Sample records for linear accelerator mounted

  1. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  2. The Rim Inertial Measuring System (RIMS). [to measure angular rate and linear acceleration of a moving vehicle

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1979-01-01

    The rim inertial measuring system (RIMS) is introduced and an approach for extracting angular rate and linear acceleration information from a RIMS unit is presented and discussed. The RIMS consists of one or more small annular momentum control devices (AMCDs), mounted in a strapped down configuration, which are used to measure angular rates and linear accelerations of a moving vehicle. An AMCD consists of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, and a noncontacting electromagnetic spin motor. The approach for extracting angular rate and linear acceleration information is for a single spacecraft mounted RIMS unit.

  3. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    DOEpatents

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  4. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    NASA Astrophysics Data System (ADS)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  5. Apparatus and method to pulverize rock using a superconducting electromagnetic linear motor

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex (Inventor)

    2009-01-01

    A rock pulverizer device based on a superconducting linear motor. The superconducting electromagnetic rock pulverizer accelerates a projectile via a superconducting linear motor and directs the projectile at high speed toward a rock structure that is to be pulverized by collision of the speeding projectile with the rock structure. The rock pulverizer is comprised of a trapped field superconducting secondary magnet mounted on a movable car following a track, a wire wound series of primary magnets mounted on the track, and the complete magnet/track system mounted on a vehicle used for movement of the pulverizer through a mine as well as for momentum transfer during launch of the rock breaking projectile.

  6. In Vivo Evaluation of Wearable Head Impact Sensors.

    PubMed

    Wu, Lyndia C; Nangia, Vaibhav; Bui, Kevin; Hammoor, Bradley; Kurt, Mehmet; Hernandez, Fidel; Kuo, Calvin; Camarillo, David B

    2016-04-01

    Inertial sensors are commonly used to measure human head motion. Some sensors have been tested with dummy or cadaver experiments with mixed results, and methods to evaluate sensors in vivo are lacking. Here we present an in vivo method using high speed video to test teeth-mounted (mouthguard), soft tissue-mounted (skin patch), and headgear-mounted (skull cap) sensors during 6-13 g sagittal soccer head impacts. Sensor coupling to the skull was quantified by displacement from an ear-canal reference. Mouthguard displacements were within video measurement error (<1 mm), while the skin patch and skull cap displaced up to 4 and 13 mm from the ear-canal reference, respectively. We used the mouthguard, which had the least displacement from skull, as the reference to assess 6-degree-of-freedom skin patch and skull cap measurements. Linear and rotational acceleration magnitudes were over-predicted by both the skin patch (with 120% NRMS error for a(mag), 290% for α(mag)) and the skull cap (320% NRMS error for a(mag), 500% for α(mag)). Such over-predictions were largely due to out-of-plane motion. To model sensor error, we found that in-plane skin patch linear acceleration in the anterior-posterior direction could be modeled by an underdamped viscoelastic system. In summary, the mouthguard showed tighter skull coupling than the other sensor mounting approaches. Furthermore, the in vivo methods presented are valuable for investigating skull acceleration sensor technologies.

  7. Wireless acceleration sensor of moving elements for condition monitoring of mechanisms

    NASA Astrophysics Data System (ADS)

    Sinitsin, Vladimir V.; Shestakov, Aleksandr L.

    2017-09-01

    Comprehensive analysis of the angular and linear accelerations of moving elements (shafts, gears) allows an increase in the quality of the condition monitoring of mechanisms. However, existing tools and methods measure either linear or angular acceleration with postprocessing. This paper suggests a new construction design of an angular acceleration sensor for moving elements. The sensor is mounted on a moving element and, among other things, the data transfer and electric power supply are carried out wirelessly. In addition, the authors introduce a method for processing the received information which makes it possible to divide the measured acceleration into the angular and linear components. The design has been validated by the results of laboratory tests of an experimental model of the sensor. The study has shown that this method provides a definite separation of the measured acceleration into linear and angular components, even in noise. This research contributes an advance in the range of methods and tools for condition monitoring of mechanisms.

  8. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  9. Analysis and application of a velocity command motor as a reaction mass actuator

    NASA Technical Reports Server (NTRS)

    Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.

    1990-01-01

    A commercially available linear stepper motor is applied as a reaction mass (RM) actuator. With the actuator operating in the (RM) relative-velocity command mode, open-loop and closed-loop testing is performed to determine operational limits. With the actuator mounted on a simple beam structure, root strain, RM acceleration, or beam acceleration is used in the feedback loop to augment the structural damping. The RM relative position is also used as feedback to ensure that the RM remains centered.

  10. Analysis of linear head accelerations from collegiate football impacts.

    PubMed

    Brolinson, P Gunnar; Manoogian, Sarah; McNeely, David; Goforth, Mike; Greenwald, Richard; Duma, Stefan

    2006-02-01

    Sports-related concussions result in 300,000 brain injuries in the United States each year. We conducted a study utilizing an in-helmet system that measures and records linear head accelerations to analyze head impacts in collegiate football. The Head Impact Telemetry (HIT) System is an in-helmet system with six spring-mounted accelerometers and an antenna that transmits data via radio frequency to a sideline receiver and laptop computer system. A total of 11,604 head impacts were recorded from the Virginia Tech football team throughout the 2003 and 2004 football seasons during 22 games and 62 practices from a total of 52 players. Although the incidence of injury data are limited, this study presents an extremely large data set from human head impacts that provides valuable insight into the lower limits of head acceleration that cause mild traumatic brain injuries.

  11. Acceleration environment of payloads while being handled by the Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Turnbull, J. F.

    1983-01-01

    Described in this paper is the method used in the Draper Remote Manipulator System (RMS) Simulation to compute linear accelerations at the point on the SPAS01 payload where its accelerometers are mounted. Simulated accelerometer output for representative on-orbit activities is presented. The objectives of post-flight analysis of SPAS01 data are discussed. Finally, the point is made that designers of acceleration-dependent payloads may have an interest in the capability of simulating the acceleration environment of payloads while under the control of the overall Payload Deployment and retrieval System (PDRS) that includes the Orbiter and its attitude control system as well as the Remote Manipulator Arm.

  12. A method for estimating mount isolations of powertrain mounting systems

    NASA Astrophysics Data System (ADS)

    Qin, Wu; Shangguan, Wen-Bin; Luo, Guohai; Xie, Zhengchao

    2018-07-01

    A method for calculating isolation ratios of mounts at a powertrain mounting systems (PMS) is proposed assuming a powertrain as a rigid body and using the identified powertrain excitation forces and the measured IPI (input point inertance) of mounting points at the body side. With measured accelerations of mounts at powertrain and body sides of one Vehicle (Vehicle A), the excitation forces of a powertrain are identified using conversational method firstly. Another Vehicle (Vehicle B) has the same powertrain as that of Vehicle A, but with different body and mount configuration. The accelerations of mounts at powertrain side of a PMS on Vehicle B are calculated using the powertrain excitation forces identified from Vehicle A. The identified forces of the powertrain are validated by comparing the calculated and the measured accelerations of mounts at the powertrain side of the powertrain on Vehicle B. A method for calculating acceleration of mounting point at body side for Vehicle B is presented using the identified powertrain excitation forces and the measured IPI at a connecting point between car body and mount. Using the calculated accelerations of mounts at powertrain side and body side at different directions, the isolation ratios of a mount are then estimated. The isolation ratios are validated using the experiment, which verified the proposed methods for estimating isolation ratios of mounts. The developed method is beneficial for optimizing mount stiffness to meet mount isolation requirements before prototype.

  13. Interpretation of body-mounted accelerometry in flying animals and estimation of biomechanical power

    PubMed Central

    Spivey, R. J.; Bishop, C. M.

    2013-01-01

    An idealized energy fluctuation model of a bird's body undergoing horizontal flapping flight is developed, focusing on the biomechanical power discernible to a body-mounted accelerometer. Expressions for flight body power constructed from root mean square dynamic body accelerations and wingstroke frequency are derived from first principles and presented in dimensionally appropriate units. As wingstroke frequency increases, the model generally predicts a gradual transition in power from a linear to an asymptotically cubic relationship. However, the onset of this transition and the degree to which this occurs depends upon whether and how forward vibrations are exploited for temporary energy storage and retrieval. While this may vary considerably between species and individual birds, it is found that a quadrature phase arrangement is generally advantageous during level flight. Gravity-aligned vertical acceleration always enters into the calculation of body power, but, whenever forward acceleration becomes relevant, its contribution is subtractive. Several novel kinematic measures descriptive of flapping flight are postulated, offering fresh insights into the processes involved in airborne locomotion. The limitations of the model are briefly discussed, and departures from its predictions during ascending and descending flight evaluated. These findings highlight how body-mounted accelerometers can offer a valuable, insightful and non-invasive technique for investigating the flight of free-ranging birds and bats. PMID:23883951

  14. Interpretation of body-mounted accelerometry in flying animals and estimation of biomechanical power.

    PubMed

    Spivey, R J; Bishop, C M

    2013-10-06

    An idealized energy fluctuation model of a bird's body undergoing horizontal flapping flight is developed, focusing on the biomechanical power discernible to a body-mounted accelerometer. Expressions for flight body power constructed from root mean square dynamic body accelerations and wingstroke frequency are derived from first principles and presented in dimensionally appropriate units. As wingstroke frequency increases, the model generally predicts a gradual transition in power from a linear to an asymptotically cubic relationship. However, the onset of this transition and the degree to which this occurs depends upon whether and how forward vibrations are exploited for temporary energy storage and retrieval. While this may vary considerably between species and individual birds, it is found that a quadrature phase arrangement is generally advantageous during level flight. Gravity-aligned vertical acceleration always enters into the calculation of body power, but, whenever forward acceleration becomes relevant, its contribution is subtractive. Several novel kinematic measures descriptive of flapping flight are postulated, offering fresh insights into the processes involved in airborne locomotion. The limitations of the model are briefly discussed, and departures from its predictions during ascending and descending flight evaluated. These findings highlight how body-mounted accelerometers can offer a valuable, insightful and non-invasive technique for investigating the flight of free-ranging birds and bats.

  15. A velocity command stepper motor for CSI application

    NASA Technical Reports Server (NTRS)

    Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.

    1991-01-01

    The application of linear force actuators for vibration suppression of flexible structures has received much attention in recent years. A linear force actuator consists of a movable mass that is restrained such that its motion is linear. By application of a force to the mass, an equal and opposite reaction force can be applied to a structure. The use of an industrial linear stepper motor as a reaction mass actuator is described. With the linear stepper motor mounted on a simple test beam and the NASA Mini-Mast, output feedback of acceleration or displacement are used to augment the structural damping of the test articles. Significant increases in damping were obtained for both the test beam and the Mini-Mast.

  16. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  17. In vivo evaluation of wearable head impact sensors

    PubMed Central

    Wu, Lyndia C.; Nangia, Vaibhav; Bui, Kevin; Hammoor, Bradley; Kurt, Mehmet; Hernandez, Fidel; Kuo, Calvin; Camarillo, David B.

    2015-01-01

    Inertial sensors are commonly used to measure human head motion.(R1–3) Some sensors have been tested with dummy or cadaver experiments with mixed results, and methods to evaluate sensors in vivo are lacking. Here we present an in vivo(R3–10) method using high speed video to test teeth-mounted (mouthguard), soft tissue-mounted (skin patch), and headgear-mounted (skull cap) sensors during 6–13g(R1–20) sagittal soccer head impacts. Sensor coupling to the skull (R1–3) was quantified by displacement from an ear-canal reference. Mouthguard displacements were within video measurement error (<1mm), while the skin patch and skull cap displaced up to 4mm and 13mm from the ear-canal reference, respectively. We used the mouthguard, which had the least displacement from skull (R1–5), as the reference to assess 6-degree-of-freedom skin patch and skull cap measurements. Linear and rotational acceleration magnitudes were over-predicted by both the skin patch (with 120% NRMS error for amag, 290% for αmag(R1–6)) and the skull cap (320% NRMS error for amag, 500% for αmag(R1–6)). Such over-predictions were largely due to out-of-plane motion. To model sensor error, we found that in-plane skin patch acceleration peaks in the anterior-posterior direction could be modeled by an underdamped viscoelastic system. In summary, the mouthguard showed tighter skull coupling than the other sensor mounting approaches(R1–7). Furthermore, the in vivo methods presented are valuable for investigating skull acceleration sensor technologies. PMID:26289941

  18. The Microgravity Isolation Mount: A Linearized State-Space Model a la Newton and Kane

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.

    1999-01-01

    Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design. The equations are first derived using Newton's Second Law directly; then a second derivation (i.e., validation) of the same equations is provided, using Kane's approach.

  19. Effects of Transducer Installation on Unsteady Pressure Measurements on Oscillating Blades

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2006-01-01

    Unsteady pressures were measured above the suction side of a blade that was oscillated to simulate blade stall flutter. Measurements were made at blade oscillation frequencies up to 500 Hz. Two types of miniature pressure transducers were used: surface-mounted flat custom-made, and conventional miniature, body-mounted transducers. The signals of the surface-mounted transducers are significantly affected by blade acceleration, whereas the signals of body-mounted transducers are practically free of this distortion. A procedure was introduced to correct the signals of surface-mounted transducers to rectify the signal distortion due to blade acceleration. The signals from body-mounted transducers, and corrected signals from surface-mounted transducers represent true unsteady pressure signals on the surface of a blade subjected to forced oscillations. However, the use of body-mounted conventional transducers is preferred for the following reasons: no signal corrections are needed for blade acceleration, the conventional transducers are noticeably less expensive than custom-made flat transducers, the survival rate of body-mounted transducers is much higher, and finally installation of body-mounted transducers does not disturb the blade surface of interest.

  20. Validation of a Custom Instrumented Retainer Form Factor for Measuring Linear and Angular Head Impact Kinematics.

    PubMed

    Miller, Logan E; Kuo, Calvin; Wu, Lyndia C; Urban, Jillian E; Camarillo, David B; Stitzel, Joel D

    2018-05-01

    Head impact exposure in popular contact sports is not well understood, especially in the youth population, despite recent advances in impact-sensing technology which has allowed widespread collection of real-time head impact data. Previous studies indicate that a custom-instrumented mouthpiece is a superior method for collecting accurate head acceleration data. The objective of this study was to evaluate the efficacy of mounting a sensor device inside an acrylic retainer form factor to measure six-degrees-of-freedom (6DOF) head kinematic response. This study compares 6DOF mouthpiece kinematics at the head center of gravity (CG) to kinematics measured by an anthropomorphic test device (ATD). This study found that when instrumentation is mounted in the rigid retainer form factor, there is good coupling with the upper dentition and highly accurate kinematic results compared to the ATD. Peak head kinematics were correlated with r2 > 0.98 for both rotational velocity and linear acceleration and r2 = 0.93 for rotational acceleration. These results indicate that a rigid retainer-based form factor is an accurate and promising method of collecting head impact data. This device can be used to study head impacts in helmeted contact sports such as football, hockey, and lacrosse as well as nonhelmeted sports such as soccer and basketball. Understanding the magnitude and frequency of impacts sustained in various sports using an accurate head impact sensor, such as the one presented in this study, will improve our understanding of head impact exposure and sports-related concussion.

  1. Track profile approximation using railcar body acceleration data.

    DOT National Transportation Integrated Search

    2014-12-01

    Accelerations are frequently measured from the car body of a rail vehicle, which is mounted above one or more suspension : systems. Measuring accelerations in the car body is largely done for convenience, as mounting an accelerometer to a truck or ax...

  2. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.

  3. Measuring unsteady pressure on rotating compressor blades

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Grant, H. P.; Lanati, G. A.

    1979-01-01

    Miniature semiconductor strain gage pressure transducers mounted in several arrangements were studied. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results show no failures of transducers or mountings and indicate an uncertainty of unsteady pressure measurement of approximately + or - 6 percent + 0.1 kPa for a typical application. Two configurations were used on a rotating fan flutter program. Examples of transducer data and correction factors are presented.

  4. Optimal Control Design using an H(sub 2) Method for the Glovebox Integrated Microgravity Isolation Technology (G-Limit)

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Hampton, R. David

    2002-01-01

    The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H(sub 2) norms. Comparison of the performance and robustness to plant uncertainty for this control design approach is included in the discussion.

  5. Frequency Weighted H2 Control Design for the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT)

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Hampton, R. David

    2004-01-01

    The acceleration environment on the International Space Station (ISS) exceeds the requirements of many microgravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) has been built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. The g-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform, for mounting science payloads, from the nominal acceleration environment. The system utilizes payload-acceleration, relative-position, and relative-orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. The present work documents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H2 norms. Comparison of performance and robustness to plant uncertainty for this control design approach is included in the discussion. System performance is demonstrated in the presence of plant modeling error.

  6. Optimal Control Design Using an H2 Method for the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT)

    NASA Technical Reports Server (NTRS)

    Calhoun, Phillip C.; Hampton, R. David; Whorton, Mark S.

    2001-01-01

    The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for micro-gravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current command to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for both frequency-weighted H(sub 2) and H(sub infinity) norms. Comparison of the performance and robustness to plant uncertainty for these two optimal control design approaches are included in the discussion.

  7. Experiments on the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, J.; Niederhaus, C.

    2000-01-01

    Richtmyer-Meshkov (R-M) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and possibly become turbulent given the proper initial conditions. R-M instability is similar to the Rayleigh-Taylor (R-T) instability, which is generated when the two fluids undergo a constant acceleration. R-M instability is a fundamental fluid instability that is important to fields ranging from astrophysics to high-speed combustion. For example, R-M instability is currently the limiting factor in achieving a net positive yield with inertial confinement fusion. The experiments described here utilize a novel technique that circumvents many of the experimental difficulties previously limiting the study of the R-M instability. A Plexiglas tank contains two unequal density liquids and is gently oscillated horizontally to produce a controlled initial fluid interface shape. The tank is mounted to a sled on a high speed, low friction linear rail system, constraining the main motion to the vertical direction. The sled is released from an initial height and falls vertically until it bounces off of a movable spring, imparting an impulsive acceleration in the upward direction. As the sled travels up and down the rails, the spring retracts out of the way, allowing the instability to evolve in free-fall until impacting a shock absorber at the end of the rails. The impulsive acceleration provided to the system is measured by a piezoelectric accelerometer mounted on the tank, and a capacitive accelerometer measures the low-level drag of the bearings. Planar Laser-Induced Fluorescence is used for flow visualization, which uses an Argon ion laser to illuminate the flow and a CCD camera, mounted to the sled, to capture images of the interface. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The amplitude of the disturbance during the experiment is measured and compared to theory. The results show good agreement (within 10%) with linear stability theory up to nondimensional amplitude ka = 0.7 (wavenumber x amplitude). These results hold true for an initial ka (before acceleration) of -0.7 less than ka less than -0.06, while the linear theory was developed for absolute value of ka much less than 1. In addition, a third order weakly nonlinear perturbation theory is shown to be accurate for amplitudes as large as ka = 1.3, even though the interface becomes double-valued at ka = 1.1. As time progresses, the vorticity on the interface concentrates, and the interface spirals around the alternating sign vortex centers to form a mushroom pattern. At higher Reynolds Number (based on circulation), an instability of the vortex cores has been observed. While time limitations of the apparatus prevent determination of a critical Reynolds Number, the lowest Reynolds Number this vortex instability has been observed at is 5000.

  8. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 6. Vestibular reactions to lateral acceleration following ten days of weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, A. P.; Young, L. R.

    1986-01-01

    Tests of otolith function were performed pre-flight and post-flight on the science crew of the first Spacelab Mission with a rail-mounted linear acceleration sled. Four tests were performed using horizontal lateral (y-axis) acceleration: perception of linear motion, a closed loop nulling task, dynamic ocular torsion, and lateral eye deviations. The motion perception test measured the time to detect the onset and direction of near threshold accelerations. Post-flight measures of threshold and velocity constant obtained during the days immediately following the mission showed no consistent pattern of change among the four crewmen compared to their pre-flight baseline other than an increased variability of response. In the closed loop nulling task, crewmen controlled the motion of the sled and attempted to null a computer-generated random disturbance motion. When performed in the light, no difference in ability was noted between pre-flight and post-flight. In the dark, however, two of the four crewmen exhibited somewhat enhanced performance post-flight. Dynamic ocular torsion was measured in response to sinusoidal lateral acceleration which produces a gravitionertial stimulus equivalent to lateral head tilt without rotational movement of the head. Results available for two crewmen suggest a decreased amplitude of sinusoidal ocular torsion when measured on the day of landing (R+0) and an increasing amplitude when measured during the week following the mission.

  9. Validation of Force Limited Vibration Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rice, Chad; Buehrle, Ralph D.

    2003-01-01

    Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.

  10. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets.

    PubMed

    Jaffray, D A; Drake, D G; Moreau, M; Martinez, A A; Wong, J W

    1999-10-01

    Dose escalation in conformal radiation therapy requires accurate field placement. Electronic portal imaging devices are used to verify field placement but are limited by the low subject contrast of bony anatomy at megavoltage (MV) energies, the large imaging dose, and the small size of the radiation fields. In this article, we describe the in-house modification of a medical linear accelerator to provide radiographic and tomographic localization of bone and soft-tissue targets in the reference frame of the accelerator. This system separates the verification of beam delivery (machine settings, field shaping) from patient and target localization. A kilovoltage (kV) x-ray source is mounted on the drum assembly of an Elekta SL-20 medical linear accelerator, maintaining the same isocenter as the treatment beam with the central axis at 90 degrees to the treatment beam axis. The x-ray tube is powered by a high-frequency generator and can be retracted to the drum-face. Two CCD-based fluoroscopic imaging systems are mounted on the accelerator to collect MV and kV radiographic images. The system is also capable of cone-beam tomographic imaging at both MV and kV energies. The gain stages of the two imaging systems have been modeled to assess imaging performance. The contrast-resolution of the kV and MV systems was measured using a contrast-detail (C-D) phantom. The dosimetric advantage of using the kV imaging system over the MV system for the detection of bone-like objects is quantified for a specific imaging geometry using a C-D phantom. Accurate guidance of the treatment beam requires registration of the imaging and treatment coordinate systems. The mechanical characteristics of the treatment and imaging gantries are examined to determine a localizing precision assuming an unambiguous object. MV and kV radiographs of patients receiving radiation therapy are acquired to demonstrate the radiographic performance of the system. The tomographic performance is demonstrated on phantoms using both the MV and the kV imaging system, and the visibility of soft-tissue targets is assessed. Characterization of the gains in the two systems demonstrates that the MV system is x-ray quantum noise-limited at very low spatial frequencies; this is not the case for the kV system. The estimates of gain used in the model are validated by measurements of the total gain in each system. Contrast-detail measurements demonstrate that the MV system is capable of detecting subject contrasts of less than 0.1% (at 6 and 18 MV). A comparison of the kV and MV contrast-detail performance indicates that equivalent bony object detection can be achieved with the kV system at significantly lower doses (factors of 40 and 90 lower than for 6 and 18 MV, respectively). The tomographic performance of the system is promising; soft-tissue visibility is demonstrated at relatively low imaging doses (3 cGy) using four laboratory rats. We have integrated a kV radiographic and tomographic imaging system with a medical linear accelerator to allow localization of bone and soft-tissue structures in the reference frame of the accelerator. Modeling and experiments have demonstrated the feasibility of acquiring high-quality radiographic and tomographic images at acceptable imaging doses. Full integration of the kV and MV imaging systems with the treatment machine will allow on-line radiographic and tomographic guidance of field placement.

  11. Photon spectral characteristics of dissimilar 6 MV linear accelerators.

    PubMed

    Hinson, William H; Kearns, William T; deGuzman, Allan F; Bourland, J Daniel

    2008-05-01

    This work measures and compares the energy spectra of four dosimetrically matched 6 MV beams, generated from four physically different linear accelerators. The goal of this work is twofold. First, this study determines whether the spectra of dosimetrically matched beams are measurably different. This study also demonstrates that the spectra of clinical photon beams can be measured as a part of the beam data collection process for input to a three-dimensional (3D) treatment planning system. The spectra of 6 MV beams that are dosimetrically matched for clinical use were studied to determine if the beam spectra are similarly matched. Each of the four accelerators examined had a standing waveguide, but with different physical designs. The four accelerators were two Varian 2100C/Ds (one 6 MV/18 MV waveguide and one 6 MV/10 MV waveguide), one Varian 600 C with a vertically mounted waveguide and no bending magnet, and one Siemens MD 6740 with a 6 MV/10 MV waveguide. All four accelerators had percent depth dose curves for the 6 MV beam that were matched within 1.3%. Beam spectra were determined from narrow beam transmission measurements through successive thicknesses of pure aluminum along the central axis of the accelerator, made with a graphite Farmer ion chamber with a Lucite buildup cap. An iterative nonlinear fit using a Marquardt algorithm was used to find each spectrum. Reconstructed spectra show that all four beams have similar energy distributions with only subtle differences, despite the differences in accelerator design. The measured spectra of different 6 MV beams are similar regardless of accelerator design. The measured spectra show excellent agreement with those found by the auto-modeling algorithm in a commercial 3D treatment planning system that uses a convolution dose calculation algorithm. Thus, beam spectra can be acquired in a clinical setting at the time of commissioning as a part of the routine beam data collection.

  12. Prediction of force and acceleration control spectra for Space Shuttle orbiter sidewall-mounted payloads

    NASA Technical Reports Server (NTRS)

    Hipol, Philip J.

    1990-01-01

    The development of force and acceleration control spectra for vibration testing of Space Shuttle (STS) orbiter sidewall-mounted payloads requiresreliable estimates of the sidewall apparent weight and free (i.e. unloaded) vibration during lift-off. The feasibility of analytically predicting these quantities has been investigated through the development and analysis of a finite element model of the STS cargo bay. Analytical predictions of the sidewall apparent weight were compared with apparent weight measurements made on OV-101, and analytical predictions of the sidewall free vibration response during lift-off were compared with flight measurements obtained from STS-3 and STS-4. These analysis suggest that the cargo bay finite element model has potential application for the estimation of force and acceleration control spectra for STS sidewall-mounted payloads.

  13. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator

    PubMed Central

    Putha, Suman Kumar; Saxena, P. U.; Banerjee, S.; Srinivas, Challapalli; Vadhiraja, B. M.; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K. Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (St) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. Sts were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (Diso,TPS), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (Diso,Transit) from the measured Sts. A locally fabricated pelvic phantom validated the estimations of Diso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The Diso,Transit agreement with Diso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is −1.37% ±2.03% (n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery. PMID:28144114

  14. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator.

    PubMed

    Putha, Suman Kumar; Saxena, P U; Banerjee, S; Srinivas, Challapalli; Vadhiraja, B M; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (S t ) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. S t s were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (D iso,TPS ), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (D iso,Transit ) from the measured S t s. A locally fabricated pelvic phantom validated the estimations of D iso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The D iso,Transit agreement with D iso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is -1.37% ±2.03% ( n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery.

  15. Enhanced Video-Oculography System

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; MacDougall, Hamish G.

    2009-01-01

    A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time.

  16. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  17. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  18. Three-dimensional repositioning accuracy of semiadjustable articulator cast mounting systems.

    PubMed

    Tan, Ming Yi; Ung, Justina Youlin; Low, Ada Hui Yin; Tan, En En; Tan, Keson Beng Choon

    2014-10-01

    In spite of its importance in prosthesis precision and quality, the 3-dimensional repositioning accuracy of cast mounting systems has not been reported in detail. The purpose of this study was to quantify the 3-dimensional repositioning accuracy of 6 selected cast mounting systems. Five magnetic mounting systems were compared with a conventional screw-on system. Six systems on 3 semiadjustable articulators were evaluated: Denar Mark II with conventional screw-on mounting plates (DENSCR) and magnetic mounting system with converter plates (DENCON); Denar Mark 330 with in-built magnetic mounting system (DENMAG) and disposable mounting plates; and Artex CP with blue (ARTBLU), white (ARTWHI), and black (ARTBLA) magnetic mounting plates. Test casts with 3 high-precision ceramic ball bearings at the mandibular central incisor (Point I) and the right and left second molar (Point R; Point L) positions were mounted on 5 mounting plates (n=5) for all 6 systems. Each cast was repositioned 10 times by 4 operators in random order. Nine linear (Ix, Iy, Iz; Rx, Ry, Rz; Lx, Ly, Lz) and 3 angular (anteroposterior, mediolateral, twisting) displacements were measured with a coordinate measuring machine. The mean standard deviations of the linear and angular displacements defined repositioning accuracy. Anteroposterior linear repositioning accuracy ranged from 23.8 ±3.7 μm (DENCON) to 4.9 ±3.2 μm (DENSCR). Mediolateral linear repositioning accuracy ranged from 46.0 ±8.0 μm (DENCON) to 3.7 ±1.5 μm (ARTBLU), and vertical linear repositioning accuracy ranged from 7.2 ±9.6 μm (DENMAG) to 1.5 ±0.9 μm (ARTBLU). Anteroposterior angular repositioning accuracy ranged from 0.0084 ±0.0080 degrees (DENCON) to 0.0020 ±0.0006 degrees (ARTBLU), and mediolateral angular repositioning accuracy ranged from 0.0120 ±0.0111 degrees (ARTWHI) to 0.0027 ±0.0008 degrees (ARTBLU). Twisting angular repositioning accuracy ranged from 0.0419 ±0.0176 degrees (DENCON) to 0.0042 ±0.0038 degrees (ARTBLA). One-way ANOVA found significant differences (P<.05) among all systems for Iy, Ry, Lx, Ly, and twisting. Generally, vertical linear displacements were less likely to reach the threshold of clinical detectability compared with anteroposterior or mediolateral linear displacements. The overall repositioning accuracy of DENSCR was comparable with 4 magnetic mounting systems (DENMAG, ARTBLU, ARTWHI, ARTBLA). DENCON exhibited the worst repositioning accuracy for Iy, Ry, Lx, Ly, and twisting. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    NASA Astrophysics Data System (ADS)

    Bykov, Yu. A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2016-12-01

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350-400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.

  20. Linear transformer and primary low-inductance switch and capacitor modules for fast charging of PFL

    NASA Astrophysics Data System (ADS)

    Bykov, Yu A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.

    2017-05-01

    A step-up linear pulse transformer and a modular primary powering system were developed for fast (≈350 ns) charging of a pulse forming line (PFL) of a high-current electron accelerator. The linear transformer is assembled of a set of 20 inductors with circular ferromagnetic cores and one-turn primary windings. The secondary turn is formed by housing tube walls and a voltage adder with a film-glycerol insulation installed inside of the inductors. The primary powering system assembles 10 modules, each of them is a low-inductance site of two capacitors of 0,35 µF and one gas switch mounted at the same enclosure. The total stored energy is 5.5 kJ at the charging voltage of 40 kV. According to test results, the equivalent parameters at the output of the transformer are the next: a capacity - 17.5 nF, an inductance - 2 µH, a resistance - 3.2 Ohms.

  1. Submicrosecond linear pulse transformer for 800 kV voltage with modular low-inductance primary power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.

    A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted inmore » the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.« less

  2. Biomechanics of head injury in olympic taekwondo and boxing.

    PubMed

    Fife, G P; O'Sullivan, D; Pieter, W

    2013-12-01

    The purpose was to examine differences between taekwondo kicks and boxing punches in resultant linear head acceleration (RLA), head injury criterion (HIC15), peak head velocity, and peak foot and fist velocities. Data from two existing publications on boxing punches and taekwondo kicks were compared. For taekwondo head impacts a Hybrid II Crash Dummy (Hybrid II) head was instrumented with a tri-axial accelerometer mounted inside the Hybrid II head. The Hybrid II was fixed to a height-adjustable frame and fitted with a protective taekwondo helmet. For boxing testing, a Hybrid III Crash Dummy head was instrumented with an array of tri-axial accelerometers mounted at the head centre of gravity. Differences in RLA between the roundhouse kick (130.11±51.67 g) and hook punch (71.23±32.19 g, d = 1.39) and in HIC15 (clench axe kick: 162.63±104.10; uppercut: 24.10±12.54, d = 2.29) were observed. Taekwondo kicks demonstrated significantly larger magnitudes than boxing punches for both RLA and HIC.

