Sample records for linear calibration plot

  1. Hydrologic Impact of Straw Mulch On Runoff from a Burned Area for Various Soil Water Content

    NASA Astrophysics Data System (ADS)

    Carnicle, M. M.; Moody, J. A.; Ahlstrom, A. K.

    2011-12-01

    Mountainous watersheds often exhibit increases in runoff and flash floods after wildfires. During 11 days of September 2010, the Fourmile Canyon wildfire burned 2500 hectares of the foothills of the Rocky Mountains near Boulder, Colorado. In an effort to minimize the risk of flash floods after the wildfire, Boulder County aerially applied straw mulch on high-risk areas selected primarily on the basis of their slopes and burn severities. The purpose of this research is to investigate the hydrologic response, specifically runoff, of a burned area where straw mulch is applied. We measured the runoff, at different soil water contents, from 0.8-m diameter plots. Paired plots were installed in June 2011 in a basin burned by the Fourmile Canyon Fire. Two sets of bounded, paired plot (two control and two experimental plots) were calibrated for 35 days without straw on either plot by measuring volumetric soil water content 2-3 times per week and measuring total runoff from each storm. Straw (5 cm thick) was added to the two experimental plots on 19 July 2011 and also to the funnels of two visual rain gages in order to measure the amount of rainfall absorbed by the straw. Initial results during the calibration period showed nearly linear relations between the volumetric soil water content of the control and experimental plots. The regression line for the runoff from the control versus the runoff from the experiment plot did not fit a linear trend; the variability may have been caused by two intense storms, which produced runoff that exceeded the capacity of the runoff gages. Also, during the calibration period, when soil water content was low the runoff coefficients were high. It is anticipated that the final results will show that the total runoff is greater on plots with no straw compared to those with straw, under conditions of various antecedent soil water content. We are continuing to collect data during the summer of 2011 to test this hypothesis.

  2. Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls).

    PubMed

    Bell, Steven E J; Sirimuthu, Narayana M S

    2004-11-01

    Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I(nic)/I(pyr) against the concentration of nicotine were non-linear but plotting I(nic)/I(pyr) against [nicotine](x)(x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R(2) typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.

  3. THE USE OF QUENCHING IN A LIQUID SCINTILLATION COUNTER FOR QUANTITATIVE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, G.V.

    1963-01-01

    Quenching was used to quantitatively determine the amonnt of quenching agent present. A sealed promethium147 source was prepared to be used for the count rate determinations. Two methods to determine the amount of quenching agent present in a sample were developed. One method related the count rate of a sample containing a quenching agent to the amount of quenching agent present. Calibration curves were plotted using both color and chemical quenchers. The quenching agents used were: F.D.C. Orange No. 2, F.D.C. Yellow No. 3, F.D.C. Yellow No. 4, Scarlet Red, acetone, benzaldehyde, and carbon tetrachloride. the color quenchers gave amore » linear-relationship, while the chemical quenchers gave a non-linear relationship. Quantities of the color quenchers between about 0.008 mg and 0.100 mg can be determined with an error less than 5%. The calibration curves were found to be usable over a long period of time. The other method related the change in the ratio of the count rates in two voltage windows to the amount of quenching agent present. The quenchers mentioned above were used. Calibration curves were plotted for both the color and chemical quenchers. The relationships of ratio versus amount of quencher were non-linear in each case. It was shown that the reproducibility of the count rate and the ratio was independent of the amount of quencher present but was dependent on the count rate. At count rates above 10,000 counts per minute the reproducibility was better than 1%. (TCO)« less

  4. Stability indicating high performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in combined dosage form

    PubMed Central

    Bageshwar, Deepak; Khanvilkar, Vineeta; Kadam, Vilasrao

    2011-01-01

    A specific, precise and stability indicating high-performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in pharmaceutical formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F254 as the stationary phase. The solvent system consisted of methanol:water:ammonium acetate; 4.0:1.0:0.5 (v/v/v). This system was found to give compact and dense spots for both itopride hydrochloride (Rf value of 0.55±0.02) and pantoprazole sodium (Rf value of 0.85±0.04). Densitometric analysis of both drugs was carried out in the reflectance–absorbance mode at 289 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with R2=0.9988±0.0012 in the concentration range of 100–400 ng for pantoprazole sodium. Also, the linear regression analysis data for the calibration plots showed a good linear relationship with R2=0.9990±0.0008 in the concentration range of 200–1200 ng for itopride hydrochloride. The method was validated for specificity, precision, robustness and recovery. Statistical analysis proves that the method is repeatable and selective for the estimation of both the said drugs. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating method. PMID:29403710

  5. Stability indicating high performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in combined dosage form.

    PubMed

    Bageshwar, Deepak; Khanvilkar, Vineeta; Kadam, Vilasrao

    2011-11-01

    A specific, precise and stability indicating high-performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in pharmaceutical formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F 254 as the stationary phase. The solvent system consisted of methanol:water:ammonium acetate; 4.0:1.0:0.5 (v/v/v). This system was found to give compact and dense spots for both itopride hydrochloride ( R f value of 0.55±0.02) and pantoprazole sodium ( R f value of 0.85±0.04). Densitometric analysis of both drugs was carried out in the reflectance-absorbance mode at 289 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with R 2 =0.9988±0.0012 in the concentration range of 100-400 ng for pantoprazole sodium. Also, the linear regression analysis data for the calibration plots showed a good linear relationship with R 2 =0.9990±0.0008 in the concentration range of 200-1200 ng for itopride hydrochloride. The method was validated for specificity, precision, robustness and recovery. Statistical analysis proves that the method is repeatable and selective for the estimation of both the said drugs. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating method.

  6. Determination of thiopental in urine sample with high-performance liquid chromatography using iodine-azide reaction as a postcolumn detection system.

    PubMed

    Zakrzewski, Robert; Ciesielski, Witold

    2005-09-25

    The reaction between iodine and azide ions induced by thiopental was utilized as a postcolumn reaction for chromatographic determination of thiopental. The method is based on the separation of thiopental on an Nova-Pak CN HP column with an acetonitrile-aqueous solution of sodium azide as a mobile phase, followed by spectrophotometric measurement of the residual iodine (lambda=350 nm) from the postcolumn iodine-azide reaction induced by thiopental after mixing an iodine solution containing iodide ions with the column effluent containing azide ions and thiopental. Chromatograms obtained for thiopental showed negative peaks as a result of the decrease in background absorbance. The detection limit (defined as S/N=3) was 20 nM (0.4 pmol injected amount) for thiopental. Calibration graphs, plotted as peak area versus concentrations, were linear from 40 nM. The elaborated method was applied to determine thiopental in urine samples. The detection limit (defined as S/N=3) was 0.025 nmol/ml urine. Calibration graphs, plotted as peak area versus concentrations, were linear from 0.05 nmol/ml urine. Authentic urine samples were analyzed, thiopental was determined at nmol/ml urine level.

  7. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China.

    PubMed

    Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu

    2015-01-01

    A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.

  8. Calibration of an electronic counter and pulse height analyzer for plotting erythrocyte volume spectra.

    DOT National Transportation Integrated Search

    1963-03-01

    A simple technique is presented for calibrating an electronic system used in the plotting of erythrocyte volume spectra. The calibration factors, once obtained, apparently remain applicable for some time. Precise estimates of calibration factors appe...

  9. Non-parametric and least squares Langley plot methods

    NASA Astrophysics Data System (ADS)

    Kiedron, P. W.; Michalsky, J. J.

    2016-01-01

    Langley plots are used to calibrate sun radiometers primarily for the measurement of the aerosol component of the atmosphere that attenuates (scatters and absorbs) incoming direct solar radiation. In principle, the calibration of a sun radiometer is a straightforward application of the Bouguer-Lambert-Beer law V = V0e-τ ṡ m, where a plot of ln(V) voltage vs. m air mass yields a straight line with intercept ln(V0). This ln(V0) subsequently can be used to solve for τ for any measurement of V and calculation of m. This calibration works well on some high mountain sites, but the application of the Langley plot calibration technique is more complicated at other, more interesting, locales. This paper is concerned with ferreting out calibrations at difficult sites and examining and comparing a number of conventional and non-conventional methods for obtaining successful Langley plots. The 11 techniques discussed indicate that both least squares and various non-parametric techniques produce satisfactory calibrations with no significant differences among them when the time series of ln(V0)'s are smoothed and interpolated with median and mean moving window filters.

  10. The Wally plot approach to assess the calibration of clinical prediction models.

    PubMed

    Blanche, Paul; Gerds, Thomas A; Ekstrøm, Claus T

    2017-12-06

    A prediction model is calibrated if, roughly, for any percentage x we can expect that x subjects out of 100 experience the event among all subjects that have a predicted risk of x%. Typically, the calibration assumption is assessed graphically but in practice it is often challenging to judge whether a "disappointing" calibration plot is the consequence of a departure from the calibration assumption, or alternatively just "bad luck" due to sampling variability. We propose a graphical approach which enables the visualization of how much a calibration plot agrees with the calibration assumption to address this issue. The approach is mainly based on the idea of generating new plots which mimic the available data under the calibration assumption. The method handles the common non-trivial situations in which the data contain censored observations and occurrences of competing events. This is done by building on ideas from constrained non-parametric maximum likelihood estimation methods. Two examples from large cohort data illustrate our proposal. The 'wally' R package is provided to make the methodology easily usable.

  11. Simulation of size-exclusion chromatography distribution coefficients of comb-shaped molecules in spherical pores comparison of simulation and experiment.

    PubMed

    Radke, Wolfgang

    2004-03-05

    Simulations of the distribution coefficients of linear polymers and regular combs with various spacings between the arms have been performed. The distribution coefficients were plotted as a function of the number of segments in order to compare the size exclusion chromatography (SEC)-elution behavior of combs relative to linear molecules. By comparing the simulated SEC-calibration curves it is possible to predict the elution behavior of comb-shaped polymers relative to linear ones. In order to compare the results obtained by computer simulations with experimental data, a variety of comb-shaped polymers varying in side chain length, spacing between the side chains and molecular weights of the backbone were analyzed by SEC with light-scattering detection. It was found that the computer simulations could predict the molecular weights of linear molecules having the same retention volume with an accuracy of about 10%, i.e. the error in the molecular weight obtained by calculating the molecular weight of the comb-polymer based on a calibration curve constructed using linear standards and the results of the computer simulations are of the same magnitude as the experimental error of absolute molecular weight determination.

  12. Calibration Adjustment of the Mid-infrared Analyzer for an Accurate Determination of the Macronutrient Composition of Human Milk.

    PubMed

    Billard, Hélène; Simon, Laure; Desnots, Emmanuelle; Sochard, Agnès; Boscher, Cécile; Riaublanc, Alain; Alexandre-Gouabau, Marie-Cécile; Boquien, Clair-Yves

    2016-08-01

    Human milk composition analysis seems essential to adapt human milk fortification for preterm neonates. The Miris human milk analyzer (HMA), based on mid-infrared methodology, is convenient for a unique determination of macronutrients. However, HMA measurements are not totally comparable with reference methods (RMs). The primary aim of this study was to compare HMA results with results from biochemical RMs for a large range of protein, fat, and carbohydrate contents and to establish a calibration adjustment. Human milk was fractionated in protein, fat, and skim milk by covering large ranges of protein (0-3 g/100 mL), fat (0-8 g/100 mL), and carbohydrate (5-8 g/100 mL). For each macronutrient, a calibration curve was plotted by linear regression using measurements obtained using HMA and RMs. For fat, 53 measurements were performed, and the linear regression equation was HMA = 0.79RM + 0.28 (R(2) = 0.92). For true protein (29 measurements), the linear regression equation was HMA = 0.9RM + 0.23 (R(2) = 0.98). For carbohydrate (15 measurements), the linear regression equation was HMA = 0.59RM + 1.86 (R(2) = 0.95). A homogenization step with a disruptor coupled to a sonication step was necessary to obtain better accuracy of the measurements. Good repeatability (coefficient of variation < 7%) and reproducibility (coefficient of variation < 17%) were obtained after calibration adjustment. New calibration curves were developed for the Miris HMA, allowing accurate measurements in large ranges of macronutrient content. This is necessary for reliable use of this device in individualizing nutrition for preterm newborns. © The Author(s) 2015.

  13. Application of the Langley plot for calibration of sun sensors for the Halogen Occultation Experiment (HALOE)

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Mauldin, L. ED, III; Stump, Charles W.; Reagan, John A.; Fabert, Milton G.

    1989-01-01

    The calibration of the Halogen Occultation Experiment (HALOE) sun sensor is described. This system consists of two energy-balancing silicon detectors which provide coarse azimuth and elevation control signals and a silicon photodiode array which provides top and bottom solar edge data for fine elevation control. All three detectors were calibrated on a mountaintop near Tucson, Ariz., using the Langley plot technique. The conventional Langley plot technique was modified to allow calibration of the two coarse detectors, which operate wideband. A brief description of the test setup is given. The HALOE instrument is a gas correlation radiometer that is now being developed for the Upper Atmospheric Research Satellite.

  14. The standard calibration instrument automation system for the atomic absorption spectrophotometer. Part 3: Program documentation

    NASA Astrophysics Data System (ADS)

    Ryan, D. P.; Roth, G. S.

    1982-04-01

    Complete documentation of the 15 programs and 11 data files of the EPA Atomic Absorption Instrument Automation System is presented. The system incorporates the following major features: (1) multipoint calibration using first, second, or third degree regression or linear interpolation, (2) timely quality control assessments for spiked samples, duplicates, laboratory control standards, reagent blanks, and instrument check standards, (3) reagent blank subtraction, and (4) plotting of calibration curves and raw data peaks. The programs of this system are written in Data General Extended BASIC, Revision 4.3, as enhanced for multi-user, real-time data acquisition. They run in a Data General Nova 840 minicomputer under the operating system RDOS, Revision 6.2. There is a functional description, a symbol definitions table, a functional flowchart, a program listing, and a symbol cross reference table for each program. The structure of every data file is also detailed.

  15. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept.

    PubMed

    Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G

    2014-08-21

    Typical urinary iodide concentrations range from 0.3 μM to 6.0 μM. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 μM to 6.0 μM. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated.

  16. Sustained modelling ability of artificial neural networks in the analysis of two pharmaceuticals (dextropropoxyphene and dipyrone) present in unequal concentrations.

    PubMed

    Cámara, María S; Ferroni, Félix M; De Zan, Mercedes; Goicoechea, Héctor C

    2003-07-01

    An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.

  17. Calibration and use of plate meter regressions for pasture mass estimation in an Appalachian silvopasture

    USDA-ARS?s Scientific Manuscript database

    A standardized plate meter for measuring pasture mass was calibrated at the Agroforestry Research and Demonstration Site in Blacksburg, VA, using six ungrazed plots of established tall fescue (Festuca arundinaceae) overseeded with orchardgrass (Dactylis glomerata). Each plot was interplanted with b...

  18. Improved CRDS δ13C Stability Through New Calibration Application For CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Arata, C.; Rella, C.

    2014-12-01

    Stable carbon isotope ratio measurements of CO2 and CH4 provide valuable insight into global and regional sources and sinks of the two most important greenhouse gasses. Methodologies based on Cavity Ring-Down Spectroscopy (CRDS) have been developed capable of delivering δ13C measurements with a precision greater than 0.12 permil for CO2 and 0.4 permil for CH4 (1 hour window, 5 minute average). Here we present a method to further improve this measurement's stability. We have developed a two point calibration method which corrects for δ13C drift due to a dependance on carbon species concentration. This method calibrates for both carbon species concentration as well as δ13C. We go on to show that this added stability is especially valuable when using carbon isotope data in linear regression models such as Keeling plots, where even small amounts of error can be magnified to give inconclusive results. This method is demonstrated in both laboratory and ambient atmospheric conditions, and we demonstrate how to select the calibration frequency.

  19. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy

    PubMed Central

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future. PMID:21895336

  20. Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact, it is frequently ignored. For the analysis it suffices to establish the linear relationship empirically. The slope of this relationship may vary from one sample to another because of different influences of the matrix. In this case the concentration of the analyte is determined by the method of standard additions [1]. After measuring the response of the sample, the concentration of the analyte is deliberately increased by adding a certain volume of its standard solution. The response is measured again, and this procedure is repeated three or four times. The unknown concentration is determined by extrapolation of the regression line to the concentration axis [9]. However, in many analytical methods, the final measurement is performed in a standard matrix that allows the construction of a calibration plot. Still, the slope of this plot depends on the active area of the working electrode surface. Each solid electrode needs a separate calibration plot, and that plot must be checked from time to time because of possible deterioration of the electrode surface [2].

  1. Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory

    USGS Publications Warehouse

    Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo

    2013-01-01

    Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.

  2. Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain

    PubMed Central

    Arias-Rodil, Manuel; Castedo-Dorado, Fernando; Cámara-Obregón, Asunción; Diéguez-Aranda, Ulises

    2015-01-01

    Stem taper data are usually hierarchical (several measurements per tree, and several trees per plot), making application of a multilevel mixed-effects modelling approach essential. However, correlation between trees in the same plot/stand has often been ignored in previous studies. Fitting and calibration of a variable-exponent stem taper function were conducted using data from 420 trees felled in even-aged maritime pine (Pinus pinaster Ait.) stands in NW Spain. In the fitting step, the tree level explained much more variability than the plot level, and therefore calibration at plot level was omitted. Several stem heights were evaluated for measurement of the additional diameter needed for calibration at tree level. Calibration with an additional diameter measured at between 40 and 60% of total tree height showed the greatest improvement in volume and diameter predictions. If additional diameter measurement is not available, the fixed-effects model fitted by the ordinary least squares technique should be used. Finally, we also evaluated how the expansion of parameters with random effects affects the stem taper prediction, as we consider this a key question when applying the mixed-effects modelling approach to taper equations. The results showed that correlation between random effects should be taken into account when assessing the influence of random effects in stem taper prediction. PMID:26630156

  3. Improved CRDS δ13C Stability Through New Calibration Application For CO2 And CH4

    NASA Astrophysics Data System (ADS)

    Rella, Chris; Arata, Caleb; Saad, Nabil; Leggett, Graham; Miles, Natasha; Richardson, Scott; Davis, Ken

    2015-04-01

    Stable carbon isotope ratio measurements of CO2 and CH4 provide valuable insight into global and regional sources and sinks of the two most important greenhouse gases. Methodologies based on Cavity Ring-Down Spectroscopy (CRDS) have been developed and are capable of delivering δ13C measurements with a precision better than 0.12 permil for CO2 and 0.4 permil for CH4 (1 hour window, 5 minute average). Here we present a method to further improve this measurement stability. We have developed a two-point calibration method which corrects for δ13C drift due to a dependence on carbon species concentration. This method calibrates for both carbon species concentration as well as δ13C. In addition, we further demonstrate that this added stability is especially valuable when using carbon isotope data in linear regression models such as Keeling plots, where even small amounts of error can be magnified to give inconclusive results. Furthermore, we show how this method is used to validate multiple instruments simultaneously and can be used to create the standard samples needed for field calibrations.

  4. Numerical computation of Pop plot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparisonmore » of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.« less

  5. Energy dispersive X-ray fluorescence determination of cadmium in uranium matrix using Cd Kα line excited by continuum

    NASA Astrophysics Data System (ADS)

    Dhara, Sangita; Misra, N. L.; Aggarwal, S. K.; Venugopal, V.

    2010-06-01

    An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 µg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 µg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1 σ) and the results deviated from the expected values by < 4% on average.

  6. Improving LiDAR Biomass Model Uncertainty through Non-Destructive Allometry and Plot-level 3D Reconstruction with Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Stovall, A. E.; Shugart, H. H., Jr.

    2017-12-01

    Future NASA and ESA satellite missions plan to better quantify global carbon through detailed observations of forest structure, but ultimately rely on uncertain ground measurement approaches for calibration and validation. A significant amount of the uncertainty in estimating plot-level biomass can be attributed to inadequate and unrepresentative allometric relationships used to convert plot-level tree measurements to estimates of aboveground biomass. These allometric equations are known to have high errors and biases, particularly in carbon rich forests because they were calibrated with small and often biased samples of destructively harvested trees. To overcome this issue, a non-destructive methodology for estimating tree and plot-level biomass has been proposed through the use of Terrestrial Laser Scanning (TLS). We investigated the potential for using TLS as a ground validation approach in LiDAR-based biomass mapping though virtual plot-level tree volume reconstruction and biomass estimation. Plot-level biomass estimates were compared on the Virginia-based Smithsonian Conservation Biology Institute's SIGEO forest with full 3D reconstruction, TLS allometry, and Jenkins et al. (2003) allometry. On average, full 3D reconstruction ultimately provided the lowest uncertainty estimate of plot-level biomass (9.6%), followed by TLS allometry (16.9%) and the national equations (20.2%). TLS offered modest improvements to the airborne LiDAR empirical models, reducing RMSE from 16.2% to 14%. Our findings suggest TLS plot acquisitions and non-destructive allometry can play a vital role for reducing uncertainty in calibration and validation data for biomass mapping in the upcoming NASA and ESA missions.

  7. Microbial biosensor for detection of methyl parathion using screen printed carbon electrode and cyclic voltammetry.

    PubMed

    Kumar, Jitendra; D'Souza, S F

    2011-07-15

    Whole cells of recombinant Escherichia coli were immobilized on the screen printed carbon electrode (SPCE) using glutaraldehyde. Recombinant E. coli was having high periplasmic expression of organophosphorus hydrolase enzyme, which hydrolyzes the methyl parathion into two products, p-nitrophenol and dimethyl thiophosphoric acid. Cells immobilized SPCE was studied under SEM. Cells immobilized SPCE was associated with cyclic voltammetry and cyclic voltammograms were recorded before and after hydrolysis of methyl parathion. Detection was calibrated based on the relationship between the changes in the current observed at +0.1 V potential, because of redox behavior of the hydrolyzed product p-nitrophenol. As concentration of methyl parathion was increased the oxidation current also increased. Only 20 μl volume of the sample was required for analysis. Detection range of biosensor was calibrated between 2 and 80 μM of methyl parathion from the linear range of calibration plot. A single immobilized SPCE was reused for 32 reactions with retention of 80% of its initial enzyme activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Spectrophotometric determination of ketoprofen and its application in pharmaceutical analysis.

    PubMed

    Kormosh, Zholt; Hunka, Iryna; Basel, Yaroslav

    2009-01-01

    A new simple rapid and sensitive spectrophotometric method has been developed for the determination of ketoprofen in pharmaceutical preparations. The method is based on the reaction of ketoprofen with an analytical reagent--Astra Phloxin FF--at pH 8.0-10.8 and followed by the extraction of formed ion associate in toluene with spectrophotometric detection (it has an absorption maximum at 563 nm, epsilon = 7.6 x 10(4) L x mol(-1) x cm(-1)). The calibration plot was linear from 0.8-16.0 microg x mL(-1) of ketoprofen, and the detection limit was 0.037 microg x mL(-1).

  9. Smoothed Residual Plots for Generalized Linear Models. Technical Report #450.

    ERIC Educational Resources Information Center

    Brant, Rollin

    Methods for examining the viability of assumptions underlying generalized linear models are considered. By appealing to the likelihood, a natural generalization of the raw residual plot for normal theory models is derived and is applied to investigating potential misspecification of the linear predictor. A smooth version of the plot is also…

  10. Development and Validation of High-performance Thin Layer Chromatographic Method for Ursolic Acid in Malus domestica Peel

    PubMed Central

    Nikam, P. H.; Kareparamban, J. A.; Jadhav, A. P.; Kadam, V. J.

    2013-01-01

    Ursolic acid, a pentacyclic triterpenoid possess a wide range of pharmacological activities. It shows hypoglycemic, antiandrogenic, antibacterial, antiinflammatory, antioxidant, diuretic and cynogenic activity. It is commonly present in plants especially coating of leaves and fruits, such as apple fruit, vinca leaves, rosemary leaves, and eucalyptus leaves. A simple high-performance thin layer chromatographic method has been developed for the quantification of ursolic acid from apple peel (Malus domestica). The samples dissolved in methanol and linear ascending development was carried out in twin trough glass chamber. The mobile phase was selected as toluene:ethyl acetate:glacial acetic acid (70:30:2). The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.9982 in the concentration range 0.2-7 μg/spot with respect to peak area. According to the ICH guidelines the method was validated for linearity, accuracy, precision, and robustness. Statistical analysis of the data showed that the method is reproducible and selective for the estimation of ursolic acid. PMID:24302805

  11. Quantitative analysis of polyhexamethylene guanidine (PHMG) oligomers via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an ionic-liquid matrix.

    PubMed

    Yoon, Donhee; Lee, Dongkun; Lee, Jong-Hyeon; Cha, Sangwon; Oh, Han Bin

    2015-01-30

    Quantifying polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with a conventional crystalline matrix generally suffers from poor sample-to-sample or shot-to-shot reproducibility. An ionic-liquid matrix has been demonstrated to mitigate these reproducibility issues by providing a homogeneous sample surface, which is useful for quantifying polymers. In the present study, we evaluated the use of an ionic liquid matrix, i.e., 1-methylimidazolium α-cyano-4-hydroxycinnamate (1-MeIm-CHCA), to quantify polyhexamethylene guanidine (PHMG) samples that impose a critical health hazard when inhaled in the form of droplets. MALDI-TOF mass spectra were acquired for PHMG oligomers using a variety of ionic-liquid matrices including 1-MeIm-CHCA. Calibration curves were constructed by plotting the sum of the PHMG oligomer peak areas versus PHMG sample concentration with a variety of peptide internal standards. Compared with the conventional crystalline matrix, the 1-MeIm-CHCA ionic-liquid matrix had much better reproducibility (lower standard deviations). Furthermore, by using an internal peptide standard, good linear calibration plots could be obtained over a range of PMHG concentrations of at least 4 orders of magnitude. This study successfully demonstrated that PHMG samples can be quantitatively characterized by MALDI-TOFMS with an ionic-liquid matrix and an internal standard. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  13. Effective Cross Section of Cold Formed Steel Column Under Axial Compression

    NASA Astrophysics Data System (ADS)

    Manikandan, P.; Pradeep, T.

    2018-06-01

    The compressive resistance of cold-formed steel (CFS) section may be governed by local, distortional or overall buckling and any apparent interaction between these modes. A new inventive stiffened CFS section is elected in this study, selected cross sections geometries and lengths are chosen such that all the types of buckling modes are met with. Buckling plot is plotted using linear elastic buckling analysis software (CUFSM). Using the test results obtained in the literature, the developed finite element model is calibrated and furthers a total of 126 parametric study is conducted such as a consequence of dimensions and the length of the cross section, thickness and yield stress. The FEA included relevant material and geometric imperfections. All the columns are analyzed under pin end conditions with axial compression. The analysis results demonstrate that the DSM equations generally assess the strength of stiffened section conservatively. Modifications to the DSM equations are recommended to evaluate the strength of stiffened section more precisely.

  14. Linear scaling relationships and volcano plots in homogeneous catalysis - revisiting the Suzuki reaction.

    PubMed

    Busch, Michael; Wodrich, Matthew D; Corminboeuf, Clémence

    2015-12-01

    Linear free energy scaling relationships and volcano plots are common tools used to identify potential heterogeneous catalysts for myriad applications. Despite the striking simplicity and predictive power of volcano plots, they remain unknown in homogeneous catalysis. Here, we construct volcano plots to analyze a prototypical reaction from homogeneous catalysis, the Suzuki cross-coupling of olefins. Volcano plots succeed both in discriminating amongst different catalysts and reproducing experimentally known trends, which serves as validation of the model for this proof-of-principle example. These findings indicate that the combination of linear scaling relationships and volcano plots could serve as a valuable methodology for identifying homogeneous catalysts possessing a desired activity through a priori computational screening.

  15. Timing considerations for preclinical MRgRT: effects of ion diffusion, SNR and imaging times on FXG gel calibration

    NASA Astrophysics Data System (ADS)

    Welch, M.; Foltz, W. D.; Jaffray, D. A.

    2015-01-01

    Sub-millimeter resolution images are required for gel dosimeters to be used in preclinical research, which is challenging for MR probed ferrous xylenol-orange (FXG) dosimeters due to ion diffusion and inadequate SNR. A preclinical 7 T MR, small animal irradiator and FXG dosimeters were used in all experiments. Ion diffusion was analyzed using high resolution (0.2 mm/pixel) T1 MR images collected every 5 minutes, post-irradiation, for an hour. Using Fick's second law, ion diffusion was approximated for the first hour post-irradiation. SNR, T1 map precision and calibration fit were determined for two MR protocols: (1) 10 minute acquisition, 0.35mm/pixel and 3mm slices, (2) 45 minute acquisition, 0. 25 mm/pixel and 2 mm slices. SNR and T1 map precision were calculated using a Monte Carlo simulation. Calibration curves were determined by plotting R1 relaxation rates versus depth dose data, and fitting a linear trend line. Ion diffusion was estimated as 0.003mm2 in the first hour post-irradiation. For protocols (1) and (2) respectively, Monte Carlo simulation predicted T1 precisions of 3% and 5% within individual voxels using experimental SNRs; the corresponding measured T1 precisions were 8% and 12%. The linear trend lines reported slopes of 27 ± 3 Gy*s (R2: 0.80 ± 0.04) and 27 ± 4 Gy*s (R2: 0.90 ± 0.04). Ion diffusion is negligible within the first hour post-irradiation, and an accurate and reproducible calibration can be achieved in a preclinical setting with sub-millimeter resolution.

  16. Linear scaling relationships and volcano plots in homogeneous catalysis – revisiting the Suzuki reaction† †Electronic supplementary information (ESI) available: Detailed derivation of the linear scaling relationships and construction of the volcano plots as well as comparisons of computed values using PBE0-dDsC and M06 functionals is included. See DOI: 10.1039/c5sc02910d Click here for additional data file.

    PubMed Central

    Busch, Michael; Wodrich, Matthew D.

    2015-01-01

    Linear free energy scaling relationships and volcano plots are common tools used to identify potential heterogeneous catalysts for myriad applications. Despite the striking simplicity and predictive power of volcano plots, they remain unknown in homogeneous catalysis. Here, we construct volcano plots to analyze a prototypical reaction from homogeneous catalysis, the Suzuki cross-coupling of olefins. Volcano plots succeed both in discriminating amongst different catalysts and reproducing experimentally known trends, which serves as validation of the model for this proof-of-principle example. These findings indicate that the combination of linear scaling relationships and volcano plots could serve as a valuable methodology for identifying homogeneous catalysts possessing a desired activity through a priori computational screening. PMID:28757966

  17. Net analyte signal-based simultaneous determination of ethanol and water by quartz crystal nanobalance sensor.

    PubMed

    Mirmohseni, A; Abdollahi, H; Rostamizadeh, K

    2007-02-28

    Net analyte signal (NAS)-based method called HLA/GO was applied for the selectively determination of binary mixture of ethanol and water by quartz crystal nanobalance (QCN) sensor. A full factorial design was applied for the formation of calibration and prediction sets in the concentration ranges 5.5-22.2 microg mL(-1) for ethanol and 7.01-28.07 microg mL(-1) for water. An optimal time range was selected by procedure which was based on the calculation of the net analyte signal regression plot in any considered time window for each test sample. A moving window strategy was used for searching the region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 600 s were used to determine mixtures of both compounds by HLA/GO method. The calculation of the net analytical signal using HLA/GO method allows determination of several figures of merit like selectivity, sensitivity, analytical sensitivity and limit of detection, for each component. To check the ability of the proposed method in the selection of linear regions of adsorption profile, a test for detecting non-linear regions of adsorption profile data in the presence of methanol was also described. The results showed that the method was successfully applied for the determination of ethanol and water.

  18. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography.

    PubMed

    Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand

    2015-09-25

    Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Field strategies for the calibration and validation of high-resolution forest carbon maps: Scaling from plots to a three state region MD, DE, & PA, USA.

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.; Huang, W.; Johnson, K. D.; Birdsey, R.; Finley, A. O.; Dubayah, R.; Hurtt, G. C.

    2016-12-01

    In 2010 Congress directed NASA to initiate research towards the development of Carbon Monitoring Systems (CMS). In response, our team has worked to develop a robust, replicable framework to quantify and map aboveground forest biomass at high spatial resolutions. Crucial to this framework has been the collection of field-based estimates of aboveground tree biomass, combined with remotely detected canopy and structural attributes, for calibration and validation. Here we evaluate the field- based calibration and validation strategies within this carbon monitoring framework and discuss the implications on local to national monitoring systems. Through project development, the domain of this research has expanded from two counties in MD (2,181 km2), to the entire state of MD (32,133 km2), and most recently the tri-state region of MD, PA, and DE (157,868 km2) and covers forests in four major USDA ecological providences. While there are approximately 1000 Forest Inventory and Analysis (FIA) plots distributed across the state of MD, 60% fell in areas considered non-forest or had conditions that precluded them from being measured in the last forest inventory. Across the two pilot counties, where population and landuse competition is high, that proportion rose to 70% Thus, during the initial phases of this project 850 independent field plots were established for model calibration following a random stratified design to insure the adequate representation of height and vegetation classes found across the state, while FIA data were used as an independent data source for validation. As the project expanded to cover the larger spatial tri-state domain, the strategy was flipped to base calibration on more than 3,300 measured FIA plots, as they provide a standardized, consistent and available data source across the nation. An additional 350 stratified random plots were deployed in the Northern Mixed forests of PA and the Coastal Plains forests of DE for validation.

  20. A heat and water transfer model for seasonally frozen soils with application to a precipitation-runoff model

    USGS Publications Warehouse

    Emerson, Douglas G.

    1994-01-01

    A model that simulates heat and water transfer in soils during freezing and thawing periods was developed and incorporated into the U.S. Geological Survey's Precipitation-Runoff Modeling System. The model's transfer of heat is based on an equation developed from Fourier's equation for heat flux. The model's transfer of water within the soil profile is based on the concept of capillary forces. Field capacity and infiltration rate can vary throughout the freezing and thawing period, depending on soil conditions and rate and timing of snowmelt. The model can be used to determine the effects of seasonally frozen soils on ground-water recharge and surface-water runoff. Data collected for two winters, 1985-86 and 1986-87, on three runoff plots were used to calibrate and verify the model. The winter of 1985-86 was colder than normal, and snow cover was continuous throughout the winter. The winter of 1986-87 was warmer than normal, and snow accumulated for only short periods of several days. as the criteria for determining the degree of agreement between simulated and measured data. The model was calibrated using the 1985-86 data for plot 2. The calibration simulation agreed closely with the measured data. The verification simulations for plots 1 and 3 using the 1985-86 data and for plots 1 and 2 using the 1986-87 data agreed closely with the measured data. The verification simulation for plot 3 using the 1986-87 data did not agree closely. The recalibration simulations for plots 1 and 3 using the 1985-86 data indicated little improvement because the verification simulations for plots 1 and 3 already agreed closely with the measured data.

  1. Documentation of a heat and water transfer model for seasonally frozen soils with application to a precipitation-runoff model

    USGS Publications Warehouse

    Emerson, Douglas G.

    1991-01-01

    A model that simulates heat and water transfer in soils during freezing and thawing periods was developed and incorporated into the U.S. Geological Survey's Precipitation-Runoff Modeling System. The transfer of heat 1s based on an equation developed from Fourier's equation for heat flux. Field capacity and infiltration rate can vary throughout the freezing and thawing period, depending on soil conditions and rate and timing of snowmelt. The transfer of water within the soil profile is based on the concept of capillary forces. The model can be used to determine the effects of seasonally frozen soils on ground-water recharge and surface-water runoff. Data collected for two winters, 1985-86 and 1986-87, on three runoff plots were used to calibrate and verify the model. The winter of 1985-86 was colder than normal and snow cover was continuous throughout the winter. The winter of 1986-87 was wanner than normal and snow accumulated for only short periods of several days.Runoff, snowmelt, and frost depths were used as the criteria for determining the degree of agreement between simulated and measured data. The model was calibrated using the 1985-86 data for plot 2. The calibration simulation agreed closely with the measured data. The verification simulations for plots 1 and 3 using the 1985-86 data and for plots 1 and 2 using the 1986-87 data agreed closely with the measured data. The verification simulation for plot 3 using the 1986-87 data did not agree closely. The recalibratlon simulations for plots 1 and 3 using the 1985-86 data Indicated small improvement because the verification simulations for plots 1 and 3 already agreed closely with the measured data.

  2. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  3. Simple scale interpolator facilitates reading of graphs

    NASA Technical Reports Server (NTRS)

    Fazio, A.; Henry, B.; Hood, D.

    1966-01-01

    Set of cards with scale divisions and a scale finder permits accurate reading of the coordinates of points on linear or logarithmic graphs plotted on rectangular grids. The set contains 34 different scales for linear plotting and 28 single cycle scales for log plots.

  4. Sky-radiance gradient measurements at narrow bands in the visible.

    PubMed

    Winter, E M; Metcalf, T W; Stotts, L B

    1995-07-01

    Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.

  5. An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach

    NASA Astrophysics Data System (ADS)

    Grant, Christina P.

    San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.

  6. Determination of virginiamycin M1 residue in tissues of swine and chicken by ultra-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Wang, Xiaoyang; Wang, Mi; Zhang, Keyu; Hou, Ting; Zhang, Lifang; Fei, Chenzong; Xue, Feiqun; Hang, Taijun

    2018-06-01

    A reliable UPLC-MS/MS method with high sensitivity was developed and validated for the determination of virginiamycin M1 in muscle, fat, liver, and kidney samples of chicken and swine. Analytes were extracted using acetonitrile and extracts were defatted by N-hexane. Chromatographic separation was performed on a BEH C18 liquid chromatography column. The analytes were then detected using triplequadrupole mass spectrometry in positive electrospray ionization and multiple reaction monitoring mode. Calibration plots were constructed using standard working solutions and showed good linearity. Limits of quantification ranged from 2 to 60 ng mL -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Application of the Langley plot method to the calibration of the solar backscattered ultraviolet instrument on the Nimbus 7 satellite

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Taylor, S.; Mcpeters, R. D.; Wellemeyer, C.

    1995-01-01

    The concept of the well-known Langley plot technique, used for the calibration of ground-based instruments, has been generalized for application to satellite instruments. In polar regions, near summer solstice, the solar backscattered ultraviolet (SBUV) instrument on the Nimbus 7 satellite samples the same ozone field at widely different solar zenith angles. These measurements are compared to assess the long-term drift in the instrument calibration. Although the technique provides only a relative wavelength-to-wavelength calibration, it can be combined with existing techniques to determine the drift of the instrument at any wavelength. Using this technique, we have generated a 12-year data set of ozone vertical profiles from SBUV with an estimated accuracy of +/- 5% at 1 mbar and +/- 2% at 10 mbar (95% confidence) over 12 years. Since the method is insensitive to true changes in the atmospheric ozone profile, it can also be used to compare the calibrations of similar SBUV instruments launched without temporal overlap.

  8. Investigation of ODE integrators using interactive graphics. [Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1978-01-01

    Two FORTRAN programs using an interactive graphic terminal to generate accuracy and stability plots for given multistep ordinary differential equation (ODE) integrators are described. The first treats the fixed stepsize linear case with complex variable solutions, and generates plots to show accuracy and error response to step driving function of a numerical solution, as well as the linear stability region. The second generates an analog to the stability region for classes of non-linear ODE's as well as accuracy plots. Both systems can compute method coefficients from a simple specification of the method. Example plots are given.

  9. Decision curve analysis and external validation of the postoperative Karakiewicz nomogram for renal cell carcinoma based on a large single-center study cohort.

    PubMed

    Zastrow, Stefan; Brookman-May, Sabine; Cong, Thi Anh Phuong; Jurk, Stanislaw; von Bar, Immanuel; Novotny, Vladimir; Wirth, Manfred

    2015-03-01

    To predict outcome of patients with renal cell carcinoma (RCC) who undergo surgical therapy, risk models and nomograms are valuable tools. External validation on independent datasets is crucial for evaluating accuracy and generalizability of these models. The objective of the present study was to externally validate the postoperative nomogram developed by Karakiewicz et al. for prediction of cancer-specific survival. A total of 1,480 consecutive patients with a median follow-up of 82 months (IQR 46-128) were included into this analysis with 268 RCC-specific deaths. Nomogram-estimated survival probabilities were compared with survival probabilities of the actual cohort, and concordance indices were calculated. Calibration plots and decision curve analyses were used for evaluating calibration and clinical net benefit of the nomogram. Concordance between predictions of the nomogram and survival rates of the cohort was 0.911 after 12, 0.909 after 24 months and 0.896 after 60 months. Comparison of predicted probabilities and actual survival estimates with calibration plots showed an overestimation of tumor-specific survival based on nomogram predictions of high-risk patients, although calibration plots showed a reasonable calibration for probability ranges of interest. Decision curve analysis showed a positive net benefit of nomogram predictions for our patient cohort. The postoperative Karakiewicz nomogram provides a good concordance in this external cohort and is reasonably calibrated. It may overestimate tumor-specific survival in high-risk patients, which should be kept in mind when counseling patients. A positive net benefit of nomogram predictions was proven.

  10. Tests of Sunspot Number Sequences: 3. Effects of Regression Procedures on the Calibration of Historic Sunspot Data

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.; Barnard, L.; Usoskin, I. G.

    2016-11-01

    We use sunspot-group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups [RB] above a variable cut-off threshold of observed total whole spot area (uncorrected for foreshortening) to simulate what a lower-acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number [RA] using a variety of regression techniques. It is found that a very high correlation between RA and RB (r_{AB} > 0.98) does not prevent large errors in the intercalibration (for example sunspot-maximum values can be over 30 % too large even for such levels of r_{AB}). In generating the backbone sunspot number [R_{BB}], Svalgaard and Schatten ( Solar Phys., 2016) force regression fits to pass through the scatter-plot origin, which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot-cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile ("Q-Q") plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least-squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot-group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar-cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.

  11. Preliminary Findings of the Photovoltaic Cell Calibration Experiment on Pathfinder Flight 95-3

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos

    1997-01-01

    The objective of the photovoltaic (PV) cell calibration experiment for Pathfinder was to develop an experiment compatible with an ultralight UAV to predict the performance of PV cells at AM0, the solar spectrum in space, using the Langley plot technique. The Langley plot is a valuable technique for this purpose and requires accurate measurements of air mass (pressure), cell temperature, solar irradiance, and current-voltage(IV) characteristics with the cells directed normal to the direct ray of the sun. Pathfinder's mission objective (95-3) of 65,000 ft. maximum altitude, is ideal for performing the Langley plot measurements. Miniaturization of electronic data acquisition equipment enabled the design and construction of an accurate and light weight measurement system that meets Pathfinder's low payload weight requirements.

  12. CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data

    NASA Astrophysics Data System (ADS)

    Nelson, David R.

    2006-11-01

    A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair (commonly 238U 16O +/ 238U +) for session standards. Also displayed with this plot are calculated Pb/U and Pb/Th calibration line regression slopes, y-intercepts, calibration uncertainties, standard 204Pb- and 208Pb-corrected 207Pb/ 206Pb dates and other parameters useful for assessment of the calibration-line data. Calibrated data for Unknowns may be automatically grouped according to calculated date and displayed in color on interactive Wetherill Concordia, Tera-Wasserburg Concordia, Linearized Gaussian ("Probability Paper") and Gaussian-summation probability density diagrams.

  13. External validation and comparison of two nomograms predicting the probability of Gleason sum upgrading between biopsy and radical prostatectomy pathology in two patient populations: a retrospective cohort study.

    PubMed

    Utsumi, Takanobu; Oka, Ryo; Endo, Takumi; Yano, Masashi; Kamijima, Shuichi; Kamiya, Naoto; Fujimura, Masaaki; Sekita, Nobuyuki; Mikami, Kazuo; Hiruta, Nobuyuki; Suzuki, Hiroyoshi

    2015-11-01

    The aim of this study is to validate and compare the predictive accuracy of two nomograms predicting the probability of Gleason sum upgrading between biopsy and radical prostatectomy pathology among representative patients with prostate cancer. We previously developed a nomogram, as did Chun et al. In this validation study, patients originated from two centers: Toho University Sakura Medical Center (n = 214) and Chibaken Saiseikai Narashino Hospital (n = 216). We assessed predictive accuracy using area under the curve values and constructed calibration plots to grasp the tendency for each institution. Both nomograms showed a high predictive accuracy in each institution, although the constructed calibration plots of the two nomograms underestimated the actual probability in Toho University Sakura Medical Center. Clinicians need to use calibration plots for each institution to correctly understand the tendency of each nomogram for their patients, even if each nomogram has a good predictive accuracy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. 40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Systems 1.2.1Calibration Error Test and Linearity Check Procedures Keep a written record of the procedures used for daily calibration error tests and linearity checks (e.g., how gases are to be injected..., and when calibration adjustments should be made). Identify any calibration error test and linearity...

  15. 40 CFR Appendix B to Part 75 - Quality Assurance and Quality Control Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Systems 1.2.1Calibration Error Test and Linearity Check Procedures Keep a written record of the procedures used for daily calibration error tests and linearity checks (e.g., how gases are to be injected..., and when calibration adjustments should be made). Identify any calibration error test and linearity...

  16. Quantification of febuxostat polymorphs using powder X-ray diffraction technique.

    PubMed

    Qiu, Jing-bo; Li, Gang; Sheng, Yue; Zhu, Mu-rong

    2015-03-25

    Febuxostat is a pharmaceutical compound with more than 20 polymorphs of which form A is most widely used and usually exists in a mixed polymorphic form with form G. In the present study, a quantification method for polymorphic form A and form G of febuxostat (FEB) has been developed using powder X-ray diffraction (PXRD). Prior to development of a quantification method, pure polymorphic form A and form G are characterized. A continuous scan with a scan rate of 3° min(-1) over an angular range of 3-40° 2θ is applied for the construction of the calibration curve using the characteristic peaks of form A at 12.78° 2θ (I/I0100%) and form G at 11.72° 2θ (I/I0100%). The linear regression analysis data for the calibration plots shows good linear relationship with R(2)=0.9985 with respect to peak area in the concentration range 10-60 wt.%. The method is validated for precision, recovery and ruggedness. The limits of detection and quantitation are 1.5% and 4.6%, respectively. The obtained results prove that the method is repeatable, sensitive and accurate. The proposed developed PXRD method can be applied for the quantitative analysis of mixtures of febuxostat polymorphs (forms A and G). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Development and Validation of an HPLC Method for Karanjin in Pongamia pinnata linn. Leaves.

    PubMed

    Katekhaye, S; Kale, M S; Laddha, K S

    2012-01-01

    A rapid, simple and specific reversed-phase HPLC method has been developed for analysis of karanjin in Pongamia pinnata Linn. leaves. HPLC analysis was performed on a C(18) column using an 85:13.5:1.5 (v/v) mixtures of methanol, water and acetic acid as isocratic mobile phase at a flow rate of 1 ml/min. UV detection was at 300 nm. The method was validated for accuracy, precision, linearity, specificity. Validation revealed the method is specific, accurate, precise, reliable and reproducible. Good linear correlation coefficients (r(2)>0.997) were obtained for calibration plots in the ranges tested. Limit of detection was 4.35 μg and limit of quantification was 16.56 μg. Intra and inter-day RSD of retention times and peak areas was less than 1.24% and recovery was between 95.05 and 101.05%. The established HPLC method is appropriate enabling efficient quantitative analysis of karanjin in Pongamia pinnata leaves.

  18. Development and Validation of an HPLC Method for Karanjin in Pongamia pinnata linn. Leaves

    PubMed Central

    Katekhaye, S; Kale, M. S.; Laddha, K. S.

    2012-01-01

    A rapid, simple and specific reversed-phase HPLC method has been developed for analysis of karanjin in Pongamia pinnata Linn. leaves. HPLC analysis was performed on a C18 column using an 85:13.5:1.5 (v/v) mixtures of methanol, water and acetic acid as isocratic mobile phase at a flow rate of 1 ml/min. UV detection was at 300 nm. The method was validated for accuracy, precision, linearity, specificity. Validation revealed the method is specific, accurate, precise, reliable and reproducible. Good linear correlation coefficients (r2>0.997) were obtained for calibration plots in the ranges tested. Limit of detection was 4.35 μg and limit of quantification was 16.56 μg. Intra and inter-day RSD of retention times and peak areas was less than 1.24% and recovery was between 95.05 and 101.05%. The established HPLC method is appropriate enabling efficient quantitative analysis of karanjin in Pongamia pinnata leaves. PMID:23204626

  19. Success and challenges met during the calibration of APEX on large plots

    USDA-ARS?s Scientific Manuscript database

    As the APEX model is increasingly considered for the evaluation of agricultural systems, satisfactory performance of APEX on fields is critical. APEX was applied to 16 replicated large plots established in 1991 in Northeast Missouri. Until 2009, each phase of each rotation was represented every year...

  20. Diameter Growth Models for Inventory Applications

    Treesearch

    Ronald E. McRoberts; Christopher W. Woodall; Veronica C. Lessard; Margaret R. Holdaway

    2002-01-01

    Distant-independent, individual-tree, diametar growth models were constructed to update information for forest inventory plots measured in previous years. The models are nonlinear in the parameters and were calibrated weighted nonlinear least squares techniques and forest inventory plot data. Analyses of residuals indicated that model predictions compare favorably to...

  1. SUMS calibration test report

    NASA Technical Reports Server (NTRS)

    Robertson, G.

    1982-01-01

    Calibration was performed on the shuttle upper atmosphere mass spectrometer (SUMS). The results of the calibration and the as run test procedures are presented. The output data is described, and engineering data conversion factors, tables and curves, and calibration on instrument gauges are included. Static calibration results which include: instrument sensitive versus external pressure for N2 and O2, data from each scan of calibration, data plots from N2 and O2, and sensitivity of SUMS at inlet for N2 and O2, and ratios of 14/28 for nitrogen and 16/32 for oxygen are given.

