Sample records for linear accelerators linacs

  1. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  2. Intern Programs | Tours

    Science.gov Websites

    accelerated through the Linac (Linear Accelerator) to an energy of 400 MeV. The Linac consists of two main of linear accelerators at NML ! Meet at the South entrance to NML (New Muon Lab) Building. 1:00 PM 1

  3. Permanent magnet focused X-band photoinjector

    DOEpatents

    Yu, David U. L.; Rosenzweig, James

    2002-09-10

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clendenin, James E

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in themore » present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.« less

  5. Separated-orbit bisected energy-recovered linear accelerator

    DOEpatents

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  6. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellano, T.; De Palma, L.; Laneve, D.

    2015-07-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  7. X-ray Laser Animated Fly-Through

    ScienceCinema

    None

    2018-01-16

    Take a tour with an electron's-eye-view through SLAC's revolutionary new X-ray laser facility with this 5 1/2 minute animation. See how the X-ray pulses are generated using the world's longest linear accelerator along with unique arrays of machinery specially designed for this one-of-a-kind tool. For more than 40 years, SLAC's two-mile-long linear accelerator (or linac) linac has produced high-energy electrons for cutting-edge physics experiments. Now, SLAC's linac has entered a new phase of its career with the creation of the Linac Coherent Light Source (LCLS).

  8. QALMA: A computational toolkit for the analysis of quality protocols for medical linear accelerators in radiation therapy

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mushfiqur; Lei, Yu; Kalantzis, Georgios

    2018-01-01

    Quality Assurance (QA) for medical linear accelerator (linac) is one of the primary concerns in external beam radiation Therapy. Continued advancements in clinical accelerators and computer control technology make the QA procedures more complex and time consuming which often, adequate software accompanied with specific phantoms is required. To ameliorate that matter, we introduce QALMA (Quality Assurance for Linac with MATLAB), a MALAB toolkit which aims to simplify the quantitative analysis of QA for linac which includes Star-Shot analysis, Picket Fence test, Winston-Lutz test, Multileaf Collimator (MLC) log file analysis and verification of light & radiation field coincidence test.

  9. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  10. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    PubMed

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  11. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    NASA Astrophysics Data System (ADS)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  13. SLAC Linac Preparations for FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, R.; Bentson, L.; Kharakh, D.

    The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.

  14. Isac Sc-Linac Phase-II Helium Refrigerator Commissioning and First Operational Experience at Triumf

    NASA Astrophysics Data System (ADS)

    Sekachev, I.; Kishi, D.; Laxdal, R. E.

    2010-04-01

    ISAC Phase-II is an upgrade of the radioactive isotope superconducting linear accelerator, SC-linac, at TRIUMF. The Phase-I section of the accelerator, medium-beta, is operational and is cooled with a 600 W helium refrigerator, commissioned in March 2005. An identical refrigerator is being used with the Phase-II segment of the accelerator; which is now under construction. The second refrigerator has been commissioned and tested with the Phase-I section of the linac and is used for Phase-II linac development, including new SC-cavity performance tests. The commissioning of the Phase-II refrigeration system and recent operational experience is presented.

  15. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  16. Recirculating linacs for a neutrino factory - Arc optics design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alex Bogacz; Valeri Lebedev

    2001-10-21

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190MeV/c and proceeding to 50GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resultingmore » arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less

  17. Recirculating linacs for a neutrino factory - Arc optics design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valeri Lebedev; S. Bogacz

    2001-10-25

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3 GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190 MeV/c and proceeding to 50 GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice designmore » choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less

  18. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  19. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE PAGES

    Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...

    2018-02-09

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  20. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, A.; Bonomi, R.; Garlasche, M.

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  1. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  2. Status Of the ILC Main Linac Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Arun; Kapin, Valery; Solyak, Nikolay

    2017-05-01

    International Linear collider (ILC) is a proposed accelerator facility which is primarily based on two 11-km long superconducting main linacs. In this paper we present recent updates on the main linac design and discuss changes made in order to meet specification outlined in the technical design report (TDR).

  3. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  4. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    NASA Astrophysics Data System (ADS)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  5. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail

    2017-09-01

    In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  6. Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario.

    PubMed

    Mishra, Bibekananda; Selvam, T Palani; Sharma, P K Dash

    2017-01-01

    Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes.

  7. Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario

    PubMed Central

    Mishra, Bibekananda; Selvam, T. Palani; Sharma, P. K. Dash

    2017-01-01

    Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes. PMID:28405104

  8. Computational study of radiation doses at UNLV accelerator facility

    NASA Astrophysics Data System (ADS)

    Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel

    2017-09-01

    A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.

  9. High-gradient low-β accelerating structure using the first negative spatial harmonic of the fundamental mode

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.

    2017-12-01

    The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.

  10. Beam dynamics design of the muon linac high-beta section

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Hasegawa, K.; Otani, M.; Mibe, T.; Yoshida, M.; Kitamura, R.

    2017-07-01

    A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure (DLS) is described.

  11. Design for simultaneous acceleration of stable and unstable beams in a superconducting heavy-ion linear accelerator for RISP

    NASA Astrophysics Data System (ADS)

    Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho

    2017-11-01

    The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.

  12. Investigation of using shrinking method in construction of Institute for Research in Fundamental Sciences Electron Linear Accelerator TW-tube (IPM TW-Linac tube)

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.; Abbasi Davani, F.

    2015-06-01

    Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.

  13. Development and application of compact and on-chip electron linear accelerators for dynamic tracking cancer therapy and DNA damage/repair analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Demachi, K.; Fujiwara, T.; Dobashi, K.; Fujisawa, H.; Chhatkuli, R. B.; Tsuda, A.; Tanaka, S.; Matsumura, Y.; Otsuki, S.; Kusano, J.; Yamamoto, M.; Nakamura, N.; Tanabe, E.; Koyama, K.; Yoshida, M.; Fujimori, R.; Yasui, A.

    2015-06-01

    We are developing compact electron linear accelerators (hereafter linac) with high RF (Radio Frequency) frequency (9.3 GHz, wavelength 32.3 mm) of X-band and applying to medicine and non-destructive testing. Especially, potable 950 keV and 3.95 MeV linac X-ray sources have been developed for on-site transmission testing at several industrial plants and civil infrastructures including bridges. 6 MeV linac have been made for pinpoint X-ray dynamic tracking cancer therapy. The length of the accelerating tube is ∼600 mm. The electron beam size at the X-ray target is less than 1 mm and X-ray spot size at the cancer is less than 3 mm. Several hardware and software are under construction for dynamic tracking therapy for moving lung cancer. Moreover, as an ultimate compact linac, we are designing and manufacturing a laser dielectric linac of ∼1 MeV with Yr fiber laser (283 THz, wavelength 1.06 pm). Since the wavelength is 1.06 μm, the length of one accelerating strcture is tens pm and the electron beam size is in sub-micro meter. Since the sizes of cell and nuclear are about 10 and 1 μm, respectively, we plan to use this “On-chip” linac for radiation-induced DNA damage/repair analysis. We are thinking a system where DNA in a nucleus of cell is hit by ∼1 μm electron or X-ray beam and observe its repair by proteins and enzymes in live cells in-situ.

  14. Terahertz radiation source using a high-power industrial electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  15. Development of new S-band SLED for PAL-XFEL Linac

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin

    2017-01-01

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  16. Performance and applications of the 14 MEV electron radiation linac at CIAE

    NASA Astrophysics Data System (ADS)

    Zhai, X. L.; Chen, G. C.; Qi, B. M.; Xu, F. J.; Pan, L. H.; Zhang, Z. M.; Shi, X. Z.; Chen, J. K.; Wang, F. Y.

    1993-07-01

    A 14 MeV electron linear accelerator which was designed and manufactured by the China Institute of Atomic Energy (CIAE) has been modified into an radiation processing accelerator in 1987. It consists of an electron gun, two prebunchers, one buncher, a three meter long accelerating section, and a 90 degree bending magnet. The linac is S-band (2856 MHz), travelling wave accelerator driven by a Chinese-made klystron. The energy of electrons can be adjusted from 8 MeV to 18 MeV and the average beam power is about 2 kW. The beam width is 600 mm and the uniformity of scanning beam is better than 10%. The linac is used to irradiate power semiconductor devices for controlling the minority carrier lifetime (MCL). More than twenty factories and scientific institutions use this linac to irradiate silicon controlled rectifiers (SCR) and the fast recovery diodes (FRD), and more than 0.2 million pieces of SCR have been irradiated. Tests have also been carried out for colour-change of topaz.

  17. Technical Note: Experimental results from a prototype high-field inline MRI-linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liney, G. P., E-mail: gary.liney@sswahs.nsw.gov.au

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. Methods: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enablingmore » shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). Results: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. Conclusions: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical challenges and solutions.« less

  18. KLYNAC: Compact linear accelerator with integrated power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less

  19. Klynac: Compact Linear Accelerator with Integrated Power Supply

    NASA Astrophysics Data System (ADS)

    Malyzhenkov, A. V.

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  20. Linear accelerator radiosurgery for arteriovenous malformations: Updated literature review.

    PubMed

    Yahya, S; Heyes, G; Nightingale, P; Lamin, S; Chavda, S; Geh, I; Spooner, D; Cruickshank, G; Sanghera, P

    2017-04-01

    Arteriovenous malformations (AVMs) are the leading causing of intra-cerebral haemorrhage. Stereotactic radiosurgery (SRS) is an established treatment for arteriovenous malformations (AVM) and commonly delivered using Gamma Knife within dedicated radiosurgery units. Linear accelerator (LINAC) SRS is increasingly available however debate remains over whether it offers an equivalent outcome. The aim of this project is to evaluate the outcomes using LINAC SRS for AVMs used within a UK neurosciences unit and review the literature to aid decision making across various SRS platforms. Results have shown comparability across platforms and strongly supports that an adapted LINAC based SRS facility within a dynamic regional neuro-oncology department delivers similar outcomes (in terms of obliteration and toxicity) to any other dedicated radio-surgical platform. Locally available facilities can facilitate discussion between options however throughput will inevitably be lower than centrally based dedicated national radiosurgery units. Copyright © 2016. Published by Elsevier Ltd.

  1. Analysis of peripheral doses for base of tongue treatment by linear accelerator and helical TomoTherapy IMRT

    PubMed Central

    Lamba, Michael A. S.; Elson, Howard R.

    2010-01-01

    The purpose of this study was to compare the peripheral doses to various organs from a typical head and neck intensity‐modulated radiation therapy (IMRT) treatment delivered by linear accelerator (linac) and helical TomoTherapy. Multiple human CT data sets were used to segment critical structures and organs at risk, fused and adjusted to an anthropomorphic phantom. Eighteen contours were designated for thermoluminescent dosimeter (TLD) placement. Following the RTOG IMRT Protocol 0522, treatment of the primary tumor and involved nodes (PTV70) and subclinical disease sites (PTV56) was planned utilizing IMRT to 70 Gy and 56 Gy. Clinically acceptable treatment plans were produced for linac and TomoTherapy treatments. TLDs were placed and each treatment plan was delivered to the anthropomorphic phantom four times. Within 2.5 cm (one helical TomoTherapy field width) superior and inferior to the field edges, normal tissue doses were on average 45% lower using linear accelerator. Beyond 2.5 cm, the helical TomoTherapy normal tissue dose was an average of 52% lower. The majority of points proved to be statistically different using the Student's t‐test with p<0.05. Using one method of calculation, probability of a secondary malignancy was 5.88% for the linear accelerator and 4.08% for helical TomoTherapy. Helical TomoTherapy delivers more dose than a linac immediately above and below the treatment field, contributing to the higher peripheral doses adjacent to the field. At distances beyond one field width (where leakage is dominant), helical TomoTherapy doses are lower than linear accelerator doses. PACS number: 87.50.cm Dosimetry/exposure assessment

  2. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  3. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, Marco; Harnett, Nicole; Jaffray, David

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance ofmore » all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.« less

  4. Production of Medical Isotopes with Electron Linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotsch, D A; Alford, K.; Bailey, J. L.

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around formore » decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.« less

  5. Cobalt-60 Machines and Medical Linear Accelerators: Competing Technologies for External Beam Radiotherapy.

    PubMed

    Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A

    2017-02-01

    Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  6. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    DOE PAGES

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...

    2016-01-20

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less

  7. Klystron-linac combination

    DOEpatents

    Stein, W.E.

    1980-04-24

    A combination klystron-linear accelerator which utilizes anti-bunch electrons generated in the klystron section as a source of electrons to be accelerated in the accelerator section. Electron beam current is controlled by second harmonic bunching, constrictor aperture size and magnetic focusing. Rf coupling is achieved by internal and external coupling.

  8. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  9. A superconducting CW-LINAC for heavy ion acceleration at GSI

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Aulenbacher, Kurt; Basten, Markus; Dziuba, Florian; Gettmann, Viktor; Miski-Oglu, Maksym; Podlech, Holger; Yaramyshev, Stepan

    2017-03-01

    Recently the Universal Linear Accelerator (UNILAC) serves as a powerful high duty factor (25%) heavy ion beam accelerator for the ambitious experiment program at GSI. Beam time availability for SHE (Super Heavy Element)-research will be decreased due to the limitation of the UNILAC providing Uranium beams with an extremely high peak current for FAIR simultaneously. To keep the GSI-SHE program competitive on a high level and even beyond, a standalone superconducting continuous wave (100% duty factor) LINAC in combination with the upgraded GSI High Charge State injector is envisaged. In preparation for this, the first LINAC section (financed by HIM and GSI) will be tested with beam in 2017, demonstrating the future experimental capabilities. Further on the construction of an extended cryo module comprising two shorter Crossbar-H cavities is foreseen to test until end of 2017. As a final R&D step towards an entire LINAC three advanced cryo modules, each comprising two CH cavities, should be built until 2019, serving for first user experiments at the Coulomb barrier.

  10. Pulsed-focusing recirculating linacs for muon acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.« less

  11. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  12. The SLAC linac as used in the SLC collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.; Abrams, G.; Adolphsen, C.

    The linac of the SLAC Linear Collider (SLC) must accelerate three high intensity bunches on each linac pulse from 1.2 GeV to 50 GeV with minimal increase of the small transverse emittance. The procedures and adjustments used to obtain this goal are outlined. Some of the accelerator parameters and components which interact are the beam energy, transverse position, component alignment, RF manipulation, feedback systems, quadrupole lattice, BNS damping, energy spectra, phase space matching, collimation, instrumentation and modelling. The method to bring these interdependent parameters collectively into specification has evolved over several years. This review is ordered in the sequence whichmore » is used to turn on the linac from a cold start and produce acceptable beams for the final focus and collisions. Approximate time estimates for the various activities are given. 21 refs.« less

  13. The estimation of occupational dose in 15 MV varian clinac iX room by Argon-41 as an activation product of photoneutron

    NASA Astrophysics Data System (ADS)

    Latifah, R.; Bunawas; Noor, J. A. E.

    2018-03-01

    Linear accelerator (linac) becomes the most commonly used treatment to damage and kill cancer cell. Photon and electron as the radiation beam are produced by accelerating electrons to very high energy. Neutrons are generated when incident high photon energy interacts with component of linac such as target, flattering filter and collimator via photoneutrons reaction. The neutrons can also produce activation of materials in treatment room to generate radioactive materials. We have estimated the concentration of Argon-41 as activated product from argon-40 in the linac room using foil activation. The results show that the Argon-41 concentration in linac room which is operated 15 MV for 1 treatment (1 minute) is 1440 Bq/m3. Accordingly that concentration, the occupational dose is 6.4 mSv per year.

  14. Conceptual Design for the New RPI 2020 Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, C.; Bane, K.; Dolgashev, V.

    2014-10-29

    The Rensselaer Polytechnic Institute (RPI) spectrometer is an installation based on an L-band linear accelerator designed and installed many decades ago. While this installation has served many important experiments over the decades, a new more powerful and more flexible linac to serve a wider range of experiments is envisioned as an upgrade to the existing installation by 2020.

  15. RF emittance in a low energy electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Sanaye Hajari, Sh.; Haghtalab, S.; Shaker, H.; Kelisani, M. Dayyani

    2018-04-01

    Transverse beam dynamics of an 8 MeV low current (10 mA) S-band traveling wave electron linear accelerator has been studied and optimized. The main issue is to limit the beam emittance, mainly induced by the transverse RF forces. The linac is being constructed at Institute for Research in Fundamental Science (IPM), Tehran Iran Labeled as Iran's First Linac, nearly all components of this accelerator are designed and constructed within the country. This paper discusses the RF coupler induced field asymmetry and the corresponding emittance at different focusing levels, introduces a detailed beam dynamics design of a solenoid focusing channel aiming to reduce the emittance growth and studies the solenoid misalignment tolerances. In addition it has been demonstrated that a prebuncher cavity with appropriate parameters can help improving the beam quality in the transverse plane.

  16. Chromaticity of the lattice and beam stability in energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.

    2012-07-01

    Energy recovery linacs (ERLs) are an emerging generation of accelerators that promises to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and augur the delivery of electron beams of unprecedented power and quality. The use of superconducting radio-frequency cavities converts ERLs into nearly perfect “perpetuum mobile” accelerators, wherein the beam is accelerated to the desired energy, used, and then yields the energy back to the rf field. However, one potential weakness of these devices is transverse beam breakup instability that could severely limit the available beam current. In this paper, I propose a novel method of suppressing these dangerous effects via a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

  17. Radiosurgery with a linear accelerator. Methodological aspects.

    PubMed

    Betti, O O; Galmarini, D; Derechinsky, V

    1991-01-01

    Based on the concepts of Leksell and on recommendations of different Swedish physicists on the use of linear accelerator for radiosurgical use, we developed a new methodology coupling the Talairach stereotactic system with a commercial linac. Anatomical facts encouraged us to use coronal angles of irradiation employing the angular displacement of the linac above the horizontal plane. Different coronal planes are obtained by rotation of the stereotactic frame. The center of the irradiated target coincides with the irradiation and rotation center of the linear accelerator. Multiple targets can be irradiated in the same session. We use as recommended a secondary collimator in heavy alloy. Special software was prepared after different dosimetric controls. The use of a PC allows us to employ 1-6 targets and different collimators to displace the isocenters in order to obtain geometrical isodose modification, and to change the value of each irradiation arc or portions of each arc in some minutes. Simple or sophisticated neurosurgical strategies can be applied in the treatment of frequently irregular shape and volume AVMs.

  18. Electron linear accelerator system for natural rubber vulcanization

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.

    2017-09-01

    Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.

  19. A Particle-in-cell scheme of the RFQ in the SSC-Linac

    NASA Astrophysics Data System (ADS)

    Xiao, Chen; He, Yuan; Lu, Yuan-Rong; Yuri, Batygin; Yin, Ling; Wang, Zhi-Jun; Yuan, You-Jin; Liu, Yong; Chang, Wei; Du, Xiao-Nan; Wang, Zhi; Xia, Jia-Wen

    2010-11-01

    A 52 MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-Linac system (injector into Separated Sector Cyclotron). The designed injection and output energy are 3.5 keV/u and 143 keV/u, respectively. The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell (PIC) code BEAMPATH. Simulation results show that this RFQ structure is characterized by stable values of beam transmission efficiency (at least 95%) for both zero-current mode and the space charge dominated regime. The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions, and could easily be accepted by Drift Tube Linac (DTL). The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.

  20. Alternating phase focused linacs

    DOEpatents

    Swenson, Donald A.

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  1. MO-DE-BRA-02: SIMAC: A Simulation Tool for Teaching Linear Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, M; Harnett, N; Department of Radiation Oncology, University of Toronto, Toronto, Ontario

    Purpose: The first goal of this work is to develop software that can simulate the physics of linear accelerators (linac). The second goal is to show that this simulation tool is effective in teaching linac physics to medical physicists and linac service engineers. Methods: Linacs were modeled using analytical expressions that can correctly describe the physical response of a linac to parameter changes in real time. These expressions were programmed with a graphical user interface in order to produce an environment similar to that of linac service mode. The software, “SIMAC”, has been used as a learning aid in amore » professional development course 3 times (2014 – 2016) as well as in a physics graduate program. Exercises were developed to supplement the didactic components of the courses consisting of activites designed to reinforce the concepts of beam loading; the effect of steering coil currents on beam symmetry; and the relationship between beam energy and flatness. Results: SIMAC was used to teach 35 professionals (medical physicists; regulators; service engineers; 1 week course) as well as 20 graduate students (1 month project). In the student evaluations, 85% of the students rated the effectiveness of SIMAC as very good or outstanding, and 70% rated the software as the most effective part of the courses. Exercise results were collected showing that 100% of the students were able to use the software correctly. In exercises involving gross changes to linac operating points (i.e. energy changes) the majority of students were able to correctly perform these beam adjustments. Conclusion: Software simulation(SIMAC), can be used to effectively teach linac physics. In short courses, students were able to correctly make gross parameter adjustments that typically require much longer training times using conventional training methods.« less

  2. Beam focal spot position determination for an Elekta linac with the Agility® head; practical guide with a ready-to-go procedure.

    PubMed

    Chojnowski, Jacek M; Taylor, Lee M; Sykes, Jonathan R; Thwaites, David I

    2018-05-14

    A novel phantomless, EPID-based method of measuring the beam focal spot offset of a linear accelerator was proposed and validated for Varian machines. In this method, one set of jaws and the MLC were utilized to form a symmetric field and then a 180 o collimator rotation was utilized to determine the radiation isocenter defined by the jaws and the MLC, respectively. The difference between these two isocentres is directly correlated with the beam focal spot offset of the linear accelerator. In the current work, the method has been considered for Elekta linacs. An Elekta linac with the Agility ® head does not have two set of jaws, therefore, a modified method is presented making use of one set of diaphragms, the MLC and a full 360 o collimator rotation. The modified method has been tested on two Elekta Synergy ® linacs with Agility ® heads and independently validated. A practical guide with instructions and a MATLAB ® code is attached for easy implementation. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. Radio frequency focused interdigital linear accelerator

    DOEpatents

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  4. Dual linear accelerator system for use in sterilization of medical disposable supplies

    NASA Astrophysics Data System (ADS)

    Sadat, Theo

    1991-05-01

    Accelerators can be used for sterilization or decontamination (medical disposables, food, plastics, hospital waste, etc.). Most of these accelerators are located in an industrial environment and must have a high availability. A dual accelerator system (composed of two accelerators) offers optimal flexibility and reliability. The main advantage of this system is "all-in all-out" because it does not need a turnover of products. Such a dual system, composed of two 10 MeV 20 kW linear accelerators (instead of one 40 kW linac), has been chosen by a Swedish company (Mölnlycke).

  5. Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi

    NASA Astrophysics Data System (ADS)

    Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar

    The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.

  6. Linear fixed-field multipass arcs for recirculating linear accelerators

    DOE PAGES

    Morozov, V. S.; Bogacz, S. A.; Roblin, Y. R.; ...

    2012-06-14

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting themore » dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. Finally, we present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.« less

  7. Chromaticity of the lattice and beam stability in energy-recovery linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, V.N.

    2011-12-23

    Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current.more » In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.« less

  8. TH-AB-BRA-12: Experimental Results From the First High-Field Inline MRI-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P; Dong, B; Zhang, K

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. Methods: A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear acceleratormore » (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. Results: (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. Conclusion: The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.« less

  9. New concept on an integrated interior magnetic resonance imaging and medical linear accelerator system for radiation therapy.

    PubMed

    Jia, Xun; Tian, Zhen; Xi, Yan; Jiang, Steve B; Wang, Ge

    2017-01-01

    Image guidance plays a critical role in radiotherapy. Currently, cone-beam computed tomography (CBCT) is routinely used in clinics for this purpose. While this modality can provide an attenuation image for therapeutic planning, low soft-tissue contrast affects the delineation of anatomical and pathological features. Efforts have recently been devoted to several MRI linear accelerator (LINAC) projects that lead to the successful combination of a full diagnostic MRI scanner with a radiotherapy machine. We present a new concept for the development of the MRI-LINAC system. Instead of combining a full MRI scanner with the LINAC platform, we propose using an interior MRI (iMRI) approach to image a specific region of interest (RoI) containing the radiation treatment target. While the conventional CBCT component still delivers a global image of the patient's anatomy, the iMRI offers local imaging of high soft-tissue contrast for tumor delineation. We describe a top-level system design for the integration of an iMRI component into an existing LINAC platform. We performed numerical analyses of the magnetic field for the iMRI to show potentially acceptable field properties in a spherical RoI with a diameter of 15 cm. This field could be shielded to a sufficiently low level around the LINAC region to avoid electromagnetic interference. Furthermore, we investigate the dosimetric impacts of this integration on the radiotherapy beam.

  10. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüler, Emil; Trovati, Stefania; King, Gregory

    Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). Methods and Materials: We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlomore » and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Results: Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. Conclusions: We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community.« less

  11. Analysis and measurement of the transfer matrix of a 9-cell, 1.3-GHz superconducting cavity

    DOE PAGES

    Halavanau, A.; Eddy, N.; Edstrom, D.; ...

    2017-04-13

    Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. Here, the 9-cell, 1.3-GHz superconducting standing-wave accelerating rf cavity originally developed for e +/e - linear-collider applications has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. Finally, the experimental results are found to be in agreement with analytical calculations and numerical simulations.

  12. Medical Application of the SARAF-Proton/Deuteron 40 MeV Superconducting Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, Shlomi

    2007-11-26

    The Soreq Applied Research Accelerator Facility (SARAF) is based on a superconducting linear accelerator currently being built at the Soreq research center (Israel). The SARAF is planned to generate a 2 mA 4 MeV proton beam during its first year of operation and up to 40 MeV proton or deuteron beam in 2012. The high intensity beam, together with the linac ability to adjust the ion energy provides opportunities for medical research, such as Boron Neutron Capture Therapy (BNCT) and the production of medical radioisotopes, for instance {sup 103}Pd for prostate brachytherapy.

  13. Process simulations for the LCLS-II cryogenic systems

    NASA Astrophysics Data System (ADS)

    Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.

    2017-12-01

    Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.

  14. Los Alamos high-power proton linac designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.P.

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  15. Multipass Steering: A Reference Implementation

    NASA Astrophysics Data System (ADS)

    Hennessey, Michael; Tiefenback, Michael

    2015-10-01

    We introduce a reference implementation of a protocol to compute corrections that bring all beams in one of the CEBAF linear accelerators (linac) to axis, including, with a larger tolerance, the lowest energy pass using measured beam trajectory data. This method relies on linear optics as representation of the system; we treat beamline perturbations as magnetic field errors localized to regions between cryomodules, providing the same transverse momentum kick to each beam. We produce a vector of measured beam position data with which we left-multiply the pseudo-inverse of a coefficient array, A, that describes the transport of the beam through the linac using parameters that include the magnetic offsets of the quadrupole magnets, the instrumental offsets of the BPMs, and the beam initial conditions. This process is repeated using a reduced array to produce values that can be applied to the available correcting magnets and beam initial conditions. We show that this method is effective in steering the beam to a straight axis along the linac by using our values in elegant, the accelerator simulation program, on a model of the linac in question. The algorithms in this reference implementation provide a tool for systematic diagnosis and cataloging of perturbations in the beam line. Supported by Jefferson Lab, Old Dominion University, NSF, DOE.

  16. Stereotactic radiosurgery for intracranial metastases: linac-based and gamma-dedicated unit approach.

    PubMed

    Alongi, Filippo; Fiorentino, Alba; Mancosu, Pietro; Navarria, Pierina; Giaj Levra, Niccolò; Mazzola, Rosario; Scorsetti, Marta

    2016-07-01

    For intracranial metastases, the role of stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy is well recognized. Historically, the first technology, for stereotactic device able to irradiate a brain tumor volume, was Gamma Knife® (GK). Due to the technological advancement of linear accelerator (Linac), there was a continuous increasing interest in SRS Linac-based applications. In those decades, it was assumed a superiority of GK compared to SRS Linac-based for brain tumor in terms of dose conformity and rapid fall-off dose close to the target. Expert commentary: Recently, due to the Linac technologic advancement, the choice of SRS GK-based is not necessarily so exclusive. The current review discussed in details the technical and clinical aspects comparing the two approaches for brain metastases.

  17. R&D status of linear collider technology at KEK

    NASA Astrophysics Data System (ADS)

    Urakawa, Junji

    1992-02-01

    This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.

  18. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Charles E.

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less

  19. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    DOE PAGES

    Reece, Charles E.

    2016-12-28

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less

  20. Introduction

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Briggs*, Richard J.

    The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.

  1. New concept on an integrated interior magnetic resonance imaging and medical linear accelerator system for radiation therapy

    PubMed Central

    Jia, Xun; Tian, Zhen; Xi, Yan; Jiang, Steve B.; Wang, Ge

    2017-01-01

    Abstract. Image guidance plays a critical role in radiotherapy. Currently, cone-beam computed tomography (CBCT) is routinely used in clinics for this purpose. While this modality can provide an attenuation image for therapeutic planning, low soft-tissue contrast affects the delineation of anatomical and pathological features. Efforts have recently been devoted to several MRI linear accelerator (LINAC) projects that lead to the successful combination of a full diagnostic MRI scanner with a radiotherapy machine. We present a new concept for the development of the MRI-LINAC system. Instead of combining a full MRI scanner with the LINAC platform, we propose using an interior MRI (iMRI) approach to image a specific region of interest (RoI) containing the radiation treatment target. While the conventional CBCT component still delivers a global image of the patient’s anatomy, the iMRI offers local imaging of high soft-tissue contrast for tumor delineation. We describe a top-level system design for the integration of an iMRI component into an existing LINAC platform. We performed numerical analyses of the magnetic field for the iMRI to show potentially acceptable field properties in a spherical RoI with a diameter of 15 cm. This field could be shielded to a sufficiently low level around the LINAC region to avoid electromagnetic interference. Furthermore, we investigate the dosimetric impacts of this integration on the radiotherapy beam. PMID:28331888

  2. The MRI-Linear Accelerator Consortium: Evidence-Based Clinical Introduction of an Innovation in Radiation Oncology Connecting Researchers, Methodology, Data Collection, Quality Assurance, and Technical Development.

    PubMed

    Kerkmeijer, Linda G W; Fuller, Clifton D; Verkooijen, Helena M; Verheij, Marcel; Choudhury, Ananya; Harrington, Kevin J; Schultz, Chris; Sahgal, Arjun; Frank, Steven J; Goldwein, Joel; Brown, Kevin J; Minsky, Bruce D; van Vulpen, Marco

    2016-01-01

    An international research consortium has been formed to facilitate evidence-based introduction of MR-guided radiotherapy (MR-linac) and to address how the MR-linac could be used to achieve an optimized radiation treatment approach to improve patients' survival, local, and regional tumor control and quality of life. The present paper describes the organizational structure of the clinical part of the MR-linac consortium. Furthermore, it elucidates why collaboration on this large project is necessary, and how a central data registry program will be implemented.

  3. High Peak Power Test and Evaluation of S-band Waveguide Switches

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Grelick, A.; Kustom, R. L.; White, M.

    1997-05-01

    The injector and source of particles for the Advanced Photon Source is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five exsisting S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized S-band waveguide switches at a peak operating power of 35 MW. Such rf switches have been successfully operated at other accelerator facilities but at lower peak powers. A test stand has been set up at the Stanford Linear Accelerator Center (SLAC) Klystron Factory to conduct tests comparing the power handling characteristics of two WR-284 and one WR-340 switches. Test results are presented and their implications for the design of the switching system are discussed.

  4. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    PubMed

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  5. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.

    PubMed

    St Aubin, Joel; Steciw, Stephen; Fallone, B G

    2010-02-01

    The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.

  6. Effects of energy chirp on bunch length measurement in linear accelerator beams

    NASA Astrophysics Data System (ADS)

    Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.

    2017-08-01

    The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.

  7. Analysis of the LSC microbunching instability in MaRIE linac reference design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yampolsky, Nikolai

    In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius ismore » equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.« less

  8. Dark current and radiation shielding studies for the ILC main linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokhov, Nikolai V.; Rakhno, I. L.; Solyak, N. A.

    2016-12-05

    Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel.more » A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.« less

  9. Micro-Bubble Experiments at the Van de Graaff Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.

    In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O 2 + H 2) data were collected.more » The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.« less

  10. Tumour regression of uveal melanoma after ruthenium-106 brachytherapy or stereotactic radiotherapy with gamma knife or linear accelerator.

    PubMed

    Georgopoulos, Michael; Zehetmayer, Martin; Ruhswurm, Irene; Toma-Bstaendig, Sabine; Ségur-Eltz, Nikolaus; Sacu, Stefan; Menapace, Rupert

    2003-01-01

    This study assesses differences in relative tumour regression and internal acoustic reflectivity after 3 methods of radiotherapy for uveal melanoma: (1) brachytherapy with ruthenium-106 radioactive plaques (RU), (2) fractionated high-dose gamma knife stereotactic irradiation in 2-3 fractions (GK) or (3) fractionated linear-accelerator-based stereotactic teletherapy in 5 fractions (Linac). Ultrasound measurements of tumour thickness and internal reflectivity were performed with standardised A scan pre-operatively and 3, 6, 9, 12, 18, 24 and 36 months postoperatively. Of 211 patients included in the study, 111 had a complete 3-year follow-up (RU: 41, GK: 37, Linac: 33). Differences in tumour thickness and internal reflectivity were assessed with analysis of variance, and post hoc multiple comparisons were calculated with Tukey's honestly significant difference test. Local tumour control was excellent with all 3 methods (>93%). At 36 months, relative tumour height reduction was 69, 50 and 30% after RU, GK and Linac, respectively. In all 3 treatment groups, internal reflectivity increased from about 30% initially to 60-70% 3 years after treatment. Brachytherapy with ruthenium-106 plaques results in a faster tumour regression as compared to teletherapy with gamma knife or Linac. Internal reflectivity increases comparably in all 3 groups. Besides tumour growth arrest, increasing internal reflectivity is considered as an important factor indicating successful treatment. Copyright 2003 S. Karger AG, Basel

  11. MCNP6 unstructured mesh application to estimate the photoneutron distribution and induced activity inside a linac bunker

    NASA Astrophysics Data System (ADS)

    Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.

    2017-08-01

    Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.

  12. Peripheral dose measurements with diode and thermoluminescence dosimeters for intensity modulated radiotherapy delivered with conventional and un-conventional linear accelerator

    PubMed Central

    Kinhikar, Rajesh; Gamre, Poonam; Tambe, Chandrashekhar; Kadam, Sudarshan; Biju, George; Suryaprakash; Magai, C. S.; Dhote, Dipak; Shrivastava, Shyam; Deshpande, Deepak

    2013-01-01

    The objective of this paper was to measure the peripheral dose (PD) with diode and thermoluminescence dosimeter (TLD) for intensity modulated radiotherapy (IMRT) with linear accelerator (conventional LINAC), and tomotherapy (novel LINAC). Ten patients each were selected from Trilogy dual-energy and from Hi-Art II tomotherapy. Two diodes were kept at 20 and 25 cm from treatment field edge. TLDs (LiF:MgTi) were also kept at same distance. TLDs were also kept at 5, 10, and 15 cm from field edge. The TLDs were read with REXON reader. The readings at the respective distance were recorded for both diode and TLD. The PD was estimated by taking the ratio of measured dose at the particular distance to the prescription dose. PD was then compared with diode and TLD for LINAC and tomotherapy. Mean PD for LINAC with TLD and diode was 2.52 cGy (SD 0.69), 2.07 cGy (SD 0.88) at 20 cm, respectively, while at 25 cm, it was 1.94 cGy (SD 0.58) and 1.5 cGy (SD 0.75), respectively. Mean PD for tomotherapy with TLD and diode was 1.681 cGy SD 0.53) and 1.58 (SD 0.44) at 20 cm, respectively. The PD was 1.24 cGy (SD 0.42) and 1.088 cGy (SD 0.35) at 25 cm, respectively, for tomotherapy. Overall, PD from tomotherapy was found lower than LINAC by the factor of 1.2-1.5. PD measurement is essential to find out the potential of secondary cancer. PD for both (conventional LINAC) and novel LINACs (tomotherapy) were measured and compared with each other. The comparison of the values for PD presented in this work and those published in the literature is difficult because of the different experimental conditions. The diode and TLD readings were reproducible and both the detector readings were comparable. PMID:23531765

  13. Lung density change after SABR: A comparative study between tri-Co-60 magnetic resonance-guided system and linear accelerator

    PubMed Central

    Kim, Eunji; Wu, Hong-Gyun; Park, Jong Min; Kim, Jung-in; Kim, Hak Jae

    2018-01-01

    Radiation-induced lung damage is an important treatment-related toxicity after lung stereotactic ablative radiotherapy (SABR). After implementing a tri-60Co magnetic-resonance image guided system, ViewRayTM, we compared the associated early radiological lung density changes to those associated with a linear accelerator (LINAC). Eight patients treated with the tri-60Co system were matched 1:1 with patients treated with LINAC. Prescription doses were 52 Gy or 60 Gy in four fractions, and lung dose-volumetric parameters were calculated from each planning system. The first two follow-up computed tomography (CT) were co-registered with the planning CT through deformable registration software, and lung density was measured by isodose levels. Tumor size was matched between the two groups, but the planning target volume of LINAC was larger than that of the tri-60Co system (p = 0.036). With regard to clinically relevant dose-volumetric parameters in the lungs, the ipsilateral lung mean dose, V10Gy and V20Gy were significantly poorer in tri-60Co plans compared to LINAC plans (p = 0.012, 0.036, and 0.017, respectively). Increased lung density was not observed in the first follow-up scan compared to the planning scan. A significant change of lung density was shown in the second follow-up scan and there was no meaningful difference between the tri-60Co system and LINAC for all dose regions. In addition, no patient developed clinical radiation pneumonitis until the second follow-up scan. Therefore, there was no significant difference in the early radiological lung damage between the tri-60Co system and LINAC for lung SABR despite of the inferior plan quality of the tri-60Co system compared to that of LINAC. Further studies with a longer follow-up period are needed to confirm our findings. PMID:29608606

  14. DOSE AND GAMMA-RAY SPECTRA FROM NEUTRON-INDUCED RADIOACTIVITY IN MEDICAL LINEAR ACCELERATORS FOLLOWING HIGH-ENERGY TOTAL BODY IRRADIATION.

    PubMed

    Keehan, S; Taylor, M L; Smith, R L; Dunn, L; Kron, T; Franich, R D

    2016-12-01

    Production of radioisotopes in medical linear accelerators (linacs) is of concern when the beam energy exceeds the threshold for the photonuclear interaction. Staff and patients may receive a radiation dose as a result of the induced radioactivity in the linac. Gamma-ray spectroscopy was used to identify the isotopes produced following the delivery of 18 MV photon beams from a Varian 21EX and an Elekta Synergy. The prominent radioisotopes produced include 187 W, 63 Zn, 56 Mn, 24 Na and 28 Al in both linac models. The dose rate was measured at the beam exit window (12.6 µSv in the first 10 min) following 18 MV total body irradiation (TBI) beams. For a throughput of 24 TBI patients per year, staff members are estimated to receive an annual dose of up to 750 μSv at the patient location. This can be further reduced to 65 μSv by closing the jaws before re-entering the treatment bunker. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A linear accelerator for simulated micrometeors.

    NASA Technical Reports Server (NTRS)

    Slattery, J. C.; Becker, D. G.; Hamermesh, B.; Roy, N. L.

    1973-01-01

    Review of the theory, design parameters, and construction details of a linear accelerator designed to impart meteoric velocities to charged microparticles in the 1- to 10-micron diameter range. The described linac is of the Sloan Lawrence type and, in a significant departure from conventional accelerator practice, is adapted to single particle operation by employing a square wave driving voltage with the frequency automatically adjusted from 12.5 to 125 kHz according to the variable velocity of each injected particle. Any output velocity up to about 30 km/sec can easily be selected, with a repetition rate of approximately two particles per minute.

  16. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging-linear accelerator.

    PubMed

    Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P; Kok, Jan; Lin, Steven H; Broekhuizen, Roel; Ang, Kie-Kian; Bovenschen, Niels; Raaymakers, Bas W; Frank, Steven J

    2016-10-01

    Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  18. EXACTRAC x-ray and beam isocenters-what's the difference?

