU simultaneously performs the low level linear algebra routines.

  9. Cavity-based linear polarizer immune to the polarization direction of an incident plane wave.

    PubMed

    Wang, Jiang; Shen, Zhongxiang; Gao, Xiang; Wu, Wen

    2016-01-15

    We herein report a linear polarizer based on a 2D array of substrate integrated waveguide cavities, which can convert an arbitrary linearly polarized (LP) incident wave into an outgoing LP wave in a specified polarization direction with constant transmittance. Two orthogonal slots etched on the front surface of the cavity are utilized to couple a wave of arbitrary polarization into the cavity, while another slot on the back side helps to couple the field out along a desired polarization direction. Microwave experiments are performed as a proof of concept. The proposed polarizer exhibits very good performance with stable transmittance as 50% and a polarization extinction ratio over 45 dB. The new polarizer is potentially useful in novel polarization-selective devices that are immune to the polarization direction of an incident plane wave.

  10. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  11. Linear accelerator x-ray sources with high duty cycle

    SciTech Connect

    Condron, Cathie; Brown, Craig; Gozani, Tsahi; Langeveld, Willem G. J.; Hernandez, Michael

    2013-04-19

    X-ray cargo inspection systems typically use a several-MV pulsed linear accelerator (linac) to produce a bremsstrahlung spectrum of x rays by bombarding a target with electrons. The x rays traverse the cargo and are detected by a detector array. Spectroscopy of the detected x rays is very desirable: if one can determine the spectrum of the transmitted x rays, one can determine the Z of the material they traversed. Even in relatively low-dose modes of operation, thousands of x rays arrive at each detector element during each pulse, unless the x rays are heavily absorbed or scattered by the cargo. For portal or fixed-site systems, dose rates, and therefore x-ray count rates, are even higher. Because of the high x-ray count rate, spectroscopy is impractical in conventional cargo inspection systems, except in certain special cases. For a mobile system, typical pulse durations are a few microseconds, and the number of pulses is on the order of 100 per second, leading to a duty factor of about 0.04%. Clearly, a linear accelerator x-ray source with much higher duty factor would be useful, since then the same number of x rays could be spread out over time, reducing the x-ray count rate. In this paper, we explore the possibility of designing a linear accelerator system, using more or less Conventional Off the Shelf (COTS) components, capable of duty cycles of 1% or greater. A survey was conducted of available linac RF source options and, given the possibilities, calculations were performed for suitable beam centerline designs. Keeping in mind that the size and cost of the accelerator system should be practical for use in a mobile cargo inspection system, only a few options are shown to be reasonably feasible, both requiring the use of klystrons instead of the magnetrons used in conventional systems. An S-Band design appears clearly possible, and there is also a promising X-Band design.

  12. Linear accelerator x-ray sources with high duty cycle

    NASA Astrophysics Data System (ADS)

    Condron, Cathie; Brown, Craig; Gozani, Tsahi; Hernandez, Michael; Langeveld, Willem G. J.

    2013-04-01

    X-ray cargo inspection systems typically use a several-MV pulsed linear accelerator (linac) to produce a bremsstrahlung spectrum of x rays by bombarding a target with electrons. The x rays traverse the cargo and are detected by a detector array. Spectroscopy of the detected x rays is very desirable: if one can determine the spectrum of the transmitted x rays, one can determine the Z of the material they traversed. Even in relatively low-dose modes of operation, thousands of x rays arrive at each detector element during each pulse, unless the x rays are heavily absorbed or scattered by the cargo. For portal or fixed-site systems, dose rates, and therefore x-ray count rates, are even higher. Because of the high x-ray count rate, spectroscopy is impractical in conventional cargo inspection systems, except in certain special cases. For a mobile system, typical pulse durations are a few microseconds, and the number of pulses is on the order of 100 per second, leading to a duty factor of about 0.04%. Clearly, a linear accelerator x-ray source with much higher duty factor would be useful, since then the same number of x rays could be spread out over time, reducing the x-ray count rate. In this paper, we explore the possibility of designing a linear accelerator system, using more or less Conventional Off the Shelf (COTS) components, capable of duty cycles of 1% or greater. A survey was conducted of available linac RF source options and, given the possibilities, calculations were performed for suitable beam centerline designs. Keeping in mind that the size and cost of the accelerator system should be practical for use in a mobile cargo inspection system, only a few options are shown to be reasonably feasible, both requiring the use of klystrons instead of the magnetrons used in conventional systems. An S-Band design appears clearly possible, and there is also a promising X-Band design.

  13. Development of the plane wave transformer photoelectron linear accelerator

    NASA Astrophysics Data System (ADS)

    Ding, Xiaodong

    2000-11-01

    The design, fabrication and characterization of the UCLA integrated S-Band RF photocathode electron linear accelerator (Linac) based on the plane wave transformer (PWT) structure is presented. This new generation photoinjector integrates a photocathode directly into a PWT linac making the structure simple and compact. Due to the strong coupling between each adjacent cell, the PWT structure is relatively easy to fabricate and operate. This photoinjector can provide high brightness beams at energies of 15 to 20MeV, with emittance less than 1mm.mrad at charge of 1 nC [3]. These short-pulse beams can be used in various applications: space charge dominated beam physics studies, plasma lenses, plasma accelerators, free-electron laser microbunching techniques, and SASE-FEL physics studies. It will also provide commercial opportunities in chemistry, biology and medicine. The principle of photoelectron gun setup, accelerating structure design and beam dynamic study is described. The design, fabrication and testing of this UCLA 10 full cell and 2 half cell PWT structure is discussed in detail. The results of Microwave measurements and first step high power test have showed the success of the UCLA PWT photoinjector design. The measurement results met all the design goals and operation requirements. The experimental requirements for the beam diagnostics are also presented.

  14. Linear analysis of active-medium two-beam accelerator

    NASA Astrophysics Data System (ADS)

    Voin, Miron; Schächter, Levi

    2015-07-01

    We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.

  15. The polarized electron source of the Stanford Linear Accelerator Center

    SciTech Connect

    Schultz, D.; Alley, R.; Clendenin, J.; Frisch, J.; Mulhollan, G.; Saez, P.; Tang, H.; Witte, K.

    1994-08-01

    The Stanford Linear Accelerator has been running with polarized electrons both in the collider (SLC) mode and in the fixed target mode. The accelerators polarized electron source is based on a thin, strained GaAs photocathode, which is held at a negative high voltage and illuminated by a Titanium Sapphire laser. The reliability of the source was better than 95% during the eight-month-long 1993 SLC run. A beam polarization of 63% was measured by the SLD experiment at the SLC interaction point in the 1993 data run. The fixed-target experiment E143 measured a beam polarization of 85% in its 1993--94 run. These polarization measurements, made at high energy, are in good agreement with measurements made at low energy on a calibrated Mott polarimeter. The higher beam polarization in the fixed target experiment is due to a thinner, more highly strained GaAs photocathode than had been used earlier, and to the experiment`s low beam current requirements. The SLC is now running with the high polarization photocathode. Details of the source, and experience with the high polarization strained GaAs photocathodes on the accelerator in the current SLC run, will be presented.

  16. Nanotube-mode-locked linear-cavity fiber laser delivering switchable ultrafast solitons

    NASA Astrophysics Data System (ADS)

    Han, X. X.

    2015-02-01

    We propose a linear-cavity switchable fiber laser based on a single-wall carbon nanotube mode-locker for the first time to the best of our knowledge. Two chirped fiber Bragg gratings (CFBGs) in series and an optical circulator are employed as end mirrors of the linear cavity. The linear-cavity fiber laser is simple and cost-efficient. By adjusting the polarization controllers, a switchable mode-locking operation is obtained at 1551.3 and 1557.9 nm respectively, corresponding to the central wavelengths of two series-wound CFBGs. The pulse duration and spectral bandwidth of ultrafast solitons are ~4.4 ps and ~0.65 nm for the short wavelength operation at 1551.3 nm and ~3.9 ps and ~0.71 nm for the long wavelength operation at 1557.9 nm, respectively. Our experimental observations are well confirmed by the numerical results. The linear-cavity all-fiber laser reduces the cost and is very attractive for ultrafast optics.

  17. To study the emittance dilution in Superconducting Linear Accelerator Design for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Solyak, Nikolay; Tenenbaum, Peter

    2005-04-01

    Recently the particle physics community has chosen a single technology for the new accelerator, opening the way for the world community to unite and concentrate resources on the design of an International Linear collider (ILC) using superconducting technology. One of the key operational issues in the design of the ILC will be the preservation of the small beam emittances during passage through the main linear accelerator (linac). Sources of emittance dilution include incoherent misalignments of the quadrupole magnets and rf-structure misalignments. In this work, the study of emittance dilution for the 500-GeV center of mass energy main linac of the Superconducting Linear Accelerator design, based on adaptation of the TESLA TDR design is performed using LIAR simulation program. Based on the tolerances of the present design, effect of two important Beam-Based steering algorithms, Flat Steering and Dispersion Free Steering, are compared with respect to the emittance dilution in the main linac. We also investigated the effect of various misalignments on the emittance dilution for these two steering algorithms.

  18. A new linear inductive voltage adder driver for the Saturn Accelerator

    SciTech Connect

    Mazarakis, M.G.; Spielman, R.B.; Struve, K.W.; Long, F.W.

    2000-08-09

    Saturn is a dual-purpose accelerator. It can be operated as a large-area flash x-ray source for simulation testing or as a Z-pinch driver especially for K-line x-ray production. In the first mode, the accelerator is fitted with three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the current of all the modules is combined via a post-hole convolute arrangement and driven through a cylindrical array of very fine wires. We present here a point design for a new Saturn class driver based on a number of linear inductive voltage adders connected in parallel. A technology recently implemented at the Institute of High Current Electronics in Tomsk (Russia) is being utilized. In the present design we eliminate Marx generators and pulse-forming networks. Each inductive voltage adder cavity is directly fed by a number of fast 100-kV small-size capacitors arranged in a circular array around each accelerating gap. The number of capacitors connected in parallel to each cavity defines the total maximum current. By selecting low inductance switches, voltage pulses as short as 30-50-ns FWHM can be directly achieved. The voltage of each stage is low (100-200 kv). Many stages are required to achieve multi-megavolt accelerator output. However, since the length of each stage is very short (4-10 cm), accelerating gradients of higher than 1 MV/m can easily be obtained. The proposed new driver will be capable of delivering pulses of 15-MA, 36-TW, 1.2-MJ to the diode load, with a peak voltage of {minus}2.2 MV and FWHM of 40-ns. And although its performance will exceed the presently utilized driver, its size and cost could be much smaller ({approximately}1/3). In addition, no liquid dielectrics like oil or deionized water will be required. Even elimination of ferromagnetic material (by using air-core cavities) is a possibility.

  19. A Linear Accelerator for TA-FD calibration

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Ikeda, D.; Ikeda, M.; Enomoto, A.; Ohsawa, S.; Kakiha, K.; Kakihara, K.; Sagawa, H.; Satoh, M.; Shidara, T.; Sugimura, T.; Fukushima, M.; Fukuda, S.; Furukawa, K.; Yoshida, M.

    The energy of the primary cosmic ray can be calculated from fluorescence photons detected by fluorescence telescope. However, since we can not know the true energy of primary cosmic ray, it is difficult to calibrate between number of photons and energy directly. In TA project, we will create pseudo- cosmic ray events by using accelerated electron beam which is injected in the air. The injected electron beam creates an air shower and fluorescence photons are emitted. We can calibate between electron beam energy which is known exactry and detected photons. We are developping a small linear accelerator (Linac) at High Energy Accelerator Research Organization (KEK) in Japan. The maximum energy is 40MeV, the typical current is 0.16nC, and the intensity per pulse is 6.4mJ. The accuracy of beam energy is less than 1%. The Linac consists of a -100kV pulse type electron gun, a 1.5m pre-buncher and buncher tube, a 2m S-band accelerator tube, a quadrupole magnet, a 90 degree bending magnet, and a S-Band(2856MHz) 50MW high power klystron as RF source. We chekced the performance of the electron beam, energy resolution, beam spread, beam current, and beam loss by PARMELA simulation, and checked the air shower by electron beam and number of the detected photons by detector simulation which are made by GEANT4. In this Spring, we will do the full beam test in KEK. The beam operation in Utah will be started from this Autumn. In this talk, we will report about the results of the beam test and calibration method by this Linac.

  20. Linear and angular head acceleration measurements in collegiate football.

    PubMed

    Rowson, Steven; Brolinson, Gunnar; Goforth, Mike; Dietter, Dave; Duma, Stefan

    2009-06-01

    Each year, between 1.6x10(6) and 3.8x10(6) concussions are sustained by athletes playing sports, with football having the highest incidence. The high number of concussions in football provides a unique opportunity to collect biomechanical data to characterize mild traumatic brain injury. Human head acceleration data for a range of impact severities were collected by instrumenting the helmets of collegiate football players with accelerometers. The helmets of ten Virginia Tech football players were instrumented with measurement devices for every game and practice for the 2007 football season. The measurement devices recorded linear and angular accelerations about each of the three axes of the head. Data for each impact were downloaded wirelessly to a sideline data collection system shortly after each impact occurred. Data were collected for 1712 impacts, creating a large and unbiased data set. While a majority of the impacts were of relatively low severity (<30 g and <2000 rad/s2), 172 impacts were greater than 40 g and 143 impacts were greater than 3000 rad/s2. No instrumented player sustained a clinically diagnosed concussion during the 2007 season. A large and unbiased data set was compiled by instrumenting the helmets of collegiate football players. Football provides a unique opportunity to collect head acceleration data of varying severity from human volunteers. The addition of concurrent concussive data may advance the understanding of the mechanics of mild traumatic brain injury. With an increased understanding of the biomechanics of head impacts in collegiate football and human tolerance to head acceleration, better equipment can be designed to prevent head injuries.

  1. RF properties of periodic accelerating structures for linear colliders

    SciTech Connect

    Wang, J.W.

    1989-07-01

    With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e/sup /plus//e/sup /minus// physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs.

  2. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity.

    PubMed

    Clayton, C E; Adli, E; Allen, J; An, W; Clarke, C I; Corde, S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Xu, X; Yakimenko, V

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  3. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    DOE PAGESBeta

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; et al

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m–1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less

  4. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    PubMed Central

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  5. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    SciTech Connect

    Gianluigi Ciovati

    2004-03-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models

  6. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide

    SciTech Connect

    St Aubin, Joel; Steciw, Stephen; Fallone, B. G.

    2010-02-15

    Purpose: The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. Methods: For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. Results: With the full waveguide designed to resonate at 2998.5{+-}0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially

  7. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  8. Towards MRI-guided linear accelerator control: gating on an MRI accelerator.

    PubMed

    Crijns, S P M; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2011-08-01

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  9. High power testing of the prototype accelerating cavity (352 MHz) for the advanced photon source (APS)

    SciTech Connect

    Bridges, J.F.; Kang, Y.W.; Kustom, R.L.; Primdahl, K.

    1992-01-01

    Measurement of the higher order of modes of a prototype single-cell 352 MHz cavity for the APS 7-Gev storage ring will be presented and discussed. A cavity made from solid copper was built according to dimensions derived from URMEL program runs. The longitudinal and transverse impedances of the first several higher order modes have been measured using various-shaped metal beads. High power ( > 60 kW) testing of the cavity will be described along with design and operation of dampers for those modes with coupled-bunch instability threshold currents under 300 milliamperes, the maximum circulating positron current. Low power level rf circuitry for timing and synchronization of the various APS accelerators and storage ring will be described.

  10. High power testing of the prototype accelerating cavity (352 MHz) for the advanced photon source (APS)

    SciTech Connect

    Bridges, J.F.; Kang, Y.W.; Kustom, R.L.; Primdahl, K.

    1992-07-01

    Measurement of the higher order of modes of a prototype single-cell 352 MHz cavity for the APS 7-Gev storage ring will be presented and discussed. A cavity made from solid copper was built according to dimensions derived from URMEL program runs. The longitudinal and transverse impedances of the first several higher order modes have been measured using various-shaped metal beads. High power ( > 60 kW) testing of the cavity will be described along with design and operation of dampers for those modes with coupled-bunch instability threshold currents under 300 milliamperes, the maximum circulating positron current. Low power level rf circuitry for timing and synchronization of the various APS accelerators and storage ring will be described.

  11. ACCELERATORS Study of a magnetic alloy-loaded RF cavity for bunch compression at the CSR

    NASA Astrophysics Data System (ADS)

    Yin, Da-Yu; Liu, Yong; Xia, Jia-Wen; Li, Peng; Zhao, Yong-Tao; Yang, Lei; Qi, Xin

    2010-12-01

    The Heavy Ion Research Facility and Cooling Storage Ring (HIRFL-CSR) accelerator in Lanzhou offers a unique possibility for the generation of high density and short pulse heavy ion beams by non-adiabatic bunch compression longitudinally, which is implemented by a fast jump of the RF-voltage amplitude. For this purpose, an RF cavity with high electric field gradient loaded with Magnetic Alloy cores has been developed. The results show that the resonant frequency range of the single-gap RF cavity is from 1.13 MHz to 1.42 MHz, and a maximum RF voltage of 40 kV with a total length of 100 cm can be obtained, which can be used to compress heavy ion beams of 238U72+ with 250 MeV/u from the initial bunch length of 200 ns to 50 ns with the coaction of the two single-gap RF cavity mentioned above.

  12. Performance analysis of superconducting rf cavities for the CERN rare isotope accelerator

    NASA Astrophysics Data System (ADS)

    Calatroni, S.; Miyazaki, A.; Rosaz, G.; Sublet, A.; Venturini Delsolaro, W.; Vaglio, R.; Palmieri, V.

    2016-09-01

    The first cryomodule of the new HIE-ISOLDE rare isotope accelerator has recently been commissioned with beam at CERN, with the second cryomodule ready for installation. Each cryomodule contains five superconducting low-beta quarter wave cavities, produced with the technology of sputtering a thin niobium film onto the copper substrate (Nb /Cu ). This technology has several benefits compared to the bulk niobium solution, but also drawbacks among which the most relevant is the increase of surface resistance with accelerating field. Recent work has established the possible connection of this phenomenon to local defects in the Nb /Cu interface, which may lead to increased thermal impedance and thus local thermal runaway. We have analyzed the performance of the HIE-ISOLDE cavities series production, as well as of a few prototypes', in terms of this model, and found a strong correlation between the rf properties and one of the model characteristic quantities, namely the total surface having increased interface thermal impedance.

  13. Overcoming challenges to accelerating linear growth in Indian children.

    PubMed

    Sachdev, H P S

    2012-04-01

    This policy review highlights the need to focus on stunting as an indicator of under-five undernutrition and explores the major challenges and priority public health options for accelerating linear growth in children. Early childhood stunting predicts poor human capital including shorter adult height, lower attained schooling, reduced adult income, and decreased offspring birth weight. The current prevalence of stunting is disconcerting but there has been a relatively faster decline recently. It is imperative to intervene before birth to address stunting. Pertinent ongoing interventions (delaying early child birth, adequate antenatal care and maternal iron-folate supplementation) are beneficial but have sub-optimal coverage. There is only a narrow window of opportunity in early life--the first two years. Effective coverage of children below two years of age with a package of interventions (breastfeeding; immunization; appropriate complementary feeding; treatment of infections, especially diarrhea; safe water supply; and sanitation) merits urgent investigation for greater impact.

  14. Shielding design for multiple-energy linear accelerators.

    PubMed

    Barish, Robert J

    2014-05-01

    The introduction of medical linear accelerators (linacs) capable of producing three different x-ray energies has complicated the process of designing shielding for these units. The conventional approach for the previous generation of dual-energy linacs relied on the addition of some amount of supplementary shielding to that calculated for the higher-energy beam, where the amount of that supplement followed the historical "two-source" rule, also known as the "add one HVL rule," a practice derived from other two-source shielding considerations. The author describes an iterative approach that calculates shielding requirements accurately for any number of multiple beam energies assuming the workload at each energy can be specified at the outset. This method is particularly useful when considering the requirements for possible modifications to an existing vault when new equipment is to be installed as a replacement for a previous unit.

  15. Accelerating transient simulation of linear reduced order models.

    SciTech Connect

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  16. Preliminary results of Linear Induction Accelerator LIA-200

    NASA Astrophysics Data System (ADS)

    Sharma, Archana; Senthil, K.; Praveen Kumar, D. D.; Mitra, S.; Sharma, V.; Patel, A.; Sharma, D. K.; Rehim, R.; Kolge, T. S.; Saroj, P. C.; Acharya, S.; Amitava, Roy; Rakhee, M.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-05-01

    Repetitive Pulsed Power Technology is being developed keeping in mind the potential applications of this technology in material modifications, disinfections of water, timber, and food pasteurization etc. BARC has indigenously developed a Linear Induction Accelerator (LIA-200) rated for 200 kV, 4 kA, 100 ns, 10 Hz. The satisfactory performance of all the sub-systems including solid state power modulator, amorphous core based pulsed transformers, magnetic switches, water capacitors, water pulse- forming line, induction adder and field-emission diode have been demonstrated. This paper presents some design details and operational results of this pulsed power system. It also highlights the need for further research and development to build reliable and economic high-average power systems for industrial applications.

  17. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    NASA Astrophysics Data System (ADS)

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; Ristori, Leonardo

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural design of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of such unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of this new generation of single spoke cavities with values of maximum allowable working pressure that exceeds the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.

  18. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    DOE PAGESBeta

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; Ristori, Leonardo

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural de- sign of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of suchmore » unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of these new generation of single spoke cavities with values of maximum allowable working pressure that exceed the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.« less

  19. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  20. Tiger Team Assessment of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    This report documents the Tiger Team Assessment of the buildings, facilities, and activities at the Stanford Linear Accelerator Center (SLAC) and the Stanford Synchrotron Radiation Laboratory (SSRL) near San Francisco, California. SLAC/SSRL is the twenty-eighth DOE site to be assessed by a Tiger Team. SLAC and SSRL are single-purpose laboratories. SLAC is dedicated to experimental and theoretical research in elementary particle physics and to the development of new techniques in high-energy accelerators and elementary particle detectors. SSRL is dedicated to research in atomic and solid-state physics, chemistry, biology, and medicine. The purpose of the SLAC/SSRL Tiger Team Assessment is to provide the Secretary of Energy with concise information on the following: current ES&H compliance status at the site and the vulnerabilities associated with that compliance status; root causes for noncompliance; adequacy of DOE and SLAC/SSRL ES&H management programs; response actions to address identified problem areas; and effectiveness of self-assessment.

  1. Linear multifrequency-grey acceleration recast for preconditioned Krylov iterations

    SciTech Connect

    Morel, Jim E. Brian Yang, T.-Y.; Warsa, James S.

    2007-11-10

    The linear multifrequency-grey acceleration (LMFGA) technique is used to accelerate the iterative convergence of multigroup thermal radiation diffusion calculations in high energy density simulations. Although it is effective and efficient in one-dimensional calculations, the LMFGA method has recently been observed to significantly degrade under certain conditions in multidimensional calculations with large discontinuities in material properties. To address this deficiency, we recast the LMFGA method in terms of a preconditioned system that is solved with a Krylov method (LMFGK). Results are presented demonstrating that the new LMFGK method always requires fewer iterations than the original LMFGA method. The reduction in iteration count increases with both the size of the time step and the inhomogeneity of the problem. However, for reasons later explained, the LMFGK method can cost more per iteration than the LMFGA method, resulting in lower but comparable efficiency in problems with small time steps and weak inhomogeneities. In problems with large time steps and strong inhomogeneities, the LMFGK method is significantly more efficient than the LMFGA method.

  2. Contaminant Analysis of Polycrystalline and Single Crystal Niobium Used in Accelerator Cavities

    SciTech Connect

    F. A. Stevie; Z. Zhu; D. P. Griffis; G. R. Myneni; P. Kneisel

    2005-07-10

    Secondary Ion Mass Spectrometry (SIMS) can characterize the surface and near surface of Nb used in accelerator cavities. Results show Nb oxide in the 2-3 nm range, a depleted H concentration in the oxide compared with the bulk, and N, C, O lower in an annealed single crystal sample than several polycrystalline samples. Other metallic contaminants are primarily at the surface, but tantalum is distributed uniformly through the material.

  3. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    SciTech Connect

    V.S. Morozov, S.A. Bogacz, Y.R. Roblin, K.B. Beard

    2012-06-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  4. Challenges Encountered during the Processing of the BNL ERL 5 Cell Accelerating Cavity

    SciTech Connect

    A. Burrill; I. Ben-Zvi; R. Calaga; H. Hahn; V. Litvinenko; G. T. McIntyre; P. Kneisel; J. Mammosser; J. P. Preble; C. E. Reece; R. A. Rimmer; J. Saunders

    2007-08-01

    One of the key components for the Energy Recovery Linac being built by the Electron cooling group in the Collider Accelerator Department is the 5 cell accelerating cavity which is designed to accelerate 2 MeV electrons from the gun up to 15-20 MeV, allow them to make one pass through the ring and then decelerate them back down to 2 MeV prior to sending them to the dump. This cavity was designed by BNL and fabricated by AES in Medford, NY. Following fabrication it was sent to Thomas Jefferson Lab in VA for chemical processing, testing and assembly into a string assembly suitable for shipment back to BNL and integration into the ERL. The steps involved in this processing sequence will be reviewed and the deviations from processing of similar SRF cavities will be discussed. The lessons learned from this process are documented to help future projects where the scope is different from that normally encountered.

  5. Field size dependent mapping of medical linear accelerator radiation leakage.

    PubMed

    Bezin, Jérémi Vũ; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  6. Ion effects in future circular and linear accelerators

    SciTech Connect

    Raubenheimer, T.O.

    1995-05-01

    In this paper, the author discusses ion effects relevant to future storage rings and linear colliders. The author first reviews the conventional ion effects observed in present storage rings and then discusses how these effects will differ in the next generation of rings and linacs. These future accelerators operate in a new regime because of the high current long bunch trains and the very small transverse beam emittances. Usually, storage rings are designed with ion clearing gaps to prevent ion trapping between bunch trains or beam revolutions. Regardless, ions generated within a single bunch train can have significant effects. The same is true in transport lines and linacs, where typical vacuum pressures are relatively high. Amongst other effects, the author addresses the tune spreads due to the ions and the resulting filamentation which can severely limit emittance correction techniques in future linear colliders, the bunch-to-bunch coupling due to the ions which can cause a multi-bunch instability with fast growth rates, and the betatron coupling and beam halo creation which limit the vertical emittance and beam lifetimes.

  7. Breakdown of the linear acousto-optic interaction regime in phoxonic cavities.

    PubMed

    Almpanis, Evangelos; Papanikolaou, Nikolaos; Stefanou, Nikolaos

    2014-12-29

    The limits of validity of the linear photoelastic model are investigated in a one-dimensional dual photonic-phononic cavity, formed by alternating layers of a chalcogenide glass and a polymer homogeneous and isotropic material, which supports both optical and acoustic resonant modes localized in the same region. It is shown that the linear-response regime breaks down when either the acoustic excitation increases or the first-order acousto-optic interaction coupling element vanishes by symmetry, giving rise to the manifestation of multiphonon absorption and emission processes by a photon. Our results provide a consistent interpretation of different aspects of the underlying physics relating to nonlinear acousto-optic interactions that can occur in such cavities. PMID:25607131

  8. Dosimetry of a Small-Animal Irradiation Model using a 6 MV Linear Accelerator

    SciTech Connect

    Fitch, F. Moran; Martinez-Davalos, A.; Garcia-Garduno, O. A.