  2. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  3. Axial calibration methods of piezoelectric load sharing dynamometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Chang, Qingbing; Ren, Zongjin; Shao, Jun; Wang, Xinlei; Tian, Yu

    2018-06-01

    The relationship between input and output of load sharing dynamometer is seriously non-linear in different loading points of a plane, so it's significant for accutately measuring force to precisely calibrate the non-linear relationship. In this paper, firstly, based on piezoelectric load sharing dynamometer, calibration experiments of different loading points are performed in a plane. And then load sharing testing system is respectively calibrated based on BP algorithm and ELM (Extreme Learning Machine) algorithm. Finally, the results show that the calibration result of ELM is better than BP for calibrating the non-linear relationship between input and output of loading sharing dynamometer in the different loading points of a plane, which verifies that ELM algorithm is feasible in solving force non-linear measurement problem.

  4. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  5. Derivation and validation of the prediabetes self-assessment screening score after acute pancreatitis (PERSEUS).

    PubMed

    Soo, Danielle H E; Pendharkar, Sayali A; Jivanji, Chirag J; Gillies, Nicola A; Windsor, John A; Petrov, Maxim S

    2017-10-01

    Approximately 40% of patients develop abnormal glucose metabolism after a single episode of acute pancreatitis. This study aimed to develop and validate a prediabetes self-assessment screening score for patients after acute pancreatitis. Data from non-overlapping training (n=82) and validation (n=80) cohorts were analysed. Univariate logistic and linear regression identified variables associated with prediabetes after acute pancreatitis. Multivariate logistic regression developed the score, ranging from 0 to 215. The area under the receiver-operating characteristic curve (AUROC), Hosmer-Lemeshow χ 2 statistic, and calibration plots were used to assess model discrimination and calibration. The developed score was validated using data from the validation cohort. The score had an AUROC of 0.88 (95% CI, 0.80-0.97) and Hosmer-Lemeshow χ 2 statistic of 5.75 (p=0.676). Patients with a score of ≥75 had a 94.1% probability of having prediabetes, and were 29 times more likely to have prediabetes than those with a score of <75. The AUROC in the validation cohort was 0.81 (95% CI, 0.70-0.92) and the Hosmer-Lemeshow χ 2 statistic was 5.50 (p=0.599). Model calibration of the score showed good calibration in both cohorts. The developed and validated score, called PERSEUS, is the first instrument to identify individuals who are at high risk of developing abnormal glucose metabolism following an episode of acute pancreatitis. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  6. The new camera calibration system at the US Geological Survey

    USGS Publications Warehouse

    Light, D.L.

    1992-01-01

    Modern computerized photogrammetric instruments are capable of utilizing both radial and decentering camera calibration parameters which can increase plotting accuracy over that of older analog instrumentation technology from previous decades. Also, recent design improvements in aerial cameras have minimized distortions and increased the resolving power of camera systems, which should improve the performance of the overall photogrammetric process. In concert with these improvements, the Geological Survey has adopted the rigorous mathematical model for camera calibration developed by Duane Brown. An explanation of the Geological Survey's calibration facility and the additional calibration parameters now being provided in the USGS calibration certificate are reviewed. -Author

  7. Adjusted variable plots for Cox's proportional hazards regression model.

    PubMed

    Hall, C B; Zeger, S L; Bandeen-Roche, K J

    1996-01-01

    Adjusted variable plots are useful in linear regression for outlier detection and for qualitative evaluation of the fit of a model. In this paper, we extend adjusted variable plots to Cox's proportional hazards model for possibly censored survival data. We propose three different plots: a risk level adjusted variable (RLAV) plot in which each observation in each risk set appears, a subject level adjusted variable (SLAV) plot in which each subject is represented by one point, and an event level adjusted variable (ELAV) plot in which the entire risk set at each failure event is represented by a single point. The latter two plots are derived from the RLAV by combining multiple points. In each point, the regression coefficient and standard error from a Cox proportional hazards regression is obtained by a simple linear regression through the origin fit to the coordinates of the pictured points. The plots are illustrated with a reanalysis of a dataset of 65 patients with multiple myeloma.

  8. Patient-specific calibration of cone-beam computed tomography data sets for radiotherapy dose calculations and treatment plan assessment.

    PubMed

    MacFarlane, Michael; Wong, Daniel; Hoover, Douglas A; Wong, Eugene; Johnson, Carol; Battista, Jerry J; Chen, Jeff Z

    2018-03-01

    In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient-specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration process that is less susceptible to deformable image registration (DIR) errors. Instead of mapping the CT numbers voxel-by-voxel with traditional DIR calibration methods, the PSC methods generates correlation plots between deformably registered planning CT and CBCT voxel values, for each image slice. A linear calibration curve specific to each slice is then obtained by least-squares fitting, and applied to the CBCT slice's voxel values. This allows each CBCT slice to be corrected using DIR without altering the patient geometry through regional DIR errors. A retrospective study was performed on 15 head-and-neck cancer patients, each having routine CBCTs and a middle-of-treatment re-planning CT (reCT). The original treatment plan was re-calculated on the patient's reCT image set (serving as the gold standard) as well as the image sets produced by voxel-to-voxel DIR, density-overriding, and the new PSC calibration methods. Dose accuracy of each calibration method was compared to the reference reCT data set using common dose-volume metrics and 3D gamma analysis. A phantom study was also performed to assess the accuracy of the DIR and PSC CBCT calibration methods compared with planning CT. Compared with the gold standard using reCT, the average dose metric differences were ≤ 1.1% for all three methods (PSC: -0.3%; DIR: -0.7%; density-override: -1.1%). The average gamma pass rates with thresholds 3%, 3 mm were also similar among the three techniques (PSC: 95.0%; DIR: 96.1%; density-override: 94.4%). An automated patient-specific calibration method was developed which yielded strong dosimetric agreement with the results obtained using a re-planning CT for head-and-neck patients. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Novel Luminescent Probe Based on a Terbium(III) Complex for Hemoglobin Determination

    NASA Astrophysics Data System (ADS)

    Yegorova, A. V.; Leonenko, I. I.; Aleksandrova, D. I.; Scrypynets, Yu. V.; Antonovich, V. P.; Ukrainets, I. V.

    2014-09-01

    We have studied the spectral luminescent properties of Tb(III) and Eu(III) complexes with a number of novel derivatives of oxoquinoline-3-carboxylic acid amides (L1-L5 ). We have observed quenching of the luminescence of 1:1 Tb(III)-L1-5 complexes by hemoglobin (Hb), which is explained by resonance energy transfer of electronic excitation from the donor (Tb(III)-L1-5 ) to the acceptor (Hb). Using the novel luminescent probe Tb(III)-L1, we have developed a method for determining Hb in human blood. The calibration Stern-Volmer plot is linear in the Hb concentration range 0.6-36.0 μg/mL, detection limit 0.2 μg/mL (3·10-9 mol/L).

  10. Determination of Aniline and Its Derivatives in Environmental Water by Capillary Electrophoresis with On-Line Concentration

    PubMed Central

    Liu, Shuhui; Wang, Wenjun; Chen, Jie; Sun, Jianzhi

    2012-01-01

    This paper describes a simple, sensitive and environmentally benign method for the direct determination of aniline and its derivatives in environmental water samples by capillary zone electrophoresis (CZE) with field-enhanced sample injection. The parameters that influenced the enhancement and separation efficiencies were investigated. Surprisingly, under the optimized conditions, two linear ranges for the calibration plot, 1–50 ng/mL and 50–1000 ng/mL (R > 0.998), were obtained. The detection limit was in the range of 0.29–0.43 ng/mL. To eliminate the effect of the real sample matrix on the stacking efficiency, the standard addition method was applied to the analysis of water samples from local rivers. PMID:22837668

  11. HPLC detection of soluble carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus.

    PubMed

    Wannet, W J; Hermans, J H; van Der Drift, C; Op Den Camp, H J

    2000-02-01

    A convenient and sensitive method was developed to separate and detect various types of carbohydrates (polyols, mono- and disaccharides, and phosphorylated sugars) simultaneously using high-performance liquid chromatography (HPLC). The method consists of a chromatographic separation on a CarboPac PA1 anion-exchange analytical column followed by pulsed amperometric detection. In a single run (43 min) 13 carbohydrates were readily resolved. Calibration plots were linear over the ranges of 5-25 microM to 1. 0-1.5 mM. The reliable and fast analysis technique, avoiding derivatization steps and long run times, was used to determine the levels of carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. Moreover, the method was used to study the trehalose phosphorylase reaction.

  12. Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    PubMed

    McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R

    1998-08-01

    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.

  13. Calibration of Hydrophone Stations: Lessons Learned from the Ascension Island Experiment

    DTIC Science & Technology

    2000-09-01

    source based on the implosion of a glass sphere for future long-range calibrations. RESEARCH ACCOMPLISHED The J.C. Ross, an icebreaker class...waters around Ascension Island. The blow - ups show the track in the immediate vicinity of the three hydrophones and plots their nominal location. The...used has practical and cost-driven limitations. Small implosive sources such as lightbulbs have been used from ships as hydrophone calibration sources

  14. Effects of experimental design on calibration curve precision in routine analysis

    PubMed Central

    Pimentel, Maria Fernanda; Neto, Benício de Barros; Saldanha, Teresa Cristina B.

    1998-01-01

    A computational program which compares the effciencies of different experimental designs with those of maximum precision (D-optimized designs) is described. The program produces confidence interval plots for a calibration curve and provides information about the number of standard solutions, concentration levels and suitable concentration ranges to achieve an optimum calibration. Some examples of the application of this novel computational program are given, using both simulated and real data. PMID:18924816

  15. Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

    2011-01-01

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (Kc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  16. HPTLC and Spectrophotometric Estimation of Febuxostat and Diclofenac Potassium in Their Combined Tablets.

    PubMed

    El-Yazbi, Fawzi A; Amin, Omayma A; El-Kimary, Eman I; Khamis, Essam F; Younis, Sameh E

    2016-08-01

    An accurate, precise, rapid, specific and economic high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous quantitative determination of febuxostat (FEB) and diclofenac potassium (DIC). The chromatographic separation was performed on precoated silica gel 60 GF254 plates with chloroform-methanol 7:3 (v/v) as the mobile phase. The developed plates were scanned and quantified at 289 nm. Experimental conditions including band size, mobile phase composition and chamber-saturation time were critically studied, and the optimum conditions were selected. A satisfactory resolution (Rs = 2.67) with RF 0.48 and 0.69 and high sensitivity with limits of detection of 4 and 7 ng/band for FEB and DIC, respectively, were obtained. In addition, derivative ratio and ratio difference spectrophotometric methods were established for the analysis of such a mixture. All methods were validated as per the ICH guidelines. In the HPTLC method, the calibration plots were linear between 0.01-0.55 and 0.02-0.60 µg/band, for FEB and DIC, respectively. For the spectrophotometric methods, the calibration graphs were linear between 2-14 and 4-18 µg/mL for FEB and DIC, respectively. The simplicity and specificity of the proposed methods suggest their application in quality control analysis of FEB and DIC in their raw materials and tablets. A comparison of the proposed methods with the existing methods is presented. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Flyby Error Analysis Based on Contour Plots for the Cassini Tour

    NASA Technical Reports Server (NTRS)

    Stumpf, P. W.; Gist, E. M.; Goodson, T. D.; Hahn, Y.; Wagner, S. V.; Williams, P. N.

    2008-01-01

    The maneuver cancellation analysis consists of cost contour plots employed by the Cassini maneuver team. The plots are two-dimensional linear representations of a larger six-dimensional solution to a multi-maneuver, multi-encounter mission at Saturn. By using contours plotted with the dot product of vectors B and R and the dot product of vectors B and T components, it is possible to view the effects delta V on for various encounter positions in the B-plane. The plot is used in operations to help determine if the Approach Maneuver (ensuing encounter minus three days) and/or the Cleanup Maneuver (ensuing encounter plus three days) can be cancelled and also is a linear check of an integrated solution.

  18. Measuring water and sediment discharge from a road plot with a settling basin and tipping bucket

    Treesearch

    Thomas A. Black; Charles H. Luce

    2013-01-01

    A simple empirical method quantifies water and sediment production from a forest road surface, and is well suited for calibration and validation of road sediment models. To apply this quantitative method, the hydrologic technician installs bordered plots on existing typical road segments and measures coarse sediment production in a settling tank. When a tipping bucket...

  19. Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots

    NASA Astrophysics Data System (ADS)

    Chahinian, Nanée; Moussa, Roger; Andrieux, Patrick; Voltz, Marc

    2006-07-01

    Tillage operations are known to greatly influence local overland flow, infiltration and depressional storage by altering soil hydraulic properties and soil surface roughness. The calibration of runoff models for tilled fields is not identical to that of untilled fields, as it has to take into consideration the temporal variability of parameters due to the transient nature of surface crusts. In this paper, we seek the application of a rainfall-runoff model and the development of a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled plot (3240 m 2) located in southern France. The selected model couples the (Morel-Seytoux, H.J., 1978. Derivation of equations for variable rainfall infiltration. Water Resources Research. 14(4), 561-568). Infiltration equation to a transfer function based on the diffusive wave equation. The parameters to be calibrated are the hydraulic conductivity at natural saturation Ks, the surface detention Sd and the lag time ω. A two-step calibration procedure is presented. First, eleven rainfall-runoff events are calibrated individually and the variability of the calibrated parameters are analysed. The individually calibrated Ks values decrease monotonously according to the total amount of rainfall since tillage. No clear relationship is observed between the two parameters Sd and ω, and the date of tillage. However, the lag time ω increases inversely with the peakflow of the events. Fairly good agreement is observed between the simulated and measured hydrographs of the calibration set. Simple mathematical laws describing the evolution of Ks and ω are selected, while Sd is considered constant. The second step involves the collective calibration of the law of evolution of each parameter on the whole calibration set. This procedure is calibrated on 11 events and validated on ten runoff inducing and four non-runoff inducing rainfall events. The suggested calibration methodology seems robust and can be transposed to other gauged sites.

  20. An Analytical Calibration Approach for the Polarimetric Airborne C Band Radiometer

    NASA Technical Reports Server (NTRS)

    Pham, Hanh; Kim, Edward J.

    2004-01-01

    Passive microwave remote sensing is sensitive to the quantity and distribution of water in soil and vegetation. During summer 2000, the Microwave Geophysics Group a t the University of Michigan conducted the seventh Radiobrighness Energy Balance Experiment (REBEX-7) over a corn canopy in Michigan. Long time series of brightness temperatures, soil moisture and micrometeorology on the plot were taken. This paper addresses the calibration of the NASA GSFC polarimetric airborne C band microwave radiometer (ACMR) that participated in REBEX-7. These passive polarimeters are typically calibrated using an end-to-end approach based upon a standard artificial target or a well-known geophysical target. Analyzing the major internal functional subsystems offers a different perspective. The primary goal of this approach is to provide a transfer function that not only describes the system in its entire5 but also accounts for the contributions of each subsystem toward the final modified Stokes parameters. This approach does not assume that the radiometric system is linear as it does not take polarization isolation for granted, and it also serves as a realistic instrument simulator, a useful tool for future designs. The ACMR architecture can be partitioned into functional subsystems. The characteristics of each subsystem was extensively measured and the estimated parameters were imported into the overall dosed form system model. Inversion of the model yields a calibration for the modeled Stokes parameters with uncertainties of 0.2 K for the V and H polarizations and 2.4 K for the 3rd and 4th parameters. Application to the full Stokes parameters over a senescent cornfield is presented.

  1. Comparative study of Poincaré plot analysis using short electroencephalogram signals during anaesthesia with spectral edge frequency 95 and bispectral index.

    PubMed

    Hayashi, K; Yamada, T; Sawa, T

    2015-03-01

    The return or Poincaré plot is a non-linear analytical approach in a two-dimensional plane, where a timed signal is plotted against itself after a time delay. Its scatter pattern reflects the randomness and variability in the signals. Quantification of a Poincaré plot of the electroencephalogram has potential to determine anaesthesia depth. We quantified the degree of dispersion (i.e. standard deviation, SD) along the diagonal line of the electroencephalogram-Poincaré plot (named as SD1/SD2), and compared SD1/SD2 values with spectral edge frequency 95 (SEF95) and bispectral index values. The regression analysis showed a tight linear regression equation with a coefficient of determination (R(2) ) value of 0.904 (p < 0.0001) between the Poincaré index (SD1/SD2) and SEF95, and a moderate linear regression equation between SD1/SD2 and bispectral index (R(2)  = 0.346, p < 0.0001). Quantification of the Poincaré plot tightly correlates with SEF95, reflecting anaesthesia-dependent changes in electroencephalogram oscillation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  2. Erratum to. Energy calibration of gamma spectra in plastic scintillators using Compton kinematics [Nucl. Instr. and Meth. A 594 (2008) 232–243

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siciliano, Edward R.; Ely, James H.; Kouzes, Richard T.

    2009-11-01

    In recent work at our laboratory, we were re-examining our data and found an inconsistency between the values listed for 137Cs in Table 2 (Siciliano et al. 2008) and results plotted for that source in Figures 11 and 12. In the course of fitting the parabolic function (Equation 4) to the Compton maxima, two ranges of channels were used when determining the parameters for 137Cs. The parabolic fit curve shown in Figure 11 resulted from fitting channels 50 to 70. The parameters for that fit are: are: A = 0.972(12), B = 1.42(24) x 10 -3, and C NO =more » 60.2(5). The parameters for 137Cs listed in Table 2 (and also used to determine the calibration relations in Figure 12—the main result of this paper) came from fitting the 137Cs data in channels 40 to 80. Although the curves plotted from these two different sets of parameters would be visually distinguishable in Figure 11, when incorporated with the other isotope values shown in Figure 12 to obtain the linear energy-channel fit, the 50-70 channel parameter set plus the correction from the Compton maximum to the Compton edge gives a negligible change in the slope [6.470(41) as opposed to the reported 6.454(15) keV/channel] and a small change in the intercept [41(8) as opposed to 47(3) keV] for the dashed line. The conclusions of the article therefore do not change as a result of this inconsistency.« less

  3. Assessing the performance of handheld glucose testing for critical care.

    PubMed

    Kost, Gerald J; Tran, Nam K; Louie, Richard F; Gentile, Nicole L; Abad, Victor J

    2008-12-01

    We assessed the performance of a point-of-care (POC) glucose meter system (GMS) with multitasking test strip by using the locally-smoothed (LS) median absolute difference (MAD) curve method in conjunction with a modified Bland-Altman difference plot and superimposed International Organization for Standardization (ISO) 15197 tolerance bands. We analyzed performance for tight glycemic control (TGC). A modified glucose oxidase enzyme with a multilayer-gold, multielectrode, four-well test strip (StatStriptrade mark, NOVA Biomedical, Waltham, MA) was used. There was no test strip calibration code. Pragmatic comparison was done of GMS results versus paired plasma glucose measurements from chemistry analyzers in clinical laboratories. Venous samples (n = 1,703) were analyzed at 35 hospitals that used 20 types of chemistry analyzers. Erroneous results were identified using the Bland-Altman plot and ISO 15197 criteria. Discrepant values were analyzed for the TGC interval of 80-110 mg/dL. The GMS met ISO 15197 guidelines; 98.6% (410 of 416) of observations were within tolerance for glucose <75 mg/dL, and for > or =75 mg/dL, 100% were within tolerance. Paired differences (handheld minus reference) averaged -2.2 (SD 9.8) mg/dL; the median was -1 (range, -96 to 45) mg/dL. LS MAD curve analysis revealed satisfactory performance below 186 mg/dL; above 186 mg/dL, the recommended error tolerance limit (5 mg/dL) was not met. No discrepant values appeared. All points fell in Clarke Error Grid zone A. Linear regression showed y = 1.018x - 0.716 mg/dL, and r2 = 0.995. LS MAD curves draw on human ability to discriminate performance visually. LS MAD curve and ISO 15197 performance were acceptable for TGC. POC and reference glucose calibration should be harmonized and standardized.

  4. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ion-selective electrodes in potentiometric titrations; a new method for processing and evaluating titration data.

    PubMed

    Granholm, Kim; Sokalski, Tomasz; Lewenstam, Andrzej; Ivaska, Ari

    2015-08-12

    A new method to convert the potential of an ion-selective electrode to concentration or activity in potentiometric titration is proposed. The advantage of this method is that the electrode standard potential and the slope of the calibration curve do not have to be known. Instead two activities on the titration curve have to be estimated e.g. the starting activity before the titration begins and the activity at the end of the titration in the presence of large excess of titrant. This new method is beneficial when the analyte is in a complexed matrix or in a harsh environment which affects the properties of the electrode and the traditional calibration procedure with standard solutions cannot be used. The new method was implemented both in a method of linearization based on the Grans's plot and in determination of the stability constant of a complex and the concentration of the complexing ligand in the sample. The new method gave accurate results when using titrations data from experiments with samples of known composition and with real industrial harsh black liquor sample. A complexometric titration model was also developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Acropora interbranch skeleton Sr/Ca ratios: Evaluation of a potential new high-resolution paleothermometer

    NASA Astrophysics Data System (ADS)

    Sadler, James; Nguyen, Ai D.; Leonard, Nicole D.; Webb, Gregory E.; Nothdurft, Luke D.

    2016-04-01

    The majority of coral geochemistry-based paleoclimate reconstructions in the Indo-Pacific are conducted on selectively cored colonies of massive Porites. This restriction to a single genus may make it difficult to amass the required paleoclimate data for studies that require deep reef coring techniques. Acropora, however, is a highly abundant coral genus in both modern and fossil reef systems and displays potential as a novel climate archive. Here we present a calibration study for Sr/Ca ratios recovered from interbranch skeleton in corymbose Acropora colonies from Heron Reef, southern Great Barrier Reef. Significant intercolony differences in absolute Sr/Ca ratios were normalized by producing anomaly plots of both coral geochemistry and instrumental water temperature records. Weighted linear regression of these anomalies from the lagoon and fore-reef slope provide a sensitivity of -0.05 mmol/mol °C-1, with a correlation coefficient (r2 = 0.65) comparable to those of genera currently used in paleoclimate reconstructions. Reconstructions of lagoon and reef slope mean seasonality in water temperature accurately identify the greater seasonal amplitude observed in the lagoon of Heron Reef. A longer calibration period is, however, required for reliable reconstructions of annual mean water temperatures.

  7. Determination of tocopherols and sitosterols in seeds and nuts by QuEChERS-liquid chromatography.

    PubMed

    Delgado-Zamarreño, M Milagros; Fernández-Prieto, Cristina; Bustamante-Rangel, Myriam; Pérez-Martín, Lara

    2016-02-01

    In the present work a simple, reliable and affordable sample treatment method for the simultaneous analysis of tocopherols and free phytosterols in nuts was developed. Analyte extraction was carried out using the QuEChERS methodology and analyte separation and detection were accomplished using HPLC-DAD. The use of this methodology for the extraction of natural occurring substances provides advantages such as speed, simplicity and ease of use. The parameters evaluated for the validation of the method developed included the linearity of the calibration plots, the detection and quantification limits, repeatability, reproducibility and recovery. The proposed method was successfully applied to the analysis of tocopherols and free phytosterols in samples of almonds, cashew nuts, hazelnuts, peanuts, tiger nuts, sun flower seeds and pistachios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Determination of water-soluble vitamins in multivitamin dietary supplements and in artichokes by micellar electrokinetic chromatography.

    PubMed

    Serni, Enrico; Audino, Valeria; Del Carlo, Sara; Manera, Clementina; Saccomanni, Giuseppe; Macchia, Marco

    2013-01-01

    Several procedures of extraction with solvents for the simultaneous determination of vitamin C and some vitamins belonging to the B group (thiamine, riboflavine, nicotinic acid and nicotinamide) in multivitamin preparations and in artichokes (Cynara cardunculus subsp. scolymus [L.] Hegi) were developed. Different experimental conditions were used, in terms of heat treatment, composition and pH of the extraction mixture, with particular attention to high-temperature steps; purification of the extracts with solid phase extraction and stabilisation through lyophilisation were discussed. Analyses of the extracts were conducted by capillary electrophoresis in micellar electrokinetic chromatography modality. Borate buffer at pH 8.2 was used, and sodium dodecyl sulphate was added to the background electrolyte as surfactant. A range of linearity was determined and calibration curves were plotted for all the analytes.

  9. Calibration of multivariate scatter plots for exploratory analysis of relations within and between sets of variables in genomic research.

    PubMed

    Graffelman, Jan; van Eeuwijk, Fred

    2005-12-01

    The scatter plot is a well known and easily applicable graphical tool to explore relationships between two quantitative variables. For the exploration of relations between multiple variables, generalisations of the scatter plot are useful. We present an overview of multivariate scatter plots focussing on the following situations. Firstly, we look at a scatter plot for portraying relations between quantitative variables within one data matrix. Secondly, we discuss a similar plot for the case of qualitative variables. Thirdly, we describe scatter plots for the relationships between two sets of variables where we focus on correlations. Finally, we treat plots of the relationships between multiple response and predictor variables, focussing on the matrix of regression coefficients. We will present both known and new results, where an important original contribution concerns a procedure for the inclusion of scales for the variables in multivariate scatter plots. We provide software for drawing such scales. We illustrate the construction and interpretation of the plots by means of examples on data collected in a genomic research program on taste in tomato.

  10. SURF Model Calibration Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-Dmore » simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.« less

  11. Calibration of the STEMS diameter growth model using FIA data

    Treesearch

    Veronica C. Lessard

    2000-01-01

    The diameter growth model used in STEMS, the Stand and Tree Evaluation and Modeling System, was originally calibrated using data from permanent growth plots in Minnesota, Wisconsin, and Michigan. Because the model has been applied in predicting growth using Forest Inventory and Analysis (FIA) data, it was appropriate to refit the model to FIA data. The model was...

  12. 40 CFR 61.32 - Emission standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... frequency of calibration. (b) Method of sample analysis. (c) Averaging technique for determining 30-day...) Plant and sampling area plots showing emission points and sampling sites. Topographic features...

  13. On proper linearization, construction and analysis of the Boyle-van't Hoff plots and correct calculation of the osmotically inactive volume.

    PubMed

    Katkov, Igor I

    2011-06-01

    The Boyle-van't Hoff (BVH) law of physics has been widely used in cryobiology for calculation of the key osmotic parameters of cells and optimization of cryo-protocols. The proper use of linearization of the Boyle-vant'Hoff relationship for the osmotically inactive volume (v(b)) has been discussed in a rigorous way in (Katkov, Cryobiology, 2008, 57:142-149). Nevertheless, scientists in the field have been continuing to use inappropriate methods of linearization (and curve fitting) of the BVH data, plotting the BVH line and calculation of v(b). Here, we discuss the sources of incorrect linearization of the BVH relationship using concrete examples of recent publications, analyze the properties of the correct BVH line (which is unique for a given v(b)), provide appropriate statistical formulas for calculation of v(b) from the experimental data, and propose simplistic instructions (standard operation procedure, SOP) for proper normalization of the data, appropriate linearization and construction of the BVH plots, and correct calculation of v(b). The possible sources of non-linear behavior or poor fit of the data to the proper BVH line such as active water and/or solute transports, which can result in large discrepancy between the hyperosmotic and hypoosmotic parts of the BVH plot, are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. The impact of forest structure and spatial scale on the relationship between ground plot above ground biomass and GEDI lidar waveforms

    NASA Astrophysics Data System (ADS)

    Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.

    2017-12-01

    The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We quantify the sensitivity of calibration equations relating GEDI lidar structure measurements and AGBD to these factors at a range of spatial scales (0.0625-1ha) and discuss the implications for the expanding use of existing in situ ground plot data by GEDI.

  15. GTOOLS: an Interactive Computer Program to Process Gravity Data for High-Resolution Applications

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Poland, M. P.; Kauahikaua, J. P.

    2012-12-01

    An interactive computer program, GTOOLS, has been developed to process gravity data acquired by the Scintrex CG-5 and LaCoste & Romberg EG, G and D gravity meters. The aim of GTOOLS is to provide a validated methodology for computing relative gravity values in a consistent way accounting for as many environmental factors as possible (e.g., tides, ocean loading, solar constraints, etc.), as well as instrument drift. The program has a modular architecture. Each processing step is implemented in a tool (function) that can be either run independently or within an automated task. The tools allow the user to (a) read the gravity data acquired during field surveys completed using different types of gravity meters; (b) compute Earth tides using an improved version of Longman's (1959) model; (c) compute ocean loading using the HARDISP code by Petit and Luzum (2010) and ocean loading harmonics from the TPXO7.2 ocean tide model; (d) estimate the instrument drift using linear functions as appropriate; and (e) compute the weighted least-square-adjusted gravity values and their errors. The corrections are performed up to microGal ( μGal) precision, in accordance with the specifications of high-resolution surveys. The program has the ability to incorporate calibration factors that allow for surveys done using different gravimeters to be compared. Two additional tools (functions) allow the user to (1) estimate the instrument calibration factor by processing data collected by a gravimeter on a calibration range; (2) plot gravity time-series at a chosen benchmark. The interactive procedures and the program output (jpeg plots and text files) have been designed to ease data handling and archiving, to provide useful information for future data interpretation or modeling, and facilitate comparison of gravity surveys conducted at different times. All formulas have been checked for typographical errors in the original reference. GTOOLS, developed using Matlab, is open source and machine independent. We will demonstrate program use and utility with data from multiple microgravity surveys at Kilauea volcano, Hawai'i.

  16. Validity and reliability of a food frequency questionnaire to estimate dietary intake among Lebanese children.

    PubMed

    Moghames, Patricia; Hammami, Nour; Hwalla, Nahla; Yazbeck, Nadine; Shoaib, Hikma; Nasreddine, Lara; Naja, Farah

    2016-01-12

    Nutritional status during childhood is critical given its effect on growth and development as well as its association with disease risk later in life. The Middle East and North Africa (MENA) region is experiencing alarming rates of childhood malnutrition, both over- and under-nutrition. Hence, there is a need for valid tools to assess dietary intake for children in this region. To date, there are no validated dietary assessment tools for children in any country of the MENA region. The main objective of this study was to examine the validity and reliability of a Food Frequency Questionnaire (FFQ) for the assessment of dietary intake among Lebanese children. Children, aged 5 to 10 years (n = 111), were recruited from public and private schools of Beirut, Lebanon. Mothers (proxies to report their children's dietary intake) completed two FFQs, four weeks apart. Four 24-hour recalls (24-HRs) were collected weekly during the duration of the study. Spearman correlations and Bland-Altman plots were used to assess validity. Linear regression models were used to derive calibration factors for boys and girls. Reproducibility statistics included Intraclass Correlation Coefficient (ICC) and percent agreement. Correlation coefficients between dietary intake estimates derived from FFQ and 24-HRs were significant at p < 0.001 with the highest correlation observed for energy (0.54) and the lowest for monounsaturated fatty acids (0.26). The majority of data points in the Bland-Altman plots lied between the limits of agreement, closer to the middle horizontal line. After applying the calibration factors for boys and girls, the mean energy and nutrient intakes estimated by the FFQ were similar to those obtained by the mean 24-HRs. As for reproducibility, ICC ranged between 0.31 for trans-fatty acids and 0.73 for calcium intakes. Over 80 % of study participants were classified in the same or adjacent quartile of energy and nutrients intake. Findings of this study showed that the developed FFQ is reliable and is also valid, when used with calibration factors. This FFQ is a useful tool in dietary assessment and evaluation of diet-disease relationship in this age group.

  17. TH-CD-201-03: A Real-Time Method to Simultaneously Measure Linear Energy Transfer and Dose for Proton Therapy Using Organic Scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsanea, F; Therriault-Proulx, F; Sawakuchi, G

    Purpose: The light generated in organic scintillators depends on both the radiation dose and the linear energy transfer (LET). The LET dependence leads to an under-response of the detector in the Bragg peak of proton beams. This phenomenon, called ionization quenching, must be corrected to obtain accurate dose measurements of proton beams. This work exploits the ionization quenching phenomenon to provide a method of measuring LET and auto correcting quenching. Methods: We exposed simultaneously four different organic scintillators (BCF-12, PMMA, PVT, and LSD; 1mm in diameter) and a plane parallel ionization chamber in passively scattered proton beams to doses betweenmore » 32 and 43 cGy and fluence averaged LET values from 0.47 to 1.26 keV/µm. The LET values for each irradiation condition were determined using a validated Monte Carlo model of the beam line. We determined the quenching parameter in the Birk’s equation for scintillation in BCF-12 for dose measurements. One set of irradiation conditions was used to correlate the scintillation response ratio to the LET values and plot a scintillation response ratio versus LET calibration curve. Irradiation conditions independent from the calibration ones were used to validate this method. Comparisons to the expected values were made on both the basis of dose and LET. Results: Among all the scintillators investigated, the ratio of PMMA to BCF-12 provided the best correlation to LET values and was used as the LET calibration curve. The expected LET values in the validation set were within 2%±6%, which resulted in dose accuracy of 1.5%±5.8% for the range of LET values investigated in this work. Conclusion: We have demonstrated the feasibility of using the ratio between the light output of two organic scintillators to simultaneously measure LET and dose of therapeutic proton beams. Further studies are needed to verify the response in higher LET values.« less

  18. Inferring the demographic history from DNA sequences: An importance sampling approach based on non-homogeneous processes.

    PubMed

    Ait Kaci Azzou, S; Larribe, F; Froda, S

    2016-10-01

    In Ait Kaci Azzou et al. (2015) we introduced an Importance Sampling (IS) approach for estimating the demographic history of a sample of DNA sequences, the skywis plot. More precisely, we proposed a new nonparametric estimate of a population size that changes over time. We showed on simulated data that the skywis plot can work well in typical situations where the effective population size does not undergo very steep changes. In this paper, we introduce an iterative procedure which extends the previous method and gives good estimates under such rapid variations. In the iterative calibrated skywis plot we approximate the effective population size by a piecewise constant function, whose values are re-estimated at each step. These piecewise constant functions are used to generate the waiting times of non homogeneous Poisson processes related to a coalescent process with mutation under a variable population size model. Moreover, the present IS procedure is based on a modified version of the Stephens and Donnelly (2000) proposal distribution. Finally, we apply the iterative calibrated skywis plot method to a simulated data set from a rapidly expanding exponential model, and we show that the method based on this new IS strategy correctly reconstructs the demographic history. Copyright © 2016. Published by Elsevier Inc.

  19. Data user's notes of the radio astronomy experiment aboard the OGO-V spacecraft

    NASA Technical Reports Server (NTRS)

    Haddock, F. T.; Breckenridge, S. L.

    1970-01-01

    General information concerning the low-frequency radiometer, instrument package launching and operation, and scientific objectives of the flight are provided. Calibration curves and correction factors, with general and detailed information on the preflight calibration procedure are included. The data acquisition methods and the format of the data reduction, both on 35 mm film and on incremental computer plots, are described.

  20. Detecting influential observations in nonlinear regression modeling of groundwater flow

    USGS Publications Warehouse

    Yager, Richard M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  1. A universal airborne LiDAR approach for tropical forest carbon mapping.

    PubMed

    Asner, Gregory P; Mascaro, Joseph; Muller-Landau, Helene C; Vieilledent, Ghislain; Vaudry, Romuald; Rasamoelina, Maminiaina; Hall, Jefferson S; van Breugel, Michiel

    2012-04-01

    Airborne light detection and ranging (LiDAR) is fast turning the corner from demonstration technology to a key tool for assessing carbon stocks in tropical forests. With its ability to penetrate tropical forest canopies and detect three-dimensional forest structure, LiDAR may prove to be a major component of international strategies to measure and account for carbon emissions from and uptake by tropical forests. To date, however, basic ecological information such as height-diameter allometry and stand-level wood density have not been mechanistically incorporated into methods for mapping forest carbon at regional and global scales. A better incorporation of these structural patterns in forests may reduce the considerable time needed to calibrate airborne data with ground-based forest inventory plots, which presently necessitate exhaustive measurements of tree diameters and heights, as well as tree identifications for wood density estimation. Here, we develop a new approach that can facilitate rapid LiDAR calibration with minimal field data. Throughout four tropical regions (Panama, Peru, Madagascar, and Hawaii), we were able to predict aboveground carbon density estimated in field inventory plots using a single universal LiDAR model (r ( 2 ) = 0.80, RMSE = 27.6 Mg C ha(-1)). This model is comparable in predictive power to locally calibrated models, but relies on limited inputs of basal area and wood density information for a given region, rather than on traditional plot inventories. With this approach, we propose to radically decrease the time required to calibrate airborne LiDAR data and thus increase the output of high-resolution carbon maps, supporting tropical forest conservation and climate mitigation policy.

  2. Estimating Aboveground Biomass in Tropical Forests: Field Methods and Error Analysis for the Calibration of Remote Sensing Observations

    DOE PAGES

    Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...

    2017-01-07

    Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less

  3. A microplate assay to measure classical and alternative complement activity.

    PubMed

    Puissant-Lubrano, Bénédicte; Fortenfant, Françoise; Winterton, Peter; Blancher, Antoine

    2017-05-01

    We developed and validated a kinetic microplate hemolytic assay (HA) to quantify classical and alternative complement activity in a single dilution of human plasma or serum. The assay is based on monitoring hemolysis of sensitized sheep (or uncoated rabbit) red blood cells by means of a 96-well microplate reader. The activity of the calibrator was evaluated by reference to 200 healthy adults. The conversion of 50% hemolysis time into a percentage of activity was obtained using a calibration curve plotted daily. The linearity of the assay as well as interference (by hemolysis, bilrubinemia and lipemia) was assessed for classical pathway (CP). The within-day and the between-day precision was satisfactory regarding the performance of commercially available liposome immunoassay (LIA) and ELISA. Patients with hereditary or acquired complement deficiencies were detected (activity was measured <30%). We also provided a reference range obtained from 200 blood donors. The agreement of CP evaluated on samples from 48 patients was 94% with LIA and 87.5% with ELISA. The sensitivity of our assay was better than that of LIA, and the cost was lower than either LIA or ELISA. In addition, this assay was less time consuming than previously reported HAs. This assay allows the simultaneous measurement of 36 samples in duplicate per run of a 96-well plate. The use of a daily calibration curve allows standardization of the method and leads to good reproducibility. The same technique was also adapted for the quantification of alternative pathway (AP) activity.

  4. 40 CFR 89.323 - NDIR analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... coefficients. If any range is within 2 percent of being linear a linear calibration may be used. Include zero...

  5. 40 CFR 89.323 - NDIR analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... coefficients. If any range is within 2 percent of being linear a linear calibration may be used. Include zero...

  6. 40 CFR 89.323 - NDIR analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... coefficients. If any range is within 2 percent of being linear a linear calibration may be used. Include zero...

  7. 40 CFR 89.323 - NDIR analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... coefficients. If any range is within 2 percent of being linear a linear calibration may be used. Include zero...

  8. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies.

    PubMed

    Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya

    2010-01-01

    In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.

  9. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox.

    PubMed

    Abolhasani, Jafar; Naderali, Roza; Hassanzadeh, Javad

    2016-01-01

    We describe the effect of different sized gold and silver nanoparticles on the terbium sensitized fluorescence of deferasirox. It is indicated that silver nanostructures, especially 18 nm Ag nanoparticles (AgNPs), have a remarkable amplifying effect compared to Au nanoparticles. Based on this observation, a highly sensitive and selective method was developed for the determination of deferasirox. Effects of various parameters like AgNPs and Tb(3+) concentration and pH of media were investigated. Under the optimal conditions, a calibration curve was plotted as the fluorescence intensities versus the concentration of deferasirox in the range of 0.1 to 200 nmol L(-1), and detection limit of 0.03 nmol L(-1) was obtained. The method has good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of deferasirox in urine and pharmaceutical samples.

  10. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols.

    PubMed

    Eguílaz, Marcos; Gutiérrez, Alejandro; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Ansón-Casaos, Alejandro; Hernández-Ferrer, Javier; Ferreyra, Nancy F; Martínez, María T; Rivas, Gustavo

    2016-02-25

    This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Development of an Analytical Method for the Determination of Amoxicillin in Commercial Drugs and Wastewater Samples, and Assessing its Stability in Simulated Gastric Digestion.

    PubMed

    Unutkan, Tugçe; Bakirdere, Sezgin; Keyf, Seyfullah

    2018-01-01

    A highly sensitive analytical HPLC-UV method was developed for the determination of amoxicillin in drugs and wastewater samples at a single wavelength (230 nm). In order to substantially predict the in vivo behavior of amoxicillin, drug samples were subjected to simulated gastric conditions. The calibration plot of the method was linear from 0.050 to 500 mg L-1 with a correlation coefficient of 0.9999. The limit of detection and limit of quantitation were found to be 16 and 54 μg L-1, respectively. The percentage recovery of amoxicillin in wastewater was found to be 97.0 ± 1.6%. The method was successfully applied for the qualitative and quantitative determination of amoxicillin in drug samples including tablets and suspensions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.

  13. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  14. Multicenter Evaluation of a Commercial Cytomegalovirus Quantitative Standard: Effects of Commutability on Interlaboratory Concordance

    PubMed Central

    Shahbazian, M. D.; Valsamakis, A.; Boonyaratanakornkit, J.; Cook, L.; Pang, X. L.; Preiksaitis, J. K.; Schönbrunner, E. R.; Caliendo, A. M.

    2013-01-01

    Commutability of quantitative reference materials has proven important for reliable and accurate results in clinical chemistry. As international reference standards and commercially produced calibration material have become available to address the variability of viral load assays, the degree to which such materials are commutable and the effect of commutability on assay concordance have been questioned. To investigate this, 60 archived clinical plasma samples, which previously tested positive for cytomegalovirus (CMV), were retested by five different laboratories, each using a different quantitative CMV PCR assay. Results from each laboratory were calibrated both with lab-specific quantitative CMV standards (“lab standards”) and with common, commercially available standards (“CMV panel”). Pairwise analyses among laboratories were performed using mean results from each clinical sample, calibrated first with lab standards and then with the CMV panel. Commutability of the CMV panel was determined based on difference plots for each laboratory pair showing plotted values of standards that were within the 95% prediction intervals for the clinical specimens. Commutability was demonstrated for 6 of 10 laboratory pairs using the CMV panel. In half of these pairs, use of the CMV panel improved quantitative agreement compared to use of lab standards. Two of four laboratory pairs for which the CMV panel was noncommutable showed reduced quantitative agreement when that panel was used as a common calibrator. Commutability of calibration material varies across different quantitative PCR methods. Use of a common, commutable quantitative standard can improve agreement across different assays; use of a noncommutable calibrator can reduce agreement among laboratories. PMID:24025907

  15. Calibration of the Diameter Distribution Derived from the Area-based Approach with Individual Tree-based Diameter Estimates Using the Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Hou, Z.; Maltamo, M.; Tokola, T.

    2015-12-01

    Diameter distributions of trees are important indicators of current forest stand structure and future dynamics. A new method was proposed in the study to combine the diameter distributions derived from the area-based approach (ABA) and the diameter distribution derived from the individual tree detection (ITD) in order to obtain more accurate forest stand attributes. Since dominant trees can be reliably detected and measured by the Lidar data via the ITD, the focus of the study is to retrieve the suppressed trees (trees that were missed by the ITD) from the ABA. Replacement and histogram matching were respectively employed at the plot level to retrieve the suppressed trees. Cut point was detected from the ITD-derived diameter distribution for each sample plot to distinguish dominant trees from the suppressed trees. The results showed that calibrated diameter distributions were more accurate in terms of error index and the entire growing stock estimates. Compared with the best performer between the ABA and the ITD, calibrated diameter distributions decreased the relative RMSE of the estimated entire growing stock, saw log and pulpwood fractions by 2.81%, 3.05% and 7.73% points respectively. Calibration improved the estimation of pulpwood fraction significantly, resulting in a negligible bias of the estimated entire growing stock.

  16. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  17. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot

    NASA Astrophysics Data System (ADS)

    Avecilla, Fernando; Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.

    2018-06-01

    The PM10 emission efficiency of soils has been determined through different methods. Although these methods imply important physical differences, their outputs have never been compared. In the present study the PM10 emission efficiency was determined for soils through a wide range of textures, using three typical methodologies: a rotary-chamber dust generator (EDG), a laboratory wind tunnel on a prepared soil bed, and field measurements on an experimental plot. Statistically significant linear correlation was found (p < 0.05) between the PM10 emission efficiency obtained from the EDG and wind tunnel experiments. A significant linear correlation (p < 0.05) was also found between the PM10 emission efficiency determined both with the wind tunnel and the EDG, and a soil texture index (%sand + %silt)/(%clay + %organic matter) that reflects the effect of texture on the cohesion of the aggregates. Soils with higher sand content showed proportionally less emission efficiency than fine-textured, aggregated soils. This indicated that both methodologies were able to detect similar trends regarding the correlation between the soil texture and the PM10 emission. The trends attributed to soil texture were also verified for two contrasting soils under field conditions. However, differing conditions during the laboratory-scale and the field-scale experiments produced significant differences in the magnitude of the emission efficiency values. The causes of these differences are discussed within the paper. Despite these differences, the results suggest that standardized laboratory and wind tunnel procedures are promissory methods, which could be calibrated in the future to obtain results comparable to field values, essentially through adjusting the simulation time. However, more studies are needed to extrapolate correctly these values to field-scale conditions.

  18. Ring Laser Gyro G-Sensitive Misalignment Calibration in Linear Vibration Environments.

    PubMed

    Wang, Lin; Wu, Wenqi; Li, Geng; Pan, Xianfei; Yu, Ruihang

    2018-02-16

    The ring laser gyro (RLG) dither axis will bend and exhibit errors due to the specific forces acting on the instrument, which are known as g-sensitive misalignments of the gyros. The g-sensitive misalignments of the RLG triad will cause severe attitude error in vibration or maneuver environments where large-amplitude specific forces and angular rates coexist. However, g-sensitive misalignments are usually ignored when calibrating the strapdown inertial navigation system (SINS). This paper proposes a novel method to calibrate the g-sensitive misalignments of an RLG triad in linear vibration environments. With the SINS is attached to a linear vibration bench through outer rubber dampers, rocking of the SINS can occur when the linear vibration is performed on the SINS. Therefore, linear vibration environments can be created to simulate the harsh environment during aircraft flight. By analyzing the mathematical model of g-sensitive misalignments, the relationship between attitude errors and specific forces as well as angular rates is established, whereby a calibration scheme with approximately optimal observations is designed. Vibration experiments are conducted to calibrate g-sensitive misalignments of the RLG triad. Vibration tests also show that SINS velocity error decreases significantly after g-sensitive misalignments compensation.

  19. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2015-02-01

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.

  20. Development and Validation of a Sensitive Method for Trace Nickel Determination by Slotted Quartz Tube Flame Atomic Absorption Spectrometry After Dispersive Liquid-Liquid Microextraction.

    PubMed

    Yolcu, Şükran Melda; Fırat, Merve; Chormey, Dotse Selali; Büyükpınar, Çağdaş; Turak, Fatma; Bakırdere, Sezgin

    2018-05-01

    In this study, dispersive liquid-liquid microextraction was systematically optimized for the preconcentration of nickel after forming a complex with diphenylcarbazone. The measurement output of the flame atomic absorption spectrometer was further enhanced by fitting a custom-cut slotted quartz tube to the flame burner head. The extraction method increased the amount of nickel reaching the flame and the slotted quartz tube increased the residence time of nickel atoms in the flame to record higher absorbance. Two methods combined to give about 90 fold enhancement in sensitivity over the conventional flame atomic absorption spectrometry. The optimized method was applicable over a wide linear concentration range, and it gave a detection limit of 2.1 µg L -1 . Low relative standard deviations at the lowest concentration in the linear calibration plot indicated high precision for both extraction process and instrumental measurements. A coal fly ash standard reference material (SRM 1633c) was used to determine the accuracy of the method, and experimented results were compatible with the certified value. Spiked recovery tests were also used to validate the applicability of the method.

  1. Model based design of electronic throttle control

    NASA Astrophysics Data System (ADS)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more precise and accurate.

  2. Graphical Data Analysis on the Circle: Wrap-Around Time Series Plots for (Interrupted) Time Series Designs.

    PubMed

    Rodgers, Joseph Lee; Beasley, William Howard; Schuelke, Matthew

    2014-01-01

    Many data structures, particularly time series data, are naturally seasonal, cyclical, or otherwise circular. Past graphical methods for time series have focused on linear plots. In this article, we move graphical analysis onto the circle. We focus on 2 particular methods, one old and one new. Rose diagrams are circular histograms and can be produced in several different forms using the RRose software system. In addition, we propose, develop, illustrate, and provide software support for a new circular graphical method, called Wrap-Around Time Series Plots (WATS Plots), which is a graphical method useful to support time series analyses in general but in particular in relation to interrupted time series designs. We illustrate the use of WATS Plots with an interrupted time series design evaluating the effect of the Oklahoma City bombing on birthrates in Oklahoma County during the 10 years surrounding the bombing of the Murrah Building in Oklahoma City. We compare WATS Plots with linear time series representations and overlay them with smoothing and error bands. Each method is shown to have advantages in relation to the other; in our example, the WATS Plots more clearly show the existence and effect size of the fertility differential.