    PubMed

    Tideman Arp, Dennis; Carl, Jesper

    2012-03-01

    To evaluate the geometric accuracy of the isocenter of an image-guidance system, as implemented in the exactrac system from brainlab, relative to the linear accelerator radiation isocenter. Subsequently to correct the x-ray isocenter of the exactrac system for any geometric discrepancies between the two isocenters. Five Varian linear accelerators all equipped with electronic imaging devices and exactrac with robotics from brainlab were evaluated. A commercially available Winston-Lutz phantom and an in-house made adjustable base were used in the setup. The electronic portal imaging device of the linear accelerators was used to acquire MV-images at various gantry angles. Stereoscopic pairs of x-ray images were acquired using the exactrac system. The deviation between the position of the external laser isocenter and the exactrac isocenter was evaluated using the commercial software of the exactrac system. In-house produced software was used to analyze the MV-images and evaluate the deviation between the external laser isocenter and the radiation isocenter of the linear accelerator. Subsequently, the deviation between the radiation isocenter and the isocenter of the exactrac system was calculated. A new method of calibrating the isocenter of the exactrac system was applied to reduce the deviations between the radiation isocenter and the exactrac isocenter. To evaluate the geometric accuracy a 3D deviation vector was calculated for each relative isocenter position. The 3D deviation between the external laser isocenter and the isocenter of the exactrac system varied from 0.21 to 0.42 mm. The 3D deviation between the external laser isocenter and the linac radiation isocenter ranged from 0.37 to 0.83 mm. The 3D deviation between the radiation isocenter and the isocenter of the exactrac system ranged from 0.31 to 1.07 mm. Using the new method of calibrating the exactrac isocenter the 3D deviation of one linac was reduced from 0.90 to 0.23 mm. The results were complicated due to routine maintenance of the linac, including laser calibration. It was necessary to repeat the measurements in order to perform the calibration of the exactrac isocenter. The deviations between the linac radiation isocenter and the exactrac isocenter were of an order that may have clinical relevance. An alternative method of calibrating the isocenter of the exactrac system was applied and reduced the deviations between the two isocenters.

  19. Linear microbunching analysis for recirculation machines

    DOE PAGES

    Tsai, C. -Y.; Douglas, D.; Li, R.; ...

    2016-11-28

    Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less

  20. A Linear Accelerator for TA-FD calibration

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Ikeda, D.; Ikeda, M.; Enomoto, A.; Ohsawa, S.; Kakiha, K.; Kakihara, K.; Sagawa, H.; Satoh, M.; Shidara, T.; Sugimura, T.; Fukushima, M.; Fukuda, S.; Furukawa, K.; Yoshida, M.

    The energy of the primary cosmic ray can be calculated from fluorescence photons detected by fluorescence telescope. However, since we can not know the true energy of primary cosmic ray, it is difficult to calibrate between number of photons and energy directly. In TA project, we will create pseudo- cosmic ray events by using accelerated electron beam which is injected in the air. The injected electron beam creates an air shower and fluorescence photons are emitted. We can calibate between electron beam energy which is known exactry and detected photons. We are developping a small linear accelerator (Linac) at High Energy Accelerator Research Organization (KEK) in Japan. The maximum energy is 40MeV, the typical current is 0.16nC, and the intensity per pulse is 6.4mJ. The accuracy of beam energy is less than 1%. The Linac consists of a -100kV pulse type electron gun, a 1.5m pre-buncher and buncher tube, a 2m S-band accelerator tube, a quadrupole magnet, a 90 degree bending magnet, and a S-Band(2856MHz) 50MW high power klystron as RF source. We chekced the performance of the electron beam, energy resolution, beam spread, beam current, and beam loss by PARMELA simulation, and checked the air shower by electron beam and number of the detected photons by detector simulation which are made by GEANT4. In this Spring, we will do the full beam test in KEK. The beam operation in Utah will be started from this Autumn. In this talk, we will report about the results of the beam test and calibration method by this Linac.

  1. Commercial Superconducting Electron Linac for Radioisotope Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, Terry Lee; Boulware, Charles H.; Hollister, Jerry L.

    2015-08-13

    The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research andmore » development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.« less

  2. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  3. Neutron H*(10) estimation and measurements around 18MV linac.

    PubMed

    Cerón Ramírez, Pablo Víctor; Díaz Góngora, José Antonio Irán; Paredes Gutiérrez, Lydia Concepción; Rivera Montalvo, Teodoro; Vega Carrillo, Héctor René

    2016-11-01

    Thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the dose of neutron radiation in a treatment room with a linear electron accelerator of 18MV. Measurements were carried out through neutron ambient dose monitors which include pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti), which were placed inside a paraffin spheres. The measurements has allowed to use NCRP 151 equations, these expressions are useful to find relevant dosimetric quantities. In addition, photoneutrons produced by linac head were calculated through MCNPX code taking into account the geometry and composition of the linac head principal parts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pros and Cons of the Acceleration Scheme (NF-IDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Bogacz, Slawomir

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain acrossmore » the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc« less

  5. Treatment vault shielding for a flattening filter-free medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.

    2009-03-01

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  6. Treatment vault shielding for a flattening filter-free medical linear accelerator.

    PubMed

    Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N

    2009-03-07

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m(3) less concrete to shield the single-energy linac and 36 m(3) less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  7. Investigating in-field and out-of-field neutron contamination in high-energy medical linear accelerators based on the treatment factors of field size, depth, beam modifiers, and beam type.

    PubMed

    Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan

    2015-07-01

    We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. A Comprehensive Investigation and Coupler Design for Higher-Order Modes in the BNL Energy Recovery Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Marques, Carlos

    A next generation Energy Recovery Linac (ERL) is under development in the Collider-Accelerator Department at Brookhaven National Laboratory (BNL). This ERL uses a superconducting radio frequency (SFR) cavity to produce an electric field gradient ideal to accelerate charged particles. As with many accelerators, higher-order modes (HOMs) can be induced by a beam of charged particles traversing the linear accelerator cavity. The excitation of these modes can result in problematic single and multi-bunch effects and also produce undesirable heat loads to the cryogenic system. Understanding HOM prevalence and structure inside the accelerator cavity is crucial for devising a procedure for extracting HOM power and promoting excellent beam quality. In this work, a method was created to identify and characterize HOMs using a perturbation technique on a copper (Cu) cavity prototype of the BNL3 linac and a double lambda/4 crab cavity. Both analyses and correlation between simulated and measured results are shown. A coaxial to dual-ridge waveguide HOM coupler was designed, constructed and implemented to extract power from HOMs simultaneously making an evanescent fundamental mode for the BNL3 cavity. A full description of the design is given along with a simulated analysis of its performance. Comparison between previous HOM coupler designs as well as correspondence between simulation and measurement is also given.

  9. Calculations of skyshine from an intense portable electron linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, G.P.; Hughes, H.G.; Fry, D.A.

    1994-12-31

    The MCNP Monte carlo code has been used at Los Alamos to calculate skyshine and terrain albedo efects from an intense portable electron linear accelerator that is to be used by the Russian Federation to radiograph nuclear weapons that may have been damaged by accidents. Relative dose rate profiles have been calculated. The design of the accelerator, along with a diagram, is presented.

  10. Signature energetic analysis of accelerate electron beam after first acceleration station by accelerating stand of Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Sledneva, A. S.; Kobets, V. V.

    2017-06-01

    The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.

  11. First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB

    NASA Astrophysics Data System (ADS)

    Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter

    2018-05-01

    160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.

  12. Beam commissioning for a superconducting proton linac

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, K.L.F.; Adolphsen, C.; Li, Z.

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, duemore » to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C. -Y.; Douglas, D.; Li, R.

    Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less

  15. Design of thermal neutron beam based on an electron linear accelerator for BNCT.

    PubMed

    Zolfaghari, Mona; Sedaghatizadeh, Mahmood

    2016-12-01

    An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.

  16. Developing field emission electron sources based on ultrananocrystalline diamond for accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi

    Radiofrequency (RF) electron guns work by establishing an RF electromagnetic field inside a cavity having conducting walls. Electrons from a cathode are generated in the injector and immediately become accelerated by the RF electric field, and exit the gun as a series of electron bunches. Finding simple solutions for electron injection is a long standing problem. While energies of 30-50 MeV are achievable in linear accelerators (linacs), finding an electron source able to survive under MW electric loads and provide an average current of 1-10 mA is important. Meeting these requirements would open various linac applications for industry. The naturalmore » way to simplify and integrate RF injector architectures with the electron source would be to place the source directly into the RF cavity with no need for additional heaters/lasers. Euclid TechLabs in collaboration with Argonne National Lab are prototyping a family of highly effective field emission electron sources based on a nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) platform. Determined metrics suggest that our emitters are emissive enough to meet requirements for magnetized cooling at electron-ion colliders, linac-based radioisotope production and X-ray sterilization, and others.« less

  17. ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience

    NASA Astrophysics Data System (ADS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Kishi, D.; Laxdal, R.; Ma, Y.; Nagimov, R.; Yosifov, D.

    2015-12-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience.

  18. Thermodynamic Analyses of the LCLS-II Cryogenic Distribution System

    DOE PAGES

    Dalesandro, Andrew; Kaluzny, Joshua; Klebaner, Arkadiy

    2016-12-29

    The Linac Coherent Light Source (LCLS) at Stanford Linear Accelerator Center (SLAC) is in the process of being upgraded to a superconducting radio frequency (SRF) accelerator and renamed LCLS-II. This upgrade requires thirty-five 1.3 GHz SRF cryomodules (CM) and two 3.9 GHz CM. A cryogenic distribution system (CDS) is in development by Fermi National Accelerator Laboratory to interconnect the CM Linac with the cryogenic plant (CP). The CDS design utilizes cryogenic helium to support the CM operations with a high temperature thermal shield around 55 K, a low temperature thermal intercepts around 5 K, and a SRF cavity liquid heliummore » supply and sub-atmospheric vapor return both around 2 K. Additionally the design must accommodate a Linac consisting of two parallel cryogenic strings, supported by two independent CP utilizing CDS components such as distribution boxes, transfer lines, feed caps and endcaps. In this paper, we describe the overall layout of the cryogenic distribution system and the major thermodynamic factors which influence the CDS design including heat loads, pressure drops, temperature profiles, and pressure relieving requirements. In addition the paper describes how the models are created to perform the analyses.« less

  19. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  20. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    PubMed

    Melville, G; Meriarty, H; Metcalfe, P; Knittel, T; Allen, B J

    2007-09-01

    The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. The production of Ac-225 has been achieved using bremsstrahlung photons from an 18 MV medical linear accelerator (linac) to bombard a Ra-226 target. A linac dose of 2800 Gy produced about 64 microCi of Ra-225, which decays to Ac-225. This result, while consistent with the theoretical calculations, is far too low to be of practical use. A more powerful linac is required that runs at a higher current, longer pulse length and higher frequency for practical production. This process could also lead to the reduction of the nuclear waste product Ra-226.

  1. Calculation of Dose for Skyshine Radiation From a 45 MeV Electron LINAC

    NASA Astrophysics Data System (ADS)

    Hori, M.; Hikoji, M.; Takahashi, H.; Takahashi, K.; Kitaichi, M.; Sawamura, S.; Nojiri, I.

    1996-11-01

    Dose estimation for skyshine plays an important role in the evaluation of the environment around nuclear facilities. We performed calculations for the skyshine radiation from a Hokkaido University 45 MeV linear accelerator using a general purpose user's version of the EGS4 Monte Carlo Code. To verify accuracy of the code, the simulation results have been compared with our experimental results, in which a gated counting method was used to measure low-level pulsed leakage radiation. In experiment, measurements were carried out up to 600 m away from the LINAC. The simulation results are consistent with the experimental values at the distance between 100 and 400 m from the LINAC. However, agreements of both results up to 100 m from the LINAC are not as good because of the simplification of geometrical modeling in the simulation. It could be said that it is useful to apply this version to the calculation for skyshine.

  2. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study.

    PubMed

    Li, Qiongge; Chan, Maria F

    2017-01-01

    Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.

  3. Waveguide detuning caused by transverse magnetic fields on a simulated in-line 6 MV linac.

    PubMed

    St Aubin, J; Steciw, S; Fallone, B G

    2010-09-01

    Due to the close proximity of the linear accelerator (linac) to the magnetic resonance (MR) imager in linac-MR systems, it will be subjected to magnet fringe fields larger than the Earth's magnetic field of 5 x 10(-5) T. Even with passive or active shielding designed to reduce these fields, some magnitude of the magnetic field is still expected to intersect the linac, causing electron deflection and beam loss. This beam loss, resulting from magnetic fields that cannot be eliminated with shielding, can cause a detuning of the waveguide due to excessive heating. The detuning, if significant, could lead to an even further decrease in output above what would be expected strictly from electron deflections caused by an external magnetic field. Thus an investigation of detuning was performed through various simulations. According to the Lorentz force, the electrons will be deflected away from their straight course to the target, depositing energy as they impact the linac copper waveguide. The deposited energy would lead to a heating and deformation of the copper structure resulting in resonant frequency changes. PARMELA was used to determine the mean energy and fraction of total beam lost in each linac cavity. The energy deposited into the copper waveguide from the beam losses caused by transverse magnetic fields was calculated using the Monte Carlo program DOSRZnrc. From the total energy deposited, the rise in temperature and ultimately the deformation of the structure was estimated. The deformed structure was modeled using the finite element method program COMSOL MULTIPHYSICS to determine the change in cavity resonant frequency. The largest changes in resonant frequency were found in the first two accelerating cavities for each field strength investigated. This was caused by a high electron fluence impacting the waveguide inner structures coupled with their low kinetic energies. At each field strength investigated, the total change in accelerator frequency was less than a manufacturing tolerance of 10 kHz and is thus not expected to have a noticeable effect on accelerator performance. The amount of beam loss caused by magnetic fringe fields for a linac in a linac-MR system depends on the effectiveness of its magnetic shielding. Despite the best efforts to shield the linac from the magnetic fringe fields, some persistent magnetic field is expected which would result in electron beam loss. This investigation showed that the detuning of the waveguide caused by additional electron beam loss in persistent magnetic fields is not a concern.

  4. Solid-State Powered X-band Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Mohamed A.K.; Nann, Emilio A.; Dolgashev, Valery A.

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple testmore » cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.« less

  5. Intracranial stereotactic radiosurgery with an adapted linear accelerator vs. robotic radiosurgery: Comparison of dosimetric treatment plan quality.

    PubMed

    Treuer, Harald; Hoevels, Moritz; Luyken, Klaus; Visser-Vandewalle, Veerle; Wirths, Jochen; Kocher, Martin; Ruge, Maximilian

    2015-06-01

    Stereotactic radiosurgery with an adapted linear accelerator (linac-SRS) is an established therapy option for brain metastases, benign brain tumors, and arteriovenous malformations. We intended to investigate whether the dosimetric quality of treatment plans achieved with a CyberKnife (CK) is at least equivalent to that for linac-SRS with circular or micromultileaf collimators (microMLC). A random sample of 16 patients with 23 target volumes, previously treated with linac-SRS, was replanned with CK. Planning constraints were identical dose prescription and clinical applicability. In all cases uniform optimization scripts and inverse planning objectives were used. Plans were compared with respect to coverage, minimal dose within target volume, conformity index, and volume of brain tissue irradiated with ≥ 10 Gy. Generating the CK plan was unproblematic with simple optimization scripts in all cases. With the CK plans, coverage, minimal target volume dosage, and conformity index were significantly better, while no significant improvement could be shown regarding the 10 Gy volume. Multiobjective comparison for the irradiated target volumes was superior in the CK plan in 20 out of 23 cases and equivalent in 3 out of 23 cases. Multiobjective comparison for the treated patients was superior in the CK plan in all 16 cases. The results clearly demonstrate the superiority of the irradiation plan for CK compared to classical linac-SRS with circular collimators and microMLC. In particular, the average minimal target volume dose per patient, increased by 1.9 Gy, and at the same time a 14% better conformation index seems to be an improvement with clinical relevance.

  6. SU-E-T-468: Implementation of the TG-142 QA Process for Seven Linacs with Enhanced Beam Conformance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woollard, J; Ayan, A; DiCostanzo, D

    2015-06-15

    Purpose: To develop a TG-142 compliant QA process for 7 Varian TrueBeam linear accelerators (linacs) with enhanced beam conformance and dosimetrically matched beam models. To ensure consistent performance of all 7 linacs, the QA process should include a common set of baseline values for use in routine QA on all linacs. Methods: The TG 142 report provides recommended tests, tolerances and frequencies for quality assurance of medical accelerators. Based on the guidance provided in the report, measurement tests were developed to evaluate each of the applicable parameters listed for daily, monthly and annual QA. These tests were then performed onmore » each of our 7 new linacs as they came on line at our institution. Results: The tolerance values specified in TG-142 for each QA test are either absolute tolerances (i.e. ±2mm) or require a comparison to a baseline value. The results of our QA tests were first used to ensure that all 7 linacs were operating within the suggested tolerance values provided in TG −142 for those tests with absolute tolerances and that the performance of the linacs was adequately matched. The QA test results were then used to develop a set of common baseline values for those QA tests that require comparison to a baseline value at routine monthly and annual QA. The procedures and baseline values were incorporated into a spreadsheets for use in monthly and annual QA. Conclusion: We have developed a set of procedures for daily, monthly and annual QA of our linacs that are consistent with the TG-142 report. A common set of baseline values was developed for routine QA tests. The use of this common set of baseline values for comparison at monthly and annual QA will ensure consistent performance of all 7 linacs.« less

  7. Novel Linac Structures For Low-Beta Ions And For Muons

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    2011-06-01

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies—the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ)—are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank—electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis—are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of ˜200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed 0-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  8. MO-FG-202-04: Gantry-Resolved Linac QA for VMAT: A Comprehensive and Efficient System Using An Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwan, B J; University of Newcastle, Newcastle, NSW; Barnes, M

    2016-06-15

    Purpose: To automate gantry-resolved linear accelerator (linac) quality assurance (QA) for volumetric modulated arc therapy (VMAT) using an electronic portal imaging device (EPID). Methods: A QA system for VMAT was developed that uses an EPID, frame-grabber assembly and in-house developed image processing software. The system relies solely on the analysis of EPID image frames acquired without the presence of a phantom. Images were acquired at 8.41 frames per second using a frame grabber and ancillary acquisition computer. Each image frame was tagged with a gantry angle from the linac’s on-board gantry angle encoder. Arc-dynamic QA plans were designed to assessmore » the performance of each individual linac component during VMAT. By analysing each image frame acquired during the QA deliveries the following eight machine performance characteristics were measured as a function of gantry angle: MLC positional accuracy, MLC speed constancy, MLC acceleration constancy, MLC-gantry synchronisation, beam profile constancy, dose rate constancy, gantry speed constancy, dose-gantry angle synchronisation and mechanical sag. All tests were performed on a Varian iX linear accelerator equipped with a 120 leaf Millennium MLC and an aS1000 EPID (Varian Medical Systems, Palo Alto, CA, USA). Results: Machine performance parameters were measured as a function of gantry angle using EPID imaging and compared to machine log files and the treatment plan. Data acquisition is currently underway at 3 centres, incorporating 7 treatment units, at 2 weekly measurement intervals. Conclusion: The proposed system can be applied for streamlined linac QA and commissioning for VMAT. The set of test plans developed can be used to assess the performance of each individual components of the treatment machine during VMAT deliveries as a function of gantry angle. The methodology does not require the setup of any additional phantom or measurement equipment and the analysis is fully automated to allow for regular routine testing.« less

  9. SU-E-T-354: Efficient and Enhanced QA Testing of Linear Accelerators Using a Real-Time Beam Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Farrokhkish, M; Norrlinger, B

    2015-06-15

    Purpose: To investigate the feasibility of performing routine QA tests of linear accelerators (Linac) using the Integral Quality Monitoring (IQM) system. The system, consisting of a 1-D sensitivity gradient large area ion-chamber mounted at the collimator, allows automatic collection and analysis of beam data. Methods: The IQM was investigated to perform several QA constancy tests, similar to those recommended by AAPM TG142, of a Linac including: beam output, MLC calibration, beam symmetry, relative dose factor (RDF), dose linearity, output as a function of gantry angle and dose rate. All measurements by the IQM system accompanied a reference measurement using amore » conventional dosimetry system and were performed on an Elekta Infinity Linac with Agility MLC. The MLC calibration check is done using a Picket-Fence type 2×10cm{sup 2} field positioned at different off-axis locations along the chamber gradient. Beam symmetry constancy values are established by signals from an 4×4cm{sup 2} aperture located at various off-axis positions; the sensitivity of the test was determined by the changes in the signals in response to a tilt in the beam. The data for various square field sizes were used to develop a functional relationship with RDF. Results: The IQM tracked the beam output well within 1% of the reference ion-chamber readings. The Picket-Fence type field test detected a 1mm shift error of one MLC bank. The system was able to detect 2.5% or greater beam asymmetry. The IQM results for all other QA tests were found to agree with the reference values to within 0.5%. Conclusion: It was demonstrated that the IQM system can effectively monitor the Linac performance parameters for the purpose of routine QA constancy tests. With minimum user interactions a comprehensive set of tests can be performed efficiently, allowing frequent monitoring of the Linac. The presenting author’s salary is funded by the manufacturer of the QA device. All the other authors have financial interests with the commercialization of this QA device.« less

  10. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  11. Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac

    NASA Astrophysics Data System (ADS)

    Magistris, Matteo; Silari, Marco

    2006-06-01

    CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.

  12. RF transient analysis and stabilization of the phase and energy of the proposed PIP-II LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Chase, B. E.

    This paper describes a recent effort to develop and benchmark a simulation tool for the analysis of RF transients and their compensation in an H- linear accelerator. Existing tools in this area either focus on electron LINACs or lack fundamental details about the LLRF system that are necessary to provide realistic performance estimates. In our paper we begin with a discussion of our computational models followed by benchmarking with existing beam-dynamics codes and measured data. We then analyze the effect of RF transients and their compensation in the PIP-II LINAC, followed by an analysis of calibration errors and how amore » Newton’s Method based feedback scheme can be used to regulate the beam energy to within the specified limits.« less

  13. Spiral 2 Cryogenic System for The Superconducting LINAC

    NASA Astrophysics Data System (ADS)

    Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.

    2017-02-01

    SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.

  14. Automating linear accelerator quality assurance.

    PubMed

    Eckhause, Tobias; Al-Hallaq, Hania; Ritter, Timothy; DeMarco, John; Farrey, Karl; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Perez, Mario; Park, SungYong; Booth, Jeremy T; Thorwarth, Ryan; Moran, Jean M

    2015-10-01

    The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The standard deviation in MLC position, as determined by EPID measurements, across the consortium was 0.33 mm for IMRT fields. With respect to the log files, the deviations between expected and actual positions for parameters were small (<0.12 mm) for all Linacs. Considering both log files and EPID measurements, all parameters were well within published tolerance values. Variations in collimator angle, MLC position, and gantry sag were also evaluated for all Linacs. The performance of the TrueBeam Linac model was shown to be consistent based on automated analysis of trajectory log files and EPID images acquired during delivery of a standardized test suite. The results can be compared directly to tolerance thresholds. In addition, sharing of results from standard tests across institutions can facilitate the identification of QA process and Linac changes. These reference values are presented along with the standard deviation for common tests so that the test suite can be used by other centers to evaluate their Linac performance against those in this consortium.

  15. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  16. Field characteristics of an alvarez-type linac structure having chain-like electrode array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odera, M.; Goto, A.; Hemmi, M.

    1985-10-01

    A chain-like electrode configuration in an Alvarez-type linac cavity was studied by models. The structure has been devised to get a moderate shunt impedance together with simplicity of operation, in ion velocity region of more than a few percent of that of light by incorporating focusing scheme by high frequency quadrupolar fields into an TM-010 accelerating field of an Alvarez linac. It has a chain-like electrode array instead of drift tubes containing quadrupole lenses for ordinary linacs. The chain-like electrode structure generates along its central axis, high frequency acceleration and focusing fields alternately, separating the acceleration and focusing functions inmore » space. The separation discriminates this structure from spatially uniform acceleration and focusing scheme of the RFQs devised by Kapchinsky and Teplyakov. It gives beam acceleration effects different from those by conventional linacs and reveals possibility of getting a high acceleration efficiency. Resonant frequency spectrum was found relatively simple by measurements on high frequency models. Separation of unwanted modes from the TM-010 acceleration mode is large; a few 10 MHz, at least. Tilt of the acceleration field is not very sensitive to pertubation in gap capacitance for the TM-010 mode.« less

  17. Poster — Thur Eve — 46: Monte Carlo model of the Novalis Classic 6MV stereotactic linear accelerator using the GATE simulation platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, J; Department of Physics and Astronomy, University of Calgary, Calgary, AB; Ploquin, N

    2014-08-15

    Monte Carlo (MC) simulation is accepted as the most accurate method to predict dose deposition when compared to other methods in radiation treatment planning. Current dose calculation algorithms used for treatment planning can become inaccurate when small radiation fields and tissue inhomogeneities are present. At our centre the Novalis Classic linear accelerator (linac) is used for Stereotactic Radiosurgery (SRS). The first MC model to date of the Novalis Classic linac was developed at our centre using the Geant4 Application for Tomographic Emission (GATE) simulation platform. GATE is relatively new, open source MC software built from CERN's Geometry and Tracking 4more » (Geant4) toolkit. The linac geometry was modeled using manufacturer specifications, as well as in-house measurements of the micro MLC's. Among multiple model parameters, the initial electron beam was adjusted so that calculated depth dose curves agreed with measured values. Simulations were run on the European Grid Infrastructure through GateLab. Simulation time is approximately 8 hours on GateLab for a complete head model simulation to acquire a phase space file. Current results have a majority of points within 3% of the measured dose values for square field sizes ranging from 6×6 mm{sup 2} to 98×98 mm{sup 2} (maximum field size on the Novalis Classic linac) at 100 cm SSD. The x-ray spectrum was determined from the MC data as well. The model provides an investigation into GATE'S capabilities and has the potential to be used as a research tool and an independent dose calculation engine for clinical treatment plans.« less

  18. Effect of external shielding for neutrons during radiotherapy for prostate cancer, considering the 2300 CD linear accelerator and voxel phantom

    NASA Astrophysics Data System (ADS)

    Thalhofer, J. L.; Roque, H. S.; Rebello, W. F.; Correa, S. A.; Silva, A. X.; Souza, E. M.; Batita, D. V. S.; Sandrini, E. S.

    2014-02-01

    Photoneutron production occurs when high energy photons, greater than 6.7 MeV, interact with linear accelerator head structures. In Brazil, the National Cancer Institute, one of the centers of reference in cancer treatment, uses radiation at 4 angles (0°, 90°, 180° and 270°) as treatment protocol for prostate cancer. With the objective of minimizing the dose deposited in the patient due to photoneutrons, this study simulated radiotherapy treatment using MCNPX, considering the most realistic environment; simulating the radiotherapy room, the Linac 2300 head, the MAX phantom and the treatment protocol with the accelerator operating at 18 MV. In an attempt to reduce the dose deposited by photoneutrons, an external shielding was added to the Linac 2300. Results show that the equivalent dose due to photoneutrons deposited in the patient diminished. The biggest reduction was seen in bone structures, such as the tibia and fibula, and mandible, at approximately 75%. Besides that, organs such as the brain, pancreas, small intestine, lungs and thyroid revealed a reduction of approximately 60%. It can be concluded that the shielding developed by our research group is efficient in neutron shielding, reducing the dose for the patient, and thus, the risk of secondary cancer, and increasing patient survival rates.

  19. The radiation fields around a proton therapy facility: A comparison of Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ottaviano, G.; Picardi, L.; Pillon, M.; Ronsivalle, C.; Sandri, S.

    2014-02-01

    A proton therapy test facility with a beam current lower than 10 nA in average, and an energy up to 150 MeV, is planned to be sited at the Frascati ENEA Research Center, in Italy. The accelerator is composed of a sequence of linear sections. The first one is a commercial 7 MeV proton linac, from which the beam is injected in a SCDTL (Side Coupled Drift Tube Linac) structure reaching the energy of 52 MeV. Then a conventional CCL (coupled Cavity Linac) with side coupling cavities completes the accelerator. The linear structure has the important advantage that the main radiation losses during the acceleration process occur to protons with energy below 20 MeV, with a consequent low production of neutrons and secondary radiation. From the radiation protection point of view the source of radiation for this facility is then almost completely located at the final target. Physical and geometrical models of the device have been developed and implemented into radiation transport computer codes based on the Monte Carlo method. The scope is the assessment of the radiation field around the main source for supporting the safety analysis. For the assessment independent researchers used two different Monte Carlo computer codes named FLUKA (FLUktuierende KAskade) and MCNPX (Monte Carlo N-Particle eXtended) respectively. Both are general purpose tools for calculations of particle transport and interactions with matter, covering an extended range of applications including proton beam analysis. Nevertheless each one utilizes its own nuclear cross section libraries and uses specific physics models for particle types and energies. The models implemented into the codes are described and the results are presented. The differences between the two calculations are reported and discussed pointing out disadvantages and advantages of each code in the specific application.

  20. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    DOEpatents

    Douglas, David R [York County, VA

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  1. Interleaving lattice for the Argonne Advanced Photon Source linac

    NASA Astrophysics Data System (ADS)

    Shin, S.; Sun, Y.; Dooling, J.; Borland, M.; Zholents, A.

    2018-06-01

    To realize and test advanced accelerator concepts and hardware, a beam line is being reconfigured in the linac extension area (LEA) of the Argonne Advanced Photon Source (APS) linac. A photocathode rf gun installed at the beginning of the APS linac will provide a low emittance electron beam into the LEA beam line. The thermionic rf gun beam for the APS storage ring and the photocathode rf gun beam for the LEA beam line will be accelerated through the linac in an interleaved fashion. In this paper, the design studies for interleaving lattice realization in the APS linac is described with the initial experiment result.

  2. Low Energy Accelerators for Cargo Inspection

    NASA Astrophysics Data System (ADS)

    Tang, Chuanxiang

    Cargo inspection by X-rays has become essential for seaports and airports. With the emphasis on homeland security issues, the identification of dangerous things, such as explosive items and nuclear materials, is the key feature of a cargo inspection system. And new technologies based on dual energy X-rays, neutrons and monoenergetic X-rays have been studied to achieve sufficiently good material identification. An interpretation of the principle of X-ray cargo inspection technology and the features of X-ray sources are presented in this article. As most of the X-ray sources are based on RF electron linear accelerators (linacs), we give a relatively detailed description of the principle and characteristics of linacs. Cargo inspection technologies based on neutron imaging, neutron analysis, nuclear resonance fluorescence and computer tomography are also mentioned here. The main vendors and their products are summarized at the end of the article.

  3. Investigation of Microbunching Instabilities in Modern Recirculating Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Cheng

    Particle accelerators are machines to accelerate and store charged particles, such as electrons or protons, to the energy levels for various scientific applications. A collection of charged particles usually forms a particle beam. There are three basic types of particle accelerators: linear accelerators (linac), storage-ring (or circular) accelerators, and recirculating accelerators. In a linac, particles are accelerated and pass through once along a linear or straight beamline. Storage-ring accelerators propel particles around a circular track and repetitively append the energy to the stored beam. The third type, also the most recent one in chronology, the recirculating accelerator, is designed tomore » accelerate the particle beam in a short section of linac, circulate the beam, and then either continue to accelerate for energy boost or decelerate it for energy recovery. The beam properties of a linac machine are set at best by the initial particle sources. For storage rings, the beam equilibria are instead determined by the overall machine design. The modern recirculating machines share with linacs the advantages to both accelerate and preserve the beam with high beam quality, as well as efficiently reuse the accelerating components. The beamline design in such a machine configuration can however be much more complicated than that of linacs. As modern accelerators push toward the high-brightness or high-intensity frontier by demanding particles in a highly charged bunch (about nano-Coulomb per bunch) to concentrate in an ever-decreasing beam phase space (transverse normalized emittance about 1 μm and relative energy spread of the order of 10^-5 in GeV beam energy), the interaction amongst particles via their self-generated electromagnetic fields can potentially lead to coherent instabilities of the beam and thus pose significant challenges to the machine design and operation. In the past decade and a half, microbunching instability (MBI) has been one of the most challenging issues for such high-brightness or high-intensity beam transport, as it would degrade lasing performance in the fourth-generation light sources, reduce cooling efficiency in electron cooling facilities, and compromise the luminosity of colliding beams in lepton or lepton-hadron colliders. The dissertation work will focus on the MBI in modern recirculating electron accelerators. It has been known that the collective interactions, the coherent synchrotron radiation (CSR) and the longitudinal space charge (LSC) forces, can drive MBI. The CSR effect is a collective phenomenon in which the electrons in a curved motion, e.g. a bending dipole, emit radiation at a scale comparable to the micro-bunched structure of the bunch distribution. The LSC effect stems from non-uniformity of the charge distribution, acts as plasma oscillation, and can eventually accumulate an amount of energy modulation when the beam traverses a long section of a beamline. MBI can be seeded by non-uniformity or shot noise of the beam, which originates from granularity of the elementary charge. Through the aforementioned collective effects, the modulation of the bunch sub-structure can be amplified and, once the beam-wave interaction formed a positive feedback, can result in MBI. The problem of MBI has been intensively studied for linac-based facilities and for storage-ring accelerators. However, systematic studies for recirculation machines are still very limited and form a knowledge gap. Because of the much more complicated machine configuration of the recirculating accelerators than that of linacs, the existing MBI analysis needs to be extended to accommodate the high-brightness particle beam transport in modern recirculating accelerators. This dissertation is focused on theoretical investigation of MBI in such machine configuration in the following seven themes: (1) Development and generalization of MBI theory The theoretical formulation has been extended so as to be applicable to a general linear beamline lattice including horizontal and vertical transport bending elements, and beam acceleration or deceleration. These featured generalizations are required for MBI analysis in recirculation accelerators. (2) Construction of CSR impedance models In addition to the steady-state CSR interaction, it has been found that the exit transient effect (or CSR drift) can even result in more serious MBI in high-brightness recirculation arcs. The onedimensional free-space CSR impedances, especially the exit transients, are derived. The steady-state CSR impedance is also extended to non-ultrarelativistic beam energy for MBI analysis of low-energy merger sections in recirculating accelerators. (3) Numerical implementation of the derived semi-analytical formulation This includes the development of a semi-analytical Vlasov solver for MBI analysis, and also benchmarking of the solver against massive particle tracking simulations. (4) Exploration of multistage amplification behavior of CSR microbunching development The CSR-induced MBI acts as an amplifier, which amplifies the sub-bunch modulation of a beam. The amplification is commonly quantified by the amplification gain. A beam transport system can be considered as a cascaded amplifier. Unlike the two-stage amplification of four-dipole bunch compressor chicanes employed in linacs, the recirculation arcs, which are usually constituted by several tens of bending magnets, show a distinguishing feature of up to six-stage microbunching amplification for our example arc lattices. That is, the maximal CSR amplification gain can be proportional to the peak bunch current up to sixth power. A method to compare lattice performance has been developed in terms of gain coefficients, which nearly depend on the lattice properties only. This method has also proven to be an effective way to quantify the current dependence of the maximal (5) Control of CSR MBI in multibend transport or recirculation arcs The existing mitigation schemes of MBI mostly aim to linac-based accelerators and may not be practical to the recirculating accelerator facilities. Thus a set of conditions for suppression of CSR MBI was proposed and examined for example lattices from low (~100 MeV) to high (~1 GeV) energies. (6) Study of more aspects of microbunched structures in beam phase spaces For a cascaded amplifier in circuit electronics, the total amplification gain can be estimated as the product of individual gains. In a beam transport line of an accelerator, the (scalar) gain multiplication was examined and found to under-estimate the overall microbunching amplification. The concept of gain matrix was developed, which includes the density, energy and transverse-longitudinal modulations in a beam phase space, and used to analyze MBI for a proposed recirculating machine. Throughout the gain matrix approach, it reasonably gives the upper limit of spectral MBI gain curves. This extended analysis can be employed to study multi-pass recirculation. (7) Study of MBI for magnetized beams Driven by a recent energy-recovery-linac based cooler design for electron cooling at Jefferson Lab Electron-Ion Collider Project, the generalized theoretical formulation for MBI to a transversely coupled beam has been developed and applied to this study. A magnetized beam in general features non-zero canonical angular momentum, thus considered to be a transversely coupled beam. A novel idea of utilizing magnetized beam transport was proposed for improvement of cooling efficiency and possible mitigation of collective effects. A concern of MBI regarding this design was studied and excluded. The large transverse beam size associated with the beam magnetization is found to help suppress MBI via the transverse-longitudinal correlation.« less

  4. Comparison between the TRS-398 code of practice and the TG-51 dosimetry protocol for flattening filter free beams

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Butler, D. J.; Oliver, C. P.; Alves, A.; Lehmann, J.; Gibbons, F. P.; Williams, I. M.

    2016-07-01

    Dosimetry protocols for external beam radiotherapy currently in use, such as the IAEA TRS-398 and AAPM TG-51, were written for conventional linear accelerators. In these accelerators, a flattening filter is used to produce a beam which is uniform at water depths where the ionization chamber is used to measure the absorbed dose. Recently, clinical linacs have been implemented without the flattening filter, and published theoretical analysis suggested that with these beams a dosimetric error of order 0.6% could be expected for IAEA TRS-398, because the TPR20,10 beam quality index does not accurately predict the stopping power ratio (water to air) for the softer flattening-filter-free (FFF) beam spectra. We measured doses on eleven FFF linacs at 6 MV and 10 MV using both dosimetry protocols and found average differences of 0.2% or less. The expected shift due to stopping powers was not observed. We present Monte Carlo k Q calculations which show a much smaller difference between FFF and flattened beams than originally predicted. These results are explained by the inclusion of the added backscatter plates and build-up filters used in modern clinical FFF linacs, compared to a Monte Carlo model of an FFF linac in which the flattening filter is removed and no additional build-up or backscatter plate is added.

  5. An Rf Focused Interdigital Ion Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, D.A.

    2003-08-26

    An Rf Focused Interdigital (RFI) ion accelerating structure will be described. It represents an effective combination of the Wideroee (or interdigital) linac structure, used for many low frequency, heavy ion applications, and the rf electric quadrupole focusing used in the RFQ and RFD linac structures. As in the RFD linac structure, rf focusing is introduced into the RFI linac structure by configuring the drift tubes as two independent pieces operating at different electrical potentials as determined by the rf fields of the linac structure. Each piece (or electrode) of the RFI drift tube supports two fingers pointed inwards towards themore » opposite end of the drift tube forming a four-finger geometry that produces an rf quadrupole field along the axis of the linac for focusing the beam. However, because of the differences in the rf field configuration along the axis, the scheme for introducing rf focusing into the interdigital linac structure is quite different from that adopted for the RFD linac structure. The RFI linac structure promises to have significant size, efficiency, performance, and cost advantages over existing linac structures for the acceleration of low energy ion beams of all masses (light to heavy). These advantages will be reviewed. A 'cold model' of this new linac structure has been fabricated and the results of rf cavity measurements on this cold model will be presented.« less

  6. Zeroth-order design report for the next linear collider. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that themore » NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.« less

  7. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  8. Collective electron driven linac for high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1983-08-01

    A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can bemore » accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.« less

  9. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  10. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  11. A theoretical model for the production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    PubMed

    Melville, G; Fan Liu, Sau; Allen, B J

    2006-09-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation on a small scale by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) to produce Ra-225, which subsequently decays to Ac-225, which can be used as a generator to produce Bi-213 for use in 'targeted alpha therapy' for cancer. This paper examines the possibility of producing Ac-225 with a linac using an accurate theoretical model in which the bremsstrahlung photon spectrum at 18 MV linac electron energy is convoluted with the corresponding photonuclear cross sections of Ra-226. The total integrated yield can then be obtained and is compared with a computer simulation. This study shows that at 18 MV, the photonuclear reaction on Ra-226 can produce low activities of Ac-225 with a linac. However, a high power linac with high current, pulse length and frequency is needed to produce practical amounts of Ac-225 and a useful reduction of Ra-226.