    2010-12-07

    A custom made rat-like phantom was used to measure dose distributions using a 6 MV linear accelerator. The phantom has air cavities that simulate the lungs and cylindrical inserts that simulate the backbone. The calculated dose distributions were obtained with the BrainScan v.5.31 TPS software. For the irradiation two cases were considered: (a) near the region where the phantom has two air cavities that simulate the lungs, and (b) with an entirely uniform phantom. The treatment plan consisted of two circular cone arcs that imparted a 500 cGy dose to a simulated lesion in the backbone. We measured dose distributions using EBT2 GafChromic film and an Epson Perfection V750 scanner working in transmission mode. Vertical and horizontal profiles, isodose curves from 50 to 450 cGy, dose and distance to agreement (DTA) histograms and Gamma index were obtained to compare the dose distributions using DoseLab v4.11. As a result, these calculations show very good agreement between calculated and measured dose distribution in both cases. With a 2% 2 mm criteria 100% of the points pass the Gamma test for the uniform case, while 98.9% of the points do it for the lungs case.

  9. 29-fsec pulse generation from a linear-cavity synchronously pumped dye laser

    SciTech Connect

    Kubota, H.; Kurokawa, K.; Nakazawa, M.

    1988-09-01

    29-fsec optical pulses at a center wavelength of 615 nm have been generated from a linear-cavity synchronously pumped dye laser without using the colliding-pulse mode-locking technique. The laser consists of two dye jets (a gain jet and a saturable absorber jet) and a sequence of four Brewster-angled prisms. Kiton Red S is used as the laser dye instead of the conventional Rhodamine 6G.

  10. High-power, solid-state rf source for accelerator cavities

    SciTech Connect

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 ..mu..s and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures.

  11. Shielding design of the linear accelerator at RAON: Accelerator tunnel and utility gallery

    NASA Astrophysics Data System (ADS)

    Kim, Suna; Kang, Bo Sun; Lee, Sangjin; Nam, Shinwoo; Chung, Yeonsei

    2015-10-01

    RAON is the first Korean heavy-ion accelerator for various rare-isotope experiments and will be constructed by the year of 2021. The building for the about 550-m-long superconducting linear accelerator at RAON has three divisions in the vertical layout: accelerator tunnel, intermediate tunnel, and utility gallery. One of the requirements for the building design is that the effective dose rate in the utility gallery should be well below the dose limit for workers. Other parts of the building underground are classified as high-radiation zones where access is strictly controlled. The radiation dose distribution in the building has been calculated by using the Monte Carlo transport code MCNPX including the radiation streaming effects through the intermediate tunnel and penetrating holes. We have applied a point beam loss model in which the continuous beam loss along the beam line is treated as an equivalent point loss with a simple target. We describe the details of the calculation and discuss the results.

  12. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators.

    PubMed

    Beyer, Gloria P

    2013-01-07

    This study presents the beam data measurement results from the commissioning of three TrueBeam linear accelerators. An additional evaluation of the measured beam data within the TrueBeam linear accelerators contrasted with two other linear accelerators from the same manufacturer (i.e., Clinac and Trilogy) was performed to identify and evaluate any differences in the beam characteristics between the machines and to evaluate the possibility of beam matching for standard photon energies. We performed a comparison of commissioned photon beam data for two standard photon energies (6 MV and 15 MV) and one flattening filter-free ("FFF") photon energy (10 FFF) between three different TrueBeam linear accelerators. An analysis of the beam data was then performed to evaluate the reproducibility of the results and the possibility of "beam matching" between the TrueBeam linear accelerators. Additionally, the data from the TrueBeam linear accelerator was compared with comparable data obtained from one Clinac and one Trilogy linear accelerator models produced by the same manufacturer to evaluate the possibility of "beam matching" between the TrueBeam linear accelerators and the previous models. The energies evaluated between the linear accelerator models are the 6 MV for low energy and the 15 MV for high energy. PDD and output factor data showed less than 1% variation and profile data showed variations within 1% or 2 mm between the three TrueBeam linear accelerators. PDD and profile data between the TrueBeam, the Clinac, and Trilogy linear accelerators were almost identical (less than 1% variation). Small variations were observed in the shape of the profile for 15 MV at shallow depths (< 5 cm) probably due to the differences in the flattening filter design. A difference in the penumbra shape was observed between the TrueBeam and the other linear accelerators; the TrueBeam data resulted in a slightly greater penumbra width. The diagonal scans demonstrated significant differences

  13. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser.

    PubMed

    Zhang, Pei; Baboi, Nicoleta; Jones, Roger M; Shinton, Ian R R; Flisgen, Thomas; Glock, Hans-Walter

    2012-08-01

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  14. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    SciTech Connect

    Zhang Pei; Baboi, Nicoleta; Jones, Roger M.; Shinton, Ian R. R.; Flisgen, Thomas; Glock, Hans-Walter

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  15. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  16. The LLNL Flash X-Ray Induction Linear Accelerator (FXR)

    SciTech Connect

    Multhauf, L G

    2002-09-19

    The FXR is an induction linear accelerator used for high-speed radiography at the Lawrence Livermore National Laboratory's Experimental Test Site. It was designed specifically for the radiography of very thick explosive objects. Since its completion in 1982, it has been very actively used for a large variety of explosives tests, and has been periodically upgraded to achieve higher performance. Upgrades have addressed machine reliability, radiographic sensitivity and resolution, two-frame imaging by double pulsing improvements that are described in detail in the paper. At the same time, the facility in which it was installed has also been extensively upgraded, first by adding space for optical and interferometric diagnostics, and more recently by adding a containment chamber to prevent the environmental dispersal of hazardous and radioactive materials. The containment addition also further expands space for new non-radiographic diagnostics. The new Contained Firing Facility is still in the process of activation. At the same time, FXR is continuing to undergo modifications aimed primarily at further increasing radiographic resolution and sensitivity, and at improving double-pulsed performance.

  17. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    SciTech Connect

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  18. Hamiltonian analysis for linearly acceleration-dependent Lagrangians

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel; Gómez-Cortés, Rosario; Molgado, Alberto; Rojas, Efraín

    2016-06-01

    We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.

  19. Multipurpose 5-MeV linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Birx, D. L.; Hawkins, S. A.; Poor, S. E.; Reginato, L. L.; Smith, M. W.

    1984-06-01

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, new technology was used to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The magnetic drive system are tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization.

  20. Multipurpose 5-MeV linear induction accelerator

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L. Smith, M.W.

    1984-06-11

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, the researchers used new technology to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The paper describes the scheme. The magnetic drive system can be tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization.

  1. Laser driver for a photocathode of an electron linear accelerator

    SciTech Connect

    Potemkin, A K; Gacheva, E I; Zelenogorskii, V V; Katin, E V; Kozhevatov, I E; Lozhkarev, V V; Luchinin, G A; Silin, D E; Khazanov, Efim A; Trubnikov, D V; Shirkov, G D; Kuriki, M; Urakava, J

    2011-01-24

    A laser system is designed for operation with a photocathode electron gun for a linear accelerator with the following parameters of radiation at a wavelength of 262 nm (the fourth harmonic of a Nd:YLF laser). The pulse trains (macropulses) with a repetition rate of 5 Hz and a duration of 900 {mu}s consist of 8-ps micropulses with an energy of 1.4 {mu}J and a repetition rate of 2.708 MHz. This repetition rate is variable within {+-}32 kHz and is stabilised by an external signal with an accuracy of 10 Hz. Due to the use of a feedback-controlled acousto-optic modulator, the root-mean-square deviation of the micropulse energy in the first and second harmonics is 2.5% and 3.6%, respectively. Using the decaying branch of the dependence of the second-to-fourth harmonic conversion efficiency on the second harmonic intensity, we decreased the root-mean-square deviation of the energy of the fourth-harmonic micropulses to 2.3% at the first-to-fourth harmonic conversion efficiency of 27%. (lasers and amplifiers)

  2. [Failure analysis of medical linear accelerator with reliability analyses].

    PubMed

    Zakimi, Ken; Watanabe, Hiroyuki; Ishida, Hideki; Take, Toshio; Kato, Mitsuyoshi; Iwai, Tsugunori; Nitta, Masaru; Kato, Kyouichi; Nakazawa, Yasuo

    2014-12-01

    We analyzed a number of cases about the Linac troubles in our hospital and have examined the effect of preventive maintenance with Weibull analysis and exponential distribution from April 2001 to March 2012. The total failure by irradiation disabled was 1, 192. (1) Medical linear accelerator (MLC) system was 24.0%, (2) radiation dosimetry system 13.1%, and the (3) cooling-water system was 26.5%. It accounts for 63.6% of the total number of failures. Each parameter value m, which means the shape parameter, and the failure period expectancy of parts μ were (1) 1.21, 1.46/3.9, 3.8 years. 3.7, 3.6 years. (2) 2.84, 1.59/6.6, 4.3 years. 6.7, 5.9 years. (3) 5.12, 4.16/6.1, 8.5 years. 6.1, 8.5 years. Each shape parameter was m>1. It is believed that they are in the worn-out failure period. To prevent failure, MLC performance should be overhauled once every 3 years and a cooling unit should be overhauled once every 7 years. Preventive maintenance is useful in assessing the failure of radiation therapy equipment. In a radiation dosimetry part, you can make a preemptive move before the failure by changing the monitor's dosimeter board with a new part from the repairs stockpiled every 6 months for maintenance.

  3. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  4. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    SciTech Connect

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  5. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    DOE PAGESBeta

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  6. Integrated Cavity QED in a linear Ion Trap Chip for Enhanced Light Collection

    NASA Astrophysics Data System (ADS)

    Benito, Francisco; Jonathan, Sterk; Boyan, Tabakov; Haltli, Raymond; Tigges, Chris; Stick, Daniel; Balin, Matthew; Moehring, David

    2012-06-01

    Realizing a scalable trapped-ion quantum information processor may require integration of tools to manipulate qubits into trapping devices. We present efforts towards integrating a 1 mm optical cavity into a microfabricated surface ion trap to efficiently connect nodes in a quantum network. The cavity is formed by a concave mirror and a flat coated silicon mirror around a linear trap where ytterbium ions can be shuttled in and out of the cavity mode. By utilizing the Purcell effect to increase the rate of spontaneous emission into the cavity mode, we expect to collect up to 13% of the emitted photons. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Measurement of activity distribution using photostimulable phosphor imaging plates in decommissioned 10 MV medical linear accelerator.

    PubMed

    Fujibuchi, Toshioh; Yonai, Shunsuke; Yoshida, Masahiro; Sakae, Takeji; Watanabe, Hiroshi; Abe, Yoshihisa; Itami, Jun

    2014-08-01

    Photonuclear reactions generate neutrons in the head of the linear accelerator. Therefore, some parts of the linear accelerator can become activated. Such activated materials must be handled as radioactive waste. The authors attempted to investigate the distribution of induced radioactivity using photostimulable phosphor imaging plates. Autoradiographs were produced from some parts of the linear accelerator (the target, upper jaw, multileaf collimator and shielding). The levels of induced radioactivity were confirmed to be non-uniform within each part from the autoradiographs. The method was a simple and highly sensitive approach to evaluating the relative degree of activation of the linear accelerators, so that appropriate materials management procedures can be carried out.

  8. Design of ferrite-tuned accelerator cavities using perpendicular-biased high-Q ferrites

    SciTech Connect

    Kaspar, K.

    1984-11-01

    Microwave ferrites with dc bias fields perpendicular to the rf fields exhibit magnetic and dielectric quality factors 1 order of magnitude above that of ferrites used in ferrite-tuned synchrotron accelerating cavities built in the past. For the LAMPF II project, these ferrites appear to allow the design of synchrotron cavities with high gap voltages and high efficiency. A simple coaxial quarter-wave-resonator geometry, first considered only as a model for preliminary studies, turned out to be a good basis for the solution of most technical problems such as generation of the bias field, cooling of the ferrites, and installation of a generous high-voltage gap design. Two quarter-wave resonators combined to form one accelerating unit of about 2.5-m length and 0.6-m diameter should be capable of delivering 120 kV of accelerating voltage in the tuning range 50-60 MHz, up to 200 kV in the range 59-60 MHz. The main advantage of the given resonator design is its full rotational symmetry, which allows calculation and optimization of all electrical properties with maximum reliability.

  9. Encoding of head acceleration in vestibular neurons. I. Spatiotemporal response properties to linear acceleration

    NASA Technical Reports Server (NTRS)

    Bush, G. A.; Perachio, A. A.; Angelaki, D. E.

    1993-01-01

    1. Extracellular recordings were made in and around the medial vestibular nuclei in decerebrated rats. Neurons were functionally identified according to their semicircular canal input on the basis of their responses to angular head rotations around the yaw, pitch, and roll head axes. Those cells responding to angular acceleration were classified as either horizontal semicircular canal-related (HC) or vertical semicircular canal-related (VC) neurons. The HC neurons were further characterized as either type I or type II, depending on the direction of rotation producing excitation. Cells that lacked a response to angular head acceleration, but exhibited sensitivity to a change in head position, were classified as purely otolith organ-related (OTO) neurons. All vestibular neurons were then tested for their response to sinusoidal linear translation in the horizontal head plane. 2. Convergence of macular and canal inputs onto central vestibular nuclei neurons occurred in 73% of the type I HC, 79% of the type II HC, and 86% of the VC neurons. Out of the 223 neurons identified as receiving macular input, 94 neurons were further studied, and their spatiotemporal response properties to sinusoidal stimulation with pure linear acceleration were quantified. Data were obtained from 33 type I HC, 22 type II HC, 22 VC, and 17 OTO neurons. 3. For each neuron the angle of the translational stimulus vector was varied by 15, 30, or 45 degrees increments in the horizontal head plane. In all tested neurons, a direction of maximum sensitivity was identified. An interesting difference among neurons was their response to translation along the direction perpendicular to that that produced the maximum response ("null" direction). For the majority of neurons tested, it was possible to evoke a nonzero response during stimulation along the null direction always had response phases that varied as a function of stimulus direction. 4. These spatiotemporal response properties were quantified in two

  10. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGESBeta

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; Lukaszew, Rosa A.; Valente-Feliciano, Anne -Marie; Reece, Charles

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  11. Mode confinement in photonic quasicrystal point-defect cavities for particle accelerators

    NASA Astrophysics Data System (ADS)

    Di Gennaro, E.; Savo, S.; Andreone, A.; Galdi, V.; Castaldi, G.; Pierro, V.; Masullo, M. Rosaria

    2008-10-01

    In this letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavities for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via two-dimensional and three-dimensional full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.

  12. Laser Processing on the Surface of Niobium Superconducting Radio-Frequency Accelerator Cavities

    NASA Astrophysics Data System (ADS)

    Singaravelu, Senthilraja; Klopf, Michael; Krafft, Geoffrey; Kelley, Michael

    2011-03-01

    Superconducting Radio frequency (SRF) niobium cavities are at the heart of an increasing number of particle accelerators.~ Their performance is dominated by a several nm thick layer at the interior surface. ~Maximizing its smoothness is found to be critical and aggressive chemical treatments are employed to this end.~ We describe laser-induced surface melting as an alternative ``greener'' approach.~ Modeling guided selection of parameters for irradiation with a Q-switched Nd:YAG laser.~ The resulting topography was examined by SEM, AFM and Stylus Profilometry.

  13. Phase linearity of the 914H coupled-cavity traveling wave tube

    NASA Technical Reports Server (NTRS)

    Kavanagh, Frank E.

    1994-01-01

    Tests of phase deviation from linearity were made on two 914H coupled-cavity traveling wave tubes (TWT). One tube had a voltage standing wave ratio (VSWR) of 2.4 and the other 1.4. The data showed that phase deviation is primarily a function of the amplitude and shape of the output VSWR. It was predicted that the low-VSWR tube would give a better system performance than the tube with a high VSWR. This prediction was confirmed by the Advanced Communications Technology Satellite (ACTS) system tests performed at the NASA Lewis Research Center. A possible improvement in the construction and stability of coupled-cavity TWT's is discussed.

  14. Tuning the DARHT Axis-II linear induction accelerator focusing

    SciTech Connect

    Ekdahl, Carl A.

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed

  15. Monte Carlo simulation of a clinical linear accelerator.

    PubMed

    Lin, S Y; Chu, T C; Lin, J P

    2001-12-01

    The effects of the physical parameters of an electron beam from a Siemens PRIMUS clinical linear accelerator (linac) on the dose distribution in water were investigated by Monte Carlo simulation. The EGS4 user code, OMEGA/BEAM, was used in this study. Various incident electron beams, for example, with different energies, spot sizes and distances from the point source, were simulated using the detailed linac head structure in the 6 MV photon mode. Approximately 10 million particles were collected in the scored plane, which was set under the reticle to form the so-called phase space file. The phase space file served as a source for simulating the dose distribution in water using DOSXYZ. Dose profiles at Dmax (1.5 cm) and PDD curves were calculated following simulating about 1 billion histories for dose profiles and 500 million histories for percent depth dose (PDD) curves in a 30 x 30 x 30 cm3 water phantom. The simulation results were compared with the data measured by a CEA film and an ion chamber. The results show that the dose profiles are influenced by the energy and the spot size, while PDD curves are primarily influenced by the energy of the incident beam. The effect of the distance from the point source on the dose profile is not significant and is recommended to be set at infinity. We also recommend adjusting the beam energy by using PDD curves and, then, adjusting the spot size by using the dose profile to maintain the consistency of the Monte Carlo results and measured data. PMID:11761097

  16. Outcome of cerebral arteriovenous malformations after linear accelerator reirradiation

    PubMed Central

    Moraes, Paulo L.; Dias, Rodrigo S.; Weltman, Eduardo; Giordani, Adelmo J.; Benabou, Salomon; Segreto, Helena R. C.; Segreto, Roberto A.

    2015-01-01

    Background: The aim of this study was to evaluate the clinical outcome of patients undergoing single-dose reirradiation using the Linear Accelerator (LINAC) for brain arteriovenous malformations (AVM). Methods: A retrospective study of 37 patients with brain AVM undergoing LINAC reirradiation between April 2003 and November 2011 was carried out. Patient characteristics, for example, gender, age, use of medications, and comorbidities; disease characteristics, for example, Spetzler–Martin grading system, location, volume, modified Pollock–Flickinger score; and treatment characteristics, for example, embolization, prescription dose, radiation dose–volume curves, and conformity index were analyzed. During the follow-up period, imaging studies were performed to evaluate changes after treatment and AVM cure. Complications, such as edema, rupture of the blood–brain barrier, and radionecrosis were classified as symptomatic and asymptomatic. Results: Twenty-seven patients underwent angiogram after reirradiation and the percentage of angiographic occlusion was 55.5%. In three patients without obliteration, AVM shrinkage made it possible to perform surgical resection with a 2/3 cure rate. A reduction in AVM nidus volume greater than 50% after the first procedure was shown to be the most important predictor of obliteration. Another factor associated with AVM cure was a prescription dose higher than 15.5 Gy in the first radiosurgery. Two patients had permanent neurologic deficits. Factors correlated with complications were the prescription dose and maximum dose in the first procedure. Conclusion: This study suggests that single-dose reirradiation is safe and feasible in partially occluded AVM. Reirradiation may not benefit candidates whose prescribed dose was lower than 15.5 Gy in the first procedure and initial AVM nidus volume did not decrease by more than 50% before reirradiation. PMID:26110078

  17. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  18. Daily QA of linear accelerators using only EPID and OBI

    SciTech Connect

    Sun, Baozhou Goddu, S. Murty; Yaddanapudi, Sridhar; Noel, Camille; Li, Hua; Cai, Bin; Kavanaugh, James; Mutic, Sasa

    2015-10-15

    Purpose: As treatment delivery becomes more complex, there is a pressing need for robust quality assurance (QA) tools to improve efficiency and comprehensiveness while simultaneously maintaining high accuracy and sensitivity. This work aims to present the hardware and software tools developed for comprehensive QA of linear accelerator (LINAC) using only electronic portal imaging devices (EPIDs) and kV flat panel detectors. Methods: A daily QA phantom, which includes two orthogonally positioned phantoms for QA of MV-beams and kV onboard imaging (OBI) is suspended from the gantry accessory holder to test both geometric and dosimetric components of a LINAC and an OBI. The MV component consists of a 0.5 cm water-equivalent plastic sheet incorporating 11 circular steel plugs for transmission measurements through multiple thicknesses and one resolution plug for MV-image quality testing. The kV-phantom consists of a Leeds phantom (TOR-18 FG phantom supplied by Varian) for testing low and high contrast resolutions. In the developed process, the existing LINAC tools were used to automate daily acquisition of MV and kV images and software tools were developed for simultaneous analysis of these images. A method was developed to derive and evaluate traditional QA parameters from these images [output, flatness, symmetry, uniformity, TPR{sub 20/10}, and positional accuracy of the jaws and multileaf collimators (MLCs)]. The EPID-based daily QA tools were validated by performing measurements on a detuned 6 MV beam to test its effectiveness in detecting errors in output, symmetry, energy, and MLC positions. The developed QA process was clinically commissioned, implemented, and evaluated on a Varian TrueBeam LINAC (Varian Medical System, Palo Alto, CA) over a period of three months. Results: Machine output constancy measured with an EPID (as compared against a calibrated ion-chamber) is shown to be within ±0.5%. Beam symmetry and flatness deviations measured using an EPID and a 2D

  19. Relationship between head orientation and torsional eye movements in goldfish during linear acceleration

    NASA Astrophysics Data System (ADS)

    Takabayashi, A.; Ohmura, T.; Mori, S.

    We analyzed torsional eye movements of normal goldfish during sinusoidal linear acceleration, altering the orientation of the fish on the linear accelerator in the yaw plane over a range of 90 degrees and in the pitch plane up to 30 degrees. We video-recorded changes of torsional eye movements associated with a body rotation in the yaw and pitch plane and analyzed them frame by frame. In normal fish, we observed clear torsional eye movements for stimuli of 0.1G linear accelerations along the body axis in the horizontal position. Torsion occurred in the opposite direction of resultant force produced by linear acceleration and gravity. Though the amplitude of these compensatory responses increased with increasing magnitude of acceleration up to 0.5 G, the torsion angle did not fully compensate the angle calculated from gravity and linear acceleration. Furthermore, the torsion angle decreased as the longitudinal body axis deviated from the direction of linear acceleration. For the body axis perpendicular to the direction of acceleration, torsional eye movement was still observed. When we tilted the fish in the pitch plane, compensatory eye torsion occurred. The response amplitude to acceleration decreased for both head-up and head-down up to 30 degrees. These results suggested the existence of specific connections between the otolith organ and ocular muscles.

  20. Cavities

    MedlinePlus

    ... The tooth may hurt even without stimulation (spontaneous toothache). If irreversible damage to the pulp occurs and ... To detect cavities early, a dentist inquires about pain, examines the teeth, probes the teeth with dental instruments, and may take x-rays. People should ...

  1. Microwave power coupler for a superconducting multiple-cell cavity for accelerator application and its testing procedures

    SciTech Connect

    Li, Jianjian

    2008-12-01

    Superconducting cavity resonators offer the advantage of high field intensity for a given input power, making them an attractive contender for particle accelerator applications. Power coupling into a superconducting cavity employed in a particle accelerator requires unique provisions to maintain high vacuum and cryogenic temperature on the cavity side, while operating with ambient conditions on the source side. Components introduced to fulfill mechanical requirements must show negligible obstruction of the propagation of the microwave with absence of critical locations that may give rise to electron multipaction, leading to a multiple section design, instead of an aperture, a probe, or a loop structure as found in conventional cavities. A coaxial power coupler for a superconducting multiple-cell cavity at 3.9 GHz has been developed. The cavity is intended to be employed as an accelerator to provide enhanced electron beam quality in a free-electron laser in Hamburg (FLASH) user facility. The design of the coupler called for two windows to sustain high vacuum in the cavity and two bellows to accommodate mechanical dimensional changes resulting from cryogenics. Suppression of multipacting was accomplished by the choice of conductor dimensions and materials with low second yield coefficients. Prior to integration with the cavity, the coupler was tested for intrinsic properties in a back-to-back configuration and conditioned for high-power operation with increasing power input. Maximum incident power was measured to be 61 kW. When integrated with the superconducting cavity, a loaded quality factor of 9 x 10 5 was measured by transient method. Coupler return loss and insertion loss were estimated to be around -21 dB and -0.2 dB, respectively.

  2. A mm-wave planar microcavity structure for electron linear accelerator system

    SciTech Connect

    Kang, Y.W.; Kustom, R.; Mills, F.; Mavrogenes, G.; Henke, H.

    1993-07-01

    The muffin-tin cavity structure is planar and well suited for mm-wave accelerator with silicon etching techniques. A constant impedance traveling-wave structure is considered for design simplicity. The RF parameters are calculated and the shunt impedance is compared with the shunt impedance of a disk loaded cylindrical structure.

  3. A dosimetric characterization of a novel linear accelerator collimator

    SciTech Connect

    Thompson, C. M.; Weston, S. J. Cosgrove, V. C.; Thwaites, D. I.

    2014-03-15

    Purpose: The aim of this work is to characterize a new linear accelerator collimator which contains a single pair of sculpted diaphragms mounted orthogonally to a 160 leaf multileaf collimator (MLC). The diaphragms have “thick” regions providing full attenuation and “thin” regions where attenuation is provided by both the leaves and the diaphragm. The leaves are mounted on a dynamic leaf guide allowing rapid leaf motion and leaf travel over 350 mm. Methods: Dosimetric characterization, including assessment of leaf transmission, leaf tip transmission, penumbral width, was performed in a plotting tank. Head scatter factor was measured using a mini-phantom and the effect of leaf guide position on output was assessed using a water phantom. The tongue and groove effect was assessed using multiple exposures on radiochromic film. Leaf reproducibility was assessed from portal images of multiple abutting fields. Results: The maximum transmission through the multileaf collimator is 0.44% at 6 MV and 0.52% at 10 MV. This reduced to 0.22% and 0.27%, respectively, when the beam passes through the dynamic leaf guide in addition to the MLC. The maximum transmission through the thick part of the diaphragm is 0.32% and 0.36% at 6 and 10 MV. The combination of leaf and diaphragm transmission ranges from 0.08% to 0.010% at 6 MV and 0.10% to 0.14% depending on whether the shielding is through the thick or thin part of the diaphragm. The off-axis intertip transmission for a zero leaf gap is 2.2% at 6 and 10 MV. The leaf tip penumbra for a 100 × 100 mm field ranges from 5.4 to 4.3 mm at 6 and 10 MV across the full range of leaf motion when measured in the AB direction, which reduces to 4.0–3.4 mm at 6 MV and 4.5–3.8 mm at 10 MV when measured in the GT direction. For a 50 × 50 mm field, the diaphragm penumbra ranges from 4.3 to 3.7 mm at 6 MV and 4.5 to 4.1 mm at 10 MV in the AB direction and 3.7 to 3.2 mm at 6 MV and 4.2 to 3.7 mm when measured in the GT direction. The

  4. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    SciTech Connect

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program

  5. The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators

    SciTech Connect

    Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K.; /SLAC

    2011-08-26

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC.