  3. Set-up and calibration of an outdoor nozzle-type rainfall simulator for soil erosion studies at the Masse experimental station (central Italy)

    NASA Astrophysics Data System (ADS)

    Vergni, Lorenzo; Todisco, Francesca

    2016-04-01

    This contribution describes the technical characteristics and the preliminary calibration of a rainfall simulator recently installed by the Department of Agricultural, Food and Environmental Sciences (Perugia University) at the Masse experimental station located 20 km south of Perugia, in the region of Umbria (central Italy). The site includes some USLE plots of different length λ = 11 and 22 m and width w = 2, 4 and 8 m, oriented parallel to a 16 % slope and kept free of vegetation by frequent ploughing. Since 2008, the station enabled to collect data from more than 80 erosive events, that were mainly used to investigate the relationship between rainfall characteristics and soil loss. The relevant soil loss variability that characterizes erosive storm events with similar overall characteristics (duration and/or depth) can be explained by the different rainfall profile of erosive storms and by the different antecedent soil aggregate stability. To analyse in more detail these aspects, recently, the Masse experimental station has been equipped with a semi-portable rainfall simulator placed over two micro-plots of 1x1 m each, having the same topographic and pedologic conditions of the adjacent USLE plots. The rainfall simulator consists of four full-cone spray nozzles for each micro-plot, placed at the angles of a 0.18-m square, centred over the plot at a height of 2.7 m above the ground. The operating pressure is regulated by pressure regulating valves and checked by pressure gauges mounted in correspondence of each nozzle. An electronic control unit regulates the start and stop of the inlet solenoid valves. A range of rainfall intensities can be achieved, by activating different combinations of nozzles (15 different intensities) also during the same simulation trial. The particular design of the plots allows to collect separately the runoff volume deriving from the plots and the water volume fallen outside of the plot. In this way it is possible to derive, by difference, the actual infiltration volume. The experiments are carried out simultaneously on the two adjacent micro-plots. In particular, this contribution reports the results of the first experimental trials aimed to assess the uniformity attainable by single nozzles and its reproducibility (between plots and in time). The interferences between adjacent nozzles (when they work simultaneously) were also evaluated.

  4. Properties of added variable plots in Cox's regression model.

    PubMed

    Lindkvist, M

    2000-03-01

    The added variable plot is useful for examining the effect of a covariate in regression models. The plot provides information regarding the inclusion of a covariate, and is useful in identifying influential observations on the parameter estimates. Hall et al. (1996) proposed a plot for Cox's proportional hazards model derived by regarding the Cox model as a generalized linear model. This paper proves and discusses properties of this plot. These properties make the plot a valuable tool in model evaluation. Quantities considered include parameter estimates, residuals, leverage, case influence measures and correspondence to previously proposed residuals and diagnostics.

  5. A Summary of The 2000-2001 NASA Glenn Lear Jet AM0 Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Scheiman, David; Brinker, David; Snyder, David; Baraona, Cosmo; Jenkins, Phillip; Rieke, William J.; Blankenship, Kurt S.; Tom, Ellen M.

    2002-01-01

    Calibration of solar cells for space is extremely important for satellite power system design. Accurate prediction of solar cell performance is critical to solar array sizing, often required to be within 1%. The NASA Glenn Research Center solar cell calibration airplane facility has been in operation since 1963 with 531 flights to date. The calibration includes real data to Air Mass (AM) 0.2 and uses the Langley plot method plus an ozone correction factor to extrapolate to AM0. Comparison of the AM0 calibration data indicates that there is good correlation with Balloon and Shuttle flown solar cells. This paper will present a history of the airplane calibration procedure, flying considerations, and a brief summary of the previous flying season with some measurement results. This past flying season had a record 35 flights. It will also discuss efforts to more clearly define the ozone correction factor.

  6. A Simple and Specific Stability- Indicating RP-HPLC Method for Routine Assay of Adefovir Dipivoxil in Bulk and Tablet Dosage Form.

    PubMed

    Darsazan, Bahar; Shafaati, Alireza; Mortazavi, Seyed Alireza; Zarghi, Afshin

    2017-01-01

    A simple and reliable stability-indicating RP-HPLC method was developed and validated for analysis of adefovir dipivoxil (ADV).The chromatographic separation was performed on a C 18 column using a mixture of acetonitrile-citrate buffer (10 mM at pH 5.2) 36:64 (%v/v) as mobile phase, at a flow rate of 1.5 mL/min. Detection was carried out at 260 nm and a sharp peak was obtained for ADV at a retention time of 5.8 ± 0.01 min. No interferences were observed from its stress degradation products. The method was validated according to the international guidelines. Linear regression analysis of data for the calibration plot showed a linear relationship between peak area and concentration over the range of 0.5-16 μg/mL; the regression coefficient was 0.9999and the linear regression equation was y = 24844x-2941.3. The detection (LOD) and quantification (LOQ) limits were 0.12 and 0.35 μg/mL, respectively. The results proved the method was fast (analysis time less than 7 min), precise, reproducible, and accurate for analysis of ADV over a wide range of concentration. The proposed specific method was used for routine quantification of ADV in pharmaceutical bulk and a tablet dosage form.

  7. Simple quantification of phenolic compounds present in the minor fraction of virgin olive oil by LC-DAD-FLD.

    PubMed

    Godoy-Caballero, M P; Acedo-Valenzuela, M I; Galeano-Díaz, T

    2012-11-15

    This paper presents the results of the study on the extraction, identification and quantification of a group of important phenolic compounds in virgin olive oil (VOO) samples, obtained from olives of various varieties, by liquid chromatography coupled to UV-vis and fluorescence detection. Sixteen phenolic compounds belonging to different families have been identified and quantified spending a total time of 25 min. The linearity was examined by establishing the external standard calibration curves. Four order linear ranges and limits of detection ranging from 0.02 to 0.6 μg mL(-1) and 0.006 to 0.3 μg mL(-1) were achieved using UV-vis and fluorescence detection, respectively. Regarding the real samples, for the determination of the phenolic compounds in higher concentrations (hydroxytyrosol and tyrosol) a simple liquid-liquid extraction with ethanol was used to make the sample compatible with the mobile phase. Recovery values close to 100% were obtained. However, a previous solid phase extraction with Diol cartridges was necessary to concentrate and separate the minor phenolic compounds of the main interferences. The parameters affecting this step were carefully optimized and, after that, recoveries near 80-100% were obtained for the rest of the studied phenolic compounds. Also, the limits of detection were improved 15 times. Finally, the standard addition method was carried out for each of the analytes and no matrix effect was found, so the quantification of the 16 phenolic compounds from different monovarietal VOO was carried out by using the corresponding external standard calibration plot. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Determination of Iron Ion in the Water of a Natural Hot Spring Using Microfluidic Paper-based Analytical Devices.

    PubMed

    Ogawa, Kazuma; Kaneta, Takashi

    2016-01-01

    Microfluidic paper-based analytical devices (μPADs) were used to detect the iron ion content in the water of a natural hot spring in order to assess the applicability of this process to the environmental analysis of natural water. The μPADs were fabricated using a wax printer after the addition of hydroxylamine into the detection reservoirs to reduce Fe(3+) to Fe(2+), 1,10-phenanthroline for the forming of a complex, and poly(acrylic acid) for ion-pair formation with an acetate buffer (pH 4.7). The calibration curve of Fe(3+) showed a linearity that ranged from 100 to 1000 ppm in the semi-log plot whereas the color intensity was proportional to the concentration of Fe(3+) and ranged from 40 to 350 ppm. The calibration curve represented the daily fluctuation in successive experiments during four days, which indicated that a calibration curve must be constructed for each day. When freshly prepared μPADs were compared with stored ones, no significant difference was found. The μPADs were applied to the determination of Fe(3+) in a sample of water from a natural hot spring. Both the accuracy and the precision of the μPAD method were evaluated by comparisons with the results obtained via conventional spectrophotometry. The results of the μPADs were in good agreement with, but less precise than, those obtained via conventional spectrophotometry. Consequently, the μPADs offer advantages that include rapid and miniaturized operation, although the precision was poorer than that of conventional spectrophotometry.

  9. Laboratory Simulation of Impacts upon Aluminum Foils of the Stardust Spacecraft: Calibration of Dust Particle Size from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.

    2006-01-01

    Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.

  10. A combined microphone and camera calibration technique with application to acoustic imaging.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2013-10-01

    We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.

  11. Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: open shell.

    PubMed

    Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2014-07-28

    Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values.

  12. A counting-weighted calibration method for a field-programmable-gate-array-based time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Ho

    2017-05-01

    In this work, we propose a counting-weighted calibration method for field-programmable-gate-array (FPGA)-based time-to-digital converter (TDC) to provide non-linearity calibration for use in positron emission tomography (PET) scanners. To deal with the non-linearity in FPGA, we developed a counting-weighted delay line (CWD) to count the delay time of the delay cells in the TDC in order to reduce the differential non-linearity (DNL) values based on code density counts. The performance of the proposed CWD-TDC with regard to linearity far exceeds that of TDC with a traditional tapped delay line (TDL) architecture, without the need for nonlinearity calibration. When implemented in a Xilinx Vertix-5 FPGA device, the proposed CWD-TDC achieved time resolution of 60 ps with integral non-linearity (INL) and DNL of [-0.54, 0.24] and [-0.66, 0.65] least-significant-bit (LSB), respectively. This is a clear indication of the suitability of the proposed FPGA-based CWD-TDC for use in PET scanners.

  13. Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation

    PubMed Central

    Lu, Hanzhang; Xu, Feng; Grgac, Ksenija; Liu, Peiying; Qin, Qin; van Zijl, Peter

    2011-01-01

    Recently, a T2-Relaxation-Under-Spin-Tagging (TRUST) MRI technique was developed to quantitatively estimate blood oxygen saturation fraction (Y) via the measurement of pure blood T2. This technique has shown promise for normalization of fMRI signals, for the assessment of oxygen metabolism, and in studies of cognitive aging and multiple sclerosis. However, a human validation study has not been conducted. In addition, the calibration curve used to convert blood T2 to Y has not accounted for the effects of hematocrit (Hct). In the present study, we first conducted experiments on blood samples under physiologic conditions, and the Carr-Purcell-Meiboom-Gill (CPMG) T2 was determined for a range of Y and Hct values. The data were fitted to a two-compartment exchange model to allow the characterization of a three-dimensional plot that can serve to calibrate the in vivo data. Next, in a validation study in humans, we showed that arterial Y estimated using TRUST MRI was 0.837±0.036 (N=7) during the inhalation of 14% O2, which was in excellent agreement with the gold-standard Y values of 0.840±0.036 based on Pulse-Oximetry. These data suggest that the availability of this calibration plot should enhance the applicability of TRUST MRI for non-invasive assessment of cerebral blood oxygenation. PMID:21590721

  14. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  15. Quantifying Differences in the Impact of Variable Chemistry on Equilibrium Uranium(VI) Adsorption Properties of Aquifer Sediments

    PubMed Central

    2011-01-01

    Uranium adsorption–desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500–1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2–, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors. PMID:21923109

  16. Quantifying differences in the impact of variable chemistry on equilibrium Uranium(VI) adsorption properties of aquifer sediments.

    PubMed

    Stoliker, Deborah L; Kent, Douglas B; Zachara, John M

    2011-10-15

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO₂²⁺ + 2CO₃²⁻ = >SOUO₂(CO₃HCO₃)²⁻, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logK(c)) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logK(c) values. Using this approach, logK(c) values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (< 0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logK(c) uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  17. Calibration of z-axis linearity for arbitrary optical topography measuring instruments

    NASA Astrophysics Data System (ADS)

    Eifler, Matthias; Seewig, Jörg; Hering, Julian; von Freymann, Georg

    2015-05-01

    The calibration of the height axis of optical topography measurement instruments is essential for reliable topography measurements. A state of the art technology for the calibration of the linearity and amplification of the z-axis is the use of step height artefacts. However, a proper calibration requires numerous step heights at different positions within the measurement range. The procedure is extensive and uses artificial surface structures that are not related to real measurement tasks. Concerning these limitations, approaches should to be developed that work for arbitrary topography measurement devices and require little effort. Hence, we propose calibration artefacts which are based on the 3D-Abbott-Curve and image desired surface characteristics. Further, real geometric structures are used as an initial point of the calibration artefact. Based on these considerations, an algorithm is introduced which transforms an arbitrary measured surface into a measurement artefact for the z-axis linearity. The method works both for profiles and topographies. For considering effects of manufacturing, measuring, and evaluation an iterative approach is chosen. The mathematical impact of these processes can be calculated with morphological signal processing. The artefact is manufactured with 3D laser lithography and characterized with different optical measurement devices. An introduced calibration routine can calibrate the entire z-axis-range within one measurement and minimizes the required effort. With the results it is possible to locate potential linearity deviations and to adjust the z-axis. Results of different optical measurement principles are compared in order to evaluate the capabilities of the new artefact.

  18. Evaluation of the Applicability of Solar and Lamp Radiometric Calibrations of a Precision Sun Photometer Operating Between 300 and 1025 nm

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Spyak, Paul R.; Biggar, Stuart F.; Joerg, Sekler; Ingold, Thomas; Maetzler, Christian; Kaempfer, Niklaus

    2000-01-01

    Over a period of 3 year a precision Sun photometer (SPM) operating between 300 and 1025 nm was calibrated four times at three different high-mountain sites in Switzerland, Germany, and the United States by means of the Langley-plot technique. We found that for atmospheric window wavelengths the total error (2 sigma-statistical plus systematic errors) of the calibration constants V(sub 0)(lambda), the SPM voltage in the absence of any attenuating atmosphere, can be kept below 1.60% in the UV-A and blue, 0.9% in the mid-visible, and 0.6% in the near-infra red spectral region. For SPM channels within strong water-vapor or ozone absorption bands a modified Langley-plot technique was used to determine V(sub 0)(lambda) with a lower accuracy. Within the same period of time, we calibrated the SPM five times using irradiance standard lamps in the optical labs of the Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Switzerland, and of the Remote Sensing Group of the Optical Sciences Center, University of Arizona, Tucson, Arizona. The lab calibration method requires knowledge of the extraterrestrial spectral irradiance. When we refer the standard lamp results to the World Radiation Center extraterrestrial solar irradiance spectrum, they agree with the Langley results within 2% at 6 or 13 SPM wavelengths. The largest disagreement (4.4%) is found for the channel centered at 610 nm. The results of these intercomparisons change significantly when the lamp results are referred to two different extraterrestrial solar irradiance spectra that have become recently available.

  19. Analyzing linear spatial features in ecology.

    PubMed

    Buettel, Jessie C; Cole, Andrew; Dickey, John M; Brook, Barry W

    2018-06-01

    The spatial analysis of dimensionless points (e.g., tree locations on a plot map) is common in ecology, for instance using point-process statistics to detect and compare patterns. However, the treatment of one-dimensional linear features (fiber processes) is rarely attempted. Here we appropriate the methods of vector sums and dot products, used regularly in fields like astrophysics, to analyze a data set of mapped linear features (logs) measured in 12 × 1-ha forest plots. For this demonstrative case study, we ask two deceptively simple questions: do trees tend to fall downhill, and if so, does slope gradient matter? Despite noisy data and many potential confounders, we show clearly that topography (slope direction and steepness) of forest plots does matter to treefall. More generally, these results underscore the value of mathematical methods of physics to problems in the spatial analysis of linear features, and the opportunities that interdisciplinary collaboration provides. This work provides scope for a variety of future ecological analyzes of fiber processes in space. © 2018 by the Ecological Society of America.

  20. Linear and nonlinear trending and prediction for AVHRR time series data

    NASA Technical Reports Server (NTRS)

    Smid, J.; Volf, P.; Slama, M.; Palus, M.

    1995-01-01

    The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.

  1. Quantitative spatial distribution of sirolimus and polymers in drug-eluting stents using confocal Raman microscopy.

    PubMed

    Balss, K M; Llanos, G; Papandreou, G; Maryanoff, C A

    2008-04-01

    Raman spectroscopy was used to differentiate each component found in the CYPHER Sirolimus-eluting Coronary Stent. The unique spectral features identified for each component were then used to develop three separate calibration curves to describe the solid phase distribution found on drug-polymer coated stents. The calibration curves were obtained by analyzing confocal Raman spectral depth profiles from a set of 16 unique formulations of drug-polymer coatings sprayed onto stents and planar substrates. The sirolimus model was linear from 0 to 100 wt % of drug. The individual polymer calibration curves for poly(ethylene-co-vinyl acetate) [PEVA] and poly(n-butyl methacrylate) [PBMA] were also linear from 0 to 100 wt %. The calibration curves were tested on three independent drug-polymer coated stents. The sirolimus calibration predicted the drug content within 1 wt % of the laboratory assay value. The polymer calibrations predicted the content within 7 wt % of the formulation solution content. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra from five formulations confirmed a linear response to changes in sirolimus and polymer content. Copyright 2007 Wiley Periodicals, Inc.

  2. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    NASA Astrophysics Data System (ADS)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  3. Linear positioning laser calibration setup of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Sui, Xiulin; Yang, Congjing

    2002-10-01

    The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.

  4. Reversed inverse regression for the univariate linear calibration and its statistical properties derived using a new methodology

    NASA Astrophysics Data System (ADS)

    Kang, Pilsang; Koo, Changhoi; Roh, Hokyu

    2017-11-01

    Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.

  5. Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary

    PubMed Central

    Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen

    2017-01-01

    Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers. PMID:28587115

  6. User guide for the PULSE program

    USGS Publications Warehouse

    Rutledge, A.T.

    2002-01-01

    This manual describes the use of the PULSE computer program for analysis of streamflow records. The specific instructions included here and the computer files that accompany this manual require streamflow data in a format that can be obtained from U.S. Geological Survey (USGS) sites on the World Wide Web. The program is compiled to run on a personal computer that uses a Microsoft Windows-based operating system. This manual provides instructions for use of Microsoft Excel for plotting hydrographs, though users may choose to use other software for plotting. The program calculates a hydrograph of ground-water discharge to a stream on the basis of user-specified recharge to the water table. Two different formulations allow recharge to be treated as instantaneous quantities or as gradual rates. The process of ground-water evapotranspiration can be approximated as a negative gradual recharge. The PULSE program is intended for analyzing a ground-water-flow system that is characterized by diffuse areal recharge to the water table and ground-water discharge to a stream. Program use can be appropriate if all or most ground water in the basin discharges to the stream and if a streamflow-gaging station at the downstream end of the basin measures all or most outflow. Ground-water pumpage and the regulation and diversion of streamflow should be negligible. More information about the application of the method is included in Rutledge, 1997, pages 2-3. The program can be used in conjunction with ground-water-level data. If a well is open to the surficial aquifer, observed water-level rises in the well can be used to evaluate the timing of recharge. Such evaluation is most effective if there are numerous water-level observation wells in the basin. Water levels in observation wells can also be used to evaluate the rate of ground-water discharge estimated by the PULSE program. The results of such an evaluation may be problematic, however, because the relation between ground-water level and ground-water discharge may not be unique. Departures from the linear model of recession occur because of areal variation in transmissivity and because of the longitudinal component of ground-water flow (parallel to the stream). If the PULSE program is used to estimate ground-water recharge, the recession index should not be obtained from periods of extreme low flow, and the calibration process should include plotting flow on the linear scale in addition to plotting flow on the log scale.

  7. Synthesis Polarimetry Calibration

    NASA Astrophysics Data System (ADS)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  8. Colorimetric Determination of the Iron(III)-Thiocyanate Reaction Equilibrium Constant with Calibration and Equilibrium Solutions Prepared in a Cuvette by Sequential Additions of One Reagent to the Other

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca

    2011-01-01

    The well-known colorimetric determination of the equilibrium constant of the iron(III-thiocyanate complex is simplified by preparing solutions in a cuvette. For the calibration plot, 0.10 mL increments of 0.00100 M KSCN are added to 4.00 mL of 0.200 M Fe(NO[subscript 3])[subscript 3], and for the equilibrium solutions, 0.50 mL increments of…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    Previously the SURFplus reactive burn model was calibrated for the TATB based explosive PBX 9502. The calibration was based on fitting Pop plot data, the failure diameter and the limiting detonation speed, and curvature effect data for small curvature. The model failure diameter is determined utilizing 2-D simulations of an unconfined rate stick to find the minimum diameter for which a detonation wave propagates. Here we examine the effect of mesh resolution on an unconfined rate stick with a diameter (10mm) slightly greater than the measured failure diameter (8 to 9 mm).

  10. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  11. Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR data

    USGS Publications Warehouse

    Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.

    2015-01-01

    Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.

  12. Guide to using Cuechart, Tellagraf, and Disspla at ANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoncini, P.J.; Thommes, M.M.

    1986-01-01

    Guide to Curchart, Tellagraf, and Disspla at ANL provides information necessary for using the three ISSCO graphics packages at Argonne: Cuechart is a cue-and-response program available in CMS that aids users in creating bar charts, line charts, pie charts, and word charts. It is appropriate for users with little or no previous graphics experience. Cuechart provides much of the capability of Tellagraf without the user's having to learn Tellagraf commands. Tellagraf is a more powerful, easy-to-use graphics package also available in CMS. With a little training, scientists, administrators, and secretaries can produce sophisticated publication-quality log or linear plots, bar charts,more » pie charts, tables, or posters. Disspla is a more versatile and sophisticated graphics package. It is available in both CMS and batch and consists of several hundred Fortran-callable and PL/I-callable subroutines that will enable you to obtain professional quality plots. In addition to log or linear plots, bar charts, pie charts, and pages of text, Disspla provides subroutines for contour plots, 3-D plots, and world maps.« less

  13. Psychophysica: Mathematica notebooks for psychophysical experiments (cinematica--psychometrica--quest)

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Solomon, J. A.

    1997-01-01

    Psychophysica is a set of software tools for psychophysical research. Functions are provided for calibrated visual displays, for fitting and plotting of psychometric functions, and for the QUEST adaptive staircase procedure. The functions are written in the Mathematica programming language.

  14. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system.

    PubMed

    Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing

    2018-02-10

    Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

  15. Enhanced Night Vision Via a Combination of Poisson Interpolation and Machine Learning

    DTIC Science & Technology

    2006-02-01

    of 0-255, they are mostly similar. The right plot shows a family of m(x, ψ) curves of ψ=2 (the most linear) through ψ=1024 (the most curved ...complicating low-light imaging. Nayar and Branzoi [04] later suggested a second variant using a DLP micromirror array to modulate the exposure, via time...255, they are mostly similar. The right plot shows a family of m(x, ψ) curves of ψ=2 (the most linear) through ψ=1024 (the most curved

  16. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    NASA Astrophysics Data System (ADS)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests including rubber, acacia, oil palm, and coconut. To cover these variations of forest type, eight LiDAR transacts crossing 60 (1-ha size) field plots were acquired for calibrating the models. The field plots consisted of AFCS ranging from 4 - 161 Mg /ha. The calibrated LiDAR to AFCS general model enabled to predict the AFCS with R2 = 0.87 and root mean square errors (RMSE) = 17.4 Mg /ha. The specific AFCS models provided carbon estimates, varied by forest types, with R2 ranging from 0.72 - 0.97 and uncertainty (RMSE) ranging from 1.4 - 10.7 Mg /ha. Using these models, AFCS maps were prepared for the LiDAR coverage that provided AFCS estimates for 8,000 ha offering larger ground sampling measurements for calibration of SAR based carbon mapping model to wider region of Sumatra.

  17. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    PubMed

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  18. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-01

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of −20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system. PMID:26840316

  19. Increasing the sensitivity of the Jaffe reaction for creatinine

    NASA Technical Reports Server (NTRS)

    Tom, H. Y.

    1973-01-01

    Study of analytical procedure has revealed that linearity of creatinine calibration curve can be extended by using 0.03 molar picric acid solution made up in 70 percent ethanol instead of water. Three to five times more creatinine concentration can be encompassed within linear portion of calibration curve.

  20. Results of calibrations of the NOAA-11 AVHRR made by reference to calibrated SPOT imagery at White Sands, N.M

    NASA Technical Reports Server (NTRS)

    Nianzeng, Che; Grant, Barbara G.; Flittner, David E.; Slater, Philip N.; Biggar, Stuart F.; Jackson, Ray D.; Moran, M. S.

    1991-01-01

    The calibration method reported here makes use of the reflectances of several large, uniform areas determined from calibrated and atmospherically corrected SPOT Haute Resolution Visible (HRV) scenes of White Sands, New Mexico. These reflectances were used to predict the radiances in the first two channels of the NOAA-11 Advanced Very High Resolution Radiometer (AVHRR). The digital counts in the AVHRR image corresponding to these known reflectance areas were determined by the use of two image registration techniques. The plots of digital counts versus pixel radiance provided the calibration gains and offsets for the AVHRR. A reduction in the gains of 4 and 13 percent in channels 1 and 2 respectively was found during the period 1988-11-19 to 1990-6-21. An error budget is presented for the method and is extended to the case of cross-calibrating sensors on the same orbital platform in the Earth Observing System (EOS) era.

  1. Determination of ampicillin sodium using the cupric oxide nanoparticles-luminol-H2 O2 chemiluminescence reaction.

    PubMed

    Iranifam, Mortaza; Kharameh, Merhnaz Khabbaz

    2014-09-01

    A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)-luminol-H2 O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2 O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10(-7) -4.0 × 10(-6) mol/L. The limit of detection was 2.6 × 10(-7) mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10(-6) mol/L ampicillin sodium was 4.71%. Also, X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  3. A Surface Plasmon Resonance-Based Method for Detection and Determination of Cannabinoids Using Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Amjadi, M.; Sodouri, T.

    2014-05-01

    In this work, a simple colorimetric method based on the formation of silver nanoparticles (Ag NPs) was developed for the determination of cannabinoids including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN). These compounds in a basic solution at 80°C reduce [Ag(NH3)2]+ to form Ag NPs. The produced NPs were characterized by transmission electron microscopy and UV-Vis absorption spectroscopy. The brown-yellow color of the solution that results from the localized surface plasmon resonance of Ag NPs can be observed by the bare eye. The calibration graph obtained by plotting the absorbance at 410 nm versus the concentration of each analyte was linear in the range of 0.1-5.0 μg/ml for all tested cannabinoids. The limits of detection were 0.065, 0.077, and 0.052 μg/ml for Δ9-THC, CBN and CBD, respectively. The developed method was applied to the determination of total cannabinoids in hashish.

  4. A generic standard additions based method to determine endogenous analyte concentrations by immunoassays to overcome complex biological matrix interference.

    PubMed

    Pang, Susan; Cowen, Simon

    2017-12-13

    We describe a novel generic method to derive the unknown endogenous concentrations of analyte within complex biological matrices (e.g. serum or plasma) based upon the relationship between the immunoassay signal response of a biological test sample spiked with known analyte concentrations and the log transformed estimated total concentration. If the estimated total analyte concentration is correct, a portion of the sigmoid on a log-log plot is very close to linear, allowing the unknown endogenous concentration to be estimated using a numerical method. This approach obviates conventional relative quantification using an internal standard curve and need for calibrant diluent, and takes into account the individual matrix interference on the immunoassay by spiking the test sample itself. This technique is based on standard additions for chemical analytes. Unknown endogenous analyte concentrations within even 2-fold diluted human plasma may be determined reliably using as few as four reaction wells.

  5. Three-dimensional shape measurement and calibration for fringe projection by considering unequal height of the projector and the camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Feipeng; Shi Hongjian; Bai Pengxiang

    In fringe projection, the CCD camera and the projector are often placed at equal height. In this paper, we will study the calibration of an unequal arrangement of the CCD camera and the projector. The principle of fringe projection with two-dimensional digital image correlation to acquire the profile of object surface is described in detail. By formula derivation and experiment, the linear relationship between the out-of-plane calibration coefficient and the y coordinate is clearly found. To acquire the three-dimensional (3D) information of an object correctly, this paper presents an effective calibration method with linear least-squares fitting, which is very simplemore » in principle and calibration. Experiments are implemented to validate the availability and reliability of the calibration method.« less

  6. Recent progress in the joint multisensor mine-signatures database project

    NASA Astrophysics Data System (ADS)

    Lewis, Adam M.; Verlinde, Patrick S. A.; Acheroy, Marc P. J.; Sieber, Alois J.

    2002-08-01

    The MsMs project is a major campaign to collect calibrated and well-documented data, suitable for use by workers developing advanced multisensor algorithms for antipersonnel mine detection. The data, together with a full description of the site layout and measurement protocols, are publicly available via the internet site http://demining.jrc.it/msms. Measurements are made on a test lane consisting of 7 plots of different soils, each 6m by 6m, populated with surrogate mines, calibration objects, simulated clutter and position markers. There are 48 targets in each plot, configured identically for all plots. A first report was presented last year. Since then, laser acoustic vibrometer and magnetometer data have been added and the metal detector and thermal infrared data have been augmented. The database has been reformatted to make it more uniform and user-friendly and to remove typographic mistakes. The test site remains essentially unchanged, apart from some equipment upgrades, and is available for further data collection. In particular, the targets have not been moved, so as to provide stable surrounding soil conditions representative of mines left undisturbed for long periods post-conflict. This presentation will describe the new data and data format, the status of the upgrades and the outlook for the future.

  7. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Du, Jiao; Yue, Ruirui; Ren, Fangfang; Yao, Zhangquan; Jiang, Fengxing; Yang, Ping; Du, Yukou

    2014-03-15

    A novel and sensitive carbon fiber electrode (CFE) modified by graphene flowers was prepared and used to simultaneously determine ascorbic acid (AA), dopamine (DA) and uric acid (UA). SEM images showed that beautiful and layer-petal graphene flowers homogeneously bloomed on the surface of CFE. Moreover, sharp and obvious oxidation peaks were found at the obtained electrode when compared with CFE and glassy carbon electrode (GCE) for the oxidation of AA, DA and UA. Also, the linear calibration plots for AA, DA and UA were observed, respectively, in the ranges of 45.4-1489.23 μM, 0.7-45.21 μM and 3.78-183.87 μM in the individual detection of each component. By simultaneously changing the concentrations of AA, DA and UA, their oxidation peaks appeared at -0.05 V, 0.16 V and 2.6 V, and the good linear responses ranges were 73.52-2305.53 μM, 1.36-125.69 μM and 3.98-371.49 μM, respectively. In addition, the obtained electrode showed satisfactory results when applied to the determination of AA, DA and UA in urine and serum samples. © 2013 Elsevier B.V. All rights reserved.

  8. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen.

    PubMed

    Rizwan, Mohammad; Elma, Syazwani; Lim, Syazana Abdullah; Ahmed, Minhaz Uddin

    2018-06-01

    In this work, a nanocomposite of gold nanoparticles (AuNPs), carbon nano-onions (CNOs), single-walled carbon nanotubes (SWCNTs) and chitosan (CS) (AuNPs/CNOs/SWCNTs/CS) was prepared for the development of highly sensitive electrochemical immunosensor for the detection of carcinoembryonic antigen (CEA), clinical tumor marker. Firstly, layer-by-layer fabrication of the CEA-immunosensors was studied using cyclic voltammetry (CV) and square wave voltammetry (SWV). By combining the advantages of large surface area and electronic properties of AuNPs, CNOs, SWCNTs, and film forming properties of CS, AuNPs/CNOs/SWCNTs/CS-nanocomposite-modified glassy carbon electrode showed a 200% increase in effective surface area and electronic conductivity. The calibration plot gave a negative linear relationship between log[concentration] of CEA and electrical current with a correlation coefficient of 0.9875. The CEA-immunosensor demonstrated a wide linear detection range of 100 fg mL -1 to 400 ng mL -1 with a low detection limit of 100 fg mL -1 . In addition to high sensitivity, reproducibility and large stability, CEA-immunosensor provided an excellent selectivity and resistant-to-interference in the presence of other antigens in serum and hence a potential to be used with real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles.

    PubMed

    Kanchana, P; Sekar, C

    2015-02-25

    We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0×10(-7) to 3.5×10(-4) M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Development and Validation of RP-HPLC Method for the Estimation of Ivabradine Hydrochloride in Tablets

    PubMed Central

    Seerapu, Sunitha; Srinivasan, B. P.

    2010-01-01

    A simple, sensitive, precise and robust reverse–phase high-performance liquid chromatographic method for analysis of ivabradine hydrochloride in pharmaceutical formulations was developed and validated as per ICH guidelines. The separation was performed on SS Wakosil C18AR, 250×4.6 mm, 5 μm column with methanol:25 mM phosphate buffer (60:40 v/v), adjusted to pH 6.5 with orthophosphoric acid, added drop wise, as mobile phase. A well defined chromatographic peak of Ivabradine hydrochloride was exhibited with a retention time of 6.55±0.05 min and tailing factor of 1.14 at the flow rate of 0.8 ml/min and at ambient temperature, when monitored at 285 nm. The linear regression analysis data for calibration plots showed good linear relationship with R=0.9998 in the concentration range of 30-210 μg/ml. The method was validated for precision, recovery and robustness. Intra and Inter-day precision (% relative standard deviation) were always less than 2%. The method showed the mean % recovery of 99.00 and 98.55 % for Ivabrad and Inapure tablets, respectively. The proposed method has been successfully applied to the commercial tablets without any interference of excipients. PMID:21695008

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly

    Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less

  12. A graphics package for meteorological data, version 1.5

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Suarez, Max; Phillips, Bill; Schemm, Jae-Kyung; Schubert, Siegfried

    1989-01-01

    A plotting package has been developed to simplify the task of plotting meteorological data. The calling sequences and examples of high level yet flexible routines which allow contouring, vectors and shading of cylindrical, polar, orthographic and Mollweide (egg) projections are given. Routines are also included for contouring pressure-latitude and pressure-longitude fields with linear or log scales in pressure (interpolation to fixed grid interval is done automatically). Also included is a fairly general line plotting routine. The present version (1.5) produces plots on WMS laser printers and uses graphics primitives from WOLFPLOT.

  13. Flexible arms provide constant force for pressure switch calibration

    NASA Technical Reports Server (NTRS)

    Cain, D. E.; Kunz, R. W.

    1966-01-01

    In-place calibration of a pressure switch is provided by a system of radially oriented flexing arms which, when rotated at a known velocity, convert the centrifugal force of the arms to a linear force along the shaft. The linear force, when applied to a pressure switch diaphragm, can then be calculated.

  14. 40 CFR 91.321 - NDIR analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of full-scale concentration. A minimum of six evenly spaced points covering at least 80 percent of..., a linear calibration may be used. To determine if this criterion is met: (1) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x is the actual chart...

  15. 40 CFR 91.321 - NDIR analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of full-scale concentration. A minimum of six evenly spaced points covering at least 80 percent of..., a linear calibration may be used. To determine if this criterion is met: (1) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x is the actual chart...

  16. 40 CFR 91.321 - NDIR analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of full-scale concentration. A minimum of six evenly spaced points covering at least 80 percent of..., a linear calibration may be used. To determine if this criterion is met: (1) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x is the actual chart...

  17. 40 CFR 91.321 - NDIR analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of full-scale concentration. A minimum of six evenly spaced points covering at least 80 percent of..., a linear calibration may be used. To determine if this criterion is met: (1) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx, where x is the actual chart...

  18. Disproportionation of a crystalline citrate salt of a developmental pharmaceutical compound: characterization of the kinetics using pH monitoring and online Raman spectroscopy plus quantitation of the crystalline free base form in binary physical mixtures using FT-Raman, XRPD and DSC.

    PubMed

    Skrdla, Peter J; Zhang, Dan

    2014-03-01

    The crystalline citrate salt (CS) of a developmental pharmaceutical compound, MK-Q, was investigated in this work from two different, but related, perspectives. In the first part of the paper, the apparent disproportionation kinetics were surveyed using two different slurry systems, one containing water and the other a pH 6.9 phosphate buffer, using time-dependent measurements of the solution pH or by acquiring online Raman spectra of the solids. While the CS is generally stable when stored as a solid under ambient conditions of temperature and humidity, its low pHmax (<3) facilitates rapid disproportionation in aqueous solution, particularly at higher pH values. The rate of disappearance of the CS was found to obey first-order (Noyes-Whitney/dissolution rate-limited) kinetics, however, the formation of the crystalline product form in the slurry system was observed to exhibit kinetics consistent with a heterogeneous nucleation-and-growth mechanism. In the second part of this paper, more sensitive offline measurements made using XRPD, DSC and FT-Raman spectroscopy were applied to the characterization of binary physical mixtures of the CS and free base (FB) crystalline forms of MK-Q to obtain a calibration curve for each technique. It was found that all calibration plots exhibited good linearity of response, with the limit of detection (LOD) for each technique estimated to be ≤7 wt% FB. While additional calibration curves would need to be constructed to allow for accurate quantitation in various slurry systems, the general feasibility of these techniques is demonstrated for detecting low levels of CS disproportionation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dose calibrator linearity test: 99mTc versus 18F radioisotopes*

    PubMed Central

    Willegaignon, José; Sapienza, Marcelo Tatit; Coura-Filho, George Barberio; Garcez, Alexandre Teles; Alves, Carlos Eduardo Gonzalez Ribeiro; Cardona, Marissa Anabel Rivera; Gutterres, Ricardo Fraga; Buchpiguel, Carlos Alberto

    2015-01-01

    Objective The present study was aimed at evaluating the viability of replacing 18F with 99mTc in dose calibrator linearity testing. Materials and Methods The test was performed with sources of 99mTc (62 GBq) and 18F (12 GBq) whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical 99mTc and 18F sources activities were calculated and subsequently compared. Results Mean deviations between experimental and theoretical 99mTc and 18F sources activities were 0.56 (± 1.79)% and 0.92 (± 1.19)%, respectively. The mean ratio between activities indicated by the device for the 99mTc source as measured with the equipment pre-calibrated to measure 99mTc and 18F was 3.42 (± 0.06), and for the 18F source this ratio was 3.39 (± 0.05), values considered constant over the measurement time. Conclusion The results of the linearity test using 99mTc were compatible with those obtained with the 18F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in 18F acquisition suggest 99mTc as the element of choice to perform dose calibrator linearity tests in centers that use 18F, without any detriment to the procedure as well as to the quality of the nuclear medicine service. PMID:25798005

  20. Effect of laser irradiance and wavelength on the analysis of gold- and silver-bearing minerals with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Díaz, Daniel; Molina, Alejandro; Hahn, David

    2018-07-01

    The influence of laser irradiance and wavelength on the analysis of gold and silver in ore and surrogate samples with laser-induced breakdown spectroscopy (LIBS) was evaluated. Gold-doped mineral samples (surrogates) and ore samples containing naturally-occurring gold and silver were analyzed with LIBS using 1064 and 355 nm laser wavelengths at irradiances from 0.36 × 109 to 19.9 × 109 W/cm2 and 0.97 × 109 to 4.3 × 109 W/cm2, respectively. The LIBS net, background and signal-to-background signals were analyzed. For all irradiances, wavelengths, samples and analytes the calibration curves behaved linearly for concentrations from 1 to 9 μg/g gold (surrogate samples) and 0.7 to 47.0 μg/g silver (ore samples). However, it was not possible to prepare calibration curves for gold-bearing ore samples (at any concentration) nor for gold-doped surrogate samples with gold concentrations below 1 μg/g. Calibration curve parameters for gold-doped surrogate samples were statistically invariant at 1064 and 355 nm. Contrary, the Ag-ore analyte showed higher emission intensity at 1064 nm, but the signal-to-background normalization reduced the effect of laser wavelength of silver calibration plots. The gold-doped calibration curve metrics improved at higher laser irradiance, but that did not translate into lower limits of detection. While coefficients of determination (R2) and limits of detection did not vary significantly with laser wavelength, the LIBS repeatability at 355 nm improved up to a 50% with respect to that at 1064 nm. Plasma diagnostics by the Boltzmann and Stark broadening methods showed that the plasma temperature and electron density did not follow a specific trend as the wavelength changed for the delay and gate times used. This research presents supporting evidence that the LIBS discrete sampling features combined with the discrete and random distribution of gold in minerals hinder gold analysis by LIBS in ore samples; however, the use of higher laser irradiances at 1064 nm increased the probability of sampling and detecting naturally-occurring gold.

  1. A comparison of quality of present-day heat flow obtained from BHTs, Horner Plots of Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waples, D.W.; Mahadir, R.

    1994-07-01

    Reconciling temperature data obtained from measurement of single BHT, multiple BHT at a single depth, RFTs, and DSTs, is very difficult. Quality of data varied widely, however DST data were assumed to be most reliable. Data from 87 wells was used in this study, but only 47 wells have DST data. BASINMOD program was used to calculate the present-day heat flow, using measured thermal conductivity and calibrated against the DST data. The heat flows obtained from the DST data were assumed to be correct and representative throughout the basin. Then, heat flows using (1) uncorrected RFT data, (2) multiple BHTmore » data corrected by the Horner plot method, and (3) single BHT values corrected upward by a standard 10% were calculated. All of these three heat-flow populations had identically standard deviations to that for the DST data, but with significantly lower mean values. Correction factors were calculated to give each of the three erroneous populations the same mean value as the DST population. Heat flows calculated from RFT data had to be corrected upward by a factor of 1.12 to be equivalent to DST data; Horner plot data corrected by a factor of 1.18, and single BHT data by a factor of 1.2. These results suggest that present-day subsurface temperatures using RFT, Horner plot, and BHT data are considerably lower than they should be. The authors suspect qualitatively similar results would be found in other areas. Hence, they recommend significant corrections be routinely made until local calibration factors are established.« less

  2. Indirect Field Measurement of Wine-Grape Vineyard Canopy Leaf Area Index

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Pierce, Lars L.; Skiles, J. W. (Technical Monitor)

    2002-01-01

    Leaf area index (LAI) indirect measurements were made at 12 study plots in California's Napa Valley commercial wine-grape vineyards with a LI-COR LI-2000 Plant Canopy Analyzer (PCA). The plots encompassed different trellis systems, biological varieties, and planting densities. LAI ranged from 0.5 - 2.25 sq m leaf area/ sq m ground area according to direct (defoliation) measurements. Indirect LAI reported by the PCA was significantly related to direct LAI (r(exp 2) = 0.78, p less than 001). However, the PCA tended to underestimate direct LAI by about a factor of two. Narrowing the instrument's conical field of view from 148 deg to 56 deg served to increase readings by approximately 30%. The PCA offers a convenient way to discern relative differences in vineyard canopy density. Calibration by direct measurement (defoliation) is recommended in cases where absolute LAI is desired. Calibration equations provided herein may be inverted to retrieve actual vineyard LAI from PCA readings.

  3. Calibration of a Six-Degree-of-Freedom Acceleration Measurement Device

    DOT National Transportation Integrated Search

    1994-12-01

    This report describes the calibration of a six-degree-of-freedom acceleration measurement system designed for use in the measurement of linear and angular head accelerations of anthropomorphic dummies during crash tests. The calibration methodology, ...

  4. OLI Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff

    2011-01-01

    Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI

  5. The Critical Importance of Russell's Diagram

    NASA Astrophysics Data System (ADS)

    Gingerich, O.

    2013-04-01

    The idea of dwarf and giants stars, but not the nomenclature, was first established by Eijnar Hertzsprung in 1905; his first diagrams in support appeared in 1911. In 1913 Henry Norris Russell could demonstrate the effect far more strikingly because he measured the parallaxes of many stars at Cambridge, and could plot absolute magnitude against spectral type for many points. The general concept of dwarf and giant stars was essential in the galactic structure work of Harlow Shapley, Russell's first graduate student. In order to calibrate the period-luminosity relation of Cepheid variables, he was obliged to fall back on statistical parallax using only 11 Cepheids, a very sparse sample. Here the insight provided by the Russell diagram became critical. The presence of yellow K giant stars in globular clusters credentialed his calibration of the period-luminosity relation by showing that the calibrated luminosity of the Cepheids was comparable to the luminosity of the K giants. It is well known that in 1920 Shapley did not believe in the cosmological distances of Heber Curtis' spiral nebulae. It is not so well known that in 1920 Curtis' plot of the period-luminosity relation suggests that he didn't believe it was a physical relation and also he failed to appreciate the significance of the Russell diagram for understanding the large size of the Milky Way.

  6. External validation of a prediction model for surgical site infection after thoracolumbar spine surgery in a Western European cohort.

    PubMed

    Janssen, Daniël M C; van Kuijk, Sander M J; d'Aumerie, Boudewijn B; Willems, Paul C

    2018-05-16

    A prediction model for surgical site infection (SSI) after spine surgery was developed in 2014 by Lee et al. This model was developed to compute an individual estimate of the probability of SSI after spine surgery based on the patient's comorbidity profile and invasiveness of surgery. Before any prediction model can be validly implemented in daily medical practice, it should be externally validated to assess how the prediction model performs in patients sampled independently from the derivation cohort. We included 898 consecutive patients who underwent instrumented thoracolumbar spine surgery. To quantify overall performance using Nagelkerke's R 2 statistic, the discriminative ability was quantified as the area under the receiver operating characteristic curve (AUC). We computed the calibration slope of the calibration plot, to judge prediction accuracy. Sixty patients developed an SSI. The overall performance of the prediction model in our population was poor: Nagelkerke's R 2 was 0.01. The AUC was 0.61 (95% confidence interval (CI) 0.54-0.68). The estimated slope of the calibration plot was 0.52. The previously published prediction model showed poor performance in our academic external validation cohort. To predict SSI after instrumented thoracolumbar spine surgery for the present population, a better fitting prediction model should be developed.

  7. Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M.

    2016-09-01

    The indoor calibration of brightness sensors requires extremely low values of irradiance in the most accurate and reproducible way. In this work the testing equipment of an ISO 17025 accredited laboratory for electrical testing, qualification and type approval of solar photovoltaic modules was modified in order to test the linearity of the instruments from few mW/cm2 down to fractions of nW/cm2, corresponding to levels of simulated brightness from 6 to 19 mag/arcsec2. Sixteen Sky Quality Meter (SQM) produced by Unihedron, a Canadian manufacturer, were tested, also assessing the impact of the ageing of their protective glasses on the calibration coefficients and the drift of the instruments. The instruments are in operation on measurement points and observatories at different sites and altitudes in Southern Switzerland, within the framework of OASI, the Environmental Observatory of Southern Switzerland. The authors present the results of the calibration campaign: linearity; brightness calibration, with and without protective glasses; transmittance measurement of the glasses; and spectral responsivity of the devices. A detailed uncertainty analysis is also provided, according to the ISO 17025 standard.

  8. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models.

    PubMed

    Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago

    2018-07-12

    The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  10. The influence of linear elements on plant species diversity of Mediterranean rural landscapes: assessment of different indices and statistical approaches.

    PubMed

    García del Barrio, J M; Ortega, M; Vázquez De la Cueva, A; Elena-Rosselló, R

    2006-08-01

    This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements--habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land--whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index. Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50x20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators. The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.

  11. A two-dimensional graphing program for the Tektronix 4050-series graphics computers

    USGS Publications Warehouse

    Kipp, K.L.

    1983-01-01

    A refined, two-dimensional graph-plotting program was developed for use on Tektronix 4050-series graphics computers. Important features of this program include: any combination of logarithmic and linear axes, optional automatic scaling and numbering of the axes, multiple-curve plots, character or drawn symbol-point plotting, optional cartridge-tape data input and plot-format storage, optional spline fitting for smooth curves, and built-in data-editing options. The program is run while the Tektronix is not connected to any large auxiliary computer, although data from files on an auxiliary computer easily can be transferred to data-cartridge for later plotting. The user is led through the plot-construction process by a series of questions and requests for data input. Five example plots are presented to illustrate program capability and the sequence of program operation. (USGS)

  12. Calibration Experiments for a Computer Vision Oyster Volume Estimation System

    ERIC Educational Resources Information Center

    Chang, G. Andy; Kerns, G. Jay; Lee, D. J.; Stanek, Gary L.

    2009-01-01

    Calibration is a technique that is commonly used in science and engineering research that requires calibrating measurement tools for obtaining more accurate measurements. It is an important technique in various industries. In many situations, calibration is an application of linear regression, and is a good topic to be included when explaining and…

  13. Parameterizations for reducing camera reprojection error for robot-world hand-eye calibration

    USDA-ARS?s Scientific Manuscript database

    Accurate robot-world, hand-eye calibration is crucial to automation tasks. In this paper, we discuss the robot-world, hand-eye calibration problem which has been modeled as the linear relationship AX equals ZB, where X and Z are the unknown calibration matrices composed of rotation and translation ...

  14. Fractionated irradiation of carbon beam and the isoeffect dose on acute reaction of skin

    PubMed Central

    Uzawa, Akiko; Hirayama, Ryoichi; Matsumoto, Yoshitaka; Koda, Kana; Koike, Sachiko; Ando, Koichi; Furusawa, Yoshiya

    2014-01-01

    Purpose: The aim of this study was to clear any specific LETs cause change in skin reaction. We irradiated mice feet with mono-energetic and SOBP carbon ions, to obtain dose–response of early skin reaction at different LETs. Materials and methods: Mice: C3H/HeMsNrsf female mice aged 4 months old were used for this study. The animals were produced and maintained in specific pathogen-free (SPF) facilities. Irradiation: The mice right hind legs received daily fractionated irradiation ranged from single to six fractions. Carbon ions (12C6+) were accelerated by the HIMAC synchrotron to 290 MeV/u. Irradiation was conducted using horizontal carbon-ion beams with a dose rate of ∼3 Gy/min. We chose the LETs at entrance of plateau (20keV/μm) and the SOBP (proximal: 40 keV/μm, middle: 45 keV/μm, distal: 60 keV/μm, distal-end: 80 keV/μm). The reference beam was 137Cs gamma rays with a dose rate of 1.2 Gy/min. Skin reaction: Skin reaction of the irradiated legs was scored every other day, between the14th and 35th post-irradiation days. Our scoring scale consisted of seven steps, ranging from 0.5 to 3.5 [ 1]. The skin score analyzed a result by the method that described by Ando et al. [ 2]. The Fe-plot proposed by Douglas and Fowler was used as a multifraction linear quadratic model. A plot between the reciprocal of the isoeffect dose and the dose per fraction resulted in a straight line. Results: Required isoeffect total dose increased linearly with the fraction numbers on a semi-logarithmic chart at LET 20–60 keV/µm SOBP beam. The isoeffect total dose decreased with the increase in the LET. However, no increases in isoeffect total dose were observed at few fractionations at 80 keV/µm. (data not shown) Using an Fe-plot, we analyzed the isoeffect total dose to evaluate the dependence on Carbon beam, or gamma ray. When I irradiate it by gamma ray, an Fe-plot shows linearly. But, irradiated by Carbon beam, an Fe-plot bent at low fractions (Fig. 1). Conclusion: The LQ-model-based Fe-plot could not fit skin reaction at few fractions at high-LET. Clinical Trial Registration number if required: No.Fig. 1.The reciprocal of the isoeffect dose is plotted against the dose per fraction. (i) Gamma ray: Fe-plot was linear. (ii) C-ions: Fe-plot bent at low fractions.