  12. Assessment of Alternative RF Linac Structures for APT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The APT program has been examining both normal and superconducting variants of the APT linac for the past two years. A decision on which of the two will be the selected technology will depend upon several considerations including the results of ongoing feasibility experiments, the performance and overall attractiveness of each of the design concepts, and an assessment of the system-level features of both alternatives. The primary objective of the Assessment of Alternative RF Linac Structures for APT study reported herein was to assess and compare, at the system-level, the performance, capital and life cycle costs, reliability/availability/maintainability (RAM) and manufacturingmore » schedules of APT RF linear accelerators based upon both superconducting and normal conducting technologies. A secondary objective was to perform trade studies to explore opportunities for system optimization, technology substitution and alternative growth pathways and to identify sensitivities to design uncertainties.« less

  13. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    NASA Astrophysics Data System (ADS)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  14. Is it sufficient to repeat LINEAR accelerator stereotactic radiosurgery in choroidal melanoma?

    PubMed

    Furdova, A; Horkovicova, K; Justusova, P; Sramka, M

    One day session LINAC based stereotactic radiosurgery (SRS) at LINAC accelerator is a method of "conservative" attitude to treat the intraocular malignant uveal melanoma. We used model Clinac 600 C/D Varian (system Aria, planning system Corvus version 6.2 verification IMRT OmniPro) with 6 MeV X by rigid immobilization of the eye to the Leibinger frame. The stereotactic treatment planning after fusion of CT and MRI was optimized according to the critical structures (lens, optic nerve, also lens and optic nerve at the contralateral side, chiasm). The first plan was compared and the best plan was applied for therapy at C LINAC accelerator. The planned therapeutic dose was 35.0 Gy by 99 % of DVH (dose volume histogram). In our clinical study in the group of 125 patients with posterior uveal melanoma treated with SRS, in 2 patients (1.6 %) was repeated SRS indicated. Patient age of the whole group ranged from 25 to 81 years with a median of 54 TD was 35.0 Gy. In 2 patients after 5 year interval after stereotactic radiosurgery for uveal melanoma stage T1, the tumor volume increased to 50 % of the primary tumor volume and repeated SRS was necessary. To find out the changes in melanoma characteristics after SRS in long term interval after irradiation is necessary to follow up the patient by an ophthalmologist regularly. One step LINAC based stereotactic radiosurgery with a single dose 35.0 Gy is one of treatment options to treat T1 to T3 stage posterior uveal melanoma and to preserve the eye globe. In some cases it is possible to repeat the SRS after more than 5 year interval (Fig. 8, Ref. 23).

  15. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit.

    PubMed

    Dal Forno, Massimo; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-11-01

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.

  16. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, James H.

    1996-01-01

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

  17. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  18. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator

    PubMed Central

    Odero, DO; Shimm, DS

    2009-01-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers’ proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources. PMID:21611056

  19. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  20. FEM design and simulation of a short, 10 MV, S-band Linac with Monte Carlo dose simulations.

    PubMed

    Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S

    2015-04-01

    Current commercial 10 MV Linac waveguides are 1.5 m. The authors' current 6 MV linear accelerator-magnetic resonance imager (Linac-MR) system fits in typical radiotherapy vaults. To allow 10 MV treatments with the Linac-MR and still fit within typical vaults, the authors design a 10 MV Linac with an accelerator waveguide of the same length (27.5 cm) as current 6 MV Linacs. The first design stage is to design a cavity such that a specific experimental measurement for breakdown is applicable to the cavity. This is accomplished through the use of finite element method (FEM) simulations to match published shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength from an electric breakdown study. A full waveguide is then designed and tuned in FEM simulations based on this cavity design. Electron trajectories are computed through the resulting radio frequency fields, and the waveguide geometry is modified by shifting the first coupling cavity in order to optimize the electron beam properties until the energy spread and mean energy closely match values published for an emulated 10 MV Linac. Finally, Monte Carlo dose simulations are used to compare the resulting photon beam depth dose profile and penumbra with that produced by the emulated 10 MV Linac. The shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength are all matched to within 0.1%. A first coupling cavity shift of 1.45 mm produces an energy spectrum width of 0.347 MeV, very close to the published value for the emulated 10 MV of 0.315 MeV, and a mean energy of 10.53 MeV, nearly identical to the published 10.5 MeV for the emulated 10 MV Linac. The depth dose profile produced by their new Linac is within 1% of that produced by the emulated 10 MV spectrum for all depths greater than 1.5 cm. The penumbra produced is 11% narrower, as measured from 80% to 20% of the central axis dose. The authors have successfully designed and simulated an S-band waveguide of length of 27.5 cm capable of producing a 10 MV photon beam. This waveguide operates well within the breakdown threshold determined for the cavity geometry used. The designed Linac produces depth dose profiles similar to those of the emulated 10 MV Linac (waveguide-length of 1.5 m) but yields a narrower penumbra.

  1. Conceptional design of a heavy ion linac injector for HIRFL-CSRm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Hu; Yuan, You-Jin; Xia, Jia-Wen; Yin, Xue-Jun; Du, Heng; Li, Zhong-Shan

    2014-10-01

    A room temperature heavy ion linac has been proposed as a new injector of the main Cooler Storage Ring (CSRm) at the Heavy Ion Research Facility in Lanzhou (HIRFL), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ions with a maximum mass to charge ratio of 7 and an injection kinetic energy of 7.272 MeV/u for CSRm; the pulsed beam intensity is 3 emA with the duty factor of 3%. Compared with the present cyclotron injector, the Sector Focusing Cyclotron (SFC), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48 MHz 4-rod Radio Frequency Quadrupole (RFQ) accelerates the ion beam from 4 keV/u to 300 keV/u, which achieves the transmission efficiency of 95.3% with a 3.07 m long vane. The phase advance has been taken into account in the analysis of the error tolerance, and parametric resonances have been carefully avoided by adjusting the structure parameters. Kombinierte Null Grad Struktur Interdigital H-mode Drift Tube Linacs (KONUS IH-DTLs), which follow the RFQ, accelerate ions up to the energy of 7.272 MeV/u for CSRm. The resonance frequency is 108.48 MHz for the first two cavities and 216.96 MHz for the last 5 Drift Tube Linacs (DTLs). The maximum accelerating gradient can reach 4.95 MV/m in a DTL section with the length of 17.066 m, and the total pulsed RF power is 2.8 MW. A new strategy, for the determination of resonance frequency, RFQ vane voltage and DTL effective accelerating voltage, is described in detail. The beam dynamics design of the linac will be presented in this paper.

  2. SU-E-T-197: Helical Cranial-Spinal Treatments with a Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J; Bernard, D; Liao, Y

    2014-06-01

    Purpose: Craniospinal irradiation (CSI) of systemic disease requires a high level of beam intensity modulation to reduce dose to bone marrow and other critical structures. Current helical delivery machines can take 30 minutes or more of beam-on time to complete these treatments. This pilot study aims to test the feasibility of performing helical treatments with a conventional linear accelerator using longitudinal couch travel during multiple gantry revolutions. Methods: The VMAT optimization package of the Eclipse 10.0 treatment planning system was used to optimize pseudo-helical CSI plans of 5 clinical patient scans. Each gantry revolution was divided into three 120° arcsmore » with each isocenter shifted longitudinally. Treatments requiring more than the maximum 10 arcs used multiple plans with each plan after the first being optimized including the dose of the others (Figure 1). The beam pitch was varied between 0.2 and 0.9 (couch speed 5- 20cm/revolution and field width of 22cm) and dose-volume histograms of critical organs were compared to tomotherapy plans. Results: Viable pseudo-helical plans were achieved using Eclipse. Decreasing the pitch from 0.9 to 0.2 lowered the maximum lens dose by 40%, the mean bone marrow dose by 2.1% and the maximum esophagus dose by 17.5%. (Figure 2). Linac-based helical plans showed dose results comparable to tomotherapy delivery for both target coverage and critical organ sparing, with the D50 of bone marrow and esophagus respectively 12% and 31% lower in the helical linear accelerator plan (Figure 3). Total mean beam-on time for the linear accelerator plan was 8.3 minutes, 54% faster than the tomotherapy average for the same plans. Conclusions: This pilot study has demonstrated the feasibility of planning pseudo-helical treatments for CSI targets using a conventional linac and dynamic couch movement, and supports the ongoing development of true helical optimization and delivery.« less

  3. An overview of beam diagnostic and control systems for 50 MeV AREAL Linac

    NASA Astrophysics Data System (ADS)

    Sargsyan, A. A.; Amatuni, G. A.; Sahakyan, V. V.; Zanyan, G. S.; Martirosyan, N. W.; Vardanyan, V. V.; Grigoryan, B. A.

    2017-03-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is an electron linear accelerator project with a laser driven RF gun being constructed at CANDLE Synchrotron Research Institute. After the successful operation of the gun section at 5 MeV, a program of facility energy enhancement up to 50 MeV is launched. In this paper the current status of existing diagnostic and control systems, as well as the results of electron beam parameter measurements are presented. The approaches of intended diagnostic and control systems for the upgrade program are also described.

  4. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    PubMed

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  5. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probea)

    NASA Astrophysics Data System (ADS)

    Schmitzer, C.; Kronberger, M.; Lettry, J.; Sanchez-Arias, J.; Störi, H.

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H- volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e- and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H- ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H- ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  6. Thermal limits on MV x-ray production by bremsstrahlung targets in the context of novel linear accelerators.

    PubMed

    Wang, Jinghui; Trovati, Stefania; Borchard, Philipp M; Loo, Billy W; Maxim, Peter G; Fahrig, Rebecca

    2017-12-01

    To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs. The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz. For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study. A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs. © 2017 American Association of Physicists in Medicine.

  7. Taking Down a Giant: 699 Tons of SLAC’s Accelerator Removed for Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-31

    For the first time in more than 50 years, a door opened at the western end of the historic linear accelerator at the Department of Energy’s SLAC National Accelerator Laboratory casts light on four empty walls stretching as far as the eye can see. This end of the linac – a full kilometer of it – has been stripped of all its equipment both above and below ground. Over the next two years it will be re-equipped with new technology to power another wonder of modern science: an X-ray laser that will fire a million pulses per second.

  8. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    NASA Astrophysics Data System (ADS)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  9. Infrastructure and equipment for radiation oncology in the Spanish National Health System: analysis of external beam radiotherapy 2015-2020.

    PubMed

    Rodríguez, A; Algara, M; Monge, D; López-Torrecilla, J; Caballero, F; Morera, R; Escó, R; Pérez-Montero, H; Ferrer, C; Lara, P C

    2018-03-01

    Planning for radiation oncology requires reliable estimates of both demand for radiotherapy and availability of technological resources. This study compares radiotherapy resources in the 17 regions of the decentralised Spanish National Health System (SNHS). The Sociedad Española de Oncología Radioterápica (SEOR) performed a cross-sectional survey of all Spanish radiation oncology services (ROS) in 2015. We collected data on SNHS radiotherapy units, recording the year of installation, specific features of linear accelerators (LINACs) and other treatment units, and radiotherapeutic techniques implemented by region. Any machine over 10 years old or lacking a multileaf collimator or portal imaging system was considered obsolete. We performed a k-means clustering analysis using the Hartigan-Wong method to test associations between the gross domestic regional product (GDRP), the number of LINACs per million population and the percentage of LINACs over 10 years old. The SNHS controls 72 (61%) of the 118 Spanish ROS and has 180 LINACs, or 72.5% of the total public and private resources. The mean rate of LINACs per million population is 3.9 for public ROS, and 42% (n = 75) of the public accelerators were obsolete in 2015: 61 due to age and 14 due to technological capability. There was considerable regional variation in terms of the number and technological capacity of radiotherapy units; correlation between GRDP and resource availability was moderate. Despite improvements, new investments are still needed to replace obsolete units and increase access to modern radiotherapy. Regular analysis of ROS in each Spanish region is the only strategy for monitoring progress in radiotherapy capacity.

  10. A collimated detection system for assessing leakage dose from medical linear accelerators at the patient plane.

    PubMed

    Lonski, P; Taylor, M L; Franich, R D; Kron, T

    2014-03-01

    Leakage radiation from linear accelerators can make a significant contribution to healthy tissue dose in patients undergoing radiotherapy. In this work thermoluminescent dosimeters (LiF:Mg,Cu,P TLD chips) were used in a focused lead cone loaded with TLD chips for the purpose of evaluating leakage dose at the patient plane. By placing the TLDs at one end of a stereotactic cone, a focused measurement device is created; this was tested both in and out of the primary beam of a Varian 21-iX linac using 6 MV photons. Acrylic build up material of 1.2 cm thickness was used inside the cone and measurements made with either one or three TLD chips at a given distance from the target. Comparing the readings of three dosimeters in one plane inside the cone offered information regarding the orientation of the cone relative to a radiation source. Measurements in the patient plane with the linac gantry at various angles demonstrated that leakage dose was approximately 0.01% of the primary beam out of field when the cone was pointed directly towards the target and 0.0025% elsewhere (due to scatter within the gantry). No specific 'hot spots' (e.g., insufficient shielding or gaps at abutments) were observed. Focused cone measurements facilitate leakage dose measurements from the linac head directly at the patient plane and allow one to infer the fraction of leakage due to 'direct' photons (along the ray-path from the bremsstrahlung target) and that due to scattered photons.

  11. First heavy ion beam tests with a superconducting multigap CH cavity

    NASA Astrophysics Data System (ADS)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  12. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, R

    2004-06-08

    The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takesmore » into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less

  13. TU-H-BRA-05: A System Design for Integration of An Interior MRI and a Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, W; Henry Ford Hospital, Detroit, MI; Wang, G

    Purpose: MRI is a highly desirable modality to guide radiation therapy but it is difficult to combine a conventional MRI scanner directly with a linear accelerator (linac). An interior MRI (iMRI) concept has been proposed to acquire MRI images within a small field of view only covering targets and immediate surrounding tissues. The objective of this project is to design an interior MRI system to work with a linac using a magnet to provide a field around 0.2T in a cube of 20cm per side, and perform image reconstruction with a slightly inhomogeneous static magnetic fields. Methods: All the resultsmore » are simulated using a commercially available software package, FARADY. In our design, a ring structure holds the iMRI system and also imbeds a linac treatment head. The ring is synchronized to the linac gantry rotation. Half of the ring is made of steel and becomes a magnetic flux return path (yoke) so that a strong magnetic field will be limited inside the iron circuit and fringe fields will be very weak. In order to increase the static magnetic field homogeneity, special steel magnet boots or tips were simulated. Three curved boots were designed based on two-dimensional curves: arc, parabola and hyperbola. Results: Different boot surfaces modify magnetic field distributions differently. With the same pair of neodymium-iron-boron (NdFeB) magnets, the magnetic induction at the centers are 0.217T, 0.201T, 0.204T, and 0.212T for flat, arc, parabola and hyperbola boots, respectively. The hyperbola boots lead to the most homogeneous results, the static magnetic field deviations are within 0.5% in a cube of 20cm, and can be further improved using shimming techniques. Conclusion: This study supports the concept of an iMRI design. Successful development of iMRI will provide crucial information for tumor delineation in radiation therapy.« less

  14. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Raubenheimer, T. O.

    2001-10-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.

  15. Dosimetry of high-energy electron linac produced photoneutrons and the bremsstrahlung gamma-rays using TLD-500 and TLD-700 dosimeter pairs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar; Makowski, Dariusz; Simrock, Stefan

    2005-06-01

    The neutron and gamma doses are crucial to interpreting the radiation effects in microelectronic devices operating in a high-energy accelerator environment. This report highlights a method for an accurate estimation of photoneutron and the accompanying bremsstrahlung (gamma) doses produced by a 450 MeV electron linear accelerator (linac) operating in pulsed mode. The principle is based on the analysis of thermoluminescence glow-curves of TLD-500 (Aluminium Oxide) and TLD-700 (Lithium Fluoride) dosimeter pairs. The gamma and fast neutron response of the TLD-500 and TLD-700 dosimeter pairs were calibrated with a 60Co (gamma) and a 241Am-Be (α, n) neutron standard-source, respectively. The Kinetic Energy Released in Materials (kerma) conversion factor for photoneutrons was evaluated by folding the neutron kerma (dose) distribution in 7LiF (the main component of the TLD-700 dosimeter) with the energy spectra of the 241Am-Be (α, n) neutrons and electron accelerator produced photoneutrons. The neutron kerma conversion factors for 241Am-Be neutrons and photoneutrons were calculated to be 2.52×10 -3 and 1.37×10 -3 μGy/a.u. respectively. The bremsstrahlung (gamma) dose conversion factor was evaluated to be 7.32×10 -4 μGy/a.u. The above method has been successfully utilised to assess the photoneutron and bremsstrahlung doses from a 450 MeV electron linac operating at DESY Research Centre in Hamburg, Germany.

  16. 950 keV X-Band Linac For Material Recognition Using Two-Fold Scintillator Detector As A Concept Of Dual-Energy X-Ray System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kiwoo; Natsui, Takuya; Hirai, Shunsuke

    2011-06-01

    One of the advantages of applying X-band linear accelerator (Linac) is the compact size of the whole system. That shows us the possibility of on-site system such as the custom inspection system in an airport. As X-ray source, we have developed X-band Linac and achieved maximum X-ray energy 950 keV using the low power magnetron (250 kW) in 2 {mu}s pulse length. The whole size of the Linac system is 1x1x1 m{sup 3}. That is realized by introducing X-band system. In addition, we have designed two-fold scintillator detector in dual energy X-ray concept. Monte carlo N-particle transport (MCNP) code wasmore » used to make up sensor part of the design with two scintillators, CsI and CdWO4. The custom inspection system is composed of two equipments: 950 keV X-band Linac and two-fold scintillator and they are operated simulating real situation such as baggage check in an airport. We will show you the results of experiment which was performed with metal samples: iron and lead as targets in several conditions.« less

  17. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    DOE PAGES

    Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...

    2014-10-15

    In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  18. INCREASED UNDERSTANDING OF BEAM LOSSES FROM THE SNS LINAC PROTON EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, Alexander V; Shishlo, Andrei P; Plum, Michael A

    Beam loss is a major concern for high power hadron accelerators such as the Spallation Neutron Source (SNS). An unexpected beam loss in the SNS superconducting linac (SCL) was observed during the power ramp up and early operation. Intra-beam-stripping (IBS) loss, in which interactions between H- particles within the accelerated bunch strip the outermost electron, was recently identified as a possible cause of the beam loss. A set of experiments using proton beam acceleration in the SNS linac was conducted, which supports IBS as the primary beam loss mechanism in the SNS SCL.

  19. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    PubMed

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  20. Radiation measurement in the environment of FLASH using passive dosimeters

    NASA Astrophysics Data System (ADS)

    Mukherjee, B.; Rybka, D.; Makowski, D.; Lipka, T.; Simrock, S.

    2007-08-01

    Sophisticated electronic devices comprising sensitive microelectronic components have been installed in the close proximity of the 720 MeV superconducting electron linear accelerator (linac) driving the FLASH (Free Electron Laser in Hamburg), presently in operation at DESY in Hamburg. Microelectronic chips are inherently vulnerable to ionizing radiation, usually generated during routine operation of high-energy particle accelerator facilities like the FLASH. Hence, in order to assess the radiation effect on microelectronic chips and to develop suitable mitigation strategy, it becomes imperative to characterize the radiation field in the FLASH environment. We have evaluated the neutron and gamma energy (spectra) and dose distributions at critical locations in the FLASH tunnel using superheated emulsion (bubble) detectors, GaAs light emitting diodes (LED), LiF-thermoluminescence dosimeters (TLD) and radiochromic (Gafchromic EBT) films. This paper highlights the application of passive dosimeters for an accurate analysis of the radiation field produced by high-energy electron linear accelerators.

  1. Design details of Intelligent Instruments for PLC-free Cryogenic measurements, control and data acquisition

    NASA Astrophysics Data System (ADS)

    Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.

    2017-02-01

    Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.

  2. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi

    2013-09-15

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailedmore » description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.« less

  3. Specification of the 2nd cryogenic plant for RAON

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Ki, T.; Lee, K. W.; Kim, Y.; Jo, H. C.; Kim, D. G.

    2017-12-01

    RAON is a rare isotope beam facility being built at Daejeon, South Korea. The RAON consists of three linear accelerators, SCL1 (1st SuperConducting LINAC), SCL2, and SCL3. Each LINAC has its own cryogenic plant. The cryogenic plant for SCL2 will provide the cooling for cryomodules, low temperature SC magnets, high temperature SC magnets, and a cryogenic distribution system. This paper describes the specification of the plant including cooling capacity, steady state and transient operation modes, and cooling strategies. In order to reduce CAPEX with the specification, two suppliers will consider no liquid nitrogen pre-cooling, one integrated cold box, and one back-up HP compressor. The detail design of the plant will be started at the end of this year.

  4. Minimization of three-dimensional beam emittance growth in rare-isotope accelerator

    NASA Astrophysics Data System (ADS)

    Oh, B. H.; Yoon, M.

    2016-12-01

    In this paper, we describe a research to minimize the three-dimensional (3D) emittance growth (EG) in the RAON accelerator, a heavy ion accelerator currently being developed in Korea to produce various rare isotopes. The emittance minimization is performed using the multi-objective genetic algorithm and the simplex method. We use them to analyze the driver linac for the in-flight fragmentation separator of the RAON facility and show that redesign of the 90-degree bending section of the RAON accelerator together with adjustment of optics in the upstream and downstream superconducting linacs can limit the 3D EG to 20 % in the entire region of the driver linac. Effects of various magnet and rf accelerating cavity errors on the beam-EG are also discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swapan Chattopadhyay

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jeffersonmore » Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale, Jefferson Lab's original kilowatt-scale infrared free-electron laser (FEL) is ''driven'' by a high-current cousin of CEBAF, a 70 MeV SRF linac with a high-current injector. The FEL serves multidisciplinary science and technology as the world's highest-average-power source of tunable coherent infrared light. An upgrade to 10 kW is in commissioning--as it was when Isabel began threatening.« less

  6. MO-F-16A-02: Simulation of a Medical Linear Accelerator for Teaching Purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, M; Lamey, M; Anderson, R

    Purpose: Detailed functioning of linear accelerator physics is well known. Less well developed is the basic understanding of how the adjustment of the linear accelerator's electrical components affects the resulting radiation beam. Other than the text by Karzmark, there is very little literature devoted to the practical understanding of linear accelerator functionality targeted at the radiotherapy clinic level. The purpose of this work is to describe a simulation environment for medical linear accelerators with the purpose of teaching linear accelerator physics. Methods: Varian type lineacs were simulated. Klystron saturation and peak output were modelled analytically. The energy gain of anmore » electron beam was modelled using load line expressions. The bending magnet was assumed to be a perfect solenoid whose pass through energy varied linearly with solenoid current. The dose rate calculated at depth in water was assumed to be a simple function of the target's beam current. The flattening filter was modelled as an attenuator with conical shape, and the time-averaged dose rate at a depth in water was determined by calculating kerma. Results: Fifteen analytical models were combined into a single model called SIMAC. Performance was verified systematically by adjusting typical linac control parameters. Increasing klystron pulse voltage increased dose rate to a peak, which then decreased as the beam energy was further increased due to the fixed pass through energy of the bending magnet. Increasing accelerator beam current leads to a higher dose per pulse. However, the energy of the electron beam decreases due to beam loading and so the dose rate eventually maximizes and the decreases as beam current was further increased. Conclusion: SIMAC can realistically simulate the functionality of a linear accelerator. It is expected to have value as a teaching tool for both medical physicists and linear accelerator service personnel.« less

  7. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system

    NASA Astrophysics Data System (ADS)

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiaoying; Rybarcyk, Larry

    HPSim is a GPU-accelerated online multi-particle beam dynamics simulation tool for ion linacs. It was originally developed for use on the Los Alamos 800-MeV proton linac. It is a “z-code” that contains typical linac beam transport elements. The linac RF-gap transformation utilizes transit-time-factors to calculate the beam acceleration therein. The space-charge effects are computed using the 2D SCHEFF (Space CHarge EFFect) algorithm, which calculates the radial and longitudinal space charge forces for cylindrically symmetric beam distributions. Other space- charge routines to be incorporated include the 3D PICNIC and a 3D Poisson solver. HPSim can simulate beam dynamics in drift tubemore » linacs (DTLs) and coupled cavity linacs (CCLs). Elliptical superconducting cavity (SC) structures will also be incorporated into the code. The computational core of the code is written in C++ and accelerated using the NVIDIA CUDA technology. Users access the core code, which is wrapped in Python/C APIs, via Pythons scripts that enable ease-of-use and automation of the simulations. The overall linac description including the EPICS PV machine control parameters is kept in an SQLite database that also contains calibration and conversion factors required to transform the machine set points into model values used in the simulation.« less

  9. RFQ design for the RAON accelerator's ISOL system

    NASA Astrophysics Data System (ADS)

    Choi, Bong Hyuk; Hong, In-Seok

    2015-10-01

    The heavy-ion accelerator RAON has the advantage of having both an in-flight (IF) and an isotope separator on-line (ISOL) system. Two radio frequency quadrupoles (RFQs) will be installed in the RAON: the main linear accelerator (LINAC) RFQ will be used to accelerate the two-charge state 238U for the IF system, while the post-accelerator RFQ will be used to accelerate low-current isotope beams from the ISOL system. In this paper, the post-accelerator RFQ design for the ISOL system is reported. A beam current of 1 pμA was used, and the input beam and the output beam energies were 5 keV/u and 400 keV/u, respectively. Moreover, the design was optimized by reducing the total length and power, adjusting the beam quality. To quantify the influence of thermal expansion on the frequency, we calculated the frequency difference according to deference between the vane's tip and the body's diameter.

  10. A novel electron gun for inline MRI-linac configurations.

    PubMed

    Constantin, Dragoş E; Holloway, Lois; Keall, Paul J; Fahrig, Rebecca

    2014-02-01

    This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Simple electron gun geometry modifications of a Varian 600 C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600 C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ± 15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600 C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.

  11. A novel electron gun for inline MRI-linac configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois

    2014-02-15

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less

  12. A novel electron gun for inline MRI-linac configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less

  13. WE-G-17A-09: Novel Magnetic Shielding Design for Inline and Perpendicular Integrated 6 MV Linac and 1.0 T MRI Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Ma, B; Kuang, Y

    2014-06-15

    Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was includedmore » in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less

  14. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests

    PubMed Central

    Rowshanfarzad, Pejman; Greer, Peter B.

    2016-01-01

    In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry‐mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gantry speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11∘/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality‐assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time‐resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PACS number(s): 87.55.Qr PMID:27167282

  15. Long-term follow-up of patients with surgical intractable acromegaly after linear accelerator radiosurgery.

    PubMed

    Yan, Jiun-Lin; Chang, Chen-Nen; Chuang, Chi-Cheng; Hsu, Peng-Wei; Lin, Jen-Der; Wei, Kuo-Chen; Lee, Shi-Tseng; Tseng, Jen-Kan; Pai, Ping-Ching; Chen, Yao-Liang

    2013-07-01

    Radiotherapy is a crucial treatment for acromegalic patients with growth hormone (GH)-secreting pituitary tumors. However, its effect takes time. We retrospectively reviewed the long-term outcome of linear accelerator stereotactic radiosurgery (LINAC SRS) for patients with acromegaly from the perspective of biochemical remission and associated factors. Twenty-two patients presenting with residual or recurrent (GH)-secreting functional pituitary tumor between 1994 and 2004 who received LINAC SRS were enrolled and followed up for at least 3 years. Residual or recurrent tumor was defined as persistent elevated GH or insulin-like growth factor-1 (IGF-1) level and image-confirmed tumor after previous surgical treatment. Biochemical remission was defined as fasting GH less than 2.5 ng/mL with normal sex-and-age adjusted IGF-1. The mean follow-up period was 94.7 months (range 36-161 months). Overall mean biochemical remission time was 53 months (median 30 months). Biochemical control was achieved in 15 patients (68.2%) over the follow up period. One patient experienced recurrence after SRS and underwent another operation. Initial GH at diagnosis and pre-SRS GH correlated with biochemical control (p = 0.005 and p < 0.0001, respectively). Further evaluation demonstrated that biochemical control stabilized after 7.5 years. Overall post-SRS hormone deficit persisted in five patients (22.7%). In comparison to other radiosurgery modalities, LINAC radiosurgery also provides a satisfactory outcome. SRS has maximum effect over the first 2 years and stabilizes after 7.5 years. Moreover, SRS elicits long-term biochemical effects and requires longer follow-up for better biochemical remission. Copyright © 2012. Published by Elsevier B.V.

  16. SU-F-T-467: A Cross-Checking Approach for Dosimetric Verification of Beam- Matched Elekta Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y; Yuan, J; Geis, P

    2016-06-15

    Purpose: To verify the similarity of the dosimetric characteristics between two Elekta linear accelerators (linacs) in order to treat patients interchangeably on these two machines without re-planning. Methods: To investigate the viability of matching the 6 MV flattened beam on an existing linac (Elekta Synergy with Agility head) with a recently installed new linca (Elekta Versa HD), percent depth doses (PDD), flatness and symmetry output factors were compared for both machines. To validate the beam matching among machines, we carried out two approaches to cross-check the dosimetrical equivalence: 1) the prior treatment plans were re-computed based on the newly builtmore » Versa HD treatment planning system (TPS) model without changing the beam control points; 2) The same plans were delivered on both machines and the radiation dose measurements on a MapCheck2 were compared with TPS calculations. Three VMAT plans (Head and neck, lung, and prostate) were used in the study. Results: The difference between the PDDs for 10×10 cm{sup 2} field at all depths was less than 0.8%. The difference of flatness and symmetry for 30×30 cm{sup 2} field was less than 0.8%, and the measured output factors varies by less than 1% for each field size ranging from 2×2 cm2 to 40×40 cm{sup 2}. For the same plans, the maximum difference of the two calculated dose distributions is 2% of prescription. For the QA measurements, the gamma index passing rates were above 99% for 3%/3mm criteria with 10% threshold for all three clinical plans. Conclusion: A beam modality matching between two Elekta linacs is demonstrated with a cross-checking approach.« less

  17. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume wasmore » 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.« less

  18. Beam dynamics issues in linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1989-06-01

    The primary goal of present and future linear colliders is to maximize the integrated luminosity for the experimental program. Beam dynamics plays a central role in the maximization of integrated luminosity. It is the major issue in the production of small beam sizes and low experimental backgrounds and is also an important factor in the production of particle numbers, in the acceleration process, and in the number of bunches. The beam dynamics effects on bunches which are extracted from the damping rings, accelerated in the linac, collimated, momentum analyzed, and finally delivered to the final focus are reviewed. The effectsmore » of bunch compression, transverse and longitudinal wakefields, BNS damping, energy definition, dispersion, emittance, bunch aspect ratio, feedback, and stability are all important. 11 refs., 1 tab.« less

  19. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, Tor O

    2001-10-02

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  20. Physics goals for the planned next linear collider engineering test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtlandt L Bohn et al.

    2001-06-26

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  1. Physics goals for the planned next linear collider engineering test facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.

    2001-07-17

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less

  2. Accelerator and Fusion Research Division. Annual report, October 1978-September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-03-01

    Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)

  3. Low Level RF Control for the PIP-II Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Chase, B. E.; Cullerton, E.

    The PIP-II accelerator is a proposed upgrade to the Fermilab accelerator complex that will replace the existing, 400 MeV room temperature LINAC with an 800 MeV superconducting LINAC. Part of this upgrade includes a new injection scheme into the booster that levies tight requirements on the LLRF control system for the cavities. In this paper we discuss the challenges of the PIP-II accelerator and the present status of the LLRF system for this project.

  4. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  5. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer.

    PubMed

    Merna, Catherine; Rwigema, Jean-Claude M; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A; Kupelian, Patrick; Steinberg, Michael L; Lee, Percy

    2016-01-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. Notes on the design of experiments and beam diagnostics with synchrotron light detected by a gated photomultiplier for the Fermilab superconducting electron linac and for the Integrable Optics Test Accelerator (IOTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Romanov, Aleksandr; Ruan, Jinhao

    We outline the design of beam experiments for the electron linac at the Fermilab Accelerator Science and Technology (FAST) facility and for the Integrable Optics Test Accelerator (IOTA), based on synchrotron light emitted by the electrons in bend dipoles, detected with gated microchannel-plate photomultipliers (MCP-PMTs). The system can be used both for beam diagnostics (e.g., beam intensity with full dynamic range, turn-by-turn beam vibrations, etc.) and for scientific experiments, such as the direct observation of the time structure of the radiation emitted by single electrons in a storage ring. The similarity between photon pulses and spectrum at the downstream endmore » of the electron linac and in the IOTA ring allows one to test the apparatus during commissioning of the linac.« less

  7. Laser-Induced Linear-Field Particle Acceleration in Free Space.

    PubMed

    Wong, Liang Jie; Hong, Kyung-Han; Carbajo, Sergio; Fallahi, Arya; Piot, Philippe; Soljačić, Marin; Joannopoulos, John D; Kärtner, Franz X; Kaminer, Ido

    2017-09-11

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computational experiment. The formalism includes exact treatment of Maxwell's equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the field amplitude. For example, 30 keV electrons (2.5% energy spread) are accelerated to 61 MeV (0.5% spread) and to 205 MeV (0.25% spread) using 250 mJ and 2.5 J lasers respectively. These findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.

  8. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    NASA Astrophysics Data System (ADS)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-10-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.

  9. Feasibility study on the use of uranium in photoneutron target and BSA optimization for Linac based BNCT

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Shahriari, Majid; Minoochehr, Abdolhamid; Nedaie, Hasan

    2011-06-01

    A hybrid photoneutron target including natural uranium has been studied for a 20 MeV linear electron accelerator (Linac) based Boron Neutron Capture Therapy (BNCT) facility. In this study the possibility of using uranium to increase the neutron intensity has been investigated by focusing on the time dependence behavior of the build-up and decay of the delayed gamma rays from fission fragments and activation products through photo-fission reactions in the BSA (Beam Shaping Assembly) configuration design. Delayed components of neutrons and photons were calculated. The obtained BSA parameters are in agreement with the IAEA recommendation and compared to the hybrid photoneutron target without U. The epithermal flux in the suggested design is 2.67E9 (n/cm 2s/mA).

  10. Interlock system for machine protection of the KOMAC 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2015-02-01

    The 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC) has been developed. The beam service started this year after performing the beam commissioning. If the very sensitive and essential equipment is to be protected during machine operation, a machine interlock system is required, and the interlock system has been implemented. The purpose of the interlock system is to shut off the beam when the radio-frequency (RF) and ion source are unstable or a beam loss occurs. The interlock signal of the KOMAC linac includes a variety of sources, such as the beam loss, RF and high-voltage converter modulator faults, and fast closing valves of the vacuum window at the beam lines and so on. This system consists of a hardware-based interlock system using analog circuits and a software-based interlock system using an industrial programmable logic controller (PLC). The hardware-based interlock system has been fabricated, and the requirement has been satisfied with the results being within 10 µs. The software logic interlock system using the PLC has been connected to the framework of with the experimental physics and industrial control system (EPICS) to integrate a variety of interlock signals and to control the machine components when an interlock occurs. This paper will describe the design and the construction of the machine interlock system for the KOMAC 100-MeV linac.

  11. ARIEL e-LINAC: Commissioning and Development

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  12. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  13. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    PubMed

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  14. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system.

    PubMed

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cornell-BNL Electron Energy Recovery Linac FFAG Test Accelerator (CBETA)

    NASA Astrophysics Data System (ADS)

    Trbojevic, Dejan; Peggs, Steve; Berg, Scott; Brooks, Stephen; Mahler, George; Meot, Francois; Tsoupas, Nicholaos; Witte, Holger; Hoffstaetter, Georg; Bazarov, Ivan; Mayes, Christopher; Patterson, Ritchie; Smolenski, Karl; Li, Yulin; Dobbins, John; BNL Team; Cornell University Team

    A novel energy recovery linac (ERL) with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack is being constructed as a result of collaboration of the Cornell University with Brookhaven National Laboratory. The existing injector and superconducting linac at Cornell University are being installed together with a single NS-FFAG arcs and straight section at the opposite side of the linac to form an ERL system. The 6 MeV electron beam from injector is transferred into the 36 MeV superconducting linac and accelerated by four successive passes: from 42 to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase and with 4 passes electron energy is recovered and brought back to the initial energy of 6 MeV. This is going to be the first 4 pass superconducting ERL and the first NS-FFAG permanent magnet structure to bring the electron beam back to the linac.

  16. A novel electron accelerator for MRI-Linac radiotherapy.

    PubMed

    Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca

    2016-03-01

    MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility.

  17. A novel electron accelerator for MRI-Linac radiotherapy

    PubMed Central

    Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca

    2016-01-01

    Purpose: MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Methods: Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. Results: For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Conclusions: Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility. PMID:26936713

  18. Preparation of a primary argon beam for the CERN fixed target physics.

    PubMed

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  19. Do technological advances in linear accelerators improve dosimetric outcomes in stereotaxy? A head-on comparison of seven linear accelerators using volumetric modulated arc therapy-based stereotactic planning.

    PubMed

    Sarkar, B; Pradhan, A; Munshi, A

    2016-01-01

    Linear accelerator (Linac) based stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) using volumetric modulated arc therapy (VMAT) has been used for treating small intracranial lesions. Recent development in the Linacs such as inbuilt micro multileaf collimator (MLC) and flattening filter free (FFF) beam are intended to provide a better dose conformity and faster delivery when using VMAT technique. This study was aimed to compare the dosimetric outcomes and monitor units (MUs) of the stereotactic treatment plans for different commercially available MLC models and beam profiles. Ten patients having 12 planning target volume (PTV)/gross target volume's (GTVs) who received the SRS/SRT treatment in our clinic using Axesse Linac (considered reference arm gold standard) were considered for this study. The test arms comprised of plans using Elekta Agility with FFF, Elekta Agility with the plane beam, Elekta APEX, Varian Millennium 120, Varian Millennium 120HD, and Elekta Synergy in Monaco treatment planning system. Planning constraints and calculation grid spacing were not altered in the test plans. To objectively evaluate the efficacy of MLC-beam model, the resultant dosimetric outcomes were subtracted from the reference arm parameters. V95%, V100%, V105%, D1%, maximum dose, and mean dose of PTV/GTV showed a maximum inter MLC - beam model variation of 1.5% and 2% for PTV and GTV, respectively. Average PTV conformity index and heterogeneity index shows a variation in the range 0.56-0.63 and 1.08-1.11, respectively. Mean dose difference (excluding Axesse) for all organs varied between 1.1 cGy and 74.8 cGy (mean dose = 6.1 cGy standard deviation [SD] = 26.9 cGy) and 1.7 cGy-194.5 cGy (mean dose 16.1 cGy SD = 57.2 cGy) for single and multiple fraction, respectively. The dosimetry of VMAT-based SRS/SRT treatment plan had minimal dependence on MLC and beam model variations. All tested MLC and beam model could fulfil the desired PTV coverage and organs at risk dose constraints. The only notable difference was the halving of the MU for FFF beam as compared to the plane beam. This has the potential to reduce the total patient on couch time by 15% (approximately 2 min).

  20. Design of a side coupled standing wave accelerating tube for NSTRI e-Linac

    NASA Astrophysics Data System (ADS)

    Zarei, S.; Abbasi Davani, F.; Lamehi Rachti, M.; Ghasemi, F.

    2017-09-01

    The design and construction of a 6 MeV electron linear accelerator (e-Linac) was defined in the Institute of Nuclear Science and Technology (NSTRI) for cargo inspection and medical applications. For this accelerator, a side coupled standing wave tube resonant at a frequency of 2998.5 MHZ in π/2 mode was selected. In this article, the authors provide a step-by-step explanation of the process of the design for this tube. The design and simulation of the accelerating and coupling cavities were carried out in five steps; (1) separate design of the accelerating and coupling cavities, (2) design of the coupling aperture between the cavities, (3) design of the entire structure for resonance at the nominal frequency, (4) design of the buncher, and (5) design of the power coupling port. At all design stages, in addition to finding the dimensions of the cavity, the impact of construction tolerances and simulation errors on the electromagnetic parameters were investigated. The values obtained for the coupling coefficient, coupling constant, quality factor and capture efficiency are 2.11, 0.011, 16203 and 36%, respectively. The results of beam dynamics study of the simulated tube in ASTRA have yielded a value of 5.14 π-mm-mrad for the horizontal emittance, 5.06 π-mm-mrad for the vertical emittance, 1.17 mm for the horizontal beam size, 1.16 mm for the vertical beam size and 1090 keV for the energy spread of the output beam.