  6. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Li, Zhenghong; Wang, Zhen; Liang, Chuan; Li, Mingjia; Qi, Jianmin; Chu, Yanyun

    2016-03-01

    The linear-transformer-driver (LTD) is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z -pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z -pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%-90%) can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32 cm /μ s when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%-30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.

  7. Linear Accelerator-Based Intensity-Modulated Total Marrow Irradiation Technique for Treatment of Hematologic Malignancies: A Dosimetric Feasibility Study

    SciTech Connect

    Yeginer, Mete; Roeske, John C.; Radosevich, James A.; Aydogan, Bulent

    2011-03-15

    Purpose: To investigate the dosimetric feasibility of linear accelerator-based intensity-modulated total marrow irradiation (IM-TMI) in patients with hematologic malignancies. Methods and Materials: Linear accelerator-based IM-TMI treatment planning was performed for 9 patients using the Eclipse treatment planning system. The planning target volume (PTV) consisted of all the bones in the body from the head to the mid-femur, except for the forearms and hands. Organs at risk (OAR) to be spared included the lungs, heart, liver, kidneys, brain, eyes, oral cavity, and bowel and were contoured by a physician on the axial computed tomography images. The three-isocenter technique previously developed by our group was used for treatment planning. We developed and used a common dose-volume objective method to reduce the planning time and planner subjectivity in the treatment planning process. Results: A 95% PTV coverage with the 99% of the prescribed dose of 12 Gy was achieved for all nine patients. The average dose reduction in OAR ranged from 19% for the lungs to 68% for the lenses. The common dose-volume objective method decreased the planning time by an average of 35% and reduced the inter- and intra- planner subjectivity. Conclusion: The results from the present study suggest that the linear accelerator-based IM-TMI technique is clinically feasible. We have demonstrated that linear accelerator-based IM-TMI plans with good PTV coverage and improved OAR sparing can be obtained within a clinically reasonable time using the common dose-volume objective method proposed in the present study.

  8. Accelerator drift-tube braze-joint failures in the PIGMI APF cavity

    SciTech Connect

    Hansborough, L.D.; Levinson, L.S.; Reiswig, R.D.; Wilkerson, L.C.

    1981-01-01

    During the assembly of the Alternating Phase Focusing cavity for the PIGMI Prototype proton accelerator, recurring failures of drift-tube braze joints occurred. In the fabrication technique, a torch braze was used to attach the stems to both the drift-tube body and the stem termination; all materials used were stainless steel. The assemblies were copper plated, using bright-acid-leveling copper plating. Some braze joints, although satisfactorily tension-tested before plating, later failed at a relatively low loading. A detailed investigation of one drift tube indicated that residual copper-plating solution in the cooling passages acted to dissolve the braze solution over a period of weeks, leading to an eventual joint failure.

  9. MgB{sub 2} for Application to RF Cavities for Accelerators

    SciTech Connect

    Tajima, T.; Canabal, A.; Zhao, Y.; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.; /Oak Ridge

    2007-10-11

    Magnesium diboride (MgB{sub 2}) has a transition temperature (T{sub c}) of {approx}40 K, i.e., about 4 times as high as that of niobium (Nb).We have been evaluating MgB{sub 2} as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to {approx}12 mT (120 Oe), limited by available power, compared to other high-Tc materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in Rs compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans.

  10. MgB{sub 2} for application to RF cavities for accelerators

    SciTech Connect

    Tajima, T.; Canabal, A.; Yue Zhao; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.

    2007-06-01

    Magnesium diboride (MgB2) has a transition temperature of (Tc) ~40 K, i.e., about 4 times as high as that of niobium (Nb). We have been evaluating MgB2 as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to ~12 mT (120 Oe), limited by available power, compared to other high- materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans.

  11. 820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 μm

    NASA Astrophysics Data System (ADS)

    Mo, Shupei; Li, Zebiao; Huang, Xiang; Xu, Shanhui; Feng, Zhouming; Zhang, Weinan; Li, Can; Yang, Changsheng; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2014-03-01

    We proposed a short-linear-cavity fiber laser with a virtual-folded-ring configuration, which combines the advantages of ring lasers and short-linear-cavity lasers. An all-fiber quarter-wave plate was used inside the cavity to introduce polarization retardation. By retarding the polarization of the travelling waves, the spatial-hole-burning effect was weakened and the efficient cavity length was extended to nearly twice its physical length. As a result, a single-frequency laser output with a linewidth of less than 820 Hz was obtained from the free-running fiber laser. The relaxation oscillation frequency was observed to be around 280 kHz and the signal to noise ratio of the laser output was >72 dB.

  12. Application of linear magnetic loss model of ferrite to induction cavity simulation

    SciTech Connect

    DeFord, J.F.; Kamin, G.

    1990-09-05

    A linear, frequency independent model of the rf properties of unbiased, soft ferrite has been implemented in finite-difference, time-domain, electromagnetic simulation code AMOS for the purposes of studying linac induction cavities. The simple model consists of adding a magnetic conductivity term ({sigma}{sub m}H) to Faraday's Law. The value of {sigma}{sub m} that is appropriate for a given ferrite at a particular frequency is obtained via an rf reflection experiment on a very thin ferrite toroid in a shorted coaxial line. It was found that in the frequency range 100 to 1000 MHz, the required value of {sigma}{sub m} varies only slightly (<10%), and so we approximated it as a frequency independent parameter in AMOS. A description of the experimental setup and the technique used to extract the complex {mu} from the measurements is described. The model has been used to study the impedances of the DARHT induction cavity, and comparisons between these experimental measurements and AMOS calculations is presented. Implementation of a frequency dependent version of this model in AMOS is being pursued, and a discussion of this effort is given.

  13. Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity

    SciTech Connect

    Priyesh, K. V.; Thayyullathil, Ramesh Babu

    2014-01-28

    We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.

  14. The Role of Linear Acceleration in Visual-Vestibular Interactions and Implications in Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Correia, Manning J.; Luke, Brian L.; McGrath, Braden J.; Clark, John B.; Rupert, Angus H.

    1996-01-01

    While considerable attention has been given to visual-vestibular interaction (VVI) during angular motion of the head as might occur during an aircraft spin, much less attention has been given to VVI during linear motion of the head. Such interaction might occur, for example, while viewing a stationary or moving display during vertical take-off and landing operations Research into linear VVI, particularly during prolonged periods of linear acceleration, has been hampered by the unavailability of a programmable translator capable of large excursions We collaborated with Otis Elevator Co. and used their research tower and elevator, whose motion could be digitally programmed, to vertically translate human subjects over a distance of 92.3 meters with a peak linear acceleration of 2 meters/sec(exp 2) During pulsatile or sinusoidal translation, the subjects viewed moving stripes (optokinetic stimulus) or a fixed point source (light emitting diode, led, display), respectively and it was generally found that. The direction of linear acceleration relative to the cardinal head axes and the direction of the slow component of optokinetic nystagmus (OKN) determined the extent of VVI during concomitant stripe motion and linear acceleration. Acceleration along the z head axis (A(sub z)) produced the largest VVI, particularly when the slow component of OKN was in the same direction as eye movements produced by the linear acceleration and Eye movements produced by linear acceleration are suppressed by viewing a fixed target at frequencies below 10 Hz But, above this frequency the suppression produced by VVI is removed. Finally, as demonstrated in non-human primates, vergence of the eyes appears to modulate the vertical eye movement response to linear acceleration in humans.

  15. Artifical intelligence techniques for tuning linear induction accelerators

    SciTech Connect

    Lager, D.; Brand, H.; Chambers, F.; Coffield, F.; Maurer, W.; Turner, W.

    1991-05-01

    We developed an expert system that acts as an intelligent assistant for tuning particle beam generators called MAESTRO, Model and Expert System Resource for Operators. MAESTRO maintains a knowledge base of the accelerator containing not only the interconnections of the beamline components, but also their physical attributes such as measured magnetic tilts, offsets, and field profiles. MAESTRO incorporates particle trajectory and beam envelope models which are coupled to the knowledge base permitting large numbers of real-time orbit and envelope calculations in the control-room environment. To date we have used this capability in three ways: First, to implement a tuning algorithm for minimizing transverse beam motion. Second, to produce a beam waist with arbitrary radius at the entrance to a brightness diagnostic. And finally, to measure beam energy along the accelerator by fitting orbits to focusing and steering sweeps.

  16. A linear cavity multiwavelength fiber laser with adjustable lasing line number for fixed spectral regions

    NASA Astrophysics Data System (ADS)

    Tian, J. J.; Yao, Y.

    2011-03-01

    We report an experimental demonstration of muliwavelength erbium-doped fiber laser with adjustable wavelength number based on a power-symmetric nonlinear optical loop mirror (NOLM) in a linear cavity. The intensity-dependent loss (IDL) induced by the NOLM is used to suppress the mode competition and realize the stable multiwavelength oscillation. The controlling of the wavelength number is achieved by adjusting the strength of IDL, which is dependent on the pump power. As the pump power increases from 40 to 408 mW, 1-7 lasing line(s) at fixed wavelength around 1601 nm are obtained. The output power stability is also investigated. The most power fluctuation of single wavelength is less than 0.9 dB, when the wavelength number is increased from 1-7.

  17. An organizational survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  18. Organizational cultural survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Not Available

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees' opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  19. An organizational survey of the Stanford Linear Accelerator Center

    SciTech Connect

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    At the request of the Department of Energy, an Organizational Survey (OS) was administered at the Stanford Accelerator Center (SLAC). The OS measured employees` opinions on subjects such as organizational culture, communication, commitment, group cohesion, coordination, safety, environmental issues, and job satisfaction. The result of this work was a quantitative measure of the notion of culture at the SLAC site. This report presents these results and discusses their interpretation.

  20. Investigation of using shrinking method in construction of Institute for Research in Fundamental Sciences Electron Linear Accelerator TW-tube (IPM TW-Linac tube)

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.; Abbasi Davani, F.

    2015-06-01

    Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.

  1. Computation of linear acceleration through an internal model in the macaque cerebellum.

    PubMed

    Laurens, Jean; Meng, Hui; Angelaki, Dora E

    2013-11-01

    A combination of theory and behavioral findings support a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Using unnatural motion stimuli, which induce incorrect self-motion perception and eye movements, we explored the neural correlates of an internal model that has been proposed to compensate for Einstein's equivalence principle and generate neural estimates of linear acceleration and gravity. We found that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encoded erroneous linear acceleration, as would be expected from the internal model hypothesis, even when no actual linear acceleration occurred. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized.

  2. Computation of linear acceleration through an internal model in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562

  3. Note: An in situ method for measuring the non-linear response of a Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Bu, Wenhao; Liu, Mengke; Xie, Dizhou; Yan, Bo

    2016-09-01

    The transfer cavity is a very important frequency reference for laser stabilization and is widely used for applications such as precision measurements and laser cooling of ions or molecules. But the non-linear response of the piezoelectric ceramic transducer (PZT) in the Fabry-Perot cavity limits the performance of the laser stabilization. Thus, measuring and controlling such non-linearity is essential. Here we report an in situ, optical method to characterize this non-linearity by measuring the resonant signals of a dual-frequency laser. The differential measurement makes it insensitive to the laser and cavity drifts, while maintaining a very high sensitivity. It can be applied for various applications with PZTs, especially in an optical lab.

  4. MO-F-16A-02: Simulation of a Medical Linear Accelerator for Teaching Purposes

    SciTech Connect

    Carlone, M; Lamey, M; Anderson, R; MacPherson, M

    2014-06-15

    Purpose: Detailed functioning of linear accelerator physics is well known. Less well developed is the basic understanding of how the adjustment of the linear accelerator's electrical components affects the resulting radiation beam. Other than the text by Karzmark, there is very little literature devoted to the practical understanding of linear accelerator functionality targeted at the radiotherapy clinic level. The purpose of this work is to describe a simulation environment for medical linear accelerators with the purpose of teaching linear accelerator physics. Methods: Varian type lineacs were simulated. Klystron saturation and peak output were modelled analytically. The energy gain of an electron beam was modelled using load line expressions. The bending magnet was assumed to be a perfect solenoid whose pass through energy varied linearly with solenoid current. The dose rate calculated at depth in water was assumed to be a simple function of the target's beam current. The flattening filter was modelled as an attenuator with conical shape, and the time-averaged dose rate at a depth in water was determined by calculating kerma. Results: Fifteen analytical models were combined into a single model called SIMAC. Performance was verified systematically by adjusting typical linac control parameters. Increasing klystron pulse voltage increased dose rate to a peak, which then decreased as the beam energy was further increased due to the fixed pass through energy of the bending magnet. Increasing accelerator beam current leads to a higher dose per pulse. However, the energy of the electron beam decreases due to beam loading and so the dose rate eventually maximizes and the decreases as beam current was further increased. Conclusion: SIMAC can realistically simulate the functionality of a linear accelerator. It is expected to have value as a teaching tool for both medical physicists and linear accelerator service personnel.

  5. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    SciTech Connect

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  6. Superstructure for high current applications in superconducting linear accelerators

    DOEpatents

    Sekutowicz, Jacek; Kneisel, Peter

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  7. Impedance and power fluctuations in linear chains of coupled wave chaotic cavities.

    PubMed

    Gradoni, Gabriele; Antonsen, Thomas M; Ott, Edward

    2012-10-01

    The flow of electromagnetic wave energy through a chain of coupled cavities is considered. The cavities are assumed to be of sufficiently irregular shape that their eigenmodes are described by random matrix theory. The cavities are coupled by electrically short single mode transmission lines. Approximate expressions for the power coupled into successive cavities are derived, and the predictions are compared with Monte Carlo simulations. The analytic formulas separate into a product of factors. Consequently, the distribution of power in the last cavity of a very long chain approaches lognormal. For lossless cavities, signatures of Anderson localization, similar to those of the conductances of quantum wires, are observed.

  8. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  9. Note: A pulsed laser ion source for linear induction accelerators

    SciTech Connect

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  10. Development of an automatic frequency measurement system for RF linear accelerator magnetrons

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki; Lee, Seung Hyun; Park, Hyung Dal; Song, Ki Beak

    2015-06-01

    An X-band [9300 MHz] magnetron frequency measurement system was developed for the electron linear accelerators at the Korean Atomic Energy Research Institute (KAERI). The measurement and the display of the RF frequency during the accelerator operation time is a crucial factor for continuous operation for two key reasons. Firstly, if the RF frequency of the magnetron is not known, then the amount of frequency tuning cannot be known, and the appropriate RF power cannot be supplied to the accelerating-structure. Second, values including the accelerating-structure's coolingwater temperature setting, the solenoid-magnet's cooling-water temperature setting, and the tuning of the source's (magnetron's) frequency can be undertaken because the RF frequency is used as the reference. A key component of the accelerator is the accelerating-structure. The volume of the accelerating-structure changes according to the environment's temperature; there, the resonance frequency of the accelerating-structure varies. When the resonance frequency of the accelerator is changed, the output becomes unstable, and a low beam energy is obtained. Accordingly, was developed a magnetron frequency-measuring device in order to stabilize the accelerator's operation. The results of the test demonstrate that the measurement's accurate up to 100 kHz, which enables the provision of an accurate RF power to the accelerating -structure. In this paper, we discuss the RF frequency measurement system for the magnetron to enable a more stable accelerator operation in a linac.

  11. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    SciTech Connect

    Nelson, S; Poole, B; Caporaso, G

    2007-06-15

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam.

  12. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  13. LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators

    NASA Astrophysics Data System (ADS)

    Gonzalez, Juan; Núñez, Rafael C.

    2009-07-01

    We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.

  14. Changes of vertical eye movements of goldfish for different otolith stimulation by linear acceleration

    NASA Astrophysics Data System (ADS)

    Takabayashi, A.; Ohmura-Iwasaki, T.; Mori, S.

    2003-10-01

    Eye movements serves to hold the gaze steady or to shift the gaze to an object of interest. On Earth, signals from otoliths can be interpreted either as linear motion or as tilt with respect to gravity. In microgravity, static tilt will no longer give rise to changes in otolith activity. However, linear acceleration as well as angular acceleration stimulate the otolith organ. Therefore, during adaptation to microgravity, otolith-mediated response such as eye movements alter. In this study, we analyzed the eye movements of goldfish during linear acceleration. The eye movements during rectangular linear acceleration along the different body axis were video-recorded. The vertical eye rotations were analyzed frame by frame. In normal fish, leftward lateral acceleration induced downward eye rotation in the left eye and upward eye rotation in the right eye. Acceleration from caudal to rostral evoked downward eye rotation in both eyes. When the direction of acceleration was shifted 15 degrees left, the responses in the left eye disappeared. These results suggested that otolith organs in each side were stimulated differently.

  15. Changes of vertical eye movements of goldfish for different otolith stimulation by linear acceleration

    NASA Astrophysics Data System (ADS)

    Takabayashi, A.; Ohmura, T.; Mori, S.

    Eye movements serve to hold the gaze steady or to shift the gaze to an object of interest. On Earth, signals from otoliths can be interpreted either as linear motion or as tilt with respect to gravity. In microgravity, static tilt will no longer give rise to change in otolith activity. However, linear acceleration as well as angular acceleration stimulate otolith organ. Therefore, during adaptation to microgravity, otolith-mediated response such as eye movements would alter. In this study, we analyzed the eye movements of goldfish during linear acceleration. The eye movements during rectangular linear acceleration along the different body axis were video-recorded. The vertical eye rotations were analyzed frame by frame. In normal fish, acceleration from caudal to rostral evoked downward eye rotation in both eyes. Leftward lateral acceleration induced downward eye rotation in left eye and upward eye rotation in right eye. When the direction of acceleration was shifted to left about 15 degrees, the responses in left eye was disappeared. These results suggested that otolith organs in each side were stimulated in different way.

  16. The First Observation of Intra Beam Stripping of Negative Hydrogen in a Superconducting Linear Accelerator

    SciTech Connect

    Aleksandrov, Alexander V; Plum, Michael A; Shishlo, Andrei P; Galambos, John D

    2012-01-01

    We report on an experiment in which a negative hydrogen ions beam in the Spallation Neutron Source (SNS) linear accelerator was replaced with a beam of protons with similar size and dynamics. Beam loss in the superconducting part of the SNS accelerator was at least an order of magnitude lower for the proton beam. Also beam loss has a stronger dependence on intensity with H- than with proton beams. These measurements verify a recent theoretical explanation of unexpected beam losses in the SNS superconducting linear accelerator based on an intra beam stripping mechanism for negative hydrogen ions. An identification of the new physics mechanism for beam loss is important for the design of new high current linear ion accelerators and the performance improvement of existing machines

  17. Non-perturbative aspects of particle acceleration in non-linear electrodynamics

    SciTech Connect

    Burton, David A.; Flood, Stephen P.; Wen, Haibao

    2015-04-15

    We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.

  18. Non-perturbative aspects of particle acceleration in non-linear electrodynamics

    NASA Astrophysics Data System (ADS)

    Burton, David A.; Flood, Stephen P.; Wen, Haibao

    2015-04-01

    We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can "surf" a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.

  19. Ultrashort Electron Beam Pulses and Diagnosis by Advanced Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Iijima, H.; Muroya, Y.; Watanabe, T.; Hosokai, T.

    2003-08-01

    240fs 18 MeV low emittance(6 pai mm.mrad) electron beam was generated and its pulse shape was diagnosed by the S-band laser photocathode RF gun and linac. The maximum charge per bunch was 7 nC. This electron pulse was synchronized with 100fs 0.3TW Ti:Sapphire laser with the timing jitter of 330fs(rms). Recently, the Cu cathode(QE10∧-4) was replaced by Mg cathode(QE10∧-3). This system is utilized for radiation chemistry analysis for supercritical water. We have adopted the four diagnostic methods(femtosecond streak camera, coherent transition radiation interferometer, far-infrared polychromator, fluctuation method) and checked their time-resolution precisely. Further, we are doing the experiment on laser plasma cathode by 12TW 50fs laser and He gas jet. Laser plasma wakefield acceleration and electron injection via wavebreaking are planned. We have developed a new theory of self-injection scheme to generate ˜10fs electron pulse. We have already succeeded in observing 40 MeV low emittance electron beam of 14 nC.

  20. High-brightness ion and electron rf linear accelerators

    SciTech Connect

    Jameson, R.A. )

    1989-01-01

    In the past, development work to increase the energy and intensity of particle accelerators tended to be pursued in separate directions, but now almost all modern applications have to achieve an intensity as high as possible at the desired energy, along with a very good beam quality in terms of the beam confinement, aiming, or focusing. The figure of merit used is the beam brightness, defined as the beam power (or current when the energy is fixed) divided by the phase space appropriate to the problem at hand. Phase space for the beam as a whole is six-dimensional, describing the physical size of the beam and change in size with time or distance; the area projected on one plane is called emittance. Achieving high intensity and good quality simultaneously is difficult, primarily because of nonlinear space- charge and focusing forces at nonrelativistic velocities and because of beam-breakup effects for relativistic beams. In recent years, substantial progress has been made in understanding the physics of these effects; some aspects are reviewed here and related to their impact on practical design aspects. 7 refs.

  1. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  2. 21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser

    NASA Astrophysics Data System (ADS)

    Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi

    2001-10-01

    A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.

  3. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Gu, Qiang

    2011-11-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility. It is also attractive in beam dynamics in maintaining a high quality electron beam, which is an important factor in the performance of a free electron laser. In this paper, a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility. Throughout the comprehensive simulation, we conclude that the C-band structure is much more competitive.

  4. Eye movements of goldfish evoked by body tilting and linear acceleration

    NASA Astrophysics Data System (ADS)

    Iwata, K.; Takabayashi, A.; Mori, S.

    An otolith organ on ground behave as a detector of both gravity and linear acceleration, and play an important role in controlling posture and eye movement for tilt of the head or translational motion. On the other hand, a gravitational acceleration ingredient to an otolith organ disappears in microgravity environment. However, linear acceleration can be received by otolith organ and produce a sensation that is different from that on Earth. In this study, we examined function of otolith organ in goldfish revealed from analysis of eye movement induced by linear acceleration and/or the tilt of body. We analyzed both torsional and vertical eye movements from video images frame by frame. For tilting stimulation, torsional eye movements induced by head down was larger than that induced by head up. For acceleration stimulation, torsional eye movements induced during head down was larger than that induced during head up. These results suggest that otolith organ system has directional dependence and that body tilt and linear acceleration may not be with equivalent stimulation to cause eye movement on Earth.

  5. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    SciTech Connect

    Dong, Kegong; Wu, Yuchi; Zhu, Bin; Zhang, Zhimeng; Zhao, Zongqing; Zhou, Weimin; Hong, Wei; Cao, Leifeng; Gu, Yuqiu

    2014-12-15

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoid the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.

  6. International Linear Collider Accelerator Physics R&D

    SciTech Connect

    George D. Gollin; Michael Davidsaver; Michael J. Haney; Michael Kasten; Jason Chang; Perry Chodash; Will Dluger; Alex Lang; Yehan Liu

    2008-09-03

    ILC work at Illinois has concentrated primarily on technical issues relating to the design of the accelerator. Because many of the problems to be resolved require a working knowledge of classical mechanics and electrodynamics, most of our research projects lend themselves well to the participation of undergraduate research assistants. The undergraduates in the group are scientists, not technicians, and find solutions to problems that, for example, have stumped PhD-level staff elsewhere. The ILC Reference Design Report calls for 6.7 km circumference damping rings (which prepare the beams for focusing) using “conventional” stripline kickers driven by fast HV pulsers. Our primary goal was to determine the suitability of the 16 MeV electron beam in the AØ region at Fermilab for precision kicker studies.We found that the low beam energy and lack of redundancy in the beam position monitor system complicated the analysis of our data. In spite of these issues we concluded that the precision we could obtain was adequate to measure the performance and stability of a production module of an ILC kicker, namely 0.5%. We concluded that the kicker was stable to an accuracy of ~2.0% and that we could measure this precision to an accuracy of ~0.5%. As a result, a low energy beam like that at AØ could be used as a rapid-turnaround facility for testing ILC production kicker modules. The ILC timing precision for arrival of bunches at the collision point is required to be 0.1 picosecond or better. We studied the bunch-to-bunch timing accuracy of a “phase detector” installed in AØ in order to determine its suitability as an ILC bunch timing device. A phase detector is an RF structure excited by the passage of a bunch. Its signal is fed through a 1240 MHz high-Q resonant circuit and then down-mixed with the AØ 1300 MHz accelerator RF. We used a kind of autocorrelation technique to compare the phase detector signal with a reference signal obtained from the phase detector

  7. Short communication: a system for remote monitoring of a hospital linear accelerator.

    PubMed

    Jennings, C S

    1996-05-01

    Linear accelerators are complex machines with many parameters affecting the quality of the treatment beam delivered. A high level of technical support is required but this can be difficult to achieve if the linear accelerator is at a centre distant from a medical physics department. This paper describes a solution to this problem whereby a newly installed linear accelerator at the Royal Shrewsbury Hospital is remotely monitored from the Royal Hospital, Wolverhampton. The system enables run-up procedures to be completed by guiding radiographers at Shrewsbury through a series of steps. It consists of electronic hardware connected to the linear accelerator, under the control of a computer. The machine parameters are read and tested against preset tolerances. The monitoring system has been installed and is in routine use. The benefits have been shown to be: a saving in staff time and travel costs, the satisfactory completion of run-up procedures, a higher level of efficiency in the medical physics service provided and effective quality control. Finally, some future developments are presented. These include the development of a real time remote monitoring system that constantly monitors the linear accelerator, allowing the Medical Physics Department access to the machine parameters at any time.

  8. Towards Resolving the Crab Sigma-Problem: A Linear Accelerator?

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Using the exact solution of the axisymmetric pulsar magnetosphere derived in a previous publication and the conservation laws of the associated MHD flow, we show that the Lorentz factor of the outflowing plasma increases linearly with distance from the light cylinder. Therefore, the ratio of the Poynting to particle energy flux, generically referred to as sigma, decreases inversely proportional to distance, from a large value (typically approx. greater than 10(exp 4)) near the light cylinder to sigma approx. = 1 at a transition distance R(sub trans). Beyond this distance the inertial effects of the outflowing plasma become important and the magnetic field geometry must deviate from the almost monopolar form it attains between R(sub lc), and R(sub trans). We anticipate that this is achieved by collimation of the poloidal field lines toward the rotation axis, ensuring that the magnetic field pressure in the equatorial region will fall-off faster than 1/R(sup 2) (R being the cylindrical radius). This leads both to a value sigma = a(sub s) much less than 1 at the nebular reverse shock at distance R(sub s) (R(sub s) much greater than R(sub trans)) and to a component of the flow perpendicular to the equatorial component, as required by observation. The presence of the strong shock at R = R(sub s) allows for the efficient conversion of kinetic energy into radiation. We speculate that the Crab pulsar is unique in requiring sigma(sub s) approx. = 3 x 10(exp -3) because of its small translational velocity, which allowed for the shock distance R(sub s) to grow to values much greater than R(sub trans).

  9. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    SciTech Connect

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce new formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].