  15. Application of a validated stability-indicating densitometric thin-layer chromatographic method to stress degradation studies on moxifloxacin.

    PubMed

    Motwani, Sanjay K; Khar, Roop K; Ahmad, Farhan J; Chopra, Shruti; Kohli, K; Talegaonkar, S

    2007-01-16

    A simple, sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic (HPTLC) method for densitometric determination of moxifloxacin both as a bulk drug and from pharmaceutical formulation was developed and validated as per the International Conference on Harmonization (ICH) guidelines. The method employed TLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase and the mobile phase consisted of n-propanol-ethanol-6M ammonia solution (4:1:2, v/v/v). Densitometric analysis of moxifloxacin was carried out in the absorbance mode at 298 nm. Compact spots for moxifloxacin were found at R(f) value of 0.58+/-0.02. The linear regression analysis data for the calibration plots showed good linear relationship with r=0.9925 in the working concentration range of 100-800 ng spot(-1). The method was validated for precision, accuracy, ruggedness, robustness, specificity, recovery, limit of detection (LOD) and limit of quantitation (LOQ). The LOD and LOQ were 3.90 and 11.83 ng spot(-1), respectively. Drug was subjected to acid and alkali hydrolysis, oxidation, dry heat, wet heat treatment and photodegradation. All the peaks of degradation products were well resolved from the standard drug with significantly different R(f) values. Statistical analysis proves that the developed HPTLC method is reproducible and selective. As the method could effectively separate the drug from its degradation products, it can be employed as stability-indicating one. Moreover, the proposed HPTLC method was utilized to investigate the kinetics of the acidic and alkaline degradation processes at different temperatures. Arrhenius plot was constructed and apparent pseudo-first-order rate constant, half-life and activation energy were calculated. In addition the pH-rate profile for degradation of moxifloxacin in constant ionic strength buffer solutions within the pH range 1.2-10.8 was studied.

  16. Monitoring irrigation water consumption using high resolution NDVI image time series (Sentinel-2 like). Calibration and validation in the Kairouan plain (Tunisia)

    NASA Astrophysics Data System (ADS)

    Saadi, Sameh; Simonneaux, Vincent; Boulet, Gilles; Mougenot, Bernard; Zribi, Mehrez; Lili Chabaane, Zohra

    2015-04-01

    Water scarcity is one of the main factors limiting agricultural development in semi-arid areas. It is thus of major importance to design tools allowing a better management of this resource. Remote sensing has long been used for computing evapotranspiration estimates, which is an input for crop water balance monitoring. Up to now, only medium and low resolution data (e.g. MODIS) are available on regular basis to monitor cultivated areas. However, the increasing availability of high resolution high repetitivity VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be lunched in 2015, offers unprecedented opportunity to improve this monitoring. In this study, regional crops water consumption was estimated with the SAMIR software (Satellite of Monitoring Irrigation) using the FAO-56 dual crop coefficient water balance model fed with high resolution NDVI image time series providing estimates of both the actual basal crop coefficient (Kcb) and the vegetation fraction cover. The model includes a soil water model, requiring the knowledge of soil water holding capacity, maximum rooting depth, and water inputs. As irrigations are usually not known on large areas, they are simulated based on rules reproducing the farmer practices. The main objective of this work is to assess the operationality and accuracy of SAMIR at plot and perimeter scales, when several land use types (winter cereals, summer vegetables…), irrigation and agricultural practices are intertwined in a given landscape, including complex canopies such as sparse orchards. Meteorological ground stations were used to compute the reference evapotranspiration and get the rainfall depths. Two time series of ten and fourteen high-resolution SPOT5 have been acquired for the 2008-2009 and 2012-2013 hydrological years over an irrigated area in central Tunisia. They span the various successive crop seasons. The images were radiometrically corrected, first, using the SMAC6s Algorithm, second, using invariant objects located on the scene, based on visual observation of the images. From these time series, a Normalized Difference Vegetation Index (NDVI) profile was generated for each pixel. SAMIR was first calibrated based on ground measurements of evapotranspiration achieved using eddy-correlation devices installed on irrigated wheat and barley plots. After calibration, the model was run to spatialize irrigation over the whole area and a validation was done using cumulated seasonal water volumes obtained from ground survey at both plot and perimeter scales. The results show that although determination of model parameters was successful at plot scale, irrigation rules required an additional calibration which was achieved at perimeter scale.

  17. The determination of ethanol in blood and urine by mass fragmentography

    NASA Technical Reports Server (NTRS)

    Pereira, W. E.; Summons, R. E.; Rindfleisch, T. C.; Duffield, A. M.

    1974-01-01

    A mass fragmentographic technique for a rapid, specific and sensitive determination of ethanol in blood and urine is described. A Varian gas chromatograph coupled through an all-glass membrane separator to a Finnigan quadripole mass spectrometer and interfaced to a computer system is used for ethanol determination in blood and urine samples. A procedure for plotting calibration curves for ethanol quantitation is also described. Quantitation is achieved by plotting the peak area ratios of undeuterated-to-deuterated ethanol fragment ions against the amount of ethanol added. Representative results obtained by this technique are included.

  18. Nonlinear Dot Plots.

    PubMed

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  19. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran

    NASA Astrophysics Data System (ADS)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth

    2016-11-01

    The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p < 0.05) between the estimated K from multiple linear regression and measured K indicates that the use of calcium carbonate equivalent as a predictor variable gives a better estimation of K in areas with calcareous soils.

  20. A storm-based CSLE incorporating the modified SCS-CN method for soil loss prediction on the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Wenhai; Huang, Mingbin

    2017-04-01

    The Chinese Loess Plateau is one of the most erodible areas in the world. In order to reduce soil and water losses, suitable conservation practices need to be designed. For this purpose, there is an increasing demand for an appropriate model that can accurately predict storm-based surface runoff and soil losses on the Loess Plateau. The Chinese Soil Loss Equation (CSLE) has been widely used in this region to assess soil losses from different land use types. However, the CSLE was intended only to predict the mean annual gross soil loss. In this study, a CSLE was proposed that would be storm-based and that introduced a new rainfall-runoff erosivity factor. A dataset was compiled that comprised measurements of soil losses during individual storms from three runoff-erosion plots in each of three different watersheds in the gully region of the Plateau for 3-7 years in three different time periods (1956-1959; 1973-1980; 2010-13). The accuracy of the soil loss predictions made by the new storm-based CSLE was determined using the data for the six plots in two of the watersheds measured during 165 storm-runoff events. The performance of the storm-based CSLE was further compared with the performance of the storm-based Revised Universal Soil Loss Equation (RUSLE) for the same six plots. During the calibration (83 storms) and validation (82 storms) of the storm-based CSLE, the model efficiency, E, was 87.7% and 88.9%, respectively, while the root mean square error (RMSE) was 2.7 and 2.3 t ha-1 indicating a high degree of accuracy. Furthermore, the storm-based CSLE performed better than the storm-based RULSE (E: 75.8% and 70.3%; RMSE: 3.8 and 3.7 t ha-1, for the calibration and validation storms, respectively). The storm-based CSLE was then used to predict the soil losses from the three experimental plots in the third watershed. For these predictions, the model parameter values, previously determined by the calibration based on the data from the initial six plots, were used in the storm-based CSLE. In addition, the surface runoff used by the storm-based CSLE was either obtained from measurements or from the values predicted by the modified Soil Conservation Service Curve Number (SCS-CN) method. When using the measured runoff, the storm-based CSLE had an E of 76.6%, whereas the use of the predicted runoff gave an E of 76.4%. The high E values indicated that the storm-based CSLE incorporating the modified SCS-CN method could accurately predict storm-event-based soil losses resulting from both sheet and rill erosion at the field scale on the Chinese Loess Plateau. This approach could be applicable to other areas of the world once the model parameters have been suitably calibrated.

  1. Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics.

    PubMed

    Shi, Ping; Hu, Sijung; Yu, Hongliu

    2018-02-01

    The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms 2 ), HF(ms 2 ), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot.

  2. Amicus Plato, sed magis amica veritas: plots must obey the laws they refer to and models shall describe biophysical reality!

    PubMed

    Katkov, Igor I

    2011-06-01

    In the companion paper, we discussed in details proper linearization, calculation of the inactive osmotic volume, and analysis of the results on the Boyle-vant' Hoff plots. In this Letter, we briefly address some common errors and misconceptions in osmotic modeling and propose some approaches, namely: (1) inapplicability of the Kedem-Katchalsky formalism model in regards to the cryobiophysical reality, (2) calculation of the membrane hydraulic conductivity L(p) in the presence of permeable solutes, (3) proper linearization of the Arrhenius plots for the solute membrane permeability, (4) erroneous use of the term "toxicity" for the cryoprotective agents, and (5) advantages of the relativistic permeability approach (RP) developed by us vs. traditional ("classic") 2-parameter model. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A recursive linear predictive vocoder

    NASA Astrophysics Data System (ADS)

    Janssen, W. A.

    1983-12-01

    A non-real time 10 pole recursive autocorrelation linear predictive coding vocoder was created for use in studying effects of recursive autocorrelation on speech. The vocoder is composed of two interchangeable pitch detectors, a speech analyzer, and speech synthesizer. The time between updating filter coefficients is allowed to vary from .125 msec to 20 msec. The best quality was found using .125 msec between each update. The greatest change in quality was noted when changing from 20 msec/update to 10 msec/update. Pitch period plots for the center clipping autocorrelation pitch detector and simplified inverse filtering technique are provided. Plots of speech into and out of the vocoder are given. Formant versus time three dimensional plots are shown. Effects of noise on pitch detection and formants are shown. Noise effects the voiced/unvoiced decision process causing voiced speech to be re-constructed as unvoiced.

  4. ASD FieldSpec Calibration Setup and Techniques

    NASA Technical Reports Server (NTRS)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  5. Research on Geometric Calibration of Spaceborne Linear Array Whiskbroom Camera

    PubMed Central

    Sheng, Qinghong; Wang, Qi; Xiao, Hui; Wang, Qing

    2018-01-01

    The geometric calibration of a spaceborne thermal-infrared camera with a high spatial resolution and wide coverage can set benchmarks for providing an accurate geographical coordinate for the retrieval of land surface temperature. The practice of using linear array whiskbroom Charge-Coupled Device (CCD) arrays to image the Earth can help get thermal-infrared images of a large breadth with high spatial resolutions. Focusing on the whiskbroom characteristics of equal time intervals and unequal angles, the present study proposes a spaceborne linear-array-scanning imaging geometric model, whilst calibrating temporal system parameters and whiskbroom angle parameters. With the help of the YG-14—China’s first satellite equipped with thermal-infrared cameras of high spatial resolution—China’s Anyang Imaging and Taiyuan Imaging are used to conduct an experiment of geometric calibration and a verification test, respectively. Results have shown that the plane positioning accuracy without ground control points (GCPs) is better than 30 pixels and the plane positioning accuracy with GCPs is better than 1 pixel. PMID:29337885

  6. Design and Implementation of High Precision Temperature Measurement Unit

    NASA Astrophysics Data System (ADS)

    Zeng, Xianzhen; Yu, Weiyu; Zhang, Zhijian; Liu, Hancheng

    2018-03-01

    Large-scale neutrino detector requires calibration of photomultiplier tubes (PMT) and electronic system in the detector, performed by plotting the calibration source with a group of designated coordinates in the acrylic sphere. Where the calibration source positioning is based on the principle of ultrasonic ranging, the transmission speed of ultrasonic in liquid scintillator of acrylic sphere is related to temperature. This paper presents a temperature measurement unit based on STM32L031 and single-line bus digital temperature sensor TSic506. The measurement data of the temperature measurement unit can help the ultrasonic ranging to be more accurate. The test results show that the temperature measurement error is within ±0.1°C, which satisfies the requirement of calibration source positioning. Take energy-saving measures, with 3.7V/50mAH lithium battery-powered, the temperature measurement unit can work continuously more than 24 hours.

  7. Exploration of attenuated total reflectance mid-infrared spectroscopy and multivariate calibration to measure immunoglobulin G in human sera.

    PubMed

    Hou, Siyuan; Riley, Christopher B; Mitchell, Cynthia A; Shaw, R Anthony; Bryanton, Janet; Bigsby, Kathryn; McClure, J Trenton

    2015-09-01

    Immunoglobulin G (IgG) is crucial for the protection of the host from invasive pathogens. Due to its importance for human health, tools that enable the monitoring of IgG levels are highly desired. Consequently there is a need for methods to determine the IgG concentration that are simple, rapid, and inexpensive. This work explored the potential of attenuated total reflectance (ATR) infrared spectroscopy as a method to determine IgG concentrations in human serum samples. Venous blood samples were collected from adults and children, and from the umbilical cord of newborns. The serum was harvested and tested using ATR infrared spectroscopy. Partial least squares (PLS) regression provided the basis to develop the new analytical methods. Three PLS calibrations were determined: one for the combined set of the venous and umbilical cord serum samples, the second for only the umbilical cord samples, and the third for only the venous samples. The number of PLS factors was chosen by critical evaluation of Monte Carlo-based cross validation results. The predictive performance for each PLS calibration was evaluated using the Pearson correlation coefficient, scatter plot and Bland-Altman plot, and percent deviations for independent prediction sets. The repeatability was evaluated by standard deviation and relative standard deviation. The results showed that ATR infrared spectroscopy is potentially a simple, quick, and inexpensive method to measure IgG concentrations in human serum samples. The results also showed that it is possible to build a united calibration curve for the umbilical cord and the venous samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Complete suite of geochemical values computed using wireline logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, J.R.; Atkinson, A.

    1996-12-31

    Geochemical values of {open_quotes}black shale{close_quotes} source rocks can be computed from a complete suite of wireline log data. The computed values are: Total Organic Carbon (Wt%). S1, S2, S3, Hydrogen Index, Oxygen Index, Atomic H/C and O/C ratios, Genetic Potential (S1+S2), S2/S3, and Transfomation Ratio (S1/(S1+S2)). The results are most reliable when calibrated to laboratory analyses of samples in the study area. However, in the absence of samples, reasonable estimates can be made using calibration data from analogous depositional and thermal environments and/or professional judgement and experience. The evaluations provide answers to critical geochemical questions relative to: (1) Organic Mattermore » Quantity; T.O.C. (Wt%), S1, and S2. (2) Kerogen Types; I, II, and III, based on T.O.C. vs S2 cross plot and the van Krevelen diagram of Atomic O/C vs Atomic H/C ratios. (3) Thermal Maturation levels; Transfomation Ratio can be converted to Level of Organic Metamorphism (LOM), pyrolysis Tmax (degC), Vitrinite Reflectance (Ro), Time Temperature Index (TTI) and others. Various analog plots and cross plots can be prepared for interpretation. Case history examples are shown and discussed. Lowstand fan deposits on Barbados were studied in outcrop to construct a conceptual reservoir model for prediction of facies assemblages.« less

  9. Complete suite of geochemical values computed using wireline logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, J.R.; Atkinson, A.

    1996-01-01

    Geochemical values of [open quotes]black shale[close quotes] source rocks can be computed from a complete suite of wireline log data. The computed values are: Total Organic Carbon (Wt%). S1, S2, S3, Hydrogen Index, Oxygen Index, Atomic H/C and O/C ratios, Genetic Potential (S1+S2), S2/S3, and Transfomation Ratio (S1/(S1+S2)). The results are most reliable when calibrated to laboratory analyses of samples in the study area. However, in the absence of samples, reasonable estimates can be made using calibration data from analogous depositional and thermal environments and/or professional judgement and experience. The evaluations provide answers to critical geochemical questions relative to: (1)more » Organic Matter Quantity; T.O.C. (Wt%), S1, and S2. (2) Kerogen Types; I, II, and III, based on T.O.C. vs S2 cross plot and the van Krevelen diagram of Atomic O/C vs Atomic H/C ratios. (3) Thermal Maturation levels; Transfomation Ratio can be converted to Level of Organic Metamorphism (LOM), pyrolysis Tmax (degC), Vitrinite Reflectance (Ro), Time Temperature Index (TTI) and others. Various analog plots and cross plots can be prepared for interpretation. Case history examples are shown and discussed. Lowstand fan deposits on Barbados were studied in outcrop to construct a conceptual reservoir model for prediction of facies assemblages.« less

  10. Calibration Methods for a 3D Triangulation Based Camera

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrike; Böhnke, Kay

    A sensor in a camera takes a gray level image (1536 x 512 pixels), which is reflected by a reference body. The reference body is illuminated by a linear laser line. This gray level image can be used for a 3D calibration. The following paper describes how a calibration program calculates the calibration factors. The calibration factors serve to determine the size of an unknown reference body.

  11. Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen

    1999-01-01

    A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.

  12. Use of the Bethe equation for inner-shell ionization by electron impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc

    2016-05-14

    We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less

  13. Interactive Classroom Graphics--Simulating Non-Linear Arrhenius Plots.

    ERIC Educational Resources Information Center

    Ben-Zion, M.; Hoz, S.

    1980-01-01

    Describes two simulation programs using an interactive graphic display terminal that were developed for a course in physical organic chemistry. Demonstrates the energetic conditions that give rise to deviations from linearity in the Arrhenius equation. (CS)

  14. Lessons learned from the AIRS pre-flight radiometric calibration

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Weiler, Margie

    2013-09-01

    The Atmospheric Infrared Sounder (AIRS) instrument flies on the NASA Aqua satellite and measures the upwelling hyperspectral earth radiance in the spectral range of 3.7-15.4 μm with a nominal ground resolution at nadir of 13.5 km. The AIRS spectra are achieved using a temperature controlled grating spectrometer and HgCdTe infrared linear arrays providing 2378 channels with a nominal spectral resolution of approximately 1200. The AIRS pre-flight tests that impact the radiometric calibration include a full system radiometric response (linearity), polarization response, and response vs scan angle (RVS). We re-derive the AIRS instrument radiometric calibration coefficients from the pre-flight polarization measurements, the response vs scan (RVS) angle tests as well as the linearity tests, and a recent lunar roll test that allowed the AIRS to view the moon. The data and method for deriving the coefficients is discussed in detail and the resulting values compared amongst the different tests. Finally, we examine the residual errors in the reconstruction of the external calibrator blackbody radiances and the efficacy of a new radiometric uncertainty model. Results show the radiometric calibration of AIRS to be excellent and the radiometric uncertainty model does a reasonable job of characterizing the errors.

  15. Refinement of moisture calibration curves for nuclear gage : interim report no. 1.

    DOT National Transportation Integrated Search

    1972-01-01

    This study was initiated to determine the correct moisture calibration curves for different nuclear gages. It was found that the Troxler Model 227 had a linear response between count ratio and moisture content. Also, the two calibration curves for th...

  16. 3D morphology reconstruction using linear array CCD binocular stereo vision imaging system

    NASA Astrophysics Data System (ADS)

    Pan, Yu; Wang, Jinjiang

    2018-01-01

    Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.

  17. Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range

    USGS Publications Warehouse

    Pabst, R.J.; Goslin, M.N.; Garman, S.L.; Spies, T.A.

    2008-01-01

    The complex mix of economic and ecological objectives facing today's forest managers necessitates the development of growth models with a capacity for simulating a wide range of forest conditions while producing outputs useful for economic analyses. We calibrated the gap model ZELIG to simulate stand-level forest development in the Oregon Coast Range as part of a landscape-scale assessment of different forest management strategies. Our goal was to incorporate the predictive ability of an empirical model with the flexibility of a forest succession model. We emphasized the development of commercial-aged stands of Douglas-fir, the dominant tree species in the study area and primary source of timber. In addition, we judged that the ecological approach of ZELIG would be robust to the variety of other forest conditions and practices encountered in the Coast Range, including mixed-species stands, small-scale gap formation, innovative silvicultural methods, and reserve areas where forests grow unmanaged for long periods of time. We parameterized the model to distinguish forest development among two ecoregions, three forest types and two site productivity classes using three data sources: chronosequences of forest inventory data, long-term research data, and simulations from an empirical growth-and-yield model. The calibrated model was tested with independent, long-term measurements from 11 Douglas-fir plots (6 unthinned, 5 thinned), 3 spruce-hemlock plots, and 1 red alder plot. ZELIG closely approximated developmental trajectories of basal area and large trees in the Douglas-fir plots. Differences between simulated and observed conifer basal area for these plots ranged from -2.6 to 2.4 m2/ha; differences in the number of trees/ha ???50 cm dbh ranged from -8.8 to 7.3 tph. Achieving these results required the use of a diameter-growth multiplier, suggesting some underlying constraints on tree growth such as the temperature response function. ZELIG also tended to overestimate regeneration of shade-tolerant trees and underestimate total tree density (i.e., higher rates of tree mortality). However, comparisons with the chronosequences of forest inventory data indicated that the simulated data are within the range of variability observed in the Coast Range. Further exploration and improvement of ZELIG is warranted in three key areas: (1) modeling rapid rates of conifer tree growth without the need for a diameter-growth multiplier; (2) understanding and remedying rates of tree mortality that were higher than those observed in the independent data; and (3) improving the tree regeneration module to account for competition with understory vegetation. ?? 2008 Elsevier B.V.

  18. A regression-adjusted approach can estimate competing biomass

    Treesearch

    James H. Miller

    1983-01-01

    A method is presented for estimating above-ground herbaceous and woody biomass on competition research plots. On a set of destructively-sampled plots, an ocular estimate of biomass by vegetative component is first made, after which vegetation is clipped, dried, and weighed. Linear regressions are then calculated for each component between estimated and actual weights...

  19. Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota).

    Treesearch

    Annette M. Kretzer; Susie Dunham; Randy Molina; Joseph W. Spatafora

    2005-01-01

    We have collected sporocarps and tuberculate ectomycorrhizae of both Rhizopogon vinicolor and Rhizopogon vesiculosus from three 50 x 100 m plots located at Mary's Peak in the Oregon Coast Range (USA); linear map distances between plots ranged from c. 1 km to c. 5.5 km. Six and...

  20. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  1. Method and apparatus for calibrating a linear variable differential transformer

    DOEpatents

    Pokrywka, Robert J [North Huntingdon, PA

    2005-01-18

    A calibration apparatus for calibrating a linear variable differential transformer (LVDT) having an armature positioned in au LVDT armature orifice, and the armature able to move along an axis of movement. The calibration apparatus includes a heating mechanism with an internal chamber, a temperature measuring mechanism for measuring the temperature of the LVDT, a fixture mechanism with an internal chamber for at least partially accepting the LVDT and for securing the LVDT within the heating mechanism internal chamber, a moving mechanism for moving the armature, a position measurement mechanism for measuring the position of the armature, and an output voltage measurement mechanism. A method for calibrating an LVDT, including the steps of: powering the LVDT; heating the LVDT to a desired temperature; measuring the position of the armature with respect to the armature orifice; and measuring the output voltage of the LVDT.

  2. Unbalanced and Minimal Point Equivalent Estimation Second-Order Split-Plot Designs

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Kowalski, Scott M.; Vining, G. Geoffrey

    2007-01-01

    Restricting the randomization of hard-to-change factors in industrial experiments is often performed by employing a split-plot design structure. From an economic perspective, these designs minimize the experimental cost by reducing the number of resets of the hard-to- change factors. In this paper, unbalanced designs are considered for cases where the subplots are relatively expensive and the experimental apparatus accommodates an unequal number of runs per whole-plot. We provide construction methods for unbalanced second-order split- plot designs that possess the equivalence estimation optimality property, providing best linear unbiased estimates of the parameters; independent of the variance components. Unbalanced versions of the central composite and Box-Behnken designs are developed. For cases where the subplot cost approaches the whole-plot cost, minimal point designs are proposed and illustrated with a split-plot Notz design.

  3. Hybride ZnCdCrO embedded aminated polyethersulfone nanocomposites for the development of Hg2+ ionic sensor

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed M.; Alenazi, Noof A.; Hussein, Mahmoud A.; Alam, M. M.; Alamry, Khalid A.; Asiri, Abdullah M.

    2018-06-01

    In this current study, ‑NH2 functions are introduced on Polyethersulfone (PES) by a nitration reaction then a reduction reaction to fabricate PES-NH2 materials with a better hydrophilicity property. The structure of PES-NH2 was first confirmed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform infrared (FT-IR) spectroscopy. Then, the resultant polymer was doped with different concentrations of ZnCdCrO nanocomposites. The polymeric nanocomposites materials were characterized using FT-IR, x-ray powder diffraction (XRD), thermal analysis (TA), and energy dispersive x-ray (EDX) spectroscopy while the morphology was investigated using scanning electron microscopy (SEM). The performance PES-NH2-ZnCdCrO nanocomposites was investigated by sensor-probe towards the selective detection of Hg2+. The results showed the excellent thermal properties of PES-NH2-ZnCdCrO nanocomposites in comparison with non-doped polymer (PES-NH2). Here, Hg2+ ionic sensor was prepared using a flat glassy carbon electrode (GCE) coated with a thin-layer of PES-NH2-ZnCdCrO nanocomposites (20%) with nafion conducting nafion binder (5%). To evaluate the analytical performances of Hg2+ ion sensor, a calibration curve was drawn by plotting the current versus concentration. The sensitivity (0.6566 μAμM-1 cm‑2) and detection limit (14.46 ± 0.72 pM) are calculated using the slope of the calibration curve. It was determined the linearity (r2 = 0.9941) over the large linear dynamic range (LDR) (0.1 nM to 0.1 mM). Thus, this research approach might be an important route to the selective detection of environmental toxin (Hg2+ cation) from the aqueous system in broad scales for the safety of health care, environmental, and aquatic fields.

  4. Development, Validation and Application of a Stability Indicating HPLC Method to Quantify Lidocaine from Polyethylene-co-Vinyl Acetate (EVA) Matrices and Biological Fluids.

    PubMed

    Bhusal, Prabhat; Sharma, Manisha; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2017-09-01

    An efficient and cost-effective quantification procedure for lidocaine by HPLC has been developed to estimate lidocaine from an EVA matrix, plasma, peritoneal fluid and intra-articular fluid (IAF). This method guarantees the resolution of lidocaine from the degradation products obtained from alkaline and oxidative stress. Chromatographic separation of lidocaine was achieved with a retention time of 7 min using a C18 column with a mobile phase comprising acetonitrile and potassium dihydrogen phosphate buffer (pH 5.5; 0.02 M) in the ratio of 26:74 at a flow rate of 1 mL min-1 with detection at 230 nm. Instability of lidocaine was observed to an oxidizing (0.02% H2O2) and alkaline environments (0.1 M NaOH). The calibration curve was found to be linear within the concentration range of 0.40-50.0 μg/mL. Intra-day and inter-day accuracy ranged between 95.9% and 99.1%, with precision (% RSD) below 6.70%. The limit of quantification and limit of detection were 0.40 μg/mL and 0.025 μg/mL, respectively. The simple extraction method described enabled the quantification of lidocaine from an EVA matrix using dichloromethane as a solvent. The assay and content uniformity of lidocaine within an EVA matrix were 103 ± 3.60% and 100 ± 2.60%, respectively. The ability of this method to quantify lidocaine release from EVA films was also demonstrated. Extraction of lidocaine from plasma, peritoneal fluid and IAF followed by HPLC analysis confirmed the utility of this method for ex vivo and in vivo studies where the calibration plot was found to be linear from 1.60 to 50.0 μg/mL. © Crown copyright 2017.

  5. Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides.

    PubMed

    Antolak, J A; Cundiff, J H; Ha, C S

    1998-01-01

    The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended.

  6. Interactive computer programs for the graphic analysis of nucleotide sequence data.

    PubMed Central

    Luckow, V A; Littlewood, R K; Rownd, R H

    1984-01-01

    A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437

  7. Model-independent plot of dynamic PET data facilitates data interpretation and model selection.

    PubMed

    Munk, Ole Lajord

    2012-02-21

    When testing new PET radiotracers or new applications of existing tracers, the blood-tissue exchange and the metabolism need to be examined. However, conventional plots of measured time-activity curves from dynamic PET do not reveal the inherent kinetic information. A novel model-independent volume-influx plot (vi-plot) was developed and validated. The new vi-plot shows the time course of the instantaneous distribution volume and the instantaneous influx rate. The vi-plot visualises physiological information that facilitates model selection and it reveals when a quasi-steady state is reached, which is a prerequisite for the use of the graphical analyses by Logan and Gjedde-Patlak. Both axes of the vi-plot have direct physiological interpretation, and the plot shows kinetic parameter in close agreement with estimates obtained by non-linear kinetic modelling. The vi-plot is equally useful for analyses of PET data based on a plasma input function or a reference region input function. The vi-plot is a model-independent and informative plot for data exploration that facilitates the selection of an appropriate method for data analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Assessing exotic plant species invasions and associated soil characteristics: A case study in eastern Rocky Mountain National Park, Colorado, USA, using the pixel nested plot design

    USGS Publications Warehouse

    Kalkhan, M.A.; Stafford, E.J.; Woodly, P.J.; Stohlgren, T.J.

    2007-01-01

    Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P < 0.05) associated with photosynthetically active radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = -0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested plot approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and cost-effective manner. ?? 2006 Elsevier B.V. All rights reserved.

  9. Calibration test of the temperature and strain sensitivity coefficient in regional reference grating method

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Huang, Junbing; Wu, Hanping; Gu, Hongcan; Tang, Bo

    2014-12-01

    In order to verify the validity of the regional reference grating method in solve the strain/temperature cross sensitive problem in the actual ship structural health monitoring system, and to meet the requirements of engineering, for the sensitivity coefficients of regional reference grating method, national standard measurement equipment is used to calibrate the temperature sensitivity coefficient of selected FBG temperature sensor and strain sensitivity coefficient of FBG strain sensor in this modal. And the thermal expansion sensitivity coefficient of the steel for ships is calibrated with water bath method. The calibration results show that the temperature sensitivity coefficient of FBG temperature sensor is 28.16pm/°C within -10~30°C, and its linearity is greater than 0.999, the strain sensitivity coefficient of FBG strain sensor is 1.32pm/μɛ within -2900~2900μɛ whose linearity is almost to 1, the thermal expansion sensitivity coefficient of the steel for ships is 23.438pm/°C within 30~90°C, and its linearity is greater than 0.998. Finally, the calibration parameters are used in the actual ship structure health monitoring system for temperature compensation. The results show that the effect of temperature compensation is good, and the calibration parameters meet the engineering requirements, which provide an important reference for fiber Bragg grating sensor is widely used in engineering.

  10. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    NASA Astrophysics Data System (ADS)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust models, since this step is the bottle-neck of this technique. In the first approach, a plot-scale model was used to predict the temperature reached in samples collected in other plots from the same site. In a plot-scale model, all the heated aliquots come from a unique plot-scale sample. As expected, the results obtained with this approach were deceptive, because this approach was assuming that a plot-scale model would be enough to represent the whole variability of the site. The accuracy (measured as the root mean square error of prediction, thereinafter RMSEP) was 86ºC, and the bias was also high (>30ºC). In the second approach, the temperatures predicted through several plot-scale models were averaged. The accuracy was improved (RMSEP=65ºC) respect the first approach, because the variability from several plots was considered and biased predictions were partially counterbalanced. However, this approach implies more efforts, since several plot-scale models are needed. In the third approach, the predictions were obtained with site-scale models. These models were constructed with aliquots from several plots. In this case, the results were accurate, since the RMSEP was around 40ºC, the bias was very small (<1ºC) and the R2 was 0.92. As expected, this approach clearly outperformed the second approach, in spite of the fact that the same efforts were needed. In a plot-scale model, only one interaction between temperature and soil components was modelled. However, several different interactions between temperature and soil components were present in the calibration matrix of a site-scale model. Consequently, the site-scale models were able to model the temperature reached excluding the influence of the differences in soil composition, resulting in more robust models respect that variation. Summarizing, the results were highlighting the importance of an adequate strategy to develop robust and accurate models with moderate efforts, and how a wrong strategy can result in deceptive predictions.

  11. Application of methyl silane coated iron oxide magnetic nanoparticles for solid-phase extraction and determination of fat-soluble vitamins by high performance liquid chromatography.

    PubMed

    Momenbeik, Fariborz; Yazdani, Elham

    2015-01-01

    Methyl silane coated Fe3O4 magnetic nanoparticles were used for simultaneous extraction of the fat-soluble vitamins (FSVs). The amounts of extracted vitamins were determined by HPLC. The synthesized Fe3O4 nanoparticles were coated with silica and then modified with trimethoxymethylsilane (TMMS). The prepared particles were characterized by different methods. The best amounts of silica and TMMS in sorbent synthesis were 1.2 and 0.5 mL, respectively. The optimum pH values for the sample solution and washing buffer were 5 and 3, respectively. Application of 100 mg sorbent, 700 μL tetrahydrofuran, 5-fold dilution of the sample solution, and 1 min for sorption and desorption times were among the best conditions. At the optimum conditions, the calibration plots for each vitamin were obtained with good linearity (R(2) >0.9992) and suitable linear ranges. This method has a low LOD (<76.1 μg/mL), acceptable repeatability (RSD <5.63%) and reproducibility (RSD <4.71%), and good accuracy (recovery >90.3%). Preconcentration of low concentrations of vitamin D3 was performed, and results showed 3.7 times greater sensitivity after preconcentration. Finally, the amounts of the FSVs in pharmaceutical formulations were determined using the proposed method, and results showed good agreement with those reported by manufacturers.

  12. Thin layer chromatography-densitometric determination of some non-sedating antihistamines in combination with pseudoephedrine or acetaminophen in synthetic mixtures and in pharmaceutical formulations.

    PubMed

    El-Kommos, Michael E; El-Gizawy, Samia M; Atia, Noha N; Hosny, Noha M

    2014-03-01

    The combination of certain non-sedating antihistamines (NSA) such as fexofenadine (FXD), ketotifen (KET) and loratadine (LOR) with pseudoephedrine (PSE) or acetaminophen (ACE) is widely used in the treatment of allergic rhinitis, conjunctivitis and chronic urticaria. A rapid, simple, selective and precise densitometric method was developed and validated for simultaneous estimation of six synthetic binary mixtures and their pharmaceutical dosage forms. The method employed thin layer chromatography aluminum plates precoated with silica gel G 60 F254 as the stationary phase. The mobile phases chosen for development gave compact bands for the mixtures FXD-PSE (I), KET-PSE (II), LOR-PSE (III), FXD-ACE (IV), KET-ACE (V) and LOR-ACE (VI) [Retardation factor (Rf ) values were (0.20, 0.32), (0.69, 0.34), (0.79, 0.13), (0.36, 0.70), (0.51, 0.30) and (0.76, 0.26), respectively]. Spectrodensitometric scanning integration was performed at 217, 218, 218, 233, 272 and 251 nm for the mixtures I-VI, respectively. The linear regression data for the calibration plots showed an excellent linear relationship. The method was validated for precision, accuracy, robustness and recovery. Limits of detection and quantitation were calculated. Statistical analysis proved that the method is reproducible and selective for the simultaneous estimation of these binary mixtures. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Development and validation of a reversed-phase high-performance thin-layer chromatography-densitometric method for determination of atorvastatin calcium in bulk drug and tablets.

    PubMed

    Shirkhedkar, Atul A; Surana, Sanjay J

    2010-01-01

    Atorvastatin calcium is a synthetic HMG-CoA reductase inhibitor that is used as a cholesterol-lowering agent. A simple, sensitive, selective, and precise RP-HPTLC-densitometric determination of atorvastatin calcium both as bulk drug and from pharmaceutical formulation was developed and validated according to International Conference on Harmonization guidelines. The method used aluminum sheets precoated with silica gel 60 RP18F254S as the stationary phase, and the mobile phase consisted of methanol-water (3.5 + 1.5, v/v). The system gave a compact band for atorvastatin calcium with an Rf value of 0.62 +/- 0.02. Densitometric quantification was carried out at 246 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with r = 0.9992 in the working concentration range of 100-800 ng/band. The method was validated for precision, accuracy, ruggedness, robustness, specificity, recovery, LOD, and LOQ. The LOD and LOQ were 6 and 18 ng, respectively. The drug underwent hydrolysis when subjected to acidic conditions and was found to be stable under alkali, oxidation, dry heat, and photodegradation conditions. Statistical analysis proved that the developed RP-HPTLC-densitometry method is reproducible and selective and that it can be applied for identification and quantitative determination of atorvastatin calcium in bulk drug and tablet formulation.

  14. Comparison of modelled and empirical atmospheric propagation data

    NASA Technical Reports Server (NTRS)

    Schott, J. R.; Biegel, J. D.

    1983-01-01

    The radiometric integrity of TM thermal infrared channel data was evaluated and monitored to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Modelled atmospheric transmittance and path radiance were compared with empirical values derived from aircraft underflight data. Aircraft thermal infrared imagery and calibration data were available on two dates as were corresponding atmospheric radiosonde data. The radiosonde data were used as input to the LOWTRAN 5A code which was modified to output atmospheric path radiance in addition to transmittance. The aircraft data were calibrated and used to generate analogous measurements. These data indicate that there is a tendancy for the LOWTRAN model to underestimate atmospheric path radiance and transmittance as compared to empirical data. A plot of transmittance versus altitude for both LOWTRAN and empirical data is presented.

  15. 40 CFR 92.119 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plot of the difference between the span and zero response versus fuel flow will be similar to the one... basic operating adjustment using the appropriate fuel (see § 92.112) and zero-grade air. (2) Optimize on.... Allow at least one-half hour after the oven has reached temperature for the system to equilibrate. (C...

  16. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plot of the difference between the span and zero response versus fuel flow will be similar to the one... least one-half hour after the oven has reached temperature for the system to equilibrate. (c) Initial... difference between the span-gas response and the zero-gas response. Incrementally adjust the fuel flow above...

  17. Compositional variability of the Martian surface

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Smith, Milton O.

    1991-01-01

    Spectral reflectance data from Viking Landers and Orbiters and from telescopic observations were analyzed with the objective of isolating compositional information about the Martian surface and assessing compositional variability. Two approaches were used to calibrate the data to reflectance to permit direct comparisons with laboratory reference spectra of well characterized materials. In Viking Lander multispectral images (six spectral bands) most of the spectral variation is caused by changes in lighting geometry within individual scenes, from scene to scene, and over time. Lighting variations are both wavelength independent and wavelength dependent. By calibrating lander image radiance values to reflectance using spectral mixture analysis, the possible range of compositions was assessed with reference to a collection of laboratory samples, also resampled to the lander spectral bands. All spectra from the lander images studied plot (in six-space) within a planar triangle having at the apexes the respective spectra of tan basaltic palagonite, gray basalt, and shale. Within this plane all lander spectra fit as mixtures of these three endmembers. Reference spectra that plot outside of the triangle are unable to account for the spectral variation observed in the images.

  18. Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients. Part 2. Superiority of the one-point calibration method.

    PubMed

    Choleau, C; Klein, J C; Reach, G; Aussedat, B; Demaria-Pesce, V; Wilson, G S; Gifford, R; Ward, W K

    2002-08-01

    Calibration, i.e. the transformation in real time of the signal I(t) generated by the glucose sensor at time t into an estimation of glucose concentration G(t), represents a key issue for the development of a continuous glucose monitoring system. To compare two calibration procedures. In the one-point calibration, which assumes that I(o) is negligible, S is simply determined as the ratio I/G, and G(t) = I(t)/S. The two-point calibration consists in the determination of a sensor sensitivity S and of a background current I(o) by plotting two values of the sensor signal versus the concomitant blood glucose concentrations. The subsequent estimation of G(t) is given by G(t) = (I(t)-I(o))/S. A glucose sensor was implanted in the abdominal subcutaneous tissue of nine type 1 diabetic patients during 3 (n = 2) and 7 days (n = 7). The one-point calibration was performed a posteriori either once per day before breakfast, or twice per day before breakfast and dinner, or three times per day before each meal. The two-point calibration was performed each morning during breakfast. The percentages of points present in zones A and B of the Clarke Error Grid were significantly higher when the system was calibrated using the one-point calibration. Use of two one-point calibrations per day before meals was virtually as accurate as three one-point calibrations. This study demonstrates the feasibility of a simple method for calibrating a continuous glucose monitoring system.

  19. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  20. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotope signatures.

  1. Simple Parametric Model for Intensity Calibration of Cassini Composite Infrared Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Brasunas, J.; Mamoutkine, A.; Gorius, N.

    2016-01-01

    Accurate intensity calibration of a linear Fourier-transform spectrometer typically requires the unknown science target and the two calibration targets to be acquired under identical conditions. We present a simple model suitable for vector calibration that enables accurate calibration via adjustments of measured spectral amplitudes and phases when these three targets are recorded at different detector or optics temperatures. Our model makes calibration more accurate both by minimizing biases due to changing instrument temperatures that are always present at some level and by decreasing estimate variance through incorporating larger averages of science and calibration interferogram scans.

  2. Computer program for post-flight evaluation of the control surface response for an attitude controlled missile

    NASA Technical Reports Server (NTRS)

    Knauber, R. N.

    1982-01-01

    A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.

  3. To Tip or Not to Tip: The Case of the Congo Basin Rainforest Realm

    NASA Astrophysics Data System (ADS)

    Pietsch, S.; Bednar, J. E.; Fath, B. D.; Winter, P. A.

    2017-12-01

    The future response of the Congo basin rainforest, the second largest tropical carbon reservoir, to climate change is still under debate. Different Climate projections exist stating increase and decrease in rainfall and different changes in rainfall patterns. Within this study we assess all options of climate change possibilities to define the climatic thresholds of Congo basin rainforest stability and assess the limiting conditions for rainforest persistence. We use field data from 199 research plots from the Western Congo basin to calibrate and validate a complex BioGeoChemistry model (BGC-MAN) and assess model performance against an array of possible future climates. Next, we analyze the reasons for the occurrence of tipping points, their spatial and temporal probability of occurrence, will present effects of hysteresis and derive probabilistic spatial-temporal resilience landscapes for the region. Additionally, we will analyze attractors of forest growth dynamics and assess common linear measures for early warning signals of sudden shifts in system dynamics for their robustness in the context of the Congo Basin case, and introduce the correlation integral as a nonlinear measure of risk assessment.

  4. A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Liao, Ping; Yan, Zheng-Yu; Xu, Zhi-Ji; Sun, Xiao

    2009-06-01

    Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/( I - I0) with concentration of edaravone was linear in the range of (1.45-17.42) μg/mL (0.008-0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3 σ/ κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.

  5. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite.

    PubMed

    Yang, Yu Jun; Li, Weikun

    2014-06-15

    We have developed hexadecyl trimethyl ammonium bromide (CTAB) functionalized graphene oxide (GO)/multiwalled carbon nanotubes (MWNTs) modified glassy carbon electrode (CTAB-GO/MWNT) as a novel system for the simultaneous determination of dopamine (DA), ascorbic acid (AA), uric acid (UA) and nitrite (NO2(-)). The combination of graphene oxide and MWNTs endow the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity. In the fourfold co-existence system, the linear calibration plots for AA, DA, UA and NO2(-) were obtained over the range of 5.0-300 μM, 5.0-500 μM, 3.0-60 μM and 5.0-800 μM with detection limits of 1.0 μM, 1.5 μM, 1.0 μM and 1.5 μM, respectively. In addition, the modified biosensor was applied to the determination of AA, DA, UA and NO2(-) in urine samples by using standard adding method with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy.

    PubMed

    Mehder, A O; Gondal, Mohammed A; Dastageer, Mohamed A; Habibullah, Yusuf B; Iqbal, Mohammed A; Oloore, Luqman E; Gondal, Bilal

    2016-01-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the detection of carcinogenic elements like bromine in four representative brands of loaf bread samples and the measured bromine concentrations were 352, 157, 451, and 311 ppm, using Br I (827.2 nm) atomic transition line as the finger print atomic transition. Our LIBS system is equipped with a pulsed laser of wavelength 266 nm with energy 25 mJ pulse(-1), 8 ns pulse duration, 20 Hz repetition rate, and a gated ICCD camera. The LIBS system was calibrated with the standards of known concentrations in the sample (bread) matrix and such plot is linear in 20-500 ppm range. The capability of our system in terms of limit of detection and relative accuracy with respect to the standard inductively coupled plasma mass spectrometry (ICPMS) technique was evaluated and these values were 5.09 ppm and 0.01-0.05, respectively, which ensures the applicability of our system for Br trace level detection, and LIBS results are in excellent agreement with that of ICPMS results.

  7. Quality control of benserazide-levodopa and carbidopa-levodopa tablets by capillary zone electrophoresis.

    PubMed

    Fanali, S; Pucci, V; Sabbioni, C; Raggi, M A

    2000-07-01

    In modern practice, the treatment of Parkinson's disease and syndrome is carried out using pharmaceutical formulations containing a combination of levodopa and a decarboxylation inhibitor (carbidopa or benserazide). Two pharmaceutical formulations were quantified by capillary zone electrophoresis using two procedures which differed only in the kind of background electrolyte used. One procedure used a 25 mM phosphate buffer, pH 2.5, while the second one used a 25 mM borate buffer, pH 8.5. The electrophoretic analysis was carried out using an uncoated fused- silica capillary, a separation voltage of 20 kV with currents typically less than 60 microA, and spectrophotometric detection at 205 nm. Calibration curves were performed for levodopa (concentration range 1-100 microg/mL), for carbidopa and benserazide (1-50 microg/mL), and the plots of the peak area versus concentration were found to be linear with a correlation coefficient better than 0.9990. Satisfactory results were obtained when commercial tablets were analyzed in terms of accuracy (98-102%), repeatability (0.6-2.0%), and intermediate precision (1.1-2.6%).

  8. Copper ion sensing with fluorescent electrospun nanofibers.

    PubMed

    Ongun, Merve Zeyrek; Ertekin, Kadriye; Gocmenturk, Mustafa; Ergun, Yavuz; Suslu, Aslıhan

    2012-05-01

    In this work, the use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based copper sensitive chemosensor is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric support materials. Sensing slides were fabricated by electrospinning technique. Copper sensors based on the change in the fluorescence signal intensity of fluoroionophore; N'-3-(4-(dimethylamino phenly)allylidene)isonicotinohydrazide. The sensor slides exhibited high sensitivities due to the high surface area of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect Cu(II) ions are 6-20-fold higher than those of the continuous thin films. By this way we obtained linear calibration plots for Cu(II) ions in the concentration range of 10(-12)-10(-5)M. The response times of the sensing slides were less than 1 min. Stability of the employed ionophore in the matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 6 months. Our stability tests are still in progress. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A chemometric strategy for optimization of solid-phase microextraction: determination of bisphenol A and 4-nonylphenol with HPLC.

    PubMed

    Liu, Xiaoyan; Zhang, Xiaoyun; Zhang, Haixia; Liu, Mancang

    2008-08-01

    A sensitive method for the analysis of bisphenol A and 4-nonylphenol is developed by means of the optimization of solid-phase microextraction using Uniform Experimental Design methodology followed by high-performance liquid chromatographic analysis with fluorescence detection. The optimal extraction conditions are determined based on the relationship between parameters and the peak area. The curve calibration plots are linear (r2>or=0.9980) over the concentration range of 1.25-125 ng/mL for bisphenol A and 2.59-202.96 ng/mL for 4-nonylphenol, respectively. The detection limits, based on a signal-to-noise ratio of 3, are 0.097 ng/mL for bisphenol A and 0.27 ng/mL for 4-nonylphenol, respectively. The validity of the proposed method is demonstrated by the analysis of the investigated analytes in real water samples and sensitivity of the optimized method is verified by comparing results with those obtained by previous methods using the same commercial solid-phase microextraction fiber.

  10. Screening of extraction methods for glycoproteins from jellyfish ( Rhopilema esculentum) oral-arms by high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Ren, Guoyan; Li, Bafang; Zhao, Xue; Zhuang, Yongliang; Yan, Mingyan; Hou, Hu; Zhang, Xiukun; Chen, Li

    2009-03-01

    In order to select an optimum extraction method for the target glycoprotein (TGP) from jellyfish ( Rhopilema esculentum) oral-arms, a high performance liquid chromatography (HPLC)-assay for the determination of the TGP was developed. Purified target glycoprotein was taken as a standard glycoprotein. The results showed that the calibration curves for peak area plotted against concentration for TGP were linear ( r = 0.9984, y = 4.5895 x+47.601) over concentrations ranging from 50 to 400 mgL-1. The mean extraction recovery was 97.84% (CV2.60%). The fractions containing TGP were isolated from jellyfish ( R. esculentum) oral-arms by four extraction methods: 1) water extraction (WE), 2) phosphate buffer solution (PBS) extraction (PE), 3) ultrasound-assisted water extraction (UA-WE), 4) ultrasound-assisted PBS extraction (UA-PE). The lyophilized extract was dissolved in Milli-Q water and analyzed directly on a short TSK-GEL G4000PWXL (7.8 mm×300 mm) column. Our results indicated that the UA-PE method was the optimum extraction method selected by HPLC.

  11. Development and validation of a capillary electrophoresis method for the determination of codeine, diphenhydramine, ephedrine and noscapine in pharmaceuticals.