  3. The acceleration dependent validity and reliability of 10 Hz GPS.

    PubMed

    Akenhead, Richard; French, Duncan; Thompson, Kevin G; Hayes, Philip R

    2014-09-01

    To examine the validity and inter-unit reliability of 10 Hz GPS for measuring instantaneous velocity during maximal accelerations. Experimental. Two 10 Hz GPS devices secured to a sliding platform mounted on a custom built monorail were towed whilst sprinting maximally over 10 m. Displacement of GPS devices was measured using a laser sampling at 2000 Hz, from which velocity and mean acceleration were derived. Velocity data was pooled into acceleration thresholds according to mean acceleration. Agreement between laser and GPS measures of instantaneous velocity within each acceleration threshold was examined using least squares linear regression and Bland-Altman limits of agreement (LOA). Inter-unit reliability was expressed as typical error (TE) and a Pearson correlation coefficient. Mean bias ± 95% LOA during accelerations of 0-0.99 ms(-2) was 0.12 ± 0.27 ms(-1), decreasing to -0.40 ± 0.67 ms(-1) during accelerations >4 ms(-2). Standard error of the estimate ± 95% CI (SEE) increased from 0.12 ± 0.02 ms(-1) during accelerations of 0-0.99 ms(-2) to 0.32 ± 0.06 ms(-1) during accelerations >4 ms(-2). TE increased from 0.05 ± 0.01 to 0.12 ± 0.01 ms(-1) during accelerations of 0-0.99 ms(-2) and >4 ms(-2) respectively. The validity and reliability of 10 Hz GPS for the measurement of instantaneous velocity has been shown to be inversely related to acceleration. Those using 10 Hz GPS should be aware that during accelerations of over 4 ms(-2), accuracy is compromised. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project

    NASA Astrophysics Data System (ADS)

    Shu, D.; Shvyd'ko, Y.; Amann, J.; Emma, P.; Stoupin, S.; Quintana, J.

    2013-03-01

    As the result of collaborations between the Advanced Photon Source (APS), Argonne National Laboratory, and the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory, we have designed and constructed a diamond crystal monochromator for the LCLS hard x-ray self-seeding project. The novel monochromator is ultrahigh-vacuum compatible to meet the LCLS linear accelerator vacuum environmental requirement. A special graphite holder was designed for strain-free mount of the 110-μm thin synthetic diamond crystal plate provided by Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM). An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the thin-film diamond holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Optical encoders, limit switches, and hardware stops are established in the mechanism to ensure system reliability and to meet the accelerator personal and equipment safety interlock requirements. Molybdenum shields are installed in the monochromator to protect the encoders and associated electronics from radiation damage. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.

  5. Decoupling analysis for a powertrain mounting system with a combination of hydraulic mounts

    NASA Astrophysics Data System (ADS)

    Hu, Jinfang; Chen, Wuwei; Huang, He

    2013-07-01

    The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally varying stiffness and damping characteristics, and the influence of the spectrally-varying properties of the hydraulic mounts on the powertrain system cannot be ignored. To overcome the deficiency, an analytical quasi-linear model of the hydraulic mount and the coupled properties of the powertrain and hydraulic mounts system are formulated. The influence of the hydraulic mounts on the TRA decoupling of a powertrain system is analytically examined in terms of eigensolutions, frequency, and impulse responses, and then a new analytical axiom is proposed based on the TRA decoupling indices. With the experimental setup of a fixed decoupler hydraulic mount in the context of non-resonant dynamic stiffness testing procedure, the quasi-linear model of the hydraulic mount is verified by comparing the predictions with the measurement. And the quasi-linear formulation of the coupled system is also verified by comparing the frequency responses with the numerical results obtained by the direct inversion method. Finally, the mounting system with a combination of hydraulic mounts is redesigned in terms of the stiffness, damping and mount locations by satisfying the new axiom. The frequency and time domain results of the redesigned system demonstrate that the torque roll axis of the redesigned powertrain mounting system is indeed decoupled in the presence of hydraulic mounts (given oscillating torque or impulsive torque excitation). The proposed research provides an important basis and method for the research on a powertrain system with spectrally-varying mount properties, especially for the TRA decoupling.

  6. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  7. Human occupants in low-speed frontal sled tests: effects of pre-impact bracing on chest compression, reaction forces, and subject acceleration.

    PubMed

    Kemper, Andrew R; Beeman, Stephanie M; Madigan, Michael L; Duma, Stefan M

    2014-01-01

    The purpose of this study was to investigate the effects of pre-impact bracing on the chest compression, reaction forces, and accelerations experienced by human occupants during low-speed frontal sled tests. A total of twenty low-speed frontal sled tests, ten low severity (∼2.5g, Δv=5 kph) and ten medium severity (∼5g, Δv=10 kph), were performed on five 50th-percentile male human volunteers. Each volunteer was exposed to two impulses at each severity, one relaxed and the other braced prior to the impulse. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour and anterior-posterior sternum deflection. Three-axis accelerometer cubes were attached to the sternum, 7th cervical vertebra, and sacrum of each subject. In addition, three linear accelerometers and a three-axis angular rate sensor were mounted to a metal mouthpiece worn by each subject. Seatbelt tension load cells were attached to the retractor, shoulder, and lap portions of the standard three-point driver-side seatbelt. In addition, multi-axis load cells were mounted to each interface between the subject and the test buck to quantify reaction forces. For relaxed tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, all belt forces, and three resultant reaction forces (right foot, seatpan, and seatback). For braced tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, and two resultant reaction forces (right foot and seatpan). Bracing did not have a significant effect on the occupant accelerations during the low severity tests, but did result in a significant decrease in peak resultant sacrum linear acceleration during the medium severity tests. Bracing was also found to significantly reduce peak shoulder and retractor belt forces for both test severities, and peak lap belt force for the medium test severity. In contrast, bracing resulted in a significant increase in the peak resultant reaction force for the right foot and steering column at both test severities. Chest compression due to belt loading was observed for all relaxed subjects at both test severities, and was found to increase significantly with increasing severity. Conversely, chest compression due to belt loading was essentially eliminated during the braced tests for all but one subject, who sustained minor chest compression due to belt loading during the medium severity braced test. Overall, the data from this study illustrate that muscle activation has a significant effect on the biomechanical response of human occupants in low-speed frontal impacts.

  8. Force Limited Vibration Test of HESSI Imager

    NASA Technical Reports Server (NTRS)

    Amato, Deborah; Pankow, David; Thomsen, Knud

    2000-01-01

    The High Energy Solar Spectroscopic Imager (HESSI) is a solar x-ray and gamma-ray observatory scheduled for launch in November 2000. Vibration testing of the HESSI imager flight unit was performed in August 1999. The HESSI imager consists of a composite metering tube, two aluminum trays mounted to the tube on titanium flexure mounts, and nine modulation grids mounted on each tray. The vibration tests were acceleration controlled and force limited, in order to prevent overtesting. The force limited strategy reduced the shaker force and notched the acceleration at resonances. The test set-up, test levels, and results are presented. The development of the force limits is also discussed. The imager successfully survived the vibration testing.

  9. SU-F-T-668: Irradiating Mouse Brain with a Clinical Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Torres, C

    Purpose: To design and construct a “mouse jig” device that would allow for irradiation of the mouse brain with a clinical Varian 6 MeV Linear Accelerator. This device must serve as a head immobilizer, gaseous anesthesia delivery, and radiation bolus concurrently. Methods: The mouse jig was machined out of nylon given that it is inexpensive, easy to machine, and has similar electron density to water. A cylindrical opening with diameter of 16 mm and 40 mm depth was drilled into a nylon block sized 56×56×50 mm (width, length, depth). Additional slots were included in the block for ear bars andmore » a tooth bar to serve as a three-point immobilization device as well as for anesthesia delivery and scavenging. For ease of access when loading the mouse into the holder, there is a removable piece at the top of the block that is 15 mm in depth. This serves a dual purpose, as with the proper extra shielding, the mouse jig could be used with lower linear energy transfer photons with this piece removed. A baseplate was then constructed with five square slots where the mouse jig can securely be inserted plus additional slots that would allow the baseplate to be mounted on a standard lock bar in the treatment couch. This maximizes the reproducibility of placement between imaging and treatment and between treatment sessions. Results: CT imaging and radiation treatment planning was performed that showed acceptable coverage and uniformity of radiation dose in the mouse brain while sparing the throat and eyes. Conclusion: We have designed and manufactured a device that fulfills our criteria allowing us to selectively irradiate the mouse brain with a clinical linear accelerator. This setup will be used for generating mouse models of radiation-induced brain injury.« less

  10. First Gravity Traverse on the Martian Surface from the Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Lewis, K. W.; Peters, S. F.; Gonter, K. A.; Vasavada, A. R.

    2016-12-01

    Orbital gravity surveys have been a key tool in understanding planetary interiors and shallow crustal structure, exemplified by recent missions such as GRAIL and Juno. However, due to the loss of spatial resolution with altitude, airborne and ground-based survey methods are typically employed on the Earth. Previously, the Lunar Traverse Gravimeter experiment on the Apollo 17 mission has been the only attempt to collect surface gravity measurements on another planetary body. We will describe the results of the first gravity survey on the Martian surface, using data from the Curiosity rover over its >10 km traverse across the floor of Gale crater and lower slopes of Mount Sharp. These results enable us to estimate bulk rock density, and to search for potential subsurface density anomalies. To measure local gravitational acceleration, we use one of the two onboard Rover Inertial Measurement Units (RIMU-A), designed for rover position and fine attitude determination. The IMU contains three-axis micro-electromechanical (MEMS) accelerometers and fiber-optic gyros, and is used for gyrocompassing by integrating data for several minutes on sols with no drive or arm motions (roughly 50% of sols to date). Raw acceleration data are calibrated for biases induced by temperature effects and rover orientation, along with rover elevation over the course of the mission using multiple regression. We use the best fit linear relationship between topographic height and gravitational acceleration to estimate a Bouguer correction for the observed change in magnitude over the mission as the rover has ascended over 100 meters up the lower slopes of Mount Sharp. We find a relatively low best-fit density of 1600 +/- 500 kg/m^3 for the rocks of Mount Sharp, consistent with rover-based measurements of thermal inertial, and potentially indicating pervasive fracturing, high porosity and/or low compaction within the original sediments at least to depths of order 100 meters. Future measurements will further refine this estimate as Curiosity continues to gain elevation. Although not originally intended as a science instrument, these results highlight the scientific potential of surface gravity and topography surveys for future planetary exploration missions.

  11. Mass center estimation of a drag-free satellite

    NASA Technical Reports Server (NTRS)

    Sanz Fernandez De Cordova, S.; Debra, D. B.

    1975-01-01

    The mass center location of a spinning drag-free satellite can be estimated because there is control required to accelerate the mass center along the axis of spin as long as there is some nutation in the spinning motion. Linear and nonlinear models are compared and observability discussed. Online estimation fails when nutation is damped so an offline mechanization is proposed. A new sensor has been designed to permit greater relative motion than was possible on the drag-free satellite flown in 1972 (JH-1). Experimental laboratory results using a spinning vehicle with the new sensor mounted 30 cm from a spherical air bearing support are presented which confirm earlier simulation results.

  12. Research on LQR optimal control method of active engine mount

    NASA Astrophysics Data System (ADS)

    Huan, Xie; Yu, Duan

    2018-04-01

    In this paper, the LQR control method is applied to the active mount of the engine, and a six-cylinder engine excitation model is established. Through the joint simulation of AMESim and MATLAB, the vibration isolation performance of the active mount system and the passive mount system is analyzed. Excited by the multi-engine operation, the simulation results of the vertical displacement, acceleration and dynamic deflection of the vehicle body show that the vibration isolation capability of the active mount system is superior to that of the passive mount system. It shows that compared with the passive mount, LQR active mount can greatly improve the vibration isolation performance, which proves the feasibility and effectiveness of the LQR control method.

  13. On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets.

    PubMed

    Jadischke, Ron; Viano, David C; Dau, Nathan; King, Albert I; McCarthy, Joe

    2013-09-03

    On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Determination of shuttle orbiter center of gravity from flight measurements

    NASA Technical Reports Server (NTRS)

    Hinson, E. W.; Nicholson, J. Y.; Blanchard, R. C.

    1991-01-01

    Flight measurements of pitch, yaw, and roll rates and the resultant rotationally induced linear accelerations during three orbital maneuvers on Shuttle mission space transportation system (STS) 61-C were used to calculate the actual orbiter center-of-gravity location. The calculation technique reduces error due to lack of absolute calibration of the accelerometer measurements and compensates for accelerometer temperature bias and for the effects of gravity gradient. Accuracy of the technique was found to be limited by the nonrandom and asymmetrical distribution of orbiter structural vibration at the accelerometer mounting location. Fourier analysis of the vibration was performed to obtain the power spectral density profiles which show magnitudes in excess of 10(exp 4) ug (sup 2)/Hz for the actual vibration and over 500 ug (sup 2)/Hz for the filtered accelerometer measurements. The data from this analysis provide a characterization of the Shuttle acceleration environment which may be useful in future studies related to accelerometer system application and zero-g investigations or processes.

  15. A link between occupant and vehicle accelerations during common driving tasks.

    PubMed

    Mathias, Anne C; Shibata, Peggy A; Sprague, James K

    2014-01-01

    When evaluating occupant motions during driving tasks, it is desirable to have a well-established correlation between vehicle and occupant accelerations. Therefore, this study demonstrated a methodology to quantify accelerations experienced by the driver of a passenger vehicle and compare them to associated vehicle motions. Acceleration levels were measured at the seat and the driver’s head, cervical spine, and lumbar spine during six non-collision driving tasks. Tasks included mounting a 127 mm (5 in) -high curb, crossing railroad tracks, driving on a rough road, braking heavily from 13.4 m/s (30 mph), having a 89 mm (3.5 in)-diameter roller sequentially pass under two tires, and dropping one tire from a 171-mm (6.75 in) height. The driver experienced peak resultant accelerations of similar magnitudes across all trials. Peak body accelerations were less than 1.2 g, including 0.82 g lumbar acceleration during heavy braking and 0.88 g head acceleration during the curb mount. These preliminary measurements are comparable to or lower than accelerations experienced during non-driving activities such as sitting quickly. This study contributes to the scientific understanding of accelerations experienced by vehicle occupants and demonstrates the potential to relate vehicle and occupant accelerations during common driving activities that do not involve collisions.

  16. Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.

    PubMed

    Hamar, Dušan

    2015-08-24

    Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  17. An overview of controls research on the NASA Langley Research Center grid

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.

    1987-01-01

    The NASA Langley Research Center has assembled a flexible grid on which control systems research can be accomplished on a two-dimensional structure that has many physically distributed sensors and actuators. The grid is a rectangular planar structure that is suspended by two cables attached to one edge so that out of plane vibrations are normal to gravity. There are six torque wheel actuators mounted to it so that torque is produced in the grid plane. Also, there are six rate gyros mounted to sense angular motion in the grid plane and eight accelerometers that measure linear acceleration normal to the grid plane. All components can be relocated to meet specific control system test requirements. Digital, analog, and hybrid control systems capability is provided in the apparatus. To date, research on this grid has been conducted in the areas of system and parameter identification, model estimation, distributed modal control, hierarchical adaptive control, and advanced redundancy management algorithms. The presentation overviews each technique and presents the most significant results generated for each area.

  18. SRS Computer Animation and Drive Train System

    NASA Technical Reports Server (NTRS)

    Arthun, Daniel; Schachner, Christian

    2001-01-01

    The spinning rocket simulator (SRS) is an ongoing project at Oral Roberts University. The goal of the SRS is to gather crucial data concerning a spinning rocket under thrust for the purpose of analysis and correction of the coning motion experienced by this type of spacecraft maneuver. The computer animation simulates a virtual, scale model of the component of the SRS that represents the spacecraft itself. This component is known as the (VSM), or virtual spacecraft model. During actual physical simulation, this component of the SRS will experience a coning. The goal of the animation is to cone the VSM within that range to accurately represent the motion of the actual simulator. The drive system of the SRS is the apparatus that turns the actual simulator. It consists of a drive motor, motor mount and chain to power the simulator into motion. The motor mount is adjustable and rigid for high torque application. A digital stepper motor controller actuates the main drive motor for linear acceleration. The chain transfers power from the motor to the simulator via sprockets on both ends.

  19. BIOMECHANICS OF HEAD INJURY IN OLYMPIC TAEKWONDO AND BOXING

    PubMed Central

    Fife, G.P.; Pieter, W.

    2013-01-01

    Objective The purpose was to examine differences between taekwondo kicks and boxing punches in resultant linear head acceleration (RLA), head injury criterion (HIC15), peak head velocity, and peak foot and fist velocities. Data from two existing publications on boxing punches and taekwondo kicks were compared. Methods For taekwondo head impacts a Hybrid II Crash Dummy (Hybrid II) head was instrumented with a tri-axial accelerometer mounted inside the Hybrid II head. The Hybrid II was fixed to a height-adjustable frame and fitted with a protective taekwondo helmet. For boxing testing, a Hybrid III Crash Dummy head was instrumented with an array of tri-axial accelerometers mounted at the head centre of gravity. Results Differences in RLA between the roundhouse kick (130.11±51.67 g) and hook punch (71.23±32.19 g, d = 1.39) and in HIC15 (clench axe kick: 162.63±104.10; uppercut: 24.10±12.54, d = 2.29) were observed. Conclusions Taekwondo kicks demonstrated significantly larger magnitudes than boxing punches for both RLA and HIC. PMID:24744497

  20. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  1. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce

    PubMed Central

    Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-01-01

    Background Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. Objective We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). Methods The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. Results The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS were rlng=0.71 and rlat=0.83, respectively, while the corresponding acceleration measurements between Android and DAS were rlng=0.95 and rlat=0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the corresponding longitudinal accelerations for most maneuvers. Conclusions The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment of kinematic risky driving events, with potential for research and feedback forms of intervention. PMID:29674309

  2. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1984-01-01

    Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.

  3. Stressors Experienced by Nursing Students Enrolled in Baccalaureate Second Degree Accelerated Registered Nursing Programs

    ERIC Educational Resources Information Center

    Bell, Charlene

    2017-01-01

    A mounting concern throughout the country is a current and growing nursing shortage. In order to meet the growing demand of nurses, many colleges have created baccalaureate second degree accelerated registered nursing programs. Stressors, experienced by nursing students in these accelerated programs, may affect their retention. A deeper…

  4. Linear and/or curvilinear rail mount system

    NASA Technical Reports Server (NTRS)

    Thomas, Jackie D. (Inventor); Harris, Lawanna L. (Inventor)

    2012-01-01

    One or more linear and/or curvilinear mounting rails are coupled to a structure. Each mounting rail defines a channel and at least one cartridge assembly is engaged in the channel. Each cartridge assembly includes a housing that slides within the channel. The housing defines a curvilinearly-shaped recess longitudinally aligned with the channel when the housing is in engagement therewith. The cartridge assembly also includes a cleat fitted in the recess for sliding engagement therealong. The cleat can be coupled to a fastener that passes through the mounting rail and the housing when the housing is so-engaged in the channel. The cleat is positioned in the recess by a position of the fastener.

  5. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  6. Evaluation of mounting bolt loads for Space Shuttle Get Away Special (GAS) adapter beam

    NASA Technical Reports Server (NTRS)

    Talapatra, D. C.

    1983-01-01

    During the prototype vibration tests of the GAS adapter beam, significant impacting of the beam at its support points was observed. The cause of the impacting was traced to gaps under the mounting bolt heads. Because of the nonlinear nature of the response, it was difficult to evaluate the effects which Shuttle launch dynamics might have on the mounting bolt loads. A series of tests were conducted on an electrodynamic exciter in which the transient acceleration time histories, which had been measured during the Space Transportation System-1 (STS-1; Space Shuttle mission 1) launch, were simulated. The actual flight data had to be filtered and compensated so that it could be reproduced on the shaker without exceeding displacement and velocity limitations. Mounting bolt loads were measured directly by strain gages applied to the bolts. Various gap thicknesses and bolt torques were investigated. Although increased gap thickness resulted in greater accelerations due to impacting, the bolt loads were not significantly affected. This is attributed to the fact that impacting excited mostly higher frequency modes which do not have significant modal mass.

  7. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  8. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  9. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce.

    PubMed

    Freidlin, Raisa Z; Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-04-19

    Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS were r lng =0.71 and r lat =0.83, respectively, while the corresponding acceleration measurements between Android and DAS were r lng =0.95 and r lat =0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the corresponding longitudinal accelerations for most maneuvers. The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment of kinematic risky driving events, with potential for research and feedback forms of intervention. ©Raisa Z Freidlin, Amisha D Dave, Benjamin G Espey, Sean T Stanley, Marcial A Garmendia, Randall Pursley, Johnathon P Ehsani, Bruce G Simons-Morton, Thomas J Pohida. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 19.04.2018.

  10. Flight Stability and Control and Performance Results from the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Cobleigh, Brent R.; Cox, Timothy H.; Conners, Timothy R.; Iliff, Kenneth W.; Powers, Bruce G.

    1998-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) is presently being conducted to test a 20-percent-scale version of the Linear Aerospike rocket engine. This rocket engine has been chosen to power the X-33 Single Stage to Orbit Technology Demonstrator Vehicle. The rocket engine was integrated into a lifting body configuration and mounted to the upper surface of an SR-71 aircraft. This paper presents stability and control results and performance results from the envelope expansion flight tests of the LASRE configuration up to Mach 1.8 and compares the results with wind tunnel predictions. Longitudinal stability and elevator control effectiveness were well-predicted from wind tunnel tests. Zero-lift pitching moment was mispredicted transonically. Directional stability, dihedral stability, and rudder effectiveness were overpredicted. The SR-71 handling qualities were never significantly impacted as a result of the missed predictions. Performance results confirmed the large amount of wind-tunnel-predicted transonic drag for the LASRE configuration. This drag increase made the performance of the vehicle so poor that acceleration through transonic Mach numbers could not be achieved on a hot day without depleting the available fuel.

  11. A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Hannig, S.; Mielke, J.; Fenske, J. A.; Misera, M.; Beev, N.; Ospelkaus, C.; Schmidt, P. O.

    2018-01-01

    We present a highly stable bow-tie power enhancement cavity for critical second harmonic generation (SHG) into the UV using a Brewster-cut β-BaB2O4 (BBO) nonlinear crystal. The cavity geometry is suitable for all UV wavelengths reachable with BBO and can be modified to accommodate anti-reflection coated crystals, extending its applicability to the entire wavelength range accessible with non-linear frequency conversion. The cavity is length-stabilized using a fast general purpose digital PI controller based on the open source STEMlab 125-14 (formerly Red Pitaya) system acting on a mirror mounted on a fast piezo actuator. We observe 130 h uninterrupted operation without decay in output power at 313 nm. The robustness of the system has been confirmed by exposing it to accelerations of up to 1 g with less than 10% in-lock output power variations. Furthermore, the cavity can withstand 30 min of acceleration exposure at a level of 3 grms without substantial change in the SHG output power, demonstrating that the design is suitable for transportable setups.

  12. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion

    PubMed Central

    McConnell, Joseph R.; Burke, Andrea; Dunbar, Nelia W.; Köhler, Peter; Thomas, Jennie L.; Chellman, Nathan J.; Maselli, Olivia J.; Sigl, Michael; Adkins, Jess F.; Baggenstos, Daniel; Burkhart, John F.; Brook, Edward J.; Buizert, Christo; Cole-Dai, Jihong; Fudge, T. J.; Knorr, Gregor; Graf, Hans-F.; Grieman, Mackenzie M.; Iverson, Nels; McGwire, Kenneth C.; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H.; Saltzman, Eric S.; Steffensen, Jørgen Peder; Taylor, Kendrick C.; Winckler, Gisela

    2017-01-01

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka. PMID:28874529

  13. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    PubMed

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-19

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  14. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  15. Neural processing of gravity information

    NASA Technical Reports Server (NTRS)

    Schor, Robert H.

    1992-01-01

    The goal of this project was to use the linear acceleration capabilities of the NASA Vestibular Research Facility (VRF) at Ames Research Center to directly examine encoding of linear accelerations in the vestibular system of the cat. Most previous studies, including my own, have utilized tilt stimuli, which at very low frequencies (e.g., 'static tilt') can be considered a reasonably pure linear acceleration (e.g., 'down'); however, higher frequencies of tilt, necessary for understanding the dynamic processing of linear acceleration information, necessarily involves rotations which can stimulate the semicircular canals. The VRF, particularly the Long Linear Sled, has promise to provide controlled pure linear accelerations at a variety of stimulus frequencies, with no confounding angular motion.

  16. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    White, Maurice A. (Inventor); Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  17. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    PubMed

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  18. Inertia Coupling Analysis of a Self-Decoupled Wheel Force Transducer under Multi-Axis Acceleration Fields

    PubMed Central

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range. PMID:25723492

  19. Optical fiber strain sensor with improved linearity range

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1995-01-01

    A strain sensor is constructed from a two mode optical fiber. When the optical fiber is surface mounted in a straight line and the object to which the optical fiber is mounted is subjected to strain within a predetermined range, the light intensity of any point at the output of the optical fiber will have a linear relationship to strain, provided the intermodal phase difference is less than 0.17 radians.

  20. An Experimental Study in Determining Energy Expenditure from Treadmill Walking using Hip-Worn Inertial Sensors

    PubMed Central

    Vathsangam, Harshvardhan; Emken, Adar; Schroeder, E. Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S.

    2011-01-01

    This paper describes an experimental study in estimating energy expenditure from treadmill walking using a single hip-mounted triaxial inertial sensor comprised of a triaxial accelerometer and a triaxial gyroscope. Typical physical activity characterization using accelerometer generated counts suffers from two drawbacks - imprecison (due to proprietary counts) and incompleteness (due to incomplete movement description). We address these problems in the context of steady state walking by directly estimating energy expenditure with data from a hip-mounted inertial sensor. We represent the cyclic nature of walking with a Fourier transform of sensor streams and show how one can map this representation to energy expenditure (as measured by V O2 consumption, mL/min) using three regression techniques - Least Squares Regression (LSR), Bayesian Linear Regression (BLR) and Gaussian Process Regression (GPR). We perform a comparative analysis of the accuracy of sensor streams in predicting energy expenditure (measured by RMS prediction accuracy). Triaxial information is more accurate than uniaxial information. LSR based approaches are prone to outlier sensitivity and overfitting. Gyroscopic information showed equivalent if not better prediction accuracy as compared to accelerometers. Combining accelerometer and gyroscopic information provided better accuracy than using either sensor alone. We also analyze the best algorithmic approach among linear and nonlinear methods as measured by RMS prediction accuracy and run time. Nonlinear regression methods showed better prediction accuracy but required an order of magnitude of run time. This paper emphasizes the role of probabilistic techniques in conjunction with joint modeling of triaxial accelerations and rotational rates to improve energy expenditure prediction for steady-state treadmill walking. PMID:21690001

  1. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  2. Purged window apparatus utilizing heated purge gas

    DOEpatents

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  3. Is Africa a 'Graveyard' for Linear Accelerators?

    PubMed

    Reichenvater, H; Matias, L Dos S

    2016-12-01

    Linear accelerator downtimes are common and problematic in many African countries and may jeopardise the outcome of affected radiation treatments. The predicted increase in cancer incidence and prevalence on the African continent will require, inter alia, improved response with regard to a reduction in linear accelerator downtimes. Here we discuss the problems associated with the maintenance and repair of linear accelerators and propose alternative solutions relevant for local conditions in African countries. The paper is based on about four decades of experience in capacity building, installing, commissioning, calibrating, servicing and repairing linear accelerators in Africa, where about 40% of the low and middle income countries in the world are geographically located. Linear accelerators can successfully be operated, maintained and repaired in African countries provided proper maintenance and repair plans are put in place and executed. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Neonatal head and torso vibration exposure during inter-hospital transfer

    PubMed Central

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don

    2017-01-01

    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is ~9Hz. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes. PMID:28056712

  5. Neonatal head and torso vibration exposure during inter-hospital transfer.

    PubMed

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don

    2017-02-01

    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is [Formula: see text]. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC 15 ) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes.

  6. Beam dynamics simulation of a double pass proton linear accelerator

    DOE PAGES

    Hwang, Kilean; Qiang, Ji

    2017-04-03

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less

  7. The Role of Linear Acceleration in Visual-Vestibular Interactions and Implications in Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Correia, Manning J.; Luke, Brian L.; McGrath, Braden J.; Clark, John B.; Rupert, Angus H.

    1996-01-01

    While considerable attention has been given to visual-vestibular interaction (VVI) during angular motion of the head as might occur during an aircraft spin, much less attention has been given to VVI during linear motion of the head. Such interaction might occur, for example, while viewing a stationary or moving display during vertical take-off and landing operations Research into linear VVI, particularly during prolonged periods of linear acceleration, has been hampered by the unavailability of a programmable translator capable of large excursions We collaborated with Otis Elevator Co. and used their research tower and elevator, whose motion could be digitally programmed, to vertically translate human subjects over a distance of 92.3 meters with a peak linear acceleration of 2 meters/sec(exp 2) During pulsatile or sinusoidal translation, the subjects viewed moving stripes (optokinetic stimulus) or a fixed point source (light emitting diode, led, display), respectively and it was generally found that. The direction of linear acceleration relative to the cardinal head axes and the direction of the slow component of optokinetic nystagmus (OKN) determined the extent of VVI during concomitant stripe motion and linear acceleration. Acceleration along the z head axis (A(sub z)) produced the largest VVI, particularly when the slow component of OKN was in the same direction as eye movements produced by the linear acceleration and Eye movements produced by linear acceleration are suppressed by viewing a fixed target at frequencies below 10 Hz But, above this frequency the suppression produced by VVI is removed. Finally, as demonstrated in non-human primates, vergence of the eyes appears to modulate the vertical eye movement response to linear acceleration in humans.

  8. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  9. CooLN2Car: An Experimental Car Which Uses Liquid Nitrogen as Its Fuel

    NASA Astrophysics Data System (ADS)

    Parker, M. E.; Plummer, M. C.; Ordonez, C. A.

    1997-10-01

    A ``cryogenic" heat engine which operates using the atmosphere as a heat source and a cryogenic medium as a heat sink has been incorporated as the power system for an automobile. A 1973 Volkswagen Beetle has been converted and uses liquid nitrogen as its ``fuel." A Dewar was mounted in the car and provides nitrogen under pressure to two heat exchangers connected in parallel which use atmospheric heat to heat the nitrogen. The heat exchangers deliver compressed nitrogen gas to a vane-type pneumatic motor mounted in place of the original gasoline engine. Pressure in the tank is maintained internally at 1.2 MPa and is reduced to 0.7 MPa before the motor by a pressure regulator. A throttle, composed of a butterfly valve, is mounted between the regulator and the motor and is connected to the driver's accelerator peddle. The vehicle has good acceleration, a maximum range of 15 miles, and a maximum speed of 25 mph. A demonstration with the vehicle is planned.