  10. Periodic two-dimensional cavity flow: Effect of linear horizontal thermal boundary condition

    SciTech Connect

    Jones, D.N. ); Briggs, D.G. )

    1989-02-01

    A two-dimensional air-filled cavity with isothermal vertical walls adiabatic top and bottom surfaces has been extensively studied both numerically and experimentally. When the aspect ratio is of order one and the Rayleigh number is less than about 10{sup 9} this geometry produces a highly stable and reproducible laminar flow. The result is quite different when the upper and lower surfaces are subjected to a destabilizing boundary condition, i.e., a linear temperature variation between the hot and cold vertical walls. At a critical Rayleigh number between 10{sup 6} and 10{sup 7} the flow becomes periodic and thus appears to fall into the category of instability of the type known as Hopf bifurcation. Briggs and Jones (1985) report velocity variations measured ner the vertical surfaces that vary by nearly {plus minus} 20% about the mean. Other unexplained behavior reported by Briggs and Jones (1985) consisted of jumps exhibited hysteresis effect, which resulted in some overlap between regimes. This paper presents the results of additional measurements, which indicate that the periodic flow is characterized by the convection of hot and cold pairs of thermals around the enclosure.

  11. Analysis of acoustic networks including cavities by means of a linear finite volume method

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Broatch, A.; Gil, A.; Moreno, D.

    2012-09-01

    A procedure allowing for the analysis of complex acoustic networks, including three-dimensional cavities described in terms of zero-dimensional equivalent elements, is presented and validated. The procedure is based on the linearization of the finite volume method often used in gas-dynamics, which is translated into an acoustic network comprising multi-ports accounting for mass exchanges between the finite volumes, and equivalent 2-ports describing momentum exchange across the volume surfaces. The application of the concept to a one-dimensional case shows that it actually converges to the exact analytical solution when a sufficiently large number of volumes are considered. This has allowed the formulation of an objective criterion for the choice of a mesh providing results with a prefixed error up to a certain Helmholtz number, which has been generalized to three-dimensional cases. The procedure is then applied to simple but relevant three-dimensional geometries in the absence of a mean flow, showing good agreement with experimental and other computational results.

  12. Motion sickness and otolith sensitivity - A pilot study of habituation to linear acceleration

    NASA Technical Reports Server (NTRS)

    Potvin, A. R.; Sadoff, M.; Billingham, J.

    1977-01-01

    Astronauts, particularly in Skylab flights, experienced varying degrees of motion sickness lasting 3-5 days. One possible mechanism for this motion sickness adaptation is believed to be a reduction in otolith sensitivity with an attendant reduction in sensory conflict. In an attempt to determine if this hypothesis is valid, a ground-based pilot study was conducted on a vertical linear accelerator. The extent of habituation to accelerations which initially produced motion sickness was evaluated, along with the possible value of habituation training to minimize the space motion sickness problem. Results showed that habituation occurred for 6 of the 8 subjects tested. However, in tests designed to measure dynamic and static otolith function, no significant differences between pre- and post-habituation tests were observed. Cross habituation effects to a standard Coriolis acceleration test were not significant. It is unlikely that ground-based pre-habituation to linear accelerations of the type examined would alter susceptibility to space motion sickness.

  13. Factors affecting the output pulse flatness of the linear transformer driver cavity systems with 5th harmonics

    NASA Astrophysics Data System (ADS)

    Alexeenko, V. M.; Mazarakis, M. G.; Kim, A. A.; Kondratiev, S. S.; Sinebryukhov, V. A.; Volkov, S. N.; Cuneo, M. E.; Kiefer, M. L.; Leckby, J. J.; Oliver, B. V.; Maloney, P. D.

    2016-09-01

    We describe the study we have undertaken to evaluate the effect of component tolerances in obtaining a voltage output flat top for a linear transformer driver (LTD) cavity containing 3rd and 5th harmonic bricks [A. A. Kim et al., in Proc. IEEE Pulsed Power and Plasma Science PPPS2013 (San Francisco, California, USA, 2013), pp. 1354-1356.] and for 30 cavity voltage adder. Our goal was to define the necessary component value precision in order to obtain a voltage output flat top with no more than ±0.5 % amplitude variation.

  14. Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi

    NASA Astrophysics Data System (ADS)

    Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar

    The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.

  15. [Statocyst regulation of the heart and statokinetic reflexes in the crab, Hemigrapsus sanguineus, during linear acceleration].

    PubMed

    Kuntsova, M Ia; Sveshnikov, V G; Timofeeva, E V

    1978-01-01

    In experiments on the shore crab H. sanguineus studies have been made of the effect of variable longitudinal acceleration during swinging (for 15--30 min) upon cardiac activity and gravitational reflexes. High sensitivity of gravitational receptors of the canal statocyst to the effect of acceleration was demonstrated. Removal of the statocysts increases the frequency and amplitude of cardiac contractions as revealed by ECG recording. Changes in stato-kinetic coordinations cause both the disorder of overturning reactions and the disorder of reciprocal inhibition in antagonistic muscles of the dactylopodite. Statocyst regulation of skeletal muscles and heart is presumably realised via contralateral inhibitory canal which is sensitive to linear accelerations.

  16. Beam position and energy monitoring in compact linear accelerators for radiotherapy.

    PubMed

    Ruf, Marcel; Müller, Sven; Setzer, Stefan; Schmidt, Lorenz-Peter

    2014-02-01

    The experimental verification of a novel sensor topology capable of measuring both the position and energy of an electron beam inside a compact electron linear accelerator for radiotherapy is presented. The method applies microwave sensing techniques and allows for the noninterceptive monitoring of the respective beam parameters within compact accelerators for medical or industrial purposes. A state space feedback approach is described with the help of which beam displacements, once detected, can be corrected within a few system macropulses. The proof-of-principle experiments have been conducted with a prototype accelerator and customized hardware. Additionally, closed-loop operation with high accuracy is demonstrated.

  17. Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula

    SciTech Connect

    Flickinger, J.C.; Schell, M.C.; Larson, D.A. )

    1990-07-01

    Radiosurgery techniques permit high doses of single fraction irradiation to be administered to small volumes of tumor with relative sparing of surrounding brain tissue. The tolerance of surrounding normal brain tissue to dose distributions from linear accelerator radiosurgery with different collimator sizes is an important factor that must be estimated by anyone using these treatment techniques. The exponential and linear quadratic versions of the integrated logistic formula were used to estimate the probability of brain necrosis at different doses for radiosurgical dose distributions administered by a 6 MV linear accelerator with a 5 arc technique for collimator sizes from 12.5 to 30 mm in diameter. Dose-volume isoeffect curves for a 3% risk of brain necrosis from linear accelerator radiosurgery were then calculated. These curves approximate those calculated for gamma knife radiosurgery and a published 1% dose-volume isoeffect line predicted for proton beam irradiation. Similar dose-volume isoeffect curves were calculated for single fraction radiosurgery boosts administered after 30 Gy of whole brain irradiation in 12 fractions. The integrated logistic formula appears to be a useful tool for estimating tolerance and providing guidelines for prescribing radiation doses for linear accelerator radiosurgery.

  18. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    SciTech Connect

    Ramos, Daniel Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  19. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    SciTech Connect

    Gene Golub; Kwok Ko

    2009-03-30

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  20. Demodulation of a fiber Bragg grating sensor system based on a linear cavity multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Pan, Lifeng; Fang, Yating; Tian, Jiajun; Yang, Yanfu; Yong, Yao

    2011-12-01

    A fiber Bragg grating (FBG) sensor demodulation scheme based on a multi-wavelength erbium-doped fiber laser (EDFL) with linear cavity configuration is presented and demonstrated. The scheme is one linear fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A power-symmetric nonlinear optical loop mirror (NOLM) is utilized in the laser in order to suppress the mode competition and hole-burning effect to lase two wavelengths output that correspond with two FBG sensors. The sensing quantity, which is demodulated by spectrometer, is represented by the output wavelength shift of the EDFL with temperature and strain applying on FBG sensors. In the experiment, strain measurement with a minimize resolution of 0.746μɛ, i.e. 0.9pm and adjustable linear sensitivity are achieved. Due to utilizing the linear cavity multi-wavelength EDFL with a NOLM as the light source, the scheme also exhibits important advantages including obviously high signal and noise ratio (SNR) of 40.467dB and low power consuming comparing with common FBG sensors with broadband light as the light source.

  1. Non-linear eye movements during visual-vestibular interaction under body oscillation with step-mode lateral linear acceleration.

    PubMed

    Mori, Shigeo; Katayama, Naomi

    2005-02-01

    We investigated visual-vestibular interactions in normal humans, where a constant speed of optokinetic stimulation was combined with whole body oscillation of lateral linear acceleration (10 m stroke). The acceleration mode was not sinusoidal, but rectangular (step). The pure optokinetic reflex (reference OKR) and the OKR under combined stimulation (combined OKR) were induced by a random-dot pattern projected onto a hemispherical dome-screen affixed to a chair on a linear accelerator. The translational vestibulo-ocular reflex (tVOR) was determined separately in the dark during acceleration-step oscillation. Since the tVOR was masked by the OKR under combined stimulation, the interaction was assessed as changes in combined-OKR velocity at two segments of opposing acceleration; in other words, tVOR directions identical to (agonistic) and opposite to (antagonistic) the OKR direction. When a moderate optokinetic stimulus-speed of 40 deg/s was combined with a moderate acceleration of 0.3 G (3.0 m/s2) as in Experiment 1 (N=10), the combined-OKR velocity always increased during the agonistic condition, and the motion of the visual pattern was perceived as slow and clear in this segment. On the other hand, during the antagonistic condition, the combined-OKR velocity either remained unchanged or increased moderately, and the motion of the visual pattern was sensed as fast and unclear. Notably, in most subjects, the velocity difference in combined-OKR between the agonistic and antagonistic conditions was around the value of the tVOR velocity. In five of the ten subjects who completed an additional test session with the acceleration level increased from 0.3 to 0.5 G (4.9 m/s2), similar findings were maintained individually, suggesting independent behavior of tVOR. Therefore, we hypothesized that the interaction could be direction-selective; in other words, both tVOR and OKR are additive during the agonistic condition, but tVOR is suppressed during the antagonistic condition

  2. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    SciTech Connect

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  3. Concentrating partially entangled W-class states on nonlocal atoms using low- Q optical cavity and linear optical elements

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Chen, Xi; Duan, YuWen; Fan, Ling; Zhang, Ru; Wang, TieJun; Wang, Chuan

    2016-10-01

    Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low- Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low- Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.

  4. CAVITY EXCITATION CIRCUIT

    DOEpatents

    Franck, J.V.

    1959-10-20

    An electronic oscillator is described for energizing a resonant cavity and to a system for stabilizing the operatin g frequency of the oscillator at the particular frequency necessary to establish a particular preferred field configuration or mode in the cavity, in this instance a linear accelerator. A freely rnnning oscillator has an output coupled to a resonant cavity wherein a field may be built up at any one of several adjacent frequencies. A pickup loop in the cavity is suitably shielded and positioned in the cavity so that only energy at the panticular desired frequency is fed back to stabilize the oscillator. A phase and gain control is in cluded in the feedback line.

  5. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  6. The Advanced Photon Source (APS) linear accelerator as a source of slow positrons

    SciTech Connect

    White, M.M.; Lessner, E.S.

    1996-09-01

    The Advanced Photon Source linear accelerator (linac) system consists of a 200-MeV, 2856-MHz S-band electron linac, a 2-radiation-length-thick tungsten target for positron production, and a 450-MeV positron linac. The linac is briefly described, and some possibilities for its use as a slow positron source are discussed.

  7. (Stanford Linear Accelerator Center) annual environmental monitoring report, January--December 1989

    SciTech Connect

    Not Available

    1990-05-01

    This progress report discusses environmental monitoring activities at the Stanford Linear Accelerator Center for 1989. Topics include climate, site geology, site water usage, land use, demography, unusual events or releases, radioactive and nonradioactive releases, compliance summary, environmental nonradiological program information, environmental radiological program information, groundwater protection monitoring ad quality assurance. 5 figs., 7 tabs. (KJD)

  8. Breakdown study based on direct in situ observation of inner surfaces of an rf accelerating cavity during a high-gradient test

    NASA Astrophysics Data System (ADS)

    Abe, Tetsuo; Kageyama, Tatsuya; Sakai, Hiroshi; Takeuchi, Yasunao; Yoshino, Kazuo

    2016-10-01

    We have developed normal-conducting accelerating single-cell cavities with a complete higher-order-mode (HOM) heavily damped structure, into which we feed a 508.9-MHz continuous wave. During a high-gradient test of the second production version of the cavity, we performed a breakdown study based on direct in situ observation of the inner surfaces of the cavity. This paper presents our experimental findings obtained from this observation.

  9. ARIEL e-linac. Electron linear accelerator for photo-fission

    NASA Astrophysics Data System (ADS)

    Koscielniak, Shane

    2014-01-01

    The design and implementation of a 1/2 MW beam power electron linear accelerator (e-linac) for the production of rare isotope beams (RIB) via photo-fission in the context of the Advanced Rare IsotopE Laboratory, ARIEL (Koscielniak et al. 2008; Merminga et al. 2011; Dilling et al., Hyperfine Interact, 2013), is described. The 100 % duty factor e-linac is based on super-conducting radiofrequency (SRF) technology at 1.3 GHz and has a nominal energy of 50 MeV. This paper provides an overview of the accelerator major components including the gun, cryomodules and cryoplant, high power RF sources, and machine layout including beam lines. Design features to facilitate operation of the linac as a Recirculating Linear Accelerator (RLA) for various applications, including Free Electron Lasers, are also noted.

  10. A Concept of Plasma Wake Field Acceleration Linear Collider (PWFA-LC)

    SciTech Connect

    Seryi, Andrei; Hogan, Mark; Pei, Shilun; Raubenheimer, Tor; Tenenbaum, Peter; Katsouleas, Tom; Huang, Chengkun; Joshi, Chan; Mori, Warren; Muggli, Patric; /Southern California U.

    2009-10-30

    Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for a shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective that the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed and is described in this paper. The drive beam generation and distribution, requirements on the plasma cells, and optimization of the interaction region parameters are described in detail. The R&D steps needed for further development of the concept are also outlined.

  11. The matching of wedge transmission factors across six multi-energy linear accelerators.

    PubMed

    Weston, S J; Thompson, R C A; Morgan, A M

    2007-01-01

    Elekta Precise linear accelerators create a wedged isodose distribution using a single, fixed, motorized wedge with a nominal wedge angle of 60 degrees. Wedge angles of less than 60 degrees can be produced by varying the proportion of open and wedge monitor units for a given exposure. The fixed wedge can be replaced with a mobile wedge, the position of which can be moved in order to adjust the wedge transmission factor (WTF). Using the original fixed wedges installed in our fleet of six Elekta accelerators, we found a range of 4% in measured wedge transmission factor for 6 MV beams. Results are presented which demonstrate that by using the mobile wedge it is possible to match the wedge transmission factors to within 1% for the six linear accelerators over three energies. PMID:17267473

  12. All-fiber, narrow linewidth and linearly polarized fiber laser in a single-mode-multimode-single-mode cavity.

    PubMed

    Jiang, Man; Xu, Haiyang; Zhou, Pu; Zhao, Guomin; Gu, Xijia

    2016-08-01

    We report the design of an all-fiber, linearly polarized Yb-doped fiber laser at 1064 nm with a narrow linewidth and high output power required by the master oscillator of the amplifier for high-power spectral beam combining. The laser has achieved linearly polarized output with a polarization extinction ratio of 23 dB, a narrow linewidth of ≤52  pm, and an output power of 32.7 W. Such performance was obtained by the cavity design that incorporated a wavelength-shifted PM fiber Bragg grating pair and single-mode-multimode-single-mode structure. PMID:27505397

  13. Non-linear interactions of plasma waves in the context of solar particle acceleration

    NASA Astrophysics Data System (ADS)

    Gallegos-Cruz, A.; Perez-Peraza, J.

    2001-08-01

    Stochastic particle acceleration in plasmas by means of MHD turbulence in-volves a wide range of alternatives according to, the specific wave mode, the frequency regime of the turbulence, the kind of particles to be accelerated, the assumed plasma model and so on. At present most of the alternatives have been studied with relatively deepness, though some features are not yet com-pletely understood. One of them is the delimitation of the real importance of non-lineal effects of turbulence waves in the process of particle acceleration. In this work we analyse such effects taking into account the temporal evolution of the turbulence. For illustration we exemplify our analysis with the fast MHD mode. Our results show that in some specific stages of the turbulence evolu-tion, non-linear interactions have important effects in the process of particle acceleration.

  14. Energy shaping non-linear acceleration control for a pendulum-type mobility and experimental verification

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kazuto; Takahashi, Masaki

    2015-02-01

    A dynamics-based non-linear controller with energy shaping to accelerate a pendulum-type mobility is proposed. The concept of this study is to control translational acceleration of the vehicle in a dynamically reasonable manner. The body angle is controlled to maintain a reference state where the vehicle is statically unstable but dynamically stable, which leads to a constant translational acceleration due to instability of the system. The accelerating motion is like a sprinter moving from crouch start and it fully exploits dynamics of the vehicle. To achieve it, the total energy of the system is shaped to have the minimum at a given reference state and the system is controlled to converge to it. The controller can achieve various properties through the energy shaping procedure. Especially, an energy function that will lead to safe operation of the vehicle is proposed. The effectiveness of the controller is verified in simulations and experiments.

  15. Roles of Different Forms of Scale Factor in Non-linear Electrodynamics for Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Maity, Sayani; Debnath, Ujjal

    2013-07-01

    In this work, we have assumed the modified Lagrangian of non-linear electrodynamics for accelerated universe. The energy density and pressure for non-linear electromagnetic theory have been considered in terms of both electric and magnetic fields. The Einstein's filed equations have been considered in FRW universe for Hořava-Lifshitz gravity. Since we are considering the non-linear form of Lagrangian for accelerating universe, so four forms of scale factors like logamediate, intermediate, emergent and power law forms are chosen in our investigation. For every expansion, the natures of electric field and magnetic field have been shown through graphical representation. The electric and magnetic fields increase for logamediate, intermediate and emergent expansion and decrease in power law expansion.

  16. Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1993-01-01

    Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses

  17. Development and initial operating characteristics of the 20 megawatt linear plasma accelerator facility

    NASA Technical Reports Server (NTRS)

    Carter, A. F.; Weaver, W. R.; Mcfarland, D. R.; Wood, G. P.

    1971-01-01

    A 20-megawatt linear plasma accelerator facility, a steady flow, Faraday-type plasma accelerator facility for high velocity aerodynamic testing, was constructed, developed, and brought to an operational status. The accelerator has a 63.5-mm-square and 0.5-meter-long channel and utilizes nitrogen-seeded with 2 % mole fraction of cesium vapor. Modification of the original accelerator design characteristics and the improvements necessary to make the arc heater a suitable plasma source are described. The measured accelerator electrode current distribution and the electrode-wall potential distributions are given. The computed and the measured values are in good agreement. Measured pitot pressure indicates that an accelerator exit velocity of 9.2 km/sec, is obtained with 30 of the 36 electrode pairs powered and corresponds to a velocity increase to about 2 1/4 times the computed entrance velocity. The computed stagnation enthalpy at the accelerator exit is 92 MJ/kg, and the mass density corresponds to an altitude of about 58 km. The 92 MJ/kg stagnation enthalpy corresponds to a kinetic energy content at low temperature equivalent to a velocity of 13.6 km/sec.

  18. Physical and mechanical metallurgy of high purity Nb for accelerator cavities

    NASA Astrophysics Data System (ADS)

    Bieler, T. R.; Wright, N. T.; Pourboghrat, F.; Compton, C.; Hartwig, K. T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G. E.; Liu, W.

    2010-03-01

    In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.

  19. Conceptual design for a linear-transformer driver (LTD)-based refurbishment and upgrade of the Saturn accelerator pulse-power system.

    SciTech Connect

    Mazarakis, Michael Gerrassimos; Struve, Kenneth William

    2006-09-01

    The purpose of this work was to develop a conceptual design for the Saturn accelerator using the modular Liner-Transformer Driver (LTD) technology to identify risks and to focus development and research for this new technology. We present a reference design for a Saturn class driver based on a number of linear inductive voltage adders connected in parallel. This design is very similar to a design reported five years ago [1]. However, with the design reported here we use 1-MA, 100-kV LTD cavities as building blocks. These cavities have already been built and are currently in operation at the HCEI in Tomsk, Russia [2]. Therefore, this new design integrates already-proven individual components into a full system design.

  20. Short latency vestibular evoked potentials (VsEPs) to linear acceleration impulses in rats.

    PubMed

    Plotnik, M; Elidan, J; Mager, M; Sohmer, H

    1997-11-01

    In this study, short latency (t < 12.7 ms) vestibular evoked potentials (VsEPs) in response to linear acceleration impulses were recorded in 37 rats. A new technique (based on a solenoid) was used for generating linear force impulses that were delivered to the animal's head. The impulse had a maximal peak acceleration of 12 g. During the impulse, the displacement was 50 microns (at 4 g) and the rise time was 1.0 ms. A stimulation rate of 2/s was usually used. The VsEPs (averaged responses to 128 stimulations, digital filter: 300-1500 Hz) were recorded with electrodes on pinna and vertex, and were composed of 4-6 clear waves with mean amplitudes (for a 4 g stimulus) of 1-5 microV. The VsEPs were resistant to white noise masking, and were significantly suppressed (P < 0.05) following bilateral application of a saturated KCl solution to the inner ear, showing that contributions of the auditory and somatosensory systems are negligible. The latency of the response decreased as a power law function of stimulus magnitude, and the amplitude of the first wave increased as a sigmoid function of stimulus magnitude. VsEP responses were still present at the lowest intensities attainable (0.06-0.4 g) and reached saturation at 9 g. The amplitude of the later components was reduced when stimulus rate was elevated to 20/s. These results suggest that VsEPs in response to linear accelerations are similar in their nature to VsEPs in response to angular acceleration impulses that were previously recorded. These VsEPs to linear accelerations are most likely initiated in the otolith organs. PMID:9402894

  1. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  2. Linear vs. nonlinear acceleration in plasma turbulence. II. Hall–finite-Larmor-radius magnetohydrodynamics

    SciTech Connect

    Ghosh, Sanjoy; Parashar, Tulasi N.

    2015-04-15

    The local k-space ratio of linear and nonlinear accelerations associated with a variety of initial conditions undergoing steady relaxation is investigated for the Hall–finite-Larmor-radius magnetohydrodynamics (MHD) system in the presence of a mean magnetic field. Building on a related study (Paper I) where it was shown that discrepancies exist between describing the global and local characterizations of the pure MHD system with mean magnetic field, we find regions of the Fourier space that are consistently dominated by linear acceleration and other regions that are consistently dominated by nonlinear acceleration, independent of the overall system's description as linear, weakly nonlinear, or turbulent. In general, dynamics within a certain angular range of the mean magnetic field direction are predominantly linear, while dynamics adjacent the Hall scales along the field-parallel direction and dynamics adjacent the finite Larmor radius scales in the field-perpendicular direction can become strongly nonlinear. The nonlinear influences are particularly significant as the plasma beta increases from unity to higher values.

  3. The Gent University 15 MeV high-current linear electron accelerator facility

    NASA Astrophysics Data System (ADS)

    Mondelaers, W.; Van Laere, K.; Goedefroot, A.; Van den Bossche, K.

    1996-01-01

    The Gent University 15 MeV 20kW linear electron accelerator facility was initially designed for fundamental nuclear physics research. During the last years a large effort has been devoted to the expansion of the range of machine applications in view of a new extensive experimental programme in the fields of atomic and solid-state physics, biomaterials research, polymer chemistry, space research, food technology, high-dose dosimetry and radiation therapy. The accelerator facility in its present configuration, the peripheral equipment and the experimental programme are described with emphasis on the original features.

  4. Construction, commissioning and operational experience of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Arnold, N.; Berg, W.

    1996-10-01

    The Advanced Photon Source linear accelerator system consists of a 200 MeV, 2856 MHz S-Band electron linac and a 2-radiation-thick tungsten target followed by a 450 MeV positron linac. The linac system has operated 24 hours per day for the past year to support accelerator commissioning and beam studies and to provide beam for the user experimental program. It achieves the design goal for positron current of 8 mA and produces electron energies up to 650 MeV without the target in place. The linac is described and its operation and performance are discussed.

  5. Electron acceleration by linearly polarized twisted laser pulse with narrow divergence

    SciTech Connect

    Vaziri, Mohammad Sohaily, Sozha; Golshani, Mojtaba; Bahrampour, Alireza

    2015-03-15

    We numerically investigate the vacuum electron acceleration by a high-intensity linearly polarized twisted laser pulse. It is shown that the inherent spiral structure of a Laguerre-Gaussian laser pulse leads to improvement in trapping and acceleration of an electron to energies of the order of GeV in the off-axis case. Also, it is demonstrated that by employing a proper choice of initial injection parameters, the high-energetic electrons with very small scattering angles can be produced.

  6. Hydroforming of elliptical cavities

    DOE PAGESBeta

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, Peter

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30–35 MV/m were measured after BCP and Eacc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have

  7. Hydroforming of elliptical cavities

    SciTech Connect

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, Peter

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30–35 MV/m were measured after BCP and Eacc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double

  8. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Dzyuba, A.; Romanenko, A.; Cooley, L. D.

    2010-12-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was

  9. Experimental Demonstration of Collisionless Particle Acceleration Mechanisms and Entrainment of Ambient Plasma Ions by a Rapidly Expanding Diamagnetic Cavity.

    NASA Astrophysics Data System (ADS)

    Bonde, J.; Vincena, S. T.; Gekelman, W. N.

    2015-12-01

    The collisionless coupling of an expanding diamagnetic cavity to a magnetized, ambient plasma is studied in a laboratory environment using a laser-produced plasma (LPP). The seed LPP rapidly expands with velocities up to the background Alfvén speed, vexp ≤ vA. The boundary layer of the expansion is characterized with in situ diagnostics as a cylindrical version of the Ferraro-Rosenbluth current sheath. Maintenance of quasi-neutrality in this sheath forms an electric field opposing the cross-field expansion which simultaneously drives the electron current that forms the diamagnetic cavity, decelerates the LPP ions to stagnation, and accelerates ambient ions inward. The field topology across the background magnetic field is identical to that described by Bernhardt, et al. [1] for the AMPTE magnetotail barium releases. The boundary along the magnetic field, however, is shown to contain an electric field with E·B ≠ 0, which is absent in simple fluid models of diamagnetic cavities. The electric fields at this boundary help explain previous observations in the experiment of the ejection of suprathermal electrons and return currents that generated whistler- and Alfvén-wave radiation in the ambient plasma. Magnetic loops and an emissive probe measure the magnetic field and electrostatic potential along 3 dimensions while a laser-induced fluorescence scheme measures the cross-field flow of the ambient argon ions as they penetrate the diamagnetic cavity. Particle orbit solvers employing the measured fields corroborate the flow diagnostic and predict strong outflows of ambient ions with higher charge to mass ratios after diamagnetic cavity collapse. This experiment was conducted in the Large Plasma Device at the Basic Plasma Science Facility and funded by grants from the US Department of Energy and the National Science Foundation. [1] P.A. Bernhardt, R.A. Roussel-Dupre, M.B. Pongratz, J. Geophys. Res. 92, 57777 (1987).

  10. Proceedings of the conference on computer codes and the linear accelerator community

    SciTech Connect

    Cooper, R.K.

    1990-07-01

    The conference whose proceedings you are reading was envisioned as the second in a series, the first having been held in San Diego in January 1988. The intended participants were those people who are actively involved in writing and applying computer codes for the solution of problems related to the design and construction of linear accelerators. The first conference reviewed many of the codes both extant and under development. This second conference provided an opportunity to update the status of those codes, and to provide a forum in which emerging new 3D codes could be described and discussed. The afternoon poster session on the second day of the conference provided an opportunity for extended discussion. All in all, this conference was felt to be quite a useful interchange of ideas and developments in the field of 3D calculations, parallel computation, higher-order optics calculations, and code documentation and maintenance for the linear accelerator community. A third conference is planned.