    PubMed

    Gomez, María R; Sombra, Lorena; Olsina, Roberto A; Martínez, Luis D; Silva, María F

    2005-01-01

    The present work describes a simple, accurate and rapid method for the separation and simultaneous determination of codeine, diphenhydramine, ephedrine and noscapine present in cough-cold syrup formulations by capillary zone electrophoresis. Factors affecting the separation were the buffer pH and concentration, applied voltage, and presence of additives. Separations were carried out in less than 10 min with a 20 mM sodium tetraborate buffer, pH 8.50. The carrier electrolyte gave baseline separation with good resolution, great reproducibility and accuracy. Calibration plots were linear over at least three orders of magnitude of analyte concentrations, the lower limits of detection being within the range 0.42-1.33 microg ml(-1). Detection was performed by UV absorbance at wavelengths of 205 and 250 nm. Quantification of the components in actual syrup formulations was calculated against the responses of freshly prepared external standard solutions. The method was validated and met all analysis requirements of quality assurance and quality control. The procedure was fast and reliable and commercial pharmaceuticals could be analyzed without prior sample clean-up procedure.

  12. A comparison of various modes of liquid-liquid based microextraction techniques: determination of picric acid.

    PubMed

    Burdel, Martin; Šandrejová, Jana; Balogh, Ioseph S; Vishnikin, Andriy; Andruch, Vasil

    2013-03-01

    Three modes of liquid-liquid based microextraction techniques--namely auxiliary solvent-assisted dispersive liquid-liquid microextraction, auxiliary solvent-assisted dispersive liquid-liquid microextraction with low-solvent consumption, and ultrasound-assisted emulsification microextraction--were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound-assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10(-5) mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02-0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Discrimination of growth and water stress in wheat by various vegetation indices through a clear a turbid atmosphere

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Slater, P. M.; Pinter, P. J. (Principal Investigator)

    1982-01-01

    Reflectance data were obtained over a drought-stressed and a well-watered wheat plot with a hand-held radiometer having bands similar to the MSS bands of the LANDSAT satellites. Data for 48 clear days were interpolated to yield reflectance values for each day of the growing season, from planting until harvest. With an atmospheric path radiance model and LANDSAT-2 calibration data, the reflectance were used to simulate LANDSAT digital counts (not quantized) for the four LANDSAT bands for each day of the growing season, through a clear (approximately 100 km meteorological range) and a turbid (approximately 10 km meteorological range) atmosphere. Several ratios and linear combinations of bands were calculated using the simulated data, then assessed for their relative ability to discriminate vegetative growth and plant stress through the two atmospheres. The results show that water stress was not detected by any of the indices until after growth was retarded, and the sensitivity of the various indices to vegetation depended on plant growth stage and atmospheric path radiance.

  14. External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort: prospective multicentre cohort study.

    PubMed

    Lamain-de Ruiter, Marije; Kwee, Anneke; Naaktgeboren, Christiana A; de Groot, Inge; Evers, Inge M; Groenendaal, Floris; Hering, Yolanda R; Huisjes, Anjoke J M; Kirpestein, Cornel; Monincx, Wilma M; Siljee, Jacqueline E; Van 't Zelfde, Annewil; van Oirschot, Charlotte M; Vankan-Buitelaar, Simone A; Vonk, Mariska A A W; Wiegers, Therese A; Zwart, Joost J; Franx, Arie; Moons, Karel G M; Koster, Maria P H

    2016-08-30

     To perform an external validation and direct comparison of published prognostic models for early prediction of the risk of gestational diabetes mellitus, including predictors applicable in the first trimester of pregnancy.  External validation of all published prognostic models in large scale, prospective, multicentre cohort study.  31 independent midwifery practices and six hospitals in the Netherlands.  Women recruited in their first trimester (<14 weeks) of pregnancy between December 2012 and January 2014, at their initial prenatal visit. Women with pre-existing diabetes mellitus of any type were excluded.  Discrimination of the prognostic models was assessed by the C statistic, and calibration assessed by calibration plots.  3723 women were included for analysis, of whom 181 (4.9%) developed gestational diabetes mellitus in pregnancy. 12 prognostic models for the disorder could be validated in the cohort. C statistics ranged from 0.67 to 0.78. Calibration plots showed that eight of the 12 models were well calibrated. The four models with the highest C statistics included almost all of the following predictors: maternal age, maternal body mass index, history of gestational diabetes mellitus, ethnicity, and family history of diabetes. Prognostic models had a similar performance in a subgroup of nulliparous women only. Decision curve analysis showed that the use of these four models always had a positive net benefit.  In this external validation study, most of the published prognostic models for gestational diabetes mellitus show acceptable discrimination and calibration. The four models with the highest discriminative abilities in this study cohort, which also perform well in a subgroup of nulliparous women, are easy models to apply in clinical practice and therefore deserve further evaluation regarding their clinical impact. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Bare soil erosion modelling with rainfall simulations: experiments on crop and recently burned areas

    NASA Astrophysics Data System (ADS)

    Catani, F.; Menci, S.; Moretti, S.; Keizer, J.

    2006-12-01

    The use of numerical models is of fundamental importance in the comprehension and prediction of soil erosion. At the very basis of the calibration process of the numerical models are the direct measurements of the governing parameters, carried out during field or laboratory tests. To measure and model soil erosion rainfall simulations can be used, that allow the reproduction of project rainfall having chosen characteristics of intensity and duration. The main parameters that rainfall simulators can measure are hydraulic conductivity, parameters of soil erodibility, rate and features of splash erosion, discharge coefficient and sediment yield. Other important parameters can be estimated during the rainfall simulations through the use of photogrammetric instruments able to memorize high definition stereographic models of the soil plot under analysis at different time steps. In this research rainfall simulator experiments (rse) were conducted to measure and quantify runoff and erosion processes on selected bare soil plots. The selected plots are located in some vineyards, olive groves and crops in central Italy and in some recently burned areas in north-central Portugal, affected by a wildfire during early July 2005 and, at the time, largely covered by commercial eucalypt plantations. On the Italian crops the choice of the rainfall intensities and durations were performed on the basis of the previous knowledge of the selected test areas. The procedure was based on an initial phase of soil wetting and a following phase of 3 erosion cycles. The first should reproduce the effects of a normal rainfall with a return time of 2 years (23 mm/h). The second should represent a serious episode with a return time of 10 years (34 mm/h). The third has the objective to reproduce and understand the effects of an intense precipitation event, with a return time of 50 years (41 mm/h). During vineyards experiments some photogrammetric surveys were carried out as well. In the Portugal burned areas, to measure the influence of rain intensities, two rainfall simulations have been carried out simultaneously, one with an intensity of 45 mm/h and one with 85 mm/h. In both cases, before the experiments, soil and vegetation cover description have been made and soil samples have been taken. During the simulations soil samples leaving the parcels were taken at suitable time intervals to measure the sediment yield and the runoff. The rse data have been thought to provide a sufficient basis for erosion modelling at the small-plot scale and, through upscaling, for predicting erosion rates at the slope scale. For this purpose two soil erosion models, WEPP and MEFIDIS, have been selected and then compared. The comparison has shown a certain degree of uncertainty in numeric erosion prediction, due to the non linearity of the overland erosion processes, and to technical and conceptual difficulties, including the data collection. In the following laboratory phase high resolution (2 by 2 mm) DEMs of the vineyards plot are being produced for each meaningful processing phase. The digital elevation models will then be analysed to asses calibration parameters such as soil roughness (expressed by standard deviation of elevations, fractal dimension and local relief energy), soil and sediment transfer (hypsometric curves, local elevation and volume differences) and rill network evolution (Horton ordering, stream lengths, contributing area, drainage density, Hack's law)

  16. Optical See-Through Head Mounted Display Direct Linear Transformation Calibration Robustness in the Presence of User Alignment Noise

    NASA Technical Reports Server (NTRS)

    Axholt, Magnus; Skoglund, Martin; Peterson, Stephen D.; Cooper, Matthew D.; Schoen, Thomas B.; Gustafsson, Fredrik; Ynnerman, Anders; Ellis, Stephen R.

    2010-01-01

    Augmented Reality (AR) is a technique by which computer generated signals synthesize impressions that are made to coexist with the surrounding real world as perceived by the user. Human smell, taste, touch and hearing can all be augmented, but most commonly AR refers to the human vision being overlaid with information otherwise not readily available to the user. A correct calibration is important on an application level, ensuring that e.g. data labels are presented at correct locations, but also on a system level to enable display techniques such as stereoscopy to function properly [SOURCE]. Thus, vital to AR, calibration methodology is an important research area. While great achievements already have been made, there are some properties in current calibration methods for augmenting vision which do not translate from its traditional use in automated cameras calibration to its use with a human operator. This paper uses a Monte Carlo simulation of a standard direct linear transformation camera calibration to investigate how user introduced head orientation noise affects the parameter estimation during a calibration procedure of an optical see-through head mounted display.

  17. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    DOE PAGES

    Croft, Stephen; Burr, Thomas Lee; Favalli, Andrea; ...

    2015-12-10

    We report that the declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to modelmore » the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. Lastly, we find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters« less

  18. Configurations and calibration methods for passive sampling techniques.

    PubMed

    Ouyang, Gangfeng; Pawliszyn, Janusz

    2007-10-19

    Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.

  19. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data... interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be used in lieu...

  20. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data... interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be used in lieu...

  1. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data... interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be used in lieu...

  2. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data... interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be used in lieu...

  3. Novel crystal timing calibration method based on total variation

    NASA Astrophysics Data System (ADS)

    Yu, Xingjian; Isobe, Takashi; Watanabe, Mitsuo; Liu, Huafeng

    2016-11-01

    A novel crystal timing calibration method based on total variation (TV), abbreviated as ‘TV merge’, has been developed for a high-resolution positron emission tomography (PET) system. The proposed method was developed for a system with a large number of crystals, it can provide timing calibration at the crystal level. In the proposed method, the timing calibration process was formulated as a linear problem. To robustly optimize the timing resolution, a TV constraint was added to the linear equation. Moreover, to solve the computer memory problem associated with the calculation of the timing calibration factors for systems with a large number of crystals, the merge component was used for obtaining the crystal level timing calibration values. Compared with other conventional methods, the data measured from a standard cylindrical phantom filled with a radioisotope solution was sufficient for performing a high-precision crystal-level timing calibration. In this paper, both simulation and experimental studies were performed to demonstrate the effectiveness and robustness of the TV merge method. We compare the timing resolutions of a 22Na point source, which was located in the field of view (FOV) of the brain PET system, with various calibration techniques. After implementing the TV merge method, the timing resolution improved from 3.34 ns at full width at half maximum (FWHM) to 2.31 ns FWHM.

  4. Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis.

    PubMed

    Borges, Cleber N; Bruns, Roy E; Almeida, Aline A; Scarminio, Ieda S

    2007-07-09

    A composite simplex centroid-simplex centroid mixture design is proposed for simultaneously optimizing two mixture systems. The complementary model is formed by multiplying special cubic models for the two systems. The design was applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Camellia sinensis Chinese tea plant. The extraction mixtures investigated contained varying proportions of ethyl acetate, ethanol and dichloromethane while the mobile phase was made up of varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water (MAW) 15%:15%:70% mixture. The experiments were block randomized corresponding to a split-plot error structure to minimize laboratory work and reduce environmental impact. Coefficients of an initial saturated model were obtained using Scheffe-type equations. A cumulative probability graph was used to determine an approximate reduced model. The split-plot error structure was then introduced into the reduced model by applying generalized least square equations with variance components calculated using the restricted maximum likelihood approach. A model was developed to calculate the number of peaks observed with the chromatographic detector at 210 nm. A 20-term model contained essentially all the statistical information of the initial model and had a root mean square calibration error of 1.38. The model was used to predict the number of peaks eluted in chromatograms obtained from extraction solutions that correspond to axial points of the simplex centroid design. The significant model coefficients are interpreted in terms of interacting linear, quadratic and cubic effects of the mobile phase and extraction solution components.

  5. Comparison of use of an infrared anesthetic gas monitor and refractometry for measurement of anesthetic agent concentrations.

    PubMed

    Ambrisko, Tamas D; Klide, Alan M

    2011-10-01

    To assess agreement between anesthetic agent concentrations measured by use of an infrared anesthetic gas monitor (IAGM) and refractometry. SAMPLE-4 IAGMs of the same type and 1 refractometer. Mixtures of oxygen and isoflurane, sevoflurane, desflurane, or N(2)O were used. Agent volume percent was measured simultaneously with 4 IAGMs and a refractometer at the common gas outlet. Measurements obtained with each of the 4 IAGMs were compared with the corresponding refractometer measurements via the Bland-Altman method. Similarly, Bland-Altman plots were also created with either IAGM or refractometer measurements and desflurane vaporizer dial settings. Bias ± 2 SD for comparisons of IAGM and refractometer measurements was as follows: isoflurane, -0.03 ± 0.18 volume percent; sevoflurane, -0.19 ± 0.23 volume percent; desflurane, 0.43 ± 1.22 volume percent; and N(2)O, -0.21 ± 1.88 volume percent. Bland-Altman plots comparing IAGM and refractometer measurements revealed nonlinear relationships for sevoflurane, desflurane, and N(2)O. Desflurane measurements were notably affected; bias ± limits of agreement (2 SD) were small (0.1 ± 0.22 volume percent) at < 12 volume percent, but both bias and limits of agreement increased at higher concentrations. Because IAGM measurements did not but refractometer measurements did agree with the desflurane vaporizer dial settings, infrared measurement technology was a suspected cause of the nonlinear relationships. Given that the assumption of linearity is a cornerstone of anesthetic monitor calibration, this assumption should be confirmed before anesthetic monitors are used in experiments.

  6. WCPP-THE WOLF PLOTTING AND CONTOURING PACKAGE

    NASA Technical Reports Server (NTRS)

    Masaki, G. T.

    1994-01-01

    The WOLF Contouring and Plotting Package provides the user with a complete general purpose plotting and contouring capability. This package is a complete system for producing line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The package has been designed to be highly flexible and easy to use. Any plot from a quick simple plot (which requires only one call to the package) to highly sophisticated plots (including motion picture plots) can be easily generated with only a basic knowledge of FORTRAN and the plot commands. Anyone designing a software system that requires plotted output will find that this package offers many advantages over the standard hardware support packages available. The WCPP package is divided into a plot segment and a contour segment. The plot segment can produce output for any combination of line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The line printer plots allow the user to have plots available immediately after a job is run at a low cost. Although the resolution of line printer plots is low, the quick results allows the user to judge if a high resolution plot of a particular run is desirable. The SC4020 and SD4060 provide high speed high resolution cathode ray plots with film and hard copy output available. The Gerber and Calcomp plotters provide very high quality (of publishable quality) plots of good resolution. Being bed or drum type plotters, the Gerber and Calcomp plotters are usually slow and not suited for large volume plotting. All output for any or all of the plotters can be produced simultaneously. The types of plots supported are: linear, semi-log, log-log, polar, tabular data using the FORTRAN WRITE statement, 3-D perspective linear, and affine transformations. The labeling facility provides for horizontal labels, vertical labels, diagonal labels, vector characters of a requested size (special character fonts are easily implemented), and rotated letters. The gridding routines label the grid lines according to user specification. Special line features include multiple lines, dashed lines, and tic marks. The contour segment of this package is a collection of subroutines which can be used to produce contour plots and perform related functions. The package can contour any data which can be placed on a grid or data which is regularly spaced, including any general affine or polar grid data. The package includes routines which will grid random data. Contour levels can be specified at any values desired. Input data can be smoothed with undefined points being acceptable where data is unreliable or unknown. Plots which are extremely large or detailed can be automatically output in parts to improve resolution or overcome plotter size limitations. The contouring segment uses the plot segment for actual plotting, thus all the features described for the plotting segment are available to the user of the contouring segment. Included with this package are two data bases for producing world map plots in Mercator projection. One data base provides just continent outlines and another provides continent outlines and national borders in great detail. This package is written in FORTRAN IV and IBM OS ASSEMBLER and has been implemented on an IBM 360 with a central memory requirement of approximately 140K of 8 bit bytes. The ASSEMBLER routines are basic plotter interface routines. The WCPP package was developed in 1972.

  7. Predicting High Explosive Detonation Velocities from Their Composition and Structure

    DTIC Science & Technology

    1978-09-01

    for a gamut of ideal explosives. The explosives ranged from nitroaromatics, cyclic and linear nitramines, nitrate esters and nitro-nitrato...structure is postulated for a gamut of explosives. Since detonation velocity, DQ, is density dependent, the linear regression plot. Figure 1, of the

  8. Estimating energy expenditure from heart rate in older adults: a case for calibration.

    PubMed

    Schrack, Jennifer A; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M; Ferrucci, Luigi

    2014-01-01

    Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using different levels of calibration. Heart rate and energy expenditure were assessed across five levels of exertion in 290 adults participating in the Baltimore Longitudinal Study of Aging. Correlation and random effects regression analyses assessed the linearity of the relationship between heart rate and energy expenditure and cross-validation models assessed predictive performance. Heart rate and energy expenditure were highly correlated (r=0.98) and linear regardless of age or sex. Intra-person variability was low but inter-person variability was high, with substantial heterogeneity of the random intercept (s.d. =0.372) despite similar slopes. Cross-validation models indicated individual calibration data substantially improves accuracy predictions of energy expenditure from heart rate, reducing the potential for considerable measurement bias. Although using five calibration measures provided the greatest reduction in the standard deviation of prediction errors (1.08 kcals/min), substantial improvement was also noted with two (0.75 kcals/min). These findings indicate standard regression equations may be used to make population-level inferences when estimating energy expenditure from heart rate in older adults but caution should be exercised when making inferences at the individual level without proper calibration.

  9. Towards a New Generation of Time-Series Visualization Tools in the ESA Heliophysics Science Archives

    NASA Astrophysics Data System (ADS)

    Perez, H.; Martinez, B.; Cook, J. P.; Herment, D.; Fernandez, M.; De Teodoro, P.; Arnaud, M.; Middleton, H. R.; Osuna, P.; Arviset, C.

    2017-12-01

    During the last decades a varied set of Heliophysics missions have allowed the scientific community to gain a better knowledge on the solar atmosphere and activity. The remote sensing images of missions such as SOHO have paved the ground for Helio-based spatial data visualization software such as JHelioViewer/Helioviewer. On the other hand, the huge amount of in-situ measurements provided by other missions such as Cluster provide a wide base for plot visualization software whose reach is still far from being fully exploited. The Heliophysics Science Archives within the ESAC Science Data Center (ESDC) already provide a first generation of tools for time-series visualization focusing on each mission's needs: visualization of quicklook plots, cross-calibration time series, pre-generated/on-demand multi-plot stacks (Cluster), basic plot zoom in/out options (Ulysses) and easy navigation through the plots in time (Ulysses, Cluster, ISS-Solaces). However, as the needs evolve and the scientists involved in new missions require to plot multi-variable data, heat maps stacks interactive synchronization and axis variable selection among other improvements. The new Heliophysics archives (such as Solar Orbiter) and the evolution of existing ones (Cluster) intend to address these new challenges. This paper provides an overview of the different approaches for visualizing time-series followed within the ESA Heliophysics Archives and their foreseen evolution.

  10. A Progress Report on X-Ray Diffraction Measurements on New Low-Thermal Conductivity Thermoelectric Materials

    DTIC Science & Technology

    1999-04-01

    as the only moving parts and no environmentally unfriendly gases . Thermoelectric generators can also improve fuel efficiency by using the heat lost...Facolta di Chimica Industriale di Bologna, 24[4] (1966) 113-132. 11 — i at £ 73 U « ■ 2-Theta (deg) Figure 1. Calibration plot for SRM1976

  11. A Low Cost Weather Balloon Borne Solar Cell Calibration Payload

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .

  12. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  13. A calibration method of infrared LVF based spectroradiometer

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqing; Han, Shunli; Liu, Lei; Hu, Dexin

    2017-10-01

    In this paper, a calibration method of LVF-based spectroradiometer is summarize, including spectral calibration and radiometric calibration. The spectral calibration process as follow: first, the relationship between stepping motor's step number and transmission wavelength is derivative by theoretical calculation, including a non-linearity correction of LVF;second, a line-to-line method was used to corrected the theoretical wavelength; Finally, the 3.39 μm and 10.69 μm laser is used for spectral calibration validation, show the sought 0.1% accuracy or better is achieved.A new sub-region multi-point calibration method is used for radiometric calibration to improving accuracy, results show the sought 1% accuracy or better is achieved.

  14. Linear model correction: A method for transferring a near-infrared multivariate calibration model without standard samples.

    PubMed

    Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2016-12-05

    Calibration transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. For most of calibration transfer methods, standard samples are necessary to construct the transfer model using the spectra of the samples measured on two instruments, named as master and slave instrument, respectively. In this work, a method named as linear model correction (LMC) is proposed for calibration transfer without standard samples. The method is based on the fact that, for the samples with similar physical and chemical properties, the spectra measured on different instruments are linearly correlated. The fact makes the coefficients of the linear models constructed by the spectra measured on different instruments are similar in profile. Therefore, by using the constrained optimization method, the coefficients of the master model can be transferred into that of the slave model with a few spectra measured on slave instrument. Two NIR datasets of corn and plant leaf samples measured with different instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra can be correctly predicted using the transferred partial least squares (PLS) models. Because standard samples are not necessary in the method, it may be more useful in practical uses. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Procedure for the Selection and Validation of a Calibration Model I-Description and Application.

    PubMed

    Desharnais, Brigitte; Camirand-Lemyre, Félix; Mireault, Pascal; Skinner, Cameron D

    2017-05-01

    Calibration model selection is required for all quantitative methods in toxicology and more broadly in bioanalysis. This typically involves selecting the equation order (quadratic or linear) and weighting factor correctly modelizing the data. A mis-selection of the calibration model will generate lower quality control (QC) accuracy, with an error up to 154%. Unfortunately, simple tools to perform this selection and tests to validate the resulting model are lacking. We present a stepwise, analyst-independent scheme for selection and validation of calibration models. The success rate of this scheme is on average 40% higher than a traditional "fit and check the QCs accuracy" method of selecting the calibration model. Moreover, the process was completely automated through a script (available in Supplemental Data 3) running in RStudio (free, open-source software). The need for weighting was assessed through an F-test using the variances of the upper limit of quantification and lower limit of quantification replicate measurements. When weighting was required, the choice between 1/x and 1/x2 was determined by calculating which option generated the smallest spread of weighted normalized variances. Finally, model order was selected through a partial F-test. The chosen calibration model was validated through Cramer-von Mises or Kolmogorov-Smirnov normality testing of the standardized residuals. Performance of the different tests was assessed using 50 simulated data sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the developed procedure using real LC-MS-MS results for the quantification of cocaine and naltrexone. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  17. Cross-calibration of A.M. constellation sensors for long term monitoring of land surface processes

    USGS Publications Warehouse

    Meyer, D.; Chander, G.

    2006-01-01

    Data from multiple sensors must be used together to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products derived from different sensors (e.g., vegetation cover, albedo, surface temperature) can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectro-radiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Cross-calibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study extends on a previous study of Terra/MODIS and Landsat/ETM+ cross calibration by including the Terra/ASTER and EO-1/ALI sensors, exploring the impacts of cross-calibrating sensors when conditions described above are met to some degree but not perfectly. Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. Due to problems with direct calibration of ASTER data, linear fits were developed between ASTER and ETM+ to assess the impacts of spectral bandpass differences between the two systems. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.

  18. Cscibox: A Software System for Age-Model Construction and Evaluation

    NASA Astrophysics Data System (ADS)

    Bradley, E.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; White, J. W. C.; Anderson, D. M.

    2014-12-01

    CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmetal archives, both directly dated and cross dated. The time has come to encourage cross-pollinization between earth science and computer science in dating paleorecords. This project addresses that need. The CSciBox code, which is being developed by a team of computer scientists and geoscientists, is open source and freely available on github. The system employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form. This makes it possible to do analysis on the whole core at once, in an interactive fashion, or to tailor the analysis to a subset of the core without loading the entire data file. CSciBox provides a number of 'components' that perform the common steps in age-model construction and evaluation: calibrations, reservoir-age correction, interpolations, statistics, and so on. The user employs these components via a graphical user interface (GUI) to go from raw data to finished age model in a single tool: e.g., an IntCal09 calibration of 14C data from a marine sediment core, followed by a piecewise-linear interpolation. CSciBox's GUI supports plotting of any measurement in the core against any other measurement, or against any of the variables in the calculation of the age model-with or without explicit error representations. Using the GUI, CSciBox's user can import a new calibration curve or other background data set and define a new module that employs that information. Users can also incorporate other software (e.g., Calib, BACON) as 'plug ins.' In the case of truly large data or significant computational effort, CSciBox is parallelizable across modern multicore processors, or clusters, or even the cloud. The next generation of the CSciBox code, currently in the testing stages, includes an automated reasoning engine that supports a more-thorough exploration of plausible age models and cross-dating scenarios.

  19. Stability of i.v. admixture containing metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate in 0.9% sodium chloride injection.

    PubMed

    Kintzel, Polly E; Zhao, Ting; Wen, Bo; Sun, Duxin

    2014-12-01

    The chemical stability of a sterile admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was evaluated. Triplicate samples were prepared and stored at room temperature without light protection for a total of 48 hours. Aliquots from each sample were tested for chemical stability immediately after preparation and at 1, 4, 8, 24, and 48 hours using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Metoclopramide, diphenhydramine hydrochloride, and dexamethasone sodium phosphate were selectively monitored using multiple-reaction monitoring. Samples were diluted differently for quantitation using three individual LC-MS/MS methods. To determine the drug concentration of the three compounds in the samples, three calibration curves were constructed by plotting the peak area or the peak area ratio versus the concentration of the calibration standards of each tested compound. Apixaban was used as an internal standard. Linearity of the calibration curve was evaluated by the correlation coefficient r(2). Constituents of the admixture of metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection retained more than 90% of their initial concentrations over 48 hours of storage at room temperature without protection from light. The observed variability in concentrations of these three compounds was within the limits of assay variability. An i.v. admixture containing metoclopramide 1.6 mg/mL, diphenhydramine hydrochloride 2 mg/mL, and dexamethasone sodium phosphate 0.16 mg/mL in 0.9% sodium chloride injection was chemically stable for 48 hours when stored at room temperature without light protection. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  20. Modelling and Evaluation of Non-Linear Rootwater Uptake for Winter Cropping of Wheat and Berseem

    NASA Astrophysics Data System (ADS)

    GS, K.; Prasad, K. S. H.

    2017-12-01

    The plant water uptake is significant for study to monitor the irrigation supplied to the plant. The Richards equation has been the key governing equation to quantify the root water uptake in the vadose zone and it takes all the sources and sink terms into consideration. The β parameter or the non linearity parameter is used in this modeling to bring the non linearity in the plant root water uptake. The soil parameters are obtained by experimentation and are employed in the Van-Genuchten equation for soil moisture study. Field experiments were carried out at Civil Engineering Department IIT Roorkee, Uttarakhand, India, during the winter season of 2013 and 2014 for berseem and 2016 for wheat as per the local cropping practices. Drainage type lysimeters were installed to study the soil water balance. Soil moisture was monitored using profile probe. Precipitation and all meteorological data were obtained from the nearby gauges located at the National Institute of Hydrology, Roorkee.The moisture data and the deep percolation data were collected on a daily basis and the irrigation supply was controlled and monitored to satisfy the moisture requirements of the crops respectively.In order to study the effect of water scarcity on the crops, the plot was divided and deficited irrigation was applied for the second cropping season for Berseem.The yields for both the seasons was also measured. The solution of Richards equation as applied to the moisture movement in the root zone was modeled. For estimation of root water uptake, the governing equation is the one-dimensional mixed form of Richards' equation is employed (Ji et al., 2007; Shankar et al., 2012).The sink term in the model accounts for the root water uptake, which is utilized by the plant for transpiration. Smaxor the maximum root water uptake for the root zone on a given day must be equal to the maximum transpiration on the corresponding day The model computed moisture content and pressure head is calibrated with the measured soil water content in the crop root zone. The Model output is compared with the output of the HYDRUS 1D software package. The complete calibrated model is now employed to determine the irrigation requirement of crops for a known initial moisture content and available precipitation and can be useful for economical agriculture in the semi-arid regions of India.

  1. A 3-D Magnetic Analysis of a Linear Alternator For a Stirling Power System

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Niedra, Janis M.

    2000-01-01

    The NASA Glenn Research Center and the Department of Energy (DOE) are developing advanced radioisotope Stirling convertors, under contract with Stirling Technology Company (STC), for space applications. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. This paper presents a 3-D finite element method (FEM) approach for evaluating Stirling convertor linear alternators. Preliminary correlations with open-circuit voltage measurements provide an encouraging level of confidence in the model. Spatial plots of magnetic field strength (H) are presented in the region of the exciting permanent magnets. These plots identify regions of high H, where at elevated temperature and under electrical load, the potential to alter the magnetic moment of the magnets exists. This implies the need for further testing and analysis.

  2. Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery

    NASA Astrophysics Data System (ADS)

    Benfield, David; Yue, Shichao; Lou, Edmond; Moussa, Walied A.

    2014-08-01

    A six-axis sensor array has been developed to quantify the 3D force and moment loads applied in scoliosis correction surgery. Initially this device was developed to be applied during scoliosis correction surgery and augmented onto existing surgical instrumentation, however, use as a general load sensor is also feasible. The development has included the design, microfabrication, deployment and calibration of a sensor array. The sensor array consists of four membrane devices, each containing piezoresistive sensing elements, generating a total of 16 differential voltage outputs. The calibration procedure has made use of a custom built load application frame, which allows quantified forces and moments to be applied and compared to the outputs from the sensor array. Linear or non-linear calibration equations are generated to convert the voltage outputs from the sensor array back into 3D force and moment information for display or analysis.

  3. High-efficiency non-uniformity correction for wide dynamic linear infrared radiometry system

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Yu, Yi; Tian, Qi-Jie; Chang, Song-Tao; He, Feng-Yun; Yin, Yan-He; Qiao, Yan-Feng

    2017-09-01

    Several different integration times are always set for a wide dynamic linear and continuous variable integration time infrared radiometry system, therefore, traditional calibration-based non-uniformity correction (NUC) are usually conducted one by one, and furthermore, several calibration sources required, consequently makes calibration and process of NUC time-consuming. In this paper, the difference of NUC coefficients between different integration times have been discussed, and then a novel NUC method called high-efficiency NUC, which combines the traditional calibration-based non-uniformity correction, has been proposed. It obtains the correction coefficients of all integration times in whole linear dynamic rangesonly by recording three different images of a standard blackbody. Firstly, mathematical procedure of the proposed non-uniformity correction method is validated and then its performance is demonstrated by a 400 mm diameter ground-based infrared radiometry system. Experimental results show that the mean value of Normalized Root Mean Square (NRMS) is reduced from 3.78% to 0.24% by the proposed method. In addition, the results at 4 ms and 70 °C prove that this method has a higher accuracy compared with traditional calibration-based NUC. In the meantime, at other integration time and temperature there is still a good correction effect. Moreover, it greatly reduces the number of correction time and temperature sampling point, and is characterized by good real-time performance and suitable for field measurement.

  4. SeaWiFS Postlaunch Technical Report Series. Volume 4; The 1997 Prelaunch Radiometric Calibration of SeaWiFS

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Early, Edward E.; Eplee, Robert E., Jr.; Barnes, Robert A.; Caffrey, Robert T.

    1999-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was originally calibrated by the instrument's manufacturer, Santa Barbara Research Center (SBRC), in November 1993. In preparation for an August 1997 launch, the SeaWiFS Project and the National Institute of Standards and Technology (NIST) undertook a second calibration of SeaWiFS in January and April 1997 at the facility of the spacecraft integrator, Orbital Sciences Corporation (OSC). This calibration occurred in two phases, the first after the final thermal vacuum test, and the second after the final vibration test of the spacecraft. For the calibration, SeaWiFS observed an integrating sphere from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at four radiance levels. The spectral radiance of the sphere at these radiance levels was also measured by the SeaWiFS Transfer Radiometer (SXR). In addition, during the calibration, SeaWiFS and the SXR observed the sphere at 16 radiance levels to determine the linearity of the SeaWiFS response. As part of the calibration analysis, the GSFC sphere was also characterized using a GSFC spectroradiometer. The 1997 calibration agrees with the initial 1993 calibration to within +/- 4%. The new calibration coefficients, computed before and after the vibration test, agree to within 0.5%. The response of the SeaWiFS channels in each band is linear to better than 1%. In order to compare to previous and current methods, the SeaWiFS radiometric responses are presented in two ways: using the nominal center wave-lengths for the eight bands; and using band-averaged spectral radiances. The band-averaged values are used in the flight calibration table. An uncertainty analysis for the calibration coefficients is also presented.

  5. Conical Pendulum--Linearization Analyses

    ERIC Educational Resources Information Center

    Dean, Kevin; Mathew, Jyothi

    2016-01-01

    A theoretical analysis is presented, showing the derivations of seven different linearization equations for the conical pendulum period "T", as a function of radial and angular parameters. Experimental data obtained over a large range of fixed conical pendulum lengths (0.435 m-2.130 m) are plotted with the theoretical lines and…

  6. The microcomputer scientific software series 2: general linear model--regression.

    Treesearch

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  7. Residual mode correction in calibrating nonlinear damper for vibration control of flexible structures

    NASA Astrophysics Data System (ADS)

    Sun, Limin; Chen, Lin

    2017-10-01

    Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.

  8. Rivaroxaban Levels in Patients' Plasmas are Comparable by Using Two Different Anti Xa Assay/Coagulometer Systems Calibrated with Two Different Calibrators.

    PubMed

    Martinuzzo, Marta E; Duboscq, Cristina; Lopez, Marina S; Barrera, Luis H; Vinuales, Estela S; Ceresetto, Jose; Forastiero, Ricardo R; Oyhamburu, Jose

    2018-06-01

    Rivaroxaban oral anticoagulant does not need laboratory monitoring, but in some situations plasma level measurement is useful. The objective of this paper was to verify analytical performance and compare two rivaroxaban calibrated anti Xa assays/coagulometer systems with specific or other branch calibrators. In 59 samples drawn at trough or peak from patients taking rivaroxaban, plasma levels were measured by HemosIL Liquid anti Xa in ACLTOP 300/500, and STA liquid Anti Xa in TCoag Destiny Plus. HemosIL and STA rivaroxaban calibrators and controls were used. CLSI guideline procedures EP15A3 for precision and trueness, EP6 for linearity, and EP9 for methods comparison were used. Coefficient of variation within run and total precision (CVR and CVWL respectively) of plasmatic rivaroxaban were < 4.2 and < 4.85% and BIAS < 7.4 and < 6.5%, for HemosIL-ACL TOP and STA-Destiny systems, respectively. Linearity verification 8 - 525 ng/mL a Deming regression for methods comparison presented R 0.963, 0.968 and 0.982, with a mean CV 13.3% when using different systems and calibrations. The analytical performance of plasma rivaroxaban was acceptable in both systems, and results from reagent/coagulometer systems are comparable even when calibrating with different branch material.

  9. The Use of Crow-AMSAA Plots to Assess Mishap Trends

    NASA Technical Reports Server (NTRS)

    Dawson, Jeffrey W.

    2011-01-01

    Crow-AMSAA (CA) plots are used to model reliability growth. Use of CA plots has expanded into other areas, such as tracking events of interest to management, maintenance problems, and safety mishaps. Safety mishaps can often be successfully modeled using a Poisson probability distribution. CA plots show a Poisson process in log-log space. If the safety mishaps are a stable homogenous Poisson process, a linear fit to the points in a CA plot will have a slope of one. Slopes of greater than one indicate a nonhomogenous Poisson process, with increasing occurrence. Slopes of less than one indicate a nonhomogenous Poisson process, with decreasing occurrence. Changes in slope, known as "cusps," indicate a change in process, which could be an improvement or a degradation. After presenting the CA conceptual framework, examples are given of trending slips, trips and falls, and ergonomic incidents at NASA (from Agency-level data). Crow-AMSAA plotting is a robust tool for trending safety mishaps that can provide insight into safety performance over time.

  10. Statistical process control for electron beam monitoring.

    PubMed

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Parameter estimation procedure for complex non-linear systems: calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch.

    PubMed

    Abusam, A; Keesman, K J; van Straten, G; Spanjers, H; Meinema, K

    2001-01-01

    When applied to large simulation models, the process of parameter estimation is also called calibration. Calibration of complex non-linear systems, such as activated sludge plants, is often not an easy task. On the one hand, manual calibration of such complex systems is usually time-consuming, and its results are often not reproducible. On the other hand, conventional automatic calibration methods are not always straightforward and often hampered by local minima problems. In this paper a new straightforward and automatic procedure, which is based on the response surface method (RSM) for selecting the best identifiable parameters, is proposed. In RSM, the process response (output) is related to the levels of the input variables in terms of a first- or second-order regression model. Usually, RSM is used to relate measured process output quantities to process conditions. However, in this paper RSM is used for selecting the dominant parameters, by evaluating parameters sensitivity in a predefined region. Good results obtained in calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch proved that the proposed procedure is successful and reliable.

  12. Data analysis and calibration for a bulk-refractive-index-compensated surface plasmon resonance affinity sensor

    NASA Astrophysics Data System (ADS)

    Chinowsky, Timothy M.; Yee, Sinclair S.

    2002-02-01

    Surface plasmon resonance (SPR) affinity sensing, the problem of bulk refractive index (RI) interference in SPR sensing, and a sensor developed to overcome this problem are briefly reviewed. The sensor uses a design based on Texas Instruments' Spreeta SPR sensor to simultaneously measure both bulk and surface RI. The bulk RI measurement is then used to compensate the surface measurement and remove the effects of bulk RI interference. To achieve accurate compensation, robust data analysis and calibration techniques are necessary. Simple linear data analysis techniques derived from measurements of the sensor response were found to provide a versatile, low noise method for extracting measurements of bulk and surface refractive index from the raw sensor data. Automatic calibration using RI gradients was used to correct the linear estimates, enabling the sensor to produce accurate data even when the sensor has a complicated nonlinear response which varies with time. The calibration procedure is described, and the factors influencing calibration accuracy are discussed. Data analysis and calibration principles are illustrated with an experiment in which sucrose and detergent solutions are used to produce changes in bulk and surface RI, respectively.

  13. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy.

    PubMed

    Morisawa, Yusuke; Suga, Arisa

    2018-05-15

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500cm -1 region were measured for methanol, methanol-d 3 , and t-butanol-d 9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V=1-4) for 0.5M methanol, 0.5M methanol‑d 3 , and 0.5M t-butanol-d 9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Morisawa, Yusuke; Suga, Arisa

    2018-05-01

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500 cm- 1 region were measured for methanol, methanol-d3, and t-butanol-d9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V = 1-4) for 0.5 M methanol, 0.5 M methanol‑d3, and 0.5 M t-butanol-d9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity.

  15. Updating Indiana Annual Forest Inventory and Analysis Plot Data Using Eastern Broadleaf Forest Diameter Growth Models

    Treesearch

    Veronica C. Lessard

    2001-01-01

    The Forest Inventory and Analysis (FIA) program of the North Central Research Station (NCRS), USDA Forest Service, has developed nonlinear, individual-tree, distance-independent annual diameter growth models. The models are calibrated for species groups and formulated as the product of an average diameter growth component and a modifier component. The regional models...

  16. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C.

    2004-09-03

    The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communicationmore » lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated or measured). Detector response for both detectors is dependent upon the energy of the incident radiation; this trend had to be accounted for in the calibration of the BF{sub 3} detector. Energy dependence did not have to be taken into consideration when calibrating the GM detectors since GM detector response is only dependent on radiation energy below 100 keV; SLAC only produces a spectrum of gamma radiation above 100 keV. For the GM detector, calibration consisted of bringing a {sup 137}Cs source and a NIST-calibrated RADCAL Radiation Monitor Controller (model 9010) out to the field; the absolute dose rate was determined by the RADCAL device while simultaneously irradiating the GM detector to obtain a scaler reading corresponding to counts per minute. Detector response was then calculated. Calibration of the BF{sub 3} detector was done using NIST certified neutron sources of known emission rates and energies. Five neutron sources ({sup 238}PuBe, {sup 238}PuB, {sup 238}PuF4, {sup 238}PuLi and {sup 252}Cf) with different energies were used to account for the energy dependence of the response. The actual neutron dose rate was calculated by date-correcting NIST source data and considering the direct dose rate and scattered dose rate. Once the total dose rate (sum of the direct and scattered dose rates) was known, the response vs. energy curve was plotted. The first station calibrated (PMS6) was calibrated with these five neutron sources; all subsequent stations were calibrated with one neutron source and the energy dependence was assumed to be the same.« less

  17. Computer Programs for Calculating and Plotting the Stability Characteristics of a Balloon Tethered in a Wind

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.; Redd, L. T.

    1973-01-01

    Computer programs for calculating the stability characteristics of a balloon tethered in a steady wind are presented. Equilibrium conditions, characteristic roots, and modal ratios are calculated for a range of discrete values of velocity for a fixed tether-line length. Separate programs are used: (1) to calculate longitudinal stability characteristics, (2) to calculate lateral stability characteristics, (3) to plot the characteristic roots versus velocity, (4) to plot the characteristic roots in root-locus form, (5) to plot the longitudinal modes of motion, and (6) to plot the lateral modes for motion. The basic equations, program listings, and the input and output data for sample cases are presented, with a brief discussion of the overall operation and limitations. The programs are based on a linearized, stability-derivative type of analysis, including balloon aerodynamics, apparent mass, buoyancy effects, and static forces which result from the tether line.

  18. Macrolichens as biomonitors of air-quality change in western Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClenahen, J.R.; Davis, D.D.; Hutnik, R.J.

    2007-07-01

    Species richness of corticolous macrolichens was monitored at one- or two-year intervals on a total of 63 plots from 1997-2003 in a region of west-central Pennsylvania that included four coal-fired power generating stations and an industrial city. Lichen richness significantly increased from an average of 5.7 species/plot in 1997 to 9.3 species/plot in 2003. A linear mean rate of gain in species on regional monitoring plots was 0.56 species/yr. Plots along a major ridge top had a slower but significant gain in richness, and a localized area flanked by the city and two generating stations exhibited less lichen recolonization. Ourmore » results confirm the value of macrolichens as indicators of air quality and the importance of examining temporal as well as spatial changes in lichen richness to ascertain air-quality status.« less

  19. Calibrating page sized Gafchromic EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, W.; Maes, F.; Heide, U. A. van der

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittancemore » values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal balance between cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%-2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors Less-Than-Or-Slanted-Equal-To 2% or Less-Than-Or-Slanted-Equal-To 0.05 Gy.« less

  20. Impact of winter roads on boreal peatland carbon exchange.

    PubMed

    Strack, Maria; Softa, Divya; Bird, Melanie; Xu, Bin

    2018-01-01

    Across Canada's boreal forest, linear disturbances, including cutlines such as seismic lines and roads, crisscross the landscape to facilitate resource exploration and extraction; many of these linear disturbances cross peatland ecosystems. Changes in tree canopy cover and the compression of the peat by heavy equipment alter local thermal, hydrological, and ecological conditions, likely changing carbon exchange on the disturbance, and possibly in the adjacent peatland. We measured bulk density, water table, soil temperature, plant cover, and CO 2 and CH 4 flux along triplicate transects crossing a winter road through a wooded fen near Peace River, Alberta, Canada. Sample plots were located 1, 5, and 10 m from the road on both sides with an additional three plots on the road. Productivity of the overstory trees, when present, was also determined. The winter road had higher bulk density, shallower water table, higher graminoid cover, and thawed earlier than the adjacent peatland. Tree productivity and CO 2 flux varied between the plots, and there was no clear pattern in relation to distance from the road. The plots on the winter road acted as a greater CO 2 sink and greater CH 4 source compared to the adjacent peatland with plots on the winter road emitting on average (standard error) 479 (138) compared to 41 (10) mg CH 4  m -2  day -1 in the adjacent peatland. Considering both gases, global warming potential increased from 70 to 250 g CO 2 e m -2  year -1 in the undisturbed area to 2100 g CO 2 e m -2  year -1 on the winter road. Although carbon fluxes on any given cutline through peatland will vary depending on level of compaction, line width and vegetation community shifts, the large number of linear disturbances in Canada's boreal forest and slow recovery on peatland ecosites suggest they could represent an important anthropogenic greenhouse gas source. © 2017 John Wiley & Sons Ltd.

  1. Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data

    NASA Technical Reports Server (NTRS)

    Faulkner, K. G.; Gluer, C. C.; Grampp, S.; Genant, H. K.

    1993-01-01

    Quantitative computed tomography (QCT) has been shown to be a precise and sensitive method for evaluating spinal bone mineral density (BMD) and skeletal response to aging and therapy. Precise and accurate determination of BMD using QCT requires a calibration standard to compensate for and reduce the effects of beam-hardening artifacts and scanner drift. The first standards were based on dipotassium hydrogen phosphate (K2HPO4) solutions. Recently, several manufacturers have developed stable solid calibration standards based on calcium hydroxyapatite (CHA) in water-equivalent plastic. Due to differences in attenuating properties of the liquid and solid standards, the calibrated BMD values obtained with each system do not agree. In order to compare and interpret the results obtained on both systems, cross-calibration measurements were performed in phantoms and patients using the University of California San Francisco (UCSF) liquid standard and the Image Analysis (IA) solid standard on the UCSF GE 9800 CT scanner. From the phantom measurements, a highly linear relationship was found between the liquid- and solid-calibrated BMD values. No influence on the cross-calibration due to simulated variations in body size or vertebral fat content was seen, though a significant difference in the cross-calibration was observed between scans acquired at 80 and 140 kVp. From the patient measurements, a linear relationship between the liquid (UCSF) and solid (IA) calibrated values was derived for GE 9800 CT scanners at 80 kVp (IA = [1.15 x UCSF] - 7.32).(ABSTRACT TRUNCATED AT 250 WORDS).

  2. High-latitude geomagnetic disturbances during ascending solar cycle 24

    NASA Astrophysics Data System (ADS)

    Peitso, Pyry; Tanskanen, Eija; Stolle, Claudia; Berthou Lauritsen, Nynne; Matzka, Jürgen

    2015-04-01

    High-latitude regions are very convenient for study of several space weather phenomena such as substorms. Large geographic coverage as well as long time series of data are essential due to the global nature of space weather and the long duration of solar cycles. We will examine geomagnetic activity in Greenland from magnetic field measurements taken by DTU (Technical University of Denmark) magnetometers during the years 2010 to 2014. The study uses data from 13 magnetometer stations located on the east coast of Greenland and one located on the west coast. The original measurements are in one second resolution, thus the amount of data is quite large. Magnetic field H component (positive direction towards the magnetic north) was used throughout the study. Data processing will be described from calibration of original measurements to plotting of long time series. Calibration consists of determining the quiet hour of a given day and reducing the average of that hour from all the time steps of the day. This normalizes the measurements and allows for better comparison between different time steps. In addition to the full time line of measurements, daily, monthly and yearly averages will be provided for all stations. Differential calculations on the change of the H component will also be made available for the duration of the full data set. Envelope curve plots will be presented for duration of the time line. Geomagnetic conditions during winter and summer will be compared to examine seasonal variation. Finally the measured activity will be compared to NOAA (National Oceanic and Atmospheric Administration) issued geomagnetic space weather alerts from 2010 to 2014. Calculations and plotting of measurement data were done with MATLAB. M_map toolbox was used for plotting of maps featured in the study (http://www2.ocgy.ubc.ca/~rich/map.html). The study was conducted as a part of the ReSoLVE (Research on Solar Long-term Variability and Effects) Center of Excellence.

  3. Palaeointensities from Pliocene lava sequences in Iceland: emphasis on the problem of Arai plot with two linear segments

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidefumi; Yamamoto, Yuhji

    2016-05-01

    Palaeointensity experiments were carried out to a sample collection from two sections of basalt lava flow sequences of Pliocene age in north central Iceland (Chron C2An) to further refine the knowledge of the behaviour of the palaeomagnetic field. Selection of samples was mainly based on their stability of remanence to thermal demagnetization as well as good reversibility in variations of magnetic susceptibility and saturation magnetization with temperature, which would indicate the presence of magnetite as a product of deuteric oxidation of titanomagnetite. Among 167 lava flows from two sections, 44 flows were selected for the Königsberger-Thellier-Thellier experiment in vacuum. In spite of careful pre-selection of samples, an Arai plot with two linear segments, or a concave-up appearance, was often encountered during the experiments. This non-ideal behaviour was probably caused by an irreversible change in the domain state of the magnetic grains of the pseudo-single-domain (PSD) range. This is assumed because an ideal linear plot was obtained in the second run of the palaeointensity experiment in which a laboratory thermoremanence acquired after the final step of the first run was used as a natural remanence. This experiment was conducted on six selected samples, and no clear difference between the magnetic grains of the experimented and pristine sister samples was found by scanning electron microscope and hysteresis measurements, that is, no occurrence of notable chemical/mineralogical alteration, suggesting that no change in the grain size distribution had occurred. Hence, the two-segment Arai plot was not caused by the reversible multidomain/PSD effect in which the curvature of the Arai plot is dependent on the grain size. Considering that the irreversible change in domain state must have affected data points at not only high temperatures but also low temperatures, fv ≥ 0.5 was adopted as one of the acceptance criteria where fv is a vectorially defined fraction of the linear segment. A measure of curvature k' was also used to check the linearity of the selected linear segment. It was avoided, however, to reject the result out of hand by the large curvature k of the entire data points because it might still include a linear segment with a large fraction. Combining with the results of Shaw's experiments, 52 palaeointensities were obtained out of 192 specimens, or 11 flow means were obtained out of the 44 lava flows. Most of the palaeointensities were from the upper part of the lava section (Chron C2An.1n) and ranged between 30 and 66 μT. Including two results from the bottom part of the lava section, the mean virtual dipole moment for 2.5-3.5 Ma is 6.3 ± 1.4 × 1022 Am2 (N = 11), which is ˜19 per cent smaller than the present-day dipole moment.

  4. 1998 Calibration of the Mach 4.7 and Mach 6 Arc-Heated Scramjet Test Facility Nozzles

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Irby, Richard G.; Auslender, Aaron H.; Rock, Kenneth E.