  1. SU-E-T-90: Accuracy of Calibration of Lithium-6 and -7 Enriched LiF TLDs for Neutron Measurements in High Energy Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keehan, S; Franich, R; Taylor, M

    Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and themore » ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.« less

  2. A procedure to determine the radiation isocenter size in a linear accelerator.

    PubMed

    González, A; Castro, I; Martínez, J A

    2004-06-01

    Measurement of radiation isocenter is a fundamental part of commissioning and quality assurance (QA) for a linear accelerator (linac). In this work we present an automated procedure for the analysis of the stars-shots employed in the radiation isocenter determination. Once the star-shot film has been developed and digitized, the resulting image is analyzed by scanning concentric circles centered around the intersection of the lasers that had been previously marked on the film. The center and the radius of the minimum circle intersecting the central rays are determined with an accuracy and precision better than 1% of the pixel size. The procedure is applied to the position and size determination of the radiation isocenter by means of the analysis of star-shots, placed in different planes with respect to the gantry, couch and collimator rotation axes.

  3. Ground Motion Studies for Large Future Accelerator

    NASA Astrophysics Data System (ADS)

    Takeda, Shigeru; Oide, Katsunobu

    1997-05-01

    The future large accelerator, such as TeV linear collider, should have extremely small emittance to perform the required luminosity. Precise alignment of machine components is essential to prevent emittance dilution. The ground motion spoils alignment of accelerator elements and results in emittance growth. The ground motion in the frequency range of seismic vibration is mostly coherent in the related accelerator. But the incoherent diffusive or Brownian like motion becomes dominant at frequency region less than seismic vibration [1, 2, 3]. Slow ground motion with respect to the machine performance is discussed including the method of tunnel construction. Our experimental results and recent excavated results clarify that application of TBMs is better excavating method than NATM (Drill + Blast) for accelerator tunnel to prevent emittance dilution. ([1] V. Shiltsev, Proc. of IWAA95 Tsukuba, 1995. [2] Shigeru Takeda et al., Proc. of EPAC96, 1996. [3] A. Sery, Proc. of LINAC96, 1996.)

  4. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  5. A microcosting study of microsurgery, LINAC radiosurgery, and gamma knife radiosurgery in meningioma patients

    PubMed Central

    van Putten, Erik; Nijdam, Wideke M.; Hanssens, Patrick; Beute, Guus N.; Nowak, Peter J.; Dirven, Clemens M.; Hakkaart-van Roijen, Leona

    2010-01-01

    The aim of the present study is to determine and compare initial treatment costs of microsurgery, linear accelerator (LINAC) radiosurgery, and gamma knife radiosurgery in meningioma patients. Additionally, the follow-up costs in the first year after initial treatment were assessed. Cost analyses were performed at two neurosurgical departments in The Netherlands from the healthcare providers’ perspective. A total of 59 patients were included, of whom 18 underwent microsurgery, 15 underwent LINAC radiosurgery, and 26 underwent gamma knife radiosurgery. A standardized microcosting methodology was employed to ensure that the identified cost differences would reflect only actual cost differences. Initial treatment costs, using equipment costs per fraction, were €12,288 for microsurgery, €1,547 for LINAC radiosurgery, and €2,412 for gamma knife radiosurgery. Higher initial treatment costs for microsurgery were predominantly due to inpatient stay (€5,321) and indirect costs (€4,350). LINAC and gamma knife radiosurgery were equally expensive when equipment was valued per treatment (€2,198 and €2,412, respectively). Follow-up costs were slightly, but not significantly, higher for microsurgery compared with LINAC and gamma knife radiosurgery. Even though initial treatment costs were over five times higher for microsurgery compared with both radiosurgical treatments, our study gives indications that the relative cost difference may decrease when follow-up costs occurring during the first year after initial treatment are incorporated. This reinforces the need to consider follow-up costs after initial treatment when examining the relative costs of alternative treatments. PMID:20526795

  6. Cost analysis of Gamma Knife stereotactic radiosurgery.

    PubMed

    Griffiths, Alison; Marinovich, Luke; Barton, Michael B; Lord, Sarah J

    2007-01-01

    Stereotactic radiosurgery (SRS) is used to treat intracranial lesions and vascular malformations as an addition or replacement to whole brain radiotherapy and microsurgery. SRS can be delivered by hardware and software appended to standard linear accelerators (Linacs) or by dedicated systems such as Gamma Knife, which has been proposed as a more accurate and user friendly technology. Internationally, dedicated systems have been funded, despite limitations in evidence. However, some countries including Australia have not recommended additional reimbursement for dedicated systems. This study compares the costs of Linac radiosurgery with Gamma Knife radiosurgery. Due to limited evidence on comparative effects, the economic analysis was restricted to a cost evaluation. The base-case analysis assumed a modified Linac was used only to treat SRS patients. However, because a modified Linac could be used to treat other radiotherapy patients, a second analysis assumed spare time was used to meet other radiotherapy needs, and Linac capital costs were apportioned according to SRS use. The incremental cost of Gamma Knife versus a modified Linac was estimated as AU$209 per patient. This result is sensitive to variations in assumptions. A second analysis proportioning capital costs according to SRS use showed that Gamma Knife may cost up to AU$1673 more per patient. Gamma Knife may be cost competitive only if demand for SRS services is high enough to fully use equipment working time. However, given low patient demand and competing radiotherapy needs, Gamma Knife appears more costly and further evidence of survival or quality of life advantages may be required to justify reimbursement.

  7. BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plastun, A.; Mustapha, B.; Nassiri, A.

    2016-05-01

    Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-endmore » beam dynamics studies which are presented in this paper.« less

  8. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  9. Observations on personnel dosimetry for radiotherapy personnel operating high-energy LINACs.

    PubMed

    Glasgow, G P; Eichling, J; Yoder, R C

    1986-06-01

    A series of measurements were conducted to determine the cause of a sudden increase in personnel radiation exposures. One objective of the measurements was to determine if the increases were related to changing from film dosimeters exchanged monthly to TLD-100 dosimeters exchanged quarterly. While small increases were observed in the dose equivalents of most employees, the dose equivalents of personnel operating medical electron linear accelerators with energies greater than 20 MV doubled coincidentally with the change in the personnel dosimeter program. The measurements indicated a small thermal neutron radiation component around the accelerators operated by these personnel. This component caused the doses measured with the TLD-100 dosimeters to be overstated. Therefore, the increase in these personnel dose equivalents was not due to changes in work habits or radiation environments. Either film or TLD-700 dosimeters would be suitable for personnel monitoring around high-energy linear accelerators. The final choice would depend on economics and personal preference.

  10. VARIAN CLINAC 6 MeV Photon Spectra Unfolding using a Monte Carlo Meshed Model

    NASA Astrophysics Data System (ADS)

    Morató, S.; Juste, B.; Miró, R.; Verdú, G.

    2017-09-01

    Energy spectrum is the best descriptive function to determine photon beam quality of a Medical Linear Accelerator (LinAc). The use of realistic photon spectra in Monte Carlo simulations has a great importance to obtain precise dose calculations in Radiotherapy Treatment Planning (RTP). Reconstruction of photon spectra emitted by medical accelerators from measured depth dose distributions in a water cube is an important tool for commissioning a Monte Carlo treatment planning system. Regarding this, the reconstruction problem is an inverse radiation transport function which is ill conditioned and its solution may become unstable due to small perturbations in the input data. This paper presents a more stable spectral reconstruction method which can be used to provide an independent confirmation of source models for a given machine without any prior knowledge of the spectral distribution. Monte Carlo models used in this work are built with unstructured meshes to simulate with realism the linear accelerator head geometry.

  11. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  12. Bioimaging of cells and tissues using accelerator-based sources.

    PubMed

    Petibois, Cyril; Cestelli Guidi, Mariangela

    2008-07-01

    A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLachlan, J.A.

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  14. Beam energy tracking system on Optima XEx high energy ion implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Satoh, Shu; Wu Xiangyang

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, andmore » each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.« less

  15. LIGHT SOURCE: Physical design of a 10 MeV LINAC for polymer radiation processing

    NASA Astrophysics Data System (ADS)

    Feng, Guang-Yao; Pei, Yuan-Ji; Wang, Lin; Zhang, Shan-Cai; Wu, Cong-Feng; Jin, Kai; Li, Wei-Min

    2009-06-01

    In China, polymer radiation processing has become one of the most important processing industries. The radiation processing source may be an electron beam accelerator or a radioactive source. Physical design of an electron beam facility applied for radiation crosslinking is introduced in this paper because of it's much higher dose rate and efficiency. Main part of this facility is a 10 MeV travelling wave electron linac with constant impedance accelerating structure. A start to end simulation concerning the linac is reported in this paper. The codes Opera-3d, Poisson-superfish and Parmela are used to describe electromagnetic elements of the accelerator and track particle distribution from the cathode to the end of the linac. After beam dynamic optimization, wave phase velocities in the structure have been chosen to be 0.56, 0.9 and 0.999 respectively. Physical parameters about the main elements such as DC electron gun, iris-loaded periodic structure, solenoids, etc, are presented. Simulation results proves that it can satisfy the industrial requirement. The linac is under construction. Some components have been finished. Measurements proved that they are in a good agreement with the design values.

  16. Studies on the S-band bunching system with the Hybrid Bunching-accelerating Structure

    NASA Astrophysics Data System (ADS)

    Pei, Shi-Lun; Gao, Bin

    2018-04-01

    Generally, a standard bunching system is composed of a standing-wave (SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure. In the industrial area, the bunching system is usually simplified by eliminating the PB and integrating the B and the standard accelerating structure together to form a β-varied accelerating structure. The beam capturing efficiency for this kind of simplified system is often worse than that for the standard one. The hybrid buncher (HB) has been proved to be a successful attempt to reduce the cost but preserve the beam quality as much as possible. Here we propose to exclusively simplify the standard bunching system by integrating the PB, the B and the standard accelerating structure together to form a Hybrid Bunching-accelerating Structure (HBaS). Compared to the standard bunching system, the one based on the HBaS is more compact, and the cost is lowered to the largest extent. With almost the same beam transportation efficiency (∼70%) from the electron gun to the linac exit, the peak-to-peak (p-to-p) beam energy spread and the 1 σ emittance of the linac with the HBaS are ∼20% and ∼60% bigger than those of the linac based on the split PB/B/standard accelerating structure system. Nonetheless, the proposed HBaS can be widely applied in the industrial linacs to greatly increase the beam capturing efficiency without fairly increasing the construction cost.

  17. Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Han, Y.; Latina, A.; Ma, L.; Schulte, D.

    2017-06-01

    The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.

  18. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carneiro, J.-P.; /Fermilab; Mustapha, B.

    2008-12-01

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  19. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    PubMed

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  20. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    NASA Astrophysics Data System (ADS)

    St. Aubin, J.; Steciw, S.; Fallone, B. G.

    2010-08-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  1. Laser-Induced Linear-Field Particle Acceleration in Free Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Liang Jie; Hong, Kyung -Han; Carbajo, Sergio

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computationalmore » experiment. The formalism includes exact treatment of Maxwell’s equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the feld amplitude. For example, 30keV electrons (2.5% energy spread) are accelerated to 61MeV (0.5% spread) and to 205MeV (0.25% spread) using 250 mJ and 2.5J lasers respectively. Furthermore, these findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.« less

  2. Laser-Induced Linear-Field Particle Acceleration in Free Space

    DOE PAGES

    Wong, Liang Jie; Hong, Kyung -Han; Carbajo, Sergio; ...

    2017-09-11

    Linear-field particle acceleration in free space (which is distinct from geometries like the linac that requires components in the vicinity of the particle) has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that linear-field particle acceleration in free space is very doubtful given that first-order electron-photon interactions are forbidden in free space. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility when intense, few-cycle electromagnetic pulses are used in a computationalmore » experiment. The formalism includes exact treatment of Maxwell’s equations and exact treatment of the interaction among the multiple individual particles at near and far field. Several surprising results emerge. We find that electrons interacting with intense laser pulses in free space are capable of gaining substantial amounts of energy that scale linearly with the feld amplitude. For example, 30keV electrons (2.5% energy spread) are accelerated to 61MeV (0.5% spread) and to 205MeV (0.25% spread) using 250 mJ and 2.5J lasers respectively. Furthermore, these findings carry important implications for our understanding of ultrafast electron-photon interactions in strong fields.« less

  3. Magnet design for the splitter/combiner regions of CBETA, the Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crittendon, J. A.; Burke, D. C.; Fuentes, Y. L.P.

    2017-01-06

    The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams.more » The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.« less

  4. Overview of recent trends and developments for BPM systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, M.; /Fermilab

    2011-08-01

    Beam position monitoring (BPM) systems are the workhorse of beam diagnostics for almost any kind of charged particle accelerator: linear, circular or transport-lines, operating with leptons, hadrons or heavy ions. BPMs are essential for beam commissioning, accelerator fault analysis and trouble shooting, machine optics, as well as lattice measurements, and finally, for accelerator optimization, in order to achieve the ultimate beam quality. This presentation summarizes the efforts of the beam instrumentation community on recent developments and advances on BPM technologies, i.e. BPM pickup monitors and front-end electronics (analog and digital). Principles, examples, and state-of-the-art status on various BPM techniques, servingmore » hadron and heavy ion machines, sync light synchrotron's, as well as electron linacs for FEL or HEP applications are outlined.« less

  5. Critical analysis of industrial electron accelerators

    NASA Astrophysics Data System (ADS)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  6. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    NASA Astrophysics Data System (ADS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  7. Design study of a radio-frequency quadrupole for high-intensity beams

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  8. Effects of correlations between particle longitudinal positions and transverse plane on bunch length measurement: a case study on GBS electron LINAC at ELI-NP

    NASA Astrophysics Data System (ADS)

    Sabato, L.; Arpaia, P.; Cianchi, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Variola, A.

    2018-02-01

    In high-brightness LINear ACcelerators (LINACs), electron bunch length can be measured indirectly by a radio frequency deflector (RFD). In this paper, the accuracy loss arising from non-negligible correlations between particle longitudinal positions and the transverse plane (in particular the vertical one) at RFD entrance is analytically assessed. Theoretical predictions are compared with simulation results, obtained by means of ELEctron Generation ANd Tracking (ELEGANT) code, in the case study of the gamma beam system (GBS) at the extreme light infrastructure—nuclear physics (ELI-NP). In particular, the relative error affecting the bunch length measurement, for bunches characterized by both energy chirp and fixed correlation coefficients between longitudinal particle positions and the vertical plane, is reported. Moreover, the relative error versus the correlation coefficients is shown for fixed RFD phase 0 rad and π rad. The relationship between relative error and correlations factors can help the decision of using the bunch length measurement technique with one or two vertical spot size measurements in order to cancel the correlations contribution. In the case of the GBS electron LINAC, the misalignment of one of the quadrupoles before the RFD between  -2 mm and 2 mm leads to a relative error less than 5%. The misalignment of the first C-band accelerating section between  -2 mm and 2 mm could lead to a relative error up to 10%.

  9. Source to Skin Distance (SSD) Characteristics from Varian CX Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Bahari Nurdin, Wira; Purnomo, Aji; Dewang, Syamsir

    2018-03-01

    This study aims to describe the characteristics of the source to skin distance (SSD) of Varian CX linear accelerator (LINAC) using the X-ray beam of 6 MV and 10 MV. The variation of the source to the SSD are 90, 100 and 110 cms; the depth of the water phantom used are 5, 10, 15, 20, and 25 cms, respectively. The depth of the water phantom was created for analysis of percentage depth dose (PDD) and profile dose. It can be concluded from the tests that from the measured SSD, SSD of 110 cm with the depth water phantom of 20-25 cm for energy beam of 6 MV and at all levels of depth for 10 MV energy corresponding tolerance limits to be used in clinical radiotherapy. For the SSD 90 and 100, the values beam symmetry and flatness obtained slightly beyond the limits of tolerance.

  10. Cryogenic System for the Cryomodule Test Stand at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael J.; Hansen, Benjamin; Klebaner, Arkadiy

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description ofmore » the heat load measurement plan.« less

  11. Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA

    DOE PAGES

    Bogacz, S. A.

    2018-02-01

    In this paper, we summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz asmore » the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Finally, we consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H - and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.« less

  12. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  13. Daily QA of linear accelerators using only EPID and OBI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Baozhou, E-mail: bsun@radonc.wustl.edu; Goddu, S. Murty; Yaddanapudi, Sridhar

    2015-10-15

    Purpose: As treatment delivery becomes more complex, there is a pressing need for robust quality assurance (QA) tools to improve efficiency and comprehensiveness while simultaneously maintaining high accuracy and sensitivity. This work aims to present the hardware and software tools developed for comprehensive QA of linear accelerator (LINAC) using only electronic portal imaging devices (EPIDs) and kV flat panel detectors. Methods: A daily QA phantom, which includes two orthogonally positioned phantoms for QA of MV-beams and kV onboard imaging (OBI) is suspended from the gantry accessory holder to test both geometric and dosimetric components of a LINAC and an OBI.more » The MV component consists of a 0.5 cm water-equivalent plastic sheet incorporating 11 circular steel plugs for transmission measurements through multiple thicknesses and one resolution plug for MV-image quality testing. The kV-phantom consists of a Leeds phantom (TOR-18 FG phantom supplied by Varian) for testing low and high contrast resolutions. In the developed process, the existing LINAC tools were used to automate daily acquisition of MV and kV images and software tools were developed for simultaneous analysis of these images. A method was developed to derive and evaluate traditional QA parameters from these images [output, flatness, symmetry, uniformity, TPR{sub 20/10}, and positional accuracy of the jaws and multileaf collimators (MLCs)]. The EPID-based daily QA tools were validated by performing measurements on a detuned 6 MV beam to test its effectiveness in detecting errors in output, symmetry, energy, and MLC positions. The developed QA process was clinically commissioned, implemented, and evaluated on a Varian TrueBeam LINAC (Varian Medical System, Palo Alto, CA) over a period of three months. Results: Machine output constancy measured with an EPID (as compared against a calibrated ion-chamber) is shown to be within ±0.5%. Beam symmetry and flatness deviations measured using an EPID and a 2D ion-chamber array agree within ±0.5% and ±1.2% for crossline and inline profiles, respectively. MLC position errors of 0.5 mm can be detected using a picket fence test. The field size and phantom positioning accuracy can be determined within 0.5 mm. The entire daily QA process takes ∼15 min to perform tests for 5 photon beams, MLC tests, and imaging checks. Conclusions: The exclusive use of EPID-based QA tools, including a QA phantom and simultaneous analysis software tools, has been demonstrated as a viable, efficient, and comprehensive process for daily evaluation of LINAC performance.« less

  14. Superconducting energy recovery linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Zvi, Ilan

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  15. Superconducting energy recovery linacs

    DOE PAGES

    Ben-Zvi, Ilan

    2016-09-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  16. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    PubMed

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Dosimetric feasibility of magnetic resonance imaging-guided tri-cobalt 60 preoperative intensity modulated radiation therapy for soft tissue sarcomas of the extremity.

    PubMed

    Kishan, Amar U; Cao, Minsong; Mikaeilian, Argin G; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Kamrava, Mitchell

    2015-01-01

    The purpose of this study was to investigate the dosimetric differences of delivering preoperative intensity modulated radiation therapy (IMRT) to patients with soft tissue sarcomas of the extremity (ESTS) with a teletherapy system equipped with 3 rotating (60)Co sources and a built-in magnetic resonance imaging and with standard linear accelerator (LINAC)-based IMRT. The primary study population consisted of 9 patients treated with preoperative radiation for ESTS between 2008 and 2014 with LINAC-based static field IMRT. LINAC plans were designed to deliver 50 Gy in 25 fractions to 95% of the planning target volume (PTV). Tri-(60)Co system IMRT plans were designed with ViewRay system software. Tri-(60)Co-based IMRT plans achieved equivalent target coverage and dosimetry for organs at risk (long bone, skin, and skin corridor) compared with LINAC-based IMRT plans. The maximum and minimum PTV doses, heterogeneity indices, and ratio of the dose to 50% of the volume were equivalent for both planning systems. One LINAC plan violated the maximum bone dose constraint, whereas none of the tri-(60)Co plans did. Using a tri-(60)Co system, we were able to achieve equivalent dosimetry to the PTV and organs at risk for patients with ESTS compared with LINAC-based IMRT plans. The tri-(60)Co system may be advantageous over current treatment platforms by allowing PTV reduction and by elimination of the additional radiation dose associated with daily image guidance, but this needs to be evaluated prospectively. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  18. Linac design for the European spallation source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, H.

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  19. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    DOEpatents

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  20. R-IDEAL: A Framework for Systematic Clinical Evaluation of Technical Innovations in Radiation Oncology.

    PubMed

    Verkooijen, Helena M; Kerkmeijer, Linda G W; Fuller, Clifton D; Huddart, Robbert; Faivre-Finn, Corinne; Verheij, Marcel; Mook, Stella; Sahgal, Arjun; Hall, Emma; Schultz, Chris

    2017-01-01

    The pace of innovation in radiation oncology is high and the window of opportunity for evaluation narrow. Financial incentives, industry pressure, and patients' demand for high-tech treatments have led to widespread implementation of innovations before, or even without, robust evidence of improved outcomes has been generated. The standard phase I-IV framework for drug evaluation is not the most efficient and desirable framework for assessment of technological innovations. In order to provide a standard assessment methodology for clinical evaluation of innovations in radiotherapy, we adapted the surgical IDEAL framework to fit the radiation oncology setting. Like surgery, clinical evaluation of innovations in radiation oncology is complicated by continuous technical development, team and operator dependence, and differences in quality control. Contrary to surgery, radiotherapy innovations may be used in various ways, e.g., at different tumor sites and with different aims, such as radiation volume reduction and dose escalation. Also, the effect of radiation treatment can be modeled, allowing better prediction of potential benefits and improved patient selection. Key distinctive features of R-IDEAL include the important role of predicate and modeling studies (Stage 0), randomization at an early stage in the development of the technology, and long-term follow-up for late toxicity. We implemented R-IDEAL for clinical evaluation of a recent innovation in radiation oncology, the MRI-guided linear accelerator (MR-Linac). MR-Linac combines a radiotherapy linear accelerator with a 1.5-T MRI, aiming for improved targeting, dose escalation, and margin reduction, and is expected to increase the use of hypofractionation, improve tumor control, leading to higher cure rates and less toxicity. An international consortium, with participants from seven large cancer institutes from Europe and North America, has adopted the R-IDEAL framework to work toward coordinated, evidence-based introduction of the MR-Linac. R-IDEAL holds the promise for timely, evidence-based introduction of radiotherapy innovations with proven superior effectiveness, while preventing unnecessary exposure of patients to potentially harmful interventions.

  1. Automation of a Linear Accelerator Dosimetric Quality Assurance Program

    NASA Astrophysics Data System (ADS)

    Lebron Gonzalez, Sharon H.

    According to the American Society of Radiation Oncology, two-thirds of all cancer patients will receive radiation therapy during their illness with the majority of the treatments been delivered by a linear accelerator (linac). Therefore, quality assurance (QA) procedures must be enforced in order to deliver treatments with a machine in proper conditions. The overall goal of this project is to automate the linac's dosimetric QA procedures by analyzing and accomplishing various tasks. First, the photon beam dosimetry (i.e. total scatter correction factor, infinite percentage depth dose (PDD) and profiles) were parameterized. Parameterization consists of defining the parameters necessary for the specification of a dosimetric quantity model creating a data set that is portable and easy to implement for different applications including: beam modeling data input into a treatment planning system (TPS), comparing measured and TPS modelled data, the QA of a linac's beam characteristics, and the establishment of a standard data set for comparison with other data, etcetera. Second, this parameterization model was used to develop a universal method to determine the radiation field size of flattened (FF), flattening-filter-free (FFF) and wedge beams which we termed the parameterized gradient method (PGM). Third, the parameterized model was also used to develop a profile-based method for assessing the beam quality of photon FF and FFF beams using an ionization chamber array. The PDD and PDD change was also predicted from the measured profile. Lastly, methods were created to automate the multileaf collimator (MLC) calibration and QA procedures as well as the acquisition of the parameters included in monthly and annual photon dosimetric QA. A two field technique was used for the calculation of the MLC leaf relative offsets using an electronic portal imaging device (EPID). A step-and-shoot technique was used to accurately acquire the radiation field size, flatness, symmetry, output and beam quality specifiers in a single delivery to an ionization chamber array for FF and FFF beams.

  2. Solenoid Fringe Field Effects for the Neutrino Factory Linac - MAD-X Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Aslaninejad,C. Bontoiu,J. Pasternak,J. Pozimski,Alex Bogacz

    2010-05-01

    International Design Study for the Neutrino Factory (IDS-NF) assumes the first stage of muon acceleration (up to 900 MeV) to be implemented with a solenoid based Linac. The Linac consists of three styles of cryo-modules, containing focusing solenoids and varying number of SRF cavities for acceleration. Fringe fields of the solenoids and the focusing effects in the SRF cavities have significant impact on the transverse beam dynamics. Using an analytical formula, the effects of fringe fields are studied in MAD-X. The resulting betatron functions are compared with the results of beam dynamics simulations using OptiM code.

  3. Heavy ion linear accelerator for radiation damage studies of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less

  4. Heavy ion linear accelerator for radiation damage studies of materials

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  5. Brightness analysis of an electron beam with a complex profile

    NASA Astrophysics Data System (ADS)

    Maesaka, Hirokazu; Hara, Toru; Togawa, Kazuaki; Inagaki, Takahiro; Tanaka, Hitoshi

    2018-05-01

    We propose a novel analysis method to obtain the core bright part of an electron beam with a complex phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the brightness of undulator radiation is calculated and the core of an electron beam is determined by maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance can be estimated by this analysis without time-consuming FEL simulations.

  6. Beam dynamic simulation and optimization of the CLIC positron source and the capture linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayar, C., E-mail: cafer.bayar@cern.ch; CERN, Geneva; Doebert, S., E-mail: Steffen.Doebert@cern.ch

    2016-03-25

    The CLIC Positron Source is based on the hybrid target composed of a crystal and an amorphous target. Simulations have been performed from the exit of the amorphous target to the end of pre-injector linac which captures and accelerates the positrons to an energy of 200 MeV. Simulations are performed by the particle tracking code PARMELA. The magnetic field of the AMD is represented in PARMELA by simple coils. Two modes are applied in this study. The first one is accelerating mode based on acceleration after the AMD. The second one is decelerating mode based on deceleration in the first acceleratingmore » structure. It is shown that the decelerating mode gives a higher yield for the e{sup +} beam in the end of the Pre-Injector Linac.« less

  7. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    NASA Astrophysics Data System (ADS)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  8. Complications Following Linear Accelerator Based Stereotactic Radiation for Cerebral Arteriovenous Malformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skjoth-Rasmussen, Jane, E-mail: jane@skjoeth-rasmussen.d; Roed, Henrik; Ohlhues, Lars

    2010-06-01

    Purpose: Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles. Method and Materials: A database was searched for all patients with AVMs. We included 50 consecutive patients with amore » minimum of 24 months follow-up (24-51 months). Results: AVM occlusion was verified in 78% of patients (39/50). AVM occlusion without new deficits (excellent outcome) was obtained in 44%. Good or fair outcome (AVM occlusion with mild or moderate new deficits) was seen in 30%. Severe complications after AVM occlusion occurred in 4% with a median interval of 15 months after treatment (range, 1-26 months). Conclusions: We applied an AVM grading score developed at the Mayo Clinic to predict probable outcome after radiosurgery in a large patient population treated with Gamma knife. A cutoff above and below a score of 1.5 could not discriminate between the likelihood of having an excellent outcome (approximately 45%). The chance of having an excellent or good outcome was slightly higher in patients with an AVM score below 1.5 (64% vs. 57%).« less

  9. SU-G-BRB-02: An Open-Source Software Analysis Library for Linear Accelerator Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, J; Yaldo, D

    Purpose: Routine linac quality assurance (QA) tests have become complex enough to require automation of most test analyses. A new data analysis software library was built that allows physicists to automate routine linear accelerator quality assurance tests. The package is open source, code tested, and benchmarked. Methods: Images and data were generated on a TrueBeam linac for the following routine QA tests: VMAT, starshot, CBCT, machine logs, Winston Lutz, and picket fence. The analysis library was built using the general programming language Python. Each test was analyzed with the library algorithms and compared to manual measurements taken at the timemore » of acquisition. Results: VMAT QA results agreed within 0.1% between the library and manual measurements. Machine logs (dynalogs & trajectory logs) were successfully parsed; mechanical axis positions were verified for accuracy and MLC fluence agreed well with EPID measurements. CBCT QA measurements were within 10 HU and 0.2mm where applicable. Winston Lutz isocenter size measurements were within 0.2mm of TrueBeam’s Machine Performance Check. Starshot analysis was within 0.2mm of the Winston Lutz results for the same conditions. Picket fence images with and without a known error showed that the library was capable of detecting MLC offsets within 0.02mm. Conclusion: A new routine QA software library has been benchmarked and is available for use by the community. The library is open-source and extensible for use in larger systems.« less

  10. Some folded issues related to over-shielded and unplanned rooms for medical linear accelerators - A case study

    NASA Astrophysics Data System (ADS)

    Muhammad, Wazir; Ullah, Asad; Hussain, Amjad; Ali, Nawab; Alam, Khan; Khan, Gulzar; Matiullah; Maeng, Seongjin; Lee, Sang Hoon

    2015-08-01

    A medical linear accelerator (LINAC) room must be properly shielded to limit the outside radiation exposure to an acceptable safe level defined by individual state and international regulations. However, along with this prime objective, some additional issues are also important. The current case-study was designed to unfold the issues related to over-shielded and unplanned treatment rooms for LINACs. In this connection, an apparently unplanned and over-shielded treatment room of 610 × 610 cm2 in size was compared with a properly designed treatment room of 762 × 762 cm2 in size ( i.e., by following the procedures and recommendations of the IAEA Safety Reports Series No. 47 and NCRP 151). Evaluation of the unplanned room indicated that it was over-shielded and that its size was not suitable for total body irradiation (TBI), although the license for such a treatment facility had been acquired for the installed machine. An overall 14.96% reduction in the total shielding volume ( i.e., concrete) for an optimally planned room as compared to a non-planned room was estimated. Furthermore, the inner room's dimensions were increased by 25%, in order to accommodate TBI patients. These results show that planning and design of the treatment rooms are imperative to avoid extra financial burden to the hospitals and to provide enough space for easy and safe handling of the patients. A spacious room is ideal for storing treatment accessories and facilitates TBI treatment.

  11. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations.

    PubMed

    Skjøth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars; Jespersen, Bo; Juhler, Marianne

    2010-06-01

    Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles. A database was searched for all patients with AVMs. We included 50 consecutive patients with a minimum of 24 months follow-up (24-51 months). AVM occlusion was verified in 78% of patients (39/50). AVM occlusion without new deficits (excellent outcome) was obtained in 44%. Good or fair outcome (AVM occlusion with mild or moderate new deficits) was seen in 30%. Severe complications after AVM occlusion occurred in 4% with a median interval of 15 months after treatment (range, 1-26 months). We applied an AVM grading score developed at the Mayo Clinic to predict probable outcome after radiosurgery in a large patient population treated with Gamma knife. A cutoff above and below a score of 1.5 could not discriminate between the likelihood of having an excellent outcome (approximately 45%). The chance of having an excellent or good outcome was slightly higher in patients with an AVM score below 1.5 (64% vs. 57%). Copyright 2010 Elsevier Inc. All rights reserved.

  12. Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment.

    PubMed

    Wen, Ning; Kim, Joshua; Doemer, Anthony; Glide-Hurst, Carri; Chetty, Indrin J; Liu, Chang; Laugeman, Eric; Xhaferllari, Ilma; Kumarasiri, Akila; Victoria, James; Bellon, Maria; Kalkanis, Steve; Siddiqui, M Salim; Movsas, Benjamin

    2018-06-01

    The purpose of this study was to investigate the systematic localization accuracy, treatment planning capability, and delivery accuracy of an integrated magnetic resonance imaging guided Linear Accelerator (MR-Linac) platform for stereotactic radiosurgery. The phantom for the end-to-end test comprises three different compartments: a rectangular MR/CT target phantom, a Winston-Lutz cube, and a rectangular MR/CT isocenter phantom. Hidden target tests were performed at gantry angles of 0, 90, 180, and 270 degrees to quantify the systematic accuracy. Five patient plans with a total of eleven lesions were used to evaluate the dosimetric accuracy. Single-isocenter IMRT treatment plans using 10-15 coplanar beams were generated to treat the multiple metastases. The end-to-end localization accuracy of the system was 1.0 ± 0.1 mm. The conformity index, homogeneity index and gradient index of the plans were 1.26 ± 0.22, 1.22 ± 0.10, and 5.38 ± 1.44, respectively. The average absolute point dose difference between measured and calculated dose was 1.64 ± 1.90%, and the mean percentage of points passing the 3%/1 mm gamma criteria was 96.87%. Our experience demonstrates that excellent plan quality and delivery accuracy was achievable on the MR-Linac for treating multiple brain metastases with a single isocenter. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Compact, inexpensive, epithermal neutron source for BNCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, D. A.

    1999-06-10

    A new rf-focused linac structure, designed specifically to increase the acceleration efficiency and reduce the cost of linac structures in the few-MeV range, may win the role as the optimum accelerator-based epithermal neutron source for the BNCT application. This new linac structure resembles a drift tube linac (DTL) with radio frequency quadrupole (RFQ) focusing incorporated into each 'drift tube,' hence the name R lowbar f F lowbar ocused D lowbar TL, or RFD. It promises superior acceleration properties, focusing properties, and CW capabilities. We have a proposal under consideration for the development of an epithermal neutron source, based on themore » 2.5-MeV RFD linac system with an average current of 10 mA, having the following components: an ion source, a short low-energy transport system, a short RFQ linac section, an RFD linac section, an rf power system, a high-energy beam transport system, a proton beam target, and a neutron beam moderator system. We propose to develop a solid lithium target for this application in the form of a thin lithium layer on the inner surface of a truncated aluminum cone, cooled by the heavy water moderator, where the proton beam is expanded to a diameter of 3 cm and scanned along a circular path, striking the lithium layer at the cone's half-angle of 30 degrees. We propose to develop a moderator assembly designed to transmit a large fraction of the source neutrons from the target to the patient treatment port, while shifting the neutron energies to an appropriate epithermal energy spectrum and minimizing the gamma-ray dose. The status of this proposal and these plans are presented.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Mark

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiationmore » techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes, and experimental area and infrastructure.« less

  15. 1 MeV, 10 kW DC electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  16. Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Linda X.; Garg, Madhur; Lasala, Patrick

    2011-03-15

    Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems,more » Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group (maximum diameters {<=}20 mm) had the most HI dependence for dose fall off. For treated plans, CI averaged 2.55{+-}0.79 with HI 1.23{+-}0.06; the average R{sub 50}-R{sub 100} was 0.41{+-}0.08, 0.55{+-}0.10, and 0.65{+-}0.09 cm, respectively, for tumors {<=}20 mm, between 20 and 30 mm, and >30 mm. Conclusions: Tumor dose inhomogeneity can be used as an important and convenient parameter to evaluate mMLC LINAC-based SRS plans. Sharp dose fall off in the normal tissue is achieved with sufficiently high tumor dose inhomogeneity. By adjusting beam margins, a homogeneity index of approximately 1.3 would provide best conformity for the authors' SRS system.« less

  17. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nmmore » from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.« less

  18. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compactionmore » in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.« less

  19. SU-E-J-200: Operation of An Electron Accelerator On An Integrated MR-Linac System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harasimowicz, J; Roberts, D; Shinton, I

    2015-06-15

    Purpose: An integrated MRI guided radiotherapy system poses a challenge of operating a linear accelerator in the presence of a magnetic field as the magnetic force acting on the electrons could Result in radiation source displacement and subsequent reduction of dose output. It was the purpose of this work to test the performance of a linac in the presence of a 1.5T MRI system. Methods: The first experimental MRI guided radiotherapy system at UMC-Utrecht consisting of an Elekta linac rotating around a 1.5T Magnex magnet was examined. A passive magnetic shield was simulated, designed and installed to reduce the influencemore » of the MRI magnet stray field on the electron beamline. The B field inside the shield was measured as a function of gantry angle and measurements of dose rate constancy upon gantry rotation were performed. Results: The magnitude of the magnetic field on the electron beam path without the shield was as high as 70G. It varied by up to 15G with gantry rotation due to the presence of metal beams in the bunker floor which resulted in dose output drop of up to 70% at certain gantry angles. With the prototype shield, field magnitude was reduced to well below 0.5G everywhere along the electron beam path. Field variation with gantry rotation was decreased to below 0.2G and enabled dose output of the linac to be recovered at all gantry angles. The homogeneity of the field inside the MRI magnet has not been compromised. Conclusion: It was demonstrated that the influence of the 1.5T magnet and the bunker design on the linac operation has been minimised. The performance will be further improved on the Elekta Atlantic system which incorporates a newly developed and optimised Philips magnet design and bunker construction. J Harasimowicz, D Roberts, I Shinton and S Sund are employed by Elekta Limited Crawley, H Wang and M Zhong are employed by Elekta Beijing Medical Systems Co. Ltd., J Overweg is employed by Philips Technologie GmbH Forschungslaboratorien.« less

  20. A combined source of electron bunches and microwave power

    NASA Astrophysics Data System (ADS)

    Xie, J. L.; Wang, F. Y.; Yang, X. P.; Shen, B.; Gu, W.; Zhang, L. W.

    2003-12-01

    In this article, the possibility of using a high power klystron amplifier simultaneously as a microwave power source as usual and an electron bunches source by extracting the spent beam with a magnet and also as an oscillator by feedback is investigated. The purpose of this study is to demonstrate the feasibility of constructing a very compact electron linear accelerator or for other applications of electron bunches. The feasibility of the idea was first examined by computer simulation of the electron motion in a 5 MW klystron and the characteristics of the klystron spent beam. Experimental study was then carried out by installing a radio frequency cavity and a Faraday cage in sequence at the exit end of a bending magnet located at the top of the klystron collector. The energy and current of the chopped spent electron beam can then be measured. By properly choosing the feedback circuit elements, the frequency stability of the klystron in oscillator mode was proved to be good enough for linac operation. According to the results presented in this article, it is evident that an extremely compact linac for research and education with better affordability can be constructed to promote the applications of linacs.

  1. A real time scintillating fiber Time of Flight spectrometer for LINAC photoproduced neutrons

    NASA Astrophysics Data System (ADS)

    Maspero, M.; Berra, A.; Conti, V.; Giannini, G.; Ostinelli, A.; Prest, M.; Vallazza, E.

    2015-03-01

    The use of high-energy (> 8 MeV) LINear ACcelerators (LINACs) for medical cancer treatments causes the photoproduction of secondary neutrons, whose unwanted dose to the patient has to be calculated. The characterization of the neutron spectra is necessary to allow the dosimetric evaluation of the neutron beam contamination. The neutron spectrum in a hospital environment is usually measured with integrating detectors such as bubble dosimeters, Thermo Luminescent Dosimeters (TLDs) or Bonner Spheres, which integrate the information over a time interval and an energy one. This paper presents the development of a neutron spectrometer based on the Time of Flight (ToF) technique in order to perform a real time characterization of the neutron contamination. The detector measures the neutron spectrum exploiting the fact that the LINAC beams are pulsed and arranged in bunches with a rate of 100-300 Hz depending on the beam type and energy. The detector consists of boron loaded scintillating fibers readout by a MultiAnode PhotoMultiplier Tube (MAPMT). A detailed description of the detector and the acquisition system together with the results in terms of ToF spectra and number of neutrons with a Varian Clinac iX are presented.