  11. Photo-production of (99)Mo/(99m)Tc with electron linear accelerator beam.

    PubMed

    Avagyan, R; Avetisyan, A; Kerobyan, I; Dallakyan, R

    2014-09-01

    We report on the development of a relatively new method for the production of (99)Mo/(99m)Tc. The method involves the irradiation of natural molybdenum using high-intensity bremsstrahlung photons from the electron beam of the LUE50 linear electron accelerator located at the Yerevan Physics Institute (YerPhi). The production method has been developed and shown to be successful. The linear electron accelerator at YerPhi was upgraded to allow for significant increases of the beam intensity and spatial density. The LUE50 was also instrumented by a remote control system for ease of operation. We have developed and tested the (99m)Tc extraction from the irradiation of natural MoO3. This paper reports on the optimal conditions of our method of (99)Mo production. We show the success of this method with the production and separation of the first usable amounts of (99m)Tc.

  12. Influence of gravity on the eye movement response elicited by periodic lateral linear acceleration.

    PubMed

    Hashiba, M; Wetzig, J; v Baumgarten, R; Watanabe, S; Baba, S

    1993-12-01

    Periodic linear acceleration elicits eye movements in human beings. This is generally considered to be the result of the otolithic-ocular reflex (OOR). However, otolith organs respond not only to the resultant inertial force caused by head motion, but also to the gravitational force. We investigated the influence of the resultant gravito-inertial vector on the OOR using a linear acceleration sled. Subjects were 10 healthy volunteers. The sled moving back and forth parallel to the lateral head axis stimulated the subjects. We tested each subject in 7 different positions in the pitch plane. Horizontal eye movements with nystagmic patterns were elicited by these stimuli. The results indicate that the responses were larger in the forward tilted positions than in the backward tilted positions. It can be concluded that the horizontal OOR is influenced by the gravity vector. The cause of this phenomenon is still unclear. However, it could be closely related to the nystagmus observed during off vertical axis rotation.

  13. A linear accelerator in the space: The beam experiment aboard rocket

    SciTech Connect

    O'Shea, P.G.; Butler, T.A.; Lynch, M.T.; McKenna, K.F.; Pongratz, M.B.

    1990-01-01

    On July 13, 1989 the BEAM experiment Aboard Rocket (BEAR) linear accelerator was successfully launched and operated in space. The flight demonstrated that a neutral hydrogen beam could be successfully propagated in an exoatmospheric environment. The accelerator, which was the result of an extensive collaboration between Los Alamos National Laboratory and industrial partners, was designed to produce a 10 mA (equivalent), 1 MeV neutral hydrogen beam in 50 {mu}s pulses at 5 Hz. The major components were a 30 keV H{sup {minus}} injector a 1 MeV radio frequency quadrupole, two 425 Mhz RF amplifiers, a gas cell neutralizer, beam optics, vacuum system and controls. The design was strongly constrained by the need for a lightweight rugged system that would survive the rigors of launch and operate autonomously. Following the flight the accelerator was recovered and operated again on the laboratory. 6 figs., 2 tabs.

  14. Control of linear accelerator noise in the Los Alamos free-electron laser (FEL)

    SciTech Connect

    Lynch, M.T.

    1986-01-01

    The Los Alamos FEL requires tight control of the amplitudes and phases of the fields in two linear accelerator tanks to obtain stable lasing. The accelerator control loops must establish constant, stable, repeatable amplitudes and phases of the rf fields and must have excellent bandwidth to control high-frequency noise components. A model of the feedback loops has been developed that agrees well with measurements and allows easy substitution of components and circuits, thus reducing breadboarding requirements. The model permits both frequency and time-domain analysis. This paper describes the accelerator control scheme and our model and discusses the control of noise in feedback loops, showing how low-frequency-noise components (errors) can be corrected, but high-frequency-noise components (errors) are actually amplified by the feedback circuit. Measurements of noise in both open- and closed-loop modes are shown and comparison is made with results from the model calculations.

  15. Orbit correction in a linear nonscaling fixed field alternating gradient accelerator

    DOE PAGESBeta

    Kelliher, D. J.; Machida, S.; Edmonds, C. S.; Kirkman, I. W.; Jones, J. K.; Muratori, B. D.; Garland, J. M.; Berg, J. S.

    2014-11-20

    In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.

  16. Evaluation of Linear Accelerator Gating With Real-Time Electromagnetic Tracking

    SciTech Connect

    Smith, Ryan L.; Lechleiter, Kristen; Malinowski, Kathleen; Shepard, D.M.; Housley, D.J.; Afghan, M.; Newell, Jeff; Petersen, Jay; Sargent, Brian; Parikh, Parag

    2009-07-01

    Purpose: Intrafraction organ motion can produce dosimetric errors in radiotherapy. Commonly, the linear accelerator is gated using real-time breathing phase obtained by way of external sensors. However, the external anatomy does not always correlate well with the internal position. We examined a beam gating technique using signals from implanted wireless transponders that provided real-time feedback on the tumor location without an imaging dose to the patient. Methods and Materials: An interface was developed between Calypso Medical's four-dimensional electromagnetic tracking system and a Varian Trilogy linear accelerator. A film phantom was mounted on a motion platform programmed with lung motion trajectories. Deliveries were performed when the beam was gated according to the signal from the wireless transponders. The dosimetric advantages of beam gating and the system latencies were quantified. Results: Beam gating using on internal position monitoring provided up to a twofold increase in the dose gradients. The percentage of points failing to be within {+-}10 cGy of the planned dose (maximal dose, {approx}200 cGy) was 3.4% for gating and 32.1% for no intervention in the presence of motion. The mean latencies between the transponder position and linear accelerator modulation were 75.0 {+-}12.7 ms for beam on and 65.1 {+-} 12.9 ms for beam off. Conclusion: We have presented the results from a novel method for gating the linear accelerator using trackable wireless internal fiducial markers without the use of ionizing radiation for imaging. The latencies observed were suitable for gating using electromagnetic fiducial markers, which results in dosimetric improvements for irradiation in the presence of motion.

  17. Anthropomorphic Phantoms for Confirmation of Linear Accelerator-Based Small Animal Irradiation.

    PubMed

    Perks, Julian R; Lucero, Steven; Monjazeb, Arta M; Li, Jian Jian

    2015-03-01

    Three dimensional (3D) scanning and printing technology is utilized to create phantom models of mice in order to assess the accuracy of ionizing radiation dosing from a clinical, human-based linear accelerator. Phantoms are designed to simulate a range of research questions, including irradiation of lung tumors and primary subcutaneous or orthotopic tumors for immunotherapy experimentation. The phantoms are used to measure the accuracy of dose delivery and then refine it to within 1% of the prescribed dose.

  18. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  19. Quasi-linear heating and acceleration in bi-Maxwellian plasmas

    SciTech Connect

    Hellinger, Petr; Trávníček, Pavel M.

    2013-12-15

    Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvén and mirror waves for a wide range of wavelengths, directions of propagation, and growth or damping rates are explicitly computed.

  20. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-01-01

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations. PMID

  1. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (linear velocity, in contrast to primary afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  2. A neutron track etch detector for electron linear accelerators in radiotherapy

    PubMed Central

    Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip

    2010-01-01

    Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893

  3. Dynamic visual acuity during linear acceleration along the inter-aural axis.

    PubMed

    Schmäl, F; Kunz, R; Stoll, W

    2000-01-01

    We investigated visual-vestibular interactions during linear acceleration along the inter-aural axis. Eighteen healthy volunteers and two patients with central neurological diseases were subjected to transaural linear acceleration in the direction of gravity force (frequency: 0.5-1.5 Hz; amplitude: 5 cm). During linear acceleration, eye movements were recorded under three test conditions: eyes closed (EC), while staring at an imaginary target (IT) and during the testing of dynamic visual acuity (DVA). As parameters of evaluation we used the amplitude of horizontal eye movements, phase shift and the decrease of DVA threshold (DVAT). Under all test conditions, eye amplitude increased with rising stimulus frequency and exceeded, especially in the higher frequency range, a hypothetically calculated eye amplitude for smooth pursuit. The combination of a visual and vestibular input (DVA and IT) led to a better compensation (lower phase shift) than under vestibular stimulation alone (EC). Eye movements during low-frequency stimulation depended more on the visual system while responses in the higher frequency range were mainly triggered by the otolith organ. At 1.5 Hz the compensatory function of the visual-vestibular system was limited (rising phase shift) and DVAT decreased even in a significant number of healthy subjects. Patients with diseases of the central nervous system showed a higher phase shift and thus a stronger decrease of DVAT (two levels) already at a stimulus frequency of 1.25 Hz.

  4. Vestibular modulation of muscle sympathetic nerve activity during sinusoidal linear acceleration in supine humans

    PubMed Central

    Hammam, Elie; Bolton, Philip S.; Kwok, Kenny; Macefield, Vaughan G.

    2014-01-01

    The utricle and saccular components of the vestibular apparatus preferentially detect linear displacements of the head in the horizontal and vertical planes, respectively. We previously showed that sinusoidal linear acceleration in the horizontal plane of seated humans causes a pronounced modulation of muscle sympathetic nerve activity (MSNA), supporting a significant role for the utricular component of the otolithic organs in the control of blood pressure. Here we tested the hypothesis that the saccule can also play a role in blood pressure regulation by modulating lower limb MSNA. Oligounitary MSNA was recorded via tungsten microelectrodes inserted into the common peroneal nerve in 12 subjects, laying supine on a motorized platform with the head aligned with the longitudinal axis of the body. Slow sinusoidal linear accelerations-decelerations (peak acceleration ±4 mG) were applied in the rostrocaudal axis (which predominantly stimulates the saccule) and in the mediolateral axis (which also engages the utricle) at 0.08 Hz. The modulation of MSNA in the rostrocaudal axis (29.4 ± 3.4%) was similar to that in the mediolateral axis (32.0 ± 3.9%), and comparable to that obtained by stimulation of the utricle alone in seated subjects with the head vertical. We conclude that both the saccular and utricular components of the otolithic organs play a role in the control of arterial pressure during postural challenges. PMID:25346657

  5. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-01

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  6. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-01

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy. PMID:26305166

  7. Non-linear stochastic optimal control of acceleration parametrically excited systems

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Jin, Xiaoling; Huang, Zhilong

    2016-02-01

    Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.

  8. RECONNECTION-POWERED LINEAR ACCELERATOR AND GAMMA-RAY FLARES IN THE CRAB NEBULA

    SciTech Connect

    Uzdensky, Dmitri A.; Cerutti, BenoIt; Begelman, Mitchell C. E-mail: benoit.cerutti@colorado.edu

    2011-08-20

    The recent discovery of day-long gamma-ray flares in the Crab Nebula, presumed to be synchrotron emission by PeV (10{sup 15} eV) electrons in milligauss magnetic fields, presents a strong challenge to particle acceleration models. The observed photon energies exceed the upper limit ({approx}100 MeV) obtained by balancing the acceleration rate and synchrotron radiation losses under standard conditions where the electric field is smaller than the magnetic field. We argue that a linear electric accelerator, operating at magnetic reconnection sites, is able to circumvent this difficulty. Sufficiently energetic electrons have gyroradii so large that their motion is insensitive to small-scale turbulent structures in the reconnection layer and is controlled only by large-scale fields. We show that such particles are guided into the reconnection layer by the reversing magnetic field as they are accelerated by the reconnection electric field. As these electrons become confined within the current sheet, they experience a decreasing perpendicular magnetic field that may drop below the accelerating electric field. This enables them to reach higher energies before suffering radiation losses and hence to emit synchrotron radiation in excess of the 100 MeV limit, providing a natural resolution to the Crab gamma-ray flare paradox.

  9. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that

  10. Acceleration of multiple solution of a boundary value problem involving a linear algebraic system

    NASA Astrophysics Data System (ADS)

    Gazizov, Talgat R.; Kuksenko, Sergey P.; Surovtsev, Roman S.

    2016-06-01

    Multiple solution of a boundary value problem that involves a linear algebraic system is considered. New approach to acceleration of the solution is proposed. The approach uses the structure of the linear system matrix. Particularly, location of entries in the right columns and low rows of the matrix, which undergo variation due to the computing in the range of parameters, is used to apply block LU decomposition. Application of the approach is considered on the example of multiple computing of the capacitance matrix by method of moments used in numerical electromagnetics. Expressions for analytic estimation of the acceleration are presented. Results of the numerical experiments for solution of 100 linear systems with matrix orders of 1000, 2000, 3000 and different relations of variated and constant entries of the matrix show that block LU decomposition can be effective for multiple solution of linear systems. The speed up compared to pointwise LU factorization increases (up to 15) for larger number and order of considered systems with lower number of variated entries.

  11. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    SciTech Connect

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H.

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  12. Mitigation of ground motion effects in linear accelerators via feed-forward control

    NASA Astrophysics Data System (ADS)

    Pfingstner, J.; Artoos, K.; Charrondiere, C.; Janssens, St.; Patecki, M.; Renier, Y.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.

    2014-12-01

    Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders). Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems) such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2), ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  13. Focal spot motion of linear accelerators and its effect on portal image analysis.

    PubMed

    Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel

    2003-06-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned approximately 0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motionwas estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spotmotion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate.

  14. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  15. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    SciTech Connect

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  16. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  17. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-05-07

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  18. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Lidia, S.M.; Anderson, D.E.; Eylon, S.; Henestroza, E.; Vanecek, D.L.; Yu, S.S.; Westenskow, G.A.

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1{percent} energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented. {copyright} {ital 1999 American Institute of Physics.}

  19. Relativistic-klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect

    Anderson, D E; Eylon, S; Henestroza, E; Houck, T L; Lidia, M; Vanecek, D L; Westenskow, G A; Yu, S S

    1998-10-05

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2&A, l-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-n-n. The prototype accelerator will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  20. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  1. The generation and acceleration of low emittance flat beams for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  2. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  3. Design of a MeV, 4kA linear induction accelerator for flash radiography

    SciTech Connect

    Kulke, B.; Brier, R.; Chapin, W.

    1981-02-10

    For verifying the hydrodynamics of nuclear weapons design it is useful to have flash x-ray machines that can deliver a maximum dose in a minimum pulse length and with very high reliability. At LLNL, such a requirement was identified some years ago as 500 roentgens at one meter, in a 60 nsec pulse length. In response to this requirement, a linear induction accelerator was proposed to and funded by DOE in 1977. The design of this machine, called FXR, has now been completed and construction has begun. The FXR design extends the parameters of a similar machine that had been built and operated at LBL, Berkeley, some ten years ago. Using a cold cathode injector followed by 48 accelerator modules rated at 400 kV each, the FXR machine will accelerate a 4 kA electron beam pulse to 20 MeV final energy. Key design features are the generation and the stable transport of a low emittance (100 mr-cm) beam from a field emitter diode, the design of reliable, compact energy storage components such as Blumleins, feedlines and accelerator modules, and a computer-assisted control system.

  4. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  5. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    PubMed

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  6. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2010-03-01

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  7. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect

    Berg, J. S.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  8. A review of vector convergence acceleration methods, with applications to linear algebra problems

    NASA Astrophysics Data System (ADS)

    Brezinski, C.; Redivo-Zaglia, M.

    In this article, in a few pages, we will try to give an idea of convergence acceleration methods and extrapolation procedures for vector sequences, and to present some applications to linear algebra problems and to the treatment of the Gibbs phenomenon for Fourier series in order to show their effectiveness. The interested reader is referred to the literature for more details. In the bibliography, due to space limitation, we will only give the more recent items, and, for older ones, we refer to Brezinski and Redivo-Zaglia, Extrapolation methods. (Extrapolation Methods. Theory and Practice, North-Holland, 1991). This book also contains, on a magnetic support, a library (in Fortran 77 language) for convergence acceleration algorithms and extrapolation methods.

  9. Linearly tapered discharge capillary waveguides as a medium for a laser plasma wakefield accelerator

    SciTech Connect

    Abuazoum, S.; Wiggins, S. M.; Ersfeld, B.; Hart, K.; Vieux, G.; Yang, X.; Welsh, G. H.; Issac, R. C.; Reijnders, M. P.; Jones, D. R.; Jaroszynski, D. A.

    2012-01-02

    Gas-filled capillary discharge waveguides are commonly used as media for plasma wakefield accelerators. We show that effective waveguides can be manufactured using a femtosecond laser micromachining technique to produce a linearly tapered plasma density, which enables the energy of the accelerator to be enhanced significantly. A laser guiding efficiency in excess of 82% at sub-relativistic intensities has been demonstrated in a 40 mm long capillary with a diameter tapering from 320 {mu}m to 270 {mu}m, which gives rise to an on-axis, time-averaged plasma density that varies from 1.0 x 10{sup 18} cm{sup -3} to 1.6 x 10{sup 18} cm{sup -3}.

  10. Radiation Safety System of the B-Factory at the Stanford Linear Accelerator Center

    SciTech Connect

    Liu, James C.

    1998-10-12

    The radiation safety system (RSS) of the B-Factory accelerator facility at the Stanford Linear Accelerator Center (SLAC) is described. The RSS, which is designed to protect people from prompt radiation exposure due to beam operation, consists of the access control system (ACS) and the radiation containment system (RCS). The ACS prevents people from being exposed to the very high radiation levels inside a beamline shielding housing. The ACS consists of barriers, a standard entry module at every entrance, and beam stoppers. The RCS prevents people from being exposed to the radiation outside a shielding housing, due to either normal or abnormal operation. The RCS consists of power limiting devices, shielding, dump/collimator, and an active radiation monitor system. The inter-related system elements for the ACS and RCS, as well as the associated interlock network, are described. The policies and practices in setting up the RSS are also compared with the regulatory requirements.

  11. Relativistic cosmic ray spectra in the full non-linear theory of shock acceleration

    NASA Technical Reports Server (NTRS)

    Eichler, D.; Ellison, D. C.

    1985-01-01

    The non-linear theory of shock acceleration was generalized to include wave dynamics. In the limit of rapid wave damping, it is found that a finite ave velocity tempers the acceleration of high Mach number shocks and limits the maximum compression ratio even when energy loss is important. For a given spectrum, the efficiency of relativistic particle production is essentially independent of v sub Ph. For the three families shown, the percentage of kinetic energy flux going into relativistic particles is (1) 72%, 2) 44%, and (3) 26% (this includes the energy loss at the upper energy cuttoff). Even small v sub ph, typical of the HISM, produce quasi-universal spectra that depend only weakly on the acoustic Mach number. These spectra should be close enough to e(-2) to satisfy cosmic ray source requirements.

  12. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator.

    PubMed

    Bol, G H; Hissoiny, S; Lagendijk, J J W; Raaymakers, B W

    2012-03-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.

  13. Adaptive Mesh Refinement for High Accuracy Wall Loss Determination in Accelerating Cavity Design

    SciTech Connect

    Ge, L

    2004-06-14

    This paper presents the improvement in wall loss determination when adaptive mesh refinement (AMR) methods are used with the parallel finite element eigensolver Omega3P. We show that significant reduction in the number of degrees of freedom (DOFs) as well as a faster rate of convergence can be achieved as compared with results from uniform mesh refinement in determining cavity wall loss to a desired accuracy. Test cases for which measurements are available will be examined, and comparison with uniform refinement results will be discussed.

  14. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    SciTech Connect

    Stiebel-Kalish, Hadas; Reich, Ehud; Gal, Lior; Rappaport, Zvi Harry; Nissim, Ouzi; Pfeffer, Raphael; Spiegelmann, Roberto

    2012-02-01

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  15. SU-E-T-197: Helical Cranial-Spinal Treatments with a Linear Accelerator

    SciTech Connect

    Anderson, J; Bernard, D; Liao, Y; Templeton, A; Turian, J; Chu, J

    2014-06-01

    Purpose: Craniospinal irradiation (CSI) of systemic disease requires a high level of beam intensity modulation to reduce dose to bone marrow and other critical structures. Current helical delivery machines can take 30 minutes or more of beam-on time to complete these treatments. This pilot study aims to test the feasibility of performing helical treatments with a conventional linear accelerator using longitudinal couch travel during multiple gantry revolutions. Methods: The VMAT optimization package of the Eclipse 10.0 treatment planning system was used to optimize pseudo-helical CSI plans of 5 clinical patient scans. Each gantry revolution was divided into three 120° arcs with each isocenter shifted longitudinally. Treatments requiring more than the maximum 10 arcs used multiple plans with each plan after the first being optimized including the dose of the others (Figure 1). The beam pitch was varied between 0.2 and 0.9 (couch speed 5- 20cm/revolution and field width of 22cm) and dose-volume histograms of critical organs were compared to tomotherapy plans. Results: Viable pseudo-helical plans were achieved using Eclipse. Decreasing the pitch from 0.9 to 0.2 lowered the maximum lens dose by 40%, the mean bone marrow dose by 2.1% and the maximum esophagus dose by 17.5%. (Figure 2). Linac-based helical plans showed dose results comparable to tomotherapy delivery for both target coverage and critical organ sparing, with the D50 of bone marrow and esophagus respectively 12% and 31% lower in the helical linear accelerator plan (Figure 3). Total mean beam-on time for the linear accelerator plan was 8.3 minutes, 54% faster than the tomotherapy average for the same plans. Conclusions: This pilot study has demonstrated the feasibility of planning pseudo-helical treatments for CSI targets using a conventional linac and dynamic couch movement, and supports the ongoing development of true helical optimization and delivery.

  16. Performance Characteristics and Quality Assurance Aspects of Kilovoltage Cone-Beam CT on Medical Linear Accelerator

    SciTech Connect

    Saw, Cheng B. . E-mail: cbsaw2003@yahoo.com; Yang, Yong; Li Fang; Yue, Ning J.; Ding Chuxiong; Komanduri, Krishna; Huq, Saiful; Heron, Dwight E.

    2007-07-01

    A medical linear accelerator equipped with optical position tracking, ultrasound imaging, portal imaging, and radiographic imaging systems was installed at University of Pittsburgh Cancer Institute for the purpose of performing image-guided radiation therapy (IGRT) and image-guided radiosurgery (IGRS) in October 2005. We report the performance characteristics and quality assurance aspects of the kilovoltage cone-beam computed tomography (kV-CBCT) technique. This radiographic imaging system consists of a kilovoltage source and a large-area flat panel amorphous silicon detector mounted on the gantry of the medical linear accelerator via controlled arms. The performance characteristics and quality assurance aspects of this kV-CBCT technique involves alignment of the kilovoltage imaging system to the isocenter of the medical linear accelerator and assessment of (a) image contrast, (b) spatial accuracy of the images, (c) image uniformity, and (d) computed tomography (CT)-to-electron density conversion relationship were investigated. Using the image-guided tools, the alignment of the radiographic imaging system was assessed to be within a millimeter. The low-contrast resolution was found to be a 6-mm diameter hole at 1% contrast level and high-contrast resolution at 9 line pairs per centimeter. The spatial accuracy (50 mm {+-} 1%), slice thickness (2.5 mm and 5.0 mm {+-} 5%), and image uniformity ({+-} 20 HU) were found to be within the manufacturer's specifications. The CT-to-electron density relationship was also determined. By using well-designed procedures and phantom, the number of parameter checks for quality assurance of the IGRT system can be carried out in a relatively short time.

  17. Laboratory Measurements of Linear Electron Acceleration by Inertial Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.

    2015-11-01

    Alfvén waves occur in conjunction with a significant fraction of auroral electron acceleration. Inertial mode Alfvén waves (vA >vte) in the auroral magnetosphere (2 - 4RE) with perpendicular scales on the order of the electron skin depth (c /ωpe) have a parallel electric field that, according to theory, is capable of nonlinearly accelerating suprathermal electrons to auroral energies. Unfortunately, due to space-time ambiguities of rocket and satellite measurements, it has not yet been possible to fully verify how Alfvén waves contribute to the production of accelerated electrons. To overcome the limitations of in situ spacecraft data, laboratory experiments have been carried out using the Large Plasma Device (LaPD), an NSF/DOE user facility at UCLA. An Electron Cyclotron Absorption (ECA) diagnostic has been developed to record the suprathermal parallel electron distribution function with 0.1% precision. The diagnostic records the electron distribution while inertial Alfvén waves simultaneously propagate through the plasma. Recent measurements have isolated oscillations of suprathermal electrons at the Alfvén wave frequency. Despite complications from boundary effects and the finite size of the experiment, a linear kinetic model has been produced that describes the experimental results. To our knowledge this is the first quantitative agreement between the measured and modeled linear response of suprathermal electrons to an inertial Alfvén wave. This verification of the linear physics is a necessary step before the nonlinear acceleration process can be isolated in future experiments. Presently, nonlinear effects cannot be detected because of limited Alfvén wave amplitudes. Ongoing work is focused on designing a higher-power antenna capable of efficiently launching larger-amplitude Alfvén waves with tunable perpendicular wavenumber and developing a theoretical understanding of the nonlinear acceleration process in LaPD plasma conditions. This material is

  18. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  19. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  20. Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider

    SciTech Connect

    Araki, S.; Hayano, H.; Higashi, Y.; Honda, Y.; Kanazawa, K.; Kubo, K.; Kume, T.; Kuriki, M.; Kuroda, S.; Masuzawa, M.; Naito, T.; Okugi, T.; Sugahara, R.; Takahashi, T.; Tauchi, T.; Terunuma, N.; Toge, N.; Urakawa, J.; Vogel, V.; Yamaoka, H.; Yokoya, K.; /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Novosibirsk, IYF /Daresbury /CERN /Hiroshima U. /Orsay, LAL /LLNL, Livermore /North Carolina A-T State U. /Oxford U. /Pohang Accelerator Lab. /Queen Mary, U. of London /Royal Holloway, U. of London /DESY /SLAC /University Coll. London /Oregon U. /Tokyo U.

    2005-05-27

    To reach design luminosity, the International Linear Collider (ILC) must be able to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittances are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 37 nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.

  1. Direct air activation measurements at a 15-MV medical linear accelerator.

    PubMed

    Saeed, M K; Poppe, B; Fischer, H W

    2015-02-01

    Direct radiometric determination of (14)N (γ, n) (13)N air activation was achieved at a 15-MV medical linear accelerator operating in a high-energy photon mode. (13)N was identified by irradiating a gas-tight Marinelli beaker filled with nitrogen gas and later observing the 10-min half-life of the 511-keV positron-electron annihilation line using high-resolution gamma spectroscopy. Quantitative evaluation of the spectral signal yielded a (13)N production rate of 836.8 ± 32 Bq Gy(-1) in air per 40 × 40 cm(2) field cross section at 100 cm source-surface distance.

  2. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  3. Linear vs. nonlinear acceleration in plasma turbulence. I. Global versus local measures

    SciTech Connect

    Ghosh, Sanjoy; Parashar, Tulasi N.

    2015-04-15

    Magnetized turbulent plasmas are generally characterized as strongly or weakly turbulent based on the average relative strengths of the linear and nonlinear terms. While this description is useful, it does not represent the full picture and can be misleading. We study the variation of linear and nonlinear accelerations in the Fourier space of a magnetohydrodynamic system with a mean magnetic field and broad selection of initial states and plasma parameters. We show that the local picture can show significant departures from what is expected from the general global picture. We find that high cross helicity systems that are traditionally believed to have relatively weaker nonlinearities, compared to low cross helicity systems, can show strong nonlinearities in parts of the Fourier space that are orthogonal to the mean magnetic field direction. In some cases, these nonlinearities can exceed in strength the level of nonlinearities recovered from low cross helicity systems.