    2004-01-01

    A calibration of the Arc-Heated Scramjet Test Facility (AHSTF) Mach 4.7 and Mach 6 nozzles was performed in 1998. For each nozzle, three different typical facility operating test points were selected for calibration. Each survey consisted of measurements, at 340 separate locations across the 11 inch square nozzle exit plane, of pitot pressure, static pressure, and total temperature. Measurement density was higher (4/inch) in the boundary layer near the nozzle wall than in the core nozzle flow (1/inch). The results generated for each of these calibration surveys were contour plots at the nozzle exit plane of the measured and calculated flow properties which completely defined the thermodynamic state of the nozzle exit flow. An area integration of the mass flux at the nozzle exit for each survey was compared to the AHSTF mass flow meter results to provide an indication of the overall quality of the calibration performed. The percent difference between the integrated nozzle exit mass flow and the flow meter ranged from 0.0 to 1.3 percent for the six surveys. Finally, a comparison of this 1998 calibration was made with the 1986 calibration. Differences of less than 10 percent were found within the nozzle core flow while in the boundary layer differences on the order of 20 percent were quite common.

  5. SURFplus Model Calibration for PBX 9502

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2017-12-06

    The SURFplus reactive burn model is calibrated for the TATB based explosive PBX 9502 at three initial temperatures; hot (75 C), ambient (23 C) and cold (-55 C). The CJ state depends on the initial temperature due to the variation in the initial density and initial specific energy of the PBX reactants. For the reactants, a porosity model for full density TATB is used. This allows the initial PBX density to be set to its measured value even though the coeffcient of thermal expansion for the TATB and the PBX differ. The PBX products EOS is taken as independent ofmore » the initial PBX state. The initial temperature also affects the sensitivity to shock initiation. The model rate parameters are calibrated to Pop plot data, the failure diameter, the limiting detonation speed just above the failure diameters, and curvature effect data for small curvature.« less

  6. Standard Reference Line Combined with One-Point Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) to Quantitatively Analyze Stainless and Heat Resistant Steel.

    PubMed

    Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong

    2018-01-01

    Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.

  7. Calibration of the optical torque wrench.

    PubMed

    Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Dekker, Nynke H

    2012-02-13

    The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN nm) is especially important in the study of biophysical systems at the molecular and cellular level. Quantitative torque measurements rely on an accurate calibration of the instrument. Here we describe and implement a set of calibration approaches for the optical torque wrench, including methods that have direct analogs in linear optical tweezers as well as introducing others that are specifically developed for the angular variables. We compare the different methods, analyze their differences, and make recommendations regarding their implementations.

  8. Development and validation of a rapid reverse-phase HPLC method for the determination of methotrexate from nanostructured liquid crystalline systems.

    PubMed

    Zuben, E S Von; Oliveira, A G; Chorilli, M; Scarpa, M V

    2018-03-05

    A reversed-phase liquid chromatography (RP-LC) method was successfully developed and validated for the determination of methotrexate in nanostructured liquid crystalline systems composed by polyether functional siloxane and silicone polyether copolymer. The LC method was performed on RP C18-ODS column, Agilent Zorbax® (4.6 x 250 mm, 5 μm), maintained at room temperature, with a mobile phase constituted by a mixture of 50 mM ammonium acetate buffer (pH 6.0) and methanol (77:23,v/v) with a flow rate of 1.0 mL/min, using ultraviolet detection at 313 nm. The parameters used in the validation process were linearity, specificity, intra and inter-day precision, accuracy, robustness. The quantitation and detection limits yielded good results. The calibration plot assumed linear behavior from 5.0-150.0 μg. mL-1 (r2 = 0.9999). The methotrexate was subjected to oxidation, acid, base and neutral degradation, photolysis and heat as stress conditions. There were no interfering peaks at or near the retention time of methotrexate. The nanostructured liquid crystalline systems did not interfere with the analysis and the recovery was quantitative. The intra and inter-day assay relative standard deviation were less than 0.20 %. The method developed proved to be simple, sensitive, accurate, precise, reproducible and therefore adequate for routine analysis of methotrexate in nanostructured liquid crystalline systems.

  9. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    PubMed

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Design and initial evaluation of a portable in situ runoff and sediment monitoring device

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Cruse, Richard M.; Chen, Qiang; Li, Hao; Song, Chunyu; Zhang, Xingyi

    2014-11-01

    An inexpensive portable runoff and sediment monitoring device (RSMD) requiring no external electric power was developed for measuring water runoff and associated sediment loss from field plots ranging from 0.005 to 0.1 ha. The device consists of runoff gauge, sediment mixing and sectional subsampling assemblies. The runoff hydrograph is determined using a calibrated tipping bucket. The sediment mixing assembly minimizes fluid splash while mixing the runoff water/sediment mixture prior to subsampling this material. Automatic flow-proportional sampling utilizes mechanical power supplied by the tipping bucket action, with power transmitted to the sample collection assembly via the tipping bucket pivot bar. Runoff is well-mixed and subdivided twice before subsamples are collected for analysis. The resolution of this device for a 100 m2 plot is 0.025 mm of runoff; the device is able to capture maximum flow rates up to 82 mm h-1 in a plot of the same dimension. Calibration results indicated the maximum error is 2.1% for estimating flow rate and less than 10% for sediment concentration in most of the flow range. The RSMD was assessed by measuring field runoff and soil loss from different tillage and slope treatments for a single natural rainfall event. Results were in close agreement with those in published literature, giving additional evidence that this device is performing acceptably well. The RSMD is uniquely adapted for a wide range of field sites, especially for those without electric power, making it a useful tool for studying soil management strategies.

  11. Application of composite small calibration objects in traffic accident scene photogrammetry.

    PubMed

    Chen, Qiang; Xu, Hongguo; Tan, Lidong

    2015-01-01

    In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.

  12. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: Effect of ion chamber calibration and long-term stability

    PubMed Central

    Ravichandran, Ramamoorthy; Binukumar, Johnson Pichy; Davis, Cheriyathmanjiyil Antony

    2013-01-01

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL “dose intercomparison” for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values. PMID:24672156

  13. Thickness Gauging of Single-Layer Conductive Materials with Two-Point Non Linear Calibration Algorithm

    NASA Technical Reports Server (NTRS)

    Fulton, James P. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor); Wincheski, Russell A. (Inventor); Nath, Shridhar C. (Inventor)

    1998-01-01

    A thickness gauging instrument uses a flux focusing eddy current probe and two-point nonlinear calibration algorithm. The instrument is small and portable due to the simple interpretation and operational characteristics of the probe. A nonlinear interpolation scheme incorporated into the instrument enables a user to make highly accurate thickness measurements over a fairly wide calibration range from a single side of nonferromagnetic conductive metals. The instrument is very easy to use and can be calibrated quickly.

  14. Sustained prediction ability of net analyte preprocessing methods using reduced calibration sets. Theoretical and experimental study involving the spectrophotometric analysis of multicomponent mixtures.

    PubMed

    Goicoechea, H C; Olivieri, A C

    2001-07-01

    A newly developed multivariate method involving net analyte preprocessing (NAP) was tested using central composite calibration designs of progressively decreasing size regarding the multivariate simultaneous spectrophotometric determination of three active components (phenylephrine, diphenhydramine and naphazoline) and one excipient (methylparaben) in nasal solutions. Its performance was evaluated and compared with that of partial least-squares (PLS-1). Minimisation of the calibration predicted error sum of squares (PRESS) as a function of a moving spectral window helped to select appropriate working spectral ranges for both methods. The comparison of NAP and PLS results was carried out using two tests: (1) the elliptical joint confidence region for the slope and intercept of a predicted versus actual concentrations plot for a large validation set of samples and (2) the D-optimality criterion concerning the information content of the calibration data matrix. Extensive simulations and experimental validation showed that, unlike PLS, the NAP method is able to furnish highly satisfactory results when the calibration set is reduced from a full four-component central composite to a fractional central composite, as expected from the modelling requirements of net analyte based methods.

  15. Factors Influencing Army Accessions.

    DTIC Science & Technology

    1982-12-01

    partial autocorrelations were examined for significant lags or a recognizable pattern such as a damped exponential or a sine wave. The TSP prugrams...decreasing function indicating nonstation- *arity or a very long sine wave where only a small portion of the wave is plotted. The partial...plot of the raw data appeared (Appendix E-1) to be either the middle of a long sine wave or a linearly decreasing function. This pattern is recognized

  16. Theoretical Studies of Strongly Interacting Fine Particle Systems

    NASA Astrophysics Data System (ADS)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  17. Comparison of two-concentration with multi-concentration linear regressions: Retrospective data analysis of multiple regulated LC-MS bioanalytical projects.

    PubMed

    Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi

    2013-09-01

    Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.

    PubMed

    Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A

    2010-08-10

    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

  19. True Colors Shining Through

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.

  20. Competition Experiments as a Means of Evaluating Linear Free Energy Relationships

    ERIC Educational Resources Information Center

    Mullins, Richard J.; Vedernikov, Andrei; Viswanathan, Rajesh

    2004-01-01

    The use of competition experiments as a means of evaluating linear free energy relationship in the undergraduate teaching laboratory is reported. The use of competition experiments proved to be a reliable method for the construction of Hammett plots with good correlation providing great flexibility with regard to the compounds and reactions that…

  1. Graphical Description of Johnson-Neyman Outcomes for Linear and Quadratic Regression Surfaces.

    ERIC Educational Resources Information Center

    Schafer, William D.; Wang, Yuh-Yin

    A modification of the usual graphical representation of heterogeneous regressions is described that can aid in interpreting significant regions for linear or quadratic surfaces. The standard Johnson-Neyman graph is a bivariate plot with the criterion variable on the ordinate and the predictor variable on the abscissa. Regression surfaces are drawn…

  2. Computer user's manual for a generalized curve fit and plotting program

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Beadle, B. D., II; Dolerhie, B. D., Jr.; Owen, J. W.

    1973-01-01

    A FORTRAN coded program has been developed for generating plotted output graphs on 8-1/2 by 11-inch paper. The program is designed to be used by engineers, scientists, and non-programming personnel on any IBM 1130 system that includes a 1627 plotter. The program has been written to provide a fast and efficient method of displaying plotted data without having to generate any additions. Various output options are available to the program user for displaying data in four different types of formatted plots. These options include discrete linear, continuous, and histogram graphical outputs. The manual contains information about the use and operation of this program. A mathematical description of the least squares goodness of fit test is presented. A program listing is also included.

  3. A theoretical study of interaction effects on the remanence curves of particulate dispersions

    NASA Astrophysics Data System (ADS)

    Fearon, M.; Chantrell, R. W.; Wohlfarth, E. P.

    1990-05-01

    The remanence curves of strongly interacting fine-particle systems are investigated theoretically. It is shown that the Henkel plot of the dc demagnetisation remanence vs. the isothermal remanence is a useful representation of interactions. The form of the plot is found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is also investigated. The results are consistent with a previous experimental study. Finally, the effect of interactions on the Switching Field Distribution are investigated.

  4. Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice

    NASA Astrophysics Data System (ADS)

    Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.

    2017-12-01

    Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.

  5. Measures and Relative Motions of Some Mostly F. G. W. Struve Doubles

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2012-04-01

    Measures of 59 pairs of double stars with long observational histories using "lucky imaging" techniques are reported. Relative motions of 59 pairs are investigated using histories of observation, scatter plots of relative motion, ordinary least-squares (OLS) and total proper motion analyses performed in "R," an open source programming language. A scatter plot of the coefficient of determinations derived from the OLS y|epoch and OLS x|epoch clearly separates common proper motion pairs from optical pairs and what are termed "long-period binary candidates." Differences in proper motion separate optical pairs from long-term binary candidates. An Appendix is provided that details how to use known rectilinear pairs as calibration pairs for the program REDUC.

  6. STS-3/OSS-1 Plasma Diagnostics Package (PDP) measurements of Orbiter transmitter and subsystem electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G.

    1983-01-01

    The plasma diagnostics package receiver system is described to identify the various antennas and to characterize the complement of receivers which cover the frequency range of 30 Hz to 800 Hz and S-band at 2200 + or - 300 MHz. Sample results are presented to show the variability of electromagnetic effects associated with the orbiter and the time variability of these effects. The electric field and magnetic field maximum and minimum field strength spectra observed during the mission at the pallet location are plotted. Values are also derived for the maximum UHF transmitter and S-band transmitter field strengths. Calibration data to convert from the survey plots to actual narrowband and broadband field strengths are listed.

  7. The Arrhenius equation revisited.

    PubMed

    Peleg, Micha; Normand, Mark D; Corradini, Maria G

    2012-01-01

    The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes' "energy of activation," usually without independent verification. Many experimental and simulated rate constant vs. temperature relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(T(reference))] = c(T-T(reference)). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a "mole" cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model's equation rather than to the existence of a temperature independent "energy of activation." If T+273.16°C in the Arrhenius model's equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and T(reference), the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model version having the arbitrary constant b, Ln[k(T)/k(T(reference)) = a[1/ (T(reference)+b)-1/ (T+b)], and the exponential model can faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a temperature independent "energy of activation." This is demonstrated mathematically and with computer simulations, and with reprocessed classical kinetic data and published food results.

  8. Monitoring 2-ethylhexyl-4-methoxycinnamate photoisomerization on skin using attenuated total reflection fourier transform infrared spectroscopy.

    PubMed

    Pangnakorn, P; Nonthabenjawan, R; Ekgasit, S; Thammacharoen, C; Pattanaargson Wanichwecharungruang, S

    2007-02-01

    Photoisomerization and photodimerization of a widely used UVB filter, 2-ethylhexy-4-methoxycinnamate (EHMC) on a ZnSe surface and baby mouse (Mus musculus Linn.) skin were monitored using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR). Differentiation between the E- and the Z-EHMC could be achieved by examining the infrared (IR) peak at 981 cm(-1) (b peak), which corresponds to the CH rocking deformation vibration of Ph-CH=CH- detected only in the E configuration. By plotting the ratios of the peak area of the b peak and an internal standard peak (1060-998 cm(-1)) against mole percentage of Z-isomer in the E-Z mixtures, a linear calibration plot was obtained. Thus, a simple estimation of the mole percentage of each configuration in a sample was obtained. At the same UVB exposure, photostationary equilibrium of the E/Z isomerization on the surface varied with the applied amounts of EHMC. Photoisomerizations on ZnSe and on baby mouse skin were comparable. Less than 10% of E-EHMC changed configuration when the mouse skins applied with 1.0-4.0 mg/cm(2) E-EHMC were exposed to sunlight for 60 min (UVB radiant exposure of approximately 0.30 J/cm(2)). This corresponded to less than 5% loss in UV filtering efficiency. However, at a typical EHMC skin coverage ( approximately 0.2 mg/cm(2)), 0.30 J/cm(2) UVB exposure induced approximately 50% photoisomerization resulting in 25% loss of UV filtering efficiency. No photodimerization was detected even at the extreme EHMC coverage of 4.0 mg/cm(2) after a UVB exposure of 0.90 J/cm(2).

  9. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification.

    PubMed

    Durán Merás, Isabel; Domínguez Manzano, Jaime; Airado Rodríguez, Diego; Muñoz de la Peña, Arsenio

    2018-02-01

    Within olive oils, extra virgin olive oil is the highest quality and, in consequence, the most expensive one. Because of that, it is common that some merchants attempt to take economic advantage by mixing it up with other less expensive oils, like olive oil or olive pomace oil. In consequence, the characterization and authentication of extra virgin olive oils is a subject of great interest, both for industry and consumers. This paper reports the potential of front-face total fluorescence spectroscopy combined with second-order chemometric methods for the detection of extra virgin olive oils adulteration with other olive oils. Excitation-emission matrices (EEMs) of extra virgin olive oils and extra virgin olive oils adulterated with olive oils or with olive pomace oils were recorded using front-face fluorescence spectroscopy. The full information content in these fluorescence images was analyzed with the aid of unsupervised parallel factor analysis (PARAFAC), PARAFAC supervised by linear discriminant analysis (LDA-PARAFAC), and discriminant unfolded partial least-squares (DA-UPLS). The discriminant ability of LDA-PARAFAC was studied through the tridimensional plots of the canonical vectors, defining a surface separating the established categories. For DA-UPLS, the discriminant ability was established through the bidimensional plots of predicted values of calibration and validation samples, in order to assign each sample to a given class. The models demonstrated the possibility of detecting adulterations of extra virgin olive oils with percentages of around 15% and 3% of olive and olive pomace oils, respectively. Also, UPLS regression was used to quantify the adulteration level of extra virgin olive oils with olive oils or with olive pomace oils. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Orthogonal projection approach and continuous wavelet transform-feed forward neural networks for simultaneous spectrophotometric determination of some heavy metals in diet samples.

    PubMed

    Abbasi Tarighat, Maryam

    2016-02-01

    Simultaneous spectrophotometric determination of a mixture of overlapped complexes of Fe(3+), Mn(2+), Cu(2+), and Zn(2+) ions with 2-(3-hydroxy-1-phenyl-but-2-enylideneamino) pyridine-3-ol(HPEP) by orthogonal projection approach-feed forward neural network (OPA-FFNN) and continuous wavelet transform-feed forward neural network (CWT-FFNN) is discussed. Ionic complexes HPEP were formulated with varying reagent concentration, pH and time of color formation for completion of complexation reactions. It was found that, at 5.0 × 10(-4) mol L(-1) of HPEP, pH 9.5 and 10 min after mixing the complexation reactions were completed. The spectral data were analyzed using partial response plots, and identified non-linearity modeled using FFNN. Reducing the number of OPA-FFNN and CWT-FFNN inputs were simplified using dissimilarity pure spectra of OPA and selected wavelet coefficients. Once the pure dissimilarity plots ad optimal wavelet coefficients are selected, different ANN models were employed for the calculation of the final calibration models. The performance of these two approaches were tested with regard to root mean square errors of prediction (RMSE %) values, using synthetic solutions. Under the working conditions, the proposed methods were successfully applied to the simultaneous determination of metal ions in different vegetable and foodstuff samples. The results show that, OPA-FFNN and CWT-FFNN were effective in simultaneously determining Fe(3+), Mn(2+), Cu(2+), and Zn(2+) concentration. Also, concentrations of metal ions in the samples were determined by flame atomic absorption spectrometry (FAAS). The amounts of metal ions obtained by the proposed methods were in good agreement with those obtained by FAAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Demonstration of a vectorial optical field generator with adaptive close loop control.

    PubMed

    Chen, Jian; Kong, Lingjiang; Zhan, Qiwen

    2017-12-01

    We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.

  12. Calibration of micromechanical parameters for DEM simulations by using the particle filter

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyang; Shuku, Takayuki; Thoeni, Klaus; Yamamoto, Haruyuki

    2017-06-01

    The calibration of DEM models is typically accomplished by trail and error. However, the procedure lacks of objectivity and has several uncertainties. To deal with these issues, the particle filter is employed as a novel approach to calibrate DEM models of granular soils. The posterior probability distribution of the microparameters that give numerical results in good agreement with the experimental response of a Toyoura sand specimen is approximated by independent model trajectories, referred as `particles', based on Monte Carlo sampling. The soil specimen is modeled by polydisperse packings with different numbers of spherical grains. Prepared in `stress-free' states, the packings are subjected to triaxial quasistatic loading. Given the experimental data, the posterior probability distribution is incrementally updated, until convergence is reached. The resulting `particles' with higher weights are identified as the calibration results. The evolutions of the weighted averages and posterior probability distribution of the micro-parameters are plotted to show the advantage of using a particle filter, i.e., multiple solutions are identified for each parameter with known probabilities of reproducing the experimental response.

  13. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems

    Treesearch

    Nicholas S. Skowronski; Kenneth L. Clark; Matthew Duveneck; John. Hom

    2011-01-01

    We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also...

  14. Diameter growth models using FIA data from the Northeastern, Southern, and North Central Research Stations

    Treesearch

    Veronica C. Lessard; Ronald E. McRoberts; Margaret R. Holdaway

    2000-01-01

    Nonlinear, individual-tree, distance-independent annual diameter growth models are presented for species in two ecoregions defined by R.G. Bailey in the northern Lake States and in parts of the central and southern regions of the U.S. The models were calibrated using Forest Inventory and Analysis (FIA) data from undisturbed plots on land classified as timberland across...

  15. SouthPro : a computer program for managing uneven-aged loblolly pine stands

    Treesearch

    Benedict Schulte; Joseph Buongiorno; Ching-Rong Lin; Kenneth E. Skog

    1998-01-01

    SouthPro is a Microsoft Excel add-in program that simulates the management, growth, and yield of uneven-aged loblolly pine stands in the Southern United States. The built-in growth model of this program was calibrated from 991 uneven-aged plots in seven states, covering most growing conditions and sites. Stands are described by the number of trees in 13 size classes...

  16. Best Practices to Achieve the Lowest Uncertainty in Measuring with Respect

    Science.gov Websites

    been sitting in a cabinet from time to time. If control charts are used, then this interval could be 6 packaged cells or module for use in control charts to monitor the test bed and any potential drift in the reference device's calibration. Measure the control sample at least once a week. Plot percentage deviation

  17. Stratified estimates of forest area using the k-nearest neighbors technique and satellite imagery

    Treesearch

    Ronald E. McRoberts; Mark D. Nelson; Daniel Wendt

    2002-01-01

    For two study areas in Minnesota, stratified estimation using Landsat Thematic Mapper satellite imagery as the basis for stratification was used to estimate forest area. Measurements of forest inventory plots obtained for a 12-month period in 1998 and 1999 were used as the source of data for within-strata estimates. These measurements further served as calibration data...

  18. Short- and long-term responses of total soil organic carbon to harvesting in a northern hardwood forest

    Treesearch

    Kristofer Johnson; Frederick N. Scatena; Yude Pan

    2010-01-01

    The long-term response of total soil organic carbon pools ('total SOC', i.e. soil and dead wood) to different harvesting scenarios in even-aged northern hardwood forest stands was evaluated using two soil carbon models, CENTURY and YASSO, that were calibrated with forest plot empirical data in the Green Mountains of Vermont. Overall, 13 different harvesting...

  19. Accuracy and efficiency of published film dosimetry techniques using a flat-bed scanner and EBT3 film.

    PubMed

    Spelleken, E; Crowe, S B; Sutherland, B; Challens, C; Kairn, T

    2018-03-01

    Gafchromic EBT3 film is widely used for patient specific quality assurance of complex treatment plans. Film dosimetry techniques commonly involve the use of transmission scanning to produce TIFF files, which are analysed using a non-linear calibration relationship between the dose and red channel net optical density (netOD). Numerous film calibration techniques featured in the literature have not been independently verified or evaluated. A range of previously published film dosimetry techniques were re-evaluated, to identify whether these methods produce better results than the commonly-used non-linear, netOD method. EBT3 film was irradiated at calibration doses between 0 and 4000 cGy and 25 pieces of film were irradiated at 200 cGy to evaluate uniformity. The film was scanned using two different scanners: The Epson Perfection V800 and the Epson Expression 10000XL. Calibration curves, uncertainty in the fit of the curve, overall uncertainty and uniformity were calculated following the methods described by the different calibration techniques. It was found that protocols based on a conventional film dosimetry technique produced results that were accurate and uniform to within 1%, while some of the unconventional techniques produced much higher uncertainties (> 25% for some techniques). Some of the uncommon methods produced reliable results when irradiated to the standard treatment doses (< 400 cGy), however none could be recommended as an efficient or accurate replacement for a common film analysis technique which uses transmission scanning, red colour channel analysis, netOD and a non-linear calibration curve for measuring doses up to 4000 cGy when using EBT3 film.

  20. Dynamical relationship between wind speed magnitude and meridional temperature contrast: Application to an interannual oscillation in Venusian middle atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2018-03-01

    We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.

  1. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    PubMed

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-06-29

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%).

  2. Spectrometer calibration for spectroscopic Fourier domain optical coherence tomography

    PubMed Central

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2016-01-01

    We propose a simple and robust procedure for Fourier domain optical coherence tomography (FdOCT) that allows to linearize the detected FdOCT spectra to wavenumber domain and, at the same time, to determine the wavelength of light for each point of detected spectrum. We show that in this approach it is possible to use any measurable physical quantity that has linear dependency on wavenumber and can be extracted from spectral fringes. The actual values of the measured quantity have no importance for the algorithm and do not need to be known at any stage of the procedure. As example we calibrate a spectral OCT spectrometer using Doppler frequency. The technique of spectral calibration can be in principle adapted to of all kind of Fourier domain OCT devices. PMID:28018723

  3. Temporal Gain Correction for X-Ray Calorimeter Spectrometers

    NASA Technical Reports Server (NTRS)

    Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.

    2016-01-01

    Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-HSXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.

  4. Design and calibration of a scanning tunneling microscope for large machined surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    During the last year the large sample STM has been designed, built and used for the observation of several different samples. Calibration of the scanner for prope dimensional interpretation of surface features has been a chief concern, as well as corrections for non-linear effects such as hysteresis during scans. Several procedures used in calibration and correction of piezoelectric scanners used in the laboratorys STMs are described.

  5. Comparative study of different alcohol sensors based on Screen-Printed Carbon Electrodes.

    PubMed

    Costa Rama, Estefanía; Biscay, Julien; González García, María Begoña; Julio Reviejo, A; Pingarrón Carrazón, José Manuel; Costa García, Agustín

    2012-05-30

    Different very simple single-use alcohol enzyme sensors were developed using alcohol oxidase (AOX) from three different yeast, Hansenula sp., Pichia pastoris and Candida boidinii, and employing three different commercial mediator-based Screen-Printed Carbon Electrodes as transducers. The mediators tested, Prussian Blue, Ferrocyanide and Co-phthalocyanine were included into the ink of the working electrode. The procedure to obtain these sensors consists of the immobilization of the enzyme on the electrode surface by adsorption. For the immobilization, an AOX solution is deposited on the working electrode and left until dried (1h) at room temperature. The best results were obtained with the biosensor using Screen-Printed Co-phthalocyanine/Carbon Electrode and AOX from Hansenula sp. The reduced cobalt-phthalocyanine form is amperometrically detected at +0.4V (vs. Ag pseudo reference electrode). This sensor shows good sensitivity (1211 nA mM(-1)), high precision (2.1% RSD value for the slope value of the calibration plot) and wide linear response (0.05-1.00 mM) for ethanol determination. The sensor provides also accurate results for ethanol quantification in alcoholic drinks. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Au-nanocluster emission based glucose sensing.

    PubMed

    Hussain, A M P; Sarangi, S N; Kesarwani, J A; Sahu, S N

    2011-11-15

    Fabrication of a glucose biosensor based on Au-cluster emission quenching in the UV region is reported. The glucose biosensor is highly sensitive to β-d-glucose in 2.5-25.0mM range as confirmed from a linear calibration plot between Au-cluster colloid emission intensity as a function of β-d-glucose concentration. The interaction of β-d-glucose with l-cysteine capped Au cluster colloids has been confirmed from their Fourier transformed infrared spectroscopy (FTIR) measurements. It has been found that the biomolecules present in the serum such as ascorbic and uric acids, proteins and peptides do not interfere and affect in glucose estimation as confirmed from their absorption and fluorescence (FL) emission measurements. Practical utility of this sensor based on FL quenching method has been demonstrated by estimating the glucose level in human serum that includes diabetes and the data were found to be comparable or more accurate than those of the pathological data obtained from a local hospital. In addition, this biosensor is useful to detect glucose level over a wide range with sensor response time of the order of nano to picoseconds that is emission lifetime of Au clusters. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Simultaneous Analysis of Losartan Potassium, Amlodipine Besylate, and Hydrochlorothiazide in Bulk and in Tablets by High-Performance Thin Layer Chromatography with UV-Absorption Densitometry

    PubMed Central

    Santhana Lakshmi, Karunanidhi; Lakshmi, Sivasubramanian

    2012-01-01

    A Simple high-performance thin layer chromatography (HPTLC) method for separation and quantitative analysis of losartan potassium, amlodipine, and hydrochlorothiazide in bulk and in pharmaceutical formulations has been established and validated. After extraction with methanol, sample and standard solutions were applied to silica gel plates and developed with chloroform : methanol : acetone : formic acid 7.5 : 1.3 : 0.5 : 0.03 (v/v/v/v) as mobile phase. Zones were scanned densitometrically at 254 nm. The R f values of amlodipine besylate, hydrochlorothiazide, and losartan potassium were 0.35, 0.57, and 0.74, respectively. Calibration plots were linear in the ranges 500–3000 ng per spot for losartan potassium, amlodipine and hydrochlorothiazide, the correlation coefficients, r, were 0.998, 0.998, and 0.999, respectively. The suitability of this method for quantitative determination of these compounds was by validation in accordance with the requirements of pharmaceutical regulatory standards. The method can be used for routine analysis of these drugs in bulk and in formulation. PMID:22567550

  8. Preparation of quantum dots CdTe decorated graphene composite for sensitive detection of uric acid and dopamine.

    PubMed

    Yu, Hong-Wei; Jiang, Jing-Hui; Zhang, Ze; Wan, Guang-Cai; Liu, Zhi-Yong; Chang, Dong; Pan, Hong-Zhi

    2017-02-15

    The assembly of quantum dots (QDs) in a simply method opens up opportunities to obtain access to the full potential of assembled QDs by virtue of the collective properties of the ensembles. In this study, quantum dots CdTe and graphene (Gr) nanocomposite was constructed for the simultaneous determination of uric acid (UA) and dopamine (DA). The CdTe QDs-Gr nanocomposite was prepared by ultrasonication and was characterized with microscopic techniques. The nanocomposite modified electrode was characterized by cyclicvoltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effects between CdTe QDs and Gr, the fabricated electrode exhibited excellent electrochemical catalytic activities, good biological compatibility and high sensitivity toward the oxidation of UA and DA. Under optimum conditions, in the co-existence system the linear calibration plots for UA and DA were obtained over the range of 3-600 μM and 1-500 μM with detection limits of 1.0 μM and 0.33 μM. The fabricated biosensor also exhibits the excellent repeatability, reproducibility, storage stability along with acceptable selectivity. Copyright © 2016. Published by Elsevier Inc.

  9. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Sohn, Young-Soo; Kim, Chang-duk; Jang, Dae-ho

    2016-09-01

    A surface plasmon resonance (SPR) sensor system with a bimetallic chip has been utilized to sense the very low concentration of amyloid-beta (A β)(1-42) by measurement of the reflectance variation. The bimetallic chip was comprised of Au (10 nm) and Ag (40 nm) on Cr (2 nm)-coated BK-7 glass substrate. Protein A was used to efficiently immobilize the antibody of A β(1-42) on the surface of the bimetallic chip. The reflectance curve of the bimetallic chip represented a narrower linewidth compared to that of the conventional gold (Au) chip. The SPR sensor using the bimetallic chip in the intensity interrogation mode acquired the response of A β(1-42) at concentrations of 250, 500, 750 and 1,000 pg/ml. The calibration plot showed a linear relationship between the mean reflectance variation and the A β(1-42) concentration. The results proved that the SPR sensor system with the bimetallic chip in the intensity interrogation mode can successfully detect various concentrations of A β(1-42), including critical concentration, to help diagnose Alzheimer's disease.

  10. Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β-Fe 2O 3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed M.; Jamal, A.; Khan, Sher Bahadar; Faisal, M.

    2011-10-01

    Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nano-crystalline β-Fe 2O 3 was characterized using XRD techniques. β-Fe 2O 3 nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response ( I- V technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe 2O 3 NPs thin-film on GCE. The calibration plot was linear ( R = 0.9785) over the large range of 12.0 μM to 12.0 mM. The sensitivity was calculated as 2.1792 μA cm -2 mM -1 with a detection limit of 4.4 ± 0.10 μM in short response time (10.0 s).

  11. Simultaneous microemulsion liquid chromatographic analysis of fat-soluble vitamins in pharmaceutical formulations: optimization using genetic algorithm.

    PubMed

    Momenbeik, Fariborz; Roosta, Mostafa; Nikoukar, Ali Akbar

    2010-06-11

    An environmentally benign and simple method has been proposed for separation and determination of fat-soluble vitamins using isocratic microemulsion liquid chromatography. Optimization of parameters affecting the separation selectivity and efficiency including surfactant concentration, percent of cosurfactant (1-butanol), and percent of organic oily solvent (diethyl ether), temperature and pH were performed simultaneously using genetic algorithm method. A new software package, MLR-GA, was developed for this purpose. The results indicated that 73.6mM sodium dodecyl sulfate, 13.64% (v/v) 1-butanol, 0.48% (v/v) diethyl ether, column temperature of 32.5 degrees C and 0.02M phosphate buffer of pH 6.99 are the best conditions for separation of fat-soluble vitamins. At the optimized conditions, the calibration plots for the vitamins were obtained and detection limits (1.06-3.69microgmL(-1)), accuracy (recoveries>94.3), precision (RSD<3.96) and linearity (0.01-10mgmL(-1)) were estimated. Finally, the amount of vitamins in multivitamin syrup and a sample of fish oil capsule were determined. The results showed a good agreement with those reported by manufactures. Copyright 2010 Elsevier B.V. All rights reserved.

  12. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde ( p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (A R) against the concentration were linear in the range 50-500 μg mL -1, with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL -1. The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively.

  13. Preparation of PVA membrane for immobilization of GOD for glucose biosensor.

    PubMed

    Kumar, Jitendra; D'Souza, S F

    2008-03-15

    A membrane was prepared using polyvinyl alcohol (PVA) with low and high degree of polymerization (DOP), acetone, benzoic acid (BA) and was cross-linked by UV treatment. Membrane composition was optimized on the basis of swelling index. Membrane prepared with 12% low DOP and 8% high DOP of PVA, 2% BA, dissolved in buffer containing 20% acetone and cross-linked with UV treatment exhibited lower swelling index. Fourier transform infrared (FTIR) study of the membranes showed appearance of a strong band at approximately 2337 cm(-1) when UV was used for cross-linking in the presence of benzoic acid. Scanning electron microscope (SEM) study revealed that membrane cross-linked with UV treatment was smoother. Glucose oxidase (GOD)-PVA membrane was associated with the dissolved oxygen (DO) probe for biosensor reading. Glucose was detected on the basis of depletion of oxygen, when immobilized GOD oxidizes glucose to gluconolactone. A wide detection range, 0.9-225 mg/dl was estimated from the linear range of calibration plot of biosensor reading. Membranes were reused for 32 reactions without significant loss of activity and stored for 30 days (approximately 90% activity) at 4 degrees C. Membranes were also used with real blood samples.

  14. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy.

    PubMed

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (AR) against the concentration were linear in the range 50-500 μg mL(-1), with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL(-1). The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Electrochemical determination of L-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol-gel film.

    PubMed

    Hu, Yu-fang; Zhang, Zhao-hui; Zhang, Hua-bin; Luo, Li-juan; Yao, Shou-zhuo

    2011-04-15

    A sensitive and selective electrochemical sensor based on a polyaniline modified carbon electrode for the determination of L-phenylalanine has been proposed by utilizing β-cyclodextrin (β-CD) incorporated multi-walled carbon nanotube (MWNT) and imprinted sol-gel film. The electrochemical behavior of the sensor towards L-phenylalanine was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve. The surface morphologies of layer-by-layer assembly electrodes were displayed by scanning electron microscope (SEM). The response mechanism of the imprinted sensor for L-phenylalanine was based on the inclusion interaction of β-CD and molecular recognition capacity of the imprinted film for L-phenylalanine. A linear calibration plot was obtained covering the concentration range from 5.0 × 10(-7) to 1.0 × 10(-4) mol L(-1) with a detection limit of 1.0 × 10(-9) mol L(-1). With excellent sensitivity, selectivity, stability, reproducibility and recovery, the electrochemical imprinted sensor was used to detect L-phenylalanine in blood plasma samples successfully. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Dependences of the density of M 1- x R x F2 + x and R 1- y M y F3- y single crystals ( M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-01

    The density of single crystals of nonstoichiometric phases Ba1 - x La x F2 + x (0 ≤ x ≤ 0.5) and Sr0.8La0.2 - x Lu x F2.2 (0 ≤ x ≤ 0.2) with the fluorite (CaF2) structure type and R 1 - y Sr y F3 - y ( R = Pr, Nd; 0 ≤ y ≤ 0.15) with the tysonite (LaF3) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement the composition control of single crystals of superionic conductors M 1 - x R x F2 + x and R 1 - y M y F3 - y in practice, calibration graphs of X-ray density in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.

  17. Effect of heating rate on thermoluminescence output of LiF: Mg, Ti (TLD-100) in dosimetric applications

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh

    2018-07-01

    The luminiscence characteristics of thermoluminscence dosimeter LiF: Mg, Ti (TLD-100) irradiated to X-rays from 6 MV linac have been studied for wide range of 2-50 K/s readout linear heating rates. The reproducibility of glow curves for TLDs is found to be better at lower heating rates and depreciate at higher heating rates. The glow curve spectra were analysed using deconvolution procedure based on general-order kinetics. Shift in the peak maximum temperature per unit rise in heating rate for various peaks were found to decrease with heating rate. The TLDs irradiated with same dose exhibit decreasing TL counts with increase in the heating rate, which indicate the thermal quenching effect in TLD-100. The value of activation energy for each peak within the glow curve increases with heating rate. Calibration curves plotted for the dose range 0.4-1020 cGy exhibit decreasing slope with increasing readout heating rate. Corrections for temperature lag between the heating element and the dosimeter, and the effective heating rate (βeff) across the sample estimated using formulation proposed by Kitis and Tuyn and are found to be fairly applicable.

  18. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride

    NASA Astrophysics Data System (ADS)

    Barsoom, B. N.; Abdelsamad, A. M. E.; Adib, N. M.

    2006-07-01

    A simple and accurate spectrophotometric method for the determination of arbutin (glycosylated hydroquinone) is described. It is based on the oxidation of arbutin by periodate in presence of iodate. Excess periodate causes liberation of iodine at pH 8.0. The unreacted periodate is determined by measurement of the liberated iodine spectrophotometrically in the wavelength range (300-500 nm). A calibration curve was constructed for more accurate results and the correlation coefficient of linear regression analysis was -0.9778. The precision of this method was better than 6.17% R.S.D. ( n = 3). Regression analysis of Bear-Lambert plot shows good correlation in the concentration range 25-125 ug/ml. The identification limit was determined to be 25 ug/ml a detailed study of the reaction conditions was carried out, including effect of changing pH, time, temperature and volume of periodate. Analyzing pure and authentic samples containing arbutin tested the validity of the proposed method which has an average percent recovery of 100.86%. An alternative method is also proposed which involves a complexation reaction between arbutin and ferric chloride solution. The produced complex which is yellowish-green in color was determined spectophotometrically.

  19. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Castillo, Juan R.

    2004-06-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ.

  20. Analysis of characteristics of Si in blast furnace pig iron and calibration methods in the detection by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Mei, Yaguang; Cheng, Yuxin; Cheng, Shusen; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Zeng, Xiaoyan

    2017-10-01

    During the iron-making process in blast furnace, the Si content in liquid pig iron was usually used to evaluate the quality of liquid iron and thermal state of blast furnace. None effective method was found for rapid detecting the Si concentration of liquid iron. Laser-induced breakdown spectroscopy (LIBS) is a kind of atomic emission spectrometry technology based on laser ablation. Its obvious advantage is realizing rapid, in-situ, online analysis of element concentration in open air without sample pretreatment. The characteristics of Si in liquid iron were analyzed from the aspect of thermodynamic theory and metallurgical technology. The relationship between Si and C, Mn, S, P or other alloy elements were revealed based on thermodynamic calculation. Subsequently, LIBS was applied on rapid detection of Si of pig iron in this work. During LIBS detection process, several groups of standard pig iron samples were employed in this work to calibrate the Si content in pig iron. The calibration methods including linear, quadratic and cubic internal standard calibration, multivariate linear calibration and partial least squares (PLS) were compared with each other. It revealed that the PLS improved by normalization was the best calibration method for Si detection by LIBS.

  1. Predicting long-term catchment nutrient export: the use of nonlinear time series models

    NASA Astrophysics Data System (ADS)

    Valent, Peter; Howden, Nicholas J. K.; Szolgay, Jan; Komornikova, Magda

    2010-05-01

    After the Second World War the nitrate concentrations in European water bodies changed significantly as the result of increased nitrogen fertilizer use and changes in land use. However, in the last decades, as a consequence of the implementation of nitrate-reducing measures in Europe, the nitrate concentrations in water bodies slowly decrease. This causes that the mean and variance of the observed time series also changes with time (nonstationarity and heteroscedascity). In order to detect changes and properly describe the behaviour of such time series by time series analysis, linear models (such as autoregressive (AR), moving average (MA) and autoregressive moving average models (ARMA)), are no more suitable. Time series with sudden changes in statistical characteristics can cause various problems in the calibration of traditional water quality models and thus give biased predictions. Proper statistical analysis of these non-stationary and heteroscedastic time series with the aim of detecting and subsequently explaining the variations in their statistical characteristics requires the use of nonlinear time series models. This information can be then used to improve the model building and calibration of conceptual water quality model or to select right calibration periods in order to produce reliable predictions. The objective of this contribution is to analyze two long time series of nitrate concentrations of the rivers Ouse and Stour with advanced nonlinear statistical modelling techniques and compare their performance with traditional linear models of the ARMA class in order to identify changes in the time series characteristics. The time series were analysed with nonlinear models with multiple regimes represented by self-exciting threshold autoregressive (SETAR) and Markov-switching models (MSW). The analysis showed that, based on the value of residual sum of squares (RSS) in both datasets, SETAR and MSW models described the time-series better than models of the ARMA class. In most cases the relative improvement of SETAR models against AR models of first order was low ranging between 1% and 4% with the exception of the three-regime model for the River Stour time-series where the improvement was 48.9%. In comparison, the relative improvement of MSW models was between 44.6% and 52.5 for two-regime and from 60.4% to 75% for three-regime models. However, the visual assessment of models plotted against original datasets showed that despite a high value of RSS, some ARMA models could describe the analyzed time-series better than AR, MA and SETAR models with lower values of RSS. In both datasets MSW models provided a very good visual fit describing most of the extreme values.

  2. Validation of the Hong Kong Liver Cancer Staging System in Determining Prognosis of the North American Patients Following Intra-arterial Therapy

    PubMed Central

    Sohn, Jae Ho; Duran, Rafael; Zhao, Yan; Fleckenstein, Florian; Chapiro, Julius; Sahu, Sonia P.; Schernthaner, Rüdiger E.; Qian, Tianchen; Lee, Howard; Zhao, Li; Hamilton, James; Frangakis, Constantine; Lin, MingDe; Salem, Riad; Geschwind, Jean-Francois

    2018-01-01

    Background & Aims There is debate over the best way to stage hepatocellular carcinoma (HCC). We attempted to validate the prognostic and clinical utility of the recently developed Hong Kong Liver Cancer (HKLC) staging system, a hepatitis B-based model, and compared data with that from the Barcelona Clinic Liver Cancer (BCLC) staging system in a North American population who underwent intra-arterial therapy (IAT). Methods We performed a retrospective analysis of data from 1009 patients with HCC who underwent intra-arterial therapy from 2000 through 2014. Most patients had hepatitis C or unresectable tumors; all patients underwent IAT, with or without resection, transplantation, and/or systemic chemotherapy. We calculated HCC stage for each patient using 5-stage HKLC (HKLC-5) and 9-stage HKLC (HKLC-9) system classifications, as well as the BCLC system. Survival information was collected up until end of 2014 at which point living or unconfirmed patients were censored. We compared performance of the BCLC, HKLC-5, and HKLC-9 systems in predicting patient outcomes using Kaplan-Meier estimates, calibration plots, c-statistic, Akaike information criterion, and the likelihood ratio test. Results Median overall survival time, calculated from first IAT until date of death or censorship, for the entire cohort (all stages) was 9.8 months. The BCLC and HKLC staging systems predicted patient survival times with significance (P<.001). HKLC-5 and HKLC-9 each demonstrated good calibration. The HKLC-5 system outperformed the BCLC system in predicting patient survival times (HKLC c=0.71, Akaike information criterion=6242; BCLC c=0.64, Akaike information criterion=6320), reducing error in predicting survival time (HKLC reduced error by 14%, BCLC reduced error by 12%), and homogeneity (HKLC χ2=201; P<.001; BCLC χ2=119; P<.001) and monotonicity (HKLC linear trend χ2=193; P<.001; BCLC linear trend χ2=111; P<.001). Small proportions of patients with HCC of stages IV or V, according to the HKLC system, survived for 6 months and 4 months, respectively. Conclusion In a retrospective analysis of patients who underwent IAT for unresectable HCC, we found the HKLC-5 staging system to have the best combination of performances in survival separation, calibration, and discrimination; it consistently outperformed the BCLC system in predicting survival times of patients. The HKLC system identified patients with HCC of stages IV and V who are unlikely to benefit from IAT. PMID:27847278

  3. Validation of the Hong Kong Liver Cancer Staging System in Determining Prognosis of the North American Patients Following Intra-arterial Therapy.

    PubMed

    Sohn, Jae Ho; Duran, Rafael; Zhao, Yan; Fleckenstein, Florian; Chapiro, Julius; Sahu, Sonia; Schernthaner, Rüdiger E; Qian, Tianchen; Lee, Howard; Zhao, Li; Hamilton, James; Frangakis, Constantine; Lin, MingDe; Salem, Riad; Geschwind, Jean-Francois

    2017-05-01

    There is debate over the best way to stage hepatocellular carcinoma (HCC). We attempted to validate the prognostic and clinical utility of the recently developed Hong Kong Liver Cancer (HKLC) staging system, a hepatitis B-based model, and compared data with that from the Barcelona Clinic Liver Cancer (BCLC) staging system in a North American population that underwent intra-arterial therapy (IAT). We performed a retrospective analysis of data from 1009 patients with HCC who underwent IAT from 2000 through 2014. Most patients had hepatitis C or unresectable tumors; all patients underwent IAT, with or without resection, transplantation, and/or systemic chemotherapy. We calculated HCC stage for each patient using 5-stage HKLC (HKLC-5) and 9-stage HKLC (HKLC-9) system classifications, and the BCLC system. Survival information was collected up until the end of 2014 at which point living or unconfirmed patients were censored. We compared performance of the BCLC, HKLC-5, and HKLC-9 systems in predicting patient outcomes using Kaplan-Meier estimates, calibration plots, C statistic, Akaike information criterion, and the likelihood ratio test. Median overall survival time, calculated from first IAT until date of death or censorship, for the entire cohort (all stages) was 9.8 months. The BCLC and HKLC staging systems predicted patient survival times with significance (P < .001). HKLC-5 and HKLC-9 each demonstrated good calibration. The HKLC-5 system outperformed the BCLC system in predicting patient survival times (HKLC C = 0.71, Akaike information criterion = 6242; BCLC C = 0.64, Akaike information criterion = 6320), reducing error in predicting survival time (HKLC reduced error by 14%, BCLC reduced error by 12%), and homogeneity (HKLC chi-square = 201, P < .001; BCLC chi-square = 119, P < .001) and monotonicity (HKLC linear trend chi-square = 193, P < .001; BCLC linear trend chi-square = 111, P < .001). Small proportions of patients with HCC of stages IV or V, according to the HKLC system, survived for 6 months and 4 months, respectively. In a retrospective analysis of patients who underwent IAT for unresectable HCC, we found the HKLC-5 staging system to have the best combination of performances in survival separation, calibration, and discrimination; it consistently outperformed the BCLC system in predicting survival times of patients. The HKLC system identified patients with HCC of stages IV and V who are unlikely to benefit from IAT. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Calibration of the Concorde radiation detection instrument and measurements at SST altitude.

    DOT National Transportation Integrated Search

    1971-06-01

    Performance tests were carried out on a solar cosmic radiation detection instrument developed for the Concorde SST. The instrument calibration curve (log dose-rate vs instrument reading) was reasonably linear from 0.004 to 1 rem/hr for both gamma rad...

  5. Evaluation of Piecewise Polynomial Equations for Two Types of Thermocouples

    PubMed Central

    Chen, Andrew; Chen, Chiachung

    2013-01-01

    Thermocouples are the most frequently used sensors for temperature measurement because of their wide applicability, long-term stability and high reliability. However, one of the major utilization problems is the linearization of the transfer relation between temperature and output voltage of thermocouples. The linear calibration equation and its modules could be improved by using regression analysis to help solve this problem. In this study, two types of thermocouple and five temperature ranges were selected to evaluate the fitting agreement of different-order polynomial equations. Two quantitative criteria, the average of the absolute error values |e|ave and the standard deviation of calibration equation estd, were used to evaluate the accuracy and precision of these calibrations equations. The optimal order of polynomial equations differed with the temperature range. The accuracy and precision of the calibration equation could be improved significantly with an adequate higher degree polynomial equation. The technique could be applied with hardware modules to serve as an intelligent sensor for temperature measurement. PMID:24351627

  6. Diagnostic utility of appetite loss in addition to existing prediction models for community-acquired pneumonia in the elderly: a prospective diagnostic study in acute care hospitals in Japan

    PubMed Central

    Yamamoto, Yosuke; Terada, Kazuhiko; Ohta, Mitsuyasu; Mikami, Wakako; Yokota, Hajime; Hayashi, Michio; Miyashita, Jun; Azuma, Teruhisa; Fukuma, Shingo; Fukuhara, Shunichi

    2017-01-01

    Objective Diagnosis of community-acquired pneumonia (CAP) in the elderly is often delayed because of atypical presentation and non-specific symptoms, such as appetite loss, falls and disturbance in consciousness. The aim of this study was to investigate the external validity of existing prediction models and the added value of the non-specific symptoms for the diagnosis of CAP in elderly patients. Design Prospective cohort study. Setting General medicine departments of three teaching hospitals in Japan. Participants A total of 109 elderly patients who consulted for upper respiratory symptoms between 1 October 2014 and 30 September 2016. Main outcome measures The reference standard for CAP was chest radiograph evaluated by two certified radiologists. The existing models were externally validated for diagnostic performance by calibration plot and discrimination. To evaluate the additional value of the non-specific symptoms to the existing prediction models, we developed an extended logistic regression model. Calibration, discrimination, category-free net reclassification improvement (NRI) and decision curve analysis (DCA) were investigated in the extended model. Results Among the existing models, the model by van Vugt demonstrated the best performance, with an area under the curve of 0.75(95% CI 0.63 to 0.88); calibration plot showed good fit despite a significant Hosmer-Lemeshow test (p=0.017). Among the non-specific symptoms, appetite loss had positive likelihood ratio of 3.2 (2.0–5.3), negative likelihood ratio of 0.4 (0.2–0.7) and OR of 7.7 (3.0–19.7). Addition of appetite loss to the model by van Vugt led to improved calibration at p=0.48, NRI of 0.53 (p=0.019) and higher net benefit by DCA. Conclusions Information on appetite loss improved the performance of an existing model for the diagnosis of CAP in the elderly. PMID:29122806

  7. Radiometric and Polarimetric Accuracy Assessment and Calibration of the Hyper-Angular Rainbow Polarimeter (HARP) Instrument

    NASA Astrophysics Data System (ADS)

    McBride, B.; Martins, J. V.; Fernandez Borda, R. A.; Barbosa, H. M.