  2. Multileaf collimator-based linear accelerator radiosurgery: five-year efficiency analysis.

    PubMed

    Lawson, Joshua D; Fox, Tim; Waller, Anthony F; Davis, Lawrence; Crocker, Ian

    2009-03-01

    In 1989, Emory University initiated a linear accelerator (linac) radiosurgery program using circular collimators. In 2001, the program converted to a multileaf collimator. Since then, the treatment parameters of each patient have been stored in the record-and-verify system. Three major changes have occurred in the radiosurgery program in the past 6 years: in 2002, treatment was changed from static conformal beams to dynamic conformal arc (DCA) therapy, and all patients were imaged before treatment. Beginning in 2005, a linac was used, with the opportunity to treat at higher dose rates (600-1,000 monitor units/min). The aim of this study was to analyze the time required to deliver radiosurgery and the factors affecting treatment delivery. Benchmark data are provided for centers contemplating initiating linac radiosurgery programs. Custom software was developed to mine the record-and-verify system database and automatically perform a chart review on patients who underwent stereotactic radiosurgery from March 2001 to October 2006. The software extracted 510 patients who underwent stereotactic radiosurgery, and the following information was recorded for each patient: treatment technique, treatment time (from initiation of imaging, if done, to completion of therapy), number of isocenters, number of fields, total monitor units, and dose rate. Of the 510 patients, 395 were treated with DCA therapy and 115 with static conformal beams. The average number of isocenters treated was 1.06 (range, 1-4). The average times to deliver treatment were 24.1 minutes for patients who underwent DCA therapy and 19.3 minutes for those treated with static conformal beams, reflecting the lack of imaging in the latter patients. Eighty percent of patients were treated in <30 minutes. For the patients who underwent DCA therapy, the times required to treat 1, 2, 3, and 4 isocenters were 23.9, 24.8, 33.1, and 37.8 minutes, respectively. Average beam-on time for these patients was 11.4 minutes. There has been no significant reduction in treatment delivery with the use of 1,000 monitor units/min, reflecting the fact that beam-on time is not the major determinant of overall treatment time. Multileaf collimator-based linac radiosurgery can be delivered efficiently in <30 minutes in the vast majority of patients. Given the limited treatment room utilization required for stereotactic radiosurgery treatments, this study calls into question the need for a dedicated radiosurgery unit for even busy treatment centers.

  3. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    NASA Astrophysics Data System (ADS)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  4. TM 4: Beam through the Main Linac Cryomodule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartnik, A.

    2017-06-14

    On May 15th 2017, the CBETA project reached the major funding milestone, “Beam through the MLC.” For this test, the team had to successfully accelerate the electron beam to 6 MeV in the Injector Cryomodule (ICM), and then to a final energy of 12 MeV in the Main Linac Cryomodule (MLC). The MLC contains six superconducting accelerating cavities; for this initial test only a single cavity was powered.

  5. FEL system with homogeneous average output

    DOEpatents

    Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph

    2018-01-16

    A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.

  6. The compensation of quadrupole errors and space charge effects by using trim quadrupoles

    NASA Astrophysics Data System (ADS)

    An, YuWen; Wang, Sheng

    2011-12-01

    The China Spallation Neutron Source (CSNS) accelerators consist of an H-linac and a proton Rapid Cycling Synchrotron (RCS). RCS is designed to accumulate and accelerate proton beam from 80 MeV to 1.6 GeV with a repetition rate of 25 Hz. The main dipole and quadruple magnet will operate in AC mode. Due to the adoption of the resonant power supplies, saturation errors of magnetic field cannot be compensated by power supplies. These saturation errors will disturb the linear optics parameters, such as tunes, beta function and dispersion function. The strong space charge effects will cause emittance growth. The compensation of these effects by using trim quadruples is studied, and the corresponding results are presented.

  7. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen; /SLAC; Lewandowski, James

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less

  8. Dark Currents and Their Effect on the Primary Beam in an X-band Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, K.L.F.; Dolgashev, V.A.; Raubenheimer, T.

    2005-05-27

    We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC) we first perform a fairly complete (with some approximations) calculation of dark current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65 MV/m, considering two very different assumptions about dark current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent {approx} 1%. Considering that {approx} 1 mA outgoing dark current is seen inmore » measurement, this implies that {approx} 100 mA (or 10 pC per period) is emitted within the structure itself. Using the formalism of the Lienard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is {approx} 1 V kick per mA (or per 0.1 pC per period) dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be {approx} 15 V. For the NLC linac this translates to a ratio of (final) vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made--particularly the number of emitters and their distribution within a structure--the accuracy of this result may be limited to the order of magnitude.« less

  9. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  10. Magnetic decoupling of the linac in a low field biplanar linac-MR system.

    PubMed

    St Aubin, J; Steciw, S; Fallone, B G

    2010-09-01

    The integration of a low field biplanar magnetic resonance (MR) imager and linear accelerator (linac) causes magnetic interference at the linac due to the MR fringe fields. In order to eliminate this interference, passive and active magnetic shielding designs are investigated. The optimized design of passive magnetic shielding was performed using the finite element method. The design was required to achieve no greater than a 20% electron beam loss within the linac waveguide and electron gun, no greater than 0.06 T at the multileaf collimator (MLC) motors, and generate a distortion of the main MR imaging volume of no greater than 300 ppm. Through the superposition of the analytical solution for a single current carrying wire loop, active shielding designs in the form of three and four sets of coil pairs surrounding the linac waveguide and electron gun were also investigated. The optimized current and coil center locations that yielded the best cancellation of the MR fringe fields at the linac were determined using sequential quadratic programming. Optimized passive shielding in the form of two steel cylinders was designed to meet the required constraints. When shielding the MLC motors along with the waveguide and electron gun, the thickness of the cylinders was less than 1 mm. If magnetically insensitive MLC motors are used, no MLC shielding would be required and the waveguide shield (shielding the waveguide and electron gun) became 1.58 mm thick. In addition, the optimized current and coil spacing for active shielding was determined for both three and four coil pair configurations. The results of the active shielding optimization produced no beam loss within the waveguide and electron gun and a maximum MR field distortion of 91 ppm over a 30 cm diameter spherical volume. Very simple passive and active shielding designs have been shown to magnetically decouple the linac from the MR imager in a low field biplanar linac-MR system. The MLC passive shielding produced the largest distortion of the MR field over the imaging volume. With the use of magnetically insensitive motors, the MR field distortion drops substantially since no MLC shield is required. The active shielding designs yielded no electron beam loss within the linac.

  11. Dosimetric comparison of different treatment modalities for stereotactic radiotherapy.

    PubMed

    Hsu, Shih-Ming; Lai, Yuan-Chun; Jeng, Chien-Chung; Tseng, Chia-Ying

    2017-09-16

    The modalities for performing stereotactic radiotherapy (SRT) on the brain include the cone-based linear accelerator (linac), the flattening filter-free (FFF) volumetric modulated arc therapy (VMAT) linac, and tomotherapy. In this study, the cone-based linac, FFF-VMAT linac, and tomotherapy modalities were evaluated by measuring the differences in doses delivered during brain SRT and experimentally assessing the accuracy of the output radiation doses through clinical measurements. We employed a homemade acrylic dosimetry phantom representing the head, within which a thermoluminescent dosimeter (TLD) and radiochromic EBT3 film were installed. Using the conformity/gradient index (CGI) and Paddick methods, the quality of the doses delivered by the various SRT modalities was evaluated. The quality indicators included the uniformity, conformity, and gradient indices. TLDs and EBT3 films were used to experimentally assess the accuracy of the SRT dose output. The dose homogeneity indices of all the treatment modalities were lower than 1.25. The cone-based linac had the best conformity for all tumors, regardless of the tumor location and size, followed by the FFF-VMAT linac; tomography was the worst-performing treatment modality in this regard. The cone-based linac had the best gradient, regardless of the tumor location and size, whereas the FFF-VMAT linac had a better gradient than tomotherapy for a large tumor diameter (28 mm). The TLD and EBT3 measurements of the dose at the center of tumors indicated that the average difference between the measurements and the calculated dose was generally less than 4%. When the 3% 3-mm gamma passing rate metric was used, the average passing rates of all three treatment modalities exceeded 98%. Regarding the dose, the cone-based linac had the best conformity and steepest dose gradient for tumors of different sizes and distances from the brainstem. The results of this study suggest that SRT should be performed using the cone-based linac on tumors that require treatment plans with a steep dose gradient, even as the tumor is slightly irregular, we should also consider using a high dose gradient of the cone base to treat and protect the normal tissue. If normal tissues require special protection exist at positions that are superior or inferior to the tumor, we can consider using tomotherapy or Cone base with couch at 0° for treatment.

  12. TAC Proton Accelerator Facility: The Status and Road Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algin, E.; Akkus, B.; Caliskan, A.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  13. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaddanapudi, S; Cai, B; Sun, B

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linacmore » photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Z.; Ruland, R.; Dix, B.

    The Stanford Linear Accelerator Center is evaluating the feasibility of placing a free electron laser (FEL) at the end of the linear accelerator. The proposal is to inject electrons two thirds of the way down the linac, accelerate the electrons for the last one third of the linac, and then send the electrons into the FEL. This project is known as the LCLS (Linac Coherent Light Source). To test the feasibility of the LCLS, a smaller experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments,more » each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 {micro}m [1]. This very demanding alignment is carried out in two steps [2]. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90{sup o}.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 {micro}m, both the fiducialization and magnet placement must be performed with errors much smaller than 50 {micro}m. It is desired to keep the errors from the wire finder and laser finder at the few {micro}m level.« less

  15. Overview of High Power Vacuum Dry RF Load Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less

  16. X-band RF gun and linac for medical Compton scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  17. Use of the CEBAF Accelerator for IR and UV Free Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Leemann, Christoph

    1992-08-01

    The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less

  18. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  19. WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, B; Keall, P; Gierman, S

    Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modellingmore » (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise painstaking optimisation of the MRI fringe field. This work was supported by US (NIH) and Australian (NHMRC & Cancer Institute NSW) government research funding. In addition, I would like to thank cancer institute NSW and the Ingham Institute for scholarship support.« less

  20. Determination of the energy transitions and half-lives of Rubidium nuclei

    NASA Astrophysics Data System (ADS)

    Biçer, Ahmet; Manisa, Kaan; Engin Çalık, Abdullah; Erdoğan, Mehmet; Şen, Mürsel; Bircan, Hasan; Dapo, Haris; Boztosun, Ismail

    2018-03-01

    The photonuclear reactions, first extensively studied in the 1970's and performed using the gamma rays obtained via bremsstrahlung, are a standard nuclear physics experiment. In this study, a non-enriched Rubidium sample was irradiated with photons produced by a clinical linear electron accelerator (cLINACs) with energies up to 18 MeV with the aim of activating it through photonuclear reactions. The activated sample was measured with a high purity germanium detector (HPGe) with the aim of measuring the transition energies and half-lives. The spectroscopic analysis performed on the obtained data yielded high quality results for the transition energies with precision matching or surpassing the literature data. For the half-lives the results were consistent with the literature, most notably the half-life of 84mRb decay was determined as 20.28(2) m. The results for both energies and half-lives further show that the clinical linear accelerators can be successfully used as an efficient tool in experimental nuclear research endeavors.

  1. High gradient linac for proton therapy

    NASA Astrophysics Data System (ADS)

    Benedetti, S.; Grudiev, A.; Latina, A.

    2017-04-01

    Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  2. Superconducting heavy ion injector linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, K.W.

    1985-01-01

    A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreadsmore » of a few keV-nsec. 11 refs, 4 figs.« less

  3. An analysis of the gradient-induced electric fields and current densities in human models when situated in a hybrid MRI-LINAC system

    NASA Astrophysics Data System (ADS)

    Liu, Limei; Trakic, Adnan; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart

    2014-01-01

    MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this novel numerical study the in situ electric fields and associated current densities were evaluated inside tissue-accurate male and female human voxel models when a number of different split-geometry gradient coils were operated. The body models were located in the MRI-LINAC system along the axial and radial directions in three different body positions. Each model had a region of interest (ROI) suitable for image-guided radiotherapy. The simulation results show that the amplitudes and distributions of the field and current density induced by different split x-gradient coils were similar with one another in the ROI of the body model, but varied outside of the region. The fields and current densities induced by a split classic coil with the surface unconnected showed the largest deviation from those given by the conventional non-split coils. Another finding indicated that the distributions of the peak current densities varied when the body position, orientation or gender changed, while the peak electric fields mainly occurred in the skin and fat tissues.

  4. Numerical Calculations of Short-Range Wakefields of Collimators

    NASA Astrophysics Data System (ADS)

    Ng, C. K.

    2001-12-01

    The performance of future linear colliders are limited by the effect of short-range collimator wakefields on the beam. The beam quality is sensitive to the positioning of collimators at the end of the linac. The determination of collimator wakefields has been difficult, largely because of the scarcity of measurement data, and of the limitation of applicability of analytical results to realistic structures. In this paper, numerical methods using codes such as MAFIA are used to determine a series of tapered collimators with rectangular apertures that have been built for studies at SLAC (Stanford Linear Accelerator Center). We will study the dependences of the wakefield on the collimator taper angle, the collimator gap as well as the bunch length. Calculations are also compared with measurements.

  5. Passive magnetic shielding in MRI-Linac systems.

    PubMed

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul

    2018-03-26

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  6. Passive magnetic shielding in MRI-Linac systems

    NASA Astrophysics Data System (ADS)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  7. Volume Changes After Stereotactic LINAC Radiotherapy in Vestibular Schwannoma: Control Rate and Growth Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenberg, Rick van de, E-mail: rickvandelangenberg@hotmail.com; Dohmen, Amy J.C.; Bondt, Bert J. de

    2012-10-01

    Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention aftermore » radiotherapy was defined as 'no additional intervention group, ' absence of radiological growth was defined as 'radiological control group. ' Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% {+-} 0.03; the 4-year radiological control probability was 85.4% {+-} 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.« less

  8. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Low, D; Mutic, S

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was funded by ViewRay, Inc., Oakwood, OH.« less

  9. Energy monitoring device for 1.5-2.4 MeV electron beams

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  10. Design, construction and tests of a 3 GHz proton linac booster (LIBO) for cancer therapy

    NASA Astrophysics Data System (ADS)

    Berra, Paolo

    2007-12-01

    In the last ten years the use of proton beams in radiation therapy has become a clinical tool for treatment of deep-seated tumours. LIBO is a RF compact and low cost proton linear accelerator (SCL type) for hadrontherapy. It is conceived by TERA Foundation as a 3 GHz Linac Booster, to be mounted downstream of an existing cyclotron in order to boost the energy of the proton beam up to 200 MeV, needed for deep treatment (~25 cm) in the human body. With this solution it is possible to transform a low energy commercial cyclotron, normally used for eye melanoma therapy, isotope production and nuclear physics research, into an accelerator for deep-seated tumours. A prototype module of LIBO has been built and successfully tested with full RF power at CERN and with proton beam at INFN Laboratori Nazionali del Sud (LNS) in Catania, within an international collaboration between TERA Foundation, CERN, the Universities and INFN groups of Milan and Naples. The mid-term aim of the project is the technology transfer of the accumulated know-how to a consortium of companies and to bring this novel medical tool to hospitals. The design, construction and tests of the LIBO prototype are described in detail.

  11. Design and Calibration of an RF Actuator for Low-Level RF Systems

    NASA Astrophysics Data System (ADS)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  12. SU-F-T-240: EPID-Based Quality Assurance for Dosimetric Credentialing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miri, N; Lehmann, J; Vial, P

    Purpose: We propose a novel dosimetric audit method for clinical trials using EPID measurements at each center and a standardized EPID to dose conversion algorithm. The aim of this work is to investigate the applicability of the EPID method to different linear accelerator, EPID and treatment planning system (TPS) combinations. Methods: Combination of delivery and planning systems were three Varian linacs including one Pinnacle and two Eclipse TPS and, two ELEKTA linacs including one Pinnacle and one Monaco TPS. All Varian linacs had the same EPID structure and similarly for the ELEKTA linacs. Initially, dose response of the EPIDs wasmore » investigated by acquiring integrated pixel value (IPV) of the central area of 10 cm2 images versus MUs, 5-400 MU. Then, the EPID to dose conversion was investigated for different system combinations. Square field size images, 2, 3, 4, 6, 10, 15, 20, 25 cm2 acquired by all systems were converted to dose at isocenter of a virtual flat phantom then the dose was compared to the corresponding TPS dose. Results: All EPIDs showed a relatively linear behavior versus MU except at low MUs which showed irregularities probably due to initial inaccuracies of irradiation. Furthermore, for all the EPID models, the model predicted TPS dose with a mean dose difference percentage of 1.3. However the model showed a few inaccuracies for ELEKTA EPID images at field sizes larger than 20 cm2. Conclusion: The EPIDs demonstrated similar behavior versus MU and the model was relatively accurate for all the systems. Therefore, the model could be employed as a global dosimetric method to audit clinical trials. Funding has been provided from Department of Radiation Oncology, TROG Cancer Research and the University of Newcastle. Narges Miri is a recipient of a University of Newcastle postgraduate scholarship.« less

  13. New calibration technique for KCD-based megavoltage imaging

    NASA Astrophysics Data System (ADS)

    Samant, Sanjiv S.; Zheng, Wei; DiBianca, Frank A.; Zeman, Herbert D.; Laughter, Joseph S.

    1999-05-01

    In megavoltage imaging, current commercial electronic portal imaging devices (EPIDs), despite having the advantage of immediate digital imaging over film, suffer from poor image contrast and spatial resolution. The feasibility of using a kinestatic charge detector (KCD) as an EPID to provide superior image contrast and spatial resolution for portal imaging has already been demonstrated in a previous paper. The KCD system had the additional advantage of requiring an extremely low dose per acquired image, allowing for superior imaging to be reconstructed form a single linac pulse per image pixel. The KCD based images utilized a dose of two orders of magnitude less that for EPIDs and film. Compared with the current commercial EPIDs and film, the prototype KCD system exhibited promising image qualities, despite being handicapped by the use of a relatively simple image calibration technique, and the performance limits of medical linacs on the maximum linac pulse frequency and energy flux per pulse delivered. This image calibration technique fixed relative image pixel values based on a linear interpolation of extrema provided by an air-water calibration, and accounted only for channel-to-channel variations. The counterpart of this for area detectors is the standard flat fielding method. A comprehensive calibration protocol has been developed. The new technique additionally corrects for geometric distortions due to variations in the scan velocity, and timing artifacts caused by mis-synchronization between the linear accelerator and the data acquisition system (DAS). The role of variations in energy flux (2 - 3%) on imaging is demonstrated to be not significant for the images considered. The methodology is presented, and the results are discussed for simulated images. It also allows for significant improvements in the signal-to- noise ratio (SNR) by increasing the dose using multiple images without having to increase the linac pulse frequency or energy flux per pulse. The application of this protocol to a KCD system under construction is expected shortly.

  14. Matching the laser generated p bunch into a crossbar-H drift tube linac

    NASA Astrophysics Data System (ADS)

    Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.

    2012-05-01

    Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.

  15. Accelerator structure and beam transport system for the KEK photon factory injector

    NASA Astrophysics Data System (ADS)

    Sato, Isamu

    1980-11-01

    The injector is a 2.5 GeV electron linac which serves multiple purposes, being not only the injector for the various storage rings of the Photon Factory but also for the next planned project, the TRISTAN RING, and also as an intense electron or γ-ray source for research on phenomena in widely diverse scientific fields. The accelerator structure and beam transport system for the linac were designed with the greatest care in order to avoid beam blow-up difficulties, and also to be as suitable as possible to enable the economical mass production of the accelerator guides and focusing magnets.

  16. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated bymore » attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.« less

  17. Out-of-field neutron and leakage photon exposures and the associated risk of second cancers in high-energy photon radiotherapy: current status.

    PubMed

    Takam, R; Bezak, E; Marcu, L G; Yeoh, E

    2011-10-01

    Determination and understanding of out-of-field neutron and photon doses in accelerator-based radiotherapy is an important issue since linear accelerators operating at high energies (>10 MV) produce secondary radiations that irradiate parts of the patient's anatomy distal to the target region, potentially resulting in detrimental health effects. This paper provides a compilation of data (technical and clinical) reported in the literature on the measurement and Monte Carlo simulations of peripheral neutron and photon doses produced from high-energy medical linear accelerators and the reported risk and/or incidence of second primary cancer of tissues distal to the target volume. Information in the tables facilitates easier identification of (1) the various methods and measurement techniques used to determine the out-of-field neutron and photon radiations, (2) reported linac-dependent out-of-field doses, and (3) the risk/incidence of second cancers after radiotherapy due to classic and modern treatment methods. Regardless of the measurement technique and type of accelerator, the neutron dose equivalent per unit photon dose ranges from as low as 0.1 mSv/Gy to as high as 20.4 mSv/Gy. This radiation dose potentially contributes to the induction of second primary cancer in normal tissues outside the treated area.

  18. A new RF window designed for high-power operation in an S-band LINAC RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Kim, Seung-Hwan; Hwang, Woonha; Ryu, Jiwan; Roh, Sungjoo

    2016-09-01

    A new RF window is designed for high-power operation at the Pohang Light Source-II (PLSII) S-band linear accelerator (LINAC) RF system. In order to reduce the strength of the electric field component perpendicular to the ceramic disk, which is commonly known as the main cause of most discharge breakdowns in ceramic disk, we replace the pill-box type cavity in the conventional RF window with an overmoded cavity. The overmoded cavity is coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the iris and the number of possible mode competitions. The finite-difference time-domain (FDTD) simulation, CST MWS, was used in the design process. The simulated maximum electric field component perpendicular to the ceramic for the new RF window is reduced by an order of magnitude compared with taht for the conventional RF window, which holds promise for stable high-power operation.

  19. Neutron interrogation of high-enriched uranium by a 4 MeV linac

    NASA Astrophysics Data System (ADS)

    Lakosi, László; Nguyen, Cong Tam

    2008-07-01

    For revealing unauthorized transport (illicit trafficking) of nuclear materials, a non-destructive method reported earlier, utilizing a 4 MeV linear accelerator for photoneutron interrogation, was further developed. The linac served as a pulsed neutron source for assay of highly enriched uranium. Produced in beryllium or heavy water by bremsstrahlung, neutrons subsequently induced fission in the samples. Delayed neutrons were detected by a newly designed neutron collar built up of 14 3He counters embedded in a polyethylene moderator. A PC controlled multiscaler served as a time analyzer, triggering the detector startup by the beam pulse. Significant progress was achieved in enhancing the detector response, hence the sensitivity for revealing illicit material. A lower sensitivity limit of the order of 10 mg 235U was determined in a 20 s measurement time with a reasonable amount of beryllium (170 g) or of heavy water (100 g) and a mean electron current of 10 μA. Sensitivity can be further enhanced by increasing the measurement time.

  20. A REVIEW ON THE RADIATION THERAPY TECHNOLOGIST RECEIVED DOSE FROM INDUCED ACTIVATION IN HIGH-ENERGY MEDICAL LINEAR ACCELERATORS.

    PubMed

    Nourmohammadi, Bahareh; Mesbahi, Asghar

    2018-06-01

    Despite all advantages for using high-energy photons for radiotherapy, high-energy photon beams (≥10 MV) induce photonuclear and neutron capture interactions, which result in producing radionuclide byproducts inside the Linac head and bunker, exposing radiation therapy technologists (RTTs) and patients to excessive dose. By the use of higher photon energy, greater number of monitor unit, greater field size and adding treatment accessories, induced dose rate become greater in the isocenter mainly due to activation of high-Z materials inside the Linac head. Activated radionuclides disintegrate with γ, β+ and β- rays with half-lives between 2 min up to more than 5 years. Several researches estimated additional exposure to an RTT depend on treatment strategies, beam energy, and delay time before entrance to the treatment room between 0.1 and 4.9 mSv/y and proposed at least 2 min delay before entrance to the treatment room after treatments with high-energy photon beams.

  1. Autopilot regulation for the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Voulgarakis, G.; Lettry, J.; Mattei, S.; Lefort, B.; Costa, V. J. Correia

    2017-08-01

    Linac4 is a 160 MeV H- linear accelerator part of the upgrade of the LHC injector chain. Its cesiated surface H- source is designed to provide a beam intensity of 40-50mA. It is operated with periodical Cs-injection at typically 30 days intervals [1] and this implies that the beam parameters will slowly evolve during operation. Autopilot is a control software package extending CERN developed Inspector framework. The aim of Autopilot is to automatize the mandatory optimization and cesiation processes and to derive performance indicators, thus keeping human intervention minimal. Autopilot has been developed by capitalizing on the experience from manually operating the source. It comprises various algorithms running in real-time, which have been devised to: • Optimize the ion source performance by regulation of H2 injection, RF power and frequency. • Describe the performance of the source with performance indicators, which can be easily understood by operators. • Identify failures, try to recover the nominal operation and send warning in case of deviation from nominal operation. • Make the performance indicators remotely available through Web pages.Autopilot is at the same level of hierarchy as an operator, in the CERN infrastructure. This allows the combination of all ion source devices, providing the required flexibility. Autopilot is executed in a dedicated server, ensuring unique and centralized control, yet allowing multiple operators to interact at runtime, always coordinating between them. Autopilot aims at flexibility, adaptability, portability and scalability, and can be extended to other components of CERN's accelerators. In this paper, a detailed description of the Autopilot algorithms is presented, along with first results of operating the Linac4 H- Ion Source with Autopilot.

  2. Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator

    NASA Astrophysics Data System (ADS)

    Hamm, Robert W.

    2000-12-01

    Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.

  3. SU-F-T-367: Using PRIMO, a PENELOPE-Based Software, to Improve the Small Field Dosimetry of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benmakhlouf, H; Andreo, P; Brualla, L

    2016-06-15

    Purpose: To calculate output correction factors for Varian Clinac 2100iX beams for seven small field detectors and use the values to determine the small field output factors for the linacs at Karolinska university hospital. Methods: Phase space files (psf) for square fields between 0.25cm and 10cm were calculated using the PENELOPE-based PRIMO software. The linac MC-model was tuned by comparing PRIMO-estimated and experimentally determined depth doses and lateral dose-profiles for 40cmx40cm fields. The calculated psf were used as radiation sources to calculate the correction factors of IBA and PTW detectors with the code penEasy/PENELOPE. Results: The optimal tuning parameters ofmore » the MClinac model in PRIMO were 5.4 MeV incident electron energy and zero energy spread, focal spot size and beam divergence. Correction factors obtained for the liquid ion chamber (PTW-T31018) are within 1% down to 0.5 cm fields. For unshielded diodes (IBA-EFD, IBA-SFD, PTW-T60017 and PTW-T60018) the corrections are up to 2% at intermediate fields (>1cm side), becoming down to −11% for fields smaller than 1cm. The shielded diode (IBA-PFD and PTW-T60016) corrections vary with field size from 0 to −4%. Volume averaging effects are found for most detectors in the presence of 0.25cm fields. Conclusion: Good agreement was found between correction factors based on PRIMO-generated psf and those from other publications. The calculated factors will be implemented in output factor measurements (using several detectors) in the clinic. PRIMO is a userfriendly general code capable of generating small field psf and can be used without having to code own linac geometries. It can therefore be used to improve the clinical dosimetry, especially in the commissioning of linear accelerators. Important dosimetry data, such as dose-profiles and output factors can be determined more accurately for a specific machine, geometry and setup by using PRIMO and having a MC-model of the detector used.« less

  4. Dedicated linear accelerator radiosurgery for trigeminal neuralgia: a single-center experience in 179 patients with varied dose prescriptions and treatment plans.

    PubMed

    Smith, Zachary A; Gorgulho, Alessandra A; Bezrukiy, Nikita; McArthur, David; Agazaryan, Nzhde; Selch, Michael T; De Salles, Antonio A F

    2011-09-01

    Dedicated linear accelerator radiosurgery (D-LINAC) has become an important treatment for trigeminal neuralgia (TN). Although the use of gamma knife continues to be established, few large series exist using D-LINAC. The authors describe their results, comparing the effects of varied target and dose regimens. Between August 1995 and January 2008, 179 patients were treated with D-LINAC radiosurgery. Ten patients (5.58%) had no clinical follow-up. The median age was 74.0 years (range, 32-90 years). A total of 39 patients had secondary or atypical pain, and 130 had idiopathic TN. Initially, 28 patients received doses between 70 and 85 Gy, with the 30% isodose line (IDL) touching the brainstem. Then, using 90 Gy, 82 consecutive patients were treated with a 30% IDL and 59 patients with a 50% IDL tangential to the pons. Of 169 patients, 134 (79.3%) experienced significant relief at a mean of 28.8 months (range, 5-142 months). Average time to relief was 1.92 months (range, immediate to 6 months). A total of 31 patients (19.0%) had recurrent pain at 13.5 months. Of 87 patients with idiopathic TN without prior procedures, 79 (90.8%) had initial relief. Among 28 patients treated with 70 Gy and 30% IDL, 18 patients (64.3%) had significant relief, and 10 (35.7%) had numbness. Of the patients with 90 Gy and 30% IDL at the brainstem, 59 (79.0%) had significant relief and 48.9% had numbness. Among 59 consecutive patients with similar dose but the 50% isodoseline at the brainstem, 49 patients (88.0%) had excellent/good relief. Numbness, averaging 2.49 on a subjective scale of 1 to 5, was experienced by 49.7% of the patients, Increased radiation dose and volume of brainstem irradiation may improve clinical outcomes with the trade-off of trigeminal dysfunction. Further study of the implications of dose and target are needed to optimize outcomes and to minimize complications. Published by Elsevier Inc.

  5. Simultaneous integrated boost therapy of carcinoma of the hypopharynx/larynx with and without flattening filter - a treatment planning and dosimetry study.

    PubMed

    Dobler, Barbara; Obermeier, Tina; Hautmann, Matthias G; Khemissi, Amine; Koelbl, Oliver

    2017-07-05

    The aim of this study was to investigate if the flattening filter free (FFF) irradiation mode of a linear accelerator (linac) is advantageous as compared to the flat beam (FF) irradiation mode in intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for carcinoma of the hypopharynx / larynx. Four treatment plans were created for each of 10 patients for an Elekta Synergy linac with Agility collimating device, a dual arc VMAT and a nine field step and shoot IMRT each with and without flattening filter. Plan quality was compared considering target coverage and dose to the organs at risk. All plans were verified by a 2D-ionization-chamber-array and delivery times were compared. Peripheral point doses were determined as a measure of second cancer risk. The Wilcoxon test was used for statistical analysis with a significance level of 0.05. Plan quality was similar for all four treatment plans without statistically significant differences of clinical relevance. The clinical goals were met in all plans for the PTV-SIB (V 95%  > 95%), the spinal cord (D 1ccm  < 45 Gy) and the brain stem (D 1ccm  < 48 Gy). For the parotids, the goal of D 50%  < 30 Gy was met in 70% and 60% of the plans for the left and right parotid respectively, and the V 95% of the SIB reached an average of 94%. Delivery times were similar for FF and FFF and significantly decreased by around 70% for VMAT as compared to IMRT. Peripheral doses were significantly reduced by 18% in FFF mode as compared to FF and by 26% for VMAT as compared to IMRT. Lowest peripheral doses were found for VMAT FFF, followed by VMAT FF. The FFF mode of a linear accelerator is advantageous for the treatment of hypopharynx/larynx carcinoma only with respect to reduction of second cancer induction in peripheral organs for the combination of Elekta Synergy linacs and Oncentra® External Beam v4.5 treatment planning system. This might be of interest in a therapy with curative intent.

  6. Dedicated Linear Accelerator Radiosurgery for Trigeminal Neuralgia: A Single-Center Experience in 179 Patients With Varied Dose Prescriptions and Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Zachary A.; Gorgulho, Alessandra A.; Bezrukiy, Nikita

    2011-09-01

    Purpose: Dedicated linear accelerator radiosurgery (D-LINAC) has become an important treatment for trigeminal neuralgia (TN). Although the use of gamma knife continues to be established, few large series exist using D-LINAC. The authors describe their results, comparing the effects of varied target and dose regimens. Methods and Materials: Between August 1995 and January 2008, 179 patients were treated with D-LINAC radiosurgery. Ten patients (5.58%) had no clinical follow-up. The median age was 74.0 years (range, 32-90 years). A total of 39 patients had secondary or atypical pain, and 130 had idiopathic TN. Initially, 28 patients received doses between 70 andmore » 85 Gy, with the 30% isodose line (IDL) touching the brainstem. Then, using 90 Gy, 82 consecutive patients were treated with a 30% IDL and 59 patients with a 50% IDL tangential to the pons. Results: Of 169 patients, 134 (79.3%) experienced significant relief at a mean of 28.8 months (range, 5-142 months). Average time to relief was 1.92 months (range, immediate to 6 months). A total of 31 patients (19.0%) had recurrent pain at 13.5 months. Of 87 patients with idiopathic TN without prior procedures, 79 (90.8%) had initial relief. Among 28 patients treated with 70 Gy and 30% IDL, 18 patients (64.3%) had significant relief, and 10 (35.7%) had numbness. Of the patients with 90 Gy and 30% IDL at the brainstem, 59 (79.0%) had significant relief and 48.9% had numbness. Among 59 consecutive patients with similar dose but the 50% isodoseline at the brainstem, 49 patients (88.0%) had excellent/good relief. Numbness, averaging 2.49 on a subjective scale of 1 to 5, was experienced by 49.7% of the patients, Conclusions: Increased radiation dose and volume of brainstem irradiation may improve clinical outcomes with the trade-off of trigeminal dysfunction. Further study of the implications of dose and target are needed to optimize outcomes and to minimize complications.« less

  7. FEM design and simulation of a short, 10 MV, S-band Linac with Monte Carlo dose simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baillie, Devin; Aubin, J. St.; Steciw, S., E-mail: ssteciw@ualberta.ca

    2015-04-15

    Purpose: Current commercial 10 MV Linac waveguides are 1.5 m. The authors’ current 6 MV linear accelerator–magnetic resonance imager (Linac–MR) system fits in typical radiotherapy vaults. To allow 10 MV treatments with the Linac–MR and still fit within typical vaults, the authors design a 10 MV Linac with an accelerator waveguide of the same length (27.5 cm) as current 6 MV Linacs. Methods: The first design stage is to design a cavity such that a specific experimental measurement for breakdown is applicable to the cavity. This is accomplished through the use of finite element method (FEM) simulations to match publishedmore » shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength from an electric breakdown study. A full waveguide is then designed and tuned in FEM simulations based on this cavity design. Electron trajectories are computed through the resulting radio frequency fields, and the waveguide geometry is modified by shifting the first coupling cavity in order to optimize the electron beam properties until the energy spread and mean energy closely match values published for an emulated 10 MV Linac. Finally, Monte Carlo dose simulations are used to compare the resulting photon beam depth dose profile and penumbra with that produced by the emulated 10 MV Linac. Results: The shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength are all matched to within 0.1%. A first coupling cavity shift of 1.45 mm produces an energy spectrum width of 0.347 MeV, very close to the published value for the emulated 10 MV of 0.315 MeV, and a mean energy of 10.53 MeV, nearly identical to the published 10.5 MeV for the emulated 10 MV Linac. The depth dose profile produced by their new Linac is within 1% of that produced by the emulated 10 MV spectrum for all depths greater than 1.5 cm. The penumbra produced is 11% narrower, as measured from 80% to 20% of the central axis dose. Conclusions: The authors have successfully designed and simulated an S-band waveguide of length of 27.5 cm capable of producing a 10 MV photon beam. This waveguide operates well within the breakdown threshold determined for the cavity geometry used. The designed Linac produces depth dose profiles similar to those of the emulated 10 MV Linac (waveguide-length of 1.5 m) but yields a narrower penumbra.« less

  8. Re-Shielding of Cobalt-60 Teletherapy Rooms for Tomotherapy and Conventional Linear Accelerators using Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Yazgan, Çağrı

    2017-09-01

    Purpose. Nearly all Cobalt-60 teletherapy machines were removed around the world during the last two decades. The remaining ones are being used for experimental purposes. However, the rooms of these teletherapy machines are valuable because of lack of space in radiotherapy clinics. In order to place a new technology treatment machine in one of these rooms, one should re-shield the room since it was designed only for 1.25 MeV gamma beams on average. Mostly, the vendor of the new machine constructs the new shielding of the room using their experience. However, every radiotherapy room has different surrounding work areas and it would be wise to shield the room considering these special conditions. Also, the shield design goal of the clinic may be much lower than the International Atomic Energy Agency (IAEA) or the local association accepts. The study shows re-shielding of a Cobalt-60 room, specific to the clinic, using Monte Carlo simulations. Materials & Methods: First, a 6 MV Tomotherapy machine, then a 10 MV conventional linear accelerator (LINAC) was placed inside the Cobalt-60 teletherapy room. The photon flux outside the room was simulated using Monte Carlo N-Particle (MCNP6.1) code before and after re-shielding. For the Tomotherapy simulation, flux distributions around the machine were obtained from the vendor and implemented as the source of the model. The LINAC model was more generic with the 10 MeV electron source, the tungsten target, first and secondary collimators. The aim of the model was to obtain the maximum (40x40 cm2) open field at the isocenter. Two different simulations were carried out for gantry angles 90o and 270o. The LINAC was placed in the room such that the primary walls were A' (Gantry 270o) and C' (Gantry 90o) (figure 1). The second part of the study was to model the re-shielding of the room for Tomotherapy and for the conventional LINAC, separately. The aim was to investigate the recommended shielding by the vendors. Left side of the room was adjacent to a LINAC room with 2 meters thick concrete wall (figure 1). No shielding was necessary for that wall. Behind wall A-A' there was an outdoors forbidden area; behind wall B-B' was the contouring room for the doctors; and the control room was behind wall C-C' (figure 1). After some modifications, the final shielding was designed. Results: The photon flux distributions outside the room before and after the re-shielding were compared. The re-shielding of Tomotherapy reduced the flux down to 1.89 % on average with respect to pre-shielding (table 1). For the conventional LINAC case; after re-shielding, the photon flux in the control room -which corresponds to gantry 90°- decreased down to 0.57% with respect to pre-shielding (table 2). The photon flux behind wall A' -which corresponds to gantry 270°- decreased down to 2.46%. Everybody was all safe behind wall B' even before re-shielding.

  9. Bunch shape monitor development in J-PARC linac

    NASA Astrophysics Data System (ADS)

    Miura, A.; Tamura, J.; Liu, Y.; Miyao, T.

    2017-07-01

    In the linac at the Japan accelerator research complex (J-PARC), we decided to use bunch shape monitors (BSMs) as phase-width monitors. Both centroid-phase set point at the frequency jump from SDTL (324 MHz) to ACS (972 MHz) and phase-width control are key issues for suppressing excess beam loss. BSM was designed and developed at the Institute for Nuclear Research, Russia. Because the BSM was first used between acceleration cavities, we need to improve it to protect it from the leakage-magnetic field of the quadrupole magnets and from outgassing impacts on the cavities. In this paper, we introduce these improvements to the BSM for the adoption of the location nearby the acceleration cavities.

  10. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations

    PubMed Central

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by 241Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy-1 for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy-1 achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production. PMID:24600167

  11. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations.

    PubMed

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by (241)Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy(-1) for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy(-1) achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production.

  12. Overtaking collision effects in a cw double-pass proton linac

    DOE PAGES

    Tao, Yue; Qiang, Ji; Hwang, Kilean

    2017-12-22

    The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less

  13. Overtaking collision effects in a cw double-pass proton linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yue; Qiang, Ji; Hwang, Kilean

    The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less

  14. Top-up operation at Pohang Light Source-II

    NASA Astrophysics Data System (ADS)

    Hwang, I.; Huang, J. Y.; Kim, M.; Lee, B.-J.; Kim, C.; Choi, J.-Y.; Kim, M.-H.; Lee, H. S.; Moon, D.; Lee, E. H.; Kim, D.-E.; Nam, S. H.; Shin, S.; Cho, Moohyun

    2014-05-01

    After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac were the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.

  15. Statistical process control for electron beam monitoring.

    PubMed

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Characteristics of flattening filter free beams at low monitor unit settings.