  4. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    SciTech Connect

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  5. An improved statistical model for linear antenna input impedance in an electrically large cavity.

    SciTech Connect

    Johnson, William Arthur; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lee, Kelvin S. H.

    2005-03-01

    This report presents a modification of a previous model for the statistical distribution of linear antenna impedance. With this modification a simple formula is determined which yields accurate results for all ratios of modal spectral width to spacing. It is shown that the reactance formula approaches the known unit Lorentzian in the lossless limit.

  6. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    NASA Astrophysics Data System (ADS)

    García-Pareja, S.; Vilches, M.; Lallena, A. M.

    2007-09-01

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the "hot" regions of the accelerator, an information which is basic to develop a source model for this therapy tool.

  7. Evaluation of a new IR-guided system for mechanical QA of linear accelerators

    SciTech Connect

    Lyatskaya, Yulia; Kadam, Dnyanesh; Levitsky, Gennady; Hacker, Fred; Chin, Lee

    2008-11-15

    The authors report the development of a new procedure for mechanical quality assurance of linear accelerators using an infrared-guided system. The system consists of an infrared (IR) camera and an IR-reflective marker that can be attached to a gantry, a collimator, or a treatment table. The trace of this marker can be obtained in three dimensions (3D) for a full or partial rotation of the mechanical devices. The software is written to localize rotational axes of the gantry, collimator, and the treatment table based on the marker traces. The separation of these axes characterizes the size of the sphere defining the mechanical isocenter. Additional information on anomalies in gantry movement such as degree of gantry sag and hysteresis can also be obtained. An intrinsic uncertainty of the system to localize rotational axis is 0.35 mm or less. Tests on a linear accelerator demonstrated the ability of this system to detect the separation between rotational axes of less than 1 mm and to confirm orthogonality of the planes of gantry, collimator, and table rotation.

  8. Study on radiation production in the charge stripping section of the RISP linear accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Oranj, Leila Mokhtari; Lee, Hee-Seock; Ko, Seung-Kook

    2015-02-01

    The linear accelerator of the Rare Isotope Science Project (RISP) accelerates 200 MeV/nucleon 238U ions in a multi-charge states. Many kinds of radiations are generated while the primary beam is transported along the beam line. The stripping process using thin carbon foil leads to complicated radiation environments at the 90-degree bending section. The charge distribution of 238U ions after the carbon charge stripper was calculated by using the LISE++ program. The estimates of the radiation environments were carried out by using the well-proved Monte Carlo codes PHITS and FLUKA. The tracks of 238U ions in various charge states were identified using the magnetic field subroutine of the PHITS code. The dose distribution caused by U beam losses for those tracks was obtained over the accelerator tunnel. A modified calculation was applied for tracking the multi-charged U beams because the fundamental idea of PHITS and FLUKA was to transport fully-ionized ion beam. In this study, the beam loss pattern after a stripping section was observed, and the radiation production by heavy ions was studied. Finally, the performance of the PHITS and the FLUKA codes was validated for estimating the radiation production at the stripping section by applying a modified method.

  9. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    SciTech Connect

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  10. Skyshine photon doses from 6 and 10 MV medical linear accelerators.

    PubMed

    de Paiva, Eduardo; da Rosa, Luiz A R

    2012-01-01

    The skyshine radiation phenomenon consists of the scattering of primary photon beams in the atmosphere above the roof of a medical linear accelerator facility, generating an additional dose at ground level in the vicinity of the treatment room. Thus, with respect to radioprotection, this situation plays an important role when the roof is designed with little shielding and there are buildings next to the radiotherapy treatment room. In literature, there are few reported skyshine-measured doses and these contain poor agreement with empirical calculations. In this work, we carried out measurements of skyshine photon dose rates produced from eight different 6 and 10 MV medical accelerators. Each measurement was performed outside the room facility, with the beam positioned in the upward direction, at a horizontal distance from the target and for a 40 cm × 40 cm maximum photon field size at the accelerator isocenter. Measured dose-equivalent rates results were compared with calculations obtained by an empirical expression, and differences between them deviated in one or more order of magnitude.

  11. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration.

    PubMed

    Rowson, Steven; Duma, Stefan M

    2013-05-01

    Recent research has suggested possible long term effects due to repetitive concussions, highlighting the importance of developing methods to accurately quantify concussion risk. This study introduces a new injury metric, the combined probability of concussion, which computes the overall risk of concussion based on the peak linear and rotational accelerations experienced by the head during impact. The combined probability of concussion is unique in that it determines the likelihood of sustaining a concussion for a given impact, regardless of whether the injury would be reported or not. The risk curve was derived from data collected from instrumented football players (63,011 impacts including 37 concussions), which was adjusted to account for the underreporting of concussion. The predictive capability of this new metric is compared to that of single biomechanical parameters. The capabilities of these parameters to accurately predict concussion incidence were evaluated using two separate datasets: the Head Impact Telemetry System (HITS) data and National Football League (NFL) data collected from impact reconstructions using dummies (58 impacts including 25 concussions). Receiver operating characteristic curves were generated, and all parameters were significantly better at predicting injury than random guessing. The combined probability of concussion had the greatest area under the curve for all datasets. In the HITS dataset, the combined probability of concussion and linear acceleration were significantly better predictors of concussion than rotational acceleration alone, but not different from each other. In the NFL dataset, there were no significant differences between parameters. The combined probability of concussion is a valuable method to assess concussion risk in a laboratory setting for evaluating product safety.

  12. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration.

    PubMed

    Rowson, Steven; Duma, Stefan M

    2013-05-01

    Recent research has suggested possible long term effects due to repetitive concussions, highlighting the importance of developing methods to accurately quantify concussion risk. This study introduces a new injury metric, the combined probability of concussion, which computes the overall risk of concussion based on the peak linear and rotational accelerations experienced by the head during impact. The combined probability of concussion is unique in that it determines the likelihood of sustaining a concussion for a given impact, regardless of whether the injury would be reported or not. The risk curve was derived from data collected from instrumented football players (63,011 impacts including 37 concussions), which was adjusted to account for the underreporting of concussion. The predictive capability of this new metric is compared to that of single biomechanical parameters. The capabilities of these parameters to accurately predict concussion incidence were evaluated using two separate datasets: the Head Impact Telemetry System (HITS) data and National Football League (NFL) data collected from impact reconstructions using dummies (58 impacts including 25 concussions). Receiver operating characteristic curves were generated, and all parameters were significantly better at predicting injury than random guessing. The combined probability of concussion had the greatest area under the curve for all datasets. In the HITS dataset, the combined probability of concussion and linear acceleration were significantly better predictors of concussion than rotational acceleration alone, but not different from each other. In the NFL dataset, there were no significant differences between parameters. The combined probability of concussion is a valuable method to assess concussion risk in a laboratory setting for evaluating product safety. PMID:23299827

  13. Superconducting cavity driving with FPGA controller

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Koprek, Waldemar; Poźniak, Krzysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan; Brandt, Alexander; Chase, Brian; Carcagno, Ruben; Cancelo, Gustavo; Koeth, Timothy W.

    2006-12-01

    A digital control of superconducting cavities for a linear accelerator is presented. FPGA-based controller, supported by Matlab system, was applied. Electrical model of a resonator was used for design of a control system. Calibration of the signal path is considered. Identification of cavity parameters has been carried out for adaptive control algorithm. Feed-forward and feedback modes were applied in operating the cavities. Required performance has been achieved; i.e. driving on resonance during filling and field stabilization during flattop time, while keeping reasonable level of the power consumption. Representative results of the experiments are presented for different levels of the cavity field gradient.

  14. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  15. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    PubMed Central

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A.

    2015-01-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334

  16. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    PubMed

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-10-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.

  17. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    PubMed

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-10-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334

  18. VELOCIRAPTOR: An X-band photoinjector and linear accelerator for the production of Mono-Energetic γ-rays

    NASA Astrophysics Data System (ADS)

    Anderson, S. G.; Albert, F.; Bayramian, A. J.; Beer, G.; Bonanno, R. E.; Cross, R. R.; Deis, G.; Ebbers, C. A.; Gibson, D. J.; Hartemann, F. V.; Houck, T. L.; Marsh, R. A.; McNabb, D. P.; Messerly, M. J.; Scarpetti, R. D.; Shverdin, M. Y.; Siders, C. W.; Wu, S. S.; Barty, C. P. J.; Adolphsen, C. E.; Chu, T. S.; Jongewaard, E. N.; Li, Z.; Limborg, C.; Tantawi, S. G.; Vlieks, A. E.; Wang, F.; Wang, J. W.; Zhou, F.; Raubenheimer, T. O.

    2011-11-01

    The rf photoinjector and linear accelerator in the Mono-Energetic Gamma-ray (MEGa-ray) facility at LLNL is presented. This machine uses 11.4 GHz rf technology to accelerate a high-brightness electron beam up to 250 MeV to produce MeV γ-rays through Compton scattering with a Joule-class laser pulse. Compton scattering-based generation of high flux, narrow bandwidth γ-rays places stringent requirements on the performance of the accelerator. The component parts of the accelerator are presented and their requirements described. Simulations of expected electron beam parameters and the resulting light source properties are presented.

  19. Improved surface treatment of the superconducting TESLA cavities

    NASA Astrophysics Data System (ADS)

    Lilje, L.; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmüser, P.; Trines, D.; Visentin, B.; Wenninger, H.

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  20. X-Ray Radar Imaging Technique Using a 2 Mev Linear Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Dreesen, W.; Schwellenbach, D.; Wood, J. R.; Browder, M.; Kallas, N.; Potter, J.

    X-ray radar imaging combines standard radar techniques with the penetration power of X-rays to image scenes. Our project strives to demonstrate the technique using a 2-MeV linear electron accelerator to generate the S-band--modulated X-ray signals. X-ray detectors such as photodiodes and scintillators are used to detect the signals in backscatter and transmission detection schemes. The S-band microstructure is imposed on the variable width electron pulse and this modulation carries over to the bremsstrahlung X-rays after the electron beam is incident upon a copper-tungsten alloy target. Using phase/distance calculations and a low-jitter system, we expect to detect different object distances by comparing the measured phase differences. The experimental setup, which meets strict jitter requirements, and preliminary experimental results are presented.

  1. Integration of a linear accelerator into a production line of mechanically deboned separated poultry meat

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Volle, Christophe

    2000-03-01

    Linear accelerators, commonly called Linacs, are being used for different industrial processes. This kind of machine produces high power electron beams and can treat many products with a high throughput. The main application of a Linac is the sterilization of medical disposable devices, polymerization and decontamination of food products. Salmonella commonly contaminates poultry. Thanks to E-beam treatment, it eradicates the pathogen quickly and permits the use of meat that should have been thrown away because of its infection. The world's first Linac dedicated to treat mechanically deboned poultry meat is located in Brittany at the Société des Protéines Industrielles. It is a Thomson CSF Linac product, the CIRCE II, with an energy of 10 MeV and a power of 10 kW. This Linac has been used for more than 8 years, and its technology is fully proven.

  2. A data acquisition work station for ORELA (Oak Ridge Electron Linear Accelerator)

    SciTech Connect

    Rooney, B.D.; Todd, J.H.; Spencer, R.R.; Weston, L.W.

    1990-09-01

    A new multiparameter data acquisition system has been developed and fabricated at the Oak Ridge Electron Linear Accelerator (ORELA) which utilizes an IBM PS/2 Model 80 personal computer and data handler with a 2048 word buffer. The acquisition system can simultaneously acquire data from one, two, or three digitizers, multiplex up to four detectors, read and control up to 16 scalers, and output 32 DC logic signals which can be used to control external instrumentation. Software has been developed for the OS/2 operating system, supporting multiparameter data storage for up to three million channels with the capability of collecting data in a background mode, to make the computer available for other tasks while collecting data. The system also supports multiparameter biasing and can collect, crunch, and store data at rates as high as 30,000 events per second.

  3. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    SciTech Connect

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  4. Free-electron laser multiplex driven by a superconducting linear accelerator.

    PubMed

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.

  5. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    DOEpatents

    Steinberg, Meyer; Powell, James R.; Takahashi, Hiroshi; Grand, Pierre; Kouts, Herbert

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

  6. Image-Guided Stereotactic Spine Radiosurgery on a Conventional Linear Accelerator

    SciTech Connect

    Wang Jiazhu Rice, Roger; Mundt, Arno; Sandhu, Ajay; Murphy, Kevin

    2010-04-01

    Stereotactic radiosurgery for spinal metastasis consists of a high radiation dose delivered to the tumor in 1 to 5 fractions. Due to the high radiation dose in a single or fewer treatments, the precision of tumor localization and dose delivery is of great concern. Many groups have published their experiences of spinal radiosurgery with the use of CyberKnife System (Accuray Inc.). In this study, we report in detail our approach to stereotactic spine radiosurgery (SSRS) using a conventional linear accelerator (Varian Trilogy), utilizing the features of kilovolt on-board imaging (kV-OBI) and cone beam computed tomography (CBCT) for image guidance. We present our experience in various aspects of the SSRS procedure, including patient simulation and immobilization, intensity-modulated radiation treatment (IMRT) planning and beam selection, portal dosimetry for patient planning quality assurance (QA), and the use of image guidance in tumor localization prior to and during treatment delivery.

  7. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  8. Estimation of photoneutron intensities around radiotherapy linear accelerator 23-MV photon beam.

    PubMed

    Shweikani, R; Anjak, O

    2015-05-01

    CR-39 solid-state nuclear track detectors (SSNTDs) were used to study the variations of fast neutron relative intensities around a high-energy (23MV) linear accelerator (Varian 21EX) photon beam. The variations were determined on the patient plane at 0, 50, 100, 150 and 200cm from the isocenter of the photon beam. In addition, photoneutron intensities and distributions at isocenter level with field size of 40×40cm(2) at Source Axis Distance (SAD)=100cm around 23MV photon beam were also determined. The results showed that the photoneutron intensities decreased rapidly by increasing the distance from the center of the x-ray beam towards the periphery, for the open fields.

  9. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE PAGESBeta

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; DiMarco, J.; Kimura, N.; Makarov, A.; Orlov, Y.; V. Poloubotko; Tartaglia, M.; Yamamoto, A.

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  10. Free-electron laser multiplex driven by a superconducting linear accelerator.

    PubMed

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented. PMID:27577757

  11. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    SciTech Connect

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 {mu}s, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at {approx} 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 {mu}s pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz.

  12. Photon beam quality variations of a flattening filter free linear accelerator

    SciTech Connect

    Georg, Dietmar; Kragl, Gabriele; Wetterstedt, Sacha af; McCavana, Patrick; McClean, Brendan; Knoeoes, Tommy

    2010-01-15

    Purpose: Recently, there has been an increasing interest in operating conventional linear accelerators without a flattening filter. The aim of this study was to determine beam quality variations as a function of off-axis ray angle for unflattened beams. In addition, a comparison was made with the off-axis energy variation in flattened beams. Methods: Two Elekta Precise linear accelerators were modified in order to enable radiation delivery with and without the flattening filter in the beam line. At the Medical University Vienna (Vienna, Austria), half value layer (HVL) measurements were performed for 6 and 10 MV with an in-house developed device that can be easily mounted on the gantry. At St. Luke's Hospital (Dublin, Ireland), measurements were performed at 6 MV in narrow beam geometry with the gantry tilted around 270 deg. with pinhole collimators, an attenuator, and the chamber positioned on the table. All attenuation measurements were performed with ionization chambers and a buildup cap (2 mm brass) or a PMMA mini phantom (diameter 3 cm, measurement depth 2.5 cm). Results: For flattened 6 and 10 MV photon beams from the Elekta linac the relative HVL({theta}) varies by about 11% for an off-axis ray angle {theta}=10 deg. These results agree within {+-}2% with a previously proposed generic off-axis energy correction. For unflattened beams, the variation was less than 5% in the whole range of off-axis ray angles up to 10 deg. The difference in relative HVL data was less than 1% for unflattened beams at 6 and 10 MV. Conclusions: Off-axis energy variation is rather small in unflattened beams and less than half the one for flattened beams. Thus, ignoring the effect of off-axis energy variation for dose calculations in unflattened beams can be clinically justified.

  13. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    SciTech Connect

    Hauptman, Jason S.; Barkhoudarian, Garni; Safaee, Michael; Gorgulho, Alessandra; Tenn, Steven; Agazaryan, Nzhde; Selch, Michael; De Salles, Antonio A.F.

    2012-06-01

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  14. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer.

    PubMed

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6-15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5-7 years) and acute and late toxicity (<6% grade 3-4 late toxicities). Other outcomes (eg, overall and cancer-specific mortality) cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm), and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway. PMID:27574585

  15. An improved method for calibrating the gantry angles of linear accelerators.

    PubMed

    Higgins, Kyle; Treas, Jared; Jones, Andrew; Fallahian, Naz Afarin; Simpson, David

    2013-11-01

    Linear particle accelerators (linacs) are widely used in radiotherapy procedures; therefore, accurate calibrations of gantry angles must be performed to prevent the exposure of healthy tissue to excessive radiation. One of the common methods for calibrating these angles is the spirit level method. In this study, a new technique for calibrating the gantry angle of a linear accelerator was examined. A cubic phantom was constructed of Styrofoam with small lead balls, embedded at specific locations in this foam block. Several x-ray images were taken of this phantom at various gantry angles using an electronic portal imaging device on the linac. The deviation of the gantry angles were determined by analyzing the images using a customized computer program written in ImageJ (National Institutes of Health). Gantry angles of 0, 90, 180, and 270 degrees were chosen and the results of both calibration methods were compared for each of these angles. The results revealed that the image method was more precise than the spirit level method. For the image method, the average of the measured values for the selected angles of 0, 90, 180, and 270 degrees were found to be -0.086 ± 0.011, 90.018 ± 0.011, 180.178 ± 0.015, and 269.972 ± 0.006 degrees, respectively. The corresponding average values using the spirit level method were 0.2 ± 0.03, 90.2 ± 0.04, 180.1 ± 0.01, and 269.9 ± 0.05 degrees, respectively. Based on these findings, the new method was shown to be a reliable technique for calibrating the gantry angle.

  16. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer

    PubMed Central

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6–15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5–7 years) and acute and late toxicity (<6% grade 3–4 late toxicities). Other outcomes (eg, overall and cancer-specific mortality) cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm), and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway. PMID:27574585

  17. An improved method for calibrating the gantry angles of linear accelerators.

    PubMed

    Higgins, Kyle; Treas, Jared; Jones, Andrew; Fallahian, Naz Afarin; Simpson, David

    2013-11-01

    Linear particle accelerators (linacs) are widely used in radiotherapy procedures; therefore, accurate calibrations of gantry angles must be performed to prevent the exposure of healthy tissue to excessive radiation. One of the common methods for calibrating these angles is the spirit level method. In this study, a new technique for calibrating the gantry angle of a linear accelerator was examined. A cubic phantom was constructed of Styrofoam with small lead balls, embedded at specific locations in this foam block. Several x-ray images were taken of this phantom at various gantry angles using an electronic portal imaging device on the linac. The deviation of the gantry angles were determined by analyzing the images using a customized computer program written in ImageJ (National Institutes of Health). Gantry angles of 0, 90, 180, and 270 degrees were chosen and the results of both calibration methods were compared for each of these angles. The results revealed that the image method was more precise than the spirit level method. For the image method, the average of the measured values for the selected angles of 0, 90, 180, and 270 degrees were found to be -0.086 ± 0.011, 90.018 ± 0.011, 180.178 ± 0.015, and 269.972 ± 0.006 degrees, respectively. The corresponding average values using the spirit level method were 0.2 ± 0.03, 90.2 ± 0.04, 180.1 ± 0.01, and 269.9 ± 0.05 degrees, respectively. Based on these findings, the new method was shown to be a reliable technique for calibrating the gantry angle. PMID:24077078

  18. Monte Carlo Simulation of Siemens ONCOR Linear Accelerator with BEAMnrc and DOSXYZnrc Code

    PubMed Central

    Jabbari, Keyvan; Anvar, Hossein Saberi; Tavakoli, Mohammad Bagher; Amouheidari, Alireza

    2013-01-01

    The Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. In this work, a Monte Carlo modeling of the Siemens ONCOR linear accelerator in 6 MV and 18 MV beams was performed. The results of simulation were validated by measurements in water by ionization chamber and extended dose range (EDR2) film in solid water. The linac's X-ray particular are so sensitive to the properties of primary electron beam. Square field size of 10 cm × 10 cm produced by the jaws was compared with ionization chamber and film measurements. Head simulation was performed with BEAMnrc and dose calculation with DOSXYZnrc for film measurements and 3ddose file produced by DOSXYZnrc analyzed used homemade MATLAB program. At 6 MV, the agreement between dose calculated by Monte Carlo modeling and direct measurement was obtained to the least restrictive of 1%, even in the build-up region. At 18 MV, the agreement was obtained 1%, except for in the build-up region. In the build-up region, the difference was 1% at 6 MV and 2% at 18 MV. The mean difference between measurements and Monte Carlo simulation is very small in both of ONCOR X-ray energy. The results are highly accurate and can be used for many applications such as patient dose calculation in treatment planning and in studies that model this linac with small field size like intensity-modulated radiation therapy technique. PMID:24672765

  19. Multiple-source models for electron beams of a medical linear accelerator using BEAMDP computer code

    PubMed Central

    Jabbari, Nasrollah; Barati, Amir Hoshang; Rahmatnezhad, Leili

    2012-01-01

    Aim The aim of this work was to develop multiple-source models for electron beams of the NEPTUN 10PC medical linear accelerator using the BEAMDP computer code. Background One of the most accurate techniques of radiotherapy dose calculation is the Monte Carlo (MC) simulation of radiation transport, which requires detailed information of the beam in the form of a phase-space file. The computing time required to simulate the beam data and obtain phase-space files from a clinical accelerator is significant. Calculation of dose distributions using multiple-source models is an alternative method to phase-space data as direct input to the dose calculation system. Materials and methods Monte Carlo simulation of accelerator head was done in which a record was kept of the particle phase-space regarding the details of the particle history. Multiple-source models were built from the phase-space files of Monte Carlo simulations. These simplified beam models were used to generate Monte Carlo dose calculations and to compare those calculations with phase-space data for electron beams. Results Comparison of the measured and calculated dose distributions using the phase-space files and multiple-source models for three electron beam energies showed that the measured and calculated values match well each other throughout the curves. Conclusion It was found that dose distributions calculated using both the multiple-source models and the phase-space data agree within 1.3%, demonstrating that the models can be used for dosimetry research purposes and dose calculations in radiotherapy. PMID:24377026

  20. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator.

    PubMed

    Bol, G H; Hissoiny, S; Lagendijk, J J W; Raaymakers, B W

    2012-03-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions. PMID:22349450

  1. Improvement of trace element analysis system using RIKEN electron cyclotron resonance ion source and linear accelerator

    SciTech Connect

    Kidera, M.; Nakagawa, T.; Takahashi, K.; Enomoto, S.; Igarashi, K.; Fujimaki, M.; Ikezawa, E.; Kamigaito, O.; Kase, M.; Goto, A.; Yano, Y.

    2006-03-15

    We have developed a new analytical system that consists of an electron cyclotron resonance ion source (RIKEN 18 GHz ECRIS) and a RIKEN heavy ion linear accelerator (RILAC). This system is called trace element analysis using electron cyclotron resonance ion source and RILAC (ECRIS-RILAC-TEA). ECRIS-RILAC-TEA has several advantages as described in the work of Kidera et al. [AIP Conf. Proc. 749, 85 (2005)]. However, many experimental results during the last several years revealed a few problems: (1) large background contamination in the ECRIS, particularly at the surface of the plasma chamber wall, (2) high counting of the ionization chamber and the data taking system that is monitored by the direct beam from the accelerator, and (3) difficulty in the selection of the pilot sample and pilot beam production from the ECRIS for the purpose of normalization. In order to overcome these problems, we conducted several test experiments over the past year. In this article, we report the experimental results in detail and future plans for improving this system.

  2. Absolute energy calibration of FD by an electron linear accelerator for Telescope Array

    SciTech Connect

    Shibata, T.; Fukushima, M.; Ikeda, D.; Enomoto, A.; Fukuda, S.; Furukawa, K.; Ikeda, M.; Iwase, H.; Kakihara, K.; Kamitani, T.; Kondo, Y.; Ohsawa, S.; Sagawa, H.; Sanami, T.; Satoh, M.; Shidara, T.; Sugimura, T.; Yoshida, M.; Matthews, J. N.; Ogio, S.

    2011-09-22

    The primary energy of the ultra-high energy cosmic rays(UHECR) are measured with the number of fluorescence photons which are detected with fluorescence detectors(FD) in the Telescope Array experiment(TA). Howevery since there is large uncertinty as 19% in the measurement of the energy scale, the most important theme is improvement of the energy calibration. The electron light source(ELS) is a small electron linear accelerator for new energy calibration. The ELS is located 100 m far from the FD station, and injects electron beam which is accelerated to 40 MeV energy into the sky. We can calibrate the FD energy scale by detection the air shower directly which is generated by the electron beam. The ELS was developed in KEK Japan, and moved to the TA site in March 2009. We started the beam operation in September 2010, in consequence we detected the air shower which was generated by electron beam in the air. The output kinetic energy of the electron beam was 41.1 MeV, we adjusted the output charge from 40 to 140 pC/pulse. We expect that we can improve the uncertinty of the energy scale to about 10% with the ELS, futhermore ELS will be a very useful apparatus for R and D of future UHECR observation.

  3. The development of seismic guidelines for the Stanford Linear Accelerator Center

    SciTech Connect

    Huggins, R.

    1996-08-01

    This paper describes the development of Seismic Guidelines for the Stanford Linear Accelerator Center (SLAC). Although structures have always been built conservatively, SLAC management decided to review and update their seismic guidelines. SLAC is about mid-way between the epicenters of the 8.3 Richter magnitude 1906 San Francisco and the 7.2 Loma Prieta Earthquakes. The west end of the two mile long electron/positron particle accelerator lies a half mile from the large San Andreas Fault. Suggestions for seismic planning processes were solicited from local computer manufacturing firms, universities, and federal laboratories. A Committee of the various stakeholders in SLAC`s seismic planning retained an internationally known Seismic Planning Consultant and reviewed relevant standards and drafted Guidelines. A panel of seismic experts was convened to help define the hazard, site response spectra, probabilistic analysis of shaking, and near field effects. The Facility`s structures were assigned to seismic classes of importance, and an initial assessment of a sample of a dozen buildings conducted. This assessment resulted in emergency repairs to one structure, and provided a {open_quotes}reality basis{close_quotes} for establishing the final Guidelines and Administrative Procedures, and a program to evaluate remaining buildings, shielding walls, tunnels, and other special structures.

  4. Numerical modeling and experiments by forming electron beam for relativistic klystron on linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Furman, Edvin G.; Isakov, Petr Y.; Sulakshin, Alexander S.; Vasil'ev, Vasilii V.