    2017-12-01

    The Laboratory for Aerosols, Clouds, and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) present a novel, wide FOV, hyper-angular imaging polarimeter for the microphysical sampling of clouds and aerosols from aircraft and space. The instrument, the Hyper-Angular Rainbow Polarimeter (HARP), is a precursor to the multi-angle imaging polarimeter solicited by the upcoming NASA Aerosols, Clouds, and Ecosystems (ACE) mission. HARP currently operates in two forms: a spaceborne CubeSat slated for a January 2018 launch to the ISS orbit, and an identical aircraft platform that participated in the Lake Michigan Ozone Study (LMOS) and Aerosol Characterization from Polarimeter and Lidar (ACEPOL) NASA campaigns in 2017. To ensure and validate the instrument's ability to produce high quality Level 2 cloud and aerosol microphysical products, a comprehensive calibration scheme that accounts for flatfielding, radiometry, and all optical interference processes that contribute to the retrieval of Stokes parameters I, Q, and U, is applied across the entirety of HARP's 114° FOV. We present an innovative calibration algorithm that convolves incident polarization from a linear polarization state generator with intensity information observed at three distinct linear polarizations. The retrieved results are pixel-level, modified Mueller matrices that characterize the entire HARP optical assembly, without the need to characterize every individual element or perform ellipsometric studies. Here we show results from several pre- and post- LMOS campaign radiometric calibrations at NASA GSFC and polarimetric calibration using a "polarization dome" that allows for full-FOV characterization of Stokes parameters I, Q, and U. The polarization calibration is verified by passing unpolarized light through partially-polarized, tilted glass plates with well-characterized degree of linear polarization (DoLP). We apply this calibration to a stratocumulous cloud deck case observed during the LMOS campaign on June 19 2017, and assess the polarized cloudbow for cloud droplet effective radius and variance information at 0.67µm.

  8. Effects of environment of the activated nonradiative decay of the /sup 3/A/sub 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milder, S.J.

    1985-10-09

    The effect of environment on the temperature dependence of the nonradiative decay of the /sup 3/A/sup 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/ (TMB = 2,5-dimethyl-2,5-diisocyanohexane) is studied. The temperature dependence of the observed nonradiative decay rate can be approximately fit to an Arrhenius-like expression: k/sub obsd/ = k/sub 0/ + Ae/sup -E/sub a//RT/. Arrhenius parameters are obtained in seven different environments, with the activation energies varying from 1970 to 3420 cm/sup -1/. A plot of 1n A vs. E/sub a/, known as a Barclay-Butler plot, is linear, with slope = 3.3 x 10/sup -3/ cm and y interceptmore » = 20.0. The linear Barclay-Butler plot suggests that the activated decay from the /sup 3/A/sub 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/ has the same mechanism, regardless of environment. Single-crystal, dilute-plastic, and dilute-crystal environments have been tested. 13 references, 4 figures.« less

  9. Improvements in Calibration and Analysis of the CTBT-relevant Radioxenon Isotopes with High Resolution SiPIN-based Electron Detectors

    NASA Astrophysics Data System (ADS)

    Khrustalev, K.

    2016-12-01

    Current process for the calibration of the beta-gamma detectors used for radioxenon isotope measurements for CTBT purposes is laborious and time consuming. It uses a combination of point sources and gaseous sources resulting in differences between energy and resolution calibrations. The emergence of high resolution SiPIN based electron detectors allows improvements in the calibration and analysis process to be made. Thanks to high electron resolution of SiPIN detectors ( 8-9 keV@129 keV) compared to plastic scintillators ( 35 keV@129keV) there are a lot more CE peaks (from radioxenon and radon progenies) can be resolved and used for energy and resolution calibration in the energy range of the CTBT-relevant radioxenon isotopes. The long term stability of the SiPIN energy calibration allows one to significantly reduce the time of the QC measurements needed for checking the stability of the E/R calibration. The currently used second order polynomials for the E/R calibration fitting are unphysical and shall be replaced by a linear energy calibration for NaI and SiPIN, owing to high linearity and dynamic range of the modern digital DAQ systems, and resolution calibration functions shall be modified to reflect the underlying physical processes. Alternatively, one can completely abandon the use of fitting functions and use only point-values of E/R (similar to the efficiency calibration currently used) at the energies relevant for the isotopes of interest (ROI - Regions Of Interest ). Current analysis considers the detector as a set of single channel analysers, with an established set of coefficients relating the positions of ROIs with the positions of the QC peaks. The analysis of the spectra can be made more robust using peak and background fitting in the ROIs with a single free parameter (peak area) of the potential peaks from the known isotopes and a fixed E/R calibration values set.

  10. Effects of vegetation, a clay cap and environmental variables on 222Rn fluence rate from reclaimed U mill tailings.

    PubMed

    Morris, R C; Fraley, L

    1989-04-01

    We measured 222Rn fluence rate and several environmental variables on two plots with U mill tailings buried beneath 30 cm of overburden and 20 cm of topsoil. An additional 30 cm of clay covered the tailings on one plot and each plot was subdivided into bare soil and vegetated subplots. We used linear correlation, two-way ANOVA and stepwise multiple regression to analyze the effects of the plot characteristics and the environmental variables on 222Rn fluence rate. The most important effect on 222Rn fluence rates from these plots was the combination of a clay cap and a vegetated surface. The mean annual fluence rate from the plot having both of these characteristics (520 +/- 370 mBq m-2 s-1) was over three times that of the vegetated plot without a clay cap (170 +/- 130 mBq m-2 s-1) and 18 times that of the bare plot with a clay cap (29 +/- 13 mBq m-2 s-1). The interaction effect may have been due to the growth of roots in the moist clay and active transport of dissolved 222Rn to the surface in water. This speculation is supported by the observation that on vegetated plots with a clay cap, moisture in the clay enhanced the fluence rate.

  11. Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot.

    PubMed

    Ouyang, Gaoxiang; Zhu, Xiangyang; Ju, Zhaojie; Liu, Honghai

    2014-01-01

    Recognizing human hand grasp movements through surface electromyogram (sEMG) is a challenging task. In this paper, we investigated nonlinear measures based on recurrence plot, as a tool to evaluate the hidden dynamical characteristics of sEMG during four different hand movements. A series of experimental tests in this study show that the dynamical characteristics of sEMG data with recurrence quantification analysis (RQA) can distinguish different hand grasp movements. Meanwhile, adaptive neuro-fuzzy inference system (ANFIS) is applied to evaluate the performance of the aforementioned measures to identify the grasp movements. The experimental results show that the recognition rate (99.1%) based on the combination of linear and nonlinear measures is much higher than those with only linear measures (93.4%) or nonlinear measures (88.1%). These results suggest that the RQA measures might be a potential tool to reveal the sEMG hidden characteristics of hand grasp movements and an effective supplement for the traditional linear grasp recognition methods.

  12. Application of Composite Small Calibration Objects in Traffic Accident Scene Photogrammetry

    PubMed Central

    Chen, Qiang; Xu, Hongguo; Tan, Lidong

    2015-01-01

    In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies. PMID:26011052

  13. Measurement of the ω → π+π-π0 Dalitz plot distribution

    NASA Astrophysics Data System (ADS)

    Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khan, F. A.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Varma, R.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; Kubis, B.; Leupold, S.

    2017-07-01

    Using the production reactions pd →3He ω and pp → ppω, the Dalitz plot distribution for the ω →π+π-π0 decay is studied with the WASA detector at COSY, based on a combined data sample of (4.408 ± 0.042) ×104 events. The Dalitz plot density is parametrised by a product of the P-wave phase space and a polynomial expansion in the normalised polar Dalitz plot variables Z and ϕ. For the first time, a deviation from pure P-wave phase space is observed with a significance of 4.1σ. The deviation is parametrised by a linear term 1 + 2 αZ, with α determined to be + 0.147 ± 0.036, consistent with the expectations of ρ-meson-type final-state interactions of the P-wave pion pairs.

  14. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collection equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  15. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  16. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collection equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  17. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collection equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  18. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used the biogeochemical model, PnET-BGC. The model was calibrated to the study watersheds using observations from the natural and experimental ice storms. Future projections for ice storm events were estimated from an advanced climate model and applied to the calibrated PnET-BGC model to simulate future impacts of ice storms on the northern hardwood forests.

  19. FORTRAN plotting subroutines for the space plasma laboratory

    NASA Technical Reports Server (NTRS)

    Williams, R.

    1983-01-01

    The computer program known as PLOTRW was custom made to satisfy some of the graphics requirements for the data collected in the Space Plasma Laboratory at the Johnson Space Center (JSC). The general requirements for the program were as follows: (1) all subroutines shall be callable through a FORTRAN source program; (2) all graphs shall fill one page and be properly labeled; (3) there shall be options for linear axes and logarithmic axes; (4) each axis shall have tick marks equally spaced with numeric values printed at the beginning tick mark and at the last tick mark; and (5) there shall be three options for plotting. These are: (1) point plot, (2) line plot and (3) point-line plot. The subroutines were written in FORTRAN IV for the LSI-11 Digital equipment Corporation (DEC) Computer. The program is now operational and can be run on any TEKTRONICX graphics terminal that uses a DEC Real-Time-11 (RT-11) operating system.

  20. FlowCal: A user-friendly, open source software tool for automatically converting flow cytometry data from arbitrary to calibrated units

    PubMed Central

    Castillo-Hair, Sebastian M.; Sexton, John T.; Landry, Brian P.; Olson, Evan J.; Igoshin, Oleg A.; Tabor, Jeffrey J.

    2017-01-01

    Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, non-proprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae mVenus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond. PMID:27110723

  1. Aircraft Airframe Cost Estimation Using a Random Coefficients Model

    DTIC Science & Technology

    1979-12-01

    approach will also be used here. 2 Model Formulation Several different types of equations could be used for the basic form of the CER, such as linear ...5) Marcotte developed several CER’s for fighter aircraft airframes using the log- linear model . A plot of the residuals from the CER for recurring...of the natural logarithm. Ordinary Least Squares The ordinary least squares procedure starts with the equation for the general linear model . The

  2. Determination of perfluorinated compounds in fish fillet homogenates: method validation and application to fillet homogenates from the Mississippi River.

    PubMed

    Malinsky, Michelle Duval; Jacoby, Cliffton B; Reagen, William K

    2011-01-10

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100±13% with a precision (%RSD) ≤18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Multiple Use One-Sided Hypotheses Testing in Univariate Linear Calibration

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, K.; Kulkarni, Pandurang M.; Mathew, Thomas

    1996-01-01

    Consider a normally distributed response variable, related to an explanatory variable through the simple linear regression model. Data obtained on the response variable, corresponding to known values of the explanatory variable (i.e., calibration data), are to be used for testing hypotheses concerning unknown values of the explanatory variable. We consider the problem of testing an unlimited sequence of one sided hypotheses concerning the explanatory variable, using the corresponding sequence of values of the response variable and the same set of calibration data. This is the situation of multiple use of the calibration data. The tests derived in this context are characterized by two types of uncertainties: one uncertainty associated with the sequence of values of the response variable, and a second uncertainty associated with the calibration data. We derive tests based on a condition that incorporates both of these uncertainties. The solution has practical applications in the decision limit problem. We illustrate our results using an example dealing with the estimation of blood alcohol concentration based on breath estimates of the alcohol concentration. In the example, the problem is to test if the unknown blood alcohol concentration of an individual exceeds a threshold that is safe for driving.

  4. Smisc - A collection of miscellaneous functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon Sego, PNNL

    2015-08-31

    A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less

  5. Structural lineament and pattern analysis of Missouri, using LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Kisvarsanyi, G. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Major linear, circular, and arcuate traces were observed on LANDSAT imagery of Missouri. Lineaments plotted within the state boundaries range from 20 to nearly 500 km in length. Several extend into adjoining states. Lineaments plots indicate a distinct pattern and in general reflect structural features of the Precambrian basement of the platform. Coincidence of lineaments traced from the imagery and known structural features in Missouri is high, thus supporting a causative relation between them. The lineament pattern apparently reveals a fundamental style of the deformation of the intracontinental craton. Dozens of heretofore unknown linear features related to epirogenic movements and deformation of this segment of the continental crust were delineated. Lineaments and mineralization are interrelated in a geometrically classifiable pattern.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodde, O.E.; Leifert, F.J.; Krehl, H.J.

    We determined the amount of beta 1- and beta 2-adrenoceptors in right and left atria and ventricles of rabbits. For this purpose inhibition of specific (-)-/sup 3/H-dihydroalprenolol ((-)-/sup 3/H-DHA) binding (5 nM) by beta 1-selective (practolol, metoprolol) and beta 2-selective (zinterol, IPS 339) adrenergic drugs was determined and analyzed by pseudo-Scatchard (Hofstee) plots. For both atria, inhibition of binding by the four selective beta-adrenergic drugs resulted in non-linear Hofstee plots, suggesting the coexistence of both beta-adrenoceptor subtypes. From these plots we calculated a beta 1:beta 2-adrenoceptor ratio of 72:28 for the right atrium and of 82:18 for the left. Inmore » contrast, only a very small amount of beta 2-adrenoceptors (approximately 5-7% of the total beta-adrenoceptor population) could be detected in the ventricles. For comparison we analyzed the inhibition of specific (-)-/sup 3/H-DHA binding in tissues with homogeneous population of beta-adrenoceptors (beta 1:guinea pig left ventricle; beta 2: cerebellum of mature rats). For both tissues the four selective beta-adrenergic drugs showed linear Hofstee plots, demonstrating that in tissues with homogeneous beta-receptor population interaction of each drug with the receptor followed simple mass-action kinetics. We conclude that beta 1- and beta 2-adrenoceptors coexist in rabbit atria while the ventricles are predominantly endowed the beta 1-adrenoceptors.« less

  7. A Linear Viscoelastic Model Calibration of Sylgard 184.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Kevin Nicholas; Brown, Judith Alice

    2017-04-01

    We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANLmore » data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.« less

  8. A non-linear piezoelectric actuator calibration using N-dimensional Lissajous figure

    NASA Astrophysics Data System (ADS)

    Albertazzi, A.; Viotti, M. R.; Veiga, C. L. N.; Fantin, A. V.

    2016-08-01

    Piezoelectric translators (PZTs) are very often used as phase shifters in interferometry. However, they typically present a non-linear behavior and strong hysteresis. The use of an additional resistive or capacitive sensor make possible to linearize the response of the PZT by feedback control. This approach works well, but makes the device more complex and expensive. A less expensive approach uses a non-linear calibration. In this paper, the authors used data from at least five interferograms to form N-dimensional Lissajous figures to establish the actual relationship between the applied voltages and the resulting phase shifts [1]. N-dimensional Lissajous figures are formed when N sinusoidal signals are combined in an N-dimensional space, where one signal is assigned to each axis. It can be verified that the resulting Ndimensional ellipsis lays in a 2D plane. By fitting an ellipsis equation to the resulting 2D ellipsis it is possible to accurately compute the resulting phase value for each interferogram. In this paper, the relationship between the resulting phase shift and the applied voltage is simultaneously established for a set of 12 increments by a fourth degree polynomial. The results in speckle interferometry show that, after two or three interactions, the calibration error is usually smaller than 1°.

  9. CalPro: a spreadsheet program for the management of California mixed-conifer stands.

    Treesearch

    Jingjing Liang; Joseph Buongiorno; Robert A. Monserud

    2004-01-01

    CalPro is an add-in program developed to work with Microsoft Excel to simulate the growth and management of uneven-aged mixed-conifer stands in California. Its built-in growth model was calibrated from 177 uneven-aged plots on industry and other private lands. Stands are described by the number of trees per acre in each of nineteen 2-inch diameter classes in...

  10. Calibration and use of an interactive-accounting model to simulate dissolved solids, streamflow, and water-supply operations in the Arkansas River basin, Colorado

    USGS Publications Warehouse

    Burns, A.W.

    1989-01-01

    An interactive-accounting model was used to simulate dissolved solids, streamflow, and water supply operations in the Arkansas River basin, Colorado. Model calibration of specific conductance to streamflow relations at three sites enabled computation of dissolved-solids loads throughout the basin. To simulate streamflow only, all water supply operations were incorporated in the regression relations for streamflow. Calibration for 1940-85 resulted in coefficients of determination that ranged from 0.89 to 0.58, and values in excess of 0.80 were determined for 16 of 20 nodes. The model then incorporated 74 water users and 11 reservoirs to simulate the water supply operations for two periods, 1943-74 and 1975-85. For the 1943-74 calibration, coefficients of determination for streamflow ranged from 0.87 to 0.02. Calibration of the water supply operations resulted in coefficients of determination that ranged from 0.87 to negative for simulated irrigation diversions of 37 selected water users. Calibration for 1975-85 was not evaluated statistically, but average values and plots of reservoir contents indicated reasonableness of the simulation. To demonstrate the utility of the model, six specific alternatives were simulated to consider effects of potential enlargement of Pueblo Reservoir. Three general major alternatives were simulated: the 1975-85 calibrated model data, the calibrated model data with an addition of 30 cu ft/sec in Fountain Creek flows, and the calibrated model data plus additional municipal water in storage. These three major alternatives considered the options of reservoir enlargement or no enlargement. A 40,000-acre-foot reservoir enlargement resulted in average increases of 2,500 acre-ft in transmountain diversions, of 800 acre-ft in storage diversions, and of 100 acre-ft in winter-water storage. (USGS)

  11. NURE aerial gamma-ray and magnetic-reconnaissance survey portions of New Mexico, Arizona, and Texas. Volume I. Instrumentation and data reduction. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    As part of the Department of Energy (DOE) National Uranium Resource Evaluation Program, a rotary-wing high sensitivity radiometric and magnetic survey was flown covering portions of the State of New Mexico, Arizona and Texas. The survey encompassed six 1:250,000 scale quadrangles, Holbrook, El Paso, Las Cruces, Carlsbad, Fort Sumner and Roswell. The survey was flown with a Sikorsky S58T helicopter equipped with a high sensitivity gamma ray spectrometer which was calibrated at the DOE calibration facilities at Walker Field in Grand Junction, Colorado, and the Dynamic Test Range at Lake Mead, Arizona. The radiometric data were processed to compensate formore » Compton scattering effects and altitude variations. The data were normalized to 400 feet terrain clearance. The reduced data is presented in the form of stacked profiles, standard deviation anomaly plots, histogram plots and microfiche listings. The results of the geologic interpretation of the radiometric data together with the profiles, anomaly maps and histograms are presented in the individual quadrangle reports. The survey was awarded to LKB Resources, Inc. which completed the data acquisition. In April, 1980 Carson Helicopters, Inc. and Carson Geoscience Company agreed to manage the project and complete delivery of this final report.« less

  12. Prediction of non-biochemical recurrence rate after radical prostatectomy in a Japanese cohort: development of a postoperative nomogram.

    PubMed

    Okubo, Hidenori; Ohori, Makoto; Ohno, Yoshio; Nakashima, Jun; Inoue, Rie; Nagao, Toshitaka; Tachibana, Masaaki

    2014-05-01

    To develop a nomogram based on postoperative factors and prostate-specific antigen levels to predict the non-biochemical recurrence rate after radical prostatectomy ina Japanese cohort. A total of 606 Japanese patients with T1-3N0M0 prostate cancer who underwent radical prostatectomy and pelvic lymph node dissection at Tokyo Medical University hospital from 2000 to 2010 were studied. A nomogram was constructed based on Cox hazard regression analysis evaluating the prognostic significance of serum prostate-specific antigen and pathological factors in the radical prostatectomy specimens. The discriminating ability of the nomogram was assessed by the concordance index (C-index), and the predicted and actual outcomes were compared with a bootstrapped calibration plot. With a mean follow up of 60.0 months, a total of 187 patients (30.9%) experienced biochemical recurrence, with a 5-year non-biochemical recurrence rate of 72.3%. Based on a Cox hazard regression model, a nomogram was constructed to predict non-biochemical recurrence using serum prostate-specific antigen level and pathological features in radical prostatectomy specimens. The concordance index was 0.77, and the calibration plots appeared to be accurate. The postoperative nomogram described here can provide valuable information regarding the need for adjuvant/salvage radiation or hormonal therapy in patients after radical prostatectomy.

  13. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.

    2017-02-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  14. Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) with Standard Reference Line for the Analysis of Stainless Steel.

    PubMed

    Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo

    2017-08-01

    In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.

  15. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall be... beam of light from the light source emanates, and the recorder response shall be noted. Filters with...

  16. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or... ±0.3 percent of full scale on the zero, the best-fit non-linear equation which represents the data to within these limits shall be used to determine concentration. (d) Oxygen interference optimization...

  17. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or... ±0.3 percent of full scale on the zero, the best-fit non-linear equation which represents the data to within these limits shall be used to determine concentration. (d) Oxygen interference optimization...

  18. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each range calibrated, if the deviation from a least-squares best-fit straight line is 2 percent or... ±0.3 percent of full scale on the zero, the best-fit non-linear equation which represents the data to within these limits shall be used to determine concentration. (d) Oxygen interference optimization...

  19. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...

  20. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...

  1. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...

  2. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...

  3. Multivariate calibration on NIR data: development of a model for the rapid evaluation of ethanol content in bakery products.

    PubMed

    Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena

    2007-11-05

    A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.

  4. HST archive primer, version 4.1

    NASA Technical Reports Server (NTRS)

    Fruchter, A. (Editor); Baum, S. (Editor)

    1994-01-01

    This version of the HST Archive Primer provides the basic information a user needs to know to access the HST archive via StarView the new user interface to the archive. Using StarView, users can search for observations interest, find calibration reference files, and retrieve data from the archive. Both the terminal version of StarView and the X-windows version feature a name resolver which simplifies searches of the HST archive based on target name. In addition, the X-windows version of StarView allows preview of all public HST data; compressed versions of public images are displayed via SAOIMAGE, while spectra are plotted using the public plotting package, XMGR. Finally, the version of StarView described here features screens designed for observers preparing Cycle 5 HST proposals.

  5. SpcAudace: Spectroscopic processing and analysis package of Audela software

    NASA Astrophysics Data System (ADS)

    Mauclaire, Benjamin

    2017-11-01

    SpcAudace processes long slit spectra with automated pipelines and performs astrophysical analysis of the latter data. These powerful pipelines do all the required steps in one pass: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or annotated time series plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software.

  6. A new method for automated dynamic calibration of tipping-bucket rain gauges

    USGS Publications Warehouse

    Humphrey, M.D.; Istok, J.D.; Lee, J.Y.; Hevesi, J.A.; Flint, A.L.

    1997-01-01

    Existing methods for dynamic calibration of tipping-bucket rain gauges (TBRs) can be time consuming and labor intensive. A new automated dynamic calibration system has been developed to calibrate TBRs with minimal effort. The system consists of a programmable pump, datalogger, digital balance, and computer. Calibration is performed in two steps: 1) pump calibration and 2) rain gauge calibration. Pump calibration ensures precise control of water flow rates delivered to the rain gauge funnel; rain gauge calibration ensures precise conversion of bucket tip times to actual rainfall rates. Calibration of the pump and one rain gauge for 10 selected pump rates typically requires about 8 h. Data files generated during rain gauge calibration are used to compute rainfall intensities and amounts from a record of bucket tip times collected in the field. The system was tested using 5 types of commercial TBRs (15.2-, 20.3-, and 30.5-cm diameters; 0.1-, 0.2-, and 1.0-mm resolutions) and using 14 TBRs of a single type (20.3-cm diameter; 0.1-mm resolution). Ten pump rates ranging from 3 to 154 mL min-1 were used to calibrate the TBRs and represented rainfall rates between 6 and 254 mm h-1 depending on the rain gauge diameter. All pump calibration results were very linear with R2 values greater than 0.99. All rain gauges exhibited large nonlinear underestimation errors (between 5% and 29%) that decreased with increasing rain gauge resolution and increased with increasing rainfall rate, especially for rates greater than 50 mm h-1. Calibration curves of bucket tip time against the reciprocal of the true pump rate for all rain gauges also were linear with R2 values of 0.99. Calibration data for the 14 rain gauges of the same type were very similar, as indicated by slope values that were within 14% of each other and ranged from about 367 to 417 s mm h-1. The developed system can calibrate TBRs efficiently, accurately, and virtually unattended and could be modified for use with other rain gauge designs. The system is now in routine use to calibrate TBRs in a large rainfall collection network at Yucca Mountain, Nevada.

  7. Linear Calibration of Radiographic Mineral Density Using Video-Digitizing Methods

    NASA Technical Reports Server (NTRS)

    Martin, R. Bruce; Papamichos, Thomas; Dannucci, Greg A.

    1990-01-01

    Radiographic images can provide quantitative as well as qualitative information if they are subjected to densitometric analysis. Using modem video-digitizing techniques, such densitometry can be readily accomplished using relatively inexpensive computer systems. However, such analyses are made more difficult by the fact that the density values read from the radiograph have a complex, nonlinear relationship to bone mineral content. This article derives the relationship between these variables from the nature of the intermediate physical processes, and presents a simple mathematical method for obtaining a linear calibration function using a step wedge or other standard.

  8. Linear Calibration of Radiographic Mineral Density Using Video-Digitizing Methods

    NASA Technical Reports Server (NTRS)

    Martin, R. Bruce; Papamichos, Thomas; Dannucci, Greg A.

    1990-01-01

    Radiographic images can provide quantitative as well as qualitative information if they are subjected to densitometric analysis. Using modern video-digitizing techniques, such densitometry can be readily accomplished using relatively inexpensive computer systems. However, such analyses are made more difficult by the fact that the density values read from the radiograph have a complex, nonlinear relationship to bone mineral content. This article derives the relationship between these variables from the nature of the intermediate physical processes, and presents a simple mathematical method for obtaining a linear calibration function using a step wedge or other standard.

  9. Comparison between a model-based and a conventional pyramid sensor reconstructor.

    PubMed

    Korkiakoski, Visa; Vérinaud, Christophe; Le Louarn, Miska; Conan, Rodolphe

    2007-08-20

    A model of a non-modulated pyramid wavefront sensor (P-WFS) based on Fourier optics has been presented. Linearizations of the model represented as Jacobian matrices are used to improve the P-WFS phase estimates. It has been shown in simulations that a linear approximation of the P-WFS is sufficient in closed-loop adaptive optics. Also a method to compute model-based synthetic P-WFS command matrices is shown, and its performance is compared to the conventional calibration. It was observed that in poor visibility the new calibration is better than the conventional.

  10. Review of the energy check of an electron-only linear accelerator over a 6 year period: sensitivity of the technique to energy shift.

    PubMed

    Biggs, Peter J

    2003-04-01

    The calibration and monthly QA of an electron-only linear accelerator dedicated to intra-operative radiation therapy has been reviewed. Since this machine is calibrated prior to every procedure, there was no necessity to adjust the output calibration at any time except, perhaps, when the magnetron is changed, provided the machine output is reasonably stable. This gives a unique opportunity to study the dose output of the machine per monitor unit, variation in the timer error, flatness and symmetry of the beam and the energy check as a function of time. The results show that, although the dose per monitor unit varied within +/- 2%, the timer error within +/- 0.005 MU and the asymmetry within 1-2%, none of these parameters showed any systematic change with time. On the other hand, the energy check showed a linear drift with time for 6, 9, and 12 MeV (2.1, 3.5, and 2.5%, respectively, over 5 years), while at 15 and 18 MeV, the energy check was relatively constant. It is further shown that based on annual calibrations and RPC TLD checks, the energy of each beam is constant and that therefore the energy check is an exquisitely sensitive one. The consistency of the independent checks is demonstrated.

  11. Uptake and release of polar compounds in SDB-RPS Empore disks; implications for their use as passive samplers.

    PubMed

    Shaw, Melanie; Eaglesham, Geoff; Mueller, Jochen F

    2009-03-01

    Demand for sensitive monitoring tools to detect trace levels of pollutants in aquatic environments has led to investigation of sorbents to complement the suite of passive sampling phases currently in use. Styrenedivinylbenzene-reverse phase sulfonated (SDB-RPS) sorbents have a high affinity for polar organic compounds such as herbicides. However, the applicability of the performance reference compound (PRC) concept as an in situ calibration method for passive samplers that use this or similar sampling phases has yet to be validated. In this study, laboratory based calibration experiments were conducted to compare the uptake kinetics of several key pesticides with the release of three pre-loaded PRCs in Chemcatchers using SDB-RPS Empore disks deployed with a membrane and without (naked). For compounds with log K(OW) values ranging from 1.8 to 4.0, uptake into samplers with a membrane and without was linear over 30d and 10d, respectively. While uptake was linear and reproducible, PRC loss was not linear, meaning that the dissipation rates of these PRCs cannot be used to estimate field exposure conditions on uptake rates. An alternative in situ calibration technique using PRC loaded polydimethylsiloxane (PDMS) disks deployed alongside the Empore disk samplers as a surrogate calibration phase has been tested in the current study and shows promise for future applications.

  12. The role of enzyme and substrate concentration in the evaluation of serum angiotensin converting enzyme (ACE) inhibition by enalaprilat in vitro.

    PubMed

    Weisser, K; Schloos, J

    1991-10-09

    The relationship between serum angiotensin converting enzyme (ACE) activity and concentration of the ACE inhibitor enalaprilat was determined in vitro in the presence of different concentrations (S = 4-200 mM) of the substrate Hip-Gly-Gly. From Henderson plots, a competitive tight-binding relationship between enalaprilat and serum ACE was found yielding a value of approximately 5 nM for serum ACE concentration (Et) and an inhibition constant (Ki) for enalaprilat of approximately 0.1 nM. A plot of reaction velocity (Vi) versus total inhibitor concentration (It) exhibited a non-parallel shift of the inhibition curve to the right with increasing S. This was reflected by apparent Hill coefficients greater than 1 when the commonly used inhibitory sigmoid concentration-effect model (Emax model) was applied to the data. Slopes greater than 1 were obviously due to discrepancies between the free inhibitor concentration (If) present in the assay and It plotted on the abscissa and could, therefore, be indicators of tight-binding conditions. Thus, the sigmoid Emax model leads to an overestimation of Ki. Therefore, a modification of the inhibitory sigmoid Emax model (called "Emax tight model") was applied, which accounts for the depletion of If by binding, refers to It and allows estimation of the parameters Et and IC50f (free concentration of inhibitor when 50% inhibition occurs) using non-linear regression analysis. This model could describe the non-symmetrical shape of the inhibition curves and the results for Ki and Et correlated very well with those derived from the Henderson plots. The latter findings confirm that the degree of ACE inhibition measured in vitro is, in fact, dependent on the concentration of substrate and enzyme present in the assay. This is of importance not only for the correct evaluation of Ki but also for the interpretation of the time course of serum ACE inhibition measured ex vivo. The non-linear model has some advantages over the linear Henderson equation: it is directly applicable without conversion of the data and avoids the stochastic dependency of the variables, allowing non-linear regression of all data points contributing with the same weight.

  13. Tensorial Calibration. 2. Second Order Tensorial Calibration.

    DTIC Science & Technology

    1987-10-12

    index is repeated more than once only in one side of an equation, it implies a summation over the index valid range. 12 To avoid confusion of terms...and higher order tensor, the rank can be higher than the maximum dimensionality. 13 ,ON 6 LINEAR SECOND ORDER TENSORIAL CALIBRATION MODEL From...these equations are valid only if all the elements of the diagonal matrix B3 are non-zero because its inverse (-1) must be computed. This implies that M

  14. Quantifying the predictive consequences of model error with linear subspace analysis

    USGS Publications Warehouse

    White, Jeremy T.; Doherty, John E.; Hughes, Joseph D.

    2014-01-01

    All computer models are simplified and imperfect simulators of complex natural systems. The discrepancy arising from simplification induces bias in model predictions, which may be amplified by the process of model calibration. This paper presents a new method to identify and quantify the predictive consequences of calibrating a simplified computer model. The method is based on linear theory, and it scales efficiently to the large numbers of parameters and observations characteristic of groundwater and petroleum reservoir models. The method is applied to a range of predictions made with a synthetic integrated surface-water/groundwater model with thousands of parameters. Several different observation processing strategies and parameterization/regularization approaches are examined in detail, including use of the Karhunen-Loève parameter transformation. Predictive bias arising from model error is shown to be prediction specific and often invisible to the modeler. The amount of calibration-induced bias is influenced by several factors, including how expert knowledge is applied in the design of parameterization schemes, the number of parameters adjusted during calibration, how observations and model-generated counterparts are processed, and the level of fit with observations achieved through calibration. Failure to properly implement any of these factors in a prediction-specific manner may increase the potential for predictive bias in ways that are not visible to the calibration and uncertainty analysis process.

  15. Research on the calibration methods of the luminance parameter of radiation luminance meters

    NASA Astrophysics Data System (ADS)

    Cheng, Weihai; Huang, Biyong; Lin, Fangsheng; Li, Tiecheng; Yin, Dejin; Lai, Lei

    2017-10-01

    This paper introduces standard diffusion reflection white plate method and integrating sphere standard luminance source method to calibrate the luminance parameter. The paper compares the effects of calibration results by using these two methods through principle analysis and experimental verification. After using two methods to calibrate the same radiation luminance meter, the data obtained verifies the testing results of the two methods are both reliable. The results show that the display value using standard white plate method has fewer errors and better reproducibility. However, standard luminance source method is more convenient and suitable for on-site calibration. Moreover, standard luminance source method has wider range and can test the linear performance of the instruments.

  16. Effect of nonideal square-law detection on static calibration in noise-injection radiometers

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.

    1984-01-01

    The effect of nonideal square-law detection on the static calibration for a class of Dicke radiometers is examined. It is shown that fourth-order curvature in the detection characteristic adds a nonlinear term to the linear calibration relationship normally ascribed to noise-injection, balanced Dicke radiometers. The minimum error, based on an optimum straight-line fit to the calibration curve, is derived in terms of the power series coefficients describing the input-output characteristics of the detector. These coefficients can be determined by simple measurements, and detection nonlinearity is, therefore, quantitatively related to radiometric measurement error.

  17. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  18. Efficient Reduction and Analysis of Model Predictive Error

    NASA Astrophysics Data System (ADS)

    Doherty, J.

    2006-12-01

    Most groundwater models are calibrated against historical measurements of head and other system states before being used to make predictions in a real-world context. Through the calibration process, parameter values are estimated or refined such that the model is able to reproduce historical behaviour of the system at pertinent observation points reasonably well. Predictions made by the model are deemed to have greater integrity because of this. Unfortunately, predictive integrity is not as easy to achieve as many groundwater practitioners would like to think. The level of parameterisation detail estimable through the calibration process (especially where estimation takes place on the basis of heads alone) is strictly limited, even where full use is made of modern mathematical regularisation techniques such as those encapsulated in the PEST calibration package. (Use of these mechanisms allows more information to be extracted from a calibration dataset than is possible using simpler regularisation devices such as zones of piecewise constancy.) Where a prediction depends on aspects of parameterisation detail that are simply not inferable through the calibration process (which is often the case for predictions related to contaminant movement, and/or many aspects of groundwater/surface water interaction), then that prediction may be just as much in error as it would have been if the model had not been calibrated at all. Model predictive error arises from two sources. These are (a) the presence of measurement noise within the calibration dataset through which linear combinations of parameters spanning the "calibration solution space" are inferred, and (b) the sensitivity of the prediction to members of the "calibration null space" spanned by linear combinations of parameters which are not inferable through the calibration process. The magnitude of the former contribution depends on the level of measurement noise. The magnitude of the latter contribution (which often dominates the former) depends on the "innate variability" of hydraulic properties within the model domain. Knowledge of both of these is a prerequisite for characterisation of the magnitude of possible model predictive error. Unfortunately, in most cases, such knowledge is incomplete and subjective. Nevertheless, useful analysis of model predictive error can still take place. The present paper briefly discusses the means by which mathematical regularisation can be employed in the model calibration process in order to extract as much information as possible on hydraulic property heterogeneity prevailing within the model domain, thereby reducing predictive error to the lowest that can be achieved on the basis of that dataset. It then demonstrates the means by which predictive error variance can be quantified based on information supplied by the regularised inversion process. Both linear and nonlinear predictive error variance analysis is demonstrated using a number of real-world and synthetic examples.

  19. Quantitative analysis of titanium concentration using calibration-free laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Zaitun; Prasetyo, S.; Suliyanti, M. M.; Isnaeni; Herbani, Y.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) can be used for quantitative and qualitative analysis. Calibration-free LIBS (CF-LIBS) is a method to quantitatively analyze concentration of elements in a sample in local thermodynamic equilibrium conditions without using available matrix-matched calibration. In this study, we apply CF-LIBS for quantitative analysis of Ti in TiO2 sample. TiO2 powder sample was mixed with polyvinyl alcohol and formed into pellets. An Nd:YAG pulsed laser at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral line to determine energy levels and other parameters. The value of plasma temperature obtained using Boltzmann plot is 8127.29 K and electron density from calculation is 2.49×1016 cm-3. Finally, the concentration of Ti in TiO2 sample from this study is 97% that is in proximity with the sample certificate.

  20. Prediction of new onset of end stage renal disease in Chinese patients with type 2 diabetes mellitus - a population-based retrospective cohort study.

    PubMed

    Wan, Eric Yuk Fai; Fong, Daniel Yee Tak; Fung, Colman Siu Cheung; Yu, Esther Yee Tak; Chin, Weng Yee; Chan, Anca Ka Chun; Lam, Cindy Lo Kuen

    2017-08-01

    Since diabetes mellitus (DM) is the leading cause of end stage renal disease (ESRD), this study aimed to develop a 5-year ESRD risk prediction model among Chinese patients with Type 2 DM (T2DM) in primary care. A retrospective cohort study was conducted on 149,333 Chinese adult T2DM primary care patients without ESRD in 2010. Using the derivation cohort over a median of 5 years follow-up, the gender-specific models including the interaction effect between predictors and age were derived using Cox regression with a forward stepwise approach. Harrell's C-statistic and calibration plot were applied to the validation cohort to assess discrimination and calibration of the models. Prediction models showed better discrimination with Harrell's C-statistics of 0.866 (males) and 0.862 (females) and calibration power from the plots than other established models. The predictors included age, usages of anti-hypertensive drugs, anti-glucose drugs, and Hemogloblin A1c, blood pressure, urine albumin/creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR). Specific predictors for male were smoking and presence of sight threatening diabetic retinopathy while additional predictors for female included longer duration of diabetes and quadratic effect of body mass index. Interaction factors with age showed a greater weighting of insulin and urine ACR in younger males, and eGFR in younger females. Our newly developed gender-specific models provide a more accurate 5-year ESRD risk predictions for Chinese diabetic primary care patients than other existing models. The models included several modifiable risk factors that clinicians can use to counsel patients, and to target at in the delivery of care to patients.

  1. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    PubMed

    Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.

  2. Q-mode versus R-mode principal component analysis for linear discriminant analysis (LDA)

    NASA Astrophysics Data System (ADS)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2017-05-01

    Many literature apply Principal Component Analysis (PCA) as either preliminary visualization or variable con-struction methods or both. Focus of PCA can be on the samples (R-mode PCA) or variables (Q-mode PCA). Traditionally, R-mode PCA has been the usual approach to reduce high-dimensionality data before the application of Linear Discriminant Analysis (LDA), to solve classification problems. Output from PCA composed of two new matrices known as loadings and scores matrices. Each matrix can then be used to produce a plot, i.e. loadings plot aids identification of important variables whereas scores plot presents spatial distribution of samples on new axes that are also known as Principal Components (PCs). Fundamentally, the scores matrix always be the input variables for building classification model. A recent paper uses Q-mode PCA but the focus of analysis was not on the variables but instead on the samples. As a result, the authors have exchanged the use of both loadings and scores plots in which clustering of samples was studied using loadings plot whereas scores plot has been used to identify important manifest variables. Therefore, the aim of this study is to statistically validate the proposed practice. Evaluation is based on performance of external error obtained from LDA models according to number of PCs. On top of that, bootstrapping was also conducted to evaluate the external error of each of the LDA models. Results show that LDA models produced by PCs from R-mode PCA give logical performance and the matched external error are also unbiased whereas the ones produced with Q-mode PCA show the opposites. With that, we concluded that PCs produced from Q-mode is not statistically stable and thus should not be applied to problems of classifying samples, but variables. We hope this paper will provide some insights on the disputable issues.

  3. Temperature-dependant shifts in a wet tropical Hawaiian forest ecosystem: impact on belowground carbon stocks, dynamics, and processes

    NASA Astrophysics Data System (ADS)

    Crow, S. E.; Litton, C. M.; Giardina, C. P.

    2009-12-01

    Global patterns suggest a positive correlation between temperature and total belowground carbon (C) flux and partitioning in temperate and tropical regions, but these relationships have yet to be tested within a given ecosystem type. We established a transect of nine permanent forest plots along an elevation gradient (800-1600 m) in native-dominated Metrosideros polymorpha / Acacia koa rainforest developed in volcanic ash soils along the windward slope of Mauna Kea, Hawaii. Along the transect parent material, bedrock age, species composition, and plant available water are nearly constant and only mean annual temperature (MAT) varies substantially (13°C-18°C). We hypothesized that warmer temperatures at lower elevations would drive greater C flux and partitioning to belowground, which represents a direct input of C into belowground stocks. Roots are often sources of stabilized soil organic matter, thus we expected that increased belowground flux and partitioning of C at higher MATs would increase soil C stocks within recalcitrant C pools, even if bulk soil C stock decreases overall. In fact, our data suggest non-linear relationships between temperature and the distribution of C among soil pools based on sequential density fractionation at 1.6 and 2.4 g mL-1, and radiocarbon-based estimates of mean residence time. The proportion of C recovered within the mineral-associated heavy fraction (>2.4 g mL-1) was greatest at the highest MAT (nearly 30% of total soil C), initially declined at the mid-MAT plots (~10% of total soil C), but then increased again at the lowest MAT plots (~25%). Although the proportion of soil C within the heavy fraction was lowest at the mid-MAT plots, the mean residence time of heavy fraction C was greatest in these plots (570-663 yr for the mid-MAT plots versus 120-220 yr for the highest MAT plots and 64-308 for the lowest MAT plots), suggesting that the mineral-associated C in the mid-MAT plots was the most stabilized. In contrast, the proportion of C recovered within the rapidly cycling light fraction (<1.6 g mL-1) initially increased as MAT decreased, from <10% to a peak of nearly 50% of total soil C in the mid-MAT plots, but then decreased again in the plots with lowest MAT. High temperature both directly and indirectly stimulates weathering in these soils-which are thought to be within the phase of maximum nutrient availability, productivity, and potential SOM stabilization during ecosystem development-through increased belowground activity. However, complex feedbacks between temperature, resource allocation, weathering rate, and carbon storage may be driving non-linear relationships between temperature and soil processes.

  4. Antenna Calibration and Measurement Equipment

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Li, X; Liu, B

    Purpose: To accurately measure CT bow-tie profiles from various manufacturers and to provide non-proprietary information for CT system modeling. Methods: A GOS-based linear detector (0.8 mm per pixel and 51.2 cm in length) with a fast data sampling speed (0.24 ms/sample) was used to measure the relative profiles of bow-tie filters from a collection of eight CT scanners by three different vendors, GE (LS Xtra, LS VCT, Discovery HD750), Siemens (Sensation 64, Edge, Flash, Force), and Philips (iBrilliance 256). The linear detector was first calibrated for its energy response within typical CT beam quality ranges and compared with an ionmore » chamber and analytical modeling (SPECTRA and TASMIP). A geometrical calibration process was developed to determine key parameters including the distance from the focal spot to the linear detector, the angular increment of the gantry at each data sampling, the location of the central x-ray on the linear detector, and the angular response of the detector pixel. Measurements were performed under axial-scan modes for most representative bow-tie filters and kV selections from each scanner. Bow-tie profiles were determined by re-binning the measured rotational data with an angular accuracy of 0.1 degree using the calibrated geometrical parameters. Results: The linear detector demonstrated an energy response as a solid state detector, which is close to the CT imaging detector. The geometrical calibration was proven to be sufficiently accurate (< 1mm in error for distances >550 mm) and the bow-tie profiles measured from rotational mode matched closely to those from the gantry-stationary mode. Accurate profiles were determined for a total of 21 bow-tie filters and 83 filter/kV combinations from the abovementioned scanner models. Conclusion: A new improved approach of CT bow-tie measurement was proposed and accurate bow-tie profiles were provided for a broad list of CT scanner models.« less

  6. A GIS tool for modelling annual diffuse infiltration on a plot scale

    NASA Astrophysics Data System (ADS)

    España, Salvador; Alcalá, Francisco J.; Vallejos, Ángela; Pulido-Bosch, Antonio

    2013-04-01

    ArcB is a GIS tool for modelling annual diffuse infiltration (RP) from precipitation (P) on a plot scale that uses ArcObjects as the programming language to incorporate equations and boundary conditions for the water-balance consistency. Because detailed weather, soil, and vegetation data are often missing, ArcB uses well-known non-global models such as Hargreaves for daily potential evapotranspiration and Budyko for annual actual evapotranspiration (EA), as well as the SCS Curve Number procedure for 24-h plot runoff (RO). Annual RP is quantified as the difference in annual P, EA, and RO. Because the use of non-global models for EA may induce suboptimal RP results, ArcB allows corrections of EA estimates by comparisons with data from a reference station. In a semiarid heterogeneous region in south-eastern Spain, the uncertainty of RO and RP was lowered to 4% and 2%, respectively, when correcting EA. ArcObjects is a versatile programming language which allows advanced users to incorporate more complex formulations for more accurate results as detailed data is acquired and to develop routines for calibration when reference data exist.

  7. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent or less of the... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (d) The initial and periodic interference, system check...

  8. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent or less of the... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (d) The initial and periodic interference, system check...

  9. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent or less of the... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (d) The initial and periodic interference, system check...

  10. 40 CFR 86.1323-84 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent of the value at... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (c) The initial and periodic interference, system check...

  11. 40 CFR 86.1323-84 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent of the value at... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (c) The initial and periodic interference, system check...

  12. Calibration of EFOSC2 Broadband Linear Imaging Polarimetry

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Higgins, A. B.; Covino, S.; Starling, R. L. C.

    2018-03-01

    The European Southern Observatory Faint Object Spectrograph and Camera v2 is one of the workhorse instruments on ESO's New Technology Telescope, and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasmyth focus, and therefore exhibits strong, wavelength and pointing-direction-dependent instrumental polarisation. In this document, we describe our efforts to calibrate the broadband imaging polarimetry mode, and provide a calibration for broadband B, V, and R filters to a level that satisfies most use cases (i.e. polarimetric calibration uncertainty 0.1%). We make our calibration codes public. This calibration effort can be used to enhance the yield of future polarimetric programmes with the European Southern Observatory Faint Object Spectrograph and Camera v2, by allowing good calibration with a greatly reduced number of standard star observations. Similarly, our calibration model can be combined with archival calibration observations to post-process data taken in past years, to form the European Southern Observatory Faint Object Spectrograph and Camera v2 legacy archive with substantial scientific potential.

  13. Calibration plots for risk prediction models in the presence of competing risks.

    PubMed

    Gerds, Thomas A; Andersen, Per K; Kattan, Michael W

    2014-08-15

    A predicted risk of 17% can be called reliable if it can be expected that the event will occur to about 17 of 100 patients who all received a predicted risk of 17%. Statistical models can predict the absolute risk of an event such as cardiovascular death in the presence of competing risks such as death due to other causes. For personalized medicine and patient counseling, it is necessary to check that the model is calibrated in the sense that it provides reliable predictions for all subjects. There are three often encountered practical problems when the aim is to display or test if a risk prediction model is well calibrated. The first is lack of independent validation data, the second is right censoring, and the third is that when the risk scale is continuous, the estimation problem is as difficult as density estimation. To deal with these problems, we propose to estimate calibration curves for competing risks models based on jackknife pseudo-values that are combined with a nearest neighborhood smoother and a cross-validation approach to deal with all three problems. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Method of determining the optimal dilution ratio for fluorescence fingerprint of food constituents.

    PubMed

    Trivittayasil, Vipavee; Tsuta, Mizuki; Kokawa, Mito; Yoshimura, Masatoshi; Sugiyama, Junichi; Fujita, Kaori; Shibata, Mario

    2015-01-01

    Quantitative determination by fluorescence spectroscopy is possible because of the linear relationship between the intensity of emitted fluorescence and the fluorophore concentration. However, concentration quenching may cause the relationship to become nonlinear, and thus, the optimal dilution ratio has to be determined. In the case of fluorescence fingerprint (FF) measurement, fluorescence is measured under multiple wavelength conditions and a method of determining the optimal dilution ratio for multivariate data such as FFs has not been reported. In this study, the FFs of mixed solutions of tryptophan and epicatechin of different concentrations and composition ratios were measured. Principal component analysis was applied, and the resulting loading plots were found to contain useful information about each constituent. The optimal concentration ranges could be determined by identifying the linear region of the PC score plotted against total concentration.