  10. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor); Qiu, Songgang (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  11. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  12. Quantifying performance on an outdoor agility drill using foot-mounted inertial measurement units.

    PubMed

    Zaferiou, Antonia M; Ojeda, Lauro; Cain, Stephen M; Vitali, Rachel V; Davidson, Steven P; Stirling, Leia; Perkins, Noel C

    2017-01-01

    Running agility is required for many sports and other physical tasks that demand rapid changes in body direction. Quantifying agility skill remains a challenge because measuring rapid changes of direction and quantifying agility skill from those measurements are difficult to do in ways that replicate real task/game play situations. The objectives of this study were to define and to measure agility performance for a (five-cone) agility drill used within a military obstacle course using data harvested from two foot-mounted inertial measurement units (IMUs). Thirty-two recreational athletes ran an agility drill while wearing two IMUs secured to the tops of their athletic shoes. The recorded acceleration and angular rates yield estimates of the trajectories, velocities and accelerations of both feet as well as an estimate of the horizontal velocity of the body mass center. Four agility performance metrics were proposed and studied including: 1) agility drill time, 2) horizontal body speed, 3) foot trajectory turning radius, and 4) tangential body acceleration. Additionally, the average horizontal ground reaction during each footfall was estimated. We hypothesized that shorter agility drill performance time would be observed with small turning radii and large tangential acceleration ranges and body speeds. Kruskal-Wallis and mean rank post-hoc statistical analyses revealed that shorter agility drill performance times were observed with smaller turning radii and larger tangential acceleration ranges and body speeds, as hypothesized. Moreover, measurements revealed the strategies that distinguish high versus low performers. Relative to low performers, high performers used sharper turns, larger changes in body speed (larger tangential acceleration ranges), and shorter duration footfalls that generated larger horizontal ground reactions during the turn phases. Overall, this study advances the use of foot-mounted IMUs to quantify agility performance in contextually-relevant settings (e.g., field of play, training facilities, obstacle courses, etc.).

  13. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  14. Luminosity Limitations of Linear Colliders Based on Plasma Acceleration

    DOE PAGES

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  15. Linear force device

    NASA Technical Reports Server (NTRS)

    Clancy, John P.

    1988-01-01

    The object of the invention is to provide a mechanical force actuator which is lightweight and manipulatable and utilizes linear motion for push or pull forces while maintaining a constant overall length. The mechanical force producing mechanism comprises a linear actuator mechanism and a linear motion shaft mounted parallel to one another. The linear motion shaft is connected to a stationary or fixed housing and to a movable housing where the movable housing is mechanically actuated through actuator mechanism by either manual means or motor means. The housings are adapted to releasably receive a variety of jaw or pulling elements adapted for clamping or prying action. The stationary housing is adapted to be pivotally mounted to permit an angular position of the housing to allow the tool to adapt to skewed interfaces. The actuator mechanisms is operated by a gear train to obtain linear motion of the actuator mechanism.

  16. Investigating the sources of variability in the dynamic response of built-up structures through a linear analytical model

    NASA Astrophysics Data System (ADS)

    Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Fisher, Stephen A.

    2017-01-01

    It is well established that the dynamic response of a number of nominally identical built-up structures are often different and the variability increases with increasing complexity of the structure. Furthermore, the effects of the different parameters, for example the variation in joint locations or the range of the Young's modulus, on the dynamic response of the system are not the same. In this paper, the effects of different material and geometric parameters on the variability of a vibration transfer function are compared using an analytical model of a simple linear built-up structure that consist of two plates connected by a single mount. Similar results can be obtained if multiple mounts are used. The scope of this paper is limited to a low and medium frequency range where usually deterministic models are used for vibrational analysis. The effect of the mount position and also the global variation in the properties of the plate, such as modulus of elasticity or thickness, is higher on the variability of vibration transfer function than the effect of the mount properties. It is shown that the vibration transfer function between the plates is independent of the mount property if a stiff enough mount with a small mass is implemented. For a soft mount, there is a direct relationship between the mount impedance and the variation in the vibration transfer function. Furthermore, there are a range of mount stiffnesses between these two extreme cases at which the vibration transfer function is more sensitive to changes in the stiffness of the mount than when compared to a soft mount. It is found that the effect of variation in the mount damping and the mount mass on the variability is negligible. Similarly, the effect of the plate damping on the variability is not significant.

  17. Neuromuscular Control of Rapid Linear Accelerations in Fish

    DTIC Science & Technology

    2016-06-22

    2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Tufts University Research... Control of Rapid Linear Accelerations in Fish Report Title In this project, we measured muscle activity, body movements, and flow patterns during linear

  18. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  19. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  20. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  1. Luis Alvarez, the Hydrogen Bubble Chamber, Tritium, and Dinosaurs

    Science.gov Websites

    linear accelerator, patented three types of radar still used today, designed an instrument that for 15 is available in documents and on the Web. Documents: Berkeley Proton Linear Accelerator, DOE Technical Report Download Adobe PDF Reader , June 1985 History of Proton Linear Accelerators, DOE Technical

  2. Generation and focusing of pulsed intense ion beams. Technical progress report, 20 August 1981-30 September 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, D.A.; Kusse, B.R.; Sudan, R.N.

    1983-07-01

    The progress on this contract is described in two parts. The first deals with the technical operation of the LION accelerator which is the exact equivalent to one line of PBFA-I. The second part is concerned with the experimental results on the ion diode mounted at the front end of the LION accelerator.

  3. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  4. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  5. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Kegong; Wu, Yuchi; Zhu, Bin

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less

  6. MO-F-16A-02: Simulation of a Medical Linear Accelerator for Teaching Purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, M; Lamey, M; Anderson, R

    Purpose: Detailed functioning of linear accelerator physics is well known. Less well developed is the basic understanding of how the adjustment of the linear accelerator's electrical components affects the resulting radiation beam. Other than the text by Karzmark, there is very little literature devoted to the practical understanding of linear accelerator functionality targeted at the radiotherapy clinic level. The purpose of this work is to describe a simulation environment for medical linear accelerators with the purpose of teaching linear accelerator physics. Methods: Varian type lineacs were simulated. Klystron saturation and peak output were modelled analytically. The energy gain of anmore » electron beam was modelled using load line expressions. The bending magnet was assumed to be a perfect solenoid whose pass through energy varied linearly with solenoid current. The dose rate calculated at depth in water was assumed to be a simple function of the target's beam current. The flattening filter was modelled as an attenuator with conical shape, and the time-averaged dose rate at a depth in water was determined by calculating kerma. Results: Fifteen analytical models were combined into a single model called SIMAC. Performance was verified systematically by adjusting typical linac control parameters. Increasing klystron pulse voltage increased dose rate to a peak, which then decreased as the beam energy was further increased due to the fixed pass through energy of the bending magnet. Increasing accelerator beam current leads to a higher dose per pulse. However, the energy of the electron beam decreases due to beam loading and so the dose rate eventually maximizes and the decreases as beam current was further increased. Conclusion: SIMAC can realistically simulate the functionality of a linear accelerator. It is expected to have value as a teaching tool for both medical physicists and linear accelerator service personnel.« less

  7. An experimental nonlinear low dynamic stiffness device for shock isolation

    NASA Astrophysics Data System (ADS)

    Francisco Ledezma-Ramirez, Diego; Ferguson, Neil S.; Brennan, Michael J.; Tang, Bin

    2015-07-01

    The problem of shock generated vibration is very common in practice and difficult to isolate due to the high levels of excitation involved and its transient nature. If not properly isolated it could lead to large transmitted forces and displacements. Typically, classical shock isolation relies on the use of passive stiffness elements to absorb energy by deformation and some damping mechanism to dissipate residual vibration. The approach of using nonlinear stiffness elements is explored in this paper, focusing in providing an isolation system with low dynamic stiffness. The possibilities of using such a configuration for a shock mount are studied experimentally following previous theoretical models. The model studied considers electromagnets and permanent magnets in order to obtain nonlinear stiffness forces using different voltage configurations. It is found that the stiffness nonlinearities could be advantageous in improving shock isolation in terms of absolute displacement and acceleration response when compared with linear elastic elements.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Kilean; Qiang, Ji

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less

  9. A system for monitoring the radiation effects of a proton linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  10. A dynamic pressure calibration standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1985-01-01

    A dynamic pressure calibration standard has been developed for calibrating flush diaphragm mounted pressure transducers. Pressures up to 20 kPa (3 psi) have been accurately generated over a frequency range of 50 to 1800 hz. The uncertainty of the standard is +/-5 pct to 5kPa (.75 psi) and +/-10 pct from 5 kPa (.75 psi) to 20 kPa (3 psi). The system consists of two conically shaped, aluminum columns, one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with a viscous fluid. A column is mounted on the armature of a vibration exciter which imparts a sinusoidally varying acceleration to the fluid column. Two pressure transducers mounted at the base of the column sense the sinusoidally varying pressure. This pressure is determined from measurements of the density of the fluid, the height of the fluid, and the acceleration of the column. A section of the taller column is filled with steel balls to control the damping of the fluid to extend its useful frequency range.

  11. Linear encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter on the position of the spot and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.

  12. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, Marco; Harnett, Nicole; Jaffray, David

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance ofmore » all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.« less

  13. Magnetic Launch Assist Experimental Track

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. Research Technology

    NASA Image and Video Library

    2001-03-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  15. Research Technology

    NASA Image and Video Library

    1999-10-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  16. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    NASA Technical Reports Server (NTRS)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  17. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  18. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  19. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  20. Accelerator Science: Circular vs. Linear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  1. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, R.W.; Silva, L.L.

    1988-05-10

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole. 6 figs.

  2. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole.

  3. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, F; Tosh, R

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less

  4. Computation of linear acceleration through an internal model in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562

  5. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  6. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellano, T.; De Palma, L.; Laneve, D.

    2015-07-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  7. Investigation of Ion Beam Production and Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus.

    DTIC Science & Technology

    1984-03-01

    POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related

  8. Measurement of the Quasistatic Component of Microaccelerations Using a Convection Sensor onboard a Satellite

    NASA Astrophysics Data System (ADS)

    Nikitin, S. A.; Polezhaev, V. I.; Sazonov, V. V.

    2001-03-01

    The problem of the interpretation of measurements made by means of a convection sensor is considered. The sensor is a cubic chamber filled by a viscous fluid (gas). Fixed and unequal temperatures are maintained on two opposite sides of the cube; the other sides are perfect heat conductors. Two differential thermocouples are placed inside the chamber to measure the temperature difference at two pairs of fixed points. The sensor is mounted aboard the Earth's satellite. Mathematical models of various degrees of complexity are proposed which describe processes of heat and mass transfer under the action of a quasistatic component of microaccelerations. The results of mathematical simulation of the data of sensor thermocouples presenting a response to the real quasistatic component of microaccelerations which took place aboard the Mirstation are given. It is shown that under usual conditions of an orbital mission the sensor presents a linear low-frequency filter. By combining the data of several identical sensors, tightly arranged and oriented in a certain way, it is possible to measure low-frequency components of the angular acceleration of the satellite and linear microaccelerations at the point of the sensor position.

  9. Biomechanically Induced and Controller Coupled Oscillations Experienced on the F-16XL Aircraft During Rolling Maneuvers

    NASA Technical Reports Server (NTRS)

    Smith, John W.; Montgomery, Terry

    1996-01-01

    During rapid rolling maneuvers, the F-16 XL aircraft exhibits a 2.5 Hz lightly damped roll oscillation, perceived and described as 'roll ratcheting.' This phenomenon is common with fly-by-wire control systems, particularly when primary control is derived through a pedestal-mounted side-arm controller. Analytical studies have been conducted to model the nature of the integrated control characteristics. The analytical results complement the flight observations. A three-degree-of-freedom linearized set of aerodynamic matrices was assembled to simulate the aircraft plant. The lateral-directional control system was modeled as a linear system. A combination of two second-order transfer functions was derived to couple the lateral acceleration feed through effect of the operator's arm and controller to the roll stick force input. From the combined systems, open-loop frequency responses and a time history were derived, describing and predicting an analogous in-flight situation. This report describes the primary control, aircraft angular rate, and position time responses of the F-16 XL-2 aircraft during subsonic and high-dynamic-pressure rolling maneuvers. The analytical description of the pilot's arm and controller can be applied to other aircraft or simulations to assess roll ratcheting susceptibility.

  10. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  11. Accelerator Science: Circular vs. Linear

    ScienceCinema

    Lincoln, Don

    2018-06-12

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  12. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    DOE PAGES

    Jeon, Dong -O

    2016-01-12

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σ x(y) – 2σ z = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σ x(y) – 2σ z = 0 resonance that are predicted by the simulation.« less

  13. Measurement and Analysis of the Extreme Physical Shock Environment Experienced by Crane-Mounted Radiation Detection Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, M; Erchinger, J; Marianno, C

    Potentially, radiation detectors at ports of entry could be mounted on container gantry crane spreaders to monitor cargo containers entering and leaving the country. These detectors would have to withstand the extreme physical environment experienced by these spreaders during normal operations. Physical shock data from the gable ends of a spreader were recorded during the loading and unloading of a cargo ship with two Lansmont SAVER 9X30 units (with padding) and two PCB Piezotronics model 340A50 accelerometers (hard mounted). Physical shocks in the form of rapid acceleration were observed in all accelerometer units with values ranging from 0.20 g’s tomore » 199.99 g’s. The majority of the shocks for all the Lansmont and PCB accelerometers were below 50 g’s. The Lansmont recorded mean shocks of 21.83 ± 13.62 g’s and 24.78 ± 11.49 g’s while the PCB accelerometers experienced mean shocks of 34.39 ± 25.51 g’s and 41.77 ± 22.68 g’s for the landside and waterside units, respectively. Encased detector units with external padding should be designed to withstand at least 200 g’s of acceleration without padding and typical shocks of 30 g’s with padding for mounting on a spreader.« less

  14. Intern Programs | Tours

    Science.gov Websites

    accelerated through the Linac (Linear Accelerator) to an energy of 400 MeV. The Linac consists of two main of linear accelerators at NML ! Meet at the South entrance to NML (New Muon Lab) Building. 1:00 PM 1

  15. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, A. P.; Young, L. R.

    1987-01-01

    Eye movements and subjective detection of acceleration were measured on human experimental subjects during vestibular sled acceleration during the D1 Spacelab Mission. Methods and results are reported on the time to detection of small acceleration steps, the threshold for detection of linear acceleration, perceived motion path, and CLOAT. A consistently shorter time to detection of small acceleration steps is found. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth.

  16. Evaluating activation of the shielding walls of a treatment room using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Lee, D.-Y.; Kim, J.-H.

    2018-05-01

    This study investigates the radiation activation process in a medical linear accelerator, which creates a photon beam with the energy acquired from accelerated electrons. The concrete shielding walls used in conjunction with a medical linear accelerator occupy the largest portion of facility decommissioning costs. Therefore, to evaluate the activation of the shielding wall, this study simulated the operation of a linear accelerator with high-energy photon beams (10, 15, and 20 MV). The results of the simulations showed that the high-energy photon beams produced a large number of neutrons in the areas around the linear accelerator head. Several radionuclides were identified, and their half-lives and radioactivity levels were calculated. Half-lives ranged from 2.62 hours to 3.68E+06 years, and the radioactivity levels of most of the radionuclides were found to satisfy their respective clearance requirements. These results indicate that photon beams of 15 MV or lower satisfy the clearance requirements for decommissioning a linear accelerator facility, whereas those of 20 MV or higher lie partially above the regulatory clearance levels.

  17. Linear Motor With Air Slide

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  18. Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM Radiation Therapy Committee Task Group No. 72.

    PubMed

    Beddar, A Sam; Biggs, Peter J; Chang, Sha; Ezzell, Gary A; Faddegon, Bruce A; Hensley, Frank W; Mills, Michael D

    2006-05-01

    Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.

  19. The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.

    1997-01-01

    Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.

  20. ON THE PROBLEM OF PARTICLE GROUPINGS IN A TRAVELING WAVE LINEAR ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhileyko, G.I.

    1957-01-01

    A linear accelerator with traveling'' waves may be used for the production of especially short electron momenta, although in many cases the grouping capacity of the accelerator is not sufficient. Theoretically the case is derived in which grouping of the electrons takes place in the accelerator itself. (With 3 illustrations and 1 Slavic Reference). (TCO)

  1. Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.

    1998-01-01

    A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.

  2. Repeatability of knee impulsive loading measurements with skin-mounted accelerometers and lower limb surface electromyographic recordings during gait in knee osteoarthritic and asymptomatic individuals

    PubMed Central

    Lyytinen, T.; Bragge, T.; Hakkarainen, M.; Liikavainio, T.; Karjalainen, P.A.; Arokoski, J.P.

    2016-01-01

    Objectives: To determine the repeatability of knee joint impulsive loading measurements with skin-mounted accelerometers (SMAs) and lower limb surface electromyography (EMG) recordings during gait. Methods: Triaxial SMA and EMG from 4 muscles during level and stair walking in nine healthy and nine knee osteoarthritis (OA) subjects were used. The initial peak acceleration (IPA), root mean square (RMS), maximal acceleration transient rate (ATRmax) and mean EMG activity (EMGact) were calculated. The coefficient of variation (CV) and the intraclass correlation coefficient (ICC) were calculated to measure repeatability. Results: The CV and ICC of RMS accelerations ranged from 4.9% to 10.9% and from 0.69 to 0.96 in both study groups during level walking. The CV and ICC of IPA and ATRmax varied from 7.7% to 14.2% and from 0.85 to 0.99 during level and stairs up walking in healthy subjects. The CV and ICC of EMGact ranged from 8.3% to 31.7% and from 0.16 to 0.97 in both study groups. Conclusions: RMS accelerations exhibited good repeatability during walking in healthy and knee OA subjects. The repeatability of EMG measurements was acceptable in healthy subjects depending on the measured muscles. PMID:26944825

  3. Deformation monitoring at Mount St. Helens in 1981 and 1982

    USGS Publications Warehouse

    Chadwick, W.W.; Swanson, D.A.; Iwatsubo, E.Y.; Heliker, C.C.; Leighley, T.A.

    1983-01-01

    For several weeks before each eruption of Mount St. Helens in 1981 and 1982, viscous magma rising in the feeder conduit inflated the lava dome and shoved the crater floor laterally against the immobile crater walls, producing ground cracks and thrust faults. The rates of deformation accelerated before eruptions, and thus it was possible to predict eruptions 3 to 19 days in advance. Lack of deformation outside the crater showed that intrusion of magma during 1981 and 1982 was not voluminous.

  4. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  5. Design, construction and tests of a 3 GHz proton linac booster (LIBO) for cancer therapy

    NASA Astrophysics Data System (ADS)

    Berra, Paolo

    2007-12-01

    In the last ten years the use of proton beams in radiation therapy has become a clinical tool for treatment of deep-seated tumours. LIBO is a RF compact and low cost proton linear accelerator (SCL type) for hadrontherapy. It is conceived by TERA Foundation as a 3 GHz Linac Booster, to be mounted downstream of an existing cyclotron in order to boost the energy of the proton beam up to 200 MeV, needed for deep treatment (~25 cm) in the human body. With this solution it is possible to transform a low energy commercial cyclotron, normally used for eye melanoma therapy, isotope production and nuclear physics research, into an accelerator for deep-seated tumours. A prototype module of LIBO has been built and successfully tested with full RF power at CERN and with proton beam at INFN Laboratori Nazionali del Sud (LNS) in Catania, within an international collaboration between TERA Foundation, CERN, the Universities and INFN groups of Milan and Naples. The mid-term aim of the project is the technology transfer of the accumulated know-how to a consortium of companies and to bring this novel medical tool to hospitals. The design, construction and tests of the LIBO prototype are described in detail.

  6. Translation Optics for 30 cm Ion Engine Thrust Vector Control

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2002-01-01

    Data were obtained from a 30 cm xenon ion thruster in which the accelerator grid was translated in the radial plane. The thruster was operated at three different throttle power levels, and the accelerator grid was incrementally translated in the X, Y, and azimuthal directions. Plume data was obtained downstream from the thruster using a Faraday probe mounted to a positioning system. Successive probe sweeps revealed variations in the plume direction. Thruster perveance, electron backstreaming limit, accelerator current, and plume deflection angle were taken at each power level, and for each accelerator grid position. Results showed that the thruster plume could easily be deflected up to six degrees without a prohibitive increase in accelerator impingement current. Results were similar in both X and Y direction.

  7. Non-perturbative aspects of particle acceleration in non-linear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, David A.; Flood, Stephen P.; Wen, Haibao

    2015-04-15

    We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.

  8. Determination of bridge response using acceleration data.

    DOT National Transportation Integrated Search

    1996-01-01

    Knowledge of the actual displacement response of a bridge subjected to random traffic loading is useful in evaluating bridge performance and serviceability. However, mounting displacement transducers is difficult, and the feasibility of and cost asso...

  9. Detecting chaos in particle accelerators through the frequency map analysis method.

    PubMed

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  10. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  11. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  12. Design and Analysis of Megawatt Class Free Electron Laser Weapons

    DTIC Science & Technology

    2015-12-01

    accelerating structure. The SRF linear accelerator stores RF fields within its niobium cavities. Superconductors require less average RF power than...is needed to cool the superconductor for the SRF linear accelerator. A current outstanding research topic is the RF frequency to use for the SRF

  13. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  14. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  15. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  16. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests

    PubMed Central

    Rowshanfarzad, Pejman; Greer, Peter B.

    2016-01-01

    In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry‐mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gantry speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11∘/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality‐assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time‐resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PACS number(s): 87.55.Qr PMID:27167282

  17. Experimental Study of the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Jacobs, Jeffrey W.

    2002-01-01

    The Richtmyer-Meshkov instability of a low Atwood number, miscible, two-liquid system is investigated experimentally. The initially stratified fluids are contained within a rectangular tank mounted to a sled that rides on a vertical set of rails. The instability is generated by dropping the sled onto a coil spring, producing a nearly impulsive upward acceleration. The subsequent freefall that occurs as the container travels upward and then downward on the rails allows the instability to evolve in the absence of gravity. The interface separating the two liquids initially has a well-defined, sinusoidal perturbation that quickly inverts and then grows in amplitude after undergoing the impulsive acceleration. Disturbance amplitudes are measured and compared to theoretical predictions. Linear stability theory gives excellent agreement with the measured initial growth rate, a(sub 0), for single-mode perturbations with the predicted amplitudes differing by less than 10% from experimental measurements up to a nondimensional time ka(sub 0)t = 0.7, where k is the wavenumber. Linear stability theory also provides excellent agreement for the individual mode amplitudes of multi-mode initial perturbations up until the interface becomes multi-valued. Comparison with previously published weakly nonlinear single-mode models shows good agreement up to ka(sub 0)t = 3, while published nonlinear single-mode models provide good agreement up to ka(sub 0)t = 30. The effects of Reynolds number on the vortex core evolution and overall growth rate of the interface are also investigated. Measurements of the overall amplitude are found to be unaffected by the Reynolds number for the range of values studied here. However, experiments carried out at lower values of Reynolds numbers were found to have decreased vortex core rotation rates. In addition, an instability in the vortex cores is observed.

  18. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  19. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  20. Research Technology

    NASA Image and Video Library

    2001-03-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. WHIPS seat and occupant motions during simulated rear crashes.

    PubMed

    Xiao, Ming; Ivancic, Paul C

    2010-10-01

    Objectives of this study were to investigate the motions of Volvo's Whiplash Protection System (WHIPS) seat and occupant during simulated rear crashes of a human model of the neck (HUMON). HUMON consisted of a human neck specimen (n = 6) mounted to the torso of BioRID II and carrying an anthropometric head stabilized with muscle force replication. HUMON was seated and secured in a 2005 Volvo XC90 minivan seat that included WHIPS and a fixed head restraint. Rear crashes of 9.9 g (ΔV 9.2 kph), 12.0 g (ΔV 11.4 kph), and 13.3 g (ΔV 13.4 kph) were simulated and WHIPS and occupant motions were monitored. Linear regression analyses (P < .05) were used to determine relationships between WHIPS and occupant motion peaks using data from all crashes combined. WHIPS motions consisted of simultaneous rearward and downward translations and extension of the seatback and plastic deformation of the bilateral WHIPS energy-absorbing components. Peak WHIPS motions were linearly correlated only with peak rearward occupant translations. Less rearward pelvis translation was required to cause WHIPS activation as compared to T1 translation. WHIPS reduced peak T1 horizontal acceleration by 39 percent compared to sled acceleration. This was within the range previously reported for WHIPS, between 30 and 60 percent, but higher than the 16 percent reduction previously reported due to active head restraint. Absorption of crash energy occurred during the initial 75 ms and the onset of head support occurred at 114 ms. Differential head-torso motions occurred prior to and during head support, indicating the potential for neck injury even with WHIPS.

  2. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  3. 14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C...

  4. 14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C...

  5. A General Accelerated Degradation Model Based on the Wiener Process.

    PubMed

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-12-06

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.

  6. A General Accelerated Degradation Model Based on the Wiener Process

    PubMed Central

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-01-01

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses. PMID:28774107

  7. Software Tool for Computing Maximum Von Mises Stress

    NASA Technical Reports Server (NTRS)

    Chen, Long Y.; Knutson, Kurt; Martin, Eric

    2007-01-01

    The maximum Van Mises stress and stress direction are of interest far analyzing launch accelerations such as with the Mass Acceleration Curves developed by JPL. Maximum launch stresses can be combined with appropriate load cases at consistent locations with resulting stress tensors. Maximum Van Mises stress is also of interest for understanding maximum operational loading such as traverse events. - For example, planetary traversing simulations may prescribe bounding acceleration values during traverse for a rover such as Mars Science Lab (MSL) in (X,Y,Z) of the rover. - Such accelerations can be really in any directions for many parts such as a mast or head mounted components which can be in numerous configurations and orientations when traversing a planet surface.

  8. Introducing a new semi-active engine mount using force controlled variable stiffness

    NASA Astrophysics Data System (ADS)

    Azadi, Mojtaba; Behzadipour, Saeed; Faulkner, Gary

    2013-05-01

    This work introduces a new concept in designing semi-active engine mounts. Engine mounts are under continuous development to provide better and more cost-effective engine vibration control. Passive engine mounts do not provide satisfactory solution. Available semi-active and active mounts provide better solutions but they are more complex and expensive. The variable stiffness engine mount (VSEM) is a semi-active engine mount with a simple ON-OFF control strategy. However, unlike available semi-active engine mounts that work based on damping change, the VSEM works based on the static stiffness change by using a new fast response force controlled variable spring. The VSEM is an improved version of the vibration mount introduced by the authors in their previous work. The results showed significant performance improvements over a passive rubber mount. The VSEM also provides better vibration control than a hydromount at idle speed. Low hysteresis and the ability to be modelled by a linear model in low-frequency are the advantages of the VSEM over the vibration isolator introduced earlier and available hydromounts. These specifications facilitate the use of VSEM in the automotive industry, however, further evaluation and developments are needed for this purpose.

  9. Design and vibration control of vehicle engine mount activated by MR fluid and piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Park, Y. K.; Choi, S. B.; Lee, H. G.

    2009-07-01

    An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range).

  10. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.; Edstrom, D.; Halavanau, A.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  11. A method for evaluating dynamical friction in linear ball bearings.

    PubMed

    Fujii, Yusaku; Maru, Koichi; Jin, Tao; Yupapin, Preecha P; Mitatha, Somsak

    2010-01-01

    A method is proposed for evaluating the dynamical friction of linear bearings, whose motion is not perfectly linear due to some play in its internal mechanism. In this method, the moving part of a linear bearing is made to move freely, and the force acting on the moving part is measured as the inertial force given by the product of its mass and the acceleration of its centre of gravity. To evaluate the acceleration of its centre of gravity, the acceleration of two different points on it is measured using a dual-axis optical interferometer.

  12. The Ability of American Football Helmets to Manage Linear Acceleration With Repeated High-Energy Impacts.

    PubMed

    Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine

    2016-03-01

    Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.

  13. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  14. Dynamic Characteristics of Simple Cylindrical Hydraulic Engine Mount Utilizing Air Compressibility

    NASA Astrophysics Data System (ADS)

    Nakahara, Kazunari; Nakagawa, Noritoshi; Ohta, Katsutoshi

    A cylindrical hydraulic engine mount with simple construction has been developed. This engine mount has a sub chamber formed by utilizing air compressibility without a diaphragm. A mathematical model of the mount is presented to predict non-linear dynamic characteristics in consideration of the effect of the excitation amplitude on the storage stiffness and loss factor. The mathematical model predicts experimental results well for the frequency responses of the storage stiffness and loss factor over the frequency range of 5 Hz to 60Hz. The effect of air volume and internal pressure on the dynamic characteristics is clarified by the analysis and dynamic characterization testing. The effectiveness of the cylindrical hydraulic engine mount on the reduction of engine shake is demonstrated for riding comfort through on-vehicle testing with a chassis dynamometer.

  15. Applications of Electron Linear Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Westenskow*, Glen; Chen, Yu-Jiuan

    Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:

  16. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  17. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  18. Amplitude-dependent orbital period in alternating gradient accelerators

    DOE PAGES

    Machida, S.; Kelliher, D. J.; Edmonds, C. S.; ...

    2016-03-16

    Orbital period in a ring accelerator and time of flight in a linear accelerator depend on the amplitude of betatron oscillations. The variation is negligible in ordinary particle accelerators with relatively small beam emittance. In an accelerator for large emittance beams like muons and unstable nuclei, however, this effect cannot be ignored. In this study, we measured orbital period in a linear non-scaling fixed-field alternating-gradient accelerator, which is a candidate for muon acceleration, and compared it with the theoretical prediction. The good agreement between them gives important ground for the design of particle accelerators for a new generation of particlemore » and nuclear physics experiments.« less

  19. Accelerated Innovation Deployment (AID) Demonstration Project : Intelligent Compaction and Infrared Scanning Projects

    DOT National Transportation Integrated Search

    2018-02-01

    This report documents the Missouri Department of Transportation (MoDOT) demonstration grant award for field demonstration projects using intelligent compaction (IC) and infrared scanning (IR) (also called paver-mounted thermal profiles PMTP in the AA...

  20. Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches.

    PubMed

    King, Doug; Hume, Patria A; Brughelli, Matt; Gissane, Conor

    2015-03-01

    Direct impacts with the head (linear acceleration or pressure) and inertial loading of the head (rotational acceleration or strain) have been postulated as the 2 major mechanisms of head-related injuries such as concussion. Although data are accumulating for soccer and American football, there are no published data for nonhelmeted collision sports such as rugby union. To quantify head impacts via instrumented mouthguard acceleration analyses for rugby union players over a season of matches. Descriptive epidemiology study. Data on impact magnitude and frequency were collected with molded instrumented mouthguards worn by 38 premier amateur senior rugby players participating in the 2013 domestic season of matches. A total of 20,687 impacts >10g (range, 10.0-164.9g) were recorded over the duration of the study. The mean ± SD number of impacts per player over the duration of the season of matches was 564 ± 618, resulting in a mean ± SD of 95 ± 133 impacts to the head per player, per match over the duration of the season of matches. The impact magnitudes for linear accelerations were skewed to the lower values (Sp = 3.7 ± 0.02; P < .001), with a mean linear acceleration of 22.2 ± 16.2g. Rotational accelerations were also skewed to the lower values (Sp = 2.0 ± 0.02; P < .001), with a mean rotational acceleration of 3902.9 ± 3948.8 rad/s(2). The acceleration magnitudes and number of head impacts in amateur rugby union players over a season of matches, measured via instrumented mouthguard accelerations, were higher than for most sports previously reported. Mean linear acceleration measured over a season of matches was similar to the mean linear accelerations previously reported for youth, high school, and collegiate American football players but lower than that for female youth soccer players. Mean rotational acceleration measured over a season of matches was similar to mean rotational accelerations for youth, high school, and collegiate American football players but less than those for female youth soccer players, concussed American collegiate players, collegiate American football players, and professional American football players. © 2014 The Author(s).