    PubMed

    Akino, Yuichi; Ota, Seiichi; Inoue, Shinichi; Mizuno, Hirokazu; Sumida, Iori; Yoshioka, Yasuo; Isohashi, Fumiaki; Ogawa, Kazuhiko

    2013-11-01

    Newer linear accelerators (linacs) have been equipped to deliver flattening filter free (FFF) beams. When FFF beams are used for step-and-shoot intensity-modulated radiotherapy (IMRT), the stability of delivery of small numbers of monitor units (MU) is important. The authors developed automatic measurement techniques to evaluate the stability of the dose profile, dose linearity, and consistency. Here, the authors report the performance of the Artiste™ accelerator (Siemens, Erlangen, Germany) in delivering low-MU FFF beams. A 6 MV flattened beam (6X) with 300 MU/min dose rate and FFF beams of 7 (7XU) and 11 MV (11XU), each with a 500 MU/min dose rate, were measured at 1, 2, 3, 5, 8, 10, and 20 MU settings. For the 2000 MU/min dose rate, the 7 (7XUH) and 11 MV (11XUH) beams were set at 10, 15, 20, 25, and 30 MU because of the limits of the minimum MU settings. Beams with 20 × 20 and 10 × 10 cm(2) field sizes were alternately measured ten times in intensity modulated (IM) mode, with which Siemens linacs regulate beam delivery for step-and-shoot IMRT. The in- and crossplane beam profiles were measured using a Profiler™ Model 1170 (Sun Nuclear Corporation, Melbourne, FL) in multiframe mode. The frames of 20 × 20 cm(2) beams were identified at the off-axis profile. The 6X beam profile was normalized at the central axis. The 7 and 11 MV FFF beam profiles were rescaled to set the dose at the central axis at 145% and 170%, respectively. Point doses were also measured using a Farmer-type ionization chamber and water-equivalent solid phantom to evaluate the linearity and consistency of low-MU beam delivery. The values displayed on the electrometer were recognized with a USB-type camera and read with open-source optical character recognition software. The symmetry measurements of the 6X, 7XU, and 11XU beam profiles were better than 2% for beams ≥ 2 MU and improved with increasing MU. The variations in flatness of FFF beams ≥ 2 MU were ± 5%. The standard deviation of the symmetry and flatness also decreased with increasing MU. The linearity of the 6X beam was ± 1% and ± 2% for the beams of ≥ 5 and ≥ 3 MU, respectively. The 7XU and 11XU beams of ≥ 2 MU showed linearity with ± 2% except the 7XU beam of 8 MU (+2.9%). The profiles of the FFF beams with 2000 and 500 MU/min dose rate were similar. The characteristics of low-MU beams delivered in IM mode were evaluated using an automatic measurement system developed in this study. The authors demonstrated that the profiles of FFF beams of the Artiste™ linac were highly stable, even at low MU. The linearity of dose output was also stable for beams ≥ 2 MU.

  17. The Linac Coherent Light Source

    DOE PAGES

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  18. Comparison of the extent of hippocampal sparing according to the tilt of a patient's head during WBRT using linear accelerator-based IMRT and VMAT.

    PubMed

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2016-05-01

    In this paper, we report the results of our investigation into whole brain radiotherapy (WBRT) using linear accelerator-based intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in lung cancer patients with a high risk of metastasis to the brain. Specifically, we assessed the absorbed dose and the rate of adverse effects for several organs at risk (OAR), including the hippocampus, according to the tilt of a patient's head. We arbitrarily selected five cases where measurements were made with the patients' heads tilted forward and five cases without such tilt. We set the entire brain as the planning target volume (PTV), and the hippocampi, the lenses, the eyes, and the cochleae as the main OAR, and formulated new plans for IMRT (coplanar, non-coplanar) and VMAT (coplanar, non-coplanar). Using the dose-volume histogram (DVH), we calculated and compared the effective uniform dose (EUD), normal tissue complication probability (NTCP) of the OAR and the mean and the maximum doses of hippocampus. As a result, if the patient tilted the head forward when receiving the Linac-based treatment, for the same treatment effect in the PTV, we confirmed that a lower dose entered the OAR, such as the hippocampus, eye, lens, and cochlea. Moreover, the damage to the hippocampus was expected to be the least when receiving coplanar VMAT with the head tilted forward. Accordingly, if patients tilt their heads forward when undergoing Linac-based WBRT, we anticipate that a smaller dose would be transmitted to the OAR, resulting in better quality of life following treatment. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. AN INTERNET RACK MONITOR-CONTROLLER FOR APS LINAC RF ELECTRONICS UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hengjie; Smith, Terry; Nassiri, Alireza

    To support the research and development in APS LINAC area, the existing LINAC rf control performance needs to be much improved, and thus an upgrade of the legacy LINAC rf electronics becomes necessary. The proposed upgrade plan centers on the concept of using a modern, network-attached, rackmount digital electronics platform –Internet Rack Monitor-Controller (or IRMC) to achieve the goal of modernizing the rf electronics at a lower cost. The system model of the envisioned IRMC is basically a 3-tier stack with a high-performance DSP in the mid-layer to perform the core tasks of real-time rf data processing and controls. Themore » Digital Front-End (DFE) attachment layer at bottom bridges the applicationspecific rf front-ends to the DSP. A network communication gateway, together with an embedded event receiver (EVR) in the top layer merges the Internet Rack MonitorController node into the networks of the accelerator controls infrastructure. Although the concept is very much in trend with today’s Internet-of-Things (IoT), this implementation has actually been used in the accelerators for over two decades.« less

  20. Development Status of Ion Source at J-PARC Linac Test Stand

    NASA Astrophysics Data System (ADS)

    Yamazaki, S.; Takagi, A.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Oguri, H.

    The Japan Proton Accelerator Research Complex (J-PARC) linac power upgrade program is now in progress in parallel with user operation. To realize a nominal performance of 1 MW at 3 GeV Rapid Cycling Synchrotron and 0.75 MW at the Main Ring synchrotron, we need to upgrade the peak beam current (50 mA) of the linac. For the upgrade program, we are testing a new front-end system, which comprises a cesiated RF-driven H- ion source and a new radio -frequency quadrupole linac (RFQ). The H- ion source was developed to satisfy the J-PARC upgrade requirements of an H- ion-beam current of 60 mA and a lifetime of more than 50 days. On February 6, 2014, the first 50 mA H- beams were accelerated by the RFQ during a beam test. To demonstrate the performance of the ion source before its installation in the summer of 2014, we tested the long-term stability through continuous beam operation, which included estimating the lifetime of the RF antenna and evaluating the cesium consumption.

  1. Short wavelength limits of current shot noise suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il; Dyunin, Egor; Gover, Avraham

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasmamore » wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.« less

  2. Radiological Studies for the LCLS Beam Abort System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana Leitner, M.; Vollaire, J.; Mao, X.S.

    2008-03-25

    The Linac Coherent Light Source (LCLS), a pioneer hard x-ray free electron laser is currently under construction at the Stanford Linear Accelerator Center. It is expected that by 2009 LCLS will deliver laser pulses of unprecedented brightness and short length, which will be used in several forefront research applications. This ambitious project encompasses major design challenges to the radiation protection like the numerous sources and the number of surveyed objects. In order to sort those, the showers from various loss sources have been tracked along a detailed model covering 1/2 mile of LCLS accelerator by means of the Monte Carlomore » intra nuclear cascade codes FLUKA and MARS15. This article covers the FLUKA studies of heat load; prompt and residual dose and environmental impact for the LCLS beam abort system.« less

  3. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGES

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  4. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based stereotactic body radiotherapy for central early-stage non−small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merna, Catherine; Rwigema, Jean-Claude M.; Cao, Minsong

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non−small cell lung cancer with a tri-cobalt-60 (tri-{sup 60}Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)–based SBRT. In all, 20 patients with large central early-stage non−small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-{sup 60}Co system for a prescription dose of 50 Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R{sub 100} values were calculatedmore » as the total tissue volume receiving 100% of the dose (V{sub 100}) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-{sup 60}Co SBRT plans were performed using Student's t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3 cc (range: 12.1 to 139.4 cc). Of the tri-{sup 60}Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R{sub 100} values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-{sup 60}Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-{sup 60}Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial.« less

  5. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  6. Calorimetry of electron beams and the calibration of dosimeters at high doses

    NASA Astrophysics Data System (ADS)

    Humphreys, J. C.; McLaughlin, W. L.

    Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.

  7. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Electron Accelerators for Research at the Frontiers of Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartline, Beverly; Grunder, Hermann

    1986-10-01

    Electron accelerators for the frontiers of nuclear physics must provide high duty factor (gte 80) for coincidence measurements; few-hundred-MeV through few-GeV energy for work in the nucleonic, hadronic, and confinement regimes; energy resolution of ~ 10 -4; and high current (gte 100 zA). To fulfill these requirements new machines and upgrades of existing ones are being planned or constructed. Representative microtron-based facilities are the upgrade of MAMI at the University of Mainz (West Germany), the proposed two-stage cascade microtron at the University of Illinois (U.S.A.), and the three-stage Troitsk ``polytron'' (USSR). Representative projects to add pulse stretcher rings to existingmore » linacs are the upgrades at MIT-Bates (U.S.A.) and at NIKHEF-K (Netherlands). Recent advances in superconducting rf technology, especially in cavity design and fabrication, have made large superconducting cw linacs become feasible. Recirculating superconducting cw linacs are under construc« less

  9. Compact injector with alternating phase focusing-interdigital H-mode linac and superconducting electron cyclotron resonance ion source for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro

    2000-02-01

    We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.

  10. Development of a high-power solid-state switch using static induction thyristors for a klystron modulator

    NASA Astrophysics Data System (ADS)

    Tokuchi, Akira; Kamitsukasa, Fumiyoshi; Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro

    2015-01-01

    We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch's robustness and long-term reliability.

  11. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting techniquemore » is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.« less

  12. Physics design of APT linac with normal conducting rf cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, S.; Billen, J.H.; Stovall, J.E.

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design aremore » typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results.« less

  13. Beam dynamics pre-design with KONUS principle for the DTL of SPPC p-Linac

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Li, Haipeng; Lu, Yuanrong; Su, Jiancang; Liu, Xiaolong; Fu, Qi

    2018-04-01

    As the Higgs bosons were observed on the LHC in 2012, a two-stage particle collider program named CEPC-SPPC is proposed for precise measurement of Higgs properties and exploring the new physics models. In order to deliver a 2.1-TeV proton beam into the Super Proton-Proton Collider (SPPC), the injector chain will use a 1.2-GeV proton linac (p-Linac) and three synchrotrons of p-RCS, MSS and SS. This paper focuses on the preliminary conceptual design of the DTL within the p-Linac and mainly concerns about the beam dynamics studies. Taking advantages of the KONUS principle and LORASR code, a 325 MHz, 50.65 MeV DTL design which is composed of three tanks in 15.6 m will be presented. The whole DTL contains 129 gaps for beam acceleration, one quadruple doublet which is behind the buncher and eight quadruple triplets of which three are located after each tank, respectively. The aims of this pre-study are to optimize the acceleration electric field distribution together with the focusing magnetic field parameters, enhance the beam transmission quality of beam envelopes, particle distribution and energy spread, then improve the DTL performance in terms of transmission efficiency and so on. The results of the analyses show that the DTL pre-design achieves 16.8 times high energy gain and meets all the p-Linac requirements well.

  14. Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source

    DOE PAGES

    Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; ...

    2015-03-02

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We find that the wakefields in the accelerator structures play an important role in the twin-bunchmore » compression, and through analysis show that they can be used to extend the available time delay range. As a result, based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less

  15. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    NASA Astrophysics Data System (ADS)

    Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.

    2016-09-01

    The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  16. Integer programming for improving radiotherapy treatment efficiency.

    PubMed

    Lv, Ming; Li, Yi; Kou, Bo; Zhou, Zhili

    2017-01-01

    Patients received by radiotherapy departments are diverse and may be diagnosed with different cancers. Therefore, they need different radiotherapy treatment plans and thus have different needs for medical resources. This research aims to explore the best method of scheduling the admission of patients receiving radiotherapy so as to reduce patient loss and maximize the usage efficiency of service resources. A mix integer programming (MIP) model integrated with special features of radiotherapy is constructed. The data used here is based on the historical data collected and we propose an exact method to solve the MIP model. Compared with the traditional First Come First Served (FCFS) method, the new method has boosted patient admission as well as the usage of linear accelerators (LINAC) and beds. The integer programming model can be used to describe the complex problem of scheduling radio-receiving patients, to identify the bottleneck resources that hinder patient admission, and to obtain the optimal LINAC-bed radio under the current data conditions. Different management strategies can be implemented by adjusting the settings of the MIP model. The computational results can serve as a reference for the policy-makers in decision making.

  17. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    NASA Astrophysics Data System (ADS)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  18. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, A; Rangaraj, D; Perez-Andujar, A

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each weremore » calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.« less

  19. Digitally Controlled Four Harmonic Buncher for FSU LINAC

    NASA Astrophysics Data System (ADS)

    Moerland, Daniel S.; Wiedenhoever, Ingo; Baby, Lagy T.; Caussyn, David; Spingler, David

    2012-03-01

    Florida State University's John D. Fox Superconducting Accelerator Laboratory is operating a Tandem-Linac system for heavy ion beams at energies of 5-10 MeV/u. Recently, the accelerator has been used as the driver for the radioactive beam facility RESOLUT, which poses new demands on its high-intensity performance and time-resolution. These demands motivated us to optimize the RF bunching system and to switch the bunch frequency from 48.5 to 12.125 MHz. We installed a four-harmonic resonant transformer to create 3-4 kV potential oscillations across a pair of wire-mesh grids. This setup is modulating the energy of the beam injected into the tandem accelerator, with the aim to create short bunches of beam particles. Asawtooth-like wave-form is created using the Fourier series method, by combining the basis sinusoidal wave of 12.125MHz and its 3 higher order harmonics, in a manner similar to the systems used at ATLAS [1] and other RF-accelerators. A new aspect of our setup is the use of a digital 1GHz function generator, which allows us to optimize and stabilize the synthesized waveform. The control system was realized using labview and integrated into the recently updated controls of the accelerator. We characterize the bunching quality achievedand discuss the optimization of the bunching wave-form. The bunching system has been successfully used in a number of Linac-experiments performed during 2011.[4pt][1] S. Sharamentov, J. Bogaty, B.E. Clifft, R. Pardo, UPGRADE OF THE ATLAS POSITIVE ION INJECTOR BUNCHING SYSTEM, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

  20. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C; Yan, G; Helmig, R

    2014-06-01

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect tomore » the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within ±1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.« less

  1. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy.

    PubMed

    Zschornack, G; Schwan, A; Ullmann, F; Grossmann, F; Ovsyannikov, V P; Ritter, E

    2012-02-01

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H(+), H(2)(+), H(3)(+), C(4+), and C(6+) are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  2. Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System

    NASA Astrophysics Data System (ADS)

    Gao, Xingshun; Zhao, Lei; Liu, Jinxin; Jiang, Zouyi; Hu, Xiaofang; Liu, Shubin; An, Qi

    2016-12-01

    A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of the Beam Position Monitor (BPM). Considering that the delay variations of different analog circuit channels would introduce phase measurement errors, we propose a new method to tune the digital waveforms of four channels before summation and achieve real-time error correction. The process is based on the vector rotation method and implemented within one single Field Programmable Gate Array (FPGA) device. Tests were conducted to evaluate this correction method and the results indicate that a phase correction precision better than ± 0.3° over the dynamic range from -60 dBm to 0 dBm is achieved.

  3. A Monte Carlo model for photoneutron generation by a medical LINAC

    NASA Astrophysics Data System (ADS)

    Sumini, M.; Isolan, L.; Cucchi, G.; Sghedoni, R.; Iori, M.

    2017-11-01

    For an optimal tuning of the radiation protection planning, a Monte Carlo model using the MCNPX code has been built, allowing an accurate estimate of the spectrometric and geometrical characteristics of photoneutrons generated by a Varian TrueBeam Stx© medical linear accelerator. We considered in our study a device working at the reference energy for clinical applications of 15 MV, stemmed from a Varian Clinac©2100 modeled starting from data collected thanks to several papers available in the literature. The model results were compared with neutron and photon dose measurements inside and outside the bunker hosting the accelerator obtaining a complete dose map. Normalized neutron fluences were tallied in different positions at the patient plane and at different depths. A sensitivity analysis with respect to the flattening filter material were performed to enlighten aspects that could influence the photoneutron production.

  4. A polyvalent harmonic coil testing method for small-aperture magnets

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis

    2012-08-01

    A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).

  5. Optical pulse evolution in the Stanford free-electron laser and in a tapered wiggler

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1982-01-01

    The Stanford free electron laser (FEL) oscillator is driven by a series of electron pulses from a high-quality superconducting linear accelerator (LINAC). The electrons pass through a transverse and nearly periodic magnetic field, a 'wiggler', to oscillate and amplify a superimposed optical pulse. The rebounding optical pulse must be closely synchronized with the succession of electron pulses from the accelerator, and can take on a range of structures depending on the precise degree of synchronism. Small adjustments in desynchronism can make the optical pulse either much shorter or longer than the electron pulse, and can cause significant subpulse structure. The oscillator start-up from low level incoherent fields is discussed. The effects of desynchronism on coherent pulse propagation are presented and compared with recent Stanford experiments. The same pulse propagation effects are studied for a magnet design with a tapered wavelength in which electrons are trapped in the ponderomotive potential.

  6. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  7. Top-up operation at Pohang Light Source-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, I.; Huang, J. Y.; Kim, M.

    2014-05-15

    After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac weremore » the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si ) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.« less

  8. Design of High Efficiency High Power Electron Accelerator Systems Based on Normal Conducting RF Technology for Energy and Environmental Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery; Tantawi, Sami

    The goal of this project was to perform engineering design studies of three extremely high efficiency electron accelerators with the following parameters [1]: 2 MeV output beam energy and 1 MW average beam power; 10 MeV output energy and 10 MW; 10 MeV output energy and 1 MW. These linacs are intended for energy and environmental applications [2]. We based our designs on normal conducting radio-frequency technology. We have successfully reached this goal where we show rf-to-beam efficiency of 96.7 %, 97.2 %, and 79.6 % for these linacs.

  9. Development of stripper options for FRIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marti, F.; Hershcovitch, A.; Momozaki, Y.

    2010-09-12

    The US Department of Energy Facility for Rare Isotope Beams (FRIB) at Michigan State University includes a heavy ion superconducting linac capable of accelerating all ions up to uranium with energies higher than 200 MeV/u and beam power up to 400 kW. To achieve these goals with present ion source performance it is necessary to accelerate simultaneously two charge states of uranium from the ion source in the first section of the linac. At an energy of approximately 16.5 MeV/u it is planned to strip the uranium beam to reduce the voltage needed in the rest of the linac tomore » achieve the final energy. Up to five different charge states are planned to be accelerated simultaneously after the stripper. The design of the stripper is a challenging problem due to the high power deposited (approximately 0.7 kW) in the stripper media by the beam in a small spot. To assure success of the project we have established a research and development program that includes several options: carbon or diamond foils, liquid lithium films, gas strippers and plasma strippers. We present in this paper the status of the different options.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Slawomir Alex

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normalmore » conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.« less

  11. SU-F-I-02: Comparative Analysis and Constancy Check of Image Quality Parameters for Three Linear Accelerators Per TG 142 Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altundal, Y; Pokhrel, D; Jiang, H

    Purpose: To compare image quality parameters and assessing the image stability of three different linear accelerators (linac) for 2D and 3D imaging modalities: planar kV, MV images and cone-beam CT (CBCT). Methods: QCkV1, QC-3 and Cathpan-600 phantoms were utilized to acquire kV, MV and CBCT images respectively on monthly basis per TG142 QA protocol for over 2 years on 21Ex, NovalisTx and TrueBeam linacs. DICOM images were analyzed with the help of QA analysis software: PIPsPro from Standard Imaging. For planar kV and MV images, planar spatial resolution, contrast to noise ratio (CNR) and noise; for CBCT, HU values weremore » collected and analyzed. Results: Two years of monthly QA measurements were analyzed for the planar and CBCT images. Values were normalized to the mean and the standard deviations (STD) are presented. For the kV planar radiographic images the STD of spatial resolution for f30, f40, f50, CNR and noise for 21Ex are 0.006, 0.011, 0.013, 0.046, 0.026; Novalis-Tx are 0.009, 0.016, 0.016, 0.067, 0.053 ; TrueBeam are 0.007, 0.005, 0.009, 0.017, 0.016 respectively. For the MV planar radiographic images, the STD of spatial resolution for f30, f40, f50, CNR and noise for 21Ex are 0.009, 0.010, 0.008, 0.023, 0.023; for Novalix-Tx are 0.012, 0.010, 0.008, 0.029, 0.023 and for TrueBeam are 0.010, 0.010, 0.007, 0.022, 0.022 respectively. For the CBCT images, HU constancies of Air, Polystyrene, Teflon, PMP, LDPE and Delrin for 21Ex are 0.014, 0.070, 0.031, 0.053, 0.076, 0.087; for Novalis Tx are 0.019, 0.047, 0.035, 0.059, 0.077, 0.087 and for TrueBeam are 0.011, 0.044, 0.025, 0.044, 0.056, 0.020 respectively. Conclusion: These Imaging QA results demonstrated that the TrueBeam, performed better in terms of image quality stability for both kV planer and CBCT images as well as EPID MV images, however other two linacs were also satisfied TG142 guidelines.« less

  12. Feasibility of magnetic resonance imaging-guided liver stereotactic body radiation therapy: A comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based intensity modulated radiation therapy.

    PubMed

    Kishan, Amar U; Cao, Minsong; Wang, Pin-Chieh; Mikaeilian, Argin G; Tenn, Stephen; Rwigema, Jean-Claude M; Sheng, Ke; Low, Daniel A; Kupelian, Patrick A; Steinberg, Michael L; Lee, Percy

    2015-01-01

    The purpose of this study was to investigate the dosimetric feasibility of liver stereotactic body radiation therapy (SBRT) using a teletherapy system equipped with 3 rotating (60)Co sources (tri-(60)Co system) and a built-in magnetic resonance imager (MRI). We hypothesized tumor size and location would be predictive of favorable dosimetry with tri-(60)Co SBRT. The primary study population consisted of 11 patients treated with SBRT for malignant hepatic lesions whose linear accelerator (LINAC)-based SBRT plans met all mandatory Radiation Therapy Oncology Group (RTOG) 1112 organ-at-risk (OAR) constraints. The secondary study population included 5 additional patients whose plans did not meet the mandatory constraints. Patients received 36 to 60 Gy in 3 to 5 fractions. Tri-(60)Co system SBRT plans were planned with ViewRay system software. All patients in the primary study population had tri-(60)Co SBRT plans that passed all RTOG constraints, with similar planning target volume coverage and OAR doses to LINAC plans. Mean liver doses and V10Gy to the liver, although easily meeting RTOG 1112 guidelines, were significantly higher with tri-(60)Co plans. When the 5 additional patients were included in a univariate analysis, the tri-(60)Co SBRT plans were still equally able to pass RTOG constraints, although they did have inferior ability to pass more stringent liver and kidney constraints (P < .05). A multivariate analysis found the ability of a tri-(60)Co SBRT plan to meet these constraints depended on lesion location and size. Patients with smaller or more peripheral lesions (as defined by distance from the aorta, chest wall, liver dome, and relative lesion volume) were significantly more likely to have tri-(60)Co plans that spared the liver and kidney as well as LINAC plans did (P < .05). It is dosimetrically feasible to perform liver SBRT with a tri-(60)Co system with a built-in MRI. Patients with smaller or more peripheral lesions are more likely to have optimal liver and kidney sparing, with the added benefit of MRI guidance, when receiving tri-(60)Co-based SBRT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. Fermilab proton accelerator complex status and improvement plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2017-05-30

    Fermilab carries out an extensive program of accelerator-based high energy particle physics research at the Intensity Frontier that relies on the operation of 8 GeV and 120 GeV proton beamlines for a n umber of fixed target experiments. Routine operation with a world-record 700kW of average 120 GeV beam power on the neutrino target was achieved in 2017 as the result of the Proton Improvement Plan (PIP) upgrade. There are plans to further increase the power to 900 – 1000 kW. The next major upgrade of the FNAL accelerator complex, called PIP-II, is under development. It aims at 1.2MW beammore » power on target at the start of the LBNF/DUNE experiment in the middle of the next decade and assumes replacement of the existing 40-years old 400 MeV normal-conducting Linac with a modern 800 MeV superconducting RF linear accelerator. There are several concepts to further double the beam power to >2.4MW after replacement of the existing 8 GeV Booster synchrotron. In this article we discuss current performance of the Fermilab proton accelerator complex, the upgrade plans for the next two decades and the accelerator R&D program to address cost and performance risks for these upgrades.« less

  14. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    DOE PAGES

    Simos, N.; Ludewig, H.; Kirk, H.; ...

    2018-05-29

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less

  15. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    NASA Astrophysics Data System (ADS)

    Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.

    2018-05-01

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.

  16. Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Ludewig, H.; Kirk, H.

    The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less

  17. SU-F-E-18: Training Monthly QA of Medical Accelerators: Illustrated Instructions for Self-Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Court, L; Wang, H; Aten, D

    Purpose: To develop and test clear illustrated instructions for training of monthly mechanical QA of medical linear accelerators. Methods: Illustrated instructions were created for monthly mechanical QA with tolerance tabulated, and underwent several steps of review and refinement. Testers with zero QA experience were then recruited from our radiotherapy department (1 student, 2 computational scientists and 8 dosimetrists). The following parameters were progressively de-calibrated on a Varian C-series linac: Group A = gantry angle, ceiling laser position, X1 jaw position, couch longitudinal position, physical graticule position (5 testers); Group B = Group A + wall laser position, couch lateral andmore » vertical position, collimator angle (3 testers); Group C = Group B + couch angle, wall laser angle, and optical distance indicator (3 testers). Testers were taught how to use the linac, and then used the instructions to try to identify these errors. A physicist observed each session, giving support on machine operation, as necessary. The instructions were further tested with groups of therapists, graduate students and physics residents at multiple institutions. We have also changed the language of the instructions to simulate using the instructions with non-English speakers. Results: Testers were able to follow the instructions. They determined gantry, collimator and couch angle errors within 0.4, 0.3, and 0.9degrees of the actual changed values, respectively. Laser positions were determined within 1mm, and jaw positions within 2mm. Couch position errors were determined within 2 and 3mm for lateral/longitudinal and vertical errors, respectively. Accessory positioning errors were determined within 1mm. ODI errors were determined within 2mm when comparing with distance sticks, and 6mm when using blocks, indicating that distance sticks should be the preferred approach for inexperienced staff. Conclusion: Inexperienced users were able to follow these instructions, and catch errors within the criteria suggested by AAPM TG142 for linacs used for IMRT.« less

  18. Beam dynamics in heavy ion induction LINACS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.

  19. The Status of Turkish Accelerator Center Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavas, Oe.

    2007-04-23

    Recently, conceptual design of Turkic Accelerator Center (TAC) proposal was completed. Main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by Turkish government. It is planned that the Technical Design Report of TAC will have been written in next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeVmore » electron energies will be used to obtain infra red free electron laser. The main parameters of the electron linac, the optical cavities and the free electron laser were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were stated.« less

  20. The development of magnetic field measurement system for drift-tube linac quadrupole

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  1. Transport and energy selection of laser generated protons for postacceleration with a compact linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Londrillo, Pasquale; Rossi, Francesco; Giove, Dario; De Martinis, Carlo; Sumini, Marco

    2013-03-01

    Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.

  2. Jefferson Lab 12 GEV Cebaf Upgrade

    NASA Astrophysics Data System (ADS)

    Rode, C. H.

    2010-04-01

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  3. Preparation of a primary argon beam for the CERN fixed target physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R.

    2014-02-15

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear acceleratormore » (Linac3) at CERN.« less

  4. Advanced Photon Source accelerator ultrahigh vacuum guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  5. Analysis of HOM Problems in the C-ADS Main Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Burn; Ng, King Yuen

    2017-05-18

    Excitation of higher-order modes (HOMs) in superconducting cavities may severely affect the operation of the main linac in the Chinese Accelerator Driven System (CADS). Preliminary analysis is made on the effects of beam dynamic, which includes possible longitudinal and transverse emittance enlargements, as well as the possibility of beam breakup. Suggestions are given for further investigation. Comparison is made between the C-ADS and the Fermilab Project X.

  6. Beam Measurement of 11.424 GHz X-Band Linac for Compton Scattering X-ray Source

    NASA Astrophysics Data System (ADS)

    Natsui, Takuya; Mori, Azusa; Masuda, Hirotoshi; Uesaka, Mitsuru; Sakamoto, Fumito

    2010-11-01

    An inverse Compton scattering X-ray source for medical applications, consisting of an X-band (11.424 GHz) linac and Q-switched Nd:YAG laser, is currently being developed at the University of Tokyo. This system uses an X-band 3.5-cell thermionic cathode RF gun for electron beam generation. We can obtain a multi-bunch electron beam with this gun. The beam is accelerated to 30 MeV by a traveling-wave accelerating tube. So far, we have verified stable beam generation (around 2.3 MeV) by using the newly designed RF gun and we have succeeded in beam transportation to a beam dump.

  7. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K.

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentialsmore » are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.« less

  8. The Energy Efficiency of High Intensity Proton Driver Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, Vyacheslav; Grillenberger, Joachim; Kim, Sang-Ho

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  9. Identification of High-Z Materials With Photoneutrons Driven by a Low-Energy Electron Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Yigang; Zhang, Zhi; Chen, Huaibi; Li, Yulan; Li, Yuanjing

    2017-07-01

    Contraband-detection systems can use X-rays and photoneutrons delivered from the same 7-MeV electron linear accelerator (e-LINAC) to stimulate and extract information from inspected materials. The X-ray attenuation information is used to measure the mass thickness, which is combined with the photoneutron attenuation information to categorize inspected materials as common organic materials, metals, and heavy metals. Once a heavy metal is found, the beta-delayed neutrons stimulated by the (γ,fission) reaction are measured by a polyethylene-moderated 3He counter to clarify if the material is fissile. The presence of neutron events 2000 μs after the X-ray pulse confirms the existence of the fissile material. The isotopes in the material are then identified using the time-of-flight method to analyze the resonant attenuation of the fissile material to the 10-1-102 eV photoneutrons emitted from and thermalized by the D2O photonto-neutron convertor, which converts X-rays to photoneutrons. Eight high-Z simulants are tested to confirm the feasibility of identifying the isotopes from the photoneutron resonance. The underlying principles and experimental results are discussed.

  10. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    NASA Astrophysics Data System (ADS)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half-cell electron gun and a five-cell SRF linac cavity are presented. Several RF and beam dynamics issues ultimately resulting in an optimum cavity design are discussed in detail.

  11. Theoretical and Computational Investigation of High-Brightness Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chiping

    Theoretical and computational investigations of adiabatic thermal beams have been carried out in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research and for various applications such as light sources. Most accelerator applications require high-brightness beams. This is true for high-energy accelerators such as linear colliders. It is also true for energy recovery linacs (ERLs) and free electron lasers (FELs) such as x-ray free electron lasers (XFELs). The breakthroughs and highlights in our research in the period from February 1, 2013 to November 30, 2013 were: a) Completion of a preliminary theoretical and computationalmore » study of adiabatic thermal Child-Langmuir flow (Mok, 2013); and b) Presentation of an invited paper entitled ?Adiabatic Thermal Beams in a Periodic Focusing Field? at Space Charge 2013 Workshop, CERN, April 16-19, 2013 (Chen, 2013). In this report, an introductory background for the research project is provided. Basic theory of adiabatic thermal Child-Langmuir flow is reviewed. Results of simulation studies of adiabatic thermal Child-Langmuir flows are discussed.« less

  12. Design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project

    NASA Astrophysics Data System (ADS)

    Shu, D.; Shvyd'ko, Y.; Amann, J.; Emma, P.; Stoupin, S.; Quintana, J.

    2013-03-01

    As the result of collaborations between the Advanced Photon Source (APS), Argonne National Laboratory, and the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory, we have designed and constructed a diamond crystal monochromator for the LCLS hard x-ray self-seeding project. The novel monochromator is ultrahigh-vacuum compatible to meet the LCLS linear accelerator vacuum environmental requirement. A special graphite holder was designed for strain-free mount of the 110-μm thin synthetic diamond crystal plate provided by Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM). An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the thin-film diamond holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Optical encoders, limit switches, and hardware stops are established in the mechanism to ensure system reliability and to meet the accelerator personal and equipment safety interlock requirements. Molybdenum shields are installed in the monochromator to protect the encoders and associated electronics from radiation damage. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.

  13. The ESS Superconducting RF Cavity and Cryomodule Cryogenic Processes

    NASA Astrophysics Data System (ADS)

    Darve, C.; Elias, N.; Molloy, S.; Bosland, P.; Renard, B.; Bousson, S.; Olivier, G.; Reynet, D.; Thermeau, J. P.

    The European Spallation Source (ESS) is one of Europe's largest research infrastructures, tobring new insights to the grand challenges of science and innovation in fields as diverse as material and life sciences, energy, environmental technology, cultural heritage,solid-state and fundamental physics by the end of the decade. The collaborative project is funded by a collaboration of 17 European countries and is under design and construction in Lund, Sweden. A 5 MW, long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms and the repetition frequency is 14 Hz (4% duty cycle). The choice of SRF technology is a key element in the development of the ESS linear accelerator (linac). The superconducting linacis composed of one section of spoke cavity cryomodules(352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K, cooled by the accelerator cryoplantthrough the cryogenic distribution system. This paper presents the superconducting RF cavity and cryomodule cryogenic processes, which are developed for the technology demonstrators and to be ultimately integrated for the ESS tunnel operation.

  14. A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu

    At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.

  15. Clinical implementation of photon beam flatness measurements to verify beam quality.

    PubMed

    Goodall, Simon; Harding, Nicholas; Simpson, Jake; Alexander, Louise; Morgan, Steve

    2015-11-08

    This work describes the replacement of Tissue Phantom Ratio (TPR) measurements with beam profile flatness measurements to determine photon beam quality during routine quality assurance (QA) measurements. To achieve this, a relationship was derived between the existing TPR15/5 energy metric and beam flatness, to provide baseline values and clinically relevant tolerances. The beam quality was varied around two nominal beam energy values for four matched Elekta linear accelerators (linacs) by varying the bending magnet currents and reoptimizing the beam. For each adjusted beam quality the TPR15/5 was measured using an ionization chamber and Solid Water phantom. Two metrics of beam flatness were evaluated using two identical commercial ionization chamber arrays. A linear relationship was found between TPR15/5 and both metrics of flatness, for both nominal energies and on all linacs. Baseline diagonal flatness (FDN) values were measured to be 103.0% (ranging from 102.5% to 103.8%) for 6 MV and 102.7% (ranging from 102.6% to 102.8%) for 10 MV across all four linacs. Clinically acceptable tolerances of ± 2% for 6 MV, and ± 3% for 10 MV, were derived to equate to the current TPR15/5 clinical tolerance of ± 0.5%. Small variations in the baseline diagonal flatness values were observed between ionization chamber arrays; however, the rate of change of TPR15/5 with diagonal flatness was found to remain within experimental uncertainty. Measurements of beam flatness were shown to display an increased sensitivity to variations in the beam quality when compared to TPR measurements. This effect is amplified for higher nominal energy photons. The derivation of clinical baselines and associated tolerances has allowed this method to be incorporated into routine QA, streamlining the process whilst also increasing versatility. In addition, the effect of beam adjustment can be observed in real time, allowing increased practicality during corrective and preventive maintenance interventions.

  16. Investigation of Re-X glass ceramic for acceleration insulating columns

    NASA Astrophysics Data System (ADS)

    Faltens, A.; Rosenblum, S.

    1985-05-01

    In an induction linac the accelerating voltage appears along a voltage-graded vacuum insulator column which is a performance limiting and major cost component. Re-X glass ceramic insulators have the long-sought properties of allowing cast-in gradient electrodes, good breakdown characteristics, and compatibility with high vacuum systems. Re-X is a glass ceramic developed by General Electric for use in the manufacture of electrical apparatus, such as vacuum arc interrupters. We have examined vacuum outgassing behavior and voltage breakdown in vacuum and find excellent performance. The housings are in the shape of tubes with type 430 stainless steel terminations. Due to a matched coefficient of thermal expansion between metal and insulator, no vacuum leaks have resulted from any welding operation. The components should be relatively inexpensive to manufacture in large sizes and appear to be a very attractive accelerator column. We are planning to use a standard GE housing in our MBE-4 induction linac.

  17. Cryogenic system for BERLinPro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, W.; Hellwig, A.; Knobloch, J.

    2014-01-29

    In 2010 Helmholtz-Zentrum Berlin (HZB) received funding to design and build the Berlin Energy Recovery Linac Project BERLinPro. The goal of this compact Energy recovery linac (ERL) is to develop the accelerator physics and technology required to generate and accelerate a 100-mA, 1-mm mrad emittance electron beam. The BERLinPro know-how can then be transferred to various ERL-based applications. All accelerating RF cavities including the electron source are based on superconducting technology operated at 1.8 K. A Linde L700 helium liquefier is supplying 4.5 K helium. The subatmospheric pressure of 16 mbar of the helium bath of the cavities will bemore » achieved by pumping with a set of cold compressors and warm vacuum pumps. While the L700 is already in operating, the 1.8 K system and the helium transfer system are in design phase.« less

  18. TH-AB-BRB-00: Research Opportunities with Digital Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less

  19. Surface and buildup dose characteristics for 6, 10, and 18 MV photons from an Elekta Precise linear accelerator.

    PubMed

    Klein, Eric E; Esthappan, Jacqueline; Li, Zuofeng

    2003-01-01

    Understanding head scatter characteristics of photon beams is vital to properly commission treatment planning (TP) algorithms. Simultaneously, having definitive surface and buildup region dosimetry is important to optimize bolus. The Elekta Precise linacs have unique beam flattening filter configurations for each photon beam (6, 10, and 18 MV) in terms of material and location. We performed a comprehensive set of surface and buildup dose measurements with a thin window parallel-plate (PP) chamber to examine effects of field size (FS), source-to-skin distance (SSD), and attenuating media. Relative ionization data were converted to fractional depth dose (FDD) after correcting for bias effects and using the Gerbi method to account for chamber characteristics. Data were compared with a similar vintage Varian linac. At short SSDs the surface and buildup dose characteristics were similar to published data for Varian and Elekta accelerators. The FDD at surface (FDD(0)) for 6, 10, and 18 MV photons was 0.171, 0.159, and 0.199, respectively, for a 15x15 cm2, 100 cm SSD field. A blocking tray increased FDD(0) to 0.200, 0.200, and 0.256, while the universal wedge decreased FDD(0) to 0.107, 0.124, and 0.176. FDD(0) increased linearly with FS (approximately 1.16%/cm). FDD(0) decreased exponentially for 10 and 18 MV with increasing SSD. However, the 6 MV FDD(0) actually increased slightly with increasing SSD. This is likely due to the unique distal flattening filter for 6 MV. The measured buildup curves have been used to optimize TP calculations and guide bolus decisions. Overall the FDD(0) and buildup doses were very similar to published data. Of interest were the relatively low 10 MV surface doses, and the 6 MV FDD(0)'s dependence on SSD.

  20. Small field detector correction factors: effects of the flattening filter for Elekta and Varian linear accelerators

    PubMed Central

    Liu, Paul Z.Y.; Lee, Christopher; McKenzie, David R.; Suchowerska, Natalka

    2016-01-01

    Flattening filter‐free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization chambers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ±0.9% across all field sizes measured. Solid‐state detectors showed an increased dependence on the flattening filter of up to ±1.6%. Measured diode response was within ±1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ±1.6% is accepted. PACS number(s): 87.55.km, 87.56.bd, 87.56.Da PMID:27167280

  1. Doubling The Intensity Of An ERL Based Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Hutton

    2005-05-01

    A light source based on an Energy Recovered Linac (ERL) [1] consists of a superconducting linac and a transfer line that includes wigglers and undulators to produce the synchrotron light. The transfer line brings the electron bunches back to the beginning of the linac so that their energy can be recovered when they traverse the linac a second time, {lambda}/2 out of RF phase. There is another interesting condition when the length of the transfer line is (n {+-} 1/4) {lambda}. In this case, the electrons drift through on the zero RF crossing, and make a further pass around themore » transfer line, effectively doubling the circulating current in the wigglers and undulators. On the third pass through the linac, they will be decelerated and their energy recovered. The longitudinal focusing at the zero crossing is a problem, but it can be canceled if the drifting beam sees a positive energy gradient for the first half of the linac and a negative gradient for the second half (or vice versa). This paper presents a proposal to use a double chicane at the center of the linac to provide this focusing inversion for the drifting beam while leaving the accelerating and decelerating beams on crest. [1] G. R. Neil, et al, Phys. Rev. Let. 84, 662 2000« less

  2. A Preliminary Design Of Application Of Wireless Identification And Sensing Platform On External Beam Radiotherapy

    NASA Astrophysics Data System (ADS)

    Heranudin; Bakhri, S.