  15. The effects from high-altitude storm discharges in Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Kozak, L.; Odzimek, A.; Ivchenko, V.; Kozak, P.; Gala, I.; Lapchuk, V.

    2016-06-01

    The regularities of appearance of transient luminous effects in Earth atmosphere and features of their ground-based observations are considered. Using video-observations obtained in the Institution of Geophysics of Poland Academy of Sciences the energy of atmospheric afterglow from these processes in visual wavelength range has been determined. Calibrating curve was plotted using unfocal images of Vega. The star spectrum,atmosphere absorption coefficient and characteristics of the observational camera were used.

  16. WestProPlus: a stochastic spreadsheet program for the management of all-aged Douglas-fir–hemlock forests in the Pacific Northwest.

    Treesearch

    Jingjing Liang; Joseph Buongiorno; Robert A. Monserud

    2006-01-01

    WestProPlus is an add-in program developed to work with Microsoft Excel to simulate the growth and management of all-aged Douglas-fir–western hemlock (Pseudotsuga menziesii (Mirb.) Franco–Tsuga heterophylla (Raf.) Sarg.) stands in Oregon and Washington. Its built-in growth model was calibrated from 2,706 permanent plots in the...

  17. Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers

    DTIC Science & Technology

    2012-10-01

    visual nystagmus much more robust. Because the absolute gaze is not measured in our paradigm (this would require a gaze calibration, involving...the dots were also drifting to the right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event...for automated 5 Reflex Stimulus Functions Visual Nystagmus luminance grating low-level motion equiluminant grating color vision contrast gratings at 3

  18. Short- and long-term responses of total soil organic carbon to harvesting in a northern hardwood forest

    Treesearch

    K. Johnson; F. N. Scatena; Y. Pan

    2010-01-01

    The long-term response of total soil organic carbon pools (‘total SOC’, i.e. soil and dead wood) to different harvesting scenarios in even-aged northern hardwood forest stands was evaluated using two soil carbon models, CENTURY and YASSO, that were calibrated with forest plot empirical data in the Green Mountains of Vermont. Overall, 13 different harvesting scenarios...

  19. SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, S; Tomic, N; DeBlois, F

    2016-06-15

    Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less

  20. SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazza, A; Perrin, D; Fontenot, J

    Purpose: To compare IMRT QA pass rates before and after an in-house MLC leaf calibration procedure. Methods: The MLC leaves and backup jaws on four Elekta linear accelerators with MLCi2 heads were calibrated using the EPID-based RIT Hancock Test as the means for evaluation. The MLCs were considered to be successfully calibrated when they could pass the Hancock Test with criteria of 1 mm jaw position tolerance, and 1 mm leaf position tolerance. IMRT QA results were collected pre- and postcalibration and analyzed using gamma analysis with 3%/3mm DTA criteria. AAPM TG-119 test plans were also compared pre- and post-calibration,more » at both 2%/2mm DTA and 3%/3mm DTA. Results: A weighted average was performed on the results for all four linear accelerators. The pre-calibration IMRT QA pass rate was 98.3 ± 0.1%, compared with the post-calibration pass rate of 98.5 ± 0.1%. The TG-119 test plan results showed more of an improvement, particularly at the 2%/2mm criteria. The averaged results were 89.1% pre and 96.1% post for the C-shape plan, 94.8% pre and 97.1% post for the multi-target plan, 98.6% pre and 99.7% post for the prostate plan, 94.7% pre and 94.8% post for the head/neck plan. Conclusion: The patient QA results did not show statistically significant improvement at the 3%/3mm DTA criteria after the MLC calibration procedure. However, the TG-119 test cases did show significant improvement at the 2%/2mm level.« less

  1. Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned

    NASA Technical Reports Server (NTRS)

    Heck, M. L.; Findlay, J. T.; Compton, H. R.

    1983-01-01

    The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.

  2. Heterodyne interferometry method for calibration of a Soleil-Babinet compensator.

    PubMed

    Zhang, Wenjing; Zhang, Zhiwei

    2016-05-20

    A method based on the common-path heterodyne interferometer system is proposed for the calibration of a Soleil-Babinet compensator. In this heterodyne interferometer system, which consists of two acousto-optic modulators, the compensator being calibrated is inserted into the signal path. By using the reference beam as the benchmark and a lock-in amplifier (SR844) as the phase retardation collector, retardations of 0 and λ (one wavelength) can be located accurately, and an arbitrary retardation between 0 and λ can also be measured accurately and continuously. By fitting a straight line to the experimental data, we obtained a linear correlation coefficient (R) of 0.995, which indicates that this system is capable of linear phase detection. The experimental results demonstrate determination accuracies of 0.212° and 0.26° and measurement precisions of 0.054° and 0.608° for retardations of 0 and λ, respectively.

  3. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    PubMed

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-08-01

    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Finite Elements Analysis of a Composite Semi-Span Test Article With and Without Discrete Damage

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)

    2000-01-01

    AS&M Inc. performed finite element analysis, with and without discrete damage, of a composite semi-span test article that represents the Boeing 220-passenger transport aircraft composite semi-span test article. A NASTRAN bulk data file and drawings of the test mount fixtures and semi-span components were utilized to generate the baseline finite element model. In this model, the stringer blades are represented by shell elements, and the stringer flanges are combined with the skin. Numerous modeling modifications and discrete source damage scenarios were applied to the test article model throughout the course of the study. This report details the analysis method and results obtained from the composite semi-span study. Analyses were carried out for three load cases: Braked Roll, LOG Down-Bending and 2.5G Up-Bending. These analyses included linear and nonlinear static response, as well as linear and nonlinear buckling response. Results are presented in the form of stress and strain plots. factors of safety for failed elements, buckling loads and modes, deflection prediction tables and plots, and strainage prediction tables and plots. The collected results are presented within this report for comparison to test results.

  5. The effects of organosulfur compounds upon the storage stability of Jet A fuel. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Heneman, F. C.

    1981-01-01

    This study examined the effect of sulfur-containing compounds on the storage stability of Jet A turbine fuel. It was found that alkyl sulfides and disulfides increased the fuel's stability while all thiols and thiophene derivatives tested decreased fuel stability (increased deposit formation) at temperatures and sulfur concentrations selected. Linear Arrhenius plots of sulfur-spiked fuel samples demonstrated that deposit formation decreased with increased slope for all alkyl sulfides, alkyl disulfides, thiols, and thiophene derivatives. A plot of insoluble deposit vs. concentration of added alkyl sulfide produces a negative slope. It appears that the inhibiting mechanism for alkyl sulfides is a result of the compound's reactivity with intermediate soluble precursors to deposit in the fuel. A method of approximating the relative basicity of weak organosulfur bases was developed via measurement of their resonance chemical shifts in proton NMR. Linear plots of log gm. deposit vs. change in chemical shift (shift differences between sulfur bases neat and complexed with I2) were found for alkyl sulfides and alkyl thiols. This suggests the possibility that increased deposit formation is due to base catalysis with these compound classes.

  6. A novel approach for characterizing broad-band radio spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Harvey, V. M.; Franzen, T.; Morgan, J.; Seymour, N.

    2018-05-01

    We present a new broad-band radio frequency catalogue across 0.12 GHz ≤ ν ≤ 20 GHz created by combining data from the Murchison Widefield Array Commissioning Survey, the Australia Telescope 20 GHz survey, and the literature. Our catalogue consists of 1285 sources limited by S20 GHz > 40 mJy at 5σ, and contains flux density measurements (or estimates) and uncertainties at 0.074, 0.080, 0.119, 0.150, 0.180, 0.408, 0.843, 1.4, 4.8, 8.6, and 20 GHz. We fit a second-order polynomial in log-log space to the spectral energy distributions of all these sources in order to characterize their broad-band emission. For the 994 sources that are well described by a linear or quadratic model we present a new diagnostic plot arranging sources by the linear and curvature terms. We demonstrate the advantages of such a plot over the traditional radio colour-colour diagram. We also present astrophysical descriptions of the sources found in each segment of this new parameter space and discuss the utility of these plots in the upcoming era of large area, deep, broad-band radio surveys.

  7. Prospects of second generation artificial intelligence tools in calibration of chemical sensors.

    PubMed

    Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala

    2005-05-01

    Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.

  8. Research on a high-precision calibration method for tunable lasers

    NASA Astrophysics Data System (ADS)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  9. General-Purpose Software For Computer Graphics

    NASA Technical Reports Server (NTRS)

    Rogers, Joseph E.

    1992-01-01

    NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.

  10. Calculus detection calibration among dental hygiene faculty members utilizing dental endoscopy: a pilot study.

    PubMed

    Partido, Brian B; Jones, Archie A; English, Dana L; Nguyen, Carol A; Jacks, Mary E

    2015-02-01

    Dental and dental hygiene faculty members often do not provide consistent instruction in the clinical environment, especially in tasks requiring clinical judgment. From previous efforts to calibrate faculty members in calculus detection using typodonts, researchers have suggested using human subjects and emerging technology to improve consistency in clinical instruction. The purpose of this pilot study was to determine if a dental endoscopy-assisted training program would improve intra- and interrater reliability of dental hygiene faculty members in calculus detection. Training included an ODU 11/12 explorer, typodonts, and dental endoscopy. A convenience sample of six participants was recruited from the dental hygiene faculty at a California community college, and a two-group randomized experimental design was utilized. Intra- and interrater reliability was measured before and after calibration training. Pretest and posttest Kappa averages of all participants were compared using repeated measures (split-plot) ANOVA to determine the effectiveness of the calibration training on intra- and interrater reliability. The results showed that both kinds of reliability significantly improved for all participants and the training group improved significantly in interrater reliability from pretest to posttest. Calibration training was beneficial to these dental hygiene faculty members, especially those beginning with less than full agreement. This study suggests that calculus detection calibration training utilizing dental endoscopy can effectively improve interrater reliability of dental and dental hygiene clinical educators. Future studies should include human subjects, involve more participants at multiple locations, and determine whether improved rater reliability can be sustained over time.

  11. New reconstruction of the sunspot group numbers since 1739 using direct calibration and "backbone" methods

    NASA Astrophysics Data System (ADS)

    Chatzistergos, Theodosios; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Krivova, Natalie A.; Solanki, Sami K.

    2017-06-01

    Context. The group sunspot number (GSN) series constitute the longest instrumental astronomical database providing information on solar activity. This database is a compilation of observations by many individual observers, and their inter-calibration has usually been performed using linear rescaling. There are multiple published series that show different long-term trends for solar activity. Aims: We aim at producing a GSN series, with a non-linear non-parametric calibration. The only underlying assumptions are that the differences between the various series are due to different acuity thresholds of the observers, and that the threshold of each observer remains constant throughout the observing period. Methods: We used a daisy chain process with backbone (BB) observers and calibrated all overlapping observers to them. We performed the calibration of each individual observer with a probability distribution function (PDF) matrix constructed considering all daily values for the overlapping period with the BB. The calibration of the BBs was carried out in a similar manner. The final series was constructed by merging different BB series. We modelled the propagation of errors straightforwardly with Monte Carlo simulations. A potential bias due to the selection of BBs was investigated and the effect was shown to lie within the 1σ interval of the produced series. The exact selection of the reference period was shown to have a rather small effect on our calibration as well. Results: The final series extends back to 1739 and includes data from 314 observers. This series suggests moderate activity during the 18th and 19th century, which is significantly lower than the high level of solar activity predicted by other recent reconstructions applying linear regressions. Conclusions: The new series provides a robust reconstruction, based on modern and non-parametric methods, of sunspot group numbers since 1739, and it confirms the existence of the modern grand maximum of solar activity in the second half of the 20th century. Values of the group sunspot number series are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A69

  12. Identification of geostationary satellites using polarization data from unresolved images

    NASA Astrophysics Data System (ADS)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.

  13. Testing the Linearity of the Cosmic Origins Spectrograph FUV Channel Thermal Correction

    NASA Astrophysics Data System (ADS)

    Fix, Mees B.; De Rosa, Gisella; Sahnow, David

    2018-05-01

    The Far Ultraviolet Cross Delay Line (FUV XDL) detector on the Cosmic Origins Spectrograph (COS) is subject to temperature-dependent distortions. The correction performed by the COS calibration pipeline (CalCOS) assumes that these changes are linear across the detector. In this report we evaluate the accuracy of the linear approximations using data obtained on orbit. Our results show that the thermal distortions are consistent with our current linear model.

  14. Challenge from the simple: some caveats in linearization of the Boyle-van't Hoff and Arrhenius plots.

    PubMed

    Katkov, Igor I

    2008-10-01

    Some aspects of proper linearization of the Boyle-van't Hoff (BVH) relationship for calculation of the osmotically inactive volume v(b), and Arrhenius plot (AP) for the activation energy E(a) are discussed. It is shown that the commonly used determination of the slope and the intercept (v(b)), which are presumed to be independent from each other, is invalid if the initial intracellular molality m(0) is known. Instead, the linear regression with only one independent parameter (v(b)) or the Least Square Method (LSM) with v(b) as the only fitting LSM parameter must be applied. The slope can then be calculated from the BVH relationship as the function of v(b). In case of unknown m(0) (for example, if cells are preloaded with trehalose, or electroporation caused ion leakage, etc.), it is considered as the second independent statistical parameter to be found. In this (and only) scenario, all three methods give the same results for v(b) and m(0). AP can be linearized only for water hydraulic conductivity (L(p)) and solute mobility (omega(s)) while water and solute permeabilities P(w) identical withL(p)RT and P(s) identical withomega(s)RT cannot be linearized because they have pre-exponential factor (RT) that depends on the temperature T.

  15. Power Pattern Sensitivity to Calibration Errors and Mutual Coupling in Linear Arrays through Circular Interval Arithmetics

    PubMed Central

    Anselmi, Nicola; Salucci, Marco; Rocca, Paolo; Massa, Andrea

    2016-01-01

    The sensitivity to both calibration errors and mutual coupling effects of the power pattern radiated by a linear array is addressed. Starting from the knowledge of the nominal excitations of the array elements and the maximum uncertainty on their amplitudes, the bounds of the pattern deviations from the ideal one are analytically derived by exploiting the Circular Interval Analysis (CIA). A set of representative numerical results is reported and discussed to assess the effectiveness and the reliability of the proposed approach also in comparison with state-of-the-art methods and full-wave simulations. PMID:27258274

  16. Parts-Per-Billion Mass Measurement Accuracy Achieved through the Combination of Multiple Linear Regression and Automatic Gain Control in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Williams, D. Keith; Muddiman, David C.

    2008-01-01

    Fourier transform ion cyclotron resonance mass spectrometry has the ability to achieve unprecedented mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement. Even through the use of automatic gain control (AGC), the total ion population is not constant between spectra. Multiple linear regression calibration in conjunction with AGC is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. This ability allows for the extension of dynamic range of the instrument while allowing mean MMA values to remain less than 1 ppm. In addition, multiple linear regression calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level. PMID:17539605

  17. 40 CFR 1065.307 - Linearity verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meter at different flow rates. Use a gravimetric reference measurement (such as a scale, balance, or... nitrogen. Select gas divisions that you typically use. Use a selected gas division as the measured value.... For linearity verification for gravimetric PM balances, use external calibration weights that that...

  18. 40 CFR 1065.307 - Linearity verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meter at different flow rates. Use a gravimetric reference measurement (such as a scale, balance, or... nitrogen. Select gas divisions that you typically use. Use a selected gas division as the measured value.... For linearity verification for gravimetric PM balances, use external calibration weights that that...

  19. Comparison of icing cloud instruments for 1982-1983 icing season flight program

    NASA Technical Reports Server (NTRS)

    Ide, R. F.; Richter, G. P.

    1984-01-01

    A number of modern and old style liquid water content (LWC) and droplet sizing instruments were mounted on a DeHavilland DHC-6 Twin Otter and operated in natural icing clouds in order to determine their comparative operating characteristics and their limitations over a broad range of conditions. The evaluation period occurred during the 1982-1983 icing season from January to March 1983. Time histories of all instrument outputs were plotted and analyzed to assess instrument repeatability and reliability. Scatter plots were also generated for comparison of instruments. The measured LWC from four instruments differed by as much as 20 percent. The measured droplet size from two instruments differed by an average of three microns. The overall effort demonstrated the need for additional data, and for some means of calibrating these instruments to known standards.

  20. Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, M.; Xing, L.; Liu, Y.

    2018-04-01

    Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.

  1. Statistical characterization of a large geochemical database and effect of sample size

    USGS Publications Warehouse

    Zhang, C.; Manheim, F.T.; Hinde, J.; Grossman, J.N.

    2005-01-01

    The authors investigated statistical distributions for concentrations of chemical elements from the National Geochemical Survey (NGS) database of the U.S. Geological Survey. At the time of this study, the NGS data set encompasses 48,544 stream sediment and soil samples from the conterminous United States analyzed by ICP-AES following a 4-acid near-total digestion. This report includes 27 elements: Al, Ca, Fe, K, Mg, Na, P, Ti, Ba, Ce, Co, Cr, Cu, Ga, La, Li, Mn, Nb, Nd, Ni, Pb, Sc, Sr, Th, V, Y and Zn. The goal and challenge for the statistical overview was to delineate chemical distributions in a complex, heterogeneous data set spanning a large geographic range (the conterminous United States), and many different geological provinces and rock types. After declustering to create a uniform spatial sample distribution with 16,511 samples, histograms and quantile-quantile (Q-Q) plots were employed to delineate subpopulations that have coherent chemical and mineral affinities. Probability groupings are discerned by changes in slope (kinks) on the plots. Major rock-forming elements, e.g., Al, Ca, K and Na, tend to display linear segments on normal Q-Q plots. These segments can commonly be linked to petrologic or mineralogical associations. For example, linear segments on K and Na plots reflect dilution of clay minerals by quartz sand (low in K and Na). Minor and trace element relationships are best displayed on lognormal Q-Q plots. These sensitively reflect discrete relationships in subpopulations within the wide range of the data. For example, small but distinctly log-linear subpopulations for Pb, Cu, Zn and Ag are interpreted to represent ore-grade enrichment of naturally occurring minerals such as sulfides. None of the 27 chemical elements could pass the test for either normal or lognormal distribution on the declustered data set. Part of the reasons relate to the presence of mixtures of subpopulations and outliers. Random samples of the data set with successively smaller numbers of data points showed that few elements passed standard statistical tests for normality or log-normality until sample size decreased to a few hundred data points. Large sample size enhances the power of statistical tests, and leads to rejection of most statistical hypotheses for real data sets. For large sample sizes (e.g., n > 1000), graphical methods such as histogram, stem-and-leaf, and probability plots are recommended for rough judgement of probability distribution if needed. ?? 2005 Elsevier Ltd. All rights reserved.

  2. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  3. Calibration of polarimetric radar systems with good polarization isolation

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.; Tassoudji, M. Ali

    1990-01-01

    A practical technique is proposed for calibrating single-antenna polarimetric radar systems using a metal sphere plus any second target with a strong cross-polarized radar cross section. This technique assumes perfect isolation between antenna ports. It is shown that all magnitudes and phases (relative to one of the like-polarized linear polarization configurations) of the radar transfer function can be calibrated without knowledge of the scattering matrix of the second target. Comparison of the values measured (using this calibration technique) for a tilted cylinder at X-band with theoretical values shows agreement within + or - 0.3 dB in magnitude and + or - 5 degrees in phase. The radar overall cross-polarization isolation was 25 dB. The technique is particularly useful for calibrating a radar under field conditions, because it does not require the careful alignment of calibration targets.

  4. An Item-Driven Adaptive Design for Calibrating Pretest Items. Research Report. ETS RR-14-38

    ERIC Educational Resources Information Center

    Ali, Usama S.; Chang, Hua-Hua

    2014-01-01

    Adaptive testing is advantageous in that it provides more efficient ability estimates with fewer items than linear testing does. Item-driven adaptive pretesting may also offer similar advantages, and verification of such a hypothesis about item calibration was the main objective of this study. A suitability index (SI) was introduced to adaptively…

  5. C-band PARC manual

    NASA Astrophysics Data System (ADS)

    Groot, J. S.

    1992-05-01

    Measurement results of radar cross section, crosstalk level, etc., of a C band Polarimetric Active Radar Calibrator (PARC), which is used to calibrate air and spaceborne radars commonly used in remote sensing, are reported. The results are used to infer guidelines for the use of this PARC. The PARC consists of a high gain amplifier connected between two linearly polarized horn antennas.

  6. 40 CFR 89.321 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-fit straight line is 2 percent or less of the value at each non-zero data point and within ± 0.3... factor for that range. If the deviation exceeds these limits, the best-fit non-linear equation which... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be...

  7. 40 CFR 89.321 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-fit straight line is 2 percent or less of the value at each non-zero data point and within ± 0.3... factor for that range. If the deviation exceeds these limits, the best-fit non-linear equation which... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be...

  8. 40 CFR 89.321 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-fit straight line is 2 percent or less of the value at each non-zero data point and within ± 0.3... factor for that range. If the deviation exceeds these limits, the best-fit non-linear equation which... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be...

  9. 40 CFR 89.321 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-fit straight line is 2 percent or less of the value at each non-zero data point and within ± 0.3... factor for that range. If the deviation exceeds these limits, the best-fit non-linear equation which... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be...

  10. Variability of Total Below Ground Carbon Allocation amongst Common Agricultural Land Management Practices: a Case Study

    NASA Astrophysics Data System (ADS)

    Wacha, K. M.; Papanicolaou, T.; Wilson, C. G.

    2010-12-01

    Field measurements and numerical models are currently being used to estimate quantities of Total Belowground Carbon Allocation (TBCA) for three representative land uses, viz. corn, soybeans, and prairie bromegrass for CRP (Conservation Reserve Program) of an agricultural Iowa sub-watershed, located within the Clear Creek Watershed (CCW). Since it is difficult to measure TBCA directly, a mass balance approach has been implemented to estimate TBCA as follows: TBCA = FS + FE+ Δ(CS + CR + CL) - FA , where the term Fs denotes soil respiration; FE is the carbon content of the eroded/deposited soil; ΔCS, ΔCR, ΔCL denote the changes in carbon content of the mineral soil, plant roots, and litter layer, respectively; and FA is the above ground litter fall of dead plant material to the soil. The terms are hypothesized to have a huge impact on TBCA within agricultural settings due to intensive tillage practices, water-driven soil erosion/deposition, and high usage of fertilizer. To test our hypothesis, field measurements are being performed at the plot scale, replicating common agricultural land management practices. Soil respiration (FS) is being measured with an EGM-4 CO2 Gas Analyzer and SRC-1 Soil Respiration Chamber (PP Systems), soil moisture and temperature are recorded in the top 20 cm for each respective soil respiration measurement, and litter fall rates (FA) are acquired by collecting the residue in a calibrated pan. The change in carbon content of the soil (ΔCS), roots (ΔCR) and litter layer (ΔCL) are being analyzed by collecting soil samples throughout the life cycle of the plant. To determine the term FE for the three representative land management practices, a funnel collection system located at the plot outlet was used for collecting the eroded material after natural rainfall events. Field measurements of TBCA at the plot scale via the mass balance approach are used to calibrate the numerical agronomic process model DAYCENT, which simulates the daily fluxes of carbon (CS) and soil respiration (FS) and incorporates a plant-growth model that allows the determination of the terms FA, CR, and CL. Once calibrated, DAYCENT can be used in conjunction with the Watershed Erosion Prediction Project (WEPP) model, which calculates erosion/deposition rates, to provide estimates of TBCA at a larger global scale.

  11. Calibration Errors in Interferometric Radio Polarimetry

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  12. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  13. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.

    PubMed

    Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C

    2008-07-21

    The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.

  14. Effect of Using Extreme Years in Hydrologic Model Calibration Performance

    NASA Astrophysics Data System (ADS)

    Goktas, R. K.; Tezel, U.; Kargi, P. G.; Ayvaz, T.; Tezyapar, I.; Mesta, B.; Kentel, E.

    2017-12-01

    Hydrological models are useful in predicting and developing management strategies for controlling the system behaviour. Specifically they can be used for evaluating streamflow at ungaged catchments, effect of climate change, best management practices on water resources, or identification of pollution sources in a watershed. This study is a part of a TUBITAK project named "Development of a geographical information system based decision-making tool for water quality management of Ergene Watershed using pollutant fingerprints". Within the scope of this project, first water resources in Ergene Watershed is studied. Streamgages found in the basin are identified and daily streamflow measurements are obtained from State Hydraulic Works of Turkey. Streamflow data is analysed using box-whisker plots, hydrographs and flow-duration curves focusing on identification of extreme periods, dry or wet. Then a hydrological model is developed for Ergene Watershed using HEC-HMS in the Watershed Modeling System (WMS) environment. The model is calibrated for various time periods including dry and wet ones and the performance of calibration is evaluated using Nash-Sutcliffe Efficiency (NSE), correlation coefficient, percent bias (PBIAS) and root mean square error. It is observed that calibration period affects the model performance, and the main purpose of the development of the hydrological model should guide calibration period selection. Acknowledgement: This study is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 115Y064.

  15. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  16. Quantification of calcium using localized normalization on laser-induced breakdown spectroscopy data

    NASA Astrophysics Data System (ADS)

    Sabri, Nursalwanie Mohd; Haider, Zuhaib; Tufail, Kashif; Aziz, Safwan; Ali, Jalil; Wahab, Zaidan Abdul; Abbas, Zulkifly

    2017-03-01

    This paper focuses on localized normalization for improved calibration curves in laser-induced breakdown spectroscopy (LIBS) measurements. The calibration curves have been obtained using five samples consisting of different concentrations of calcium (Ca) in potassium bromide (KBr) matrix. The work has utilized Q-switched Nd:YAG laser installed in LIBS2500plus system with fundamental wavelength and laser energy of 650 mJ. Optimization of gate delay can be obtained from signal-to-background ratio (SBR) of Ca II 315.9 and 317.9 nm. The optimum conditions are determined in which having high spectral intensity and SBR. The highest spectral lines of ionic and emission lines of Ca at gate delay of 0.83 µs. From SBR, the optimized gate delay is at 5.42 µs for both Ca II spectral lines. Calibration curves consist of three parts; original intensity from LIBS experimentation, normalization and localized normalization of the spectral line intensity. The R2 values of the calibration curves plotted using locally normalized intensities of Ca I 610.3, 612.2 and 616.2 nm spectral lines are 0.96329, 0.97042, and 0.96131, respectively. The enhancement from calibration curves using the regression coefficient allows more accurate analysis in LIBS. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.

  17. A 3-D Magnetic Analysis of a Stirling Convertor Linear Alternator Under Load

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Niedra, Janis M.; Regan, Timothy F.

    2001-01-01

    The NASA Glenn Research Center (GRC), the Department of Energy (DOE), and the Stirling Technology Company (STC) are developing Stirling convertors for Stirling Radioisotope Power Systems (SRPS) to provide electrical power for future NASA deep space missions. STC is developing the 55-We Technology Demonstration Convertor (TDC) under contract to DOE. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. This paper presents a 3-dimensional finite element method (FEM) approach for evaluating Stirling convertor linear alternators. The model extends a magnetostatic analysis previously reported at the 35th Intersociety Energy Conversion Engineering Conference (IECEC) to include the effects of the load current. STC's 55-We linear alternator design was selected to validate the model. Spatial plots of magnetic field strength (H) are presented in the region of the exciting permanent magnets. The margin for permanent magnet demagnetization is calculated at the expected magnet operating temperature for the near earth environment and for various average magnet temperatures. These thermal conditions were selected to represent a worst-case condition for the planned deep space missions. This paper presents plots that identify regions of high H where the potential to alter the magnetic moment of the magnets exists.

  18. 40 CFR 1065.307 - Linearity verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measurement (such as a scale, balance, or mass comparator) at the inlet to the fuel-measurement system. Use a... nitrogen. Select gas divisions that you typically use. Use a selected gas division as the measured value.... (9) Mass. For linearity verification for gravimetric PM balances, use external calibration weights...

  19. Genome U-Plot: a whole genome visualization.

    PubMed

    Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George

    2018-05-15

    The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.

  20. Correction of microplate location effects improves performance of the thrombin generation test

    PubMed Central

    2013-01-01

    Background Microplate-based thrombin generation test (TGT) is widely used as clinical measure of global hemostatic potential and it becomes a useful tool for control of drug potency and quality by drug manufactures. However, the convenience of the microtiter plate technology can be deceiving: microplate assays are prone to location-based variability in different parts of the microtiter plate. Methods In this report, we evaluated the well-to-well consistency of the TGT variant specifically applied to the quantitative detection of the thrombogenic substances in the immune globulin product. We also studied the utility of previously described microplate layout designs in the TGT experiment. Results Location of the sample on the microplate (location effect) contributes to the variability of TGT measurements. Use of manual pipetting techniques and applications of the TGT to the evaluation of procoagulant enzymatic substances are especially sensitive. The effects were not sensitive to temperature or choice of microplate reader. Smallest location effects were observed with automated dispenser-based calibrated thrombogram instrument. Even for an automated instrument, the use of calibration curve resulted in up to 30% bias in thrombogenic potency assignment. Conclusions Use of symmetrical version of the strip-plot layout was demonstrated to help to minimize location artifacts even under the worst-case conditions. Strip-plot layouts are required for quantitative thrombin-generation based bioassays used in the biotechnological field. PMID:23829491

  1. Correction of microplate location effects improves performance of the thrombin generation test.

    PubMed

    Liang, Yideng; Woodle, Samuel A; Shibeko, Alexey M; Lee, Timothy K; Ovanesov, Mikhail V

    2013-07-05

    Microplate-based thrombin generation test (TGT) is widely used as clinical measure of global hemostatic potential and it becomes a useful tool for control of drug potency and quality by drug manufactures. However, the convenience of the microtiter plate technology can be deceiving: microplate assays are prone to location-based variability in different parts of the microtiter plate. In this report, we evaluated the well-to-well consistency of the TGT variant specifically applied to the quantitative detection of the thrombogenic substances in the immune globulin product. We also studied the utility of previously described microplate layout designs in the TGT experiment. Location of the sample on the microplate (location effect) contributes to the variability of TGT measurements. Use of manual pipetting techniques and applications of the TGT to the evaluation of procoagulant enzymatic substances are especially sensitive. The effects were not sensitive to temperature or choice of microplate reader. Smallest location effects were observed with automated dispenser-based calibrated thrombogram instrument. Even for an automated instrument, the use of calibration curve resulted in up to 30% bias in thrombogenic potency assignment. Use of symmetrical version of the strip-plot layout was demonstrated to help to minimize location artifacts even under the worst-case conditions. Strip-plot layouts are required for quantitative thrombin-generation based bioassays used in the biotechnological field.

  2. Performance of a Nomogram Predicting Disease-Specific Survival After an R0 Resection for Gastric Cancer in Patients Receiving Postoperative Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dikken, Johan L.; Department of Surgery, Leiden University Medical Center, Leiden; Coit, Daniel G.

    Purpose: The internationally validated Memorial Sloan-Kettering Cancer Center (MSKCC) gastric carcinoma nomogram was based on patients who underwent curative (R0) gastrectomy, without any other therapy. The purpose of the current study was to assess the performance of this gastric cancer nomogram in patients who received chemoradiation therapy after an R0 resection for gastric cancer. Methods and Materials: In a combined dataset of 76 patients from the Netherlands Cancer Institute (NKI), and 63 patients from MSKCC, who received postoperative chemoradiation therapy (CRT) after an R0 gastrectomy, the nomogram was validated by means of the concordance index (CI) and a calibration plot. Results:more » The concordance index for the nomogram was 0.64, which was lower than the CI of the nomogram for patients who received no adjuvant therapy (0.80). In the calibration plot, observed survival was approximately 20% higher than the nomogram-predicted survival for patients receiving postoperative CRT. Conclusions: The MSKCC gastric carcinoma nomogram significantly underpredicted survival for patients in the current study, suggesting an impact of postoperative CRT on survival in patients who underwent an R0 resection for gastric cancer, which has been demonstrated by randomized controlled trials. This analysis stresses the need for updating nomograms with the incorporation of multimodal strategies.« less

  3. The temperature-dependence of adenylate cyclase from baker's yeast.

    PubMed Central

    Londesborough, J; Varimo, K

    1979-01-01

    The Michaelis constant of membrane-bound adenylate cyclase increased from 1.1 to 1.8 mM between 7 and 38 degrees C (delta H = 13 kJ/mol). Over this temperature range, the maximum velocity increased 10-fold, and the Arrhenius plot was nearly linear, with an average delta H* of 51 kJ/mol. The temperature-dependence of the reaction rate at 2 mM-ATP was examined in more detail: for Lubrol-dispersed enzyme, Arrhenius plots were nearly linear with average delta H* values of 45 and 68 kJ/mol, respectively, for untreated and gel-filtered enzymes; for membrane-bound enzyme, delta H changed from 40 kJ/mol above about 21 degrees C to 62 kJ/mol below 21 degrees C, but this behaviour does not necessarily indicate an abrupt, lipid-induced, transition in the reaction mechanism. PMID:391221

  4. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    USGS Publications Warehouse

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns. ?? 2006 Elsevier B.V. All rights reserved.

  5. Diagnostic utility of appetite loss in addition to existing prediction models for community-acquired pneumonia in the elderly: a prospective diagnostic study in acute care hospitals in Japan.

    PubMed

    Takada, Toshihiko; Yamamoto, Yosuke; Terada, Kazuhiko; Ohta, Mitsuyasu; Mikami, Wakako; Yokota, Hajime; Hayashi, Michio; Miyashita, Jun; Azuma, Teruhisa; Fukuma, Shingo; Fukuhara, Shunichi

    2017-11-08

    Diagnosis of community-acquired pneumonia (CAP) in the elderly is often delayed because of atypical presentation and non-specific symptoms, such as appetite loss, falls and disturbance in consciousness. The aim of this study was to investigate the external validity of existing prediction models and the added value of the non-specific symptoms for the diagnosis of CAP in elderly patients. Prospective cohort study. General medicine departments of three teaching hospitals in Japan. A total of 109 elderly patients who consulted for upper respiratory symptoms between 1 October 2014 and 30 September 2016. The reference standard for CAP was chest radiograph evaluated by two certified radiologists. The existing models were externally validated for diagnostic performance by calibration plot and discrimination. To evaluate the additional value of the non-specific symptoms to the existing prediction models, we developed an extended logistic regression model. Calibration, discrimination, category-free net reclassification improvement (NRI) and decision curve analysis (DCA) were investigated in the extended model. Among the existing models, the model by van Vugt demonstrated the best performance, with an area under the curve of 0.75(95% CI 0.63 to 0.88); calibration plot showed good fit despite a significant Hosmer-Lemeshow test (p=0.017). Among the non-specific symptoms, appetite loss had positive likelihood ratio of 3.2 (2.0-5.3), negative likelihood ratio of 0.4 (0.2-0.7) and OR of 7.7 (3.0-19.7). Addition of appetite loss to the model by van Vugt led to improved calibration at p=0.48, NRI of 0.53 (p=0.019) and higher net benefit by DCA. Information on appetite loss improved the performance of an existing model for the diagnosis of CAP in the elderly. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. A highly sensitive and selective electrochemical sensor for determination of Cr(VI) in the presence of Cr(III) using modified multi-walled carbon nanotubes/quercetin screen-printed electrode.

    PubMed

    Sadeghi, Susan; Garmroodi, Aziz

    2013-12-01

    A novel screen-printed carbon electrode modified with quercetin/multi-walled carbon nanotubes was fabricated for determination of Cr(VI) in the presence of excess of Cr(III) without any pretreatment. The method is based on accumulation of the quercetin-Cr(III) complex generated in situ from Cr(VI) at the modified electrode surface in an open circuit followed by differential pulse voltammetry detection. The new method allowed selective determination of Cr(VI) in the presence of Cr(III). The influence of various parameters affecting the adsorptive stripping voltammetry performance was investigated. Under the optimum conditions, the calibration plot was found to be linear in the Cr(VI) concentration range from 1.0 to 200 μmol(-1) with a limit of detection(S/N=3) of 0.3 μmol L(-1). The relative standard deviation (RSD%) of seven replicates of the current measurements for a 50 μmol(-1) of Cr(VI) solution was 3.0%. The developed electrode displayed a very low or no sensitivity to alkali, alkali-earth and transition metal cations and was successfully applied for the determination of Cr(VI) in drinking water samples. © 2013.

  7. Microplate based optical biosensor for L-Dopa using tyrosinase from Amorphophallus campanulatus.

    PubMed

    Saini, Amardeep Singh; Kumar, Jitendra; Melo, Jose Savio

    2014-11-07

    Developing a biosensor which is capable of simultaneously monitoring l-Dopa levels in multiple samples besides requiring small reaction volume is of great value. The present study describes the detection of l-Dopa using tyrosinase enzyme extracted from Amorphophallus campanulatus and immobilized on the surface of the microplate wells. Among the different approaches used for immobilizing tyrosinase onto the microplate wells, glutaraldehyde treatment was found to be most effective. Besides enzyme activity, ESEM-EDS (environmental scanning electron microscope-energy dispersive system) and Atomic Force Microscopy (AFM) were also carried out to confirm the immobilization of tyrosinase enzyme onto the microplate well surface. This immobilized biocomponent was then integrated with an optical transducer for l-Dopa detection and it showed good reproducibility. The sensing property of the system was studied by measuring the initial rate of dopachrome formation at 475 nm. The calibration plot gave a linear range of detection from 10-1000 μM and the detection limit was calculated to be 3 μM. The immobilized biocomponent was stable for 41 days and was reused up to nine times. Spiked samples (blood plasma) were also analyzed using this biocomponent. This microplate based biosensor thus provides a convenient system for detection of multiple samples in a single run. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles.

    PubMed

    Mishra, Archana; Kumar, Jitendra; Melo, Jose Savio

    2017-01-15

    The previously developed Sphingomonas sp. based optical microplate biosensor for methyl parathion (MP) was good as it detected multiple samples but had poor stability and low sensitivity. The present study aims to overcome these limitations. Silica nanoparticles (Si NP) were thus functionalized with polyethyleneimine (PEI) and the functionalized silica nanoparticles ( f Si NP) were then integrated with Sphingomonas sp. cells. The process was optimized for hydrolysis of MP into p-nitrophenol (PNP). Integration of f Si NP with cells was confirmed by FT-IR analysis. Biohybrid of Sphingomonas sp.- f Si NP was immobilized on the wells of microplate and associated directly with the optical transducer of microplate reader. Immobilized biohybrid of Sphingomonas sp.- f Si NP was characterized using SEM. A detection range of 0.1-1ppm MP was achieved from the linear range of calibration plot. After integration with f Si NP the storage stability of biohybrid was enhanced ten times from 18 to 180 days. This study proves that after interaction of cells with f Si NP, improved the sensitivity and stability of the biosensor. Spiked samples were also analyzed and correlated using this biohybrid based biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples.

    PubMed

    Alizadeh, Taher; Zare, Mashaalah; Ganjali, Mohamad Reza; Norouzi, Parviz; Tavana, Babak

    2010-01-15

    A high selective voltammetric sensor for 2,4,6-trinitrotoluene (TNT) was introduced. TNT selective MIP and non-imprinted polymer (NIP) were synthesized and then used for carbon paste (CP) electrode preparation. The MIP, incorporated in the carbon paste electrode, functioned as selectively recognition element and pre-concentrator agent for TNT determination. The prepared electrode was used for TNT measurement by the three steps procedure, including analyte extraction in the electrode, electrode washing and electrochemical measurement of TNT. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CP. It was shown that electrode washing after TNT extraction led to enhanced selectivity. The response of square wave voltammetry for TNT determination by proposed electrode was higher than that of differential pulse voltammetry. Some parameters affecting sensor response were optimized and then a calibration curve plotted. A dynamic linear range of 5x10(-9) to 1x10(-6) mol l(-1) was obtained. The detection limit of the sensor was calculated equal to 1.5x10(-9) mol l(-1). This sensor was used successfully for TNT determination in different water and soil samples. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper.

    PubMed

    Ramasamy, S M; Hurtubise, R J

    1998-11-01

    Perdeuterated phenanthrene (d-phen) exhibits strong room-temperature phosphorescence (RTP) when adsorbed on Whatman 1PS filter paper. An oxygen sensor was developed that depends on oxygen quenching of RTP intensity of adsorbed d-phen. The system designed employed a continuous flow of nitrogen or nitrogen-air onto the adsorbed phosphor. The sensor is simple to prepare and needs no elaborate fabrication procedure, but did show a somewhat drifting baseline for successive determinations of oxygen. Nevertheless, very good reproducibility was achieved with the RTP quenching data by measuring the RTP intensities just before and at the end of each oxygen determination. The calibration plots gave a nonlinear relationship over the entire range of oxygen (0-21%). However, a linear range was obtained up to 1.10% oxygen. A detection limit of 0.09% oxygen in dry nitrogen was acquired. Also, carbon dioxide was found to have a minimal effect on the RTP quenching. Thus, oxygen could be measured accurately in relatively large amounts of carbon dioxide. The performance of the oxygen sensor was evaluated by comparing data obtained with a commercial electrochemical trace oxygen analyzer. Also, additional information on the quenching phenomena for this system was obtained from the RTP lifetime data acquired at various oxygen contents.

  11. Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.

    PubMed

    Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix

    2018-05-29

    Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.

  12. Rapid screening of aflatoxin B1 in beer by fluorescence polarization immunoassay.

    PubMed

    Beloglazova, N V; Eremin, S A

    2015-09-01

    This manuscript describes the development of a sensitive, fast and easily-performed fluorescence polarization immunoassay (FPIA) for the mycotoxin aflatoxin B1 (AFB1) in various beer samples, both lager and dark. The highest sensitivity was determined for six poly- and monoclonal antibodies selective towards aflatoxins. The sample pretreatment design was emphasized since beer samples are characterized by extremely diverse matrices. Herein, the choice of sorbent for effective removal of matrix interferences prior to analysis was crucial. The samples were diluted with a borate buffer solution containing 1% PEG 6000 and passed through the clean-up column packed with NH2-derivated silica. This sample pretreatment technique was perfectly suitable for the FPIA of lager beer samples, but for dark beer and ale it did not suffice. An artificial matrix was constructed to plot a calibration curve and quantify the results of the latter samples. The developed immunoassay was characterized by a limit of detection of 1 ng mL(-1). Apparent recovery values of 89-114% for lager and 80-125% for dark beer were established. The FPIA data for AFB1 was characterized by elevated linear regression coefficients, 0.9953 for spiked lager and 0.9895 for dark beer samples respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Dell'Aglio, Marcella; Gaudiuso, Rosalba; Senesi, Giorgio S; De Giacomo, Alessandro; Zaccone, Claudio; Miano, Teodoro M; De Pascale, Olga

    2011-05-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a fast and multi-elemental analytical technique particularly suitable for the qualitative and quantitative analysis of heavy metals in solid samples, including environmental ones. Although LIBS is often recognised in the literature as a well-established analytical technique, results about quantitative analysis of elements in chemically complex matrices such as soils are quite contrasting. In this work, soil samples of various origins have been analyzed by LIBS and data compared to those obtained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The emission intensities of one selected line for each of the five analytes (i.e., Cr, Cu, Pb, V, and Zn) were normalized to the background signal, and plotted as a function of the concentration values previously determined by ICP-OES. Data showed a good linearity for all calibration lines drawn, and the correlation between ICP-OES and LIBS was confirmed by the satisfactory agreement obtained between the corresponding values. Consequently, LIBS method can be used at least for metal monitoring in soils. In this respect, a simple method for the estimation of the soil pollution degree by heavy metals, based on the determination of an anthropogenic index, was proposed and determined for Cr and Zn.

  14. Ion chromatographic determination of hydroxide ion on monolithic reversed-phase silica gel columns coated with nonionic and cationic surfactants.

    PubMed

    Xu, Qun; Mori, Masanobu; Tanaka, Kazuhiko; Ikedo, Mikaru; Hu, Wenzhi; Haddad, Paul R

    2004-07-02

    The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.

  15. Fabrication of Smart Chemical Sensors Based on Transition-Doped-Semiconductor Nanostructure Materials with µ-Chips

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm2) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r2 = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm−2mM−1 and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I–V sensors on μ-chips. PMID:24454785

  16. Fabrication of smart chemical sensors based on transition-doped-semiconductor nanostructure materials with µ-chips.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Asiri, Abdullah M

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm(2)) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r(2) = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm(-2)mM(-1) and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I-V sensors on μ-chips.

  17. Headspace sorptive solid phase microextraction (HS-SPME) combined with a spectrophotometry system: A simple glass devise for extraction and simultaneous determination of cyanide and thiocyanate in environmental and biological samples.

    PubMed

    Al-Saidi, H M; Al-Harbi, Sami A; Aljuhani, E H; El-Shahawi, M S

    2016-10-01

    A simple, low cost and efficient headspace sorptive solid phase microextraction (HS-SPME) method for determination of cyanide has been developed. The system comprises of a glass tube with two valves and a moveable glass slide fixed at its centre. It includes an acceptor phase polyurethane foam treated mercury (II) dithizonate [Hg(HDz)2-PUF] complex fixed inside by a septum cap in a cylindrical configuration (5.0cm length and 1.0cm diameter). The extraction is based upon the contact of the acceptor phase to the headspace and subsequently measuring the absorbance of the recovered mercury (II) dithizonate from PUFs sorbent. Unlike other HSSE, extraction and back - extractions was carried out in a closed system, thereby improving the analytical performance by preventing the analyte loss. Under the optimized conditions, a linear calibration plot in the range of 1.0-50.0µmolL(-1) was achieved with limits of detection (LOD) and quantification (LOQ) of 0.34, 1.2µmolL(-1) CN(-), respectively. Simultaneous analysis of cyanide and thiocyanate in saliva was also performed with satisfactory recoveries. Copyright © 2016. Published by Elsevier B.V.

  18. Determination of tramadol hydrochloride in ampoule dosage forms by using UV spectrophotometric and HPLC-DAD methods in methanol and water media.

    PubMed

    Küçük, Aysel; Kadioğlu, Yücel

    2005-02-01

    Two newly developed simple and sensitive methods for determination of tramadol hydrochloride in ampoule dosage forms were described and validated. Measurements for spectrophotometric method were performed using UV-Vis Spectrophotometer in ranges of 200-400 nm. The solutions of standard and the samples were prepared in methanol and water media and the UV absorption spectrums of tramadol were monitored with maximum absorptions at 275 and 271 nm for both mediums, respectively. The standard calibration curves of tramadol were constructed by plotting absorbance vs. concentration in the concentration range with the final dilution of 10-100 microg ml-1. Reversed phase chromatography for HPLC method was conducted using a Phenomenex Bondclone C18 column with an isocratic mobile phase consisting of 25% acetonitrile in 75% 0.01 M phosphate buffer (pH 3). The effluent was monitored on a DAD detector at 218 nm. Linear response (r>0.99) was observed over the range of 0.5-40 microg ml-1 for methanol and water and run on six different occasions. The methods were applied successfully to pharmaceutical ampoule forms, but also for comparison in two different solvent media. Besides, it was completely validated and proven to be rugged.

  19. Used-habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-selection models

    USGS Publications Warehouse

    Fieberg, John R.; Forester, James D.; Street, Garrett M.; Johnson, Douglas H.; ArchMiller, Althea A.; Matthiopoulos, Jason

    2018-01-01

    “Species distribution modeling” was recently ranked as one of the top five “research fronts” in ecology and the environmental sciences by ISI's Essential Science Indicators (Renner and Warton 2013), reflecting the importance of predicting how species distributions will respond to anthropogenic change. Unfortunately, species distribution models (SDMs) often perform poorly when applied to novel environments. Compounding on this problem is the shortage of methods for evaluating SDMs (hence, we may be getting our predictions wrong and not even know it). Traditional methods for validating SDMs quantify a model's ability to classify locations as used or unused. Instead, we propose to focus on how well SDMs can predict the characteristics of used locations. This subtle shift in viewpoint leads to a more natural and informative evaluation and validation of models across the entire spectrum of SDMs. Through a series of examples, we show how simple graphical methods can help with three fundamental challenges of habitat modeling: identifying missing covariates, non-linearity, and multicollinearity. Identifying habitat characteristics that are not well-predicted by the model can provide insights into variables affecting the distribution of species, suggest appropriate model modifications, and ultimately improve the reliability and generality of conservation and management recommendations.

  20. Sampling strategies exploiting multi-pumping flow systems.

    PubMed

    Prior, João A V; Santos, João L M; Lima, José L F C

    2003-04-01

    In this work new strategies were exploited to implement multi-pumping flow systems relying on the utilisation of multiple devices that act simultaneously as sample-insertion, reagent-introduction, and solution-propelling units. The solenoid micro-pumps that were initially used as the only active elements of multi-pumping systems, and which were able to produce pulses of 3 to 25 microL, were replaced by syringe pumps with the aim of producing pulses between 1 and 4 microL. The performance of the developed flow system was assessed by using distinct sample-insertion strategies like single sample volume, merging zones, and binary sampling in the spectrophotometric determination of isoniazid in pharmaceutical formulations upon reaction with 1,2-naphthoquinone-4-sulfonate, in alkaline medium. The results obtained showed that enhanced sample/reagent mixing could be obtained with binary sampling and by using a 1 microL per step pump, even in limited dispersion conditions. Moreover, syringe pumps produce very reproducible flowing streams and are easily manipulated and controlled by a computer program, which is greatly simplified since they are the only active manifold component. Linear calibration plots up to 18.0 microg mL(-1), with a relative standard deviation of less than 1.48% (n=10) and a throughput of about 20 samples per hour, were obtained.

Top