  1. Dual linear accelerator system for use in sterilization of medical disposable supplies

    NASA Astrophysics Data System (ADS)

    Sadat, Theo

    1991-05-01

    Accelerators can be used for sterilization or decontamination (medical disposables, food, plastics, hospital waste, etc.). Most of these accelerators are located in an industrial environment and must have a high availability. A dual accelerator system (composed of two accelerators) offers optimal flexibility and reliability. The main advantage of this system is "all-in all-out" because it does not need a turnover of products. Such a dual system, composed of two 10 MeV 20 kW linear accelerators (instead of one 40 kW linac), has been chosen by a Swedish company (Mölnlycke).

  2. Space Shuttle Project

    NASA Image and Video Library

    1995-10-20

    A Great Blue Heron seems oblivious to the tremendous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia (STS-73) soars skyward from Launch Pad 39B. Columbia's seven member crew's mission included continuing experimentation in the Marshall managed payloads including the United States Microgravity Laboratory 2 (USML-2) and the keel-mounted accelerometer that characterizes the very low frequency acceleration environment of the orbiter payload bay during space flight, known as the Orbital Acceleration Research Experiment (OARE).

  3. Material Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  4. Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Herring, Rodney; Tryggvason, Bjarni; Duval, Walter

    1998-01-01

    Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.

  5. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  6. A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes

    PubMed Central

    Wang, Dan Ohtan; Matsuno, Hitomi; Ikeda, Shuji; Nakamura, Akiko; Yanagisawa, Hiroyuki; Hayashi, Yasunori; Okamoto, Akimitsu

    2012-01-01

    Fluorescence in situ hybridization (FISH) is a powerful tool used in karyotyping, cytogenotyping, cancer diagnosis, species specification, and gene-expression analysis. Although widely used, conventional FISH protocols are cumbersome and time consuming. We have now developed a FISH method using exciton-controlled hybridization-sensitive fluorescent oligodeoxynucleotide (ECHO) probes. ECHO–FISH uses a 25-min protocol from fixation to mounting that includes no stringency washing steps. We use ECHO–FISH to detect both specific DNA and RNA sequences with multicolor probes. ECHO–FISH is highly reproducible, stringent, and compatible with other fluorescent cellular labeling techniques. The resolution allows detection of intranuclear speckles of poly(A) RNA in HeLa cells and dissociated hippocampal primary cultures, and mRNAs in the distal dendrites of hippocampal neurons. We also demonstrate detection of telomeric and centromeric DNA on metaphase mouse chromosomes. The simplicity of the ECHO–FISH method will likely accelerate cytogenetic and gene-expression analysis with high resolution. PMID:22101241

  7. Research of the value of linear distortion of renewable surface of part during rotary processing of bulky items without dismantling unit

    NASA Astrophysics Data System (ADS)

    Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.

    2018-03-01

    The loading and unloading units and grinding mills of raw devices have internal cone type or pipe screw perceive load of incoming and outgoing material. The main part of the support assembly is a pin. Mounting seats for the pipe screws cone have traces of deformation and work hardening, while they themselves have wear of pins and deformation of the inner and outer cylindrical working surface. In the mill body, there are constantly acting dynamic forces causing vibration, which are transmitted to the stud and inner accelerating elements. Under the influence of stress and vibration, the housing spigot is in the stress-compressed state and stretched vertically and horizontally. As a result, the insertion element is deformed and weakened in the fixture. A moving element appears in the gap leading to the fact that it drops lfeedstock and under the influence of variable loads it is destroyed, as well as the seating surfaces of the insert pin member.

  8. Development and validation of a multilateration test bench for particle accelerator pre-alignment

    NASA Astrophysics Data System (ADS)

    Kamugasa, Solomon William; Rothacher, Markus; Gayde, Jean-Christophe; Mainaud Durand, Helene

    2018-03-01

    The development and validation of a portable coordinate measurement solution for fiducialization of compact linear collider (CLIC) components is presented. This new solution addresses two limitations of high-accuracy state-of-the-art coordinate measuring machines, i.e. lack of portability and limited measurement volume. The solution is based on frequency scanning interferometry (FSI) distances and the multilateration coordinate measurement technique. The developments include a reference sphere for localizing the FSI optical fiber tip and a kinematic mount for repositioning the reference sphere with sub-micrometric repeatability. This design enables absolute distance measurements in different directions from the same point, which is essential for multilateration. A multilateration test bench built using these prototypes has been used to fiducialize a CLIC cavity beam position monitor and 420 mm-long main beam quadrupole magnet. The combined fiducialization uncertainty achieved is 3.5 μm (k  =  1), which is better than the CLIC 5 μm (k  =  1) uncertainty specification.

  9. Tomotherapy as a tool in image-guided radiation therapy (IGRT): theoretical and technological aspects

    PubMed Central

    Yartsev, S; Kron, T; Van Dyk, J

    2007-01-01

    Helical tomotherapy (HT) is a novel treatment approach that combines Intensity-Modulate Radiation Therapy (IMRT) delivery with in-built image guidance using megavoltage (MV) CT scanning. The technique utilises a 6 MV linear accelerator mounted on a CT type ring gantry. The beam is collimated to a fan beam, which is intensity modulated using a binary multileaf collimator (MLC). As the patient advances slowly through the ring gantry, the linac rotates around the patient with a leaf-opening pattern optimised to deliver a highly conformal dose distribution to the target in the helical beam trajectory. The unit also allows the acquisition of MVCT images using the same radiation source detuned to reduce its effective energy to 3.5 MV, making the dose required for imaging less than 3 cGy. This paper discusses the major features of HT and describes the advantages and disadvantages of this approach in the context of the commercial Hi-ART system. PMID:21614257

  10. Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving.

    PubMed

    Zampolli, Mario; Nijhof, Marten J J; de Jong, Christ A F; Ainslie, Michael A; Jansen, Erwin H W; Quesson, Benoit A J

    2013-01-01

    The acoustic radiation from a pile being driven into the sediment by a sequence of hammer strikes is studied with a linear, axisymmetric, structural acoustic frequency domain finite element model. Each hammer strike results in an impulsive sound that is emitted from the pile and then propagated in the shallow water waveguide. Measurements from accelerometers mounted on the head of a test pile and from hydrophones deployed in the water are used to validate the model results. Transfer functions between the force input at the top of the anvil and field quantities, such as acceleration components in the structure or pressure in the fluid, are computed with the model. These transfer functions are validated using accelerometer or hydrophone measurements to infer the structural forcing. A modeled hammer forcing pulse is used in the successive step to produce quantitative predictions of sound exposure at the hydrophones. The comparison between the model and the measurements shows that, although several simplifying assumptions were made, useful predictions of noise levels based on linear structural acoustic models are possible. In the final part of the paper, the model is used to characterize the pile as an acoustic radiator by analyzing the flow of acoustic energy.

  11. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    NASA Astrophysics Data System (ADS)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  12. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  13. Differences in 1D electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2018-03-01

    In some laboratory and most astrophysical situations, plasma wake-field acceleration of electrons is one dimensional, i.e., variation transverse to the beam's motion can be ignored. Thus, one dimensional, particle-in-cell (PIC), fully electromagnetic simulations of electron plasma wake field acceleration are conducted in order to study the differences in electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes. First, we show that caution needs to be taken when using fluid simulations, as PIC simulations prove that an approximation for an electron bunch not to evolve in time for a few hundred plasma periods only applies when it is sufficiently relativistic. This conclusion is true irrespective of the plasma temperature. We find that in the linear regime and GeV energies, the accelerating electric field generated by the plasma wake is similar to the linear and MeV regimes. However, because GeV energy driving bunch stays intact for a much longer time, the final acceleration energies are much larger in the GeV energies case. In the GeV energy range and blowout regime, the wake's accelerating electric field is much larger in amplitude compared with the linear case and also plasma wake geometrical size is much larger. Thus, the correct positioning of the trailing bunch is needed to achieve the efficient acceleration. For the considered case, optimally, there should be approximately (90-100)c/ωpe distance between the trailing and driving electron bunches in the GeV blowout regime.

  14. Vanishing Croplands.

    ERIC Educational Resources Information Center

    Brown, Lester R.

    1978-01-01

    Natural soil fertility is now declining on an estimated one-fifth of the world's croplands. Direct evidence of the mounting pressures on the global cropland base is seen in accelerating soil erosion, the spread of deserts, and the loss of cropland to nonfarm uses. (Author/BB)

  15. Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors.

    PubMed

    Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi

    2013-01-01

    The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system.

  16. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R&D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q0 was 1.5×1010 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni-Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and permeability at 77 K. The Q values of the HOM in the DDC are 10-100 times lower than those of a TESLA-type HOM coupler.

  17. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism

    PubMed Central

    Gupta, Rahul Kumar; Shi, Qiongfeng; Dhakar, Lokesh; Wang, Tao; Heng, Chun Huat; Lee, Chengkuo

    2017-01-01

    Over the years, several approaches have been devised to widen the operating bandwidth, but most of them can only be triggered at high accelerations. In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g–2.0 g). In order to achieve broadband behavior, a polymer based spring exhibiting multimodal energy harvesting is used. Besides, non-linear stiffening effect is introduced by using mechanical stoppers. At low accelerations (<0.5 g), the nearby mode frequencies of polymer spring contribute to broadening characteristics, while proof mass engages with mechanical stoppers to introduce broadening by non-linear stiffening at higher accelerations. The electromagnetic mechanism is employed in this design to enhance its output at low accelerations when triboelectric output is negligible. Our device displays bandwidth of 40 Hz even at low acceleration of 0.1 g and it is increased up to 68 Hz at 2 g. When non-linear stiffening is used along with multimodal energy-harvesting, the obtained bandwidth increases from 23 Hz to 68 Hz with percentage increment of 295% at 1.8 g. Further, we have demonstrated the triboelectric output measured as acceleration sensing signals in terms of voltage and current sensitivity of 4.7 Vg−1 and 19.7 nAg−1, respectively. PMID:28120924

  18. The influence of acceleration loading curve characteristics on traumatic brain injury.

    PubMed

    Post, Andrew; Blaine Hoshizaki, T; Gilchrist, Michael D; Brien, Susan; Cusimano, Michael D; Marshall, Shawn

    2014-03-21

    To prevent brain trauma, understanding the mechanism of injury is essential. Once the mechanism of brain injury has been identified, prevention technologies could then be developed to aid in their prevention. The incidence of brain injury is linked to how the kinematics of a brain injury event affects the internal structures of the brain. As a result it is essential that an attempt be made to describe how the characteristics of the linear and rotational acceleration influence specific traumatic brain injury lesions. As a result, the purpose of this study was to examine the influence of the characteristics of linear and rotational acceleration pulses and how they account for the variance in predicting the outcome of TBI lesions, namely contusion, subdural hematoma (SDH), subarachnoid hemorrhage (SAH), and epidural hematoma (EDH) using a principal components analysis (PCA). Monorail impacts were conducted which simulated falls which caused the TBI lesions. From these reconstructions, the characteristics of the linear and rotational acceleration were determined and used for a PCA analysis. The results indicated that peak resultant acceleration variables did not account for any of the variance in predicting TBI lesions. The majority of the variance was accounted for by duration of the resultant and component linear and rotational acceleration. In addition, the components of linear and rotational acceleration characteristics on the x, y, and z axes accounted for the majority of the remainder of the variance after duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism

    NASA Astrophysics Data System (ADS)

    Gupta, Rahul Kumar; Shi, Qiongfeng; Dhakar, Lokesh; Wang, Tao; Heng, Chun Huat; Lee, Chengkuo

    2017-01-01

    Over the years, several approaches have been devised to widen the operating bandwidth, but most of them can only be triggered at high accelerations. In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g-2.0 g). In order to achieve broadband behavior, a polymer based spring exhibiting multimodal energy harvesting is used. Besides, non-linear stiffening effect is introduced by using mechanical stoppers. At low accelerations (<0.5 g), the nearby mode frequencies of polymer spring contribute to broadening characteristics, while proof mass engages with mechanical stoppers to introduce broadening by non-linear stiffening at higher accelerations. The electromagnetic mechanism is employed in this design to enhance its output at low accelerations when triboelectric output is negligible. Our device displays bandwidth of 40 Hz even at low acceleration of 0.1 g and it is increased up to 68 Hz at 2 g. When non-linear stiffening is used along with multimodal energy-harvesting, the obtained bandwidth increases from 23 Hz to 68 Hz with percentage increment of 295% at 1.8 g. Further, we have demonstrated the triboelectric output measured as acceleration sensing signals in terms of voltage and current sensitivity of 4.7 Vg-1 and 19.7 nAg-1, respectively.

  20. Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures.

    PubMed

    Marinetto, Eugenio; Victores, Juan González; García-Sevilla, Mónica; Muñoz, Mercedes; Calvo, Felipe Ángel; Balaguer, Carlos; Desco, Manuel; Pascau, Javier

    2017-10-01

    Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. The system could be used to guide docking with any commercial linear accelerator. We believe that the docking navigator we present is a major contribution to IOERT, where docking is critical when attempting to reduce surgical time, ensure patient safety and guarantee that the treatment administered follows the radiation oncologist's prescription. © 2017 American Association of Physicists in Medicine.

  1. Impact attenuation of protective boxing and taekwondo headgear.

    PubMed

    O'Sullivan, David M; Fife, Gabriel P

    2016-11-01

    This study aimed to compare the impact attenuation performance of boxing and taekwondo headgear in terms of peak linear and rotational acceleration. To measure the impact attenuation of headgear, a standardized (American Society for Testing and Materials (ASTM) F-2397) martial arts headgear striker was used to impart impacts to a 50th Percentile Male Hybrid III Crash Test Dummy head and neck complex. Two boxing (Adidas and Greenhill) and two taekwondo (Adidas and Nike) headgear, approved by the Association Internationale de Boxe Amateur and the World Taekwondo Federation (WTF), were selected. Each of the selected headgear was fitted to the Hybrid III head and subsequently subjected to five impacts at the front and side with a maximum impact interim time of 60 seconds by the rotating striker at 8 ± 0.3 m/s. Linear and rotational acceleration were recorded at 10,000 Hz. There were significant interactions of the impact location and brand on the rotational acceleration, F(3,40) = 6.7, p < .05. There were significant main effects of both impact location F(1,40) = 9.07, p < .05 and headgear brand F(3,40) = 9.9, p < .05 on the linear acceleration. Pairwise comparisons show significant differences between the front and side for both linear and rotational acceleration. The headgear tested failed the ASTM high impact test requirement to reduce the linear acceleration to below a threshold of 150 g. Further development of headgear to reduce impact linear and rotational acceleration magnitudes should be called for by the relevant sport governing bodies and initiated by headgear manufactures.

  2. Modification of Eye Movements and Motion Perception during Off-Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Denise, P.; CLement, G.

    2006-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both torsional and horizontal eye movements as a function of the varying linear acceleration along the lateral plane, and modulation of vertical and vergence eye movements as a function of the varying linear acceleration along the sagittal plane. Previous studies have demonstrated that tilt and translation otolith-ocular responses, as well as motion perception, vary as a function of stimulus frequency during OVAR. The purpose of this study is to examine normative OVAR responses in healthy human subjects, and examine adaptive changes in astronauts following short duration space flight at low (0.125 Hz) and high (0.5 Hz) frequencies. Data was obtained on 24 normative subjects (14 M, 10 F) and 14 (13 M, 1F) astronaut subjects. To date, astronauts have participated in 3 preflight sessions (n=14) and on R+0/1 (n=7), R+2 (n= 13) and R+4 (n= 13) days after landing. Subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography. Perceived motion was evaluated using verbal reports and a two-axis joystick (pitch and roll tilt) mounted on top of a two-axis linear stage (anterior-posterior and medial-lateral translation). Eye responses were obtained in ten of the normative subjects with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias of the responses over several cycles at each stimulus frequency. Eye responses during 0.125 Hz OVAR were dominated by modulation of torsional and vertical eye position, compensatory for tilt relative to gravity. While there is a bias horizontal slow phase velocity (SPV), the modulation of horizontal and vergence SPV is negligible at this lower stimulus frequency. Eye responses during 0.5 Hz OVAR; however, are characterized by modulation of horizontal and vergence SPV, compensatory for translation in the lateral and sagittal planes, respectively. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of the ocular reflexes, on the other hand, shifted towards alignment with the head. During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. In contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. Preliminary results from astronaut data suggest that the ocular responses are not substantially altered by short-duration spaceflight. However, compared to preflight averages, astronauts reported greater amplitude of both perceived tilt and translation at low and high frequency, respectively, during early post-flight testing. We conclude that the neural processing to distinguish tilt and translation linear acceleration stimuli differs between eye movements and motion perception. The results from modifying head-on-trunk position are consistent with the modulation of ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural and naso-occipital head axis. While the tilt and translation ocular reflexes appear to operate in an independent fashion, the timing of perceived tilt and translation influence each other. We conclude that the perceived motion path during linear acceleration in darkness results from a composite representation of tilt and translation inputs from both vestibular and somatosensory systems.

  3. KLYNAC: Compact linear accelerator with integrated power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less

  4. Klynac: Compact Linear Accelerator with Integrated Power Supply

    NASA Astrophysics Data System (ADS)

    Malyzhenkov, A. V.

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  5. Pros and Cons of the Acceleration Scheme (NF-IDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Bogacz, Slawomir

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain acrossmore » the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc« less

  6. Payload isolation and stabilization by a Suspended Experiment Mount (SEM)

    NASA Technical Reports Server (NTRS)

    Bailey, Wayne L.; Desanctis, Carmine E.; Nicaise, Placide D.; Schultz, David N.

    1992-01-01

    Many Space Shuttle and Space Station payloads can benefit from isolation from crew or attitude control system disturbances. Preliminary studies have been performed for a Suspended Experiment Mount (SEM) system that will provide isolation from accelerations and stabilize the viewing direction of a payload. The concept consists of a flexible suspension system and payload-mounted control moment gyros. The suspension system, which is rigidly locked for ascent and descent, isolates the payload from high frequency disturbances. The control moment gyros stabilize the payload orientation. The SEM will be useful for payloads that require a lower-g environment than a manned vehicle can provide, such as materials processing, and for payloads that require stabilization of pointing direction, but not large angle slewing, such as nadir-viewing earth observation or solar viewing payloads.

  7. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Head Impact Exposure in Youth Football: High School Ages 14 to 18 Years and Cumulative Impact Analysis

    PubMed Central

    Urban, Jillian E.; Davenport, Elizabeth M.; Golman, Adam J.; Maldjian, Joseph A.; Whitlow, Christopher T.; Powers, Alexander K.; Stitzel, Joel D.

    2015-01-01

    Sports-related concussion is the most common athletic head injury with football having the highest rate among high school athletes. Traditionally, research on the biomechanics of football-related head impact has been focused at the collegiate level. Less research has been performed at the high school level, despite the incidence of concussion among high school football players. The objective of this study is to twofold: to quantify the head impact exposure in high school football, and to develop a cumulative impact analysis method. Head impact exposure was measured by instrumenting the helmets of 40 high school football players with helmet mounted accelerometer arrays to measure linear and rotational acceleration. A total of 16,502 head impacts were collected over the course of the season. Biomechanical data were analyzed by team and by player. The median impact for each player ranged from 15.2 to 27.0 g with an average value of 21.7 (±2.4) g. The 95th percentile impact for each player ranged from 38.8 to 72.9 g with an average value of 56.4 (±10.5) g. Next, an impact exposure metric utilizing concussion injury risk curves was created to quantify cumulative exposure for each participating player over the course of the season. Impacts were weighted according to the associated risk due to linear acceleration and rotational acceleration alone, as well as the combined probability (CP) of injury associated with both. These risks were summed over the course of a season to generate risk weighted cumulative exposure. The impact frequency was found to be greater during games compared to practices with an average number of impacts per session of 15.5 and 9.4, respectively. However, the median cumulative risk weighted exposure based on combined probability was found to be greater for practices vs. games. These data will provide a metric that may be used to better understand the cumulative effects of repetitive head impacts, injury mechanisms, and head impact exposure of athletes in football. PMID:23864337

  9. Electron acceleration via magnetic island coalescence

    NASA Astrophysics Data System (ADS)

    Shinohara, I.; Yumura, T.; Tanaka, K. G.; Fujimoto, M.

    2009-06-01

    Electron acceleration via fast magnetic island coalescence that happens as quick magnetic reconnection triggering (QMRT) proceeds has been studied. We have carried out a three-dimensional full kinetic simulation of the Harris current sheet with a large enough simulation run for two magnetic islands coalescence. Due to the strong inductive electric field associated with the non-linear evolution of the lower-hybrid-drift instability and the magnetic island coalescence process observed in the non-linear stage of the collisionless tearing mode, electrons are significantly accelerated at around the neutral sheet and the subsequent X-line. The accelerated meandering electrons generated by the non-linear evolution of the lower-hybrid-drift instability are resulted in QMRT, and QMRT leads to fast magnetic island coalescence. As a whole, the reconnection triggering and its transition to large-scale structure work as an effective electron accelerator.

  10. Laser-plasma-based linear collider using hollow plasma channels

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2016-03-03

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  11. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  12. Anthropometrics and maturity status: A preliminary study of youth football head impact biomechanics.

    PubMed

    Yeargin, Susan W; Kingsley, Payton; Mensch, Jim M; Mihalik, Jason P; Monsma, Eva V

    2017-10-03

    There is a paucity of head impact biomechanics research focusing on youth athletes. Little is known about how youth subconcussive head impact tolerances are related to physical size and maturation. To examine the effects of age, anthropometric and maturational status variability on head impact biomechanics. Cross-sectional. Outdoor youth football facilities in South Carolina. Thirty-four male recreational youth football players, 8 to 13yrs. Categorized by CDC standards, independent variables were: age, height, mass, BMI, and estimated peak height velocity (PHV). Participants wore a designated head impact sensor (xPatch) on their mastoid process during practices and games. Linear acceleration (g) and rotational acceleration (rad/s 2 ). Boys in the older age category had a greater linear (F=17.72; P<0.001) and rotational acceleration (F=10.74; P<0.001) than those in the younger category. Post-PHV boys had higher linear (F=9.09, P=0.002) and rotational (F=5.57, P=0.018) accelerations than those who were pre-PHV. Rotational, but not linear acceleration differed by height category with lowest impacts found for the tallest category, whereas both linear and rotational accelerations by mass differences favored average and heavy categories. BMI overweight boys, had the greatest linear (F=5.25; P=0.011) and rotational acceleration (F=4.13; P=0.260) means. Post-PHV boys who were older, taller and had longer legs, but who were not heavier, had higher impacts perhaps due to the type of impacts sustained. Taller boys' heads are above their peers possibly encouraging hits in the torso region resulting in lower impact accelerations. Obese boys did not have sequential results compared to boys in the other BMI categories probably due to league rules, player position, and lack of momentum produced. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  14. Critical system issues and modeling requirements: The problem of beam energy sweep in an electron linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, W.C.; Barrett, D.M.; Sampayan, S.E.

    1990-08-06

    In this paper we discuss system issues and modeling requirements within the context of energy sweep in an electron linear induction accelerator. When needed, particular parameter values are taken from the ETA-II linear induction accelerator at Lawrence Livermore National Laboratory. For this paper, the most important parameter is energy sweep during a pulse. It is important to have low energy sweep to satisfy the FEL resonance condition and to limit the beam corkscrew motion. It is desired to achieve {Delta}E/E = {plus minus}1% for a 50-ns flattop whereas the present level of performance is {Delta}E/E = {plus minus}1% in 10more » ns. To improve this situation we will identify a number of areas in which modeling could help increase understanding and improve our ability to design linear induction accelerators.« less

  15. Alleviation of whirl-flutter on a joined-wing tilt-rotor aircraft configuration using active controls

    NASA Technical Reports Server (NTRS)

    Vanaken, Johannes M.

    1991-01-01

    The feasibility of using active controls to delay the onset of whirl-flutter on a joined-wing tilt rotor aircraft was investigated. The CAMRAD/JA code was used to obtain a set of linear differential equations which describe the motion of the joined-wing tilt-rotor aircraft. The hub motions due to wing/body motion is a standard input to CAMRAD/JA and were obtained from a structural dynamics model of a representative joined-wing tilt-rotor aircraft. The CAMRAD/JA output, consisting of the open-loop system matrices, and the airframe free vibration motion were input to a separate program which performed the closed-loop, active control calculations. An eigenvalue analysis was performed to determine the flutter stability of both open- and closed-loop systems. Sensor models, based upon the feedback of pure state variables and based upon hub-mounted sensors, providing physically measurable accelerations, were evaluated. It was shown that the onset of tilt-rotor whirl-flutter could be delayed from 240 to above 270 knots by feeding back vertical and span-wise accelerations, measured at the rotor hub, to the longitudinal cyclic pitch. Time response calculations at a 270-knot cruise condition showed an active cyclic pitch control level of 0.009 deg, which equates to a very acceptable 9 pound active-control force applied at the rotor hub.

  16. Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems

    DOE PAGES

    Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...

    2017-03-05

    Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.

  17. Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei

    1991-01-01

    The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.

  18. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  19. Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1993-01-01

    Response properties of vertical (VC) and horizontal (HC) canal/otolith-convergent vestibular nuclei neurons were studied in decerebrate rats during stimulation with sinusoidal linear accelerations (0.2-1.4 Hz) along different directions in the head horizontal plane. A novel characteristic of the majority of tested neurons was the nonzero response often elicited during stimulation along the "null" direction (i.e., the direction perpendicular to the maximum sensitivity vector, Smax). The tuning ratio (Smin gain/Smax gain), a measure of the two-dimensional spatial sensitivity, depended on stimulus frequency. For most vestibular nuclei neurons, the tuning ratio was small at the lowest stimulus frequencies and progressively increased with frequency. Specifically, HC neurons were characterized by a flat Smax gain and an approximately 10-fold increase of Smin gain per frequency decade. Thus, these neurons encode linear acceleration when stimulated along their maximum sensitivity direction, and the rate of change of linear acceleration (jerk) when stimulated along their minimum sensitivity direction. While the Smax vectors were distributed throughout the horizontal plane, the Smin vectors were concentrated mainly ipsilaterally with respect to head acceleration and clustered around the naso-occipital head axis. The properties of VC neurons were distinctly different from those of HC cells. The majority of VC cells showed decreasing Smax gains and small, relatively flat, Smin gains as a function of frequency. The Smax vectors were distributed ipsilaterally relative to the induced (apparent) head tilt. In type I anterior or posterior VC neurons, Smax vectors were clustered around the projection of the respective ipsilateral canal plane onto the horizontal head plane. These distinct spatial and temporal properties of HC and VC neurons during linear acceleration are compatible with the spatiotemporal organization of the horizontal and the vertical/torsional ocular responses, respectively, elicited in the rat during linear translation in the horizontal head plane. In addition, the data suggest a spatially and temporally specific and selective otolith/canal convergence. We propose that the central otolith system is organized in canal coordinates such that there is a close alignment between the plane of angular acceleration (canal) sensitivity and the plane of linear acceleration (otolith) sensitivity in otolith/canal-convergent vestibular nuclei neurons.

  20. Development of a RadFET Linear Array for Intracavitary in vivo Dosimetry During External Beam Radiotherapy and Brachytherapy

    NASA Astrophysics Data System (ADS)

    Price, R. A.; Benson, C.; Joyce, M. J.; Rodgers, K.

    2004-08-01

    We present the details of a new linear array dosimeter consisting of a chain of semiconductors mounted on an ultra-thin (50 /spl mu/m thick) flexible substrate and housed in an intracavitary catheter. The semiconductors, manufactured by NMRC Cork, have not been packaging and incorporate a passivation layer that allows them to be mounted on the substrate using flip-chip-bonding. This paper reports, for the first time, the construction of a multiple (ten) detector array suited to in vivo dosimetry in the rectum, esophagus and vagina during external beam radiotherapy, as well as being adaptable to in vivo dosimetry during brachytherapy and diagnostic radiology.

  1. Signature energetic analysis of accelerate electron beam after first acceleration station by accelerating stand of Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Sledneva, A. S.; Kobets, V. V.

    2017-06-01

    The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.

  2. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  3. First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plettner, T.; Byer, R.L.; Smith, T.I.

    2006-02-17

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transitionmore » radiation process. experiment as the Laser Electron Accelerator Project (LEAP).« less

  4. CORRECTIONS ASSOCIATED WITH ON-PHANTOM CALIBRATIONS OF NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Hawkes, N P; Thomas, D J; Taylor, G C

    2016-09-01

    The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article. © Crown copyright 2015.

  5. Dynamic Pressure Calibration Standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1986-01-01

    Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.

  6. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOEpatents

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  7. Inviscid linear stability analysis of two vertical columns of different densities in a gravitational acceleration field

    DOE PAGES

    Prathama, Aditya Heru; Pantano, Carlos

    2017-08-09

    Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less

  8. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  9. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  10. Adaptation to vestibular disorientation. IX, Influence of head position on the habituation of vertical nystagmus.

    DOT National Transportation Integrated Search

    1968-03-01

    Interactions of linear and angular accelerations are frequently experienced by pilots during aircraft maneuvers. Several recent studies have indicated that the otoliths (detectors of linear acceleration) may influence responses of the semicircular ca...

  11. Conduction cooling systems for linear accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, Robert

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  12. Assessment of human exposure doses received by activation of medical linear accelerator components

    NASA Astrophysics Data System (ADS)

    Lee, D.-Y.; Kim, J.-H.; Park, E.-T.

    2017-08-01

    This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.

  13. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator

    PubMed Central

    Odero, DO; Shimm, DS

    2009-01-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers’ proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources. PMID:21611056

  14. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  15. SU-E-T-354: Efficient and Enhanced QA Testing of Linear Accelerators Using a Real-Time Beam Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Farrokhkish, M; Norrlinger, B

    2015-06-15

    Purpose: To investigate the feasibility of performing routine QA tests of linear accelerators (Linac) using the Integral Quality Monitoring (IQM) system. The system, consisting of a 1-D sensitivity gradient large area ion-chamber mounted at the collimator, allows automatic collection and analysis of beam data. Methods: The IQM was investigated to perform several QA constancy tests, similar to those recommended by AAPM TG142, of a Linac including: beam output, MLC calibration, beam symmetry, relative dose factor (RDF), dose linearity, output as a function of gantry angle and dose rate. All measurements by the IQM system accompanied a reference measurement using amore » conventional dosimetry system and were performed on an Elekta Infinity Linac with Agility MLC. The MLC calibration check is done using a Picket-Fence type 2×10cm{sup 2} field positioned at different off-axis locations along the chamber gradient. Beam symmetry constancy values are established by signals from an 4×4cm{sup 2} aperture located at various off-axis positions; the sensitivity of the test was determined by the changes in the signals in response to a tilt in the beam. The data for various square field sizes were used to develop a functional relationship with RDF. Results: The IQM tracked the beam output well within 1% of the reference ion-chamber readings. The Picket-Fence type field test detected a 1mm shift error of one MLC bank. The system was able to detect 2.5% or greater beam asymmetry. The IQM results for all other QA tests were found to agree with the reference values to within 0.5%. Conclusion: It was demonstrated that the IQM system can effectively monitor the Linac performance parameters for the purpose of routine QA constancy tests. With minimum user interactions a comprehensive set of tests can be performed efficiently, allowing frequent monitoring of the Linac. The presenting author’s salary is funded by the manufacturer of the QA device. All the other authors have financial interests with the commercialization of this QA device.« less

  16. Nondestructive Evaluation of Metallized Tape Bonds Formed by Tape Automated Bonding (TAB)

    DTIC Science & Technology

    1989-04-01

    powered by micro-positioning linear actuators. 3) Interchangeable sample-holding fixtures mounted upon top of slide assembly. 4) Coverslip gantry mounted...Controller Unit 1) Motor power supplies 2) Motor output servo driver amplifiers 3) "Macro-language" command Interpreter 4) Two-way cormunications with...adjustments are manual knobs giving approximately one degree of tilt adjustment per turn. The servo controller has self-contained power supplies for

  17. Permanent magnet focused X-band photoinjector

    DOEpatents

    Yu, David U. L.; Rosenzweig, James

    2002-09-10

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  18. Staging optics considerations for a plasma wakefield acceleration linear collider

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  19. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  20. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  1. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  2. Analysis of accelerations measured during full-scale tank car impact tests

    DOT National Transportation Integrated Search

    2007-04-01

    Tank car impact responses were investigated using accelerometers mounted at various locations on a tank car. Several tests were run with both a full and an empty tank car, and varying the tank car impact speed. The data from the accelerometers went t...