    2018-02-01

    A linear accelerator (linac) is widely used as a means of radiotherapy by focusing high-energy photons in the targeted tumor of patient. Incorrectness of the shooting can lead normal tissue surrounding the tumor received unnecessary radiation and become damaged cells. A method is required to minimize the incorrectness that mostly caused by movement of the patient during radiotherapy process. In this paper, the Wireless Identification and Sensing Platform (WISP) architecture was employed to monitor in real time the movement of the patient’s body during radiotherapy process. In general, the WISP is a wearable sensors device that can transmit measurement data wirelessly. In this design, the measurement devices consist of an accelerometer, a barometer and an ionizing radiation sensor. If any changes in the body position which resulted in incorrectness of the shooting, the accelerometer and the barometer will trigger a warning to the linac operator. In addition, the radiation sensor in the WISP will detect unwanted radiation and that can endanger the patient. A wireless feature in this device can ease in implementation. Initial analyses have been performed and showed that the WISP is feasible to be applied on external beam radiotherapy.

  3. Physics Division annual review, 1 April 1980-31 March 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less

  4. Radiosurgery for cerebral arteriovenous malformation during pregnancy: A case report focusing on fetal exposure to radiation

    PubMed Central

    Nagayama, Kazuki; Kurita, Hiroki; Tonari, Ayako; Takayama, Makoto; Shiokawa, Yoshiaki

    2010-01-01

    Introduction: We present the case of a pregnant woman who underwent linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) and we discuss the fetal exposure to radiation. Clinical Presentation: A 20-year-old woman at 18 weeks of gestation presented with right cerebral hemorrhage and underwent urgent evacuation of the hematoma. She recovered well after surgery, but cerebral angiography after the surgery revealed a small deeply seated arteriovenous malformation (AVM) in the right frontal lobe extending to the right basal ganglia. Methods and Results: We examined the diffuse AVM and treated it with LINAC-based SRS at 24 weeks of gestation. Before SRS, the fetus was exposed to a radiation dose of 8.26 mGy, which was estimated by conducting an experiment using an adult RANDO phantom, and a radiophotoluminescent (RPL) glass rod dosimeter (GRD) system. The patient underwent Caesarean delivery at 36 weeks of gestation and gave birth to a healthy baby. Conclusion: The exposure of fetus to radiation during SRS was exceedingly low. SRS can be used as an alternative treatment to microsurgery for resolving small deeply seated AVMs even in pregnant patients. PMID:22028762

  5. Enhancement of X-ray dose absorption for medical applications

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Nahar, S.; Pradhan, A.; Barth, R.

    2013-05-01

    A promising technique for cancer treatment is radiation therapy with high-Z (HZ) nanomoities acting as radio-sensitizers attached to tumor cells and irradiated with X-rays. But the efficacy of radiosenstization is highly energy dependent. We study the physical effects in using platinum (Pt) as the radio-sensitizing agent, coupled with commonly employed broadband x-ray sources with mean energies around 100 keV, as opposed to MeV energies produced by clinical linear accelerators (LINAC) used in radiation therapy. Numerical calculations, in vitro, and in vivo studies of F98 rat glioma (brain cancer) demonstrate that irradiation from a medium energy X-ray (MEX) 160 kV source is far more effective than from a high energy x-ray (HEX) 6 MV LINAC. We define a parameter to quantify photoionization by an x-ray source, which thereby provides a measure of subsequent Auger decays. The platinum (Z = 78) results are also relevant to ongoing studies on x-ray interaction with gold (Z = 79) nanoparticles, widely studied as an HZ contrast agent. The present study should be of additional interest for a combined radiation plus chemotherapy treatment since Pt compounds such cis-Pt and carbo-Pt are commonly used in chemotherapy.

  6. SU-F-J-149: Beam and Cryostat Scatter Characteristics of the Elekta MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duglio, M; Towe, S; Roberts, D

    2016-06-15

    Purpose: The Elekta MR-Linac combines a digital linear accelerator system with a 1.5T Philips MRI machine. This study aimed to determine key characteristic information regarding the MR-Linac beam and in particular it evaluated the effect of the MR cryostat on the out of field scatter dose. Methods: Tissue phantom ratios, profiles and depth doses were acquired in plastic water with an IC-profiler or with an MR compatible water tank using multiple system configurations (Full (B0= 1.5T), Full (B0=0T) and No cryostat). Additionally, an in-house CAD based Monte Carlo code based on Penelope was used to provide comparative data. Results: Withmore » the cryostat in place and B0=0T, the measured TPR for the MR Linac system was 0.702, indicating an energy of around 7MV. Without the cryostat, the measured TPR was 0.669. For the Full (B0=0T) case, out of field dose at a depth of 10 cm in the isocentric plane, 5 cm from the field edge was 0.8%, 3.1% and 5.4% for 3×3 cm{sup 2}, 10×10 cm{sup 2} and 20×20 cm{sup 2} fields respectively.The out of field dose (averaged between 5 cm and 10 cm beyond the field edges) in the “with cryostat” case is 0.78% (absolute difference) higher than without the cryostat for clinically relevant field sizes (i.e. 10×10 cm{sup 2}) and comparable to measured conventional 6MV treatment beams at a depth of 10 cm (within 0.1% between 5 cm and 6 cm from field edge). At dose maximum and at 5 cm from the field edge, the “with cryostat” out of field scatter for a 10×10 cm{sup 2} field is 1.5% higher than “without cryostat', with a modest increase (0.9%) compared to Agility 6MV in the same conditions. Conclusion: The study has presented typical characteristics of the MR-Linac beam and determined that out of field dose is comparable to conventional treatment beams. All authors are employed by Elekta Ltd., who are developing an MR-Linac.« less

  7. X -band rf driven free electron laser driver with optics linearization

    DOE PAGES

    Sun, Yipeng; Emma, Paul; Raubenheimer, Tor; ...

    2014-11-13

    In this paper, a compact hard X-ray free electron lasers (FEL) design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1) design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation ismore » investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS). At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.« less

  8. Real-time volumetric relative dosimetry for magnetic resonance—image-guided radiation therapy (MR-IGRT)

    NASA Astrophysics Data System (ADS)

    Lee, Hannah J.; Kadbi, Mo; Bosco, Gary; Ibbott, Geoffrey S.

    2018-02-01

    The integration of magnetic resonance imaging (MRI) with linear accelerators (linac) has enabled the use of 3D MR-visible gel dosimeters for real-time verification of volumetric dose distributions. Several iron-based radiochromic 3D gels were created in-house then imaged and irradiated in a pre-clinical 1.5 T-7 MV MR-Linac. MR images were acquired using a range of balanced-fast field echo (b-FFE) sequences during irradiation to assess the contrast and dose response in irradiated regions and to minimize the presence of MR artifacts. Out of four radiochromic 3D gel formulations, the FOX 3D gel was found to provide superior MR contrast in the irradiated regions. The FOX gels responded linearly with respect to real-time dose and the signal remained stable post-irradiation for at least 20 min. The response of the FOX gel also was found to be unaffected by the radiofrequency and gradient fields created by the b-FFE sequence during irradiation. A reusable version of the FOX gel was used for b-FFE sequence optimization to reduce artifacts by increasing the number of averages at the expense of temporal resolution. Regardless of the real-time MR sequence used, the FOX 3D gels responded linearly to dose with minimal magnetic field effects due to the strong 1.5 T field or gradient fields present during imaging. These gels can easily be made in-house using non-reusable and reusable formulations depending on the needs of the clinic, and the results of this study encourage further applications of 3D gels for MR-IGRT applications.

  9. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  10. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  11. Burst mode FEL with the ETA-III induction linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasnier, C.J.; Allen, S.L.; Felker, B.

    1993-05-13

    Pulses of 140 GHz microwaves have been produced at a 2 kHz rate using the ETA-III induction linac and IMP wiggler. The accelerator was run in bursts of up to 50 pulses at 6 MeV and greater than 2 kA peak current. A feedback timing control system was used to synchronize acceleration voltage pulses with the electron beam, resulting in sufficient reduction of the corkscrew and energy sweep for efficient FEL operation. Peak microwave power for short bursts was in the range 0.5--1.1 GW, which is comparable to the single-pulse peak power of 0.75--2 GW. FEL bursts of more thanmore » 25 pulses were obtained.« less

  12. RESULTS OF THE 2015 HELIUM PROCESSING OF CEBAF CRYOMODULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, Michael A.; Humphry, Jr., Frank J.; King, Larry

    2016-10-01

    Many conference series have adopted the same The CEBAF accelerator at Jefferson Lab consists of an injec-tor and two linacs connected by arcs. Each linac contains 25 cryomodules that are designed to deliver an integrated energy of 2.2 GeV per pass to an electron beam in order to meet 12 GeV energy requirements. Helium processing is a processing technique that is used to reduce field emis-sion (FE) in SRF cavities. Helium processing of the 50 installed linac cryomodules was seen as necessary to support 12 GeV energy requirements. This paper will describe the processing procedure and summarize the results ofmore » this effort.« less

  13. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  14. Design and development of a radio frequency quadrupole linac postaccelerator for the Variable Energy Cyclotron Center rare ion beam project.

    PubMed

    Dechoudhury, S; Naik, V; Mondal, M; Chatterjee, A; Pandey, H K; Mandi, T K; Bandyopadhyay, A; Karmakar, P; Bhattacharjee, S; Chouhan, P S; Ali, S; Srivastava, S C L; Chakrabarti, A

    2010-02-01

    A four-rod type heavy-ion radio frequency quadrupole (RFQ) linac has been designed, constructed, and tested for the rare ion beam (RIB) facility project at VECC. Designed for cw operation, this RFQ is the first postaccelerator in the RIB beam line. It will accelerate A/q < or = 14 heavy ions coming from the ion source to the energy of around 100 keV/u for subsequent acceleration in a number of Interdigital H-Linac. Operating at a resonance frequency of 37.83 MHz, maximum intervane voltage of around 54 kV will be needed to achieve the final energy over a vane length of 3.12 m for a power loss of 35 kW. In the first beam tests, transmission efficiency of about 90% was measured at the QQ focus after the RFQ for O(5+) beam. In this article the design of the RFQ including the effect of vane modulation on the rf characteristics and results of beam tests will be presented.

  15. Beam dynamics simulation of HEBT for the SSC-linac injector

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ni; Yuan, You-Jin; Xiao, Chen; He, Yuan; Wang, Zhi-Jun; Sheng, Li-Na

    2012-11-01

    The SSC-linac (a new injector for the Separated Sector Cyclotron) is being designed in the HIRFL (Heavy Ion Research Facility in Lanzhou) system to accelerate 238U34+ from 3.72 keV/u to 1.008 MeV/u. As a part of the SSC-linac injector, the HEBT (high energy beam transport) has been designed by using the TRACE-3D code and simulated by the 3D PIC (particle-in-cell) Track code. The total length of the HEBT is about 12 meters and a beam line of about 6 meters are shared with the exiting beam line of the HIRFL system. The simulation results show that the particles can be delivered efficiently in the HEBT and the particles at the exit of the HEBT well match the acceptance of the SSC for further acceleration. The dispersion is eliminated absolutely in the HEBT. The space-charge effect calculated by the Track code is inconspicuous. According to the simulation, more than 60 percent of the particles from the ion source can be transported into the acceptance of the SSC.

  16. Issues in Acceleration of A Muon Beam for a Neutrino Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Delayen; D. Douglas; L. Harwood

    2001-06-01

    We have developed a concept for acceleration of a large phase-space, pulsed muon beam from 190 MeV to 50 GeV as part of a collaborative study of the feasibility of a neutrino factory based on in-flight decay of muons. The muon beam's initial energy spread was {approximately}20% and each bunch has the physical size of a soccer ball. Production of the muons will be quite expensive, so prevention of loss due to scraping or decay is critical. The former drives the system to large apertures and the latter calls for high real-estate-average gradients. The solution to be presented utilizes amore » 3 GeV linac to capture the beam, a 4-pass recirculating linac to get the beam to 10 GeV, and then a 5-pass linac to get the beam to 50 GeV. Throughout the system, longitudinal dynamics issues far outweighed transverse dynamics issues. This paper focuses on the issues surrounding the choice of superconducting rf structures over copper structures.« less

  17. Design of a CW high charge state heavy ion RFQ for SSC-LINAC

    NASA Astrophysics Data System (ADS)

    Liu, G.; Lu, Y. R.; He, Y.; Wang, Z.; Xiao, C.; Gao, S. L.; Yang, Y. Q.; Zhu, K.; Yan, X. Q.; Chen, J. E.; Yuan, Y. J.; Zhao, H. W.

    2013-02-01

    The new linac injector SSC-LINAC has been proposed to replace the existing Separator Sector Cyclotron (SSC). This effort is to improve the beam efficiency of the Heavy Ion Research Facility of Lanzhou (HIRFL). As a key component of the linac, a continuous-wave (CW) mode high charge state heavy ion radio-frequency quadrupole (RFQ) accelerator has been designed. It accelerates ions with the ratio of mass to charge up to 7 from 3.728 keV/u to 143 keV/u. The requirements of CW mode operation and the transportation of intense beam have been considered as the greatest challenges. The design is based on 238U34+ beams, whose current is 0.5 pmA (0.5 particle mili-ampere, which is the measured 17 emA electric current divided by charge state of heavy ions). It achieves the transmission efficiency of 94% with 2508.46 mm long vanes in simulation. To improve the transmission efficiency and quality of the beams, the phase advance has been taken into account to analyze the reasons of beam loss and emittance growth. Parametric resonance and beam mismatch have been carefully avoided by adjusting the structure parameters. The parameter-sensitivity of the design is checked by transportation simulations of various input beams. To verify the applicability of machining, the effects of different vane manufacturing methods on beam dynamics are presented in this paper.

  18. Beam dynamics pre-study for the RFQ of SPPC p-Linac

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Lu, Yuanrong; Li, Haipeng; Su, Jiancang; Liu, Xiaolong

    2018-02-01

    A proton-proton collider at center-of-mass energy of more than 70 TeV is the second stage of the CEPC-SPPC program. As proposed, the SPPC injector chain will use a 1.2 GeV p-Linac and three synchrotrons of 10 GeV p-RCS, 180 GeV MSS and 2.1 TeV SS. Peking University is responsible for the preliminary conceptual design of the room temperature part of SPPC p-Linac. This paper is focusing on the beam dynamics studies performed with respect to the 325 MHz RFQ. As the first accelerator structure after the ion source and the front-end of the whole SPPC, RFQ plays an important role in the beam initial transverse focusing and longitudinal bunching. Based on the New Four Section Procedure strategy, as well as the matched and Equipartitioning design method, a 3 MeV RFQ designed by Parmteq code will be introduced. The cavity length of RFQ is 3.6 m and the transmission efficiency is 98%. In this design scheme, the 40 mA proton beam from the 50 keV ion source is accelerated to 3 MeV in 3.8 m length, which achieves a sixty times energy gain. The results of the analyses show that the RFQ design is reliable and meets all the SPPC p-Linac requirements well.

  19. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  20. Monte Carlo Simulation of a 12 MeV Cargo Container Inspection System

    NASA Astrophysics Data System (ADS)

    Ozcan, Ibrahim; Chandler, Katherine; Spaulding, Randy; Farfan, Eduardo

    2007-05-01

    After the terrorist events of 9/11, border security has become one of the most important issues in national security due to the large number of cargo containers entering the country. Screening of all cargo containers for nuclear materials should be performed during border inspections. The technical aspects of inspecting cargo containers using electron accelerators have been studied previously. However, the radiological protection aspects involved in these studies have not been fully considered. This screening process may accidentally harm operators, workers, and bystanders; as well as stowaways hiding inside the containers. In this research project, external doses were estimated at various locations near the inspection system. A 12-MeV linear accelerator (LINAC) was used in the experiment. The relationship between the various locations and doses were determined in this simulation. The simulation was performed using MCNPX. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B2.8

  1. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    NASA Astrophysics Data System (ADS)

    Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.

    2015-07-01

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  2. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. F.; Alvestad, H. W.; Barkley, W. C.

    The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion ofmore » a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.« less

  3. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, Kavin; et al.

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less

  4. MO-FG-CAMPUS-TeP1-03: Pre-Treatment Surface Imaging Based Collision Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiant, D; Maurer, J; Liu, H

    2016-06-15

    Purpose: Modern radiotherapy increasingly employs large immobilization devices, gantry attachments, and couch rotations for treatments. All of which raise the risk of collisions between the patient and the gantry / couch. Collision detection is often achieved by manually checking each couch position in the treatment room and sometimes results in extraneous imaging if collisions are detected after image based setup has begun. In the interest of improving efficiency and avoiding extra imaging, we explore the use of a surface imaging based collision detection model. Methods: Surfaces acquired from AlignRT (VisionRT, London, UK) were transferred in wavefront format to a custommore » Matlab (Mathworks, Natick, MA) software package (CCHECK). Computed tomography (CT) scans acquired at the same time were sent to CCHECK in DICOM format. In CCHECK, binary maps of the surfaces were created and overlaid on the CT images based on the fixed relationship of the AlignRT and CT coordinate systems. Isocenters were added through a graphical user interface (GUI). CCHECK then compares the inputted surfaces to a model of the linear accelerator (linac) to check for collisions at defined gantry and couch positions. Note, CCHECK may be used with or without a CT. Results: The nominal surface image field of view is 650 mm × 900 mm, with variance based on patient position and size. The accuracy of collision detections is primarily based on the linac model and the surface mapping process. The current linac model and mapping process yield detection accuracies on the order of 5 mm, assuming no change in patient posture between surface acquisition and treatment. Conclusions: CCHECK provides a non-ionizing method to check for collisions without the patient in the treatment room. Collision detection accuracy may be improved with more robust linac modeling. Additional gantry attachments (e.g. conical collimators) can be easily added to the model.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutic, S; Low, D; Chmielewski, T

    Purpose: To describe the design and characteristics of a novel linac-based MRI guided radiation therapy system that addresses RF and magnetic field interference and that can be housed in conventional radiotherapy vaults. Methods: The MR-IGRT system will provide simultaneous MR imaging combined with both simple (3D) and complex (IMRT, SBRT, SRS) techniques. The system is a combination of a) double-donut split solenoidal superconducting 0.345T MRI; and b) a 90 cm isocenter ring-gantry mounted 6MV, flattening filter-free linac coupled with a stacked doubly-focused multileaf collimator with 4 mm resolution. A novel RF shielding and absorption technology was developed to isolate themore » beam generating RF emissions from the MR, while a novel magnetic shielding sleeve system was developed to place the magnetic field-sensitive components in low-magnetic field regions. The system design produces high spatial resolution radiation beams with state-of-the art radiation dose characteristics and simultaneous MR imaging. Results: Prototype testing with a spectrum analyzer has demonstrated complete elimination of linac RF inside the treatment room. The magnetic field inside of the magnetic shielding was well below the specification, allowing the linear accelerator to operate normally. A novel on-gantry shimming system maintained < 25 ppm magnetic field homogeneity over a 45 cm spherical field of view for all gantry angles. Conclusion: The system design demonstrates the feasibility coupling a state-of-the art linac system with a 0.345T MRI, enabling highly conformal radiation therapy with simultaneous MR image guidance. S. Mutic’s employer (Washington University) has grant with ViewRay; D. Low is former ViewRay scientific advisory board member (ended October 2015); T. Chmielewski, G. Fought, M. Hernandez, I. Kawrakow, A. Sharma, S. Shvartsman, J. Dempsey are employees of ViewRay with stock options (Dempsey has leadership role and Dempsey/Kawrakow have stock).« less

  6. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI.

    PubMed

    Riis, Hans L; Moltke, Lars N; Zimmermann, Sune J; Ebert, Martin A; Rowshanfarzad, Pejman

    2016-06-07

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  7. TU-FG-201-01: 18-Month Clinical Experience of a Linac Daily Quality Assurance (QA) Solution Using Only EPID and OBI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, B; Sun, B; Yaddanapudi, S

    Purpose: To describe the clinical use of a Linear Accelerator (Linac) DailyQA system with only EPID and OBI. To assess the reliability over an 18-month period and improve the robustness of this system based on QA failure analysis. Methods: A DailyQA solution utilizing an in-house designed phantom, combined EPID and OBI image acquisitions, and a web-based data analysis and reporting system was commissioned and used in our clinic to measure geometric, dosimetry and imaging components of a Varian Truebeam Linac. During an 18-month period (335 working days), the Daily QA results, including the output constancy, beam flatness and symmetry, uniformity,more » TPR20/10, MV and KV imaging quality, were collected and analyzed. For output constancy measurement, an independent monthly QA system with an ionization chamber (IC) and annual/incidental TG51 measurements with ADCL IC were performed and cross-compared to Daily QA system. Thorough analyses were performed on the recorded QA failures to evaluate the machine performance, optimize the data analysis algorithm, adjust the tolerance setting and improve the training procedure to prevent future failures. Results: A clinical workflow including beam delivery, data analysis, QA report generation and physics approval was established and optimized to suit daily clinical operation. The output tests over the 335 working day period cross-correlated with the monthly QA system within 1.3% and TG51 results within 1%. QA passed with one attempt on 236 days out of 335 days. Based on the QA failures analysis, the Gamma criteria is revised from (1%, 1mm) to (2%, 1mm) considering both QA accuracy and efficiency. Data analysis algorithm is improved to handle multiple entries for a repeating test. Conclusion: We described our 18-month clinical experience on a novel DailyQA system using only EPID and OBI. The long term data presented demonstrated the system is suitable and reliable for Linac daily QA.« less

  8. Fiber-Coupled, Time-Gated { {Al}}_{2}{ {O}}_{3} : { {C}} Radioluminescence Dosimetry Technique and Algorithm for Radiation Therapy With LINACs

    NASA Astrophysics Data System (ADS)

    Magne, Sylvain; Deloule, Sybelle; Ostrowsky, Aimé; Ferdinand, Pierre

    2013-08-01

    An original algorithm for real-time In Vivo Dosimetry (IVD) based on Radioluminescence (RL) of dosimetric-grade Al2O3:C crystals is described and demonstrated in reference conditions with 12-MV photon beams from a Saturne 43 linear accelerator (LINAC), simulating External Beam Radiation Therapy (EBRT) treatments. During the course of irradiation, a portion of electrons is trapped within the Al2O3:C crystal while another portion recombines and generates RL, recorded on-line using an optical fiber. The RL sensitivity is dose-dependent and increases in accordance with the concentration of trapped electrons. Once irradiation is completed, the Al2O3:C crystal is reset by laser light (reusable) and the resultant OSL (Optically Stimulated Luminescence) is also collected back by the remote RL-OSL reader and finally integrated to yield the absorbed dose. During irradiation, scintillation and Cerenkov lights generated within the optical fiber (“stem effect”) are removed by a time-discrimination method involving a discriminating unit and a fiber-coupled BGO scintillator placed in the irradiation room, next to the LINAC. The RL signals were then calibrated with respect to reference dose and dose rate data using an ionization chamber (IC). The algorithm relies upon the integral of the RL and provides the accumulated dose (useful to the medical physicist) at any time during irradiation, the dose rate being derived afterwards. It is tested with both step and arbitrary dose rate profiles, manually operated from the LINAC control desk. The doses measured by RL and OSL are both compared to reference doses and deviations are about ±2% and ±1% respectively, thus demonstrating the reliability of the algorithm for arbitrary profiles and wide range of dose rates. Although the calculation was done off-line, it is amenable to real-time processing during irradiation.

  9. The R/D of high power proton accelerator technology in China

    NASA Astrophysics Data System (ADS)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  10. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  11. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, B; Keall, P; Holloway, L

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energiesmore » up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate in-silico design work, and provide the first published experimental data relating to accelerator functionality for MRIgRT.« less

  12. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  13. Beam tuning and bunch length measurement in the bunch compression operation at the cERL

    NASA Astrophysics Data System (ADS)

    Honda, Y.; Shimada, M.; Miyajima, T.; Hotei, T.; Nakamura, N.; Kato, R.; Obina, T.; Takai, R.; Harada, K.; Ueda, A.

    2017-12-01

    Realization of a short bunch beam by manipulating the longitudinal phase space distribution with a finite longitudinal dispersion following an off-crest acceleration is a widely used technique. The technique was applied in a compact test accelerator of an energy-recovery linac scheme for compressing the bunch length at the return loop. A diagnostic system utilizing coherent transition radiation was developed for the beam tuning and for estimating the bunch length. By scanning the beam parameters, we experimentally found the best condition for the bunch compression. The RMS bunch length of 250 ±50 fs was obtained at a bunch charge of 2 pC. This result confirmed the design and the tuning procedure of the bunch compression operation for the future energy-recovery linac (ERL).

  14. High Intensity Proton Accelerator Project in Japan (J-PARC).

    PubMed

    Tanaka, Shun-ichi

    2005-01-01

    The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.

  15. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  16. Characteristics of the fourth order resonance in high intensity linear accelerators

    NASA Astrophysics Data System (ADS)

    Jeon, D.; Hwang, Kyung Ryun

    2017-06-01

    For the 4σ = 360° space-charge resonance in high intensity linear accelerators, the emittance growth is surveyed for input Gaussian beams, as a function of the depressed phase advance per cell σ and the initial tune depression (σo - σ). For each data point, the linac lattice is designed such that the fourth order resonance dominates over the envelope instability. The data show that the maximum emittance growth takes place at σ ≈ 87° over a wide range of the tune depression (or beam current), which confirms that the relevant parameter for the emittance growth is σ and that for the bandwidth is σo - σ. An interesting four-fold phase space structure is observed that cannot be explained with the fourth order resonance terms alone. Analysis attributes this effect to a small negative sixth order detuning term as the beam is redistributed by the resonance. Analytical studies show that the tune increases monotonically for the Gaussian beam which prevents the resonance for σ > 90°. Frequency analysis indicates that the four-fold structure observed for input Kapchinskij-Vladmirskij beams when σ < 90°, is not the fourth order resonance but a fourth order envelope instability because the 1/4 = 90°/360° component is missing in the frequency spectrum.

  17. Radiation protocols determine acute graft-versus-host disease incidence after allogeneic bone marrow transplantation in murine models.

    PubMed

    Schwarte, Sebastian; Bremer, Michael; Fruehauf, Joerg; Sorge, Yanina; Skubich, Susanne; Hoffmann, Matthias W

    2007-09-01

    Effects of radiation sources used for total body irradiation (TBI) on Graft-versus-Host Disease (GvHD) induction were examined. In a T cell receptor (TCR) transgenic mouse model, single fraction TBI was performed with different radiation devices ((60)Cobalt; (137)Cesium; 6 MV linear accelerator), dose rates (0.85; 1.5; 2.9; 5 Gy/min) and total doses before allogeneic bone marrow transplantation (BMT). Recipients were observed for 120 days. Different tissues were examined histologically. Acute GvHD was induced by a dose rate of 0.85 Gy/min ((60)Cobalt) and a total dose of 9 Gy and injection of 5 x 10(5) lymph node cells plus 5 x 10(6) bone marrow cells. Similar results were obtained using 6 MV linear accelerator- (linac-) photons with a dose rate of 1.5 Gy/min and 0.85 Gy/min, a total dose of 9.5 Gy and injection of same cell numbers. TBI with (137)Cesium (dose rate: 2.5 Gy/min) did not lead reproducibly to lethal acute GvHD. Experimental TBI in murine models may induce different immunological responses, depending on total energy, total single dose and dose rate. GvHD might also be induced by TBI with low dose rates.

  18. Linear inductive voltage adders (IVA) for advanced hydrodynamic radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Boyes, J.D.; Johnson, D.L.

    The electron beam which drifts through the multiple cavities of conventional induction linacs (LIA) is replaced in an IVA by a cylindrical metal conductor which extends along the entire length of the device and effectuates the addition of the accelerator cavity voltages. In the approach to radiography, the linear inductive voltage adder drives a magnetically immersed electron diode with a millimeter diameter cathode electrode and a planar anode/bremsstrahlung converter. Both anode and cathode electrodes are immersed in a strong (15--50 T) solenoidal magnetic field. The electron beam cross section is approximately of the same size as the cathode needle andmore » generates a similar size, very intense x-ray beam when it strikes the anode converter. An IVA driven diode can produce electron beams of equal size and energy as a LIA but with much higher currents (40--50 kA versus 4--5 kA), simpler hardware and thus lower cost. The authors present here first experimental validations of the technology utilizing HERMES 3 and SABRE IVA accelerators. The electron beam voltage and current were respectively of the order of 10 MV and 40 kA. X-ray doses of up to 1 kR {at} 1 m and spot sizes as small as 1.7 mm (at 200 R doses) were measured.« less

  19. Performance of a clinical gridded electron gun in magnetic fields: Implications for MRI-linac therapy.

    PubMed

    Whelan, Brendan; Holloway, Lois; Constantin, Dragos; Oborn, Brad; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Keall, Paul

    2016-11-01

    MRI-linac therapy is a rapidly growing field, and requires that conventional linear accelerators are operated with the fringe field of MRI magnets. One of the most sensitive accelerator components is the electron gun, which serves as the source of the beam. The purpose of this work was to develop a validated finite element model (FEM) model of a clinical triode (or gridded) electron gun, based on accurate geometric and electrical measurements, and to characterize the performance of this gun in magnetic fields. The geometry of a Varian electron gun was measured using 3D laser scanning and digital calipers. The electric potentials and emission current of these guns were measured directly from six dose matched true beam linacs for the 6X, 10X, and 15X modes of operation. Based on these measurements, a finite element model (FEM) of the gun was developed using the commercial software opera/scala. The performance of the FEM model in magnetic fields was characterized using parallel fields ranging from 0 to 200 G in the in-line direction, and 0-35 G in the perpendicular direction. The FEM model matched the average measured emission current to within 5% across all three modes of operation. Different high voltage settings are used for the different modes; the 6X, 10X, and 15X modes have an average high voltage setting of 15, 10, and 11 kV. Due to these differences, different operating modes show different sensitivities in magnetic fields. For in line fields, the first current loss occurs at 40, 20, and 30 G for each mode. This is a much greater sensitivity than has previously been observed. For perpendicular fields, first beam loss occurred at 8, 5, and 5 G and total beam loss at 27, 22, and 20 G. A validated FEM model of a clinical triode electron gun has been developed based on accurate geometric and electrical measurements. Three different operating modes were simulated, with a maximum mean error of 5%. This gun shows greater sensitivity to in-line magnetic fields than previously presented models, and different operating modes show different sensitivity.

  20. Performance of a clinical gridded electron gun in magnetic fields: Implications for MRI-linac therapy

    PubMed Central

    Whelan, Brendan; Holloway, Lois; Constantin, Dragos; Oborn, Brad; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Keall, Paul

    2016-01-01

    Purpose: MRI-linac therapy is a rapidly growing field, and requires that conventional linear accelerators are operated with the fringe field of MRI magnets. One of the most sensitive accelerator components is the electron gun, which serves as the source of the beam. The purpose of this work was to develop a validated finite element model (FEM) model of a clinical triode (or gridded) electron gun, based on accurate geometric and electrical measurements, and to characterize the performance of this gun in magnetic fields. Methods: The geometry of a Varian electron gun was measured using 3D laser scanning and digital calipers. The electric potentials and emission current of these guns were measured directly from six dose matched true beam linacs for the 6X, 10X, and 15X modes of operation. Based on these measurements, a finite element model (FEM) of the gun was developed using the commercial software opera/scala. The performance of the FEM model in magnetic fields was characterized using parallel fields ranging from 0 to 200 G in the in-line direction, and 0–35 G in the perpendicular direction. Results: The FEM model matched the average measured emission current to within 5% across all three modes of operation. Different high voltage settings are used for the different modes; the 6X, 10X, and 15X modes have an average high voltage setting of 15, 10, and 11 kV. Due to these differences, different operating modes show different sensitivities in magnetic fields. For in line fields, the first current loss occurs at 40, 20, and 30 G for each mode. This is a much greater sensitivity than has previously been observed. For perpendicular fields, first beam loss occurred at 8, 5, and 5 G and total beam loss at 27, 22, and 20 G. Conclusions: A validated FEM model of a clinical triode electron gun has been developed based on accurate geometric and electrical measurements. Three different operating modes were simulated, with a maximum mean error of 5%. This gun shows greater sensitivity to in-line magnetic fields than previously presented models, and different operating modes show different sensitivity. PMID:27806583

  1. Impact of a flattening filter free linear accelerator on structural shielding design.

    PubMed

    Jank, Julia; Kragl, Gabriele; Georg, Dietmar

    2014-03-01

    The present study aimed to assess the effects of a flattening filter free medical accelerator on structural shielding demands of a treatment vault of a medical linear accelerator. We tried to answer the question, to what extent the required thickness of the shielding barriers can be reduced if instead of the standard flattened photon beams unflattened ones are used. We chose both an experimental as well as a theoretical approach. On the one hand we measured photon dose rates at protected places outside the treatment room and compared the obtained results for flattened and unflattened beams. On the other hand we complied with international guidelines for adequate treatment vault design and calculated the shielding barriers according to the therein given specifications. Measurements were performed with an Elekta Precise™ linac providing nominal photon energies of 6 and 10 MV. This machine underwent already earlier some modifications in order to be able to operate both with and without a flattening filter. Photon dose rates were measured with a LB133-1 dose rate meter manufactured by Berthold. To calculate the thickness of shielding barriers we referred to the Austrian standard ÖNORM S 5216 and to the US American NCRP Report No. 151. We determined a substantial photon dose rate reduction for all measurement points and photon energies. For unflattened 6 MV beams a reduction factor ranging from 1.4 to 1.8 was identified. The corresponding values for unflattened 10 MV beams were 2.1 and 3.2. The performed shielding calculations indicated the same tendency: For all relevant radiation components we found a reduction in shielding thickness when unflattened beams were used. The required thickness of primary barriers was reduced up to 8.0%, the thickness of secondary barriers up to 11.4%, respectively. For an adequate dimensioning of treatment vault shielding barriers it is by no means irrelevant if the accommodated linac operates with or without a flattening filter. The lower consumption of shielding space and material for new treatment vaults housing a FFF machine may reduce building costs, whereas for existing vaults one might benefit in terms of increased weekly workload. Also a more frequent use of monitor unit intense treatment techniques as well as aiming at reduced occupational exposure for staff is conceivable. Copyright © 2013. Published by Elsevier GmbH.

  2. Monte Carlo study of neutron-ambient dose equivalent to patient in treatment room.

    PubMed

    Mohammadi, A; Afarideh, H; Abbasi Davani, F; Ghergherehchi, M; Arbabi, A

    2016-12-01

    This paper presents an analytical method for the calculation of the neutron ambient dose equivalent H* (10) regarding patients, whereby the different concrete types that are used in the surrounding walls of the treatment room are considered. This work has been performed according to a detailed simulation of the Varian 2300C/D linear accelerator head that is operated at 18MV, and silver activation counter as a neutron detector, for which the Monte Carlo MCNPX 2.6 code is used, with and without the treatment room walls. The results show that, when compared to the neutrons that leak from the LINAC, both the scattered and thermal neutrons are the major factors that comprise the out-of field neutron dose. The scattering factors for the limonite-steel, magnetite-steel, and ordinary concretes have been calculated as 0.91±0.09, 1.08±0.10, and 0.371±0.01, respectively, while the corresponding thermal factors are 34.22±3.84, 23.44±1.62, and 52.28±1.99, respectively (both the scattering and thermal factors are for the isocenter region); moreover, the treatment room is composed of magnetite-steel and limonite-steel concretes, so the neutron doses to the patient are 1.79 times and 1.62 times greater than that from an ordinary concrete composition. The results also confirm that the scattering and thermal factors do not depend on the details of the chosen linear accelerator head model. It is anticipated that the results of the present work will be of great interest to the manufacturers of medical linear accelerators. Copyright © 2016. Published by Elsevier Ltd.

  3. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    NASA Astrophysics Data System (ADS)

    Delruelle, N.; Inglese, V.; Leclercq, Y.; Pirotte, O.; Williams, L.

    2015-12-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall.

  4. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source.

    PubMed

    Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S

    2013-04-01

    To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV∕m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show dmax is at 2.15 cm for a 10 × 10 cm(2) field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  5. SU-E-T-554: Comparison of Electron Disequilibrium Factor in External Photon Beams for Different Models of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LIU, B; Zhu, T

    Purpose: The dose in the buildup region of a photon beam is usually determined by the transport of the primary secondary electrons and the contaminating electrons from accelerator head. This can be quantified by the electron disequilibrium factor, E, defined as the ratio between total dose and equilibrium dose (proportional to total kerma), E = 1 in regions beyond buildup region. Ecan be different among accelerators of different models and/or manufactures of the same machine. This study compares E in photon beams from different machine models/ Methods: Photon beam data such as fractional depth dose curve (FDD) and phantom scattermore » factors as a function of field size and phantom depth were measured for different Linac machines. E was extrapolated from these fractional depth dose data while taking into account inverse-square law. The ranges of secondary electron were chosen as 3 and 6 cm for 6 and 15 MV photon beams, respectively. The field sizes range from 2x2 to 40x40 cm{sup 2}. Results: The comparison indicates the standard deviations of electron contamination among different machines are about 2.4 - 3.3% at 5 mm depth for 6 MV and 1.2 - 3.9% at 1 cm depth for 15 MV for the same field size. The corresponding maximum deviations are 3.0 - 4.6% and 2 - 4% for 6 and 15 MV, respectively. Both standard and maximum deviations are independent of field sizes in the buildup region for 6 MV photons, and slightly decreasing with increasing field size at depths up to 1 cm for 15 MV photons. Conclusion: The deviations of electron disequilibrium factor for all studied Linacs are less than 3% beyond the depth of 0.5 cm for the photon beams for the full range of field sizes (2-40 cm) so long as they are from the same manufacturer.« less

  6. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  7. TH-CD-BRA-08: Novel Iron-Based Radiation Reporting Systems as 4D Dosimeters for MR-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose: To compare novel radiation reporting systems utilizing ferric ion (Fe{sup 3+}) reduction versus ferrous ion (Fe{sup 2+}) oxidation in gelatin matrixes for 3D and 4D (3D+time) MR-guided radiation therapy dosimetry. Methods: Dosimeters were irradiated using an integrated 1.5T MRI and 7MV linear accelerator (MR-Linac). Dosimeters were read-out with both a spectrophotometer and the MRI component of the MR-Linac immediately after irradiation. Changes in optical density (OD) were measured using a spectrophotometer; changes in MR signal intensity due to the paramagnetic differences in the iron ions were measured using the MR-Linac in real-time during irradiation (balanced-FFE sequences) and immediately aftermore » irradiation (T{sub 1}-weighted and inversion recovery sequences). Results: Irradiation of Fe{sup 3+} reduction dosimeters resulted in a stable red color with an absorbance peak at 512 nm. The change in OD relative to dose exhibited a linear response up to 100 Gy (R{sup 2}=1.00). T{sub 1}-weighted-MR signal intensity (SI) changed minimally after irradiation with increases of 8.0% for 17 Gy and 9.7% after escalation to 35 Gy compared to the un-irradiated region. Irradiation of Fe{sup 2+} oxidation dosimeters resulted in a stable purple color with absorbance peaks at 440 and 585 nm. The changes in OD, T{sub 1}-weighted-MR SI, and R{sub 1} relative to dose exhibited a linear response up to at least 8 Gy (R{sup 2}=1.00, 0.98, and 0.99) with OD saturation above 40 Gy. The T{sub 1}-weighted-MR SI increased 50.3% for 17 Gy compared to the un-irradiated region. The change in SI was observed in both 2D+time and 4D (3D+time) acquisitions post-irradiation and in real-time during irradiation with a linear increase with respect to dose (R{sup 2}>0.93). Conclusion: The Fe{sup 2+} oxidation-based system was superior as 4D dosimeters for MR-guided radiation therapy due to its higher sensitivity in both optical and MR signal readout and feasibility for real-time 4D dose readout. The Fe{sup 3+} reduction system is recommended for high dose applications. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. LH-102SPS.« less

  8. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perks, J; Benedict, S; Lucero, S

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specificallymore » mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.« less

  9. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations.

    PubMed

    Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken

    2018-05-17

    An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4 × 4, 10 × 10, and 20 × 20 cm 2 fields at multiple depths. For the 2D dose distributions calculated in the heterogeneous lung phantom, the 2D gamma pass rate was 100% for 6 and 15 MV beams. The model optimization time was less than 4 min. The proposed source model optimization process accurately produces photon fluence spectra from a linac using valid physical properties, without detailed knowledge of the geometry of the linac head, and with minimal optimization time. © 2018 American Association of Physicists in Medicine.