    1995-09-01

    The results of numercial modeling and experimental investigations of the linear induction accelerator operation where relativistic clystron is applied as a load are presented. The electron gun with the dielectric emitter (DE) is employed as the injector for this system. As a result of this investigation, the electro-optical system has been successfully realized allowing us to form electron beams sufficiently homogeneous in cross-section with current level of no less than 150 A. Compression of the beam from DE at the first stage of moving is supported, essentially, due to a system of focusing electrodes, similar to Pierce optics. Then, compression of the beam to the size required for its free motion in the anode tract and clystron's drift tube occurs in increasing external magnetic field. In this purpose, the configuration of tracking magnetic field was calculated and suitable magnetic system has been made. The results obtained experimentally are in good agreement with calculated data. With emitting dielectric surface of 50mm in diameter the laminar electron beam of 8mm in diameter was obtained. At accelerating voltage of 400kV and pulse duration of 120ns, required for the excitation of the X-band clystron amplifier the value of current was of the order of 200 A. Prints of the beam on targets allow us to make the same findings.

  5. Surface dose for five telecobalt machines, 6MV photon beam from four linear accelerators and a Hi-Art Tomotherapy.

    PubMed

    Kinhikar, Rajesh A

    2008-10-01

    The purpose of this study was to estimate the surface dose for five telecobalt machines (four from Best Theratronics Limited, Canada, one from Panacea Medical Technologies, India), 6 MV photon beam (static) from four linear accelerators (three Varian linear accelerators and one Siemens) and Hi-Art Tomotherapy unit. The surface dose was measured with Thermoluminescent dosimeters in phantom slabs. For Tomotherapy 6 MV beam the surface dose was estimated as 32% while it was 35%, 33%, and 36% for Clinac 6EX, Clinac 2100CD, and Clinac 2100C linear accelerators, respectively. Similarly, the surface dose for 6 MV photon beam from Primus linear accelerator was estimated as 35%. Surface doses from telecobalt machines Equinox-80, Elite-80, Th-780C, Th-780, and Bhabhatron-II was found to be 30%, 29.1%, 27.8%, 29.3%, and 29.9% for 10 cm x 10 field size, respectively. Measured surface dose from all four linear accelerators were in good agreement with that of the Tomotherapy. The surface dose measurements were useful for Tomotherapy to predict the superficial dose during helical IMRT treatments. PMID:18783288

  6. [Evaluation of a risk communication approach for maintenance staff working with induced radioactivity in medical linear accelerators].

    PubMed

    Watanabe, Hiroshi; Yamaguchi, Ichiro; Maehara, Yoshiaki; Koizumi, Mitsue; Fujibuchi, Toshioh; Kida, Tetsuo; Tsukamoto, Atsuko; Horitsugi, Genki; Hiraki, Hitoshi; Kimura, Yumi; Oyama, Masaya

    2013-12-01

    In order to promote consensus building on decommissioning operation rules for medical linear accelerators in Japan, we carried out a risk communication (RC) approach mainly providing knowledge for maintenance staff regarding induced radioactivity. In February 2012, we created a booklet (26 pages) to present an overview of the amended law, the mechanism and the distribution of induced radioactivity showing the actual radiation dose rate around a linear accelerator and actual exposure doses to staff. In addition, we co-sponsored a seminar for workers in this field organized by the Japan Medical Imaging and Radiological Systems Industries Association to explain the contents of this booklet, and answer questions regarding induced radioactivity of linear accelerators as an RC program. As a result, the understanding of staff regarding the regulations on maximum X-ray energy on linear accelerators (P<0.05), and the outline of clearance systems (P<0.01), were facilitated by RC. In addition, we found that about 70% of maintenance staff considered that the cooling time for decommissioning operation depended on the situation. Our RC approach suggests that consensus building should be used to make rules on decommissioning operations for linear medical accelerators.

  7. SU-E-T-52: Beam Data Comparison for 20 Linear Accelerators in One Network

    SciTech Connect

    LoSasso, T; Lim, S; Tang, G; Chan, M; Li, J; Obcemea, C; Song, Y; Ma, R; Yang, G; Xiong, W; Huang, D; Burman, C; Mechalakos, J; Hunt, M

    2014-06-01

    Purpose: To compare photon beam data for the 20 Varian linear accelerators (TrueBeam, iX, and EX models) in use at five centers in the same network with the intent to model with one set of beam data in Eclipsec. Methods: Varian linear accelerators, TrueBeam (3), 21 EX, iX, and Trilogy (14), and 6 EX (3), installed between 1999 and 2014 have their 6 MV and 15 MV x-ray beams reevaluated. Full commissioning, including output factors (St), percent depth doses (PDD), and off-axis profiles, was recently performed for a TrueBeam with a cc04 ion chamber in an IBA Blue phantom. Similarly, a subset of beam data for each of the other accelerators was measured recently as follows: for 3×3, 10×10, and 30×30 cm{sup 2} field sizes, flatness and penumbra (80–20%) were measured at dmax and 10 cm depths, PDD were measured at 10 and 20 cm depths, and St were measured at 5 cm depth. Measurement results for all machines were compared. Results: For 15 high-energy (6 and 15 MV) and 3 low-energy machines (6MV only): 1) PDD agreed within 1.4% at 10 and 20 cm depths; 2) penumbra agreed within 1.0 mm at dmax and 10 cm depths; 3) flatness was within 1.3% at dmax and 10 cm depths; and 4) with exception of the three low energy machines, output factors were within 1.1% and 0.5% for 3×3 and 30×30 cm{sup 2}, respectively. Measurement uncertainty, not quantified here, accounts for some of these differences. Conclusion: Measured beam data from 15 high-energy Varian linacs are consistent enough that they can be classified using one beam data set in Eclipse. Two additional high-energy machines are removed from this group until their data are further confirmed. Three low-energy machines will be in a separate class based upon differences in output factors (St)

  8. Radiation survey around a Liac mobile electron linear accelerator for intraoperative radiation therapy.

    PubMed

    Ciocca, Mario; Pedroli, Guido; Orecchia, Roberto; Guido, Andrea; Cattani, Federica; Cambria, Raffaella; Veronesi, Umberto

    2009-01-01

    The aim of this study was to perform a detailed analysis of the air kerma values around a Liac mobile linear accelerator working in a conventional operating room (OR) for IORT. The Liac delivers electron beams at 4, 6, 8 and 10 MeV. A radiation survey to determine photon leakage and scatter consisted of air kerma measurements on a spherical surface of 1.5 m radius, centered on the titanium exit window of the accelerating structure. Measurements were taken using a 30 cm3 calibrated cylindrical ion chamber in three orthogonal planes, at the maximum electron energy. For each point, 10 Gy was delivered. At selected points, the quality of x-ray radiation was determined by using lead sheets, and measurements were performed for all energies to investigate the energy dependence of stray radiation. The photon scatter contribution from the metallic internal patient-shielding in IORT, used to protect normal tissues underlying the target, was also evaluated. At seven locations outside the OR, the air kerma values derived from in-room measurements were compared to measurements directly performed using a survey meter. The results, for a delivered dose of 10 Gy, showed that the air kerma values ranged from approximately 6 microGy (upper and rear sides of the Liac) to 320 microGy (lateral to beam stopper) in the two orthogonal vertical planes, while values lower than 18 microGy were found in the horizontal plane. At 10 MeV, transmission behind 1 cm lead shield was found to be 42%. The use of internal shielding appeared to increase the photon scatter only slightly. Air kerma values outside the OR were generally lower than 1 mGy for an annual workload of 200 patients. Thus, the Liac can safely work in a conventional OR, while the need for additional shielding mainly depends on patient workload. Our data can be useful for centers planning to implement an IORT program using a mobile linear accelerator, permitting radiation safety personnel to estimate in advance the shielding required

  9. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Hua, J. F.; Wan, Y.; Guo, B.; Pai, C.-H.; Wu, Y. P.; Li, F.; Chu, H.-H.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; Wang, J.; Lu, W.

    2016-06-01

    A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.

  10. X-Band klystron development at the Stanford Linear Accelerator Center

    SciTech Connect

    Sprehn, D.W.

    2000-03-24

    X-band klystrons capable of 75 MW and utilizing either solenoidal or Periodic Permanent Magnet (PPM) focusing are undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC). The klystron development is part of an effort to realize components necessary for the construction of the Next Linear Collider (NLC). SLAC has completed a solenoidal-focused X-band klystron development effort to study the design and operation of tubes with beam microperveances of 1.2. As of early 2000, nine 1.2{micro}K klystrons have been tested to 50 MW at 1.5{micro}s. The first 50 MW PPM klystron, constructed in 1996, was designed with a 0.6 {micro}K beam at 465 kV and uses a 5-cell traveling-wave output structure. Recent testing of this tube at wider pulsewidths has reached 50 MW at 55% efficiency, 2.4{micro}s and 60 Hz. A 75 MW PPM klystron prototype was constructed in 1998 and has reached the NLC design target of 75 MW at 1.5 {micro}s. A new 75 MW PPM klystron design, which is aimed at reducing the cost and increasing the reliability of multi-megawatt PPM klystrons, is under investigation. The tube is scheduled for testing during early 2001.

  11. X-band klystron development at the Stanford Linear Accelerator Center

    NASA Astrophysics Data System (ADS)

    Sprehn, Daryl; Caryotakis, George; Jongewaard, Erik N.; Phillips, Robert M.; Vlieks, A.

    2000-07-01

    X-band klystrons capable of 75 MW and utilizing either solenoidal or Periodic Permanent Magnet (PPM) focusing are undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC). The klystron development is part of an effort to realize components necessary for the construction of the Next Linear Collider (NLC). SLAC has completed a solenoidal-focused X-band klystron development effort to study the design and operation of tubes with beam microperveances of 1.2. As of early 2000, nine 1.2 (mu) K klystrons have been tested to 50 MW at 1.5 microsecond(s) . The first 50 MW PPM klystron, constructed in 1996, was designed with a 0.6 (mu) K beam at 465 kV and uses a 5-cell traveling-wave output structure. Recent testing of this tube at wider pulsewidths has reached 50 MW at 55% efficiency, 2.4 microsecond(s) and 60 Hz. A 75 MW PPM klystron prototype was constructed in 1998 and has reached the NLC design target of 75 MW at 1.5 microsecond(s) . A new 75 MW PPM klystron design, which is aimed at reducing the cost and increasing the reliability of multi- megawatt PPM klystrons, is under investigation. The tube is scheduled for testing during early 2001.

  12. LETTER: On the exactness of the cavity method for weighted b-matchings on arbitrary graphs and its relation to linear programs

    NASA Astrophysics Data System (ADS)

    Bayati, Mohsen; Borgs, Christian; Chayes, Jennifer; Zecchina, Riccardo

    2008-06-01

    We consider the general problem of finding the minimum weight b-matching on arbitrary graphs. We prove that, whenever the linear programing relaxation of the problem has no fractional solutions, then the cavity or belief propagation equations converge to the correct solution both for synchronous and asynchronous updating.

  13. A 50-MeV mm-wave electron linear accelerator system for production of tunable short wavelength synchrotron radiation

    SciTech Connect

    Nassiri, A.; Kustom, R.L.; Mills, F.E.; Kang, Y.W.; Matthews, P.J.; Grudzien, D.; Song, J.; Horan, D.; Feinerman, A.D.; Willke, T.L. |; Henke, H. |

    1993-12-31

    The Advanced Photon Source (APS) at Argonne in collaboration with the University of Illinois at Chicago and the University of Wisconsin at Madison is developing a new millimeter wavelength, 50-MeV electron linear accelerator system for production of coherent tunable wavelength synchrotron radiation. Modern micromachining techniques based on deep etch x-ray lithography, LIGA (Lithografie, Galvanoformung, Abformung), capable of producing high-aspect ratio structures are being considered for the fabrication of the accelerating components.

  14. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators.

    PubMed

    Ricker, R E; Myneni, G R

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles.

  15. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    PubMed

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.

  16. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  17. Stable multi-wavelength PM-EDF linear cavity laser employing a TCF fiber comb filter and an SNOLM

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Su, Wei; Wang, Xin; Han, Bolin

    2013-10-01

    We propose and demonstrate a stable multi-wavelength polarization-maintaining erbium-doped fiber (PM-EDF) linear cavity laser by using a twin-core fiber (TCF) comb filter and a symmetric nonlinear optical loop mirror (SNOLM). Using a homemade TCF, we fabricate a TCF comb filter with a channel spacing of 0.29 nm. By adjusting the polarization controllers (PCs) carefully, the polarization hole-burning effect in the PM-EDF is enhanced and intensity-dependent loss is produced by a nonlinear polarization rotation effect in the SNOLM. As a result, the homogeneous broadening gain medium is effectively reduced, and the mode competition of the EDF is distinctly suppressed. With only 100 mW pump power, up to 52-wavelength stable outputs with channel spacing of 0.29 nm have been achieved at room temperature. The power fluctuation and wavelength shift for each lasing wavelength are less than 0.1 dB and 0.02 nm in an hour, respectively. Experimental results illustrate that the proposed structure of a fiber laser can realize multi-wavelength outputs with high stability at lower pump power.

  18. Measurement of changes in linear accelerator photon energy through flatness variation using an ion chamber array

    SciTech Connect

    Gao Song; Balter, Peter A.; Rose, Mark; Simon, William E.

    2013-04-15

    Purpose: To compare the use of flatness versus percent depth dose (PDD) for determining changes in photon beam energy for a megavoltage linear accelerator. Methods: Energy changes were accomplished by adjusting the bending magnet current by up to {+-}15% in 5% increments away from the value used clinically. Two metrics for flatness, relative flatness in the central 80% of the field (Flat) and average maximum dose along the diagonals normalized by central axis dose (F{sub DN}), were measured using a commercially available planner ionization chamber array. PDD was measured in water at depths of 5 and 10 cm in 3 Multiplication-Sign 3 cm{sup 2} and 10 Multiplication-Sign 10 cm{sup 2} fields using a cylindrical chamber. Results: PDD was more sensitive to changes in energy when the beam energy was increased than when it was decreased. For the 18-MV beam in particular, PDD was not sensitive to energy reductions below the nominal energy. The value of Flat was found to be more sensitive to decreases in energy than to increases, with little sensitivity to energy increases above the nominal energy for 18-MV beams. F{sub DN} was the only metric that was found to be sensitive to both increases and reductions of energy for both the 6- and 18-MV beams. Conclusions: Flatness based metrics were found to be more sensitive to energy changes than PDD, In particular, F{sub DN} was found to be the most sensitive metric to energy changes for photon beams of 6 and 18 MV. The ionization chamber array allows this metric to be conveniently measured as part of routine accelerator quality assurance.

  19. Acceleration Sensing, Feedback Cooling, and Nonlinear Dynamics with Nanoscale Cavity-Optomechanical Devices

    NASA Astrophysics Data System (ADS)

    Krause, Alexander Grey

    Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg). In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10. In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to

  20. Optimal technique of linear accelerator-based stereotactic radiosurgery for tumors adjacent to brainstem.

    PubMed

    Chang, Chiou-Shiung; Hwang, Jing-Min; Tai, Po-An; Chang, You-Kang; Wang, Yu-Nong; Shih, Rompin; Chuang, Keh-Shih

    2016-01-01

    Stereotactic radiosurgery (SRS) is a well-established technique that is replacing whole-brain irradiation in the treatment of intracranial lesions, which leads to better preservation of brain functions, and therefore a better quality of life for the patient. There are several available forms of linear accelerator (LINAC)-based SRS, and the goal of the present study is to identify which of these techniques is best (as evaluated by dosimetric outcomes statistically) when the target is located adjacent to brainstem. We collected the records of 17 patients with lesions close to the brainstem who had previously been treated with single-fraction radiosurgery. In all, 5 different lesion catalogs were collected, and the patients were divided into 2 distance groups-1 consisting of 7 patients with a target-to-brainstem distance of less than 0.5cm, and the other of 10 patients with a target-to-brainstem distance of ≥ 0.5 and < 1cm. Comparison was then made among the following 3 types of LINAC-based radiosurgery: dynamic conformal arcs (DCA), intensity-modulated radiosurgery (IMRS), and volumetric modulated arc radiotherapy (VMAT). All techniques included multiple noncoplanar beams or arcs with or without intensity-modulated delivery. The volume of gross tumor volume (GTV) ranged from 0.2cm(3) to 21.9cm(3). Regarding the dose homogeneity index (HIICRU) and conformity index (CIICRU) were without significant difference between techniques statistically. However, the average CIICRU = 1.09 ± 0.56 achieved by VMAT was the best of the 3 techniques. Moreover, notable improvement in gradient index (GI) was observed when VMAT was used (0.74 ± 0.13), and this result was significantly better than those achieved by the 2 other techniques (p < 0.05). For V4Gy of brainstem, both VMAT (2.5%) and IMRS (2.7%) were significantly lower than DCA (4.9%), both at the p < 0.05 level. Regarding V2Gy of normal brain, VMAT plans had attained 6.4 ± 5%; this was significantly better (p < 0.05) than

  1. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    PubMed

    Hossain, Murshed

    2014-01-01

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  2. Output trends, characteristics, and measurements of three megavoltage radiotherapy linear accelerators.

    PubMed

    Hossain, Murshed

    2014-01-01

    The purpose of this study is to characterize and understand the long-term behavior of the output from megavoltage radiotherapy linear accelerators. Output trends of nine beams from three linear accelerators over a period of more than three years are reported and analyzed. Output, taken during daily warm-up, forms the basis of this study. The output is measured using devices having ion chambers. These are not calibrated by accredited dosimetry laboratory, but are baseline-compared against monthly output which is measured using calibrated ion chambers. We consider the output from the daily check devices as it is, and sometimes normalized it by the actual output measured during the monthly calibration of the linacs. The data show noisy quasi-periodic behavior. The output variation, if normalized by monthly measured "real' output, is bounded between ± 3%. Beams of different energies from the same linac are correlated with a correlation coefficient as high as 0.97, for one particular linac, and as low as 0.44 for another. These maximum and minimum correlations drop to 0.78 and 0.25 when daily output is normalized by the monthly measurements. These results suggest that the origin of these correlations is both the linacs and the daily output check devices. Beams from different linacs, independent of their energies, have lower correlation coefficient, with a maximum of about 0.50 and a minimum of almost zero. The maximum correlation drops to almost zero if the output is normalized by the monthly measured output. Some scatter plots of pairs of beam output from the same linac show band-like structures. These structures are blurred when the output is normalized by the monthly calibrated output. Fourier decomposition of the quasi-periodic output is consistent with a 1/f power law. The output variation appears to come from a distorted normal distribution with a mean of slightly greater than unity. The quasi-periodic behavior is manifested in the seasonally averaged output

  3. A semiempirical method for the description of off-center ratios at depth from linear accelerators

    SciTech Connect

    Tsalafoutas, I.A.; Xenofos, S.; Yakoumakis, E.; Nikoletopoulos, S

    2003-06-30

    A semiempirical method for the description of the off-center ratios (OCR) at depth from linear accelerators is presented, which is based on a method originally developed for cobalt-60 {sup 60}Co units. The OCR profile is obtained as the sum of 2 components: the first describes an OCR similar to that from a {sup 60}Co unit, which approximates that resulting from the modification of the original x-ray intensity distribution by the flattening filter; the second takes into account the variable effect of the flattening filter on dose profile for different depths and field sizes, by considering the existence of a block and employing the negative field concept. The above method is formulated in a mathematical expression, where the parameters involved are obtained by fitting to the measured OCRs. Using this method, OCRs for various depths and field sizes, from a Philips SL-20 for the 6 MV x-ray beam and a Siemens Primus 23, for both the 6-MV and 23-MV x-ray beams, were reproduced with good accuracy. Furthermore, OCRs for other fields and depths that were not included in the fitting procedure were calculated using linear interpolation to estimate the values of the parameters. The results indicate that this method can be used to calculate OCR profiles for a wide range of depths and field sizes from a measured set of data and may be used for monitor unit calculations for off-axis points using a standard geometry. It may also be useful as a quality control tool to verify the accuracy of lacking profiles calculated by a treatment planning system.

  4. Vestibular short latency responses to pulsed linear acceleration in unanesthetized animals

    NASA Technical Reports Server (NTRS)

    Jones, T. A.

    1992-01-01

    Linear acceleration transients were used to elicit vestibular compound action potentials in non-invasively prepared, unanesthetized animals for the first time (chicks, Gallus domesticus, n = 33). Responses were composed of a series of up to 8 dominant peaks occurring within 8 msec of the stimulus. Response amplitudes for 1.0 g stimulus ranged from 1 to 10 microV. A late, slow, triphasic, anesthesia-labile component was identified as a dominant response feature in unanesthetized animals. Amplitudes increased and latencies decreased as stimulus intensity was increased (MANOVA P less than 0.05). Linear regression slope ranges were: amplitudes = 1.0-5.0 microV/g; latencies = -300 to -1100 microseconds/g. Thresholds for single polarity stimuli (0.035 +/- 0.022 g, n = 11) were significantly lower than those of alternating polarity (0.074 +/- 0.028 g, n = 18, P less than 0.001). Bilateral labyrinthectomy eliminated responses whereas bilateral extirpation of cochleae did not significantly change response thresholds. Intense acoustic masking (100/104 dB SL) produced no effect in 2 animals, but did produce small to moderate effects on response amplitudes in 7 others. Changes were attributed to effects on vestibular end organs. Results of unilateral labyrinth blockade (tetrodotoxin) suggest that P1 and N1 preferentially reflect ipsilateral eighth nerve compound action potentials whereas components beyond approximately 2 msec reflect activity from vestibular neurons that depend on both labyrinths. The results demonstrate that short latency vestibular compound action potentials can be measured in unanesthetized, non-invasively prepared animals.

  5. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study.

    PubMed

    Mancosu, Pietro; Fogliata, Antonella; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta

    2016-01-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system.

  6. Small-scale Magnetic Islands in the Solar Wind and Their Role in Particle Acceleration. II. Particle Energization inside Magnetically Confined Cavities

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Malandraki, Olga E.; le Roux, Jakobus A.; Webb, Gary M.

    2016-08-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ˜0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1-1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  7. Small-scale Magnetic Islands in the Solar Wind and Their Role in Particle Acceleration. II. Particle Energization inside Magnetically Confined Cavities

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Malandraki, Olga E.; le Roux, Jakobus A.; Webb, Gary M.

    2016-08-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ˜0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  8. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  9. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    SciTech Connect

    Nath, Subrata

    2010-09-07

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer {approx}1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  10. Complications Following Linear Accelerator Based Stereotactic Radiation for Cerebral Arteriovenous Malformations

    SciTech Connect

    Skjoth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars; Jespersen, Bo; Juhler, Marianne

    2010-06-01

    Purpose: Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles. Method and Materials: A database was searched for all patients with AVMs. We included 50 consecutive patients with a minimum of 24 months follow-up (24-51 months). Results: AVM occlusion was verified in 78% of patients (39/50). AVM occlusion without new deficits (excellent outcome) was obtained in 44%. Good or fair outcome (AVM occlusion with mild or moderate new deficits) was seen in 30%. Severe complications after AVM occlusion occurred in 4% with a median interval of 15 months after treatment (range, 1-26 months). Conclusions: We applied an AVM grading score developed at the Mayo Clinic to predict probable outcome after radiosurgery in a large patient population treated with Gamma knife. A cutoff above and below a score of 1.5 could not discriminate between the likelihood of having an excellent outcome (approximately 45%). The chance of having an excellent or good outcome was slightly higher in patients with an AVM score below 1.5 (64% vs. 57%).

  11. Focal spot estimation of an Elekta dedicated stereotactic linear accelerator Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Herwiningsih, S.; Fielding, A.

    2016-03-01

    The most challenging task in the Monte Carlo modelling of linear accelerators (linacs) is an accurate determination of the electron beam parameters striking the target which are characterised by the mean energy of incident electron beam and the electron beam shape, referred to as the focal spot. This work aims to determine the optimum focal spot size and shape of Elekta Axesse linac equipped with the Beam Modulator. A BEAMnrc Monte-Carlo linac model has been developed to produce a 6 MV photon beam. Different square field sizes of 2.4 cm, 4 cm and 10.4 cm were simulated in a simple water phantom with a source-to-surface distance of 100 cm. The simulation was performed with the incident electron beam energy of 6.2 MeV with the focal spot size varied between 0.1 and 0.3 cm with an increment of 0.05 cm. The field width (50% relative dose) and penumbra width (distance between 80% - 20% relative dose) of the simulated profiles were compared with the measured profiles. This work found that an elliptical shape of the focal spot results in a better match with the measured data with the size of 0.2 cm in X-axis and 0.3 cm in Y-axis direction.

  12. Absolute energy calibration of the Telescope Array fluorescence detector with an electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Beitollahi, M.; Fukushima, M.; Ikeda, D.; Langely, K.; Matthews, J. N.; Sagawa, H.; Shin, B. K.; Thomas, S. B.; Thomson, G. B.

    2013-06-01

    The Electron Light Source(ELS) is a new light source for the absolute energy calibration of cosmic ray Fluorescence Detector(FD) telescopes. The ELS is a compact electron linear accelerator with a typical output of 109 electrons per pulse at 40 MeV. We fire the electron beam vertically into the air 100 m in front of the telescope. The electron beam excites the gases of the atmosphere in the same way as the charged particles of the cosmic ray induced extensive air shower. The gases give off the same light with the same wavelength dependence. The light passes through a small amount of atmosphere and is collected by the same mirror and camera with their wavelength dependence. In this way we can use the electron beam from ELS to make an end-to-end calibration of the telescope. In September 2010, we began operation of the ELS and the FD telescopes observed the fluorescence photons from the air shower which was generated by the electron beam. In this article, we will reort the status of analysis of the absolute energy calibration with data which was taken in September 2010, and beam monitor study in November 2011.

  13. Application of variance reduction techniques in Monte Carlo simulation of clinical electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Zoubair, M.; El Bardouni, T.; El Gonnouni, L.; Boulaich, Y.; El Bakkari, B.; El Younoussi, C.

    2012-01-01

    Computation time constitutes an important and a problematic parameter in Monte Carlo simulations, which is inversely proportional to the statistical errors so there comes the idea to use the variance reduction techniques. These techniques play an important role in reducing uncertainties and improving the statistical results. Several variance reduction techniques have been developed. The most known are Transport cutoffs, Interaction forcing, Bremsstrahlung splitting and Russian roulette. Also, the use of a phase space seems to be appropriate to reduce enormously the computing time. In this work, we applied these techniques on a linear accelerator (LINAC) using the MCNPX computer Monte Carlo code. This code gives a rich palette of variance reduction techniques. In this study we investigated various cards related to the variance reduction techniques provided by MCNPX. The parameters found in this study are warranted to be used efficiently in MCNPX code. Final calculations are performed in two steps that are related by a phase space. Results show that, comparatively to direct simulations (without neither variance-reduction nor phase space), the adopted method allows an improvement in the simulation efficiency by a factor greater than 700.

  14. Matching the 6-MV photon beam characteristics of two dissimilar linear accelerators.

    PubMed

    Marshall, M G

    1993-01-01

    A new prototype 6-MV flattening filter was designed by the manufacturer for use in a popular dual energy linear accelerator. To satisfy the contract demands, this filter was designed to produce a beam whose characteristics matched precisely with those of the 6-MV beam produced from a single photon peak energy unit from the same manufacturer and already in operation in the department. A single set of 6-MV dosimetric files for both units can now be maintained. The new filter has forced percent depth values over a wide clinical range of field sizes and depths to agree within 1.3%. Beam profiles now agree to within 1% over the useful area. For wedges with similar wedge angles, transmission factors now agree to within 1%. Standard acceptance testing performance specifications provided by the manufacturer were not adequate for clinical beam matching. The purchase contract for these units included our own specifications, which were more rigid and pertinent to our goal. Details of the effort are discussed. PMID:8309448

  15. Prototyping a large field size IORT applicator for a mobile linear accelerator

    NASA Astrophysics Data System (ADS)

    Janssen, Rogier W. J.; Faddegon, Bruce A.; Dries, Wim J. F.