  3. CAM controlled retractable door latch

    NASA Technical Reports Server (NTRS)

    Carsley, R. B. (Inventor)

    1982-01-01

    A latching mechanism in which there is linear movement and rotational movement is described. The umbilical doors of the space shuttle orbiter are required to be open during vehicle launch. After the external tank is released, the doors are closed. Presently, the device for maintaining the doors in an open position is mounted on the external tank and therefore has a single mission life. The latching mechanism of the invention is mounted in the orbiter and therefore is returned and has multimission capability. The latching mechanism is comprised of a pair of concentric nested, cylindrical cams and motors to actuate the cams, and latch pin all contained within a cover mounted on a support bracket carried by the substructure. A shaft having a latch pin is mounted inside the inner cylindrical cam.

  4. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    PubMed Central

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  5. Safety and severity of accelerations delivered from whole body vibration exercise devices to standing adults.

    PubMed

    Muir, Jesse; Kiel, Douglas P; Rubin, Clinton T

    2013-11-01

    Whole body vibration devices are used as a means to augment training, and their potential to treat a range of musculoskeletal diseases and injuries is now being considered. The goal of this work is to determine the degree to which acceleration delivered by whole body vibration devices at the plantar surfaces of a standing human is transmitted through the axial and appendicular skeleton, and how this mechanical challenge corresponds to the safety threshold limit values established by the International Standards Organization ISO-2631. Non-blinded laboratory assessment of a range of whole body vibration devices as it pertains to acceleration transmission to healthy volunteers. Using skin and bite-bar mounted accelerometers, transmissibility to the tibia and cranium was determined in six healthy adults standing on a programmable whole body vibration device as a function of frequency and intensity. Measures of transmissibility were then made from three distinct types of whole body vibration platforms, which delivered a 50-fold range of peak-to-peak acceleration intensities (0.3-15.1 gp-p; where 1g is Earth's gravitational field). For a given frequency, transmissibility was independent of intensity when below 1g. Transmissibility declined non-linearly with increasing frequency. Depending on the whole body vibration device, vibration ranged from levels considered safe by ISO-2631 for up to 8h each day (0.3 gp-p @ 30 Hz), to levels that were seven times higher than what is considered a safe threshold for even 1 min of exposure each day (15.1 gp-p @ 30 Hz). Transmissibility to the cranium was markedly attenuated by the degree of flexion in the knees. Vibration can have adverse effects on a number of physiologic systems. This work indicates that readily accessible whole body vibration devices markedly exceed ISO guidelines for safety, and extreme caution must be practiced when considering their use. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Scaling of coupled dilatancy-diffusion processes in space and time

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Meredith, P. G.; Brantut, N.; Heap, M.

    2012-04-01

    Coupled dilatancy-diffusion processes resulting from microscopically brittle damage due to precursory cracking have been observed in the laboratory and suggested as a mechanism for earthquake precursors. One reason precursors have proven elusive may be the scaling in space: recent geodetic and seismic data placing strong limits on the spatial extent of the nucleation zone for recent earthquakes. Another may be the scaling in time: recent laboratory results on axi-symmetric samples show both a systematic decrease in circumferential extensional strain at failure and a delayed and a sharper acceleration of acoustic emission event rate as strain rate is decreased. Here we examine the scaling of such processes in time from laboratory to field conditions using brittle creep (constant stress loading) to failure tests, in an attempt to bridge part of the strain rate gap to natural conditions, and discuss the implications for forecasting the failure time. Dilatancy rate is strongly correlated to strain rate, and decreases to zero in the steady-rate creep phase at strain rates around 10-9 s-1 for a basalt from Mount Etna. The data are well described by a creep model based on the linear superposition of transient (decelerating) and accelerating micro-crack growth due to stress corrosion. The model produces good fits to the failure time in retrospect using the accelerating acoustic emission event rate, but in prospective tests on synthetic data with the same properties we find failure-time forecasting is subject to systematic epistemic and aleatory uncertainties that degrade predictability. The next stage is to use the technology developed to attempt failure forecasting in real time, using live streamed data and a public web-based portal to quantify the prospective forecast quality under such controlled laboratory conditions.

  7. Observations of waves artificially stimulated by an electron beam inside a region with auroral precipitation

    NASA Technical Reports Server (NTRS)

    Grandal, B.; Troim, J.; Maehlum, B.; Holtet, J. A.; Pran, B.

    1980-01-01

    Observations of waves stimulated by artificial injection inside an auroral arc by an electron accelerator mounted on the POLAR 5 sounding rocket are presented. The accelerator produced a pulsed electron beam with currents up to 130 mA and energies up to 10 keV; emissions after the end of beam injection were generated by perturbations in the ambient plasma near the accelerator during beam injection. These emissions were independent of the electron beam direction along the geomagnetic field. The high frequency emission observed after beam injection correlated with the passage through an auroral arc; the low frequency emissions after beam injection were concentrated in two bands below the lower hybrid frequency.

  8. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    NASA Astrophysics Data System (ADS)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  9. Survey of Active Vibration Isolation Systems for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Whorton, Mark S.

    2000-01-01

    In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration-sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. A tutorial discussion of the microgravity vibration isolation problem, including a description of the acceleration environment of the International Space Station and attenuation requirements, as well as a comparison or the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation is provided. The flight test results of the three demonstrated systems: suppression of transient accelerations by levitation, the microgravity vibration isolation mount, and the active rack isolation system are surveyed.

  10. Acceleration and holographic studies on different types of dynamization of external fixators of the bones

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Kasprzak, Henryk T.; Voloshin, Arkady S.; Pennig, Dietmar; von Bally, Gert

    1992-08-01

    The unilateral axially dynamic fixator (Orthofix) was mounted on a sheep tibial shaft. Three fixation modes: static, dynamic controlled, and dynamic free were examined by means of double exposure holographic interferometry. Simultaneously, the acceleration was measured by an accelerometer and displayed on the monitor together with loading characteristics. The first exposure was made before the acting force was applied to the tibia plateau. The second one after the moment when the acceleration wave started to propagate through the specimen. We stated that in the case of dynamization less torsion occurs at the fracture site. So far, we have not been able to determine any correlation between results of holographic and accelerometric measurements.

  11. The detrimental effect of friction on space microgravity robotics

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S.; Glosser, Gregory D.; Miller, Jeffrey H.; Rohn, Douglas

    1992-01-01

    The authors present an analysis of why control systems are ineffective in compensating for acceleration disturbances due to Coulomb friction. Linear arguments indicate that the effects of Coulomb friction on a body are most difficult to reject when the control actuator is separated from the body of compliance. The linear arguments were illustrated in a nonlinear simulation of optimal linear tracking control in the presence of nonlinear friction. The results of endpoint acceleration measurements for four robot designs are presented and are compared with simulation and to equivalent measurements on a human. It is concluded that Coulomb friction in common bearings and transmission induces unacceptable levels of endpoint acceleration, that these accelerations cannot be adequately attenuated by control, and that robots for microgravity work will require special design considerations for inherently low friction.

  12. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  13. Study of quality assurance regulations for linear accelerators in Korea: A comparison study between the current status in Korea and the international guidelines

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Jeong, Seonghoon; Jo, Yunhui; Yoon, Myonggeun

    2015-07-01

    Quality assurance (QA) for medical linear accelerators is indispensable for appropriate cancer treatment. Some international organizations and advanced Western countries have provided QA guidelines for linear accelerators. Currently, QA regulations for linear accelerators in Korean hospitals specify a system in which each hospital stipulates its independent hospital-based protocols for QA procedures (HP_QAPs) and conducts QA based on those HP_QAPs while regulatory authorities verify whether items under those HP_QAPs have been performed. However, because this regulatory method cannot guarantee the quality of universal treatment and QA items with tolerance criteria are different in many hospitals, the presentation of standardized QA items and tolerance criteria is essential. In this study, QA items in HP_QAPs from various hospitals and those presented by international organizations, such as the International Atomic Energy Agency, the European Union, and the American Association of Physicist in Medicine, and by advanced Western countries, such as the USA, the UK, and Canada, were compared. Concordance rates between QA items for linear accelerators that were presented by the aforementioned organizations and those currently being implemented in Korean hospitals were shown to exhibit a daily QA of 50%, a weekly QA of 22%, a monthly QA of 43%, and an annual QA of 65%, and the overall concordance rates of all QA items were approximately 48%. In the comparison between QA items being implemented in Korean hospitals and those being implemented in advanced Western countries, concordance rates were shown to exhibit a daily QA of 50%, a weekly QA of 33%, a monthly QA of 60%, and an annual QA of 67%, and the overall concordance rates of all QA items were approximately 57%. The results of this study indicate that the HP_QAPs currently implemented by Korean hospitals as QA standards for linear accelerators used in radiation therapy do not meet international standards. If this problem is to be solved, national standardized QA items and procedures for linear accelerators need to be developed.

  14. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  15. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  16. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  17. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  18. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  19. 14 CFR 29.549 - Fuselage and rotor pylon structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight conditions, must be considered. (c) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (d) [Reserved] (e) If approval for the use of 21/2-minute OEI power is requested, each engine...

  20. Photovoltaic Lifetime Project | Photovoltaic Research | NREL

    Science.gov Websites

    PV & Solar Resource Testing Accelerated Testing & Analysis Systems Engineering Project Sandia National Laboratories' PV Performance Modeling Collaborative website. Jinko Solar. PV systems mounted on the ground. Jinko Solar PV Lifetime installation at NREL. need-alt Light-induced degradation

  1. The hydrodynamics of linear accelerations in bluegill sunfish, Lepomis macrochirus

    NASA Astrophysics Data System (ADS)

    Wise, Tyler; Boden, Alex; Schwalbe, Margot; Tytell, Eric

    2015-11-01

    As fish swim, their body interacts with the fluid around them in order to generate thrust. In this study, we examined the hydrodynamics of linear acceleration by bluegill sunfish, Lepomis macrochirus, which swims using a carangiform mode. Carangiform swimmers primarily use their caudal fin and posterior body for propulsion, which is different from anguilliform swimmers, like eels, that undulate almost their whole body to swim. Most previous studies have examined steady swimming, but few have looked at linear accelerations, even though most fish do not often swim steadily. During steady swimming, thrust and drag forces are balanced, which makes it difficult to separate the two, but during acceleration, thrust exceeds drag, making it easier to measure; this may reveal insights into how thrust is produced. This study used particle image velocimetry (PIV) to compare the structure of the wake during steady swimming and acceleration and to estimate the axial force. Axial force increased during acceleration, but the orientation of the vortices did not differ between steady swimming and acceleration, which is different than anguilliform swimmers, whose wakes change structure during acceleration. This difference may point to fundamental differences between the two swimming modes. This material is based upon work supported by the U. S. Army Research Office under grant number W911NF-14-1-0494.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Salman, E-mail: sksafi@comsats.edu.pk

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. Themore » degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.« less

  3. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    NASA Astrophysics Data System (ADS)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-04-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.

  4. Characterization of the Dynamic Material Properties of Magnetostrictive Terfenol-D

    NASA Technical Reports Server (NTRS)

    Calkins, Frederick T.; Flatau, Alison B.; Hall, David L.

    1996-01-01

    A major limitation in use of electromagnetic and/or magnetomechanical models for design of Terfenol-D actuators is the lack of reliable material property data for Terfenol-D. In particular data on the performance of Terfenol-D as employed in a transducer, operating under real world dynamic conditions is needed. To provide this information, Terfenol-D rod properties need to be measured under as run prestressed and magnetically biased states. Using a Terfenol-D actuator, the following properties can be measured and/or calculated: mechanical quality factor, speed of sound in the material, the resonant frequency, the anti-resonant frequency, two magnetic permeabilities (one at constant stress and one at constant strain), two Young's moduli (one at constant amplitude applied magnetic field and one at constant amplitude magnetic flux density in the material), the magnetomechanical coupling, and the axial strain coefficient. The development of the material properties measurements and calculations is based on the model of low signal, linear, magnetostriction from Clark, the linear transduction equations for a transducer from Hunt, and a one degree of freedom mechanical model of the transducer. The electrical impedance and admittance mobility loops are used to determine the resonant, anti-resonant, and half power point frequencies. The rest of the material properties indicated above can then be calculated using these frequencies, acceleration from an accelerometer mounted on the actuator arm, and readily measurable transducer and Terfenol-D rod parameters.

  5. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  6. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang

    Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vsmore » treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.« less

  7. Interplay effect on a 6-MV flattening-filter-free linear accelerator with high dose rate and fast multi-leaf collimator motion treating breast and lung phantoms.

    PubMed

    Netherton, Tucker; Li, Yuting; Nitsch, Paige; Shaitelman, Simona; Balter, Peter; Gao, Song; Klopp, Ann; Muruganandham, Manickam; Court, Laurence

    2018-06-01

    Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion. To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 10 6 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies. The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants with maximum dose deviations greater than 3.7%, dose deviation as a function of fraction number was protracted. For treatments on the Halcyon 1.0 linear accelerator, the convergence of dose deviation with fraction number happened more slowly than reported for conventional linear accelerators. However, if plan complexity is reduced for IMRT and if tumor motion is less than ~10-mm, interplay is greatly reduced. To minimize dose deviations across multiple fractions for dynamic targets, we recommend limiting treatment plan complexity and avoiding one-arc VMAT on the Halcyon 1.0 linear accelerator when interplay is a concern. © 2018 American Association of Physicists in Medicine.

  8. Introduction

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Briggs*, Richard J.

    The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.

  9. Beam breakup in an advanced linear induction accelerator

    DOE PAGES

    Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent

    2016-07-01

    Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less

  10. Motion sickness and otolith sensitivity - A pilot study of habituation to linear acceleration

    NASA Technical Reports Server (NTRS)

    Potvin, A. R.; Sadoff, M.; Billingham, J.

    1977-01-01

    Astronauts, particularly in Skylab flights, experienced varying degrees of motion sickness lasting 3-5 days. One possible mechanism for this motion sickness adaptation is believed to be a reduction in otolith sensitivity with an attendant reduction in sensory conflict. In an attempt to determine if this hypothesis is valid, a ground-based pilot study was conducted on a vertical linear accelerator. The extent of habituation to accelerations which initially produced motion sickness was evaluated, along with the possible value of habituation training to minimize the space motion sickness problem. Results showed that habituation occurred for 6 of the 8 subjects tested. However, in tests designed to measure dynamic and static otolith function, no significant differences between pre- and post-habituation tests were observed. Cross habituation effects to a standard Coriolis acceleration test were not significant. It is unlikely that ground-based pre-habituation to linear accelerations of the type examined would alter susceptibility to space motion sickness.

  11. X-ray photoelectron spectroscopy and secondary electron yield analysis of Al and Cu samples exposed to an accelerator environment

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. A.; McDowell, M. W.; Ma, Q.; Harkay, K. C.

    2003-09-01

    It is well known that exposure to an accelerator environment can cause ``conditioning'' of the vacuum chamber surfaces. In order to understand the manner in which the surface structure might influence the production of gases and electrons in the accelerator, such surfaces should be studied both before and after exposure to accelerator conditions. Numerous studies have been performed on representative materials prior to being inserted into an accelerator, but very little has been done on materials that have ``lived'' in the accelerator for extended periods. In the present work, we mounted Al and Cu coupons at different positions in a section of the Advanced Photon Source storage ring and removed them following exposures ranging from 6 to 18 months. X-ray photoelectron spectroscopy (XPS) of the surface was performed before and after exposure. Changes were observed that depended on the location and whether the coupon was facing the chamber interior or chamber wall. These results will be presented and compared to XPS and secondary electron yield data obtained from laboratory measurements meant to simulate the accelerator conditions.

  12. Autovibration and chaotic motion of an unbalanced rotor in massive non-linear compliant supports

    NASA Astrophysics Data System (ADS)

    Pasynkova, I. A.; Stepanova, P. P.

    2018-05-01

    Stability loss scenarios of an unbalanced rotor with a flexible massless shaft mounted in massive non-linear compliant supports are studied on the example of cylindrical precession. Dyffing type of non-linearity in compliant supports is considered. The system "rotor - supports" has eight degrees of freedom. Internal and external friction are taken into account. Autovibrations and chaotic vibrations are obtained. The results are confirmed by numerical check.

  13. Coupled loads analysis for Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Eldridge, J.

    1992-01-01

    Described here is a method for determining the transient response of, and the resultant loads in, a system exposed to predicted external forces. In this case, the system consists of four racks mounted on the inside of a space station resource node module (SSRNMO) which is mounted in the payload bay of the space shuttle. The predicted external forces are forcing functions which envelope worst case forces applied to the shuttle during liftoff and landing. This analysis, called a coupled loads analysis, is used to couple the payload and shuttle models together, determine the transient response of the system, and then recover payload loads, payload accelerations, and payload to shuttle interface forces.

  14. Eruption prediction aided by electronic tiltmeter data at Mount St. Helens

    USGS Publications Warehouse

    Dzurisin, D.; Westphal, J.A.; Johnson, Daniel J.

    1983-01-01

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion.

  15. Eruption prediction aided by electronic tiltmeter data at mount st. Helens.

    PubMed

    Dzurisin, D; Westphal, J A; Johnson, D J

    1983-09-30

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion.

  16. Microwave and Electron Beam Computer Programs

    DTIC Science & Technology

    1988-06-01

    Research (ONR). SCRIBE was adapted by MRC from the Stanford Linear Accelerator Center Beam Trajectory Program, EGUN . oTIC NSECE Acc !,,o For IDL1C I...achieved with SCRIBE. It is a ver- sion of the Stanford Linear Accelerator (SLAC) code EGUN (Ref. 8), extensively modified by MRC for research on

  17. SOME PROBLEMS IN THE CONSTRUCTION OF AN ELECTRON LINEAR ACCELERATOR (in Dutch)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaeghe, J.; Vanhuyse, V.; Van Leuven, P.

    1959-01-01

    Special problems encountered in the construction of the electron linear accelerator of the Natuurkundig Laboratorium der Rijksuniversiteit of Ghent are discussed. The subjects considered are magnetic focusing, magnetic screening of the electron gun cathode, abnormal attenuation-multipactor effects, and electron energy control. (J.S.R.)

  18. Behind the Scenes of the Spallation Neutron Source – The Linear Accelerator

    ScienceCinema

    Galambos, John

    2018-06-25

    The Spallation Neutron Source at Oak Ridge National Laboratory is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. Take a look inside the facility's linear accelerator.

  19. Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Yu, N. Y.

    1991-01-01

    An Euler flow solver was developed for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. This solver employs a highly efficient multigrid scheme, with a successive mesh-refinement procedure to accelerate the convergence of the solution. A new dissipation model was also implemented to render solutions that are grid insensitive. The propeller power effects are simulated by the actuator disk concept. An embedded flow solution method was developed for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine in the presence of a flow field induced by a complete aircraft. Results from test case analysis are presented. A user's guide for execution of computer programs, including format of various input files, sample job decks, and sample input files, is provided in an accompanying volume.

  20. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  1. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  2. Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.

    PubMed

    Holly, Jan E

    2004-01-01

    The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component.

  3. Elastomer mounted rotors - An alternative for smoother running turbomachinery

    NASA Technical Reports Server (NTRS)

    Tecza, J. A.; Jones, S. W.; Smalley, A. J.; Cunningham, R. E.; Darlow, M. S.

    1979-01-01

    This paper describes the design of elastomeric bearing supports for a rotor built to simulate the power turbine of an advanced gas turbine engine which traverses two bending critical speeds. The elastomer dampers were constructed so as to minimize rotor dynamic response at the critical speeds. Results are presented of unbalance response tests performed with two different elastomer materials. These results showed that the resonances on the elastomer-mounted rotor were well damped for both elastomer materials and showed linear response to the unbalance weights used for response testing. Additional tests were performed using solid steel supports at either end (hand-mounted), which resulted in drastically increased sensitivity and nonlinear response, and with steel supports in one end of the rotor and the elastomer at the other, which yielded results which were between the soft- and hard-mounted cases. It is concluded that elastomeric supports are a viable alternative to other methods of mounting flexible rotors, that damping was well in excess of predictions and that elastomeric supports are tolerant of small rotor misalignments.

  4. A 10 Billion MeV Cyclotron

    ERIC Educational Resources Information Center

    Edge, R. D.

    1974-01-01

    Discusses the design of a device which serves to demonstrate the principle of acceleration and phase stability by accelerating gravitationally a ball bearing along a spiral groove. Application of the design principle to the acceleration aspect of a linear accelerator is recommended. (CC)

  5. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  6. The adequate stimulus for avian short latency vestibular responses to linear translation

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.; Colbert, S.

    1998-01-01

    Transient linear acceleration stimuli have been shown to elicit eighth nerve vestibular compound action potentials in birds and mammals. The present study was undertaken to better define the nature of the adequate stimulus for neurons generating the response in the chicken (Gallus domesticus). In particular, the study evaluated the question of whether the neurons studied are most sensitive to the maximum level of linear acceleration achieved or to the rate of change in acceleration (da/dt, or jerk). To do this, vestibular response thresholds were measured as a function of stimulus onset slope. Traditional computer signal averaging was used to record responses to pulsed linear acceleration stimuli. Stimulus onset slope was systematically varied. Acceleration thresholds decreased with increasing stimulus onset slope (decreasing stimulus rise time). When stimuli were expressed in units of jerk (g/ms), thresholds were virtually constant for all stimulus rise times. Moreover, stimuli having identical jerk magnitudes but widely varying peak acceleration levels produced virtually identical responses. Vestibular response thresholds, latencies and amplitudes appear to be determined strictly by stimulus jerk magnitudes. Stimulus attributes such as peak acceleration or rise time alone do not provide sufficient information to predict response parameter quantities. Indeed, the major response parameters were shown to be virtually independent of peak acceleration levels or rise time when these stimulus features were isolated and considered separately. It is concluded that the neurons generating short latency vestibular evoked potentials do so as "jerk encoders" in the chicken. Primary afferents classified as "irregular", and which traditionally fall into the broad category of "dynamic" or "phasic" neurons, would seem to be the most likely candidates for the neural generators of short latency vestibular compound action potentials.

  7. Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value ofmore » G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.« less

  8. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.

    PubMed

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  9. Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim

    2016-08-01

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  10. Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes

    DOEpatents

    Palmer, Robert B.

    1991-01-01

    An accelerating cavity having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps.

  11. ACCELERATOR TARGET POSITIONER AND CONTROL CIRCUIT THEREFOR

    DOEpatents

    Stone, K.F.; Force, R.J.; Olson, W.W.; Cagle, D.S.

    1959-12-15

    An apparatus is described for inserting and retracting a target material with respect to the internal beam of a charged particle accelerator and to circuitry for controlling the timing and motion of the target placement. Two drive coils are mounted on the shaft of a target holder arm and disposed within the accelerator magnetic field with one coil at right angles to the other. Control circuitry alternately connects each coil to a current source and to a varying shorting resistance whereby the coils interchangeably produce driving and braking forces which swing the target arm within a ninety degree arc. The target is thus moved into the beam and away from it at high speeds and is brought to rest after each movement without whiplash or vibration.

  12. A Survey of Active Vibration Isolation Systems for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Whorton, Mark S.

    2000-01-01

    In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. To date, three active microgravity vibration isolation systems have successfully been demonstrated in flight. This paper provides a tutorial discussion of the microgravity vibration isolation problem including a description of the acceleration environment of the International Space Station and attenuation requirements as well as a comparison of the dynamics of passive isolation, active rack-level isolation, and active payload-level isolation. This paper also surveys the flight test results of the three demonstrated systems: Suppression of Transient Accelerations By Levitation (STABLE); the Microgravity Vibration Isolation Mount (MIM); and the Active Rack Isolation System (ARIS).

  13. View of Mount Hadley as photographed by Apollo 15 during EVA

    NASA Image and Video Library

    1971-07-31

    AS15-87-11849 (31 July-2 Aug. 1971) --- An excellent view of Mount Hadley, fully lighted, showing abundant linear features, as photographed during the Apollo 15 lunar surface extravehicular activity (EVA). This view is looking north from the Apollo Lunar Surface Experiments Package (ALSEP) site. Mount Hadley rises about 4,500 meters (approximately 14,765 feet) above the plain. While astronauts David R. Scott, commander, and James B. Irwin, lunar module pilot, descended in the Apollo 15 Lunar Module (LM) "Falcon" to explore the Hadley-Apennine area of the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  14. Application of semiempirical electronic structure theory to compute the force generated by a single surface-mounted switchable rotaxane.

    PubMed

    Sohlberg, Karl; Bazargan, Gloria; Angelo, Joseph P; Lee, Choongkeun

    2017-01-01

    Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391-5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100-200 pN range, consistent with published experimental estimates. Graphical Abstract A single surface-mounted switchable rotaxane.

  15. Acceleration to failure in geophysical signals prior to laboratory rock failure and volcanic eruptions (Invited)

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Greenhough, J.; Heap, M. J.; Meredith, P. G.

    2010-12-01

    The nucleation processes that ultimately lead to earthquakes, volcanic eruptions, rock bursts in mines, and landslides from cliff slopes are likely to be controlled at some scale by brittle failure of the Earth’s crust. In laboratory brittle deformation experiments geophysical signals commonly exhibit an accelerating trend prior to dynamic failure. Similar signals have been observed prior to volcanic eruptions, including volcano-tectonic earthquake event and moment release rates. Despite a large amount of effort in the search, no such statistically robust systematic trend is found prior to natural earthquakes. Here we describe the results of a suite of laboratory tests on Mount Etna Basalt and other rocks to examine the nature of the non-linear scaling from laboratory to field conditions, notably using laboratory ‘creep’ tests to reduce the boundary strain rate to conditions more similar to those in the field. Seismic event rate, seismic moment release rate and rate of porosity change show a classic ‘bathtub’ graph that can be derived from a simple damage model based on separate transient and accelerating sub-critical crack growth mechanisms, resulting from separate processes of negative and positive feedback in the population dynamics. The signals exhibit clear precursors based on formal statistical model tests using maximum likelihood techniques with Poisson errors. After correcting for the finite loading time of the signal, the results show a transient creep rate that decays as a classic Omori law for earthquake aftershocks, and remarkably with an exponent near unity, as commonly observed for natural earthquake sequences. The accelerating trend follows an inverse power law when fitted in retrospect, i.e. with prior knowledge of the failure time. In contrast the strain measured on the sample boundary shows a less obvious but still accelerating signal that is often absent altogether in natural strain data prior to volcanic eruptions. To test the forecasting power of such constitutive rules in prospective mode, we examine the forecast quality of several synthetic trials, by adding representative statistical fluctuations, due to finite real-time sampling effects, to an underlying accelerating trend. Metrics of forecast quality change systematically and dramatically with time. In particular the model accuracy increases, and the forecast bias decreases, as the failure time approaches.

  16. Calculations of beam dynamics in Sandia linear electron accelerators, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.

    1985-03-01

    A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table.

  17. A new concept of a vacuum insulation tandem accelerator.

    PubMed

    Sorokin, I; Taskaev, S

    2015-12-01

    A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    The successful use of outdoor mounting racks as an accelerated aging technique (these devices are called optal reactors); a beginning list of candidate pottant materials for thin-film encapsulation, which process at temperatures well below 100 C; and description of a preliminary flame retardant formulation for ethylene vinyl acetate which could function to increase module flammability ratings are presented.

  19. Learning Design: Reflections upon the Current Landscape

    ERIC Educational Resources Information Center

    Mor, Yishay; Craft, Brock

    2012-01-01

    The mounting wealth of open and readily available information and the accelerated evolution of social, mobile and creative technologies call for a re-conceptualisation of the role of educators: from providers of knowledge to designers of learning. This call is reverberated by the rising trend of research in learning design (LD). Addressing this,…

  20. Astronaut mass measurement using linear acceleration method and the effect of body non-rigidity

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Li, LuMing; Hu, ChunHua; Chen, Hao; Hao, HongWei

    2011-04-01

    Astronaut's body mass is an essential factor of health monitoring in space. The latest mass measurement device for the International Space Station (ISS) has employed a linear acceleration method. The principle of this method is that the device generates a constant pulling force, and the astronaut is accelerated on a parallelogram motion guide which rotates at a large radius to achieve a nearly linear trajectory. The acceleration is calculated by regression analysis of the displacement versus time trajectory and the body mass is calculated by using the formula m= F/ a. However, in actual flight, the device is instable that the deviation between runs could be 6-7 kg. This paper considers the body non-rigidity as the major cause of error and instability and analyzes the effects of body non-rigidity from different aspects. Body non-rigidity makes the acceleration of the center of mass (C.M.) oscillate and fall behind the point where force is applied. Actual acceleration curves showed that the overall effect of body non-rigidity is an oscillation at about 7 Hz and a deviation of about 25%. To enhance body rigidity, better body restraints were introduced and a prototype based on linear acceleration method was built. Measurement experiment was carried out on ground on an air table. Three human subjects weighing 60-70 kg were measured. The average variance was 0.04 kg and the average measurement error was 0.4%. This study will provide reference for future development of China's own mass measurement device.

  1. Optimization of radiation shielding material aiming at compactness, lightweight, and low activation for a vehicle-mounted accelerator-driven D-T neutron source.

    PubMed

    Cai, Yao; Hu, Huasi; Lu, Shuangying; Jia, Qinggang

    2018-05-01

    To minimize the size and weight of a vehicle-mounted accelerator-driven D-T neutron source and protect workers from unnecessary irradiation after the equipment shutdown, a method to optimize radiation shielding material aiming at compactness, lightweight, and low activation for the fast neutrons was developed. The method employed genetic algorithm, combining MCNP and ORIGEN codes. A series of composite shielding material samples were obtained by the method step by step. The volume and weight needed to build a shield (assumed as a coaxial tapered cylinder) were adopted to compare the performance of the materials visually and conveniently. The results showed that the optimized materials have excellent performance in comparison with the conventional materials. The "MCNP6-ACT" method and the "rigorous two steps" (R2S) method were used to verify the activation grade of the shield irradiated by D-T neutrons. The types of radionuclide, the energy spectrum of corresponding decay gamma source, and the variation in decay gamma dose rate were also computed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2017-12-09

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  3. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue ofmore » designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)« less

  4. Initial Human Response to Nuclear Radiation

    DTIC Science & Technology

    1982-04-01

    radiation from a linear accelerator . Victim A , age 31, received a dose of 100 rads; victim B, age 29... The radiation has always been in the million-electron- volt range, usually from a cobalt 60 source but sometimes using linear accelerators prouucing up...more recent medical experience, Appendix B presents comments by a radiation oncologist on the

  5. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

    1995-08-08

    A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

  6. Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude

    DOEpatents

    Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.