  10. Estimates of dispersive effects in a bent NLC Main Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Syphers and Leo Michelotti

    2000-10-31

    An alternative being considered for the Next Linear Collider (NLC) is not to tunnel in a straight line but to bend the Main Linac into an arc so as to follow a gravitational equipotential. The authors begin here an examination of the effects that this would have on vertical dispersion, with its attendant consequences on synchrotron radiation and emittance growth by looking at two scenarios: a gentle continuous bending of the beam to follow an equipotential surface, and an introduction of sharp bends at a few sites in the linac so as to reduce the maximum sagitta produced.

  11. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    NASA Astrophysics Data System (ADS)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  12. The DARHT Phase 2 Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    wolf, Zachary R.

    2000-09-12

    The second phase accelerator for the Dual Axis Hydrodynamic Test facility (DARHT) is designed to provide an electron beam pulse that is 2{mu}s long, 2kA, and 20 MeV in particle energy. The injector provides 3.2 MeV so that the linac need only provide 16.8 MeV. The linac is made with two types of induction accelerator cells. The first block of 8 cells have a 14 in. beam pipe compared to 10 in. in the remaining 80 cells. The other principal difference is that the first 8 cells have reduced volt-sec in their induction cores as a result of a largermore » diameter beam pipe. The cells are designed for very reliable high voltage operation. The insulator is Mycalex. Results from prototype tests are given including results from solenoid measurements. Each cell contains a solenoid for beam transport and a set of x-y correction coils to reduce corkscrew motion. Details of tests to determine RF mode impedances relevant to BBU generation are given. Blocks of cells are separated by intercells some of which contain transport solenoids. The intercells provide vacuum pumping stations as well. Issues of alignment and installation are discussed.« less

  13. Lattice Design for a High-Power Infrared FEL

    NASA Astrophysics Data System (ADS)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  14. Status and operation of the Linac4 ion source prototypes

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Hatayama, A.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Ohta, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Rochez, J.; Sanchez Alvarez, J.; Sanchez Arias, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Yamamoto, T.

    2014-02-01

    CERN's Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  15. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  16. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  17. Hypofractionated stereotactic radiotherapy (HFSRT) for who grade I anterior clinoid meningiomas (ACM).

    PubMed

    Demiral, Selcuk; Dincoglan, Ferrat; Sager, Omer; Gamsiz, Hakan; Uysal, Bora; Gundem, Esin; Elcim, Yelda; Dirican, Bahar; Beyzadeoglu, Murat

    2016-11-01

    While microsurgical resection plays a central role in the management of ACMs, extensive surgery may be associated with substantial morbidity particularly for tumors in intimate association with critical structures. In this study, we evaluated the use of HFSRT in the management of ACM. A total of 22 patients with ACM were treated using HFSRT. Frameless image guided volumetric modulated arc therapy (VMAT) was performed with a 6 MV linear accelerator (LINAC). The total dose was 25 Gy delivered in five fractions over five consecutive treatment days. Local control (LC) and progression free survival (PFS) rates were calculated using the Kaplan-Meier method. Common Terminology Criteria for Adverse Events, version 4.0 was used in toxicity grading. Out of the total 22 patients, outcomes of 19 patients with at least 36 months of periodic follow-up were assessed. Median patient age was 40 years old (range 24-77 years old). Median follow-up time was 53 months (range 36-63 months). LC and PFS rates were 100 and 89.4 % at 1 and 3 years, respectively. Only two patients (10.5 %) experienced clinical deterioration during the follow-up period. LINAC-based HFSRT offers high rates of LC and PFS for patients with ACMs.

  18. The current role of Gamma Knife radiosurgery in the management of intracranial haemangiopericytoma.

    PubMed

    Spina, Alfio; Boari, Nicola; Gagliardi, Filippo; Donofrio, Carmine A; Franzin, Alberto; Mortini, Pietro

    2016-04-01

    Haemangiopericytomas (HPCs) are rare tumours characterised by aggressive behaviour with tendency to local recurrence and to metastasise. WHO grade II and grade III tumours show different progression-free survival and overall survival rates. Gross total tumour resection is still considered the treatment of choice. Adjuvant radiation therapies represent an option in the treatment strategy regardless the extent of resection. Based on this consideration, Gamma Knife radiosurgery has been introduced either as a primary treatment or as an adjuvant treatment for residual or recurrent tumours. A systematic search was performed on PubMed, Web of Science and Google Scholar for clinical series reporting Gamma Knife radiosurgery, Cyberknife and Linear Accelerator (LINAC) for the management of intracranial HPCs. Fourteen studies focusing on the effects of Gamma Knife radiosurgery for intracranial HPCs were included. Four studies reported data on Cyberknife radiosurgery and LINAC. A total of 208 patients harbouring 366 tumours have been reported. Patient's features, radiosurgical treatment characteristics and follow-up data of the pertinent literature have been critically revised. Gamma Knife radiosurgery and the other radiosurgical techniques represent a feasible and effective therapy in the management of HPCs. Tumour control and survival rate are comparable to those reported for radiotherapy. Further studies should be focused to define the exact role of Gamma Knife radiosurgery in the management of HPCs.

  19. Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.

    PubMed

    Galea, R; Ross, C; Wells, R G

    2014-05-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC's involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. © 2013 Published by Elsevier Ltd.

  20. Enhancement of X-ray dose absorption for medical applications

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Montenegro, Maximiliano; Nahar, Sultana; Pradhan, Anil; Barth, Rolf; Nakkula, Robin; Bell, Erica; Yu, Yan

    2012-06-01

    Interaction of high-Z (HZ) elements with X-rays occurs efficiently at specific resonant energies. Cross sections for photoionization rapidly decrease after the K-edge; higher energy X-rays are mostly Compton-scattered. These features restrict the energy range for the use of HZ moities for radiosensitization in cancer therapy. Conventional X-ray sources such as linear accelerators (LINAC) used in radiotherapy emit a broad spectrum up to MeV energies. We explore the dichotomy between X-ray radiotherapy in two ranges: (i) E < 100 keV including HZ sensitization, and (ii) E > 100 keV where sensitization is inefficient. We perform Monte Carlo numerical simulations of tumor tissue embedded with platinum compounds and gold nanoparticles and compute radiation dose enhancement factors (DEF) upon irradiation with 100 kV, 170 kV and 6 MV sources. Our results demonstrate that the DEF peak below 100 keV and fall sharply above 200 keV to very small values. Therefore most of the X-ray output from LINACs up to the MeV range is utilized very inefficiently. We also describe experimental studies for implementation of option (i) using Pt and Au reagents and selected cancer cell lines. Resultant radiation exposure to patients could be greatly reduced, yet still result in increased tumoricidal ability.

  1. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    PubMed

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Calculation of Nuclear Particles Production at High-Energy Photon Beams from a Linac Operating at 6, 10 and 15 MV.

    PubMed

    Marchesini, Renato; Bettega, Daniela; Calzolari, Paola; Pignoli, Emanuele

    2017-05-01

    Production of photonuclear particles in a tissue-equivalent medium has been calculated for linacs at 6, 10 and 15 MV from Varian TrueBeam. Based on the knowledge of bremsstrahlung fluence spectra and linac photon beam parameters, numerical integration was performed on the cross sections for photoparticle production of the constituent elements of tissue (2H,12C,13C,16O,17O,18O,14N,15N). At 15 MV, at the depth of photon maximum dose, the total absorbed dose due to neutrons, protons, alphas and residual nuclei from photon reactions in tissue (5.5E-05 Gy per Gy of photons) is comparable to that due to neutrons from accelerator head. Results reasonably agree with data reported in the literature using Monte Carlo models simulating linac head components. This work suggests a simple method to estimate the dose contributed by the photon-induced nuclear particles for high-energy photon beams produced by linacs in use, as it might be relevant for late stochastic effects. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Event-synchronized data acquisition system for the SPring-8 linac beam position monitors

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Fukui, T.; Tanaka, R.; Taniuchi, T.; Yamashita, A.; Yanagida, K.

    2005-05-01

    By the summer of 2003, we had completed the installation of a new non-destructive beam position monitor (BPM) system to facilitate beam trajectory and energy correction for the SPring-8 linac. In all, 47 BPM sets were installed on the 1-GeV linac and three beam-transport lines. All of the BPM data acquisition system was required to operate synchronously with the electron beam acceleration cycle. We have developed an event-synchronized data acquisition system for the BPM data readout. We have succeeded in continuously taking all the BPMs data from six VME computers synchronized with the 10 pps operation of the linac to continuously acquire data. For each beam shot, the data points are indexed by event number and stored in a database. Using the real-time features of the Solaris operating system and distributed database technology, we currently have achieved about 99.9% efficiency in capturing and archiving all of the 10 Hz data. The linac BPM data is available for off-line analysis of the beam trajectory, but also for real-time control and automatic correction of the beam trajectory and energy.

  4. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less

  5. Catalac free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  6. Catalac free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-12-12

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.

  7. RF pulse compression for future linear colliders

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    1995-07-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  8. SU-F-T-459: ArcCHECK Machine QA : Highly Efficient Quality Assurance Tool for VMAT, SRS & SBRT Linear Accelerator Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhatre, V; Patwe, P; Dandekar, P

    Purpose: Quality assurance (QA) of complex linear accelerators is critical and highly time consuming. ArcCHECK Machine QA tool is used to test geometric and delivery aspects of linear accelerator. In this study we evaluated the performance of this tool. Methods: Machine QA feature allows user to perform quality assurance tests using ArcCHECK phantom. Following tests were performed 1) Gantry Speed 2) Gantry Rotation 3) Gantry Angle 4)MLC/Collimator QA 5)Beam Profile Flatness & Symmetry. Data was collected on trueBEAM stX machine for 6 MV for a period of one year. The Gantry QA test allows to view errors in gantry angle,more » rotation & assess how accurately the gantry moves around the isocentre. The MLC/Collimator QA tool is used to analyze & locate the differences between leaf bank & jaw position of linac. The flatness & Symmetry test quantifies beam flatness & symmetry in IEC-y & x direction. The Gantry & Flatness/Symmetry test can be performed for static & dynamic delivery. Results: The Gantry speed was 3.9 deg/sec with speed maximum deviation around 0.3 deg/sec. The Gantry Isocentre for arc delivery was 0.9mm & static delivery was 0.4mm. The maximum percent positive & negative difference was found to be 1.9 % & – 0.25 % & maximum distance positive & negative diff was 0.4mm & – 0.3 mm for MLC/Collimator QA. The Flatness for Arc delivery was 1.8 % & Symmetry for Y was 0.8 % & X was 1.8 %. The Flatness for gantry 0°,270°,90° & 180° was 1.75,1.9,1.8 & 1.6% respectively & Symmetry for X & Y was 0.8,0.6% for 0°, 0.6,0.7% for 270°, 0.6,1% for 90° & 0.6,0.7% for 180°. Conclusion: ArcCHECK Machine QA is an useful tool for QA of Modern linear accelerators as it tests both geometric & delivery aspects. This is very important for VMAT, SRS & SBRT treatments.« less

  9. Helical tomotherapy to LINAC plan conversion utilizing RayStation Fallback planning.

    PubMed

    Zhang, Xin; Penagaricano, Jose; Narayanasamy, Ganesh; Corry, Peter; Liu, TianXiao; Sanjay, Maraboyina; Paudel, Nava; Morrill, Steven

    2017-01-01

    RaySearch RayStation Fallback (FB) planning module can generate an equivalent backup radiotherapy treatment plan facilitating treatment on other linear accelerators. FB plans were generated from the RayStation FB module by simulating the original plan target and organ at risk (OAR) dose distribution and delivered in various backup linear accelerators. In this study, helical tomotherapy (HT) backup plans used in Varian TrueBeam linear accelerator were generated with the RayStation FB module. About 30 patients, 10 with lung cancer, 10 with head and neck (HN) cancer, and 10 with prostate cancer, who were treated with HT, were included in this study. Intensity-modulated radiotherapy Fallback plans (FB-IMRT) were generated for all patients, and three-dimensional conformal radiotherapy Fallback plans (FB-3D) were only generated for lung cancer patients. Dosimetric comparison study evaluated FB plans based on dose coverage to 95% of the PTV volume (R 95 ), PTV mean dose (D mean ), Paddick's conformity index (CI), and dose homogeneity index (HI). The evaluation results showed that all IMRT plans were statistically comparable between HT and FB-IMRT plans except that PTV HI was worse in prostate, and PTV R 95 and HI were worse in HN multitarget plans for FB-IMRT plans. For 3D lung cancer plans, only the PTV R 95 was statistically comparable between HT and FB-3D plans, PTV D mean was higher, and CI and HI were worse compared to HT plans. The FB plans using a TrueBeam linear accelerator generally offer better OAR sparing compared to HT plans for all the patients. In this study, all cases of FB-IMRT plans and 9/10 cases of FB-3D plans were clinically acceptable without further modification and optimization once the FB plans were generated. However, the statistical differences between HT and FB-IMRT/3D plans might not be of any clinically significant. One FB-3D plan failed to simulate the original plan without further optimization. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, M R; Beachey, D J; Sarfehnia, A

    Purpose: A new commercial GPU-based Monte Carlo dose calculation algorithm (GPUMCD) developed by the vendor Elekta™ to be used in the Monaco Treatment Planning System (TPS) is capable of modeling dose for both a standard linear accelerator and for an Elekta MRI-Linear accelerator (modeling magnetic field effects). We are evaluating this algorithm in two parts: commissioning the algorithm for an Elekta Agility linear accelerator (the focus of this work) and evaluating the algorithm’s ability to model magnetic field effects for an MRI-linear accelerator. Methods: A beam model was developed in the Monaco TPS (v.5.09.06) using the commissioned beam data formore » a 6MV Agility linac. A heterogeneous phantom representing tumor-in-lung, lung, bone-in-tissue, and prosthetic was designed/built. Dose calculations in Monaco were done using the current clinical algorithm (XVMC) and the new GPUMCD algorithm (1 mm3 voxel size, 0.5% statistical uncertainty) and in the Pinnacle TPS using the collapsed cone convolution (CCC) algorithm. These were compared with the measured doses using an ionization chamber (A1SL) and Gafchromic EBT3 films for 2×2 cm{sup 2}, 5×5 cm{sup 2}, and 10×10 cm{sup 2} field sizes. Results: The calculated central axis percentage depth doses (PDDs) in homogeneous solid water were within 2% compared to measurements for XVMC and GPUMCD. For tumor-in-lung and lung phantoms, doses calculated by all of the algorithms were within the experimental uncertainty of the measurements (±2% in the homogeneous phantom and ±3% for the tumor-in-lung or lung phantoms), except for 2×2 cm{sup 2} field size where only the CCC algorithm differs from film by 5% in the lung region. The analysis for bone-in-tissue and the prosthetic phantoms are ongoing. Conclusion: The new GPUMCD algorithm calculated dose comparable to both the XVMC algorithm and to measurements in both a homogeneous solid water medium and the heterogeneous phantom representing lung or tumor-in-lung for 2×2 cm{sup 2}-10×10 cm{sup 2} field sizes. Funding support was obtained from Elekta.« less

  11. Cloud-based design of high average power traveling wave linacs

    NASA Astrophysics Data System (ADS)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  12. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, M. T., E-mail: mariate9590@gmail.com; Barros, H.; Pino, F.

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). Thesemore » covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuess, Peter, E-mail: Peter.kuess@meduniwien.ac.at

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of themore » VersaHD, the energy of FFF{sub M} (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF{sub U} beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF{sub M} beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF{sub M} and FF beams, only %dd(10){sub x} and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF{sub U} beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF{sub M} beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR{sub 20,10} and %dd(10){sub x}. In contrast to that, the DPBQS’s two parameters of the 10 MV FFF{sub M} beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFF{sub M} beams, while for 10 MV beams, they differed by 6.4%. This shows that the DPBQS can provide a differentiation of photon beam characteristics that would remain hidden by the use of a single beam quality specifier, such as %dd(10){sub x} or HVL.« less

  14. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    NASA Astrophysics Data System (ADS)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stathakis, S; Defoor, D; Linden, P

    Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. Anmore » in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.« less

  16. Quality control methods for linear accelerator radiation and mechanical axes alignment.

    PubMed

    Létourneau, Daniel; Keller, Harald; Becker, Nathan; Amin, Md Nurul; Norrlinger, Bernhard; Jaffray, David A

    2018-06-01

    The delivery accuracy of highly conformal dose distributions generated using intensity modulation and collimator, gantry, and couch degrees of freedom is directly affected by the quality of the alignment between the radiation beam and the mechanical axes of a linear accelerator. For this purpose, quality control (QC) guidelines recommend a tolerance of ±1 mm for the coincidence of the radiation and mechanical isocenters. Traditional QC methods for assessment of radiation and mechanical axes alignment (based on pointer alignment) are time consuming and complex tasks that provide limited accuracy. In this work, an automated test suite based on an analytical model of the linear accelerator motions was developed to streamline the QC of radiation and mechanical axes alignment. The proposed method used the automated analysis of megavoltage images of two simple task-specific phantoms acquired at different linear accelerator settings to determine the coincidence of the radiation and mechanical isocenters. The sensitivity and accuracy of the test suite were validated by introducing actual misalignments on a linear accelerator between the radiation axis and the mechanical axes using both beam steering and mechanical adjustments of the gantry and couch. The validation demonstrated that the new QC method can detect sub-millimeter misalignment between the radiation axis and the three mechanical axes of rotation. A displacement of the radiation source of 0.2 mm using beam steering parameters was easily detectable with the proposed collimator rotation axis test. Mechanical misalignments of the gantry and couch rotation axes of the same magnitude (0.2 mm) were also detectable using the new gantry and couch rotation axis tests. For the couch rotation axis, the phantom and test design allow detection of both translational and tilt misalignments with the radiation beam axis. For the collimator rotation axis, the test can isolate the misalignment between the beam radiation axis and the mechanical collimator rotation axis from the impact of field size asymmetry. The test suite can be performed in a reasonable time (30-35 min) due to simple phantom setup, prescription-based beam delivery, and automated image analysis. As well, it provides a clear description of the relationship between axes. After testing the sensitivity of the test suite to beam steering and mechanical errors, the results of the test suite were used to reduce the misalignment errors of the linac to less than 0.7-mm radius for all axes. The proposed test suite offers sub-millimeter assessment of the coincidence of the radiation and mechanical isocenters and the test automation reduces complexity with improved efficiency. The test suite results can be used to optimize the linear accelerator's radiation to mechanical isocenter alignment by beam steering and mechanical adjustment of gantry and couch. © 2018 American Association of Physicists in Medicine.

  17. SU-F-T-225: Is It Time to Have Pre-Configured Therapeutic Beams Available in Commercial Treatment Planning Systems?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, G

    Purpose: Commissioning radiation beams requires considerable effort to obtain the beam data for beam configuration in a commercial treatment planning system. With the advances in technology, the manufacturer of accelerators now has the ability to adjust radiation beam parameters to meet pre-determined specifications with high precision. This study aims to illustrate the feasibility of making pre-configured radiation beams available in commercial treatment planning systems. Methods: In recent years, Varian has made a set of measured beam data from the TrueBeam accelerator available to users. Although the beam data are provided as “suggestive data” without warranty, the commissioned data measured bymore » users have been shown to be in excellent agreement with the data set provided when the beams from the installed Linacs were adjusted to meet the beam specifications. An unofficial survey among Varian Linac TrueBeam users shows that the suggestive data set has been used with validation by users in some clinics. This indicates that radiation beams from a specified Linac can be standardized and pre-configured in a treatment planning system. Results: Two newly installed Varian TrueBeam accelerators at two different centers were examined in which one set of commissioned beam data was obtained from measurements performed by an independent physics consulting company and the other was measured by local physicists in the department. All beams from both accelerators were tuned to meet the manufacturer’s specifications. Discrepancies of less than 1% were found between the commissioned beam data from both accelerators and the suggestive data set provided by Varian. Conclusion: It may be feasible that radiation beams can be pre-configured in commercial treatment planning systems. The radiation beam users will perform the beam validation and end-to-end tests instead of configuring beams. This framework can increase both the efficiency and the accuracy in commercial radiation treatment planning systems.« less

  18. Installation and Commissioning of the Super Conducting RF Linac Cryomodules for the Erlp

    NASA Astrophysics Data System (ADS)

    Goulden, A. R.; Bate, R.; Buckley, R. K.; Pattalwar, S. M.

    2008-03-01

    An Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory, (UK) to promote the necessary skills in science & technology, particularly in photocathode electron gun and Superconducting RF (SRF), to enable the construction of a fourth generation light source, based on energy recovery linacs-4GLS [1]. The ERLP uses two identical cryomodules, one as a booster Linac used to accelerate the beam to 8.5 MeV, the other as an Energy Recovery Linac (ERL) module with an energy gain of 26.5 MeV. Each module consists of two 9- cell cavities operating at a frequency of 1.3 GHz and a temperature of 2 K. As there is no energy recovery in the booster it requires a peak power of 53 kW; whereas the linac module only requires 8 kW. The RF power is supplied by Inductive Output Tube (IOT) amplifiers. The maximum heat load (or the cooling power) required in the SRF system is 180 W at 2 K and is achieved in two stages: a LN2 pre-cooled Linde TCF50 liquefier produces liquid helium at 4.5 K, followed by a 2 K cold box consisting of a JT valve, recuperator and an external room temperature vacuum pumping system. This presentation reports the experience gained during, installation, commissioning and the initial operation of the cryomodules.

  19. H- ion sources for CERN's Linac4

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on the future prototype ion sources is sketched.

  20. TU-F-CAMPUS-T-01: Dose and Energy Spectra From Neutron Induced Radioactivity in Medical Linear Accelerators Following High Energy Total Body Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keehan, S; Taylor, M; Franich, R

    2015-06-15

    Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI)more » treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as {sup 187}W, {sup 56}Mn, {sup 24}Na and {sup 28}Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws.« less

  1. Time-resolved imaging of the microbunching instability and energy spread at the Linac Coherent Light Source

    DOE PAGES

    Ratner, D.; Behrens, C.; Ding, Y.; ...

    2015-03-09

    The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam’s slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete amore » comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. As a result, detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.« less

  2. ATLAS with CARIBU: A laboratory portrait

    DOE PAGES

    Pardo, Richard C.; Savard, Guy; Janssens, Robert V. F.

    2016-03-21

    The Argonne Tandem Linac Accelerator System (ATLAS) is the world's first superconducting accelerator for projectiles heavier than the electron. This unique system is a U.S. Department of Energy (DOE) national user research facility open to scientists from all over the world. Here, it is located within the Physics Division at Argonne National Laboratory and is one of five large scientific user facilities located at the laboratory.

  3. The LLRF System for the S-Band RF Plants of the FERMI Linac

    NASA Astrophysics Data System (ADS)

    Fabris, A.; Byrd, J.; D'Auria, G.; Doolittle, L.; Gelmetti, F.; Huang, G.; Jones, J.; Milloch, M.; Predonzani, M.; Ratti, A.; Rohlev, T.; Salom, A.; Serrano, C.; Stettler, M.

    2016-04-01

    Specifications on electron beam quality for the operation of a linac-based free-electron laser (FEL), as FERMI in Trieste (Italy), impose stringent requirements on the stability of the electromagnetic fields of the accelerating sections. These specifications can be met only with state-of-the-art low-level RF (LLRF) systems based on advanced digital technologies. Design considerations, construction, and performance results of the FERMI digital LLRF are presented in this paper. The stability requirements derived by simulations are better than 0.1% in amplitude and 0.1° S-band in phase. The system installed in the FERMI Linac S-band RF plants has met these specifications and is in operation on a 24-h basis as a user facility. Capabilities of the system allow planning for new developments that are also described here.

  4. Tunnel vision for US X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2017-03-01

    Construction can begin on a major upgrade to the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in the US after the tunnel that will house the facility was cleared of equipment.

  5. The issues in the development of a f = 162 . 5 MHz, β = 0 . 12 superconducting half-wave resonator for the Rare Isotope Science Project (RISP)

    NASA Astrophysics Data System (ADS)

    Park, Gunn Tae; Joo, Jongdae; Yao, Zhongyuan

    2017-10-01

    A f = 162 . 5 MHz superconducting half-wave resonator (HWR) with β = 0 . 12 is one of the four superconducting cavities being developed for the heavy ion linac of the Rare Isotope Science Project (RISP). The linac will accelerate various ions ranging from proton to uranium with beam power of about 400 kW. In particular, the HWR's will accelerate the ion beam in low-medium energy range, i.e., from 1.6 to 18 MeV for the case of uranium. In this paper, we describe design, fabrication, surface treatment, and vertical test of the 1st prototype of the cavity in detail. We also discuss some issues on the performance enhancement of the cavity. The Q0 values at 2 K surpassed the target performance, Q0 = 1 . 1 × 109 at Eacc = 6 . 3 MV / m.

  6. Dosimetric characteristics of fabricated silica fibre for postal radiotherapy dose audits

    NASA Astrophysics Data System (ADS)

    Fadzil, M. S. Ahmad; Ramli, N. N. H.; Jusoh, M. A.; Kadni, T.; Bradley, D. A.; Ung, N. M.; Suhairul, H.; Mohd Noor, N.

    2014-11-01

    Present investigation aims to establish the dosimetric characteristics of a novel fabricated flat fibre TLD system for postal radiotherapy dose audits. Various thermoluminescence (TL) properties have been investigated for five sizes of 6 mol% Ge-doped optical fibres. Key dosimetric characteristics including reproducibility, linearity, fading and energy dependence have been established. Irradiations were carried out using a linear accelerator (linac) and a Cobalt-60 machine. For doses from 0.5 Gy up to 10 Gy, Ge-doped flat fibres exhibit linearity between TL yield and dose, reproducible to better than 8% standard deviation (SD) following repeat measurements (n = 3). For photons generated at potentials from 1.25 MeV to 10 MV an energy-dependent response is noted, with a coefficient of variation (CV) of less than 40% over the range of energies investigated. For 6.0 mm length flat fibres 100 μm thick × 350 pm wide, the TL fading loss following 30 days of storage at room temperature was < 8%. The Ge-doped flat fibre system represents a viable basis for use in postal radiotherapy dose audits, corrections being made for the various factors influencing the TL yield.

  7. High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films.

    PubMed

    Jaccard, Maud; Petersson, Kristoffer; Buchillier, Thierry; Germond, Jean-François; Durán, Maria Teresa; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François O; Bailat, Claude

    2017-02-01

    The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Ḋ m ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Ḋ p ) of up to 8 × 10 6 Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Ḋ m dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Ḋ m between 0.55 and 4.40 Gy/min, while Ḋ p dependence was probed at the prototype machine for Ḋ p ranging from 7 × 10 3 to 8 × 10 6 Gy/s. Ḋ p dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Ḋ m dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Ḋ p range attainable at the prototype linac confirming the absence of any dose-rate dependence within the investigated range (7 × 10 3 to 8 × 10 6 Gy/s). This aspect was further corroborated by the linear relationship between the dose-per-pulse (D p ) measured by films and the charge per pulse (C p ) measured at the prototype linac exit. Our study shows that the use of EBT3 Gafchromic films can be extended to reference dosimetry in pulsed electron beams with a very high dose rate. The measurement results are associated with an overall uncertainty below 4% (k = 2) and are dose-rate and energy independent. © 2016 American Association of Physicists in Medicine.

  8. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aicheler, M; Burrows, P.; Draper, M.

    This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less

  9. Characteristics of the fourth order resonance in high intensity linear accelerators

    DOE PAGES

    Jeon, D.; Hwang, Kyung Ryun

    2017-06-19

    For the 4σ = 360° space-charge resonance in high intensity linear accelerators, the emittance growth is surveyed for input Gaussian beams, as a function of the depressed phase advance per cell σ and the initial tune depression (σ o – σ). For each data point, the linac lattice is designed such that the fourth order resonance dominates over the envelope instability. Additionally, the data show that the maximum emittance growth takes place at σ ≈ 87° over a wide range of the tune depression (or beam current), which confirms that the relevant parameter for the emittance growth is σ andmore » that for the bandwidth is σ o – σ. An interesting four-fold phase space structure is observed that cannot be explained with the fourth order resonance terms alone. Analysis attributes this effect to a small negative sixth order detuning term as the beam is redistributed by the resonance. Analytical studies show that the tune increases monotonically for the Gaussian beam which prevents the resonance for σ > 90°. Lastly, frequency analysis indicates that the four-fold structure observed for input Kapchinskij-Vladmirskij beams when σ < 90°, is not the fourth order resonance but a fourth order envelope instability because the 1/4 = 90°/360° component is missing in the frequency spectrum.« less

  10. Characteristics of the fourth order resonance in high intensity linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, D.; Hwang, Kyung Ryun

    For the 4σ = 360° space-charge resonance in high intensity linear accelerators, the emittance growth is surveyed for input Gaussian beams, as a function of the depressed phase advance per cell σ and the initial tune depression (σ o – σ). For each data point, the linac lattice is designed such that the fourth order resonance dominates over the envelope instability. Additionally, the data show that the maximum emittance growth takes place at σ ≈ 87° over a wide range of the tune depression (or beam current), which confirms that the relevant parameter for the emittance growth is σ andmore » that for the bandwidth is σ o – σ. An interesting four-fold phase space structure is observed that cannot be explained with the fourth order resonance terms alone. Analysis attributes this effect to a small negative sixth order detuning term as the beam is redistributed by the resonance. Analytical studies show that the tune increases monotonically for the Gaussian beam which prevents the resonance for σ > 90°. Lastly, frequency analysis indicates that the four-fold structure observed for input Kapchinskij-Vladmirskij beams when σ < 90°, is not the fourth order resonance but a fourth order envelope instability because the 1/4 = 90°/360° component is missing in the frequency spectrum.« less

  11. Poster - Thur Eve - 10: Long term stability of VMAT quality assurance parameters using an EPID.

    PubMed

    Pekar, J; Diamond, K R

    2012-07-01

    The rapidly growing use of volumetric modulated arc therapy (VMAT) treatments in radiation therapy calls for a quantitative, automated, and reliable quality assurance (QA) procedure that can be used routinely in the clinical setting. In this work, we present a series VMAT QA procedures used to assess dynamic multi-leaf collimator (MLC) positional accuracy, variable dose-rate accuracy, and MLC leaf speed accuracy. The QA procedures were performed using amorphous silicon electronic portal imaging devices (EPID) to determine the long term stability of the measured parameters on two Varian linear accelerators. The measurements were repeated weekly on both linear accelerators for a period of three months and the EPID images were analyzed using custom Matlab software. The results of the picket fence tests indicate that MLC leaf positions can be identified to within 0.11 mm and 0.15 mm for static gantry delivery and VMAT delivery respectively. In addition, the dose-rate, gantry speed and MLC leaf speed tests both show very good stability over the measurement period. The measurements thus far, suggest that a number of the dosimetry tests may be suitable for quarterly QA for Varian iX and Trilogy linacs. However, additional measurements are required to confirm the frequency with which each test is required for safe and reliable VMAT delivery at our centre. © 2012 American Association of Physicists in Medicine.

  12. A comparison between cobalt and linear accelerator-based treatment plans for conformal and intensity-modulated radiotherapy.

    PubMed

    Adams, E J; Warrington, A P

    2008-04-01

    The simplicity of cobalt units gives them the advantage of reduced maintenance, running costs and downtime when compared with linear accelerators. However, treatments carried out on such units are typically limited to simple techniques. This study has explored the use of cobalt beams for conformal and intensity-modulated radiotherapy (IMRT). Six patients, covering a range of treatment sites, were planned using both X-ray photons (6/10 MV) and cobalt-60 gamma rays (1.17 and 1.33 MeV). A range of conformal and IMRT techniques were considered, as appropriate. Conformal plans created using cobalt beams for small breast, meningioma and parotid cases were found to compare well with those created using X-ray photons. By using additional fields, acceptable conformal plans were also created for oesophagus and prostate cases. IMRT plans were found to be of comparable quality for meningioma, parotid and thyroid cases on the basis of dose-volume histogram analysis. We conclude that it is possible to plan high-quality radical radiotherapy treatments for cobalt units. A well-designed beam blocking/compensation system would be required to enable a practical and efficient alternative to multileaf collimator (MLC)-based linac treatments to be offered. If cobalt units were to have such features incorporated into them, they could offer considerable benefits to the radiotherapy community.

  13. Operational experience from LCLS-II cryomodule testing

    NASA Astrophysics Data System (ADS)

    Wang, R.; Hansen, B.; White, M.; Hurd, J.; Atassi, O. Al; Bossert, R.; Pei, L.; Klebaner, A.; Makara, J.; Theilacker, J.; Kaluzny, J.; Wu, G.; Harms, E.

    2017-12-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  14. A comparison of clinic based dosimeters based on silica optical fibre and plastic optical fibre for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Chen, Lingxia; O'Keeffe, Sinead; Woulfe, Peter; Lewis, Elfed

    2017-04-01

    Four sensors based on silica optical fibre and plastic optical fibre for clinical in-vivo dosimetry have been fabricated and tested on site at Galway Clinic. The initial comparison results have been attained for the four sensors when they have been irradiated with beam energies of 6 MV and 15 MV at different dose rates using a modern clinical linear accelerator (Linac) as the radiation source. According to the experimental test results, the sensors based on silica optical fibre exhibit greater sensitivity to the incident radiation beam than the sensors based on plastic optical fibre when they are exposed to identical irradiation conditions. The output intensity from the sensor based on silica fibre is 5 times higher than the sensor based on plastic optical fibre.

  15. Modeling of Radiotherapy Linac Source Terms Using ARCHER Monte Carlo Code: Performance Comparison for GPU and MIC Parallel Computing Devices

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Liu, Tianyu; Su, Lin; Bednarz, Bryan; Caracappa, Peter; Xu, X. George

    2017-09-01

    Monte Carlo (MC) simulation is well recognized as the most accurate method for radiation dose calculations. For radiotherapy applications, accurate modelling of the source term, i.e. the clinical linear accelerator is critical to the simulation. The purpose of this paper is to perform source modelling and examine the accuracy and performance of the models on Intel Many Integrated Core coprocessors (aka Xeon Phi) and Nvidia GPU using ARCHER and explore the potential optimization methods. Phase Space-based source modelling for has been implemented. Good agreements were found in a tomotherapy prostate patient case and a TrueBeam breast case. From the aspect of performance, the whole simulation for prostate plan and breast plan cost about 173s and 73s with 1% statistical error.

  16. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  17. Design study of low-energy beam transport for multi-charge beams at RAON

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  18. MO-FG-202-03: Efficient Data Collection of Continuous 2D and Discrete Relative Dosimetric Data for Annual LINAC QA Using TrueBeam Developer Mode and a 1D Scanning Tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knutson, N; Schmidt, M; University of Rhode Island, Kingston, RI

    2016-06-15

    Purpose: To develop a method to exploit real-time dynamic machine and couch parameter control during linear accelerator (LINAC) beam delivery to facilitate efficient performance of TG-142 suggested, Annual LINAC QA tests. Methods: Varian’s TrueBeam Developer Mode (Varian Medical Systems, Palo Alto, CA) facilitates control of Varian’s TrueBeam LINAC via instructions provided in Extensible Markup Language (XML) files. This allows machine and couch parameters to be varied dynamically, in real-time, during beam delivery. Custom XML files were created to allow for the collection of (1) continuous Tissue Maximum Ratios (TMRs), (2) beam profiles, and (3) continuous output factors using a 1D-scanningmore » tank. TMRs were acquired by orienting an ionization chamber (IC) at isocenter (depth=25cm) and synchronizing a depth scan towards the water surface while lowering the couch at 1mm/s. For beam profiles, the couch was driven laterally and longitudinally while logging IC electrometer readings. Output factors (OFs) where collected by continually varying field sizes (4×4 to 30×30-cm{sup 2}) at a constant speed of 6.66 mm/s. To validate measurements, comparisons were made to data collected using traditional methods (e.g. 1D or 3D tank). Results: All data collecting using the proposed methods agreed with traditionally collected data (TMRs within 1%, OFs within 0.5% and beam profile agreement within 1% / 1mm) while taking less time to collect (factor of approximately 1/10) and with a finer sample resolution. Conclusion: TrueBeam developer mode facilitates collection of continuous data with the same accuracy as traditionally collected data with a finer resolution in less time. Results demonstrate an order of magnitude increase in sampled resolution and an order of magnitude reduction in collection time compared to traditional acquisition methods (e.g. 3D scanning tank). We are currently extending this approach to perform other TG-142 tasks.« less

  19. SU-F-P-09: A Global Medical Physics Collaboration for Implementation of Modern Radiotherapy in Botswana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makufa, R; Bvochora-Nsingo, M; Karumekayi, T

    2016-06-15

    Purpose: The global burden of cancer is considerable, particularly in low and middle-income countries. Massachusetts General Hospital (MGH) and Botswana-Harvard AIDS Institute have partnered with the oncology community and government of Botswana to form BOTSOGO (BOTSwana Oncology Global Outreach) to address the rising burden of cancer in Botswana. Currently, radiation therapy (RT) is only available at a single linear accelerator (LINAC) in Gaborone Private Hospital (GPH). BOTSOGO worked to limit the absence of RT during a LINAC upgrade and ensure a safe transition to modern radiotherapy techniques. Methods: The existing Elekta Precise LINAC was decommissioned in November 2015 and replacedmore » with a new Elekta VERSA-HD with IMRT/VMAT/CBCT capability. Upgraded treatment planning and record-and-verify systems were also installed. Physicists from GPH and MGH collaborated during an intensive on-site visit in Botswana during the commissioning process. Measurements were performed using newly purchased Sun Nuclear equipment. Photon beams were matched with an existing model to minimize the time needed for beam modeling and machine down time. Additional remote peer review was also employed. Independent dosimetry was performed by irradiating OSLDs, which were subsequently analyzed at MGH. Results: Photon beam quality agreed with reference data within 0.2%. Electron beam data agreed with example clinical data within 3%. Absolute dose calibration was performed using both IAEA and AAPM protocols. Absolute dose measurements with OSLDs agreed within 5%. Quentry cloud-based software was installed to facilitate remote review of treatment plans. Patient treatments resumed in February 2016. The time without RT was reduced, therefore likely resulting in reduced patient morbidity/mortality. Conclusion: A global physics collaboration was utilized to commission a modern LINAC in a resource-constrained setting. This can be a useful model in other areas with limited resources. Further use of technology and on-site exchanges will facilitate the introduction of more advanced techniques in Botswana. We acknowledge funding support from the AAPM International Educational Activities Committee and the NCI Federal Share Proton Beam Program Income Grant.« less

  20. On the selection of gantry and collimator angles for isocenter localization using Winston-Lutz tests.

    PubMed

    Du, Weiliang; Johnson, Jennifer L; Jiang, Wei; Kudchadker, Rajat J

    2016-01-08

    In Winston-Lutz (WL) tests, the isocenter of a linear accelerator (linac) is determined as the intersection of radiation central axes (CAX) from multiple gantry, collimator, and couch angles. It is well known that the CAX can wobble due to mechanical imperfections of the linac. Previous studies suggested that the wobble varies with gantry and collimator angles. Therefore, the isocenter determined in the WL tests has a profound dependence on the gantry and collimator angles at which CAX are sampled. In this study, we evaluated the systematic and random errors in the iso-centers determined with different CAX sampling schemes. Digital WL tests were performed on six linacs. For each WL test, 63 CAX were sampled at nine gantry angles and seven collimator angles. Subsets of these data were used to simulate the effects of various CAX sampling schemes. An isocenter was calculated from each subset of CAX and compared against the reference isocenter, which was calculated from 48 opposing CAX. The differences between the calculated isocenters and the reference isocenters ranged from 0 to 0.8 mm. The differences diminished to less than 0.2 mm when 24 or more CAX were sampled. Isocenters determined with collimator 0° were vertically lower than those determined with collimator 90° and 270°. Isocenter localization errors in the longitudinal direction (along the axis of gantry rotation) showed a strong dependence on the collimator angle selected. The errors in all directions were significantly reduced when opposing collimator angles and opposing gantry angles were employed. The isocenter localization errors were less than 0.2 mm with the common CAX sampling scheme, which used four cardinal gantry angles and two opposing collimator angles. Reproducibility stud-ies on one linac showed that the mean and maximum variations of CAX during the WL tests were 0.053 mm and 0.30 mm, respectively. The maximal variation in the resulting isocenters was 0.068 mm if 48 CAX were used, or 0.13 mm if four CAX were used. Quantitative results from this study are useful for understanding and minimizing the isocenter uncertainty in WL tests.

Top