    2008-04-01

    The treatment of large tumors such as sarcomas with intra-operative radiotherapy using a Mobetron® is often complicated because of the limited field size of the primary collimator and the available applicators (max Ø100 mm). To circumvent this limitation a prototype rectangular applicator of 80 × 150 mm2 was designed and built featuring an additional scattering foil located at the top of the applicator. Because of its proven accuracy in modeling linear accelerator components the design was based on the EGSnrc Monte Carlo simulation code BEAMnrc. First, the Mobetron® treatment head was simulated both without an applicator and with a standard 100 mm applicator. Next, this model was used to design an applicator foil consisting of a rectangular Al base plate covering the whole beam and a pyramid of four stacked cylindrical slabs of different diameters centered on top of it. This foil was mounted on top of a plain rectangular Al tube. A prototype was built and tested with diode dosimetry in a water tank. Here, the prototype showed clinically acceptable 80 × 150 mm2 dose distributions for 4 MeV, 6 MeV and 9 MeV, obviating the use of complicated multiple irradiations with abutting field techniques. In addition, the measurements agreed well with the MC simulations, typically within 2%/1 mm.

  16. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization.

    PubMed

    Meeks, S L; Bova, F J; Buatti, J M; Friedman, W A; Eyster, B; Kendrick, L A

    1999-11-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations.

  17. Calculated fraction of an incident current pulse that will be accelerated by an electron linear accelerator and comparisons with experimental data

    SciTech Connect

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Lewis, T.A.

    1986-05-01

    In a series of previous papers, calculated results obtained using a one-dimensional ballistic model were presented to aid in the design of a prebuncher for the Oak Ridge Electron Linear Accelerator. As part of this work, a model was developed to provide limits on the fraction of an incident current pulse that would be accelerated by the existing accelerator. In this paper experimental data on this fraction are presented and the validity of the model developed previously is tested by comparing calculated and experimental data. Part of the experimental data is used to fix the physical parameters in the model and then good agreement between the calculated results and the rest of the experimental data is obtained.

  18. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    SciTech Connect

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.

  19. Evaluation of the Propensity of Niobium to Absorb Hydrogen During Fabrication of Superconducting Radio Frequency Cavities for Particle Accelerators

    PubMed Central

    Ricker, R. E.; Myneni, G. R.

    2010-01-01

    During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles. PMID:27134791

  20. Assessment of leakage doses around the treatment heads of different linear accelerators.

    PubMed

    Lonski, P; Taylor, M L; Franich, R D; Harty, P; Kron, T

    2012-12-01

    Out-of-field doses to untargeted organs may have long-term detrimental health effects for patients treated with radiotherapy. It has been observed that equivalent treatments delivered to patients with different accelerators may result in significant differences in the out-of-field dose. In this work, the points of leakage dose are identified about the gantry of several treatment units. The origin of the observed higher doses is investigated. LiF:Mg,Cu,P thermoluminescent dosimetry has been employed to quantify the dose at a several points around the linac head of various linear accelerators (linacs): a Varian 600C, Varian 21-iX, Siemens Primus and Elekta Synergy-II. Comparisons are also made between different energy modes, collimator rotations and field sizes. Significant differences in leaked photon doses were identified when comparing the various linac models. The isocentric-waveguide 600C generally exhibits the lowest leakage directed towards the patient. The Siemens and Elekta models generally produce a greater leakage than the Varian models. The leakage 'hotspots' are evident on the gantry section housing the waveguide on the 21-iX. For all machines, there are significant differences in the x and y directions. Larger field sizes result in a greater leakage at the interface plate. There is a greater leakage around the waveguide when operating in a low-energy mode, but a greater leakage for the high-energy mode at the linac face. Of the vendors investigated, the Varian 600C showed the lowest average leakage dose. The Varian 21-iX showed double the dose of the 600C. The Elekta Synergy-II had on average four times the dose leakage than the 600C, and the Siemens Primus showed an average of five times that of the 600C. All vendors show strong differences in the x and y directions. The results offer the potential for patient-positioning strategies, linac choice and shielding strategies to reduce the leakage dose to patients.

  1. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    SciTech Connect

    Ciocca, Mario; Cantone, Marie-Claire; Veronese, Ivan; Cattani, Federica; Pedroli, Guido; Molinelli, Silvia; Vitolo, Viviana; Orecchia, Roberto

    2012-02-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42-216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy. The

  2. A collimated detection system for assessing leakage dose from medical linear accelerators at the patient plane.

    PubMed

    Lonski, P; Taylor, M L; Franich, R D; Kron, T

    2014-03-01

    Leakage radiation from linear accelerators can make a significant contribution to healthy tissue dose in patients undergoing radiotherapy. In this work thermoluminescent dosimeters (LiF:Mg,Cu,P TLD chips) were used in a focused lead cone loaded with TLD chips for the purpose of evaluating leakage dose at the patient plane. By placing the TLDs at one end of a stereotactic cone, a focused measurement device is created; this was tested both in and out of the primary beam of a Varian 21-iX linac using 6 MV photons. Acrylic build up material of 1.2 cm thickness was used inside the cone and measurements made with either one or three TLD chips at a given distance from the target. Comparing the readings of three dosimeters in one plane inside the cone offered information regarding the orientation of the cone relative to a radiation source. Measurements in the patient plane with the linac gantry at various angles demonstrated that leakage dose was approximately 0.01% of the primary beam out of field when the cone was pointed directly towards the target and 0.0025% elsewhere (due to scatter within the gantry). No specific 'hot spots' (e.g., insufficient shielding or gaps at abutments) were observed. Focused cone measurements facilitate leakage dose measurements from the linac head directly at the patient plane and allow one to infer the fraction of leakage due to 'direct' photons (along the ray-path from the bremsstrahlung target) and that due to scattered photons.

  3. Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging

    NASA Astrophysics Data System (ADS)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Yang, Yong; Xing, Lei

    2016-09-01

    Performing mechanical and geometric quality assurance (QA) tests for medical linear accelerators (LINAC) is a predominantly manual process that consumes significant time and resources. In order to alleviate this burden this study proposes a novel strategy to automate the process of performing these tests. The autonomous QA system consists of three parts: (1) a customized phantom coated with radioluminescent material; (2) an optical imaging system capable of visualizing the incidence of the radiation beam, light field or lasers on the phantom; and (3) software to process the captured signals. The radioluminescent phantom, which enables visualization of the radiation beam on the same surface as the light field and lasers, is placed on the couch and imaged while a predefined treatment plan is delivered from the LINAC. The captured images are then processed to self-calibrate the system and perform measurements for evaluating light field/radiation coincidence, jaw position indicators, cross-hair centering, treatment couch position indicators and localizing laser alignment. System accuracy is probed by intentionally introducing errors and by comparing with current clinical methods. The accuracy of self-calibration is evaluated by examining measurement repeatability under fixed and variable phantom setups. The integrated system was able to automatically collect, analyze and report the results for the mechanical alignment tests specified by TG-142. The average difference between introduced and measured errors was 0.13 mm. The system was shown to be consistent with current techniques. Measurement variability increased slightly from 0.1 mm to 0.2 mm when the phantom setup was varied, but no significant difference in the mean measurement value was detected. Total measurement time was less than 10 minutes for all tests as a result of automation. The system’s unique features of a phosphor-coated phantom and fully automated, operator independent self-calibration offer the

  4. Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging.

    PubMed

    Jenkins, Cesare H; Naczynski, Dominik J; Yu, Shu-Jung S; Yang, Yong; Xing, Lei

    2016-09-01

    Performing mechanical and geometric quality assurance (QA) tests for medical linear accelerators (LINAC) is a predominantly manual process that consumes significant time and resources. In order to alleviate this burden this study proposes a novel strategy to automate the process of performing these tests. The autonomous QA system consists of three parts: (1) a customized phantom coated with radioluminescent material; (2) an optical imaging system capable of visualizing the incidence of the radiation beam, light field or lasers on the phantom; and (3) software to process the captured signals. The radioluminescent phantom, which enables visualization of the radiation beam on the same surface as the light field and lasers, is placed on the couch and imaged while a predefined treatment plan is delivered from the LINAC. The captured images are then processed to self-calibrate the system and perform measurements for evaluating light field/radiation coincidence, jaw position indicators, cross-hair centering, treatment couch position indicators and localizing laser alignment. System accuracy is probed by intentionally introducing errors and by comparing with current clinical methods. The accuracy of self-calibration is evaluated by examining measurement repeatability under fixed and variable phantom setups. The integrated system was able to automatically collect, analyze and report the results for the mechanical alignment tests specified by TG-142. The average difference between introduced and measured errors was 0.13 mm. The system was shown to be consistent with current techniques. Measurement variability increased slightly from 0.1 mm to 0.2 mm when the phantom setup was varied, but no significant difference in the mean measurement value was detected. Total measurement time was less than 10 minutes for all tests as a result of automation. The system's unique features of a phosphor-coated phantom and fully automated, operator independent self-calibration offer the

  5. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy

    PubMed Central

    Du, Weiliang; Gao, Song; Wang, Xiaochun; Kudchadker, Rajat J.

    2012-01-01

    Purpose: Gantry sag is one of the well-known sources of mechanical imperfections that compromise the spatial accuracy of radiation dose delivery. The objectives of this study were to quantify the gantry sag on multiple linear accelerators (linacs), to investigate a multileaf collimator (MLC)-based strategy to compensate for gantry sag, and to verify the gantry sag and its compensation with film measurements. Methods: The authors used the Winston–Lutz method to measure gantry sag on three Varian linacs. A ball bearing phantom was imaged with megavolt radiation fields at 10° gantry angle intervals. The images recorded with an electronic portal imaging device were analyzed to derive the radiation isocenter and the gantry sag, that is, the superior–inferior wobble of the radiation field center, as a function of the gantry angle. The authors then attempted to compensate for the gantry sag by applying a gantry angle-specific correction to the MLC leaf positions. The gantry sag and its compensation were independently verified using film measurements. Results: Gantry sag was reproducible over a six-month measurement period. The maximum gantry sag was found to vary from 0.7 to 1.0 mm, depending on the linac and the collimator angle. The radiation field center moved inferiorly (i.e., away from the gantry) when the gantry was rotated from 0° to 180°. After the MLC leaf position compensation was applied at 90° collimator angle, the maximum gantry sag was reduced to <0.2 mm. The film measurements at gantry angles of 0° and 180° verified the inferior shift of the radiation fields and the effectiveness of MLC compensation. Conclusions: The results indicate that gantry sag on a linac can be quantitatively measured using a simple phantom and an electronic portal imaging device. Reduction of gantry sag is feasible by applying a gantry angle-specific correction to MLC leaf positions at 90° collimator angle. PMID:22482636

  6. Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging.

    PubMed

    Jenkins, Cesare H; Naczynski, Dominik J; Yu, Shu-Jung S; Yang, Yong; Xing, Lei

    2016-09-01

    Performing mechanical and geometric quality assurance (QA) tests for medical linear accelerators (LINAC) is a predominantly manual process that consumes significant time and resources. In order to alleviate this burden this study proposes a novel strategy to automate the process of performing these tests. The autonomous QA system consists of three parts: (1) a customized phantom coated with radioluminescent material; (2) an optical imaging system capable of visualizing the incidence of the radiation beam, light field or lasers on the phantom; and (3) software to process the captured signals. The radioluminescent phantom, which enables visualization of the radiation beam on the same surface as the light field and lasers, is placed on the couch and imaged while a predefined treatment plan is delivered from the LINAC. The captured images are then processed to self-calibrate the system and perform measurements for evaluating light field/radiation coincidence, jaw position indicators, cross-hair centering, treatment couch position indicators and localizing laser alignment. System accuracy is probed by intentionally introducing errors and by comparing with current clinical methods. The accuracy of self-calibration is evaluated by examining measurement repeatability under fixed and variable phantom setups. The integrated system was able to automatically collect, analyze and report the results for the mechanical alignment tests specified by TG-142. The average difference between introduced and measured errors was 0.13 mm. The system was shown to be consistent with current techniques. Measurement variability increased slightly from 0.1 mm to 0.2 mm when the phantom setup was varied, but no significant difference in the mean measurement value was detected. Total measurement time was less than 10 minutes for all tests as a result of automation. The system's unique features of a phosphor-coated phantom and fully automated, operator independent self-calibration offer the

  7. Linear Accelerator-Based Radiosurgery Alone for Arteriovenous Malformation: More Than 12 Years of Observation

    SciTech Connect

    Matsuo, Takayuki Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi

    2014-07-01

    Purpose: Although radiosurgery is an accepted treatment method for intracranial arteriovenous malformations (AVMs), its long-term therapeutic effects have not been sufficiently evaluated, and many reports of long-term observations are from gamma-knife facilities. Furthermore, there are few reported results of treatment using only linear accelerator (LINAC)-based radiosurgery (LBRS). Methods and Materials: Over a period of more than 12 years, we followed the long-term results of LBRS treatment performed in 51 AVM patients. Results: The actuarial obliteration rates, after a single radiosurgery session, at 3, 5, 10, and 15 years were 46.9%, 54.0%, 64.4%, and 68.0%, respectively; when subsequent radiosurgeries were included, the rates were 46.9%, 61.3%, 74.2%, and 90.3%, respectively. Obliteration rates were significantly related to target volumes ≥4 cm{sup 3}, marginal doses ≥12 Gy, Spetzler-Martin grades (1 vs other), and AVM scores ≥1.5; multivariate analyses revealed a significant difference for target volumes ≥4 cm{sup 3}. The postprocedural actuarial symptomatic radiation injury rates, after a single radiation surgery session, at 5, 10, and 15 years were 12.3%, 16.8%, and 19.1%, respectively. Volumes ≥4 cm{sup 3}, location (lobular or other), AVM scores ≥1.5, and the number of radiosurgery were related to radiation injury incidence; multivariate analyses revealed significant differences associated with volumes ≥4 cm{sup 3} and location (lobular or other). Conclusions: Positive results can be obtained with LBRS when performed with a target volume ≤4 cm{sup 3}, an AVM score ≤1.5, and ≥12 Gy radiation. Bleeding and radiation injuries may appear even 10 years after treatment, necessitating long-term observation.

  8. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests.

    PubMed

    Barnes, Michael P; Rowshanfarzad, Pejman; Greer, Peter B

    2016-01-01

    In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry-mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gan-try speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11°/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality-assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time-resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PMID:27167282

  9. Irradiated Volume as a Predictor of Brain Radionecrosis After Linear Accelerator Stereotactic Radiosurgery

    SciTech Connect

    Blonigen, Brian J.; Steinmetz, Ryan D.; Levin, Linda

    2010-07-15

    Purpose: To investigate the correlation between volume of brain irradiated by stereotactic radiosurgery (SRS) and the incidence of symptomatic and asymptomatic brain radionecrosis (RN). Methods and Materials: A retrospective analysis was performed of patients treated with single-fraction SRS for brain metastases at our institution. Patients with at least 6-month imaging follow-up were included and diagnosed with RN according to a combination of criteria, including appearance on serial imaging and histology. Univariate and multivariate analyses were performed to determine the predictive value of multiple variables, including volume of brain receiving a specific dose (V8 Gy-V18 Gy). Results: Sixty-three patients were reviewed, with a total of 173 lesions. Most patients (63%) had received previous whole-brain irradiation. Mean prescribed SRS dose was 18 Gy. Symptomatic RN was observed in 10% and asymptomatic RN in 4% of lesions treated. Multivariate regression analysis showed V8 Gy-V16 Gy to be most predictive of symptomatic RN (p < 0.0001). Threshold volumes for significant rise in RN rates occurred between the 75th and 90th percentiles, with a midpoint volume of 10.45 cm{sup 3} for V10 Gy and 7.85 cm{sup 3} for V12 Gy. Conclusions: Analysis of patient and treatment variables revealed V8 Gy-V16 Gy to be the best predictors for RN using linear accelerator-based single-fraction SRS for brain metastases. We propose that patients with V10 Gy >10.5 cm{sup 3} or V12 Gy >7.9 cm{sup 3} be considered for hypofractionated rather than single-fraction treatment, to minimize the risk of symptomatic RN.

  10. A Comparison Between GATE and MCNPX Monte Carlo Codes in Simulation of Medical Linear Accelerator.

    PubMed

    Sadoughi, Hamid-Reza; Nasseri, Shahrokh; Momennezhad, Mahdi; Sadeghi, Hamid-Reza; Bahreyni-Toosi, Mohammad-Hossein

    2014-01-01

    Radiotherapy dose calculations can be evaluated by Monte Carlo (MC) simulations with acceptable accuracy for dose prediction in complicated treatment plans. In this work, Standard, Livermore and Penelope electromagnetic (EM) physics packages of GEANT4 application for tomographic emission (GATE) 6.1 were compared versus Monte Carlo N-Particle eXtended (MCNPX) 2.6 in simulation of 6 MV photon Linac. To do this, similar geometry was used for the two codes. The reference values of percentage depth dose (PDD) and beam profiles were obtained using a 6 MV Elekta Compact linear accelerator, Scanditronix water phantom and diode detectors. No significant deviations were found in PDD, dose profile, energy spectrum, radial mean energy and photon radial distribution, which were calculated by Standard and Livermore EM models and MCNPX, respectively. Nevertheless, the Penelope model showed an extreme difference. Statistical uncertainty in all the simulations was <1%, namely 0.51%, 0.27%, 0.27% and 0.29% for PDDs of 10 cm(2)× 10 cm(2) filed size, for MCNPX, Standard, Livermore and Penelope models, respectively. Differences between spectra in various regions, in radial mean energy and in photon radial distribution were due to different cross section and stopping power data and not the same simulation of physics processes of MCNPX and three EM models. For example, in the Standard model, the photoelectron direction was sampled from the Gavrila-Sauter distribution, but the photoelectron moved in the same direction of the incident photons in the photoelectric process of Livermore and Penelope models. Using the same primary electron beam, the Standard and Livermore EM models of GATE and MCNPX showed similar output, but re-tuning of primary electron beam is needed for the Penelope model.

  11. GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration

    SciTech Connect

    Mete, O. Xia, G.; Hanahoe, K.; Labiche, M.

    2015-08-15

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact, and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance evolution of a witness beam through elastic scattering from gaseous media and under transverse focusing wakefields is studied.

  12. Angular and Linear Accelerations of a Rolling Cylinder Acted by an External Force

    ERIC Educational Resources Information Center

    Oliveira, V.

    2011-01-01

    The dynamics of a cylinder rolling on a horizontal plane acted on by an external force applied at an arbitrary angle is studied with emphasis on the directions of the acceleration of the centre-of-mass and the angular acceleration of the body. If rolling occurs without slipping, there is a relationship between the directions of these…

  13. Motion-induced interruptions and postural equilibrium in linear lateral accelerations.

    PubMed

    Matsangas, P; McCauley, M E; Gehl, G; Kiser, J; Bandstra, A; Blankenship, J; Pierce, E

    2014-01-01

    This study assesses lateral tipping motion-induced interruptions (MIIs) in a simulated motion environment. The objective is to revisit MII occurrence and sway motion relationship by focusing on the frequency and acceleration of the lateral motion stimulus. Results verify that MIIs increase with increasing peak sway acceleration, but the effect of sway frequency is not as clear as that of acceleration. Complex multidirectional motions create more tipping MIIs than unidirectional motion. Research should incorporate acceleration, frequency and motion complexity as factors influencing MII occurrence. To describe a temporary loss of balance without tipping, the term 'probable' MII is introduced. This term fills the gap between the theoretical definition and a human-centred perception of an MII where loss of balance is not a binary phenomenon. The 'probable' MIIs were 16-67% more common than the 'definite' MIIs. The developed mathematical model of MII occurrence versus sway acceleration (amplitude, frequency) approximated the observed MIIs with less than 9% difference.

  14. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for

  15. Design, construction and tuning of S-band coupler for electron linear accelerator of institute for research in fundamental sciences (IPM E-linac)

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.; Abbasi Davani, F.; Lamehi Rachti, M.; Shaker, H.; Ahmadiannamin, S.

    2015-02-01

    Design and construction of an electron linear accelerator by Institute for Research in Fundamental Science (IPM) is considered as Iran's first attempt to construct such an accelerator. In order to design a linear accelerating tube, after defining the accelerating tube and buncher geometries, RF input and output couplers must be designed. In this article, firstly, a brief report on the specifications of an S-band electron linear accelerator which is in progress in the school of particles and accelerators is presented and then, the design process and construction reports of the couplers required for this accelerator are described. Through performing necessary calculations and tuning the coupling factor and resonant frequency, couplers with desired specification have been fabricated by shrinking method. The final obtained coupling factor and resonant frequency have been respectively 1.05 and 2997 MHz for the first coupler, and 0.98 and 2996.9 MHz for the second one that are close to calculation results.

  16. TESLA cavity driving with FPGA controller

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof; Romaniuk, Ryszard; Simrock, Stefan

    2005-09-01

    The digital control of the TESLA (TeV-Energy Superconducting Linear Accelerator) resonator is presented. The laboratory setup of the CHECHIA cavity in DESY-Hamburg has been driven by the FPGA (Field Programmable Gate Array) technology system. This experiment focused attention to the general recognition of the cavity features and projected control methods. The electrical model of the resonator is taken as a consideration origin. The calibration of the signal channel is considered as a key preparation for an efficient cavity driving. The identification of the resonator parameters is confirmed as a proper approach for the required performance: driving on resonance during filling and field stabilization during flattop time with reasonable power consumption. The feed-forward and feedback modes were applied successfully for the CHECHIA cavity driving. Representative results of experiments are presented for different levels of the cavity field gradient.

  17. Responses to rotating linear acceleration vectors considered in relation to a model of the otolith organs. [human oculomotor response to transverse acceleration stress

    NASA Technical Reports Server (NTRS)

    Benson, A. J.; Barnes, G. R.

    1973-01-01

    Human subjects were exposed to a linear acceleration vector that rotated in the transverse plane of the skull without angular counterrotation. Lateral eye movements showed a sinusoidal change in slow phase velocity and an asymmetry or bias in the same direction as vector rotation. A model is developed that attributes the oculomotor response to otolithic mechanisms. It is suggested that the bias component is the manifestation of torsion of the statoconial plaque relative to the base of the utricular macula and that the sinusoidal component represents the translational oscillation of the statoconia. The model subsumes a hypothetical neural mechanism which allows x- and y-axis accelerations to be resolved. Derivation of equations of motion for the statoconial plaque in torsion and translation, which take into account forces acting in shear and normal to the macula, yield estimates of bias and sinusoidal components that are in qualitative agreement with the diverse experimental findings.

  18. [Experiment studies of electron-positron interactions at the Stanford Linear Accelerator Center]. Progress report, calendar year 1993

    SciTech Connect

    Hertzbach, S.S.; Kofler, R.R.

    1993-12-31

    The High Energy Physics group at the University of Massachusetts has continued its` program of experimental studies of electron-positron interactions at the Stanford Linear Accelerator Center (SLAC). The group activities have included: analysis of data taken between 1982 and 1990 with the TPC detector at the PEP facility, continuing data collection and data analysis using the SLC/SLD facility, planning for the newly approved B-factory at SLAC, and participation in design studies for future high energy linear colliders. This report will briefly summarize these activities.

  19. Retrospective analysis of linear accelerator output constancy checks using process control techniques.

    PubMed

    Sanghangthum, Taweap; Suriyapee, Sivalee; Srisatit, Somyot; Pawlicki, Todd

    2013-01-01

    Shewhart control charts have previously been suggested as a process control tool for use in routine linear accelerator (linac) output verifications. However, a comprehensive approach to process control has not been investigated for linac output verifications. The purpose of this work is to investigate a comprehensive process control approach to linac output constancy quality assurance (QA). The RBA-3 dose constancy check was used to verify outputs of photon beams and electron beams delivered by a Varian Clinac 21EX linac. The data were collected during 2009 to 2010. Shewhart-type control charts, exponentially weighted moving average (EWMA) charts, and capability indices were applied to these processes. The Shewhart-type individuals chart (X-chart) was used and the number of data points used to calculate the control limits was varied. The parameters tested for the EWMA charts (smoothing parameter (λ) and the control limit width (L)) were λ = 0.05, L = 2.492; λ = 0.10, L = 2.703; and λ = 0.20, L = 2.860, as well as the number of points used to estimate the initial process mean and variation. Lastly, the number of in-control data points used to determine process capability (C(p)) and acceptability (C(pk)) were investigated, comparing the first in-control run to the longest in-control run of the process data. C(p) and C(pk) values greater than 1.0 were considered acceptable. The 95% confidence intervals were reported. The X-charts detected systematic errors (e.g., device setup errors). In-control run lengths on the X-charts varied from 5 to 30 output measurements (about one to seven months). EWMA charts showed in-control runs ranging from 9 to 33 output measurements (about two to eight months). The C(p) and C(pk) ratios are higher than 1.0 for all energies, except 12 and 20 MeV. However, 10 MV and 6, 9, and 16 MeV were in question when considering the 95% confidence limits. The X-chart should be calculated using 8-12 data points. For EWMA chart, using 4 data points

  20. Monte Carlo study of photon beams from medical linear accelerators: Optimization, benchmark and spectra

    NASA Astrophysics Data System (ADS)

    Sheikh-Bagheri, Daryoush

    1999-12-01

    BEAM is a general purpose EGS4 user code for simulating radiotherapy sources (Rogers et al. Med. Phys. 22, 503-524, 1995). The BEAM code is optimized by first minimizing unnecessary electron transport (a factor of 3 improvement in efficiency). The efficiency of the uniform bremsstrahlung splitting (UBS) technique is assessed and found to be 4 times more efficient. The Russian Roulette technique used in conjunction with UBS is substantially modified to make simulations additionally 2 times more efficient. Finally, a novel and robust technique, called selective bremsstrahlung splitting (SBS), is developed and shown to improve the efficiency of photon beam simulations by an additional factor of 3-4, depending on the end- point considered. The optimized BEAM code is benchmarked by comparing calculated and measured ionization distributions in water from the 10 and 20 MV photon beams of the NRCC linac. Unlike previous calculations, the incident e - energy is known independently to 1%, the entire extra-focal radiation is simulated and e- contamination is accounted for. Both beams use clinical jaws, whose dimensions are accurately measured, and which are set for a 10 x 10 cm2 field at 110 cm. At both energies, the calculated and the measured values of ionization on the central-axis in the buildup region agree within 1% of maximum dose. The agreement is well within statistics elsewhere on the central-axis. Ionization profiles match within 1% of maximum dose, except at the geometrical edges of the field, where the disagreement is up to 5% of dose maximum. Causes for this discrepancy are discussed. The benchmarked BEAM code is then used to simulate beams from the major commercial medical linear accelerators. The off-axis factors are matched within statistical uncertainties, for most of the beams at the 1 σ level and for all at the 2 σ level. The calculated and measured depth-dose data agree within 1% (local dose), at about 1% (1 σ level) statistics, at all depths past