    1995-01-01

    A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

  7. Distributed coupling high efficiency linear accelerator

    DOEpatents

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  8. Free electron laser

    DOEpatents

    Villa, Francesco

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  9. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Low, D; Mutic, S

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was funded by ViewRay, Inc., Oakwood, OH.« less

  10. Advanced semi-active engine and transmission mounts: tools for modelling, analysis, design, and tuning

    NASA Astrophysics Data System (ADS)

    Farjoud, Alireza; Taylor, Russell; Schumann, Eric; Schlangen, Timothy

    2014-02-01

    This paper is focused on modelling, design, and testing of semi-active magneto-rheological (MR) engine and transmission mounts used in the automotive industry. The purpose is to develop a complete analysis, synthesis, design, and tuning tool that reduces the need for expensive and time-consuming laboratory and field tests. A detailed mathematical model of such devices is developed using multi-physics modelling techniques for physical systems with various energy domains. The model includes all major features of an MR mount including fluid dynamics, fluid track, elastic components, decoupler, rate-dip, gas-charged chamber, MR fluid rheology, magnetic circuit, electronic driver, and control algorithm. Conventional passive hydraulic mounts can also be studied using the same mathematical model. The model is validated using standard experimental procedures. It is used for design and parametric study of mounts; effects of various geometric and material parameters on dynamic response of mounts can be studied. Additionally, this model can be used to test various control strategies to obtain best vibration isolation performance by tuning control parameters. Another benefit of this work is that nonlinear interactions between sub-components of the mount can be observed and investigated. This is not possible by using simplified linear models currently available.

  11. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  12. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  13. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  14. Detection of linear ego-acceleration from optic flow.

    PubMed

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  15. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.

    2006-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation synchronized with pitch tilt at 0.1 Hz for a total of 30 min. Tilt and translation motion perception was obtained from verbal reports and a joystick mounted on a linear stage. Horizontal vergence and vertical eye movements were obtained with a binocular video system. Responses were also obtained during darkness before and following 15 min and 30 min of visual surround translation. Each of the three stimulus conditions involving visual surround translation elicited a significantly reduced sense of perceived tilt and strong linear vection (perceived translation) compared to pre-exposure tilt stimuli in darkness. This increase in perceived translation with reduction in tilt perception was also present in darkness following 15 and 30 min exposures, provided the tilt stimuli were not interrupted. Although not significant, there was a trend for the inphase asymmetrical stimulus to elicit a stronger sense of both translation and tilt than the out-of-phase asymmetrical stimulus. Surprisingly, the inphase asymmetrical stimulus also tended to elicit a stronger sense of peak-to-peak translation than the inphase symmetrical stimulus, even though the range of linear acceleration during the symmetrical stimulus was twice that of the asymmetrical stimulus. These results are consistent with the hypothesis that the central nervous system resolves the ambiguity of inertial motion sensory cues by integrating inputs from visual, vestibular, and somatosensory systems.

  16. Study of the use of Metal-Oxide-Silicon (MOS) devices for particulate detection and monitoring in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Brooks, A. D.; Monteith, L. K.; Wortman, J. J.; Mulligan, J. C.

    1974-01-01

    A metal-oxide-silicon (MOS) capacitor-type particulate sensor was evaluated for use in atmospheric measurements. An accelerator system was designed and tested for the purpose of providing the necessary energy to trigger the MOS-type sensor. The accelerator system and the MOS sensor were characterized as a function of particle size and velocity. Diamond particles were used as particulate sources in laboratory tests. Preliminary tests were performed in which the detector was mounted on an aircraft and flown in the vicinity of coal-fired electric generating plants.

  17. Vibration Response Predictions for Heavy Panel Mounted Components from Panel Acreage Environment Specifications

    NASA Technical Reports Server (NTRS)

    Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce

    2010-01-01

    The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:

  18. Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Lynn, Jacob William

    We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no acceleration; resonance-broadening modifies this conclusion and allows for a continued Fermi-like acceleration process. This may affect the observed spectra of black hole accretion disks by accelerating relativistic particles into a quasi-powerlaw tail.

  19. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.

  20. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartolac, S; Letourneau, D; University of Toronto, Toronto, Ontario

    Purpose: Application of process control theory in quality assurance programs promises to allow earlier identification of problems and potentially better quality in delivery than traditional paradigms based primarily on tolerances and action levels. The purpose of this project was to characterize underlying seasonal variations in linear accelerator output that can be used to improve performance or trigger preemptive maintenance. Methods: Review of runtime plots of daily (6 MV) output data acquired using in house ion chamber based devices over three years and for fifteen linear accelerators of varying make and model were evaluated. Shifts in output due to known interventionsmore » with the machines were subtracted from the data to model an uncorrected scenario for each linear accelerator. Observable linear trends were also removed from the data prior to evaluation of periodic variations. Results: Runtime plots of output revealed sinusoidal, seasonal variations that were consistent across all units, irrespective of manufacturer, model or age of machine. The average amplitude of the variation was on the order of 1%. Peak and minimum variations were found to correspond to early April and September, respectively. Approximately 48% of output adjustments made over the period examined were potentially avoidable if baseline levels had corresponded to the mean output, rather than to points near a peak or valley. Linear trends were observed for three of the fifteen units, with annual increases in output ranging from 2–3%. Conclusion: Characterization of cyclical seasonal trends allows for better separation of potentially innate accelerator behaviour from other behaviours (e.g. linear trends) that may be better described as true out of control states (i.e. non-stochastic deviations from otherwise expected behavior) and could indicate service requirements. Results also pointed to an optimal setpoint for accelerators such that output of machines is maintained within set tolerances and interventions are required less frequently.« less

  2. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (

  3. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  4. Spin dynamics in storage rings and linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irwin, J.

    1994-12-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  5. Finite element analyses of a linear-accelerator electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  6. Finite element analyses of a linear-accelerator electron gun.

    PubMed

    Iqbal, M; Wasy, A; Islam, G U; Zhou, Z

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  7. Microgravity Isolation Control System Design Via High-Order Sliding Mode Control

    NASA Technical Reports Server (NTRS)

    Shkolnikov, Ilya; Shtessel, Yuri; Whorton, Mark S.; Jackson, Mark

    2000-01-01

    Vibration isolation control system design for a microgravity experiment mount is considered. The controller design based on dynamic sliding manifold (DSM) technique is proposed to attenuate the accelerations transmitted to an isolated experiment mount either from a vibrating base or directly generated by the experiment, as well as to stabilize the internal dynamics of this nonminimum phase plant. An auxiliary DSM is employed to maintain the high-order sliding mode on the primary sliding manifold in the presence of uncertain actuator dynamics of second order. The primary DSM is designed for the closed-loop system in sliding mode to be a filter with given characteristics with respect to the input external disturbances.

  8. Calibration of a Six-Degree-of-Freedom Acceleration Measurement Device

    DOT National Transportation Integrated Search

    1994-12-01

    This report describes the calibration of a six-degree-of-freedom acceleration measurement system designed for use in the measurement of linear and angular head accelerations of anthropomorphic dummies during crash tests. The calibration methodology, ...

  9. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air

    EPA Science Inventory

    An autosampler was built to pull cotton swab heads mounted into a 3-foot long, square Al rod in ambient air through the He ionizing beam of a Direct Analysis in Real Time (DART) ion source interfaced to an orthogonal acceleration, time-of-flight mass spectrometer. The cost of th...

  10. Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes

    DOEpatents

    Palmer, R.B.

    1991-05-21

    An accelerating cavity is disclosed having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps. 17 figures.

  11. [Statocyst regulation of the heart and statokinetic reflexes in the crab, Hemigrapsus sanguineus, during linear acceleration].

    PubMed

    Kuntsova, M Ia; Sveshnikov, V G; Timofeeva, E V

    1978-01-01

    In experiments on the shore crab H. sanguineus studies have been made of the effect of variable longitudinal acceleration during swinging (for 15--30 min) upon cardiac activity and gravitational reflexes. High sensitivity of gravitational receptors of the canal statocyst to the effect of acceleration was demonstrated. Removal of the statocysts increases the frequency and amplitude of cardiac contractions as revealed by ECG recording. Changes in stato-kinetic coordinations cause both the disorder of overturning reactions and the disorder of reciprocal inhibition in antagonistic muscles of the dactylopodite. Statocyst regulation of skeletal muscles and heart is presumably realised via contralateral inhibitory canal which is sensitive to linear accelerations.

  12. Effect of Krueger nose flaps on the experimental force and moment characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Lovette, G. H.

    1976-01-01

    Experimental force and moment data are presented for an oblique wing mounted on a body of revolution and equipped with Krueger type nose flaps. The effectiveness of these flaps in making the moment curves more linear by controlling the flow separation on the downstream wing panel at high lift coefficients was determined. The investigation of the effects of the Krueger flaps covered two cases: (1) use of the flaps on the downstream wing panel only and (2) use of the flaps on both wing panels. For part of the tests, the Krueger flaps were mounted on nose flaps that were drooped either 5 deg or 10 deg. The wing was elliptical in planform, had an aspect ratio of 6.0 (based on the unswept span) and was tested at sweep angles of 0, 45 deg, and 50 deg. The Mach-number range covered was from 0.25 to 0.95. It was found that the most effective arrangement of the Krueger flaps for making the pitching-, rolling-, and yawing-moment curves more linear at high lift coefficients was having the Krueger flaps mounted on the nose flaps drooped 5 deg and only on the downstream wing panel.

  13. Individual Impact Magnitude vs. Cumulative Magnitude for Estimating Concussion Odds.

    PubMed

    O'Connor, Kathryn L; Peeters, Thomas; Szymanski, Stefan; Broglio, Steven P

    2017-08-01

    Helmeted impact devices have allowed researchers to investigate the biomechanics of head impacts in vivo. While increased impact magnitude has been associated with greater concussion risk, a definitive concussive threshold has not been established. It is likely that concussion risk is not determined by a single impact itself, but a host of predisposing factors. These factors may include genetics, fatigue, and/or prior head impact exposure. The objective of the current paper is to investigate the association between cumulative head impact magnitude and concussion risk. It is hypothesized that increased cumulative magnitudes will be associated with greater concussion risk. This retrospective analysis included participants that were recruited from regional high-schools in Illinois and Michigan from 2007 to 2014 as part of an ongoing study on concussion biomechanics. Across seven seasons, 185 high school football athletes were instrumented with the Head Impact Telemetry system. Out of 185 athletes, 31 (17%) sustained a concussion, with two athletes sustaining two concussions over the study period, yielding 33 concussive events. The system recorded 78,204 impacts for all concussed players. Linear acceleration, rotational acceleration, and head impact telemetry severity profile (HITsp) magnitudes were summed within five timeframes: the day of injury, three days prior to injury, seven days prior to injury, 30 days prior to injury, and prior in-season exposure. Logistic regressions were modeled to explain concussive events based on the singular linear acceleration, rotational acceleration, and HITsp event along with the calculated summations over time. Linear acceleration, rotational acceleration, and HITsp all produced significant models estimating concussion (p < 0.05). The strongest estimators of a concussive impact were the linear acceleration (OR = 1.040, p < 0.05), rotational acceleration (OR = 1.001, p < 0.05), and HITsp (OR = 1.003, p < 0.05) for the singular impact rather than any of the cumulative magnitude calculations. Moreover, no cumulative count measure was significant for linear or rotational acceleration. Results from this investigation support the growing literature indicating cumulative magnitude is not related to concussion likelihood. Cumulative magnitude is a simplistic measure of the total exposure sustained by a player over a given period. However, this measure is limited as it assumes the brain is a static structure unable to undergo self-repair. Future research should consider how biological recovery between impacts may influence concussion risk.

  14. The sense of balance in humans: Structural features of otoconia and their response to linear acceleration

    PubMed Central

    Kniep, Rüdiger; Zahn, Dirk; Wulfes, Jana

    2017-01-01

    We explored the functional role of individual otoconia within the otolith system of mammalians responsible for the detection of linear accelerations and head tilts in relation to the gravity vector. Details of the inner structure and the shape of intact human and artificial otoconia were studied using environmental scanning electron microscopy (ESEM), including decalcification by ethylenediaminetetraacetic acid (EDTA) to discriminate local calcium carbonate density. Considerable differences between the rhombohedral faces of human and artificial otoconia already indicate that the inner architecture of otoconia is not consistent with the point group -3m. This is clearly confirmed by decalcified otoconia specimen which are characterized by a non-centrosymmetric volume distribution of the compact 3+3 branches. This structural evidence for asymmetric mass distribution was further supported by light microscopy in combination with a high speed camera showing the movement of single otoconia specimen (artificial specimen) under gravitational influence within a viscous medium (artificial endolymph). Moreover, the response of otoconia to linear acceleration forces was investigated by particle dynamics simulations. Both, time-resolved microscopy and computer simulations of otoconia acceleration show that the dislocation of otoconia include significant rotational movement stemming from density asymmetry. Based on these findings, we suggest an otolith membrane expansion/stiffening mechanism for enhanced response to linear acceleration transmitted to the vestibular hair cells. PMID:28406968

  15. Acceleration of boundary element method for linear elasticity

    NASA Astrophysics Data System (ADS)

    Zapletal, Jan; Merta, Michal; Čermák, Martin

    2017-07-01

    In this work we describe the accelerated assembly of system matrices for the boundary element method using the Intel Xeon Phi coprocessors. We present a model problem, provide a brief overview of its discretization and acceleration of the system matrices assembly using the coprocessors, and test the accelerated version using a numerical benchmark.

  16. New Academic Partnerships in Global Health: Innovations at Mount Sinai School of Medicine

    PubMed Central

    Landrigan, Philip J.; Ripp, Jonathan; Murphy, Ramon J. C.; Claudio, Luz; Jao, Jennifer; Hexom, Braden; Bloom, Harrison G.; Shirazian, Taraneh; Elahi, Ebby; Koplan, Jeffrey P.

    2011-01-01

    Global health has become an increasingly important focus of education, research, and clinical service in North American universities and academic health centers. Today there are at least 49 academically based global health programs in the United States and Canada, as compared with only one in 1999. A new academic society, the Consortium of Universities for Global Health, was established in 2008 and has grown significantly. This sharp expansion reflects convergence of 3 factors: (1) rapidly growing student and faculty interest in global health; (2) growing realization–powerfully catalyzed by the acquired immune deficiency syndrome epidemic, the emergence of other new infections, climate change, and globalization–that health problems are interconnected, cross national borders, and are global in nature; and (3) rapid expansion in resources for global health. This article examines the evolution of the concept of global health and describes the driving forces that have accelerated interest in the field. It traces the development of global health programs in academic health centers in the United States. It presents a blueprint for a new school-wide global health program at Mount Sinai School of Medicine. The mission of that program, Mount Sinai Global Health, is to enhance global health as an academic field of study within the Mount Sinai community and to improve the health of people around the world. Mount Sinai Global Health is uniting and building synergies among strong, existing global health programs within Mount Sinai; it is training the next generation of physicians and health scientists to be leaders in global health; it is making novel discoveries that translate into blueprints for improving health worldwide; and it builds on Mount Sinai’s long and proud tradition of providing medical and surgical care in places where need is great and resources few. PMID:21598272

  17. The Feasibility of Linear Motors and High-Energy Thrusters for Massive Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Stull, M. A.

    A combination of two propulsion technologies, superconducting linear motors using ambient magnetic fields and high- energy particle beam thrusters, may make it possible to develop massive aerospace vehicles the size of aircraft carriers. If certain critical thresholds can be attained, linear motors can enable massive vehicles to fly within the atmosphere and can propel them to orbit. Thrusters can do neither, because power requirements are prohibitive. However, unless superconductors having extremely high critical current densities can be developed, the interplanetary magnetic field is too weak for linear motors to provide sufficient acceleration to reach even nearby planets. On the other hand, high-energy thrusters can provide adequate acceleration using a minimal amount of reaction mass, at achievable levels of power generation. If the requirements for linear motor propulsion can be met, combining the two modes of propulsion could enable huge nuclear powered spacecraft to reach at least the inner planets of the solar system, the asteroid belt, and possibly Jupiter, in reasonably short times under continuous acceleration, opening them to exploration, resource development and colonization.

  18. SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chang, A

    Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the timemore » delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.« less

  19. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE PAGES

    Piot, P.; Behrens, C.; Gerth, C.; ...

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  20. Finite element analyses of a linear-accelerator electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less

  1. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, Anthony P.; Young, Laurence R.; Merfeld, Daniel M.

    1991-01-01

    Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear 'sleds' in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.

  2. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, A. P.; Young, L. R.; Merfeld, D. M.

    1990-01-01

    Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear "sleds" in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.

  3. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  4. Characterization of linear viscoelastic anti-vibration rubber mounts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodhia, B.B.; Esat, I.I.

    1996-11-01

    The aim of this paper is to identify the dynamic characteristics that are evident in linear viscoelastic rubber mountings. The characteristics under consideration included the static and dynamic stiffnesses with the variation of amplitude and frequency of the sinusoidal excitation. Test samples of various rubber mix were tested and compared to reflect magnitude of dependency on composition. In the light of the results, the validity and effectiveness of a mathematical model was investigated and a suitable technique based on the Tschoegl and Emri Algorithm, was utilized to fit the model to the experimental data. The model which was chosen, wasmore » an extension of the basic Maxwell model, which is based on linear spring and dashpot elements in series and parallel called the Wiechert model. It was found that the extent to which the filler and vulcanisate was present in the rubber sample, did have a great effect on the static stiffness characteristics, and the storage and loss moduli. The Tschoegl and Emri Algorithm was successfully utilized in modelling the frequency response of the samples.« less

  5. Measuring changes in aerodynamic/rolling resistances by cycle-mounted power meters.

    PubMed

    Lim, Allen C; Homestead, Eric P; Edwards, Andrew G; Carver, Todd C; Kram, Rodger; Byrnes, William C

    2011-05-01

    To develop a protocol for isolating changes in aerodynamic and rolling resistances from field-based measures of power and velocity during level bicycling. We assessed the effect of body position (hands on brake hoods vs drops) and tire pressure changes (414 vs 828 kPa) on aerodynamic and rolling resistances by measuring the power (Pext)-versus-speed (V) relationship using commercially available bicycle-mounted power meters. Measurements were obtained using standard road bicycles in calm wind (<1.0 m·s) conditions at constant velocities (acceleration <0.5 m·s) on a flat 200-m section of a smooth asphalt road. For each experimental condition, experienced road cyclists rode in 50-W increments from 100 to 300 W for women (n=2) or 100 to 400 W for men (n=6). Aerodynamic resistance per velocity squared (k) was calculated as the slope of a linear plot of tractive resistance (RT=power/velocity) versus velocity squared. Rolling resistance (Rr) was calculated as the intercept of this relationship. Aerodynamic resistance per velocity squared (k) was significantly greater (P<0.05) while riding on the brake hoods compared with the drops (mean ± SD: 0.175 ± 0.025 vs 0.155 ± 0.03 N·V). Rolling resistance was significantly greater at 60 psi compared with 120 psi (5.575 ± 0.695 vs 4.215 ± 0.815 N). These results demonstrate that commercially available power meters are sensitive enough to independently detect the changes in aerodynamic and rolling resistances associated with modest changes in body position and substantial changes in tire pressure. © 2011 by the American College of Sports Medicine

  6. Accuracy of image guidance using free-breathing cone-beam computed tomography for stereotactic lung radiotherapy.

    PubMed

    Kamomae, Takeshi; Monzen, Hajime; Nakayama, Shinichi; Mizote, Rika; Oonishi, Yuuichi; Kaneshige, Soichiro; Sakamoto, Takashi

    2015-01-01

    Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.

  7. Foam-PVDF smart skin for active control of sound

    NASA Astrophysics Data System (ADS)

    Fuller, Chris R.; Guigou, Cathy; Gentry, C. A.

    1996-05-01

    This work is concerned with the development and testing of a foam-PVDF smart skin designed for active noise control. The smart skin is designed to reduce sound by the action of the passive absorption of the foam (which is effective at higher frequencies) and the active input of an embedded PVDF element driven by an oscillating electrical input (which is effective at lower frequencies). It is primarily developed to be used in an aircraft fuselage in order to reduce interior noise associated with turbulent boundary layer excitation. The device consists of cylindrically curved sections of PVDF piezoelectric film embedded in partially reticulated polyurethane acoustic foam. The active PVDF layer was configured to behave in a linear sense as well as to couple the predominantly in-plane strain due to the piezoelectric effect and the vertical motion that is needed to accelerate fluid particles and hence radiate sound away from the foam surface. For performance testing, the foam-PVDF element was mounted near the surface of an oscillating rigid piston mounted in a baffle in an anechoic chamber. A far-field and a near-field microphone were considered as an error sensor and compared in terms of their efficiency to control the far-field sound radiation. A feedforward LMS controller was used to minimize the error sensor signal under broadband excitation (0 - 1.6 kHz). The potential of the smart foam-PVDF skin for globally reducing sound radiation is demonstrated as more than 20 dB attenuation is obtained over the studied frequency band. The device thus has the potential of simultaneously controlling low and high frequency sound in a very thin compact arrangement.

  8. Evaluation of respiration-correlated digital tomosynthesis in lung.

    PubMed

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I; Mageras, Gig S

    2010-03-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30 degrees gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2-3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method's applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients.

  9. Poster - 23: Dosimetric Characterization and Transferability of an Accessory Mounted Mini-Beam Collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, William; Crewson, Cody; Alexander, Andrew

    Objective: The dosimetric characterization of an accessory-mounted mini-beam collimator across three beam matched linear accelerators. Materials and Methods: Percent depth dose and profiles were measured for the open and mini-beam collimated fields. The average beam quality and peak-to-valley dose ratio (PVDR), the ratio of average peak dose to average valley dose, were obtained from these measurements. The open field relative output and the mini-beam collimator factor, the ratio of the mini-beam dose to open field dose at the beam center, were measured for square fields of side 2, 3, 4, and 5 cm. Mini-beam output as a function of collimatormore » inclination angle relative to the central axis was also investigated. Results and Discussion: Beam quality for both the open and mini-beam collimated fields agreed across all linacs to within ±1.0%. The PVDR was found to vary by up to ±6.6% from the mean. For the 2, 3, and 4 cm fields the average open field relative output with respect to the 5 cm field was 0.874±0.4%, 0.921±0.3%, and 0.962±0.1%. The average collimator factors were 0.450±3.9%, 0.443±3.9%, 0.438±3.9%, and 0.434±3.9%. A decrease in collimator factor greater than 7% was found for an inclination angle change of 0.09°. Conclusion: The mini-beam collimator has revealed a difference between the three linacs not apparent in the open field data, yet transferability can still be attained through thorough dosimetric characterization.« less

  10. TEFLON BELLOWS PULSE GENERATORS FOR SOLVENT EXTRACTION PULSE COLUMNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, P.B.

    1954-01-01

    A Teflon bellows-type pulse generator is described which consists of two 3-in. nominal diameter Teflon bellows mounted on either end of a flanged spool piece and rigidly connected internally by a push rod so that the two of bellows move in tandem. The ends of the two bellows are closed by means of blind flanges. Tne spool piece is designed for insertion in a 6-in. diameter nozzle on a solvent extraction pulse column. The double bellows arrangement constitutes a safety feature to prevent loss of the column contents in the event of failure of the inner bellows in contact withmore » column solution. Failure of the inner bellows may be detected by a conductivity probe mounted in the air space inside of the double bellows assembly. Reciprocating motion is imcrank arm rigidly connected through a cross head and push rod to the face of the external bellows flange. The push rod is guided by means of linear ball bushings. Frequency variation over a range of 30 to 100 cycles/ min.was obtained by use of a Thymotrol-controlled electric motor to drive the crank arm. Variable stroke adjustment (0 to 1-in. range) was possible by adjustment of linkages on the crank arm. A load compensating spring was founnd desirable to counteract the thrust on the push rod resulting tom the static pressure at the bottom of the solvent extraction column. Without the spring, accelerated wear of the bearing on the crank arm occured. The pulse generator operated uneventfully for 1776 hours (6.61x lO/sup 6/ cycles) at a frequency of 62 cycles/min. and a bellows travel of l-in. (equivalent to a displacement of 1.6 in. in a 3-in. diam. column). (auth)« less

  11. An experiment on rider stability while mounting: Comparing middle-aged and elderly cyclists on pedelecs and conventional bicycles.

    PubMed

    Twisk, D A M; Platteel, S; Lovegrove, G R

    2017-08-01

    Pedelecs, popular among elderly cyclists, are associated with a higher injury risk than conventional bicycles. About 17% of these injuries are due to falls while (dis)mounting. Using instrumented bicycles, this study aimed to identify factors contributing to the stability of self-chosen mounting methods in four user groups: 30-45 versus 65+ years of age and males versus females. Mounting stability on pedelecs was compared with that on conventional bicycles, in controlled experimental setting (task in a fenced off parking lot) but also in real traffic conditions (traffic light turns green). Two mounting phases were differentiated: phase 1 as the transition from 'earth bound' to 'balance' and phase 2 as the acceleration to achieve harmonized cycling. Stability was operationalised in terms of the duration of these phases: the shorter their duration, the higher the stability. Pedelecs were shown to be less stable in phase 1 than conventional bicycles, irrespective of user group. For all user groups, only in phase 2 the advantages of electrical support kicked in. Results obtained in traffic conditions confirmed the patterns obtained in the controlled setting, with as only difference a lower speed in traffic conditions, which held for both mounting phases and bicycle types. Also measures of physical limitations due to low muscle strength were shown only to be compensated for by pedal support in phase 2 and not in phase 1. Further, mounting characteristics affected pedelec stability in phase 1 and not in phase 2. Higher stability was associated with a) starting while seated and b) using the pedal to push off. Although, these mounting characteristics were confounded with age, gender, and muscle strength, the pattern of results still suggest certain mounting techniques to be more beneficial for pedelecs. The results further illustrate the importance of a deeper understanding of the interactions of bicycle types and user groups on critical manoeuvres and their potential contribution to the optimisation of pedelec design and the training of safe mounting techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Linear induction accelerators made from pulse-line cavities with external pulse injection.

    PubMed

    Smith, I

    1979-06-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.

  13. Aligning the magnetic field of a linear induction accelerator with a low-energy electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.C.; Deadrick, F.J.; Kallman, J.S.

    1989-03-10

    The Experimental Test Accelerator II (ETA-II) linear induction accelerator at Lawrence Livermore National Laboratory uses a solenoid magnet in each acceleration cell to focus and transport an electron beam over the length of the accelerator. To control growth of the corkscrew mode the magnetic field must be precisely aligned over the full length of the accelerate. Concentric with each solenoid magnet is sine/cosmic-wound correction coil to steer the beam and correct field errors. A low-energy electron probe traces the central flux line through the accelerator referenced to a mechanical axis that is defined by a copropagating laser beam. Correction coilsmore » are activated to force the central flux line to cross the mechanical axis at the end of each acceleration cell. The ratios of correction coil currents determined by the low-energy electron probe are then kept fixed to correct for field errors during normal operation with an accelerated beam. We describe the construction of the low-energy electron probe and report the results of experiments we conducted to measure magnetic alignment with and without the correction coils activated. 5 refs., 3 figs.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clendenin, James E

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in themore » present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.« less

  15. Radio to Gamma-Ray Emission from Shell-Type Supernova Remnants: Predictions from Non-Linear Shock Acceleration Models

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P.; Grenier, Isabelle A.; Goret, Philippe

    1998-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant's expanding blast wave. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. The recently reported observation of TeV gamma-rays from SN1006 by the CANGAROO Collaboration, combined with the fact that several unidentified EGRET sources have been associated with known radio/optical/X-ray-emitting remnants, provides powerful motivation for studying gamma-ray emission from SNRs. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency considerations and impact photon intensities and spectral shapes at all energies, producing GeV/TeV intensity ratios that are quite different from test particle predictions.

  16. Quasi-linear heating and acceleration in bi-Maxwellian plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Passot, Thierry; Sulem, Pierre-Louis

    2013-12-15

    Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvén and mirror waves for a wide range of wavelengths, directions of propagation, and growth or damping rates are explicitly computed.

  17. Precision tip-tilt-piston actuator that provides exact constraint

    DOEpatents

    Hale, Layton C.

    1999-01-01

    A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

  18. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films

    NASA Astrophysics Data System (ADS)

    Yoo, Hyeonseok; Welle, Alexander; Guo, Wei; Choi, Jinsub; Redel, Engelbert

    2017-03-01

    We describe a novel procedure to fabricate WO3@surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO3 nanoparticles into HKUST-1, also termed Cu3(BTC)2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

  19. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films.

    PubMed

    Yoo, Hyeonseok; Welle, Alexander; Guo, Wei; Choi, Jinsub; Redel, Engelbert

    2017-03-17

    We describe a novel procedure to fabricate WO 3 @surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO 3 nanoparticles into HKUST-1, also termed Cu 3 (BTC) 2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO 3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

  20. A linear accelerator for simulated micrometeors.

    NASA Technical Reports Server (NTRS)

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  1. Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Yoder, R.B.; Wang, C.

    1996-04-01

    First experimental results are reported on the operation of a multimegawatt 2.856 GHz cyclotron autoresonance accelerator (CARA). A 90{endash}100 kV, 2{endash}3 MW linear electron beam has had up to6.6 MW added to it in CARA, with an rf-to-beam power efficiency of up to 96{percent}. This efficiency level is larger than that reported for any fast-wave interaction between radiation and electrons, and also larger than that in normal conducting rf linear accelerators. The results obtained are in good agreement with theoretical predictions. {copyright} {ital 1996 The American Physical Society.}

  2. Can a String's Tension Exert a Torque on a Pulley?

    ERIC Educational Resources Information Center

    Krause, Dennis E.; Sun, Yifei

    2011-01-01

    A typical textbook problem in rotational dynamics involves calculating the angular acceleration of a massive pulley due to a string, such as in the example shown in Fig. 1. The string is assumed to be massless and to move without slipping over the pulley, which is mounted on a frictionless axle. If T[subscript L] and T[subscript R] are the…

  3. Comparative Assessment of Torso and Seat Mounted Restraint Systems using Manikins on the Horizontal Impulse Accelerator

    DTIC Science & Technology

    2017-11-01

    rearward rotation of the head towards the back or shoulder blades ). The y- axis of the head runs from right ear canal to the left ear canal with...PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT Unclassified c . THIS PAGE Unclassified Chris Burneka 19b. TELEPHONE NUMBER...92 APPENDIX C . SAMPLE DATA SHEETS

  4. Applicability of CHSST Maglev technology for U.S. urban transportation

    DOT National Transportation Integrated Search

    2003-06-01

    This report discusses the Chubu HSST technology applicability to U.S. urban transportation. This low speed system based on the principle of electromagnetic levitation by attractive suspension and propulsion by vehicle mounted linear induction motors ...

  5. Head impact exposure sustained by football players on days of diagnosed concussion.

    PubMed

    Beckwith, Jonathan G; Greenwald, Richard M; Chu, Jeffrey J; Crisco, Joseph J; Rowson, Steven; Duma, Stefan M; Broglio, Steven P; McAllister, Thomas W; Guskiewicz, Kevin M; Mihalik, Jason P; Anderson, Scott; Schnebel, Brock; Brolinson, P Gunnar; Collins, Michael W

    2013-04-01

    This study compares the frequency and severity of head impacts sustained by football players on days with and without diagnosed concussion and to identify the sensitivity and specificity of single-impact severity measures to diagnosed injury. One thousand two hundred eight players from eight collegiate football teams and six high school football teams wore instrumented helmets to measure head impacts during all team sessions, of which 95 players were diagnosed with concussion. Eight players sustained two injuries and one sustained three, providing 105 injury cases. Measures of head kinematics (peak linear and rotational acceleration, Gadd severity index, head injury criteria (HIC15), and change in head velocity (Δv)) and the number of head impacts sustained by individual players were compared between days with and without diagnosed concussion. Receiver operating characteristic curves were generated to evaluate the sensitivity and specificity of each kinematic measure to diagnosed concussion using only those impacts that directly preceded diagnosis. Players sustained a higher frequency of impacts and impacts with more severe kinematic properties on days of diagnosed concussion than on days without diagnosed concussion. Forty-five injury cases were immediately diagnosed after head impact. For these cases, peak linear acceleration and HIC15 were most sensitive to immediately diagnosed concussion (area under the curve = 0.983). Peak rotational acceleration was less sensitive to diagnosed injury than all other kinematic measures (P = 0.01), which are derived from linear acceleration (peak linear, HIC15, Gadd severity index, and Δv). Players sustained more impacts and impacts of higher severity on days of diagnosed concussion than on days without diagnosed concussion. In addition, of historical measures of impact severity, those associated with peak linear acceleration are the best predictors of immediately diagnosed concussion.

  6. Head Impact Exposure Sustained by Football Players on Days of Diagnosed Concussion

    PubMed Central

    Beckwith, Jonathan G.; Greenwald, Richard M.; Chu, Jeffrey J.; Crisco, Joseph J.; Rowson, Steven; Duma, Stefan M.; Broglio, Steven P.; McAllister, Thomas W.; Guskiewicz, Kevin M.; Mihalik, Jason P.; Anderson, Scott; Schnebel, Brock; Brolinson, P. Gunnar; Collins, Michael W.

    2012-01-01

    Purpose This study compares the frequency and severity of head impacts sustained by football players on days with and without diagnosed concussion and to identify the sensitivity and specificity of single impact severity measures to diagnosed injury. Methods 1,208 players from eight collegiate and six high school football teams wore instrumented helmets to measure head impacts during all team sessions, of which 95 players were diagnosed with concussion. Eight players sustained two injuries and one three, providing 105 injury cases. Measures of head kinematics (peak linear and rotational acceleration, Gadd Severity Index (GSI), Head Injury Criteria (HIC15), change in head velocity (Δv)) and the number of head impacts sustained by individual players were compared between days with and without diagnosed concussion. Receiver operator characteristic curves were generated to evaluate the sensitivity and specificity of each kinematic measure to diagnosed concussion using only those impacts that directly preceded diagnosis. Results Players sustained a higher frequency of impacts and impacts with more severe kinematic properties on days of diagnosed concussion than on days without diagnosed concussion. Forty-five injury cases were immediately diagnosed following head impact. For these cases, peak linear acceleration and HIC15 were most sensitive to immediately diagnosed concussion (AUC = 0.983). Peak rotational acceleration was less sensitive to diagnosed injury than all other kinematic measures (p = 0.01) which are derived from linear acceleration (peak linear, HIC15, GSI, and Δv). Conclusions Players sustain more impacts and impacts of higher severity on days of diagnosed concussion than on days without diagnosed concussion. Additionally, of historical measures of impact severity, those associated with peak linear acceleration are the best predictors of immediately diagnosed concussion. PMID:23135363

  7. Analysis of peripheral doses for base of tongue treatment by linear accelerator and helical TomoTherapy IMRT

    PubMed Central

    Lamba, Michael A. S.; Elson, Howard R.

    2010-01-01

    The purpose of this study was to compare the peripheral doses to various organs from a typical head and neck intensity‐modulated radiation therapy (IMRT) treatment delivered by linear accelerator (linac) and helical TomoTherapy. Multiple human CT data sets were used to segment critical structures and organs at risk, fused and adjusted to an anthropomorphic phantom. Eighteen contours were designated for thermoluminescent dosimeter (TLD) placement. Following the RTOG IMRT Protocol 0522, treatment of the primary tumor and involved nodes (PTV70) and subclinical disease sites (PTV56) was planned utilizing IMRT to 70 Gy and 56 Gy. Clinically acceptable treatment plans were produced for linac and TomoTherapy treatments. TLDs were placed and each treatment plan was delivered to the anthropomorphic phantom four times. Within 2.5 cm (one helical TomoTherapy field width) superior and inferior to the field edges, normal tissue doses were on average 45% lower using linear accelerator. Beyond 2.5 cm, the helical TomoTherapy normal tissue dose was an average of 52% lower. The majority of points proved to be statistically different using the Student's t‐test with p<0.05. Using one method of calculation, probability of a secondary malignancy was 5.88% for the linear accelerator and 4.08% for helical TomoTherapy. Helical TomoTherapy delivers more dose than a linac immediately above and below the treatment field, contributing to the higher peripheral doses adjacent to the field. At distances beyond one field width (where leakage is dominant), helical TomoTherapy doses are lower than linear accelerator doses. PACS number: 87.50.cm Dosimetry/exposure assessment

  8. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  9. An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang

    2015-10-01

    Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).

  10. Accelerating Universe from Gravitational Leakage into Extra Dimensions: Testing with Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zhu, Zong-Hong; Alcaniz, Jailson S.

    2005-02-01

    There is mounting observational evidence that the expansion of our universe is undergoing an acceleration. A dark energy component has usually been invoked as the most feasible mechanism for the acceleration. However, it is desirable to explore alternative possibilities motivated by particle physics before adopting such an untested entity. In this work, we focus our attention on an acceleration mechanism arising from gravitational leakage into extra dimensions. We test this scenario with high-z Type Ia supernovae compiled by Tonry and coworkers and recent measurements of the X-ray gas mass fractions in clusters of galaxies published by Allen and coworkers. A combination of the two databases gives, at a 99% confidence level, Ωm=0.29+0.04-0.02, Ωrc=0.21+/-0.08, and Ωk=-0.36+0.31-0.35, indicating a closed universe. We then constrain the model using the test of the turnaround redshift, zq=0, at which the universe switches from deceleration to acceleration. We show that, in order to explain that acceleration happened earlier than zq=0=0.6 within the framework of gravitational leakage into extra dimensions, a low matter density, Ωm<0.27, or a closed universe is necessary.

  11. An extended macro model accounting for acceleration changes with memory and numerical tests

    NASA Astrophysics Data System (ADS)

    Cheng, Rongjun; Ge, Hongxia; Sun, Fengxin; Wang, Jufeng

    2018-09-01

    Considering effect of acceleration changes with memory, an improved continuum model of traffic flow is proposed in this paper. By applying the linear stability theory, we derived the new model's linear stability condition. Through nonlinear analysis, the KdV-Burgers equation is derived to describe the propagating behavior of traffic density wave near the neutral stability line. Numerical simulation is carried out to study the extended traffic flow model, which explores how acceleration changes with memory affected each car's velocity, density and fuel consumption and exhaust emissions. Numerical results demonstrate that acceleration changes with memory have significant negative effect on dynamic characteristic of traffic flow. Furthermore, research results verify that the effect of acceleration changes with memory will deteriorate the stability of traffic flow and increase cars' total fuel consumptions and emissions during the whole evolution of small perturbation.

  12. Separated-orbit bisected energy-recovered linear accelerator

    DOEpatents

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  13. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  14. Enhanced dielectric-wall linear accelerator

    DOEpatents

    Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  15. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  16. The Design of Optical Sensor for the Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Greene, Michael E.

    1990-01-01

    Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.

  17. Response of an Impact Test Apparatus for Fall Protective Headgear Testing Using a Hybrid-III Head/Neck Assembly

    PubMed Central

    Caccese, V.; Ferguson, J.; Lloyd, J.; Edgecomb, M.; Seidi, M.; Hajiaghamemar, M.

    2017-01-01

    A test method based upon a Hybrid-III head and neck assembly that includes measurement of both linear and angular acceleration is investigated for potential use in impact testing of protective headgear. The test apparatus is based upon a twin wire drop test system modified with the head/neck assembly and associated flyarm components. This study represents a preliminary assessment of the test apparatus for use in the development of protective headgear designed to prevent injury due to falls. By including angular acceleration in the test protocol it becomes possible to assess and intentionally reduce this component of acceleration. Comparisons of standard and reduced durometer necks, various anvils, front, rear, and side drop orientations, and response data on performance of the apparatus are provided. Injury measures summarized for an unprotected drop include maximum linear and angular acceleration, head injury criteria (HIC), rotational injury criteria (RIC), and power rotational head injury criteria (PRHIC). Coefficient of variation for multiple drops ranged from 0.4 to 6.7% for linear acceleration. Angular acceleration recorded in a side drop orientation resulted in highest coefficient of variation of 16.3%. The drop test apparatus results in a reasonably repeatable test method that has potential to be used in studies of headgear designed to reduce head impact injury. PMID:28216804

  18. A Conforming Multigrid Method for the Pure Traction Problem of Linear Elasticity: Mixed Formulation

    NASA Technical Reports Server (NTRS)

    Lee, Chang-Ock

    1996-01-01

    A multigrid method using conforming P-1 finite element is developed for the two-dimensional pure traction boundary value problem of linear elasticity. The convergence is uniform even as the material becomes nearly incompressible. A heuristic argument for acceleration of the multigrid method is discussed as well. Numerical results with and without this acceleration as well as performance estimates on a parallel computer are included.

  19. Visual-vestibular interaction

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.; Merfeld, D.

    1994-01-01

    Significant progress was achieved during the period of this grant on a number of different fronts. A list of publications, abstracts, and theses supported by this grant is provided at the end of this document. The completed studies focused on three general areas: eye movements induced by dynamic linear acceleration, eye movements and vection reports induced by visual roll stimulation, and the separation of gravito-inertial force into central estimates of gravity and linear acceleration.

  20. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  1. Laser-Induced Linear-Field Particle Acceleration in Free Space.

    PubMed

    Wong, Liang Jie; Hong, Kyung-Han; Carbajo, Sergio; Fallahi, Arya; Piot, Philippe; Soljačić, Marin; Joannopoulos, John D; Kärtner, Franz X; Kaminer, Ido

    2017-09-11

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computational experiment. The formalism includes exact treatment of Maxwell's equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the field amplitude. For example, 30 keV electrons (2.5% energy spread) are accelerated to 61 MeV (0.5% spread) and to 205 MeV (0.25% spread) using 250 mJ and 2.5 J lasers respectively. These findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.

  2. Klystron-linac combination

    DOEpatents

    Stein, W.E.

    1980-04-24

    A combination klystron-linear accelerator which utilizes anti-bunch electrons generated in the klystron section as a source of electrons to be accelerated in the accelerator section. Electron beam current is controlled by second harmonic bunching, constrictor aperture size and magnetic focusing. Rf coupling is achieved by internal and external coupling.

  3. Adaptation to vestibular disorientation. XI, The influence of specific and nonspecific gravi-receptors on nystagmic responses to angular acceleration.

    DOT National Transportation Integrated Search

    1969-10-01

    Data from several recent experiments indicate that the otoliths (detectors of linear acceleration) may exert regulatory effects on responses of the semicircular canals (detectors of angular acceleration). This study was designed to explore further th...

  4. Pulsed-focusing recirculating linacs for muon acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.« less

  5. Methods for Expanding Rotary Wing Aircraft Health and Usage Monitoring Systems to the Rotating Frame through Real-time Rotor Blade Kinematics Estimation

    NASA Astrophysics Data System (ADS)

    Allred, Charles Jefferson

    Since the advent of Health and Usage Monitoring Systems (HUMS) in the early 1990's, there has been a steady decrease in the number of component failure related helicopter accidents. Additionally, measurable cost benefits due to improved maintenance practices based on HUMS data has led to a desire to expand HUMS from its traditional area of helicopter drive train monitoring. One of the areas of greatest interest for this expansion of HUMS is monitoring of the helicopter rotor head loads. Studies of rotor head load and blade motions have primarily focused on wind tunnel testing with technology which would not be applicable for production helicopter HUMS deployment, or measuring bending along the blade, rather than where it is attached to the rotor head and the location through which all the helicopter loads pass. This dissertation details research into finding methods for real time methods of estimating rotor blade motion which could be applied across helicopter fleets as an expansion of current HUMS technology. First, there is a brief exploration of supporting technologies which will be crucial in enabling the expansion of HUMS from the fuselage of helicopters to the rotor head: wireless data transmission and energy harvesting. A brief overview of the commercially available low power wireless technology selected for this research is presented. The development of a relatively high-powered energy harvester specific to the motion of helicopter rotor blades is presented and two different prototypes of the device are shown. Following the overview of supporting technologies, two novel methods of monitoring rotor blade motion in real time are developed. The first method employs linear displacement sensors embedded in the elastomer layers of a high-capacity laminate bearing of the type commonly used in fully articulated rotors throughout the helicopter industry. The configuration of these displacement sensors allows modeling of the sensing system as a robotic parallel mechanism, similar to a Stewart Platform. A calibration method for this device is developed and the improved orientation estimation results are shown. The second method is not specific to the fully articulated rotor head mounting geometry of the first method. Rather, it utilizes micro-electromechanical (MEMS) accelerometers and gyroscopes configured to measure the centrifugal acceleration and rotation rate induced through rotor head rotation differentially. By measuring these quantities differentially, other accelerations from the fuselage reference frame are removed from the measurement, resulting in acceleration and rate quantities that are impacted only by the angle of the sensors relative to the plane of rotation. By mounting these sensors strategically and symmetrically about the rotor blade root center of rotation, the orientation of the rotor blade can be estimated in real time.

  6. Vestibulo-Ocular Responses to Vertical Translation using a Hand-Operated Chair as a Field Measure of Otolith Function

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Campbell, D. J.; Reschke, M. F.; Prather, L.; Clement, G.

    2016-01-01

    The translational Vestibulo-Ocular Reflex (tVOR) is an important otolith-mediated response to stabilize gaze during natural locomotion. One goal of this study was to develop a measure of the tVOR using a simple hand-operated chair that provided passive vertical motion. Binocular eye movements were recorded with a tight-fitting video mask in ten healthy subjects. Vertical motion was provided by a modified spring-powered chair (swopper.com) at approximately 2 Hz (+/- 2 cm displacement) to approximate the head motion during walking. Linear acceleration was measured with wireless inertial sensors (Xsens) mounted on the head and torso. Eye movements were recorded while subjects viewed near (0.5m) and far (approximately 4m) targets, and then imagined these targets in darkness. Subjects also provided perceptual estimates of target distances. Consistent with the kinematic properties shown in previous studies, the tVOR gain was greater with near targets, and greater with vision than in darkness. We conclude that this portable chair system can provide a field measure of otolith-ocular function at frequencies sufficient to elicit a robust tVOR.

  7. Perception of the dynamic visual vertical during sinusoidal linear motion.

    PubMed

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion. Copyright © 2017 the American Physiological Society.

  8. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator.

    PubMed

    Piot, P; Behrens, C; Gerth, C; Dohlus, M; Lemery, F; Mihalcea, D; Stoltz, P; Vogt, M

    2012-01-20

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides. © 2012 American Physical Society

  9. Choosing order of operations to accelerate strip structure analysis in parameter range

    NASA Astrophysics Data System (ADS)

    Kuksenko, S. P.; Akhunov, R. R.; Gazizov, T. R.

    2018-05-01

    The paper considers the issue of using iteration methods in solving the sequence of linear algebraic systems obtained in quasistatic analysis of strip structures with the method of moments. Using the analysis of 4 strip structures, the authors have proved that additional acceleration (up to 2.21 times) of the iterative process can be obtained during the process of solving linear systems repeatedly by means of choosing a proper order of operations and a preconditioner. The obtained results can be used to accelerate the process of computer-aided design of various strip structures. The choice of the order of operations to accelerate the process is quite simple, universal and could be used not only for strip structure analysis but also for a wide range of computational problems.

  10. Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator

    NASA Astrophysics Data System (ADS)

    Dube, Chioniso; Pedro, Jimoh O.

    2018-05-01

    This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.

  11. Linear fixed-field multipass arcs for recirculating linear accelerators

    DOE PAGES

    Morozov, V. S.; Bogacz, S. A.; Roblin, Y. R.; ...

    2012-06-14

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting themore » dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. Finally, we present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.« less

  12. Antigraviceptive neck muscle responses to "moving up and moving down" in human.

    PubMed

    Aoki, M; Han, X Y; Yamada, H; Muto, T; Satake, H; Ito, Y; Matsunami, K

    2000-07-01

    The responses of neck muscle to sudden transit from one 'g' to hyper 'g', work to support the head and remain the relative position of head on trunk as common observed: i.e. in sudden acceleration or deceleration by car or ejection of pilot from aircraft. Accordingly it is highly possible that the neck muscle responses to moving up may be important to prevent the neck injury due to sudden linear acceleration such as moving up against gravity. However little is known about the evaluation of mechanism of this reflex. Therefore the present study was conducted with two aims. The first aim was to investigate the neck muscle responses to vertical linear acceleration bv 0.4 g produced with an electro-hydraulic servo-system. We chose the vertical linear acceleration because it activates mainly sacculus, from which afferents have been demonstrated to be connected directly to sternocleidomastoid muscle in animals and human. The second aim was to determine whether there is a difference of neck muscle response to moving down and moving up.

  13. Antigraviceptive neck muscle responses to "moving up and moving down" in human

    NASA Technical Reports Server (NTRS)

    Aoki, M.; Han, X. Y.; Yamada, H.; Muto, T.; Satake, H.; Ito, Y.; Matsunami, K.

    2000-01-01

    The responses of neck muscle to sudden transit from one 'g' to hyper 'g', work to support the head and remain the relative position of head on trunk as common observed: i.e. in sudden acceleration or deceleration by car or ejection of pilot from aircraft. Accordingly it is highly possible that the neck muscle responses to moving up may be important to prevent the neck injury due to sudden linear acceleration such as moving up against gravity. However little is known about the evaluation of mechanism of this reflex. Therefore the present study was conducted with two aims. The first aim was to investigate the neck muscle responses to vertical linear acceleration bv 0.4 g produced with an electro-hydraulic servo-system. We chose the vertical linear acceleration because it activates mainly sacculus, from which afferents have been demonstrated to be connected directly to sternocleidomastoid muscle in animals and human. The second aim was to determine whether there is a difference of neck muscle response to moving down and moving up.

  14. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema

    Grover, Blaine

    2018-05-01

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  15. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE PAGES

    Doche, A.; Beekman, C.; Corde, S.; ...

    2017-10-27

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  16. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doche, A.; Beekman, C.; Corde, S.

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  17. Plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Yanxia; Wang, Jiaxiang; Hora, Heinrich; Qi, Xin; Xing, Yifan; Yang, Lei; Zhu, Wenjun

    2018-04-01

    A new scheme of plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse with intensity I ˜ 1022 W/cm2 is investigated via two-dimensional particle-in-cell simulations. The targets are composed of a pre-target of low-density aluminium plasma and an overdense main-target of hydrogen plasma. Through intensive parameter optimization, we have observed highly efficient plasma block accelerations with a monochromatic proton beam peaked at GeVs. The underlying mechanism is attributed to the enhancement of the charge separation field due to the properly selected pre-target.

  18. QALMA: A computational toolkit for the analysis of quality protocols for medical linear accelerators in radiation therapy

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mushfiqur; Lei, Yu; Kalantzis, Georgios

    2018-01-01

    Quality Assurance (QA) for medical linear accelerator (linac) is one of the primary concerns in external beam radiation Therapy. Continued advancements in clinical accelerators and computer control technology make the QA procedures more complex and time consuming which often, adequate software accompanied with specific phantoms is required. To ameliorate that matter, we introduce QALMA (Quality Assurance for Linac with MATLAB), a MALAB toolkit which aims to simplify the quantitative analysis of QA for linac which includes Star-Shot analysis, Picket Fence test, Winston-Lutz test, Multileaf Collimator (MLC) log file analysis and verification of light & radiation field coincidence test.

  19. Effect of dynamic factors of space flights on the green alga Chlorella vulgaris.

    PubMed

    Moskvitin, E V; Vaulina, E N

    1974-01-01

    The biological effects of vibrational and linear acceleration on the alga Chlorella vulgaris were studied. Periodic vibration in the frequency range of 4-4000 Hz with vibrational acceleration up to 16 g did not affect the survival and mutability of Chlorella cells and did not modify the effects of acute gamma-radiation. However, random vibration similar to that occurring during launch of spaceships, combined with linear acceleration increased the radiation damage to algae produced by acute gamma-radiation at a dose of 10000 r. This effect is seen only in cells at the beginning of the G1 stage, which precedes DNA synthesis.

  20. Preliminary design of a high-intensity continuous-wave deuteron RFQ

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kamigaito, O.; Sakamoto, N.; Yamada, K.

    2017-07-01

    A high-intensity deuteron linear accelerator is currently being studied as a promising candidate to treat high-level radioactive waste through the nuclear transmutation process. This paper presents the study on a design of a 75.5 MHz, 400 mA, continuous-wave deuteron radio-frequency quadrupole (RFQ), which is proposed as the front-end of such a linear accelerator. The results of the beam dynamics simulation suggest that the designed RFQ can accelerate a 400-mA deuteron beam from 100 keV to 2.5 MeV with a transmission rate of 92.0 ∼ 93.3%, depending on the assumed input transverse emittance.

  1. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.

  2. The evaluation of speed skating helmet performance through peak linear and rotational accelerations.

    PubMed

    Karton, Clara; Rousseau, Philippe; Vassilyadi, Michael; Hoshizaki, Thomas Blaine

    2014-01-01

    Like many sports involving high speeds and body contact, head injuries are a concern for short track speed skating athletes and coaches. While the mandatory use of helmets has managed to nearly eliminate catastrophic head injuries such as skull fractures and cerebral haemorrhages, they may not be as effective at reducing the risk of a concussion. The purpose of this study was to evaluate the performance characteristics of speed skating helmets with respect to managing peak linear and peak rotational acceleration, and to compare their performance against other types of helmets commonly worn within the speed skating sport. Commercially available speed skating, bicycle and ice hockey helmets were evaluated using a three-impact condition test protocol at an impact velocity of 4 m/s. Two speed skating helmet models yielded mean peak linear accelerations at a low-estimated probability range for sustaining a concussion for all three impact conditions. Conversely, the resulting mean peak rotational acceleration values were all found close to the high end of a probability range for sustaining a concussion. A similar tendency was observed for the bicycle and ice hockey helmets under the same impact conditions. Speed skating helmets may not be as effective at managing rotational acceleration and therefore may not successfully protect the user against risks associated with concussion injuries.

  3. A neutron track etch detector for electron linear accelerators in radiotherapy

    PubMed Central

    Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip

    2010-01-01

    Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893

  4. Torque Compensator for Mirror Mountings

    NASA Technical Reports Server (NTRS)

    Howe, S. D.

    1983-01-01

    Device nulls flexural distributions of pivotal torques. Magnetic compensator for flexing pivot torque consists of opposing fixed and movable magnet bars. Magnetic torque varies nonlinearly as function of angle of tilt of movable bar. Positions of fixed magnets changed to improve magnetic torque linearity.

  5. Orbit correction in a linear nonscaling fixed field alternating gradient accelerator

    DOE PAGES

    Kelliher, D. J.; Machida, S.; Edmonds, C. S.; ...

    2014-11-20

    In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.

  6. Magnetic Linear Accelerator (MAGLAC) as Driver for Impact Fusion (IF)

    DTIC Science & Technology

    1979-07-01

    qualitatively different. For example, a superconductor levitated by Meis- sner effect ("flux exculsion") would be vertically stable for z > a/2; an iron...These include, for example, 1. Further material research on superconductors under high magnetic field and high frequencies. 2. Theoretical and...DEFENSE PENTAGON IMSHJNGT0N5& 20301-7100 £?1C ^ALITY INSPECTED 4 This paper presents considerations on the design of a magnetic linear accelerator

  7. R&D status of linear collider technology at KEK

    NASA Astrophysics Data System (ADS)

    Urakawa, Junji

    1992-02-01

    This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.

  8. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  9. When is quasi-linear theory exact. [particle acceleration

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  10. The influence of air humidity on an unsealed ionization chamber in a linear accelerator.

    PubMed

    Blad, B; Nilsson, P; Knöös, T

    1996-11-01

    The safe and accurate delivery of the prescribed absorbed dose is the central function of the dose monitoring and beam stabilization system in a medical linear accelerator. The absorbed dose delivered to the patient during radiotherapy is often monitored by a transmission ionization chamber. Therefore it is of utmost importance that the chamber behaves correctly. We have noticed that the sensitivity of an unsealed chamber in a Philips SL linear accelerator changes significantly, especially during and after the summer season. The reason for this is probably a corrosion effect of the conductive plates in the chamber due to the increased relative humidity during hot periods. We have found that the responses of the different ion chamber plates change with variations in air humidity and that they do not return to their original values when the air humidity is returned to ambient conditions.

  11. The vortex as a clock

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert

    2003-11-01

    Using heuristic arguments, the fundamental effect of acceleration on dissipation in self-similar turbulence is explored. If the ratio of the next vortex rotation period to the last one is always constant, a flow is temporally self-similar. This implies that the vortex rotation period is a linear function of time. For ordinary, unforced turbulence, the period increases linearly in time. However, by imposing an external e-folding time scale on the flow that decreases linearly in time, the dissipation rate is changed from that of the corresponding unforced flow. The dissipation rate depends on the time rate of change of the rotation period as well as the dimensions of the dynamic quantity controlling the flow. For almost all canonical laboratory flows, acceleration reduces the dissipation and entrainment rates. An example is the exponential jet, where the flame length increases by about 20conventional jet. An exception is Rayleigh-Taylor flow, where acceleration increases the dissipation rate.

  12. Detection of infrasound and linear acceleration in fishes.

    PubMed

    Sand, O; Karlsen, H E

    2000-09-29

    Fishes have an acute sensitivity to extremely low-frequency linear acceleration, or infrasound, even down to below 1 Hz. The otolith organs are the sensory system responsible for this ability. The hydrodynamic noise generated by swimming fishes is mainly in the infrasound range, and may be important in courtship and prey predator interactions. Intense infrasound has a deterring effect on some species, and has a potential in acoustic barriers. We hypothesize that the pattern of ambient infrasound in the oceans may be used for orientation in migratory fishes, and that pelagic fishes may detect changes in the surface wave pattern associated with altered water depth and distant land formations. We suggest that the acute sensitivity to linear acceleration could be used for inertial guidance, and to detect the relative velocity of layered ocean currents. Sensitivity to infrasound may be a widespread ability among aquatic organisms, and has also been reported in cephalopods and crustaceans.

  13. Detection of infrasound and linear acceleration in fishes.

    PubMed Central

    Sand, O; Karlsen, H E

    2000-01-01

    Fishes have an acute sensitivity to extremely low-frequency linear acceleration, or infrasound, even down to below 1 Hz. The otolith organs are the sensory system responsible for this ability. The hydrodynamic noise generated by swimming fishes is mainly in the infrasound range, and may be important in courtship and prey predator interactions. Intense infrasound has a deterring effect on some species, and has a potential in acoustic barriers. We hypothesize that the pattern of ambient infrasound in the oceans may be used for orientation in migratory fishes, and that pelagic fishes may detect changes in the surface wave pattern associated with altered water depth and distant land formations. We suggest that the acute sensitivity to linear acceleration could be used for inertial guidance, and to detect the relative velocity of layered ocean currents. Sensitivity to infrasound may be a widespread ability among aquatic organisms, and has also been reported in cephalopods and crustaceans. PMID:11079418

  14. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.

    PubMed

    Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y

    2018-03-08

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Ion acceleration in a plasma focus

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1974-01-01

    The electric and magnetic fields associated with anomalous diffusion to the axis of a linear plasma discharge are used to compute representative ion trajectories. Substantial axial acceleration of the ions is demonstrated.

  16. External Beam Therapy (EBT)

    MedlinePlus

    ... deliver the daily treatments. top of page What equipment is used? Radiation oncologists use linear accelerators or ... accelerator page top of page Who operates the equipment? The equipment is operated by a radiation therapist, ...

  17. Feasibility study of basic characterization of MAGAT polymer gel using CBCT attached in linear accelerator: Preliminary study

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, P.; Samuel, E. James jebaseelan

    2018-01-01

    The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.

  18. Beam transport results on the multi-beam MABE accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, P.D.; Alexander, J.A.; Hasti, D.E.

    1985-10-01

    MABE is a multistage, electron beam linear accelerator. The accelerator has been operated in single beam (60 kA, 7 Mev) and multiple beam configurations. This paper deals with the multiple beam configuration in which typically nine approx. = 25 kA injected beams are transported through three accelerating gaps. Experimental results from the machine are discussed, including problems encountered and proposed solutions to those problems.

  19. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  20. Similar head impact acceleration measured using instrumented ear patches in a junior rugby union team during matches in comparison with other sports.

    PubMed

    King, Doug A; Hume, Patria A; Gissane, Conor; Clark, Trevor N

    2016-07-01

    OBJECTIVE Direct impact with the head and the inertial loading of the head have been postulated as major mechanisms of head-related injuries, such as concussion. METHODS This descriptive observational study was conducted to quantify the head impact acceleration characteristics in under-9-year-old junior rugby union players in New Zealand. The impact magnitude, frequency, and location were collected with a wireless head impact sensor that was worn by 14 junior rugby players who participated in 4 matches. RESULTS A total of 721 impacts > 10g were recorded. The median (interquartile range [IQR]) number of impacts per player was 46 (IQR 37-58), resulting in 10 (IQR 4-18) impacts to the head per player per match. The median impact magnitudes recorded were 15g (IQR 12g-21g) for linear acceleration and 2296 rad/sec(2) (IQR 1352-4152 rad/sec(2)) for rotational acceleration. CONCLUSIONS There were 121 impacts (16.8%) above the rotational injury risk limit and 1 (0.1%) impact above the linear injury risk limit. The acceleration magnitude and number of head impacts in junior rugby union players were higher than those previously reported in similar age-group sports participants. The median linear acceleration for the under-9-year-old rugby players were similar to 7- to 8-year-old American football players, but lower than 9- to 12-year-old youth American football players. The median rotational accelerations measured were higher than the median and 95th percentiles in youth, high school, and collegiate American football players.

  1. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data

    PubMed Central

    Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Azevedo Coste, Christine

    2015-01-01

    This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject’s foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15% under the various walking conditions. PMID:26703622

  2. Lower body negative pressure chamber: Design and specifications for tilt-table mounting

    NASA Technical Reports Server (NTRS)

    Salamacha, Laura; Gundo, D.; Mulenburg, G. M.; Greenleaf, J. E.

    1995-01-01

    Specifications for a lower body negative pressure chamber for mounting on a tilting table are presented. The main plate is made from HEXEL honeycomb board 1.0 inch thick. The plate, supported at three edges, will be subjected to a uniform pressure differential of -4.7 lb/sq in. A semi-cylindrical Plexiglass top (chamber) is attached to the main plate; the pressure within the chamber will be about 10lb/sq in during operation. The stresses incurred by the main plate with this partial vacuum were calculated. All linear dimensions are in inches.

  3. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.

  4. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    PubMed Central

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG. PMID:25050388

  5. Design and analysis of tubular permanent magnet linear wave generator.

    PubMed

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  6. Mass perturbation techniques for tuning and decoupling of a Disk Resonator Gyroscope

    NASA Astrophysics Data System (ADS)

    Schwartz, David

    Axisymmetric microelectromechanical (MEM) vibratory rate gyroscopes are designed so that the two Coriolis-coupled modes exploited for rate sensing possess equal modal frequencies and so that the central post which attaches the resonator to the sensor case is a nodal point of the these two modes. The former quality maximizes the signal-to-noise ratio of the sensor, while the latter quality eliminates any coupling of linear acceleration to the modes of interest, which, if present, creates spurious rate signals in response to linear vibration of the sensor case. When the gyro resonators are fabricated, however, small mass and stiffness asymmetries cause the frequencies of the two modes to deviate from each other and couple these modes to linear acceleration. In a resonator post-fabrication step, these effects can be reduced by altering the mass distribution of the resonator. In this dissertation, a scale model of the axisymmetric resonator of the Disk Resonator Gyroscope (DRG) is used to develop and test methods that successfully reduce frequency detuning (Part I) and linear acceleration coupling (Part II) through guided mass perturbations.

  7. The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs)

    PubMed Central

    Jones, Timothy A.; Jones, Sherri M.; Vijayakumar, Sarath; Brugeaud, Aurore; Bothwell, Marcella; Chabbert, Christian

    2013-01-01

    Short latency linear vestibular sensory evoked potentials (VsEPs) provide a means to objectively and directly assess the function of gravity receptors in mammals and birds. The importance of this functional measure is illustrated by its use in studies of the genetic basis of vestibular function and disease. Head motion is the stimulus for the VsEP. In the bird, it has been established that neurons mediating the linear VsEP respond collectively to the rate of change in linear acceleration during head movement (i.e. jerk) rather than peak acceleration. The kinematic element of motion responsible for triggering mammalian VsEPs has not been characterized in detail. Here we tested the hypothesis that jerk is the kinematic component of head motion responsible for VsEP characteristics. VsEP amplitudes and latencies changed systematically when peak acceleration level was held constant and jerk level was varied from ~0.9 to 4.6 g/ms. In contrast, responses remained relatively constant when kinematic jerk was held constant and peak acceleration was varied from ~0.9 to 5.5g in mice and ~0.44 to 2.75g in rats. Thus the mammalian VsEP depends on jerk levels and not peak acceleration. We conclude that kinematic jerk is the adequate stimulus for the mammalian VsEP. This sheds light on the behavior of neurons generating the response. The results also provide the basis for standardizing the reporting of stimulus levels, which is key to ensuring that response characteristics reported in the literature by many laboratories can be effectively compared and interpreted. PMID:21664446

  8. A cargo inspection system based on pulsed fast neutron analysis (PFNA).

    PubMed

    Ipe, N E; Olsher, R; Ryge, P; Mrozack, J; Thieu, J

    2005-01-01

    A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described.

  9. Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993

    NASA Technical Reports Server (NTRS)

    Finley, Brian; Grodsinsky, Carlos; Delombard, Richard

    1994-01-01

    The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.

  10. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.

  11. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  12. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  13. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  14. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  15. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  16. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms

    NASA Astrophysics Data System (ADS)

    Allstadt, Kate

    2013-09-01

    methods can substantially improve the characterization of the dynamics of large and rapid landslides. Such landslides often generate strong long-period seismic waves due to the large-scale acceleration of the entire landslide mass, which, according to theory, can be approximated as a single-force mechanism at long wavelengths. I apply this theory and invert the long-period seismic waves generated by the 48.5 Mm3 August 2010 Mount Meager rockslide-debris flow in British Columbia. Using data from five broadband seismic stations 70 to 276 km from the source, I obtain a time series of forces the landslide exerted on the Earth, with peak forces of 1.0 × 1011 N. The direction and amplitude of the forces can be used to determine the timing and occurrence of events and subevents. Using this result, in combination with other field and geospatial evidence, I calculate an average horizontal acceleration of the rockslide of 0.39 m/s2 and an average apparent coefficient of basal friction of 0.38 ± 0.02, which suggests elevated basal fluid pressures. The direction and timing of the strongest forces are consistent with the centripetal acceleration of the debris flow around corners in its path. I use this correlation to estimate speeds, which peak at 92 m/s. This study demonstrates that the time series recording of forces exerted by a large and rapid landslide derived remotely from seismic records can be used to tie post-slide evidence to what actually occurred during the event and can serve to validate numerical models and theoretical methods.

  17. Alternating phase focused linacs

    DOEpatents

    Swenson, Donald A.

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  18. Acceleration-Augmented LQG Control of an Active Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Feeley, Joseph J.

    1993-01-01

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  19. EH 11n modes E type in the disk and washer accelerating structure

    NASA Astrophysics Data System (ADS)

    Andreev, V. G.; Belugin, V. M.; Daikovsky, A. G.; Esin, S. K.; Kravchuk, L. V.; Paramonov, V. V.; Ryabov, A. D.

    1983-01-01

    The disk and washer accelerating structure has a great deal to do with high-beta structures progress. The frequencies and electromagnetic fields for modes, which have a different number of azimuthal variations, are calculated to determined the dispersion properties and other characteristics of parasitic modes in a disc and washer accelerating structure. The main attention was given to the accelerating structure of the linear accelerator of the Institute for Nuclear Research (INR) of the USSR Academy of Sciences. Modification of a structure for PIGMI accelerator (LANL, USA) is considered briefly.

  20. Shielding evaluation for IMRT implementation in an existing accelerator vault

    PubMed Central

    Price, R. A.; Chibani, O.; Ma, C.‐M.

    2003-01-01

    A formalism is developed for evaluating the shielding in an existing vault to be used for IMRT. Existing exposure rate measurements are utilized as well as a newly developed effective modulation scaling factor. Examples are given for vaults housing 6, 10 and 18 MV linear accelerators. The use of an 18 MV Siemens linear accelerator is evaluated for IMRT delivery with respect to neutron production and the effects on individual patients. A modified modulation scaling factor is developed and the risk of the incurrence of fatal secondary malignancies is estimated. The difference in neutron production between 18 MV Varian and Siemens accelerators is estimated using Monte Carlo results. The neutron production from the Siemens accelerator is found to be approximately 4 times less than that of the Varian accelerator resulting in a risk of fatal secondary malignancy occurrence of approximately 1.6% when using the SMLC delivery technique and our measured modulation scaling factors. This compares with a previously published value of 1.6% for routine 3D CRT delivery on the Varian accelerator. PACS number(s): 87.52.Ga, 87.52.Px, 87.53.Qc, 87.53.Wz PMID:12841794

  1. Code Calibration Applied to the TCA High-Lift Model in the 14 x 22 Wind Tunnel (Simulation With and Without Model Post-Mount)

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    1999-01-01

    The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).

  2. Instrumentation in remote and dangerous settings; examples using data from GPS “spider” deployments during the 2004-2005 eruption of Mount St. Helens, Washington: Chapter 16 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    LaHusen, Richard G.; Swinford, Kelly J.; Logan, Matthew; Lisowski, Michael; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Self-contained, single-frequency GPS instruments fitted on lightweight stations suitable for helicopter-sling payloads became a critical part of volcano monitoring during the September 2004 unrest and subsequent eruption of Mount St. Helens. Known as “spiders” because of their spindly frames, the stations were slung into the crater 29 times from September 2004 to December 2005 when conditions at the volcano were too dangerous for crews to install conventional equipment. Data were transmitted in near-real time to the Cascades Volcano Observatory in Vancouver, Washington. Each fully equipped unit cost about $2,500 in materials and, if not destroyed by natural events, was retrieved and redeployed as needed. The GPS spiders have been used to track the growth and decay of extruding dacite lava (meters per day), thickening and accelerated flow of Crater Glacier (meters per month), and movement of the 1980-86 dome from pressure and relaxation of the newly extruding lava dome (centimeters per day).

  3. Using EMG to anticipate head motion for virtual-environment applications

    NASA Technical Reports Server (NTRS)

    Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion

    2005-01-01

    In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.

  4. Using EMG to anticipate head motion for virtual-environment applications.

    PubMed

    Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion

    2005-06-01

    In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.

  5. Optimal read/write memory system components

    NASA Technical Reports Server (NTRS)

    Kozma, A.; Vander Lugt, A.; Klinger, D.

    1972-01-01

    Two holographic data storage and display systems, voltage gradient ionization system, and linear strain manipulation system are discussed in terms of creating fast, high bit density, storage device. Components described include: novel mounting fixture for photoplastic arrays; corona discharge device; and block data composer.

  6. Twin helix system produces fast scan in infrared detector

    NASA Technical Reports Server (NTRS)

    Vanzetti, R.

    1966-01-01

    Two rotating wheels in orthogonal relationship with helicoidal reflecting surfaces mounted on their outer rims achieve a linear speed without normal time loss in their return motion. The pitch of the helicoidal surfaces equals the displacement that the mirrors must traverse.

  7. Non-linear effects in bunch compressor of TARLA

    NASA Astrophysics Data System (ADS)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  8. Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier

    NASA Technical Reports Server (NTRS)

    Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward

    2016-01-01

    The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).

  9. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  10. Laser-Induced Linear-Field Particle Acceleration in Free Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Liang Jie; Hong, Kyung -Han; Carbajo, Sergio

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computationalmore » experiment. The formalism includes exact treatment of Maxwell’s equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the feld amplitude. For example, 30keV electrons (2.5% energy spread) are accelerated to 61MeV (0.5% spread) and to 205MeV (0.25% spread) using 250 mJ and 2.5J lasers respectively. Furthermore, these findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.« less

  11. Laser-Induced Linear-Field Particle Acceleration in Free Space

    DOE PAGES

    Wong, Liang Jie; Hong, Kyung -Han; Carbajo, Sergio; ...

    2017-09-11

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computationalmore » experiment. The formalism includes exact treatment of Maxwell’s equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the feld amplitude. For example, 30keV electrons (2.5% energy spread) are accelerated to 61MeV (0.5% spread) and to 205MeV (0.25% spread) using 250 mJ and 2.5J lasers respectively. Furthermore, these findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.« less

  12. Mechanisms of force production during linear accelerations in bluegill sunfish Lepomis macrochirus

    NASA Astrophysics Data System (ADS)

    Tytell, Eric D.; Wise, Tyler N.; Boden, Alexandra L.; Sanders, Erin K.; Schwalbe, Margot A. B.

    2016-11-01

    In nature, fish rarely swim steadily. Although unsteady behaviors are common, we know little about how fish change their swimming kinematics for routine accelerations, and how these changes affect the fluid dynamic forces and the wake produced. To study force production during acceleration, particle image velocimetry was used to quantify the wake of bluegill sunfish Lepomis macrochirus and to estimate the pressure field during linear accelerations and steady swimming. We separated "steady" and "unsteady" trials and quantified the forward acceleration using inertial measurement units. Compared to steady sequences, unsteady sequences had larger accelerations and higher body amplitudes. The wake consisted of single vortices shed during each tail movement (a '2S' wake). The structure did not change during acceleration, but the circulation of the vortices increased, resulting in larger forces. A fish swimming unsteadily produced significantly more force than the same fish swimming steadily, even when the accelerations were the same. This increase is likely due to increased added mass during unsteady swimming, as a result of the larger body amplitude. Pressure estimates suggest that the increase in force is correlated with more low pressure regions on the anterior body. This work was supported by ARO W911NF-14-1-0494 and NSF RCN-PLS 1062052.

  13. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  14. SLAC All Access: FACET

    ScienceCinema

    Hogan, Mark

    2018-02-13

    SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.

  15. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Accelerator and Fusion Research Division (AFRD) and Laser Optics and Accelerator Systems Integrated Studies (LOASIS)

    2018-05-04

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  16. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2017-12-09

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  17. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  18. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  19. A charged particle in a homogeneous magnetic field accelerated by a time-periodic Aharonov-Bohm flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvoda, T.; Stovicek, P., E-mail: stovicek@kmlinux.fjfi.cvut.cz

    2011-10-15

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution and a very good agreement is found.more » - Highlights: > A nonrelativistic quantum charged particle on a plane. > A homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm flux. > The quantum averaging method applied to a time-dependent system. > A resonance of the AB flux with the cyclotron frequency. > An acceleration with linearly increasing energy; a formula for the acceleration rate.« less

  20. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for motion perception and eye movements differ, they also indicate that the specific motion platform employed can have a significant effect on both the amplitude and phase of each.

  1. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  2. Proposal for an astronaut mass measurement device for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Beyer, Neil; Lomme, Jon; Mccollough, Holly; Price, Bradford; Weber, Heidi

    1994-01-01

    For medical reasons, astronauts in space need to have their mass measured. Currently, this measurement is performed using a mass-spring system. The current system is large, inaccurate, and uncomfortable for the astronauts. NASA is looking for new, different, and preferably better ways to perform this measurement process. After careful analysis our design team decided on a linear acceleration process. Within the process, four possible concept variants are put forth. Among these four variants, one is suggested over the others. The variant suggested is that of a motor-winch system to linearly accelerate the astronaut. From acceleration and force measurements of the process combined Newton's second law, the mass of an astronaut can be calculated.

  3. Gage for measuring displacements in rock samples

    DOEpatents

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  4. Gage for measuring displacements in rock samples

    DOEpatents

    Holcomb, David J.; McNamee, Michael J.

    1986-01-01

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer, a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  5. g-LIMIT Status Briefing

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Perkins, Brad T.

    2000-01-01

    For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox (MSG). g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations.

  6. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. IV. Responses after spectacle-induced adaptation

    NASA Technical Reports Server (NTRS)

    Clendaniel, R. A.; Lasker, D. M.; Minor, L. B.; Shelhamer, M. J. (Principal Investigator)

    2001-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by sinusoidal rotations from 0.5 to 15 Hz and acceleration steps up to 3,000 degrees /s(2) to 150 degrees /s was studied in six squirrel monkeys following adaptation with x2.2 magnifying and x0.45 minimizing spectacles. For sinusoidal rotations with peak velocities of 20 degrees /s, there were significant changes in gain at all frequencies; however, the greatest gain changes occurred at the lower frequencies. The frequency- and velocity-dependent gain enhancement seen in normal monkeys was accentuated following adaptation to magnifying spectacles and diminished with adaptation to minimizing spectacles. A differential increase in gain for the steps of acceleration was noted after adaptation to the magnifying spectacles. The gain during the acceleration portion, G(A), of a step of acceleration (3,000 degrees /s(2) to 150 degrees /s) increased from preadaptation values of 1.05 +/- 0.08 to 1.96 +/- 0.16, while the gain during the velocity plateau, G(V), only increased from 0.93 +/- 0.04 to 1.36 +/- 0.08. Polynomial fits to the trajectory of the response during the acceleration step revealed a greater increase in the cubic than the linear term following adaptation with the magnifying lenses. Following adaptation to the minimizing lenses, the value of G(A) decreased to 0.61 +/- 0.08, and the value of G(V) decreased to 0.59 +/- 0.09 for the 3,000 degrees /s(2) steps of acceleration. Polynomial fits to the trajectory of the response during the acceleration step revealed that there was a significantly greater reduction in the cubic term than in the linear term following adaptation with the minimizing lenses. These findings indicate that there is greater modification of the nonlinear as compared with the linear component of the VOR with spectacle-induced adaptation. In addition, the latency to the onset of the adapted response varied with the dynamics of the stimulus. The findings were modeled with a bilateral model of the VOR containing linear and nonlinear pathways that describe the normal behavior and adaptive processes. Adaptation for the linear pathway is described by a transfer function that shows the dependence of adaptation on the frequency of the head movement. The adaptive process for the nonlinear pathway is a gain enhancement element that provides for the accentuated gain with rising head velocity and the increased cubic component of the responses to steps of acceleration. While this model is substantially different from earlier models of VOR adaptation, it accounts for the data in the present experiments and also predicts the findings observed in the earlier studies.

  7. Using High-Powered Laser, Scientists Record Images of Chemical Interactions in RNA | Poster

    Cancer.gov

    A recent study at the Department of Energy’s Stanford Linear Accelerator Center National Accelerator Laboratory has literally shed new light on the structural interactions between RNA and another biomolecule.

  8. Assessing the Adequacy of the Industrial Base

    DTIC Science & Technology

    1992-05-01

    OPERATION DESERT SHIELD Production information items Tactical and support vehides Heavy Expanded Mobility Tactical Truck (HEMTT) M936A2 wrecker Trailer ...heaters’ Ballistic-Laser Protective Spectacles (BLPS)a Location of water Desert camouflage nets Desert camouflage helmet covers MSS laundry, trailer ...wind, and dust goggles (app. for acceleration) Pallatibility of T-Rations Bodybags Floodlight set, trailer mounted’ M702 6,000 Btu and M894 18,000

  9. Advancements in the U.S. Army Corps of Engineers Hydrographic Survey Capabilities: The SHOALS System

    DTIC Science & Technology

    2016-05-12

    forward direction of the aircraft. The scanner uses feedback from an inertial reference unit , rigidly mounted to the TRS, that measures aircraft roll ...LTN-90 inertial reference unit provides aircraft attitude, including roll , pitch, and heading and vertical accelerations. The unit supports four...Figure 3 The transceiver subsystem. From left to right, receiver optics, receiver electronics, telescope, scanner, and inertial reference unit . The

  10. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    NASA Astrophysics Data System (ADS)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  11. Signals and Noises Acting On The Accelerometer Mounted In The Mpo (mercury Planetary Orbiter).

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Fiorenza, E.; Lucchesi, D.; Milyukov, V.; Nozzoli, S.

    The RadioScience experiments proposed for the BepiClombo ESA CORNERSTONE are aiming at performing planetary measurements such as: the rotation state of Mer- cury, the global structure of its gravity field and the local gravitational anomalies, but also to test some aspects of the General Relativity, to an unprecedented level of accu- racy. A high sensitivity accelerometer will measure the inertial acceleration acting on the MPO; these data, together with tracking data are used to evaluate the purely gravi- tational trajectory of the MPO, by transforming it to a virtual drag-free satellite system. At the Istituto di Fisica dello Spazio Interplanetario (IFSI) a high sensitive accelerom- eter named ISA (Italian Spring Accelerometer)* and considered for this mission has been studied. The main problems concerning the use of the accelerometer are related to the high dynamics necessary to follow the variation of the acceleration signals, with accuracy equal to 10^-9 g/sqr(Hz), and very high at the MPO orbital period and due to thermal noise introduced at the sidereal period of Mercury. The description of the accelerometer will be presented, with particular attention to the thermal problems and to the analysis regarding the choice of the mounting position on the MPO. *Project funded by the Italian Space Agency (ASI).

  12. Evolution of a primary pulse in the granular dimers mounted on a linear elastic foundation: An analytical and numerical study.

    PubMed

    Ahsan, Zaid; Jayaprakash, K R

    2016-10-01

    In this exposition we consider the wave dynamics of a one-dimensional periodic granular dimer (diatomic) chain mounted on a damped and an undamped linear elastic foundation (otherwise called the on-site potential). It is very well known that periodic granular dimers support solitary wave propagation (similar to that in the homogeneous granular chains) for a specific discrete set of mass ratios. In this work we present the analytical investigation of the evolution of solitary waves and primary pulses in granular dimers when they are mounted on on-site potential with and without velocity proportional foundation damping. We invoke a methodology based on the multiple time-scale asymptotic analysis and partition the dynamics of the perturbed dimer chain into slow and fast components. The dynamics of the dimer chain in the limit of large mass mismatch (auxiliary chain) mounted on on-site potential and foundation damping is used as the basis for the analysis. A systematic analytical procedure is then developed for the slowly varying response of the beads and in estimating primary pulse amplitude evolution resulting in a nonlinear map relating the relative displacement amplitudes of two adjacent beads. The methodology is applicable for arbitrary mass ratios between the beads. We present several examples to demonstrate the efficacy of the proposed method. It is observed that the amplitude evolution predicted by the described methodology is in good agreement with the numerical simulation of the original system. This work forms a basis for further application of the considered methodology to weakly coupled granular dimers which finds practical relevance in designing shock mitigating granular layers.

  13. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  14. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  15. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles describe the use of a lever to transfer energy between pucks on a frictionless surface, a demonstration of the principle of conservation of linear momentum, the construction of an inexpensive joulemeter, the design and construction of a simple logic demonstration board using integrated circuits, mounting of Geiger-counters to…

  16. Statistics of vacuum breakdown in the high-gradient and low-rate regime

    NASA Astrophysics Data System (ADS)

    Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio; Korsbäck, Anders; Djurabekova, Flyura; Rajamäki, Robin; Giner-Navarro, Jorge

    2017-01-01

    In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.

  17. LIONs at the Stanford Linear Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constant, T.N.; Zdarko, R.W.; Simmons, R.H.

    1998-01-01

    The term LION is an acronym for Long Ionization Chamber. This is a distributed ion chamber which is used to monitor secondary ionization along the shield walls of a beam line resulting from incorrectly steered charged particle beams in lieu of the use of many discrete ion chambers. A cone of ionizing radiation emanating from a point source as a result of incorrect steering intercepts a portion of 1-5/8 inch Heliax cable (about 100 meters in length) filled with Argon gas at 20 psi and induces a pulsed current which is proportional to the ionizing charge. This signal is transmittedmore » via the cable to an integrator circuit whose output is directed to an electronic comparators, which in turn is used to turn off the accelerated primary beam when preset limits are exceeded. This device is used in the Stanford Linear Accelerator Center (SLAC) Beam Containment System (BCS) to prevent potentially hazardous ionizing radiation resulting from incorrectly steered beams in areas that might be occupied by people. This paper describes the design parameters and experience in use in the Final Focus Test Beam (FFTB) area of the Stanford Linear Accelerator Center.« less

  18. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  19. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  20. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  1. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  2. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  3. Extrusion rate of the Mount St. Helens lava dome estimated from terrestrial imagery, November 2004-December 2005: Chapter 12 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Major, Jon J.; Kingsbury, Cole G.; Poland, Michael P.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Oblique, terrestrial imagery from a single, fixed-position camera was used to estimate linear extrusion rates during sustained exogenous growth of the Mount St. Helens lava dome from November 2004 through December 2005. During that 14-month period, extrusion rates declined logarithmically from about 8-10 m/d to about 2 m/d. The overall ebbing of effusive output was punctuated, however, by episodes of fluctuating extrusion rates that varied on scales of days to weeks. The overall decline of effusive output and finer scale rate fluctuations correlated approximately with trends in seismicity and deformation. Those correlations portray an extrusion that underwent episodic, broad-scale stick-slip behavior superposed on the finer scale, smaller magnitude stick-slip behavior that has been hypothesized by other researchers to correlate with repetitive, nearly periodic shallow earthquakes.

  4. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  5. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    DOE PAGES

    Persaud, A.; Ji, Q.; Feinberg, E.; ...

    2017-06-08

    Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less

  6. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  7. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    PubMed

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  8. Operations and maintenance manual for the linear accelerator (sled)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Linear Accelerator, a sliding chair which is pulled along a stationary platform in a horizontal axis is described. The driving force is a motor controlled by a velocity loop amplifier, and the mechanical link to the chair is a steel cable. The chair is moved in forward and reverse directions as indicated by the direction of motor rotation. The system operation is described with emphasis on the electronic control and monitoring functions. Line-by-line schematics and wire lists are included.

  9. Non-linear acceleration at supernova remnant shocks and the hardening in the cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Gabici, S.

    2018-02-01

    In the last few years, several experiments have shown that the cosmic ray spectrum below the knee is not a perfect power law. In particular, the proton and helium spectra show a spectral hardening by ˜0.1-0.2 in spectral index at particle energies of ˜ 200-300 GeV nucleon-1. Moreover, the helium spectrum is found to be harder than that of protons by ˜0.1 and some evidence for a similar hardening was also found in the spectra of heavier elements. Here, we consider the possibility that the hardening may be the result of a dispersion in the slope of the spectrum of cosmic rays accelerated at supernova remnant shocks. Such a dispersion is indeed expected within the framework of non-linear theories of diffusive shock acceleration, which predict steeper (harder) particle spectra for larger (smaller) cosmic ray acceleration efficiencies.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edstrom Jr., D.; et al.

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (includingmore » a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.« less

  11. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    DOE PAGES

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...

    2016-01-20

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less

  12. SABRE, a 10-MV linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corely, J.P.; Alexander, J.A.; Pankuch, P.J.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a 10-MV, 250-kA, 40-ns linear induction accelerator. It was designed to be used in positive polarity output. Positive polarity accelerators are important for application to Sandia's ICF (Inertial Confinement Fusion) and LMF (Laboratory Microfusion Facility) program efforts. SABRE was built to allow a more detailed study of pulsed power issues associated with positive polarity output machines. MITL (Magnetically Insulated Transmission Line) voltage adder efficiency, extraction ion diode development, and ion beam transport and focusing. The SABRE design allows the system to operate in either positive polarity output for ion extraction applications ormore » negative polarity output for more conventional electron beam loads. Details of the design of SABRE and the results of initial machine performance in negative polarity operation are presented in this paper. 13 refs., 12 figs., 1 tab.« less

  13. State of the art in electromagnetic modeling for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less

  14. Reduction of beam corkscrew motion on the ETAII linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, W.C.; Allen, S.L.; Brand, H.R.

    1990-09-04

    The ETAII linear induction accelerator (6MeV, 3kA, 70ns) is designed to drive a microwave free electron laser (FEL) and demonstrate the front end accelerator technology for a shorter wavelength FEL. Performance to date has been limited by beam corkscrew motion that is driven by energy sweep and misalignment of the solenoidal focusing magnets. Modifications to the pulse power distribution system and magnetic alignment are expected to reduce the radius of corkscrew motion from its present value of 1 cm to less than 1 mm. The modifications have so far been carried out on the first 2.7 MeV (injector plus 20more » accelerator cells) and experiments are beginning. In this paper we will present calculations of central flux line alignment, beam corkscrew motion and beam brightness that are anticipated with the modified ETAII. 10 refs., 4 figs., 1 tab.« less

  15. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.

    2016-01-15

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction undermore » ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.« less

  16. Instrumentation for measuring the dynamic pressure on rotating compressor blades

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Lanati, G. A.

    1978-01-01

    To establish the capability for measurement of oscillatory pressure on rotating blades, miniature fast response semiconductor strain gage pressure transducers (2mm x 0.33mm) were mounted in several configurations on thin titanium and steel compressor blades and subjected to pressure cycles from 1 to 310 kPa during static tests and spin tests. Static test conditions included 20 C to 150 C, 0 to 3000 tensile microstrain, -1000 to +1000 bending microstrain and + or - 650G vibration. The spin test conditions included 20 C to 82 C at 0 to 90,000G. Durability was excellent. Pressure transducer sensitivity changed by only a few percent over this range of environmental conditions. Noise signal due to oscillatory acceleration normal to the diaphragm was acceptable (0.33Pa/G). Noise signal due to oscillatory strain was acceptable (0.5 Pa/microstrain) when the transducer was mounted on a 0.05mm rubber pad, with a total buildup of 0.38mm on the measure surface. Back mounting or partial recessing to eliminate buildup, increased the strain effect to 1.2 Pa/microstrain. Flush mounting within the blade to eliminate buildup reduced the strain effect, but required development of a special transducer shape. This transducer was not available in time for spin tests. Unpredictable zero drift + or - 14 kPa ruled out the use of these mounting arrangements for accurate steady-state (D.C.) measurements on rotating blades. The two best configurations fully developed and spin tested were then successfully applied in the NAS3-20606 rotating fan flutter program for quantitative measurement of oscillatory pressure amplitudes.

  17. SU-F-T-313: Clinical Results of a New Customer Acceptance Test for Elekta VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusk, B; Fontenot, J

    Purpose: To report the results of a customer acceptance test (CAT) for VMAT treatments for two matched Elekta linear accelerators. Methods: The CAT tests were performed on two clinically matched Elekta linear accelerators equipped with a 160-leaf MLC. Functional tests included performance checks of the control system during dynamic movements of the diaphragms, MLC, and gantry. Dosimetric tests included MLC picket fence tests at static and variable dose rates and a diaphragm alignment test, all performed using the on-board EPID. Additionally, beam symmetry during arc delivery was measured at the four cardinal angles for high and low dose rate modesmore » using a 2D detector array. Results of the dosimetric tests were analyzed using the VMAT CAT analysis tool. Results: Linear accelerator 1 (LN1) met all stated CAT tolerances. Linear accelerator 2 (LN2) passed the geometric, beam symmetry, and MLC position error tests but failed the relative dose average test for the diaphragm abutment and all three picket fence fields. Though peak doses in the abutment regions were consistent, the average dose was below the stated tolerance corresponding to a leaf junction that was too narrow. Despite this, no significant differences in patient specific VMAT quality assurance measured were observed between the accelerators and both passed monthly MLC quality assurance performed with the Hancock test. Conclusion: Results from the CAT showed LN2 with relative dose averages in the abutment regions of the diaphragm and MLC tests outside the tolerances resulting from differences in leaf gap distances. Tolerances of the dose average tests from the CAT may be small enough to detect MLC errors which do not significantly affect patient QA or the routine MLC tests.« less

  18. Combustion engine variable compression ratio apparatus and method

    DOEpatents

    Lawrence,; Keith, E [Peoria, IL; Strawbridge, Bryan E [Dunlap, IL; Dutart, Charles H [Washington, IL

    2006-06-06

    An apparatus and method for varying a compression ratio of an engine having a block and a head mounted thereto. The apparatus and method includes a cylinder having a block portion and a head portion, a piston linearly movable in the block portion of the cylinder, a cylinder plug linearly movable in the head portion of the cylinder, and a valve located in the cylinder plug and operable to provide controlled fluid communication with the block portion of the cylinder.

  19. Seasonal control skylight glazing panel with passive solar energy switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.V.

    1983-10-25

    A substantially transparent one-piece glazing panel is provided for generally horizontal mounting in a skylight. The panel is comprised of an repeated pattern of two alternating and contiguous linear optical elements; a first optical element being an upstanding generally right-triangular linear prism, and the second optical element being an upward-facing plano-cylindrical lens in which the planar surface is reflectively opaque and is generally in the same plane as the base of the triangular prism.

  20. Richtmyer-Meshkov instability experiments of miscible and immiscible incompressible fluids

    NASA Astrophysics Data System (ADS)

    Krivets, Vitaliy; Holt, Brason; Mokler, Matthew; Jacobs, Jeffrey

    2017-11-01

    Experiments were conducted in a 3 m tall vertical drop tower setup. A flat interface separating two liquids of differing density is formed in the Plexiglas tank with the heavier fluid in the bottom and the lighter one on top. Two liquids pairs were utilized, one - miscible (isopropyl alcohol and a calcium nitrate water mixture) and the other immiscible (silicone oil with the same heavy liquid), both with Atwood near 0.2. The tank is mounted on a rail mounted sled at 2 m initial height where an initial perturbation is generated using vertical periodic motion with 10 Hz frequency and 1 mm displacement, thus producing 3D interfacial waves. An impulsive acceleration, with approximately 100g magnitude, is imparted to the sled by a rail mounted weight released and allowed to fall, impacting the sled from above. Both weight and sled then travel freely down the rails where they are smoothly decelerated at the bottom of drop tower by magnetic brakes. PLIF is used to visualize mixing process by seeding fluorescein in the bottom fluid and illuminating using laser diode from above forming thin vertical sheet. The resulting fluorescent image sequences are captured using a digital camera mounted to the sled operating at a 100 Hz framing rate. Comparisons of the measured growth of the mixing zone for both immiscible and miscible liquid combinations with theoretical models are presented.